Science.gov

Sample records for active hydrothermal mound

  1. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  2. Microearthquakes at the active Trans-Atlantic Geotraverse (TAG) hydrothermal mound, Mid-Atlantic Ridge, 26°08'N

    NASA Astrophysics Data System (ADS)

    Pontbriand, C.; Reves-Sohn, R. A.

    2010-12-01

    A small 200 m aperture network of five ocean bottom seismometers around the periphery the active TAG hydrothermal mound on the Mid-Atlantic Ridge (26°08’N) detected microearthquake events that may be associated with the subsurface hydraulics of the massive hydrothermal deposit. Seismic data were sampled at 100 Hz for a period of eight months spanning June, 2003 to February, 2004, during which time 24,191 locatable events were detected. Microearthquake hypocenters are concentrated within a 300 m radius of the sulfide mound in the top 250 m of crust, and exhibit a conical shape with the deepest events beneath the mound center. Event rates are steady at 180 events per day at the beginning of the study period and decline slightly to 116 events per day after whale calls elevate background noise levels about 2/3 of the way through the deployment. The mean local magnitude of events is -1.2 with a range of -2.9≦ML≦0.3. We suggest that events may be largely due to hydraulic fracturing of clogged flow conduits in the mineral deposit, which provides the possibility of using the microearthquake data to constrain subsurface flow parameters and the permeability structure of the active TAG deposit. Figure: A bathymetric map of the TAG area depicts a small aperture network of 5 ocean bottom seismometers (white triangles) around the periphery of the active TAG hydrothermal mound. High resolution bathymetry is from Roman and Singh, 2005.

  3. Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion: A new manifestation of hydrothermal venting

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Humphris, Susan E.; Dick, Henry J. B.

    2013-09-01

    Long-lived detachment faults are now known to be important in tectonic evolution of slow-spreading mid-ocean ridges, and there is increasing evidence that fluid flow plays a critical role in development of detachment systems. Here we document a new manifestation of low-temperature hydrothermal venting associated with the detachment fault that formed Kane Megamullion ˜3.3-2.1 m.y. ago in the western rift-valley wall of the Mid-Atlantic Ridge. Hydrothermal effects on the detachment surface include (1) cemented mounds of igneous rock and chalk debris containing hydrothermal Mn oxides and Fe oxyhydroxides, and (2) layered deposits of similar Fe-Mn minerals ± interbedded chalks. Mounds are roughly conical, ˜1-10 m high, and contain primarily basalts with lesser gabbro, serpentinite, and polymict breccia. The layered Fe-Mn-rich sediments are flat-bedded to contorted and locally are buckled into low-relief linear or polygonal ridges. We propose that the mounds formed where hydrothermal fluids discharged through the detachment hanging wall near the active fault trace. Hydrothermal precipitates cemented hanging-wall debris and welded it to the footwall, and this debris persisted as mounds as the footwall was exhumed and surrounding unconsolidated material sloughed off the sloping detachment surface. Some of the layered Fe-Mn-rich deposits may have precipitated from fluids discharging from the hanging-wall vents, but they also precipitated from low-temperature fluids venting from the exposed footwall through overlying chalks. Observed natural disturbance and abnormally thin hydrogenous Fe-Mn crusts on some contorted, hydrothermal Fe-Mn-rich chalks on ˜2.7 Ma crust suggest diffuse venting that is geologically recent. Results of this study imply that there are significant fluid pathways through all parts of detachment systems and that low-temperature venting through fractured detachment footwalls may continue for several million years off-axis.

  4. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation.

    PubMed

    Teske, Andreas; de Beer, Dirk; McKay, Luke J; Tivey, Margaret K; Biddle, Jennifer F; Hoer, Daniel; Lloyd, Karen G; Lever, Mark A; Røy, Hans; Albert, Daniel B; Mendlovitz, Howard P; MacGregor, Barbara J

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.

  5. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  6. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation.

    PubMed

    Teske, Andreas; de Beer, Dirk; McKay, Luke J; Tivey, Margaret K; Biddle, Jennifer F; Hoer, Daniel; Lloyd, Karen G; Lever, Mark A; Røy, Hans; Albert, Daniel B; Mendlovitz, Howard P; MacGregor, Barbara J

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  7. Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.

    The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.

  8. Galapagos hydrothermal mounds: stratigraphy and chemistry revealed by deep-sea drilling.

    PubMed

    Natland, J H; Rosendahl, B; Hekinian, R; Dmitriev, Y; Fodor, R V; Goll, R M; Hoffert, M; Humphris, S E; Mattey, D P; Petersen, N; Roggenthen, W; Schrader, E L; Srivastava, R K; Warren, N

    1979-05-11

    The Galápagos mounds sea-floor hydrothermal system is at least 300,000 years old and once produced manganese-poor sediments, which nearly blanketed the area of the present mounds field. Present-day mound deposits are limited manganese-rich exposures, suggesting that the system has changed from rock-to water-dominated and has diminished in intensity with time.

  9. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    PubMed Central

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  10. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).

    PubMed

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  11. Steady state and a singular event observed at the TAG hydrothermal mound by a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Fujioka, K.; Aoki, M.; Mitsuzawa, K.; Kato, K.; Kinoshita, M.; Nishizawa, A.

    2005-12-01

    The steady state variability and occasional O`randomO_L event of hydrothermal activity were observed by several long-term monitoring systems deployed on the TAG hydrothermal mound and observed by submersible video and still cameras in the Mid Atlantic Ridge 26 N. We measured current direction and velocity, visibility, temperature, and salinity of sea water as well as observed newly formed black smokers by video and still camera system. Heat flow measurement system and an OBSH were also deployed around the central black smoker and newly formed black smokers for more than two weeks. Steady state change of the temperature, current direction and velocity, visibility and pressure change by hydrophone show a regular semidiurnal periodic variation, which may be caused by ocean, and earth tides. A singular event occurred during our research at the TAG hydrothermal mound. Small earthquakes beneath the TAG mound were followed by a huge slope failure, which apparently caused by a debris flow, killing swimming eel-like fish. A thin bed of the dead shrimps may be related to a nearly simultaneous increase of hot water flux from vent.

  12. Mapping the fluid flow of the Mariana Mounds ridge flank hydrothermal system: Pore water chemical tracers

    SciTech Connect

    Wheat, C.G.; McDuff, R.E.

    1995-05-10

    The authors present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep-sea research vessel Alvin in small, meter-sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. The authors have interpreted the chemical data with time-dependent transport-reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A large area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. The authors conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarpt about 2-4 km to the east and southeast of the study area. 71 refs., 14 figs., 3 tabs.

  13. The structure of iron-hydroxide mounds at hydrothermal environment in shallow marine, Satsuma Iwo-Jima, Kikai caldera, Japan

    NASA Astrophysics Data System (ADS)

    Kuratomi, T.; Kiyokawa, S.; Ikehara, M.; Goto, S.; Hoshino, T.; Ikegami, F.; Minowa, Y.

    2013-12-01

    Satsuma Iwo-Jima Island, located 38km south of Kyusyu, Japan, is a volcanic island in the northwestern rim of Kikai caldera. Iron-rich mounds develop with hydrothermal activity (pH=5.5, 50-60 °C) in Nagahama bay southwestern this island. The brownish seawater at the bay is due to mixing of the hot spring water (Shikaura and Tazaki, 2001) with the high deposition rate (1 m per year) of iron-rich sediments (Kiyokawa et al., 2012). In this study, we found the structure of mounds has unique information by the observation with X-ray CT scan, FE-SEM, and the thin-sectioned sample, and the chemical analysis with EDS, XRF, and XRD. Samples (20-30 cm long) were piece of mounds made from two layers: black high-density hard layer and brownish low-density soft layer. X-ray CT scan observation shows that the inside of samples is constructed from the aggregation of convex structure (3-4 cm). Low-density layers have many pipe-like structure (typical radius: 1 mm). Petrographic observations indicate that both high- and low-density layers have filament-like forms, however the form in low-density layer is perpendicular to those in high-density layer. In low-density layer, small particles on the filament-like form and the number increases toward high-density layer. FE-SEM observation shows that filament-like form in high-density layer consists of aggregation of bacillus-like form as the chain of particles (about 2 μm). At low-density layer, on the other hand, bacteria-like form with smaller particles (<1 μm) is observed. Bacteria-like form could be classified into 3 types (helix, ribbon-like, twisted). Furthermore, all particles are iron-hydroxides such as ferrihydrite with silica because they are consist of Fe, Si and O with broad peak in XRD. We conclude that the mounds at Nagahama bay were constructed form aggregation of convex structure with many pipes as the hydrothermal vent. Bacteria-like form probably is the stalk of neutrophilic, iron-oxidizing bacteria because of those

  14. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  15. Pore water chemistry of the Mounds Hydrothermal Field, Galapagos Spreading Center: Results from Glomar Challenger Piston Coring

    NASA Astrophysics Data System (ADS)

    Bender, Michael L.

    1983-01-01

    On DSDP Leg 70, Glomar Challenger piston cored hydrothermal MnO2-encrusted nontronite mounds and adjacent pelagic sediments through to basement. Pore waters were collected by centrifuging, squeezing, and in situ sampling; analyses are presented here for Ca, Mg, Si, NH3, Mn, and Fe. Our results confirm Maris and Bender's (1982) conclusions that hydrothermal solutions enriched in Ca by 1-2 mM and depleted in Mg by ˜2 mM are upwelling through the mounds and the surrounding pelagic sediments. Si, NH3, and Mn2+ concentrations generally increase upcore, reflecting addition of products of metabolic reactions to upwelling hydrothermal solutions. Pore water iron concentrations decrease upcore, probably as a result of oxidation and precipitation of upwelling hydrothermal iron. The formation of nontronite (Fe(III)4Si8O20(OH)4) involves oxidation of dissolved Fe2+. Several models, constrained by the electron balance, are proposed to explain the process of nontronite formation. The stratigraphy of the mounds (thick nontronite covered by a thin MnO2 crust) may be explained by postulating Fe2+ oxidation by MnO2 and replacement of MnO2 by nontronite at the base of the MnO2 crust, followed by upward migration of Mn2+ and precipitation of MnO2 at the sediment water interface.

  16. Heat transfer through the sediments of the mounds hydrothermal area, Galapagos Spreading Center at 86 /sup 0/W

    SciTech Connect

    Becker, K.; Von Herzen, R.P.

    1983-02-10

    Heat transfer processes at the mounds area of the Galapagos Spreading Center at 86 /sup 0/W are revealed by temperatures measured at roughly-equal10-m intervals in the 30 +- 10 m sediment at each of 12 holes at DSDP Leg 70 Sites 506--509 and by temperatures of up to five thermistors on eleven 8--12 m long piston cores. The 325 needle-probe values show a significant linear increase of thermal conductivity with depth in each core. About half of the temperature-thermal resistance profiles are nonlinear and are fit to a steady state, vertical pore water advection model. Results indicate high and variable total heat flow and localized hydrothermal discharge at roughly-equal10/sup -8/ m/s, associated with individual mounds. Recharge is indicated at similar rates in the low heat flow belt roughly-equal5 km south of the mounds and is suggested at slower rates in the intermediate heat flow (0.17--0.42 W/m/sup 2/) belt surrounding the mounds heat flow high. Possible slow entrained recharge within roughly-equal100 m of discharging mounds is suggested. Also suggested is strong local discharge along the major fault bounding the mounds crustal block to the north. About 95 km north of the spreading axis, at DSDP Site 510, temperatures in the 114-m sediment cover on 2.7-m.y. crust are linear, consistent with the suggestion that the hydraulic resistance of this layer is sufficient to seal off free hydrothermal exchange between basement and bottom water. The combination of heat flow data and the physical properties data of Karato and Becker (this issue) suggests that roughly-equal50 m of sediment may be a threshold thickness for sealing of hydrothermal circulation within basement, where the topography is smooth. We suggest that the formation of mounds may be associated with the forced localization of hydrothermal discharge through the sediment, as its thickness approaches this threshold value.

  17. Time Series Fluid Compositions from the TAG Hydrothermal Mound, MAR: 1986-2004

    NASA Astrophysics Data System (ADS)

    Parker, C. M.; von Damm, K. L.; Beers, K. A.; Green, D. R.; Alker, B. J.; German, C. R.

    2005-12-01

    High temperature hydrothermal fluids have been collected from the TAG Mound, Mid-Atlantic Ridge in 1986, 1990, 1993, 1994, 1995, 2003, and 2004. This 18-year time series brackets the ODP drilling at this site in 1994. Because of the changing distribution of high temperature venting, sampling was limited to only those parts of the mound that were safely accessible to an HOV/ROV, and therefore a single "vent" neither existed nor was sampled over this time period. The maximum measured temperature of the fluids at the time of water sample collection was 370°C in 2003, with values ≥364°C also reported for 1990, 1993, 1995 and 2004. For the entire time series the Cl content of the venting fluids has remained greater than the seawater value, and constant within error at 640±10 mmol/kg. This constancy is also observed for both Na and Sr. Other elements, however, vary significantly. In some cases, such as for Fe, this can be attributed to poor sample quality, which led to artificially low values in 1986. Mn is typically not affected by substantial mixing of vent fluids with seawater in the sampling bottles, which can lead to significant loss of sulfide-forming metals such as Fe. The Mn endmember values are generally lower post-drilling (aver: 678 vs. 779 umol/kg). In contrast, Ca concentrations post-drilling are always >30 mmol/kg, while reported pre-drilling values are as low as 26 mmol/kg. K varies from 17-20 mmol/kg (~15%), well outside analytical error, but without a simple trend. In 1986, Li values >400 umol/kg were reported, and not until 2003 are values this high observed once again. Finally, reported Si values ranged from 18.4-22.0 mmol/kg (~8%), a larger variation than expected from analytical error alone. The variation in Si does not display a simple temporal trend, nor does it correlate with the measured exit temperature of the fluids. It therefore appears that real variations have occurred in the chemical compositions of the vent fluids sampled at TAG, but

  18. Stochastic Analysis of Exit-Fluid Temperature Time-Series Data from the TAG Hydrothermal Mound: Events, States, and Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R.; Humphris, S.; Canales, J.

    2005-12-01

    The TAG hydrothermal mound is a dynamic structure that is continuously growing via mineral deposition, collapsing from gravitational instabilities and anhydrite dissolution, and shaking from frequent seismic activity on the adjacent normal faults. As a result, the sub-surface fluid circulation patterns beneath the mound are continually re-organizing in response to events that close and open flow paths. These characteristics are clearly evident in time series exit-fluid temperature data acquired from June 2003 through July 2004 as part of the Seismicity and Fluid Flow of TAG (STAG) experiment. Twenty one temperature probes were deployed in actively venting cracks across the TAG mound, and temperature measurements were acquired at each site every ~10 minutes. A key insight for understanding the exit-fluid temperature data is that the measurements can be modeled as Markov chains, where each measurement is a random variable drawn from a finite set of probability distributions associated with the hidden states of the system (i.e., Hidden Markov Models). The Markov chain changes states in response to events that can affect multiple probes, but not necessarily in the same way. For example, an event may cause temperatures at one probe to rapidly increase while temperatures at another probe rapidly decrease. The data from many probes can be explained with a two-state Markov chain, with one state corresponding to "crack open" and the second state corresponding to "crack closed", but still other probes require three or more states, possibly in a nested structure. These stochastic models are deepening our understanding of shallow circulation patterns beneath the TAG mound, and we hope to use them to condition subsurface flow models incorporating the relevant physics of permeable flow in fractures and heat flow.

  19. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  20. New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany

    NASA Astrophysics Data System (ADS)

    Arp, Gernot; Kolepka, Claudia; Simon, Klaus; Karius, Volker; Nolte, Nicole; Hansen, Bent T.

    2013-12-01

    The extent of impact-generated hydrothermal activity in the 24 km sized Ries impact structure has been controversially discussed. To date, mineralogical and isotopic investigations point to a restriction of hydrothermal activity to the impact-melt bearing breccias, specifically the crater-fill suevite. Here, we present new petrographic, geochemical, and isotopic data of postimpact carbonate deposits, which indicate a hydrothermal activity more extended than previously assumed. Specifically, carbonates of the Erbisberg, a spring mound located upon the inner crystalline ring of the crater, show travertine facies types not seen in any of the previously investigated sublacustrine soda lake spring mounds of the Ries basin. In particular, the streamer carbonates, which result from the encrustation of microbial filaments in subaerial spring effluents between 60 and 70 °C, are characteristic of a hydrothermal origin. While much of the primary geochemical and isotopic signatures in the mound carbonates have been obliterated by diagenesis, a postimpact calcite vein from brecciated gneiss of the subsurface crater floor revealed a flat rare earth element pattern with a clear positive Eu anomaly, indicating a hydrothermal fluid convection in the crater basement. Finally, the strontium isotope stratigraphic correlation of the travertine mound with the crater basin succession suggests a hydrothermal activity for about 250,000 yr after the impact, which would be much longer than previously assumed.

  1. The structure of iron-oxyhydroxide mounds affected by iron-oxidizing bacteria at shallow submarine hydrothermal vent in Satsuma Iwo-Jima

    NASA Astrophysics Data System (ADS)

    Kuratomi, T.; Kiyokawa, S.; Ikehara, M.; Goto, S.; Hoshino, T.; Ikegami, F.; Minowa, Y.

    2014-12-01

    Satsuma Iwo-Jima, located 38km south of Kyusyu island, Japan, is preserved and identified on occurring iron precipitation at shallow ocean where can be recorded modern analogy of iron precipitation and sedimentation. This is a volcanic island in the northwestern rim of Kikai caldera. Iron- and silica-rich mounds (0.5-3m wide and 0.2-7m high) are developing with hydrothermal activity (pH=5.5, 50-60 degree Celsius), and there is high deposition rate of iron-oxides (33 cm/year). In this study, we analyzed samples (20-30 cm long) recovered from iron oxidized mounds at seafloor by the observation with CT scan, FE-SEM and thin-sectioned samples, and the chemical analysis with EDS, XRF, XRD and DNA, and found that the structure of mounds has unique information. Each mounds are formed two layers: blackish hard layer and brownish soft layer. The inside of samples is constructed from the aggregation of convex structure (3-4 cm) covered by hard layers as a rim. Petrographic observations indicate that both layers have filament-like forms, and the form in soft layer is perpendicular to that in the hard layer. The number of iron oxides particles observed on filament-like forms in soft layer increases toward hard layer. Hard layer consists of aggregation of bacillus-like form as the chain of particle (about 2 um). At soft layer, on the other hand, bacteria-like form with smaller particles (<0.5 um) is observed. Bacteria-like form could be classified into 3 types (helix, ribbon-like, twisted). Furthermore, hard layers consist of ferrihydrite and opal-A (Si: 26.8%, Fe: 56.0%) and soft one is composed by ferrihydrite, opal-A and silica mineral (Si: 36.5%, Fe: 43.5%). Mariprofundus ferrooxydansknown as iron-oxidizing bacteria belonging to Zeta-proteobacteria identified in this matter. Bacteria-like form is considered to be the stalk made by iron-oxidizing bacteria. Such neutrophilic iron-oxidizing bacteria prefers an environment of redox interface between hydrothermal water and

  2. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge

    SciTech Connect

    Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )

    1993-12-01

    The TAG hydrothermal field is a site of major active and inactive volcanic-hosted hydrothermal mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past hydrothermal activity: (1) an actively venting high-temperature sulfide mound; (2) two former high-temperature vent areas; (3) a zone of low-temperature venting and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these active fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for hydrothermal upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the hydrothermal zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the active sulfide mound indicate multiple episodes of hydrothermal activity throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically active rift valley of the slow-spreading oceanic ridge. Hydrothermal reworking of a relict hydrothermal zone by high-temperature hydrothermal episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.

  3. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  4. Abundance and Distribution of Hydrothermal Chimneys and Mounds on the Endeavour Ridge Determined by 1-m Resolution AUV Multibeam Mapping Surveys

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Calarco, M.; Holden, J.; Butterfield, D.

    2008-12-01

    and 300 m west of the center of the axial valley. This mound is surmounted by a cluster of 10-12 steep chimney structures. The AUV also carries a CTD and produced a map of temperature at the nominal 50-m altitude the vehicle flies above the bottom. This map clearly identifies the areas with the highest temperature venting as four of the five well-documented vent fields except for Sasquatch, and at a site between Mothra and Main Endeavour Field. This latter plume is located 20 m SSW of a 7-m chimney structure that is its likely source. There are two discrete plumes detected at Mothra, 4 at Main Endeavour Field, 3 at High Rise, and 2 at Salty Dawg. The large off-axis hydrothermal mound is not associated with a water column anomaly and is either inactive or has only low-volume or low-T venting. The high-resolution mapping data demonstrates that hydrothermal activity at the Endeavour Ridge is not only abundant and voluminous today, but has been for much of the dominantly tectonic phase that began with formation of the axial valley.

  5. Hydrothermal Mineralization Along the Volcanically Active Mariana Arc

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E.; Hein, J. R.; Embley, R. W.; Stern, R. J.

    2004-12-01

    In March and April, 2004, ROPOS ROV dives took place from the R/V T.G. Thompson along the volcanically active Mariana arc to ground truth CTD data collected a year earlier that indicated hydrothermal activity. Dives took place on seven volcanoes, six of which showed hydrothermal activity. We present data on samples collected from NW Rota-1 (14° , 36'N, 144° , 46'E), E. Diamante (15° , 56'N, 145° , 41'E), and NW Eifuku (21° , 29'N, 144° , 03'E), the three sites most studied. All the hydrothermal systems found are associated with volcano summits, or with resurgent domes inside a caldera. Brimstone vent at NW Rota-1 provided a dramatic display of thick, bellowing, yellow plumes that contained ash and molten sulfur. This site occurs at 500 m water depth and clearly shows closely associated magmatic-hydrothermal discharge. Sulfur was the dominant hydrothermal mineral deposited around the vent and occurs as spheres in the surrounding volcaniclastic sediment, fracture fill and veins, and massive deposits. The Black Forest vent field at E Diamante consists of a sulfide-sulfate chimney system developed at about 650 m water depth. This is the only mature system discovered and consists of numerous tall (up to 9 m) chimneys. The measured fluid temperature of 240° C produces boiling at the depth of the vents. The chimneys and mounds are composed of varying amounts of pyrite, sphalerite, chalcopyrite, barite, and anhydrite. Hydrothermal Mn oxides occur on the surface of inactive chimneys. This mineralogy contrasts with the other two systems, which deposit sulfur as the dominant hydrothermal product. The Cu-Zn-Fe-Ba mineralization is perhaps largely controlled by water/rock interaction. A unique hydrothermal field (Champagne field) was found at NW Eifuku where liquid CO2 is discharging from focused- and diffuse-flow vents at 1600 m water depth. The focused-flow vents consist of small chimneys and mounds up to a meter high that are composed of sulfur and yet to be

  6. Tidally-driven effluent detected by long-term temperature monitoring at the TAG hydrothermal mound, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Von Herzen, R. P.; Matsubayashi, O.; Fujioka, K.

    1998-06-01

    During Aug. 13-21, 1994, temperatures and current velocity were simultaneously monitored on the TAG hydrothermal mound. Three `Giant Kelps (GKs)', vertical thermistor arrays of 50 m height, were moored on the periphery of the central black smoker complex (CBC). A `Manatee', multi-monitoring system including current velocity, was deployed 50 m east of CBC. Four `Daibutsu' geothermal probes penetrated the sediment south to west of CBC. Compilation of all data revealed semi-diurnal variations in water temperatures and current velocity, and allowed us to discuss the source of these anomalies. Temperature anomalies of GKs correlate well with current velocity, and are interpreted to be caused by the main plume from CBC that was bent over by the tidal current. We identified two types of asymmetric, periodic temperature variations at Daibutsu Probes 2 and 8, located 20 m to the south of CBC. By comparing temperatures and current velocity, they are attributed to non-buoyant effluents laterally advected by the tidal current. The source of one variation is located east to ESE of the probes, and the source of the other is located to the north. On Aug. 31, a new periodic anomaly emerged on Probe 2 with its amplitude up to 0.8°C. The 6-h offset between the new anomaly and the previous one suggests that the source of the new anomaly lies to the west of Probe 2. The heat flux of these non-buoyant effluents is estimated to range from 30 to 100 kW/m 2, which is of the same order as direct estimates of diffuse flow at the TAG mound. It suggests that a significant amount of diffuse effluent is laterally advected by the prevailing current near the seafloor.

  7. Time-series measurement of hydrothermal heat flux at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Jackson, Darrell R.; Bemis, Karen G.; Rona, Peter A.

    2014-10-01

    Continuous time-series observations are key to understanding the temporal evolution of a seafloor hydrothermal system and its interplay with thermal and chemical processes in the ocean and Earth interior. In this paper, we present a 26-month time series of the heat flux driving a hydrothermal plume on the Endeavour Segment of the Juan de Fuca Ridge obtained using the Cabled Observatory Vent Imaging Sonar (COVIS). Since 2010, COVIS has been connected to the North East Pacific Time-series Underwater Networked Experiment (NEPTUNE) observatory that provides power and real-time data transmission. The heat flux time series has a mean value of 18.10 MW and a standard deviation of 6.44 MW. The time series has no significant global trend, suggesting the hydrothermal heat source remained steady during the observation period. The steadiness of the hydrothermal heat source coincides with reduced seismic activity at Endeavour observed in the seismic data recorded by an ocean bottom seismometer from 2011 to 2013. Furthermore, first-order estimation of heat flux based on the temperature measurements made by the Benthic and Resistivity Sensors (BARS) at a neighboring vent also supports the steadiness of the hydrothermal heat source.

  8. [Spatial correlation of active mounds locative distribution of Solenopsis invicta Buren polygyne populations].

    PubMed

    Lu, Yong-yue; Li, Ning-dong; Liang, Guang-wen; Zeng, Ling

    2007-01-01

    By using geostatistic method, this paper studied the spatial distribution patterns of the active mounds of Solenopsis invicta Buren polygyne populations in Wuchuan and Shenzhen, and built up the spherical models of the interval distances and semivariances of the mounds. The semivariograms were described at the two directions of east-west and south-north, which were obviously positively correlated to the interval distances, revealing that the active mounds in locative area were space-dependent. The ranges of the 5 spherical models constructed for 5 sampling plots in Wuchuan were 9.1 m, 7.6 m, 23.5 m, 7.5 m and 14.5 m, respectively, with an average of 12.4 m. The mounds of any two plots in this range were significantly correlated. There was a randomicity in the spatial distribution of active mounds, and the randomicity index (Nugget/Sill) was 0.7034, 0.9247, 0.4398, 1.1196 and 0.4624, respectively. In Shenzhen, the relationships between the interval distances and semivariances were described by 7 spherical models, and the ranges were 14.5 m, 11.2 m, 10.8 m, 17.6 m, 11.3 m, 9.9 m and 12.8 m, respectively, with an average of 12.6 m.

  9. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus. PMID:25762281

  10. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  11. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M.R.; Dohm, J.M.; Marzo, G.A.; Fergason, R.; Goetz, W.; Heggy, E.; Pack, A.; Markiewicz, W.J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5-2. km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301-323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma-water interaction or, alternatively, volatile-rich magmas early in the volcano's history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation.The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma-water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures. ?? 2011 Elsevier Inc..

  12. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M. Ramy; Dohm, James M.; Marzo, Giuseppe A.; Fergason, Robin; Goetz, Walter; Heggy, Essam; Pack, Andreas; Markiewicz, Wojciech J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5–2 km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301–323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma–water interaction or, alternatively, volatile-rich magmas early in the volcano’s history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation. The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma–water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures.

  13. Seafloor Hydrothermal Activity in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Zierenberg, R. A.; Troni, G.; Wheat, C. G.; Spelz, R. M.

    2015-12-01

    Active hydrothermal venting was previously unknown between Guaymas Basin and 21°N on the East Pacific Rise. MBARI AUV surveys and ROV dives in 2012 and 2015 discovered 7 hydrothermal vent sites with diverse and varied vent communities within that gap. One field in the Pescadero Basin vents clear shimmering fluids at 3685 m depth and four vigorous black smoker fields and several extinct chimney fields are between 2225 and 2400 m depth on the Alarcón Rise. Low-temperature vent sites are present on both of the Pescadero and Tamayo Transforms. The chimneys were discovered in 1-m resolution AUV bathymetric data, with some indicated to be active based on temperature anomalies in the AUV CTD data and confirmed during later ROV dives. The low-temperature vent sites on the transform faults were found on ROV dives while exploring young lava flows and sediment hills uplifted by sill intrusions. Pescadero Basin is a deep extensional basin in the southern Gulf. The smooth, subtly faulted floor is filled with at least 150 m of sediment, as determined from sub-bottom profiles collected by the AUV. Three large chimneys (named Auka by our Mexican collaborators) and several broad mounds are located on the SW margin of the basin. Temperatures to 290°C were measured, the fluids are clear, neutral pH, and contain elevated Na. The chimneys are delicate, white, predominantly Ca-carbonate; barite, sparse sulfides, and some aromatic hydrocarbons are also present. Three active vent fields (Ja Sít, Pericú, and Meyibó) at Alarcón Rise are located near the eruptive fissure of an extensive young sheet flow. The fourth field (Tzab-ek) is 1.1 km NW of the axis on older pillow lavas. The largest chimneys are in the Tzab-ek field: 31 and 33 m tall, with flanges and upside-down waterfalls. They rise from a sulfide mound, suggesting a long-lived hydrothermal system, in contrast to the near-axis fields where the chimneys grow directly on basalt. The Alarcón chimneys are Zn and Cu-rich sulfides

  14. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-01

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  15. Introduction to Atlantic Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.; Thompson, Geoffrey

    1993-06-01

    Seafloor hydrothermal research has advanced rapidly from local to global scope through a sequence of discoveries. Hydrothermal research at seafloor spreading centers began in the mid-1960s with the discovery of hot metalliferous brines and sediments ponded in deeps along the slow spreading (half rate 1 cm yr-1) axis of the Red Sea [Chamock, 1964; Miller, 1964; Swallow and Crease, 1965; Miller et al., 1966; Hunt et al., 1967; Bischoff, 1969]. At the same time a hydrothermal metalliferous component was identified in sediments of the East Pacific Rise [Skomyakova, 1965; Arrhenins and Bonatti, 1965; Boström and Peterson, 1966]. Geophysicists recognized that heat flow measurements at spreading centers could only be explained by convective cooling of the crust with circulating seawater [Elder, 1967; Lister, 1972].

  16. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  17. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P. M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment to evaluate the distribution of hydrothermal activity. The Lucky Strike segment hosts three active hydrothermal fields: Capelinhos, Ewan, and the known Main Lucky Strike Hydrothermal Field (MLSHF). Capelinhos is located 1.3 km E of the axis and the MLSHF, and consists of a ~20 m sulfide mound with black smoker vents. Ewan is located ~1.8 km south from the MLSHF along the axial graben, and displays only diffuse flow along and around scarps of collapse structures associated with fault scarps. At the MLSHF we have identified an inactive site, thus broadening the extent of this field. Heat flux estimates from these new sites are relatively low and correspond to ~10% of the heat flux estimated for the Main field, with an integrated heatflux of 200-1200 MW. Overall, most of the flux (up to 80-90%) is associated with diffuse outflow, with the Ewan site showing solely diffuse flow and Capelinhos mostly focused flow. Microbathymetry also reveals a large, off-axis (~2.4 km) hydrothermal field, similar to the TAG mound in size, on the flanks of a rifted volcano. The association of these fields to a central volcano, and the absence of indicators of hydrothermal activity along the ridge segment, suggest that sustained hydrothermal activity is maintained by the enhanced melt supply and the associated magma chamber(s) required to build central volcanoes. Hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal circulation in the shallow crust exploits permeable fault zones. Central volcanoes are thus associated with long-lived hydrothermal activity, and these sites may play a major role in the distribution and biogeography of vent communities.

  18. Hydrothermal fluid-mineral interactions within volcanic sediment layer revealed by shallow drilling in active seafloor hydrothermal fields in the mid-Okinawa

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Miyoshi, Y.; Tanaka, K.; Omori, E.; Takahashi, Y.; Furuzawa, Y.; Yamanaka, T.; Kawagucci, S.; Yoshizumi, R.; Urabe, T.

    2012-12-01

    TAIGA11 Expedition of R/V Hakurei-maru No.2 was conducted in June, 2011 to study subseafloor environment below active hydrothermal fields using a shallow drilling system (called as Benthic Multi-coring System, BMS). Three active hydrothermal fields at Iheya North Knoll (27 47'N, 126 54'E), at Izena Hole Jade site (27 16'N, 127 05'E) and at Izena Hole Hakurei site (27 15'N, 127 04'E) were selected as exploration targets, to focus on a hydrothermal fluid circulation system that develops in sediment consists of volcaniclastic and hemipelagic materials. In this presentation, we will report mineralogy of hydrothermal precipitates and altered clay minerals together with geochemistry of pore fluids, to discuss hydrothermal interactions beneath an active hydrothermal field. In the Iheya North Knoll hydrothermal field, the BMS drilling successfully attained to 453 cmbsf at the station 200 meters apart from the central mound area. The obtained core consisted almost entirely of grayish white altered mud that was identified as kaolinite by XRD. Pore fluid from the corresponding depth showed enrichment in major cations (Na, K, Ca and Mg) and Cl, which may be explained as a result of involvement of water into the kaolinite. Since kaolinite is considered as stable in rather acidic environment, its abundant occurrence beneath the seafloor would be attributed to a unique hydrothermal interaction. A possible scenario is intrusion of the vapor-rich hydrothermal component that has experienced phase separation. In the Jade hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 529 cmbsf at the marginal part of a hydrothermal field. The obtained core comprised grayish white hydrothermal altered mud below 370 cmbsf. Occurrence of native sulphur is also identified. Unfortunately, pore fluid could not be extracted from the intense alteration layer. In the Hakurei hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 610 cmbsf near one of

  19. Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSH

    NASA Astrophysics Data System (ADS)

    Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa

    1997-12-01

    Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.

  20. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400

  1. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    PubMed

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars

  2. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    PubMed Central

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G.; Chan, Marjorie A.; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet (“island”) stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on

  3. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    PubMed

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars

  4. Use of Ground Penetrating Radar and Gradiometry in Identifying Domestic Activity Areas Within the Kolomoki Mounds Archaeological Site, Georgia

    NASA Astrophysics Data System (ADS)

    Serman, N.

    2005-05-01

    The Kolomoki Mounds archaeological site (9ER1) in southwest Georgia appears to be one of the most important Woodland Period (ca. 1000 B.C. - A.D. 900) centers in southeastern United States. The site originally had at least eight mounds, exquisite ceramics and, seemingly, a year-round occupation. Due to an early archaeological misinterpretation, Kolomoki was, until recently, all but ignored in archaeological research. Consequently, the site and its occupation are not well understood. Today, the site is included in the National Register of Historic Places, and is not available for standard archaeological investigation, that is, extensive excavation. Therefore, non-destructive geophysical exploration provides an ideal means for investigating protected sites, such as Kolomoki, to obtain archaeologically relevant information. I will present the results of the first two geophysical surveys I conducted within the Kolomoki Mounds archaeological site in 2001. These surveys are part of my ongoing geophysical research with the purpose of better understanding intra-site settlement patterns at the Kolomoki Mounds archaeological site. The results of the ground-penetrating radar and gradiometry surveys indicate different activity areas at the site. There is a pronounced difference in appearance and density of anomalies between at least two areas, with one of these areas being a part of the habitation area.

  5. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  6. Hydrothermal Activity on the Mid-Cayman Rise: ROV Jason sampling and site characterization at the Von Damm and Piccard hydrothermal fields

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2012-12-01

    In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.

  7. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Mottl, M. J.; Nielsen, S. H. H.; IODP Expedition 331 Scientists, the

    2012-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 331 drilled into the Iheya North hydrothermal system in the middle Okinawa Trough in order to investigate active subseafloor microbial ecosystems and their physical and chemical settings. We drilled five sites during Expedition 331 using special guide bases at three holes for reentry, casing, and capping, including installation of a steel mesh platform with valve controls for postcruise sampling of fluids. At Site C0016, drilling at the base of the North Big Chimney (NBC) mound yielded low recovery, but core included the first Kuroko-type black ore ever recovered from the modern subseafloor. The other four sites yielded interbedded hemipelagic and strongly pumiceous volcaniclastic sediment, along with volcanogenic breccias that are variably hydrothermally altered and mineralized. At most sites, analyses of interstitial water and headspace gas yielded complex patterns with depth and lateral distance of only a few meters. Documented processes included formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, potential microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, and methanogenesis. Shipboard analyses have found evidence for microbial activity in sediments within the upper 10-30 m below seafloor (mbsf) where temperatures were relatively low, but little evidence in the deeper hydrothermally altered zones and hydrothermal fluid regime. doi:10.2204/iodp.sd.13.03.2011

  8. Hydrothermal Activity on ultraslow Spreading Ridge: new hydrothermal fields found on the Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W.

    2014-12-01

    Ultraslow spreading ridge makes up about 25% of global mid-ocean ridge length. Previous studies believed that hydrothermal activity is not widespread on the ultraslow spreading ridge owing to lower magma supply. Southwest Indian ridge (SWIR) with the spreading rate between 1.2cm/a to 1.4cm/a, represents the ultraslow spreading ridge. In 2007, Chinese Cruise (CC) 19th discovered the Dragon Flag deposit (DFD) on the SWIR, which is the first active hydrothermal field found on the ultraslow spreading ridge. In recent years, over 10 hydrothermal fields have been found on the SWIR between Indomed and Gallieni transform faults by the Chinese team. Tao et al. (2012) implied that the segment sections with excess heat from enhanced magmatism and suitable crustal permeability along slow and ultraslow ridges might be the most promising areas for searching for hydrothermal activities. In 2014, CC 30thdiscovered five hydrothermal fields and several hydrothermal anomalies on the SWIR. Dragon Horn Area (DHA). The DHA is located on the southern of segment 27 SWIR, with an area of about 400 km2. The geophysical studies indicated that the DHA belongs to the oceanic core complex (OCC), which is widespread on the slow spreading ridges (Zhao et al., 2013). The rocks, such as gabbro, serpentinized peridotite, and consolidated carbonate were collected in the DHA, which provide the direct evidence with the existence of the OCC. However, all rock samples gathered by three TV-grab stations are basalts on the top of the OCC. A hydrothermal anomaly area, centered at 49.66°E,37.80° S with a range of several kms, is detected in the DHA. It is probably comprised of several hydrothermal fields and controlled by a NW fault. New discovery of hydrothermal fields. From January to April 2014, five hydrothermal fields were discovered on the SWIR between 48°E to 50°E during the leg 2&3 of the CC 30th, which are the Su Causeway field (48.6°E, 38.1°S), Bai Causeway field (48.8°E, 37.9 °S), Dragon

  9. Geophysical Constraints On Enceladus' Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Matson, D.; Castillo, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-12-01

    Cassini-Huygens discovered many eruptive plumes and a heat flow of about 15 GW [1] in the South Polar Region of Enceladus. The plume material is believed to come from an ocean [2]. We have modeled the heat and chemicals as coming to the surface via the circulation of relatively warm ocean water [3]. The major challenge for our work is to explain how circulation of water can be maintained in the very cold crust. The upper boundary condition is relatively simple. Where seawater contacts surface ice the temperature is ~-2 C. Also, under the right conditions, tidally induced fissures in the surface ice can fill with water that freezes, producing new ice. The lower boundary temperature is difficult to characterize precisely. The ocean is several degrees warmer than the ice. Consequently there will be some melting at the bottom of the crust. The melt water is less dense than seawater and floats on it. As a result, an ice-ocean interface layer is formed. This layer is stable against Rayleigh-Bénard convection. The layer regulates the rate at which heat is transferred and the temperature at which melt water is produced through temperature and salinity gradients. Currents in the ocean below and other variables influence the extent and shape of the interface layer. A somewhat similar interface layer (thermal gradient only) has been discussed and modeled for Europa [4] and many of those considerations apply to Enceladus. In the Europa case a layer thickness of ~200 m was suggested and that should be roughly what one might also expect for Enceladus. We demonstrate that it is feasible to keep this hydrothermal activity going over the long-term, as long as it is powered by a deep source of heat whose origin is still to be determined. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2011 Caltech.

  10. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  11. The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS

    NASA Astrophysics Data System (ADS)

    Binns, R.; Barriga, F.; Miller, D.

    2001-12-01

    after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193

  12. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  13. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  14. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  15. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus.

    PubMed

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  16. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    PubMed Central

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205

  17. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus.

    PubMed

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205

  18. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  19. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  20. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  1. Evidence for a Chemoautotrophically Based Food Web at Inactive Hydrothermal Vents (Manus Basin)

    NASA Astrophysics Data System (ADS)

    van Dover, C. L.; Erickson, K.; Macko, S.

    2008-12-01

    Hydrothermal vents are ephemeral systems. When venting shuts down, sulfide-dependent taxa die off, and non-vent taxa can colonize the hard substrata. In Manus Basin (Papua New Guinea), where active and inactive sulfide mounds are interspersed, hydroids, cladorhizid sponges, barnacles, and bamboo sponges, and other invertebrate types may occupy inactive sulfide mounds. Carbon and nitrogen isotopic compositions of animals occupying inactive sulfide mounds are consistent with nutritional dependence on either chemoautotrophically or photosynthetically produced organic material, but sulfur isotopic compositions of these animals point to a chemoautotrophic source of sulfur from dissolved sulfide in vent fluids rather than sulfur derived from seawater sulfate through photosynthesis. Given that suspension-feeding and micro- carnivorous invertebrates are the biomass dominants at inactive sulfide mounds, the primary source of chemoautotrophic nutrition is likely suspended particulates and organisms delivered from nearby active vents.

  2. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  3. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  4. Mapping the Piccard Hydrothermal Field - The World's Deepest Known Vent Area

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; German, C. R.

    2012-12-01

    We report the recent mapping and exploration of the Piccard Hydrothermal Field on the Mid-Cayman Rise. Two previous expeditions in 2009 and 2010 led to the discovery of the site, which at 5000m hosts the world's deepest known vents. The site was mapped and explored in January 2012 and the Piccard Field was found to be larger than previously appreciated. The site includes 3 separate currently active hydrothermal mounts together with 4 additional extinct depo-centers. The 3 active centers are the Beebe Vents, Beebe Woods, and Beebe Sea sites. Beebe Vents is an active black smoker system with maximum temperatures of 400-403 degrees Celsius. Beebe Woods contains a set of tall beehive smokers with temperatures of approximately 353 degrees Celsius. Beebe Sea, the largest sulfide mound in the field, contains diffuse venting together with numerous extinct chimneys that indicate significant past active focused flow. Observations of the 4 extinct mounds indicate differences in their apparent ages based on the texture and morphology of the extinct sulfides at the summit of each mound. The entire field is located on top of an axial volcanic ridge with extrusive pillow mounds prominent. A major fault traverses the mound along its long axis, from Southwest to Northeast. Beebe Woods, Beebe Sea, and extinct Beebe mound D abut this fault directly with an apparent monotonic age progression from youngest (Beebe Woods) in the SW to relict mound 'D' in the NE. Similarly, the Beebe Vents site and mound is located at the SW limit of a parallel set of mounds, offset from the fault by approximately 100m, which also ages progressively through extinct Beebe Mounds 'E', 'F' and 'G'. The major fault that bisects the axial volcanic ridge at Piccard evidently serves as a controlling mechanism for the mounds abutting that fault however the mechanism for the second line of mounds remains to be determined. Bathymetry suggests the presence of a second, smaller fault which may serve as the control

  5. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  6. Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maïder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes

    NASA Astrophysics Data System (ADS)

    Franchi, Fulvio; Turetta, Clara; Cavalazzi, Barbara; Corami, Fabiana; Barbieri, Roberto

    2016-08-01

    Trace and rare earth elements (REEs) have proven their utility as tools for assessing the genesis and early diagenesis of widespread geological bodies such as carbonate mounds, whose genetic processes are not yet fully understood. Carbonates from the Middle Devonian conical mud mounds of the Maïder Basin (eastern Anti-Atlas, Morocco) have been analysed for their REE and trace element distribution. Collectively, the carbonates from the Maïder Basin mud mounds appear to display coherent REE patterns. Three different geochemical patterns, possibly related with three different diagenetic events, include: i) dyke fills with a normal marine REE pattern probably precipitated in equilibrium with seawater, ii) mound micrite with a particular enrichment of overall REE contents and variable Ce anomaly probably related to variation of pH, increase of alkalinity or dissolution/remineralization of organic matter during early diagenesis, and iii) haematite-rich vein fills precipitated from venting fluids of probable hydrothermal origin. Our results reinforce the hypothesis that these mounds were probably affected by an early diagenesis induced by microbial activity and triggered by abundance of dispersed organic matter, whilst venting may have affected the mounds during a later diagenetic phase.

  7. Molecular fossils of prokaryotes in ancient authigenic minerals: archives of microbial activity in reefs and mounds?

    NASA Astrophysics Data System (ADS)

    Heindel, Katrin; Birgel, Daniel; Richoz, Sylvain; Westphal, Hildegard; Peckmann, Jörn

    2016-04-01

    Molecular fossils (lipid biomarkers) are commonly used as proxies in organic-rich sediments of various sources, including eukaryotes and prokaryotes. Usually, molecular fossils of organisms transferred from the water column to the sediment are studied to monitor environmental changes (e.g., temperature, pH). Apart from these 'allochthonous' molecular fossils, prokaryotes are active in sediments and mats on the seafloor and leave behind 'autochthonous' molecular fossils in situ. In contrast to many phototrophic organisms, most benthic sedimentary prokaryotes are obtaining their energy from oxidation or reduction of organic or inorganic substrates. A peculiarity of some of the sediment-thriving prokaryotes is their ability to trigger in situ mineral precipitation, often but not only due to metabolic activity, resulting in authigenic rocks (microbialites). During that process, prokaryotes are rapidly entombed in the mineral matrix, where the molecular fossils are protected from early (bio)degradation. In contrast to other organic compounds (DNA, proteins etc.), molecular fossils can be preserved over very long time periods (millions of years). Thus, molecular fossils in authigenic mineral phases are perfectly suitable to trace microbial activity back in time. Among the best examples of molecular fossils, which are preserved in authigenic rocks are various microbialites, forming e.g. in phototrophic microbial mats and at cold seeps. Microbialite formation is reported throughout earth history. We here will focus on reefal microbialites form the Early Triassic and the Holocene. After the End-Permian mass extinction, microbialites covered wide areas on the ocean margins. In microbialites from the Griesbachian in Iran and Turkey (both Neotethys), molecular fossils of cyanobacteria, archaea, anoxygenic phototrophs, and sulphate-reducing bacteria indicate the presence of layered microbial mats on the seafloor, in which carbonate precipitation was induced. In association with

  8. Subaerial and sublacustrine hydrothermal activity at Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; de Ronde, Cornel E. J.; Scott, Bradley J.; Wilson, Nathaniel J.; Walker, Sharon L.; Lupton, John E.

    2016-03-01

    Lake Rotomahana is a crater lake in the Okataina Volcanic Centre (New Zealand) that was significantly modified by the 1886 Tarawera Rift eruption. The lake is host to numerous sublacustrine hydrothermal vents. Water column studies were conducted in 2011 and 2014 along with sampling of lake shore hot springs and crater lakes in Waimangu Valley to complement magnetic, seismic, bathymetric and heat flux surveys. Helium concentrations below 50 m depth are higher in 2014 compared to 2011 and represent some of the highest concentrations measured, at 6 × 10- 7 ccSTP/g, with an end-member 3He/4He value of 7.1 RA. The high concentrations of helium, when coupled with pH anomalies due to high dissolved CO2 content, suggest the dominant chemical input to the lake is derived from magmatic degassing of an underlying magma. The lake shore hot spring waters show differences in source temperatures using a Na-K geothermometer, with inferred reservoir temperatures ranging between 197 and 232 °C. Water δ18O and δD values show isotopic enrichment due to evaporation of a steam heated pool with samples from nearby Waimangu Valley having the greatest enrichment. Results from this study confirm both pre-1886 eruption hydrothermal sites and newly created post-eruption sites are both still active.

  9. Formation of Mima mounds: A seismic hypothesis

    SciTech Connect

    Berg, A.W. )

    1990-03-01

    Mima mounds approximately 2.5 to 15 m in diameter and up to 3 m high occur on the ground surfaces at Mima Prairie, south of Olympia, Washington, in the Channeled Scabland of eastern Washington, and at many other locations in the United States and around the world. Small-scale Mima mounds can be produced experimentally by subjecting a plywood board covered with a thin veneer of loess to impacts that produce vibrations in the board. Experimentally produced mounds have characteristics that are nearly identical to those found in the field. This suggests that most Mima mounds formed as the result of seismic activity in conjunction with unconsolidated fine sediments on a relatively rigid planar substratum.

  10. Geologic investigation of layered mound of Henry Crater, Mars: Implications for history of ancient hydrological activities in the region

    NASA Astrophysics Data System (ADS)

    Sarkar, Samarpita; Sinha, Rishitosh Kumar; Banerjee, Debabrata; Vijayan, S.

    2016-07-01

    Craters around the Schiaparelli Basin (sim460 km diameter; 2.71^circS 16.77^circE) on Mars are distributed in a unique combination that includes infilled craters with mound on their floors. The mounds have preserved intriguing layers in stratigraphy that has exposed pristine sets of geomorphic and geochemical signatures bearing strong implications towards understanding geological history of Mars. With a view to avail the maximum scientific benefit from this unique geological assemblage on Mars, we have carried out remote analysis of stratigraphy of layers exposed over Henry crater's (sim150 km diameter; 10.79^circN 23.45^circE) mound (rising sim2km from floor) to infer the origin and episodes of geological events occurred in the region. Henry crater is situated approximately 500 km northeast of Schiaparelli Basin. Using crater counting technique the age of the topmost surface of the crater mound is found to be sim3.64 Ga since the exposure of this strata post complete infilling. The stratigraphy of consistent and conformable layers in the crater interior acts as a proxy of the long-lived event of sediment deposition in a rather quiescent condition. Distinct layering can be traced across the crater from the mound to the crater wall across the floor. Evidence for differential erosion of deposited materials, wherein local geological setup developed in the different parts of the crater interior is preserved. Using MRO HiRISE & CTX images, distinct spatial distribution of morphological features distributed in stratigraphy is observed that reveals the dominant geological agents behind their formation, viz. temporal hydrological and eolian processes. The morphological features were aided with an understanding of the composition of the exposed sedimentary succession. MRO CRISM based mineralogical investigation reveals diagnostic signature of the hydrated sulfate mineral Kieserite. Based on the thermodynamic properties of Kieserite and apparent lack of desiccation cracks in

  11. Seafloor Hydrothermal Activity at the Galapagos Triple Junction, East Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, H.; Yu, Z.; Zhang, G.; Tao, C.; Chen, S.

    2014-12-01

    Since the first discovery of black smokers on the Gaplapgaos spreading center, over 500 hydrothermal sites have been confirmed on the mid-ocean ridge, arc and back-arc settings (Beaulieu et al., 2013). However, the hydrothermal activity at triple-junction has not received much attention. Consequently, there are outstanding questions regarding the features of the hydrothermal system, and the effect of the hydrothermal circulation on the tectonic activity of the triple-junction. In 2009, the Chinese Dayang Cruise 21 discovered the Precious Stone field (PSF) on the Dietz Semount at the southern flank of the Galapagos triple junction (GTJ). Most studies of the GTJ focus on the topographictectonic and stresssimulation, which suggest that the GTJ had complex evoluation(Smith et al., 2011, 2013; Mitchell et al., 2011,Schouten et al., 2012). Water anomay were clear detected and samples of hydrothermal deposit and rocks were collected by TV-Grab (Figure.1). This study aims to understand the geological features of the PSF related hydrothermal activity. Hydrothermal mineralization Three types of sedimentary hydrothermal deposits representing three different hydrothermal activity stages (Figure 1)are confirmed in the PSF: 1) sediments with native sulfur and pyrite clasts(Type I), 2) Fe—Mn oxides (Type II), and 3) clay minerals mainlynontronite(Type III). Type II sedimentsprecipitate early and the source comprises of clasts of distal hydrothermal plume. The nontronite-rich sediments propably derive from the low-temperature alteration of Fe—Mn oxides. Type 1 sediments are found on the active hydrothermal venting field. Hydrothermal plume Water anomaly were detected at the southewestern PSF. We observed widespreadsedimentary hydrothermal depositsin the western PSF, but no water anomaly. According to the results of five water anomaly dectection lines, we predicted the existence of three hydrothermal vents in the PSF. Seafloor type inversion Multi-beam backscatter data were

  12. The Gale Crater Mound in a Regional Geologic Setting: Mapping and Probing Surrounding Outcrops for Areas Akin to the Central Mound at Gale

    NASA Technical Reports Server (NTRS)

    Korn, Lisa; Allen, Carlton

    2013-01-01

    There are several hypotheses on the origin of Gale Crater s central mound. These include ground water upwelling [1], aeolian, ice, volcanic [1-3], lacustrine [1-3], hydrothermal [1-3], and polar deposits [2]. The Mars Science Laboratory rover, Curiosity, landed in Gale Crater on August 6, 2012. It is currently analyzing samples along its traverse towards a channel and layered deposits that will provide insight into the sedimentary history of the crater [4]. Located at 5S, 138E, Gale is a 155km diameter, Late Noachian/Early Hesperian crater. It is situated along the southern highlands/northern lowlands dichotomy boundary and contains a central mound that rises approximately 5km from the crater floor [1]. The highest parts of Mt. Sharp are higher than the northern rim, but are roughly the same height as the southern rim. Mt. Sharp is divided into an upper mound and a lower mound, which are separated by an erosional unconformity [2]. The lower mound s sequences span the Late Noachian/Early Hesperian Epoch [1], while the upper mound s age is poorly constrained. The lower mound s sequences feature parallel beds of varying thickness, albedo, texture, and dip angle that are eroded into channels and yardangs [2]. The upper mound has finer layers at higher angles [1] with yardangs, serrated erosional patterns, and lobate features [3]. The lower mound also exhibits an upward progression of phyllosilicate to sulfate rich sediments, contrasting the upper mound s lack of hydrated minerals [4].

  13. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres.

    PubMed

    Yu, Jiaguo; Yu, Xiaoxiao

    2008-07-01

    ZnO hollow spheres with porous crystalline shells were one-pot fabricated by hydrothermal treatment of glucose/ZnCl2 mixtures at 180 degrees C for 24 h, and then calcined at different temperatures for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B aqueous solution at ambient temperature. The results indicated that the average crystallite size, shell thickness, specific surface areas, pore structures, and photocatalytic activity of ZnO hollow spheres could be controlled by varying the molar ratio of glucose to zinc ions (R). With increasing R, the photocatalytic activity increases and reaches a maximum value at R = 15, which can be attributed to the combined effects of several factors such as specific surface area, the porous structure and the crystallite size. Further results show that hollow spheres can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than conventional powder photocatalyst. After many recycles for the photodegradation of RhB, the catalyst does not exhibit any great loss in activity, confirming ZnO hollow spheres is stability and not photocorroded. The prepared ZnO hollow spheres are also of great interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.

  14. Stair-stepped Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-429, 22 July 2003

    This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a stair-stepped mound of sedimentary rock (right of center) on the floor of a large impact crater in western Arabia Terra near 11.0oN, 4.4oW. Sedimentary rock outcrops are common in the craters of this region. The repeated thickness and uniformity of the layers that make up this mound suggest that their depositional environment was one in which cyclic or episodic events occurred over some period of time. The sediments might have been deposited in a lake, or they may have settled directly out of the atmosphere. Most of the layered material was later eroded away, leaving this circular mound and the other nearby mesas and knobs. The image is illuminated by sunlight from the lower left.

  15. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Paull, C.K.; Normark, W.R.; Ussler, W.; Caress, D.W.; Keaten, R.

    2008-01-01

    Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (??? 800??m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10??m high and > 100??m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20??m high and 1 to 3??km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds. ?? 2008 Elsevier B.V. All rights reserved.

  16. Mound Supports Galileo

    SciTech Connect

    Monsanto Research Corporation

    1986-01-01

    This video describes the invention of Radioisotope Thermoelectric Generators (RTGs) at Mound Laboratory, and radioisotope heat source production from 1 watt-thermal to 2400 watts-thermal. RTGs have been used in many space vehicles, but the RTG built for the Galileo mission to orbit Jupiter is the largest. This RTG unit will produce 4400 watts-thermal and convert to 300 watts-electric. The plutonium-238 heat source assembly and test at Mound is described. The RTGs are tested under simulated mission conditions. The RTG leakage radiation is carefully measured for background compensation for on-board radiation monitoring instruments.

  17. Post-Impact Hydrothermal Activity at the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.; Bunch, T. E.; Grieve, R. A. F.; Schutt, J. W.; Lee, P.

    2000-01-01

    Evidence for impact-generated hydrothermal activity is reported from the Haughton crater, Canada. Two distinct settings have been found: (1) pipe structures with marcasite, pyrite and minor chalcopyrite; (2) cavity and fracture fillings with marcasite predominant.

  18. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  19. Vapor-rich Hydrothermal Fluid Migration Within Pumiceous Sediment in the Iheya North Knoll, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Suzuki, R.; Hamasaki, H.; Yamanaka, T.; Chiba, H.; Tsunogai, U.; Ijiri, A.; Nakagawa, S.; Nunoura, T.; Takai, K.; Kinoshita, M.; Ashi, J.

    2007-12-01

    The newly developed ROV NSS (Navigable Sampling System) enabled pin-point piston core sampling from the active hydrothermal field. In the Iheya North hydrothermal field in the mid-Okinawa Trough (27°47.5'N, 126°53.8'E, depth = 1000m), animal colonies are observed not only around the central mound structure (named as NBC) which discharges vigrously high temperature (T=311°C) clear fluid, but also as Calyptogena colony at 200m east from the NBC mound and as tube-worm colony at 250m southeast from the NBC mound. During Leg 3 of KY05-14 cruise (R/V Kaiyo of JAMSTEC) in Jan. 2005, fourn piston cores were successfully recovered with length from 65cm to 250cm. Surface sediments from the Calyptogena colony and the tube-worm colony were revealed as mainly composed of pumiceous sediment. Pore fluids from the Calyptogena Field showed unusual chemistry characterized as very low salinity (Cl=420mM), low Mg concentration, significantly lower Na/Cl ratio than seawater and high methane concentration, which suggests contribution of a vapor-rich hydrothermal component migrating within the pumice layer from the activity center. Moreover, decrease of SO4 accompanied by increase of alkalinity is notable even less than one meter depth below the seafloor. In situ sulfate reduction in the surface sediment caused by entrainment of the hydrothermal component would be a source of hydrogen sulfide that supports Calyptogena colony.

  20. Radiocarbon dating of large termite mounds of the miombo woodland of Katanga, DR Congo

    NASA Astrophysics Data System (ADS)

    Erens, Hans; Boudin, Mathieu; Mees, Florias; Dumon, Mathijs; Mujinya, Basile; Van Strydonck, Mark; Baert, Geert; Boeckx, Pascal; Van Ranst, Eric

    2015-04-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1, ~5 m high, ~15 m in diameter). The time it takes for these mounds to attain this size is still largely unknown. In this study, the age of four of these mounds is determined by 14C-dating the acid-insoluble organic carbon fraction of samples taken along the central vertical axis of two active and two abandoned mounds. The age sequence in the active mounds is erratic, but the results for the abandoned mounds show a logical increase of 14C-age with depth. The ages measured at 50 cm above ground level were 2335 - 2119 cal yr BP for the large abandoned mound (630 cm high), and 796 - 684 cal yr BP for the small abandoned mound (320 cm high). Cold-water-extractable organic carbon (CWEOC) measurements combined with spectroscopic analysis revealed that the lower parts of the active mounds may have been contaminated with recent carbon that leached from the active nest. Nonetheless, this method appears to provide reliable age estimates of large, abandoned termite mounds, which are older than previously estimated. Furthermore, historical mound growth rates seem to correspond to past temperature changes, suggesting a relation between past environmental conditions and mound occupancy. Keywords : 14C, water-extractable carbon, low-temperature combustion

  1. Mound publications for 1991

    SciTech Connect

    Nowka, Stephen L.

    1992-05-01

    This document is a compilation of all Mound formal technical publications and oral presentations for calendar year 1991. It is intended to serve as an aid to personnel in obtaining or referring to specific publications by giving the proper complete reference for each information item published during the year. Some items, such as proceedings publications, may have issue dates or periods of coverage prior to 1991; however, they were formally published during 1991.

  2. Mound facility physical characterization

    SciTech Connect

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  3. Geoprospection of Mound A, Etowah Mounds State Park, Georgia

    NASA Astrophysics Data System (ADS)

    Reppert, P. M.; Schneider, K. A.; Garrison, E. G.

    2005-05-01

    Mound A, located at Etowah Mounds State Park, Georgia, was the subject of a multi-sensor geoprospection study in 2001-02. Mound A, a late prehistoric mound, built by the Mississippian Culture, ca. 1250 - 1400 AD,is, due to its size, ~ 1 ha in area at the base and 20 m in height, a formidable subject for the use of shallow geoprospection techniques. Techniques used were ground radar (GPR), conductivity (EM) and electrical (resistivity) methods. Common Mid-Point (CMP) radar data produced detail on the mound interior from surface to base. Electrical pesudo-sections produced excellent detail of the mound's interior. The EM data appears relevant for only the upper half of the mound, perhaps to a depth of 10 m, and suggests significant heterogeneity in the sediment fill used in the mound's construction. Our results speak directly to the efficacy of shallow geophyscial techniques in exploring large archeological mounds and tells. Another important aspect of this study is the use of a geoprospection approach as a non-invasice methodology for characterizing culturally sensitive archaeological sites.

  4. Mounds View Environmental Education Project, Report #1.

    ERIC Educational Resources Information Center

    Budde, Duane

    Prepared for the 1971 National Science Teachers Association (NSTA) Annual Meeting, this collection of ideas, activities, and unit plans from the Mounds View Environmental Education Project would be useful for junior and senior high school teachers and curriculum planners. Content includes: (1) a senior high course outline and daily lesson plans…

  5. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  6. Sulphur Extraction at Bryan Mound

    SciTech Connect

    Kirby, Carolyn L; Lord, Anna C. Snider

    2015-08-01

    The Bryan Mound caprock was subjected to extens ive sulphur mining prior to the development of the Strategic Petroleum Reserve. Undoubtedl y, the mining has modified the caprock integrity. Cavern wells at Bryan Mound have been subject to a host of well integr ity concerns with many likely compromised by the cavernous capro ck, surrounding corrosive environment (H 2 SO 4 ), and associated elevated residual temperatures al l of which are a product of the mining activities. The intent of this study was to understand the sulphur mining process and how the mining has affected the stability of the caprock and how the compromised caprock has influenced the integrity of the cavern wells. After an extensiv e search to collect pert inent information through state agencies, literature sear ches, and the Sandia SPR librar y, a better understanding of the caprock can be inferred from the knowledge gaine d. Specifically, the discovery of the original ore reserve map goes a long way towards modeling caprock stability. In addition the gained knowledge of sulphur mining - subs idence, superheated corrosive wa ters, and caprock collapse - helps to better predict the post mi ning effects on wellbore integrity. This page intentionally left blank

  7. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    Some 20,000 km of volcanic arcs, roughly one-third the total length of the global midocean ridge (MOR) system, rim the western Pacific Ocean. But compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated 600 submarine arc volcanoes is only beginning. In February 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, we made the first systematic survey of hydrothermal activity along the 1270-km-long Mariana intraoceanic volcanic arc, which lies almost entirely within the US EEZ. Prior fieldwork had documented active (but low-temperature) hydrothermal discharge on only three volcanoes: Kasuga 2, Kasuga 3, and Esmeralda Bank. During the cruise, we conducted 70 CTD operations over more than 50 individual volcanoes from 13° N to 23° N, plus a continuous CTD survey along 75 km of the back-arc spreading center (13° 15'N to 13° 41'N) adjacent to the southern end of the arc. We found evidence for active hydrothermal venting at 11 submarine volcanoes with summit (or caldera floor) depths ranging from 50 to 1550 m. Two additional sites were identified on the back-arc spreading center. Ongoing analyses of collected water samples could increase these totals. Our results confirmed continuing hydrothermal activity at Kasuga 2 (but not Kasuga 3) and Esmeralda Bank, in addition to newly discovered sites on nine other volcanoes. Many of these sites produce intense and widely dispersed plumes indicative of vigorous, high-temperature discharge. The volcanoes with active hydrothermal systems are about equally divided between those with and without summit calderas. The addition of the Marianas data greatly improves our view of hydrothermal sources along arcs. The 20,000 km of Pacific arcs can be divided between 6380 km of intraoceanic (i.e., mostly submarine) arcs and 13,880 km of island (i.e., mostly subaerial) arcs. At present, ˜15% of the total length of Pacific arcs has been surveyed

  8. The Mud-Laden Mound.

    ERIC Educational Resources Information Center

    Sams, Larry M.

    1990-01-01

    A family's trip to Winterville Indian Mounds State Park in Mississippi is described, focusing on the frustrations of a gifted six-year old who fell in the muck of the Great Temple Mound, and on the joys of seeing spectacular displays of ancient earthworks. (JDD)

  9. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were

  10. Asphalt mounds and associated biota on the Angolan margin

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Walls, Anne; Clare, Michael; Fiske, Mike S.; Weiland, Richard J.; O'Brien, Robert; Touzel, Daniel F.

    2014-12-01

    Release of hydrocarbons from sediments is important in increasing habitat heterogeneity on deep ocean margins. Heterogeneity arises from variation in abiotic and biotic conditions, including changes in substratum, geochemistry, fluid flow, biological communities and ecological interactions. The seepage of heavy hydrocarbons to the seafloor is less well studied than most other cold seep systems and may lead to the formation of asphalt mounds. These have been described from several regions, particularly the Gulf of Mexico. Here, we describe the structure, potential formation and biology of a large asphalt mound province in Block 31SE Angola. A total of 2254 distinct mound features was identified by side-scan sonar, covering a total area of 3.7 km2 of seafloor. The asphalt mounds took a number of forms from small (<0.5 m diameter; 13% observations) mounds to large extensive (<50 m diameter) structures. Some of the observed mounds were associated with authigenic carbonate and active seepage (living chemosynthetic fauna present in addition to the asphalt). The asphalt mounds are seabed accumulations of heavy hydrocarbons formed from subsurface migration and fractionation of reservoir hydrocarbons primarily through a network of faults. In Angola these processes are controlled by subsurface movement of salt structures. The asphalt mounds were typically densely covered with epifauna (74.5% of mounds imaged had visible epifauna) although individual mounds varied considerably in epifaunal coverage. Of the 49 non-chemosynthetic megafaunal taxa observed, 19 taxa were only found on hard substrata (including asphalt mounds), 2 fish species inhabited the asphalt mounds preferentially and 27 taxa were apparently normal soft-sediment fauna. Antipatharians (3.6±2.3% s.e.) and poriferans (2.6±1.9% s.e.) accounted for the highest mean percentage of the observed cover, with actinarians (0.9±0.4% s.e.) and alcyonaceans (0.4±0.2% s.e.) covering smaller proportions of the area

  11. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  12. Independent technical review of the Mound Plant

    SciTech Connect

    Not Available

    1994-06-01

    This report documents an Independent Technical Review (ITR) of the facilities, organizations, plans, and activities required to transition particular elements of the Mound Plant from Defense Program (DP) funded operation as appropriate either to community developed reuse or safe deactivation leading to decontamination and decommissioning (D&D). The review was conducted at the request of the Dr. Willis Bixby, Deputy Assistant Secretary, U.S. Department of Energy EM-60, Office of Facility Transition and Management and is a consensus of the nine member ITR Team. Information for the review was drawn from documents provided to the ITR Team by the Miamisburg Area Office (MB) of the DOE, EG&G, the City of Miamisburg, and others; and from presentations, discussions, interviews, and facility inspections at the Mound Plant during the weeks of March 14 and March 28, 1994. During the week of April 25, 1994, the ITR Team met at Los Alamos, New Mexico to develop consensus recommendations. A presentation of the core recommendations was made at the Mound Plant on May 5, 1994. This is an independent assessment of information available to, and used by, the Mound Plant personnel. Repetition of the information is not meant to imply discovery by the ITR Team. Team members, however, acting as independent reviewers, frequently assess the information from a perspective that differs significantly from that of the Mound Plant personnel. The report is based on information obtained and conditions observed during the March 1994 review interval. The ITR process and normal site work often initiate rapid, beneficial changes in understanding and organization immediately following the review. These changes frequently alter conditions observed during the review, but the report does not address changes subsequent to the review interval.

  13. Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Lewis, Kevin W.; Lamb, Michael P.; Newman, Claire E.; Richardson, Mark I.

    2013-05-01

    Ancient sediments provide archives of climate and habitability on Mars. Gale Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5-km-high sedimentary mound (Mount Sharp/Aeolis Mons). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and aeolian processes, but the origin and original extent of Gale’s mound is unknown. Here we show new measurements of sedimentary strata within the mound that indicate ˜3° outward dips oriented radially away from the mound center, inconsistent with the first three hypotheses. Moreover, although mounds are widely considered to be erosional remnants of a once crater-filling unit, we find that the Gale mound’s current form is close to its maximal extent. Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained by growth in place near the center of the crater mediated by wind-topography feedbacks. Our model shows how sediment can initially accrete near the crater center far from crater-wall katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope winds strong enough to erode the mound. The slope wind enhanced erosion and transport (SWEET) hypothesis indicates mound formation dominantly by aeolian deposition with limited organic carbon preservation potential, and a relatively limited role for lacustrine and fluvial activity. Morphodynamic feedbacks between wind and topography are widely applicable to a range of sedimentary and ice mounds across the Martian surface, and possibly other planets.

  14. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  15. Gale Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The eroded, layered deposit in Gale Crater is a mound of material rising 3 km above the crater floor. It has been sculpted by wind and possibly water to produce the dramatic landforms seen today. The origin of the sedimentary material that composes the mound remains a contested issue: was it produced from sedimentation in an ancient crater lake or by airfall onto dry land?

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -5.1, Longitude 137.5 East (222.5 West). 19 meter/pixel resolution.

  16. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  17. Elimination of the Mound-Building Termite, Nasutitermes exitiosus (Isoptera: Termitidae) in South-Eastern Australia Using Bistrifluron Bait.

    PubMed

    Webb, Garry A; Mcclintock, Charles

    2015-12-01

    Bistrifluron, a benzoylphenylurea compound, was evaluated for efficacy against Nasutitermes exitiosus (Hill), a mound-building species in southern Australia. Bistrifluron bait (trade name Xterm) was delivered as containerized pellets inserted into plastic feeding stations implanted in the sides of mounds-60 g for bistrifluron bait-treated mounds and 120 g of blank bait for untreated mounds. Termites actively tunneled in the gaps between pellets and removed bait from the canisters. All five treated mounds were eventually eliminated, and all five untreated mounds remained active at the end of the trial. Four of the five treated mounds were considered dead and excavated after 26 wk, but there were earlier signs of mound distress-reduced repair of experimental casement damage and reduced activity in bait canisters by 22 wk and reduced internal mound temperature after 11 wk. One treated mound showed activity in the bait station right through until almost the end of the trial (47 wk), but excavation at 49 wk showed no further activity in the mound. The five untreated colonies removed on average 97% of blank bait offered, while the five treated colonies removed on average 39.1% of bait offered. There was a wide variation in temperature profiles of mounds (up to 15°C for both minimum and maximum internal temperatures), from the beginning of the trial and even before the effects of baiting were evident.

  18. Elimination of the Mound-Building Termite, Nasutitermes exitiosus (Isoptera: Termitidae) in South-Eastern Australia Using Bistrifluron Bait.

    PubMed

    Webb, Garry A; Mcclintock, Charles

    2015-12-01

    Bistrifluron, a benzoylphenylurea compound, was evaluated for efficacy against Nasutitermes exitiosus (Hill), a mound-building species in southern Australia. Bistrifluron bait (trade name Xterm) was delivered as containerized pellets inserted into plastic feeding stations implanted in the sides of mounds-60 g for bistrifluron bait-treated mounds and 120 g of blank bait for untreated mounds. Termites actively tunneled in the gaps between pellets and removed bait from the canisters. All five treated mounds were eventually eliminated, and all five untreated mounds remained active at the end of the trial. Four of the five treated mounds were considered dead and excavated after 26 wk, but there were earlier signs of mound distress-reduced repair of experimental casement damage and reduced activity in bait canisters by 22 wk and reduced internal mound temperature after 11 wk. One treated mound showed activity in the bait station right through until almost the end of the trial (47 wk), but excavation at 49 wk showed no further activity in the mound. The five untreated colonies removed on average 97% of blank bait offered, while the five treated colonies removed on average 39.1% of bait offered. There was a wide variation in temperature profiles of mounds (up to 15°C for both minimum and maximum internal temperatures), from the beginning of the trial and even before the effects of baiting were evident. PMID:26470378

  19. Regional patterns of hydrothermal alteration of sediments as interpreted from seafloor reflection coefficients, Middle Valley, Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rohr, Kristin M. M.; Schmidt, Ulrike; Groschel-Becker, Henrike

    1993-09-01

    Reflection coefficients of the seafloor have been calculated from three multi-channel seismic reflection profiles across Middle Valley of the Juan de Fuca ridge. Seafloor reflection coefficients in this sedimented rift valley are high over an active hydrothermal vent and adjacent to major offset faults. Comparison of our measurements to drilling results from Leg 139 shows that high reflection coefficients over an active vent mound are produced by cemented sediments. Large reflection coefficients adjacent to major faults may have a similar origin and indicate that ongoing faulting creates pathways for hydrothermal fluids which alter the sediments and result in higher densities and velocities. Since 30 Hz seismic energy responds to the top 50 m of sediments, we are looking at the integrated response of hydrothermal alteration over tens of thousands of years. This is the first time seafloor reflection coefficients have been used to identify highly altered sediments in a region of deep-water hydrothermal activity.

  20. Hydrothermal changes related to earthquake activity at Mud Volcano, Yellowstone National Park, Wyoming

    SciTech Connect

    Pitt, A.M.; Hutchinson, R.A.

    1982-04-10

    The Mud Volcano hydrothermal area in Yellowstone National Park is near the intersection of a 20-km-long zone of northeast trending normal faults with the eastern resurgent dome within the 600,000-year-odd Yellowstone caldera. Recent crustal uplift along the northeast trending axis of the caldera is at a maximum (700 mm since 1923) near the Mud Volcano area. From 1973 through April 1978, less than 10 earthquakes (largest M 2.4) were located within 3 km of the Mud Volcano area. In May 1978, earthquakes began occurring beneath the hydrothermal area at depths of 1 to 5 km. The seismic activity continued until the end of November with intense swarms (100 events per hour) occurring on October 23 and November 7. The largest event (M 3.1) occured on November 14 and at least 8 events were M 2.5 or larger. In December 1978, heat flux in the Mud Volcano hydrothermal features began increasing along a 2-km-long northeast trending zone. Existing mud cauldrons became more active, new mud cauldrons and fumeroles were formed, and vegetation (primarily lodgepole pine) was killed by increased soil temperature. The increase in heat flux continued through July 1979 then gradually declined, reaching the early 1978 level by June 1980. The spatial and temporal association of earthquakes and increased hydrothermal activity at Mud Volcano suggests that the seismic activity expanded preexisting fracture systems, premitting increased fluid flow from depths of several kilometers.

  1. Exploring an active hydrothermal system - An analogue study from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Herwegh, Marco; Berger, Alfons; Baron, Ludovic

    2016-04-01

    Understanding the detailed flow paths in hydrothermal reservoirs is crucial for successful exploration of naturally porous and permeable rock masses for energy production. However, due to the common inaccessibility of active hydrothermal systems of suitable depth, e.g. in the northern Alpine foreland of the European Alps, direct observations are normally impossible and the knowledge about such systems is still insufficient. For that reason, a known fault-bound hydrothermal system in the crystalline basement of the Aar Massif serves as an analogue for potential geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland. During summer 2015, a 125 m hole has been drilled across this active hydrothermal zone on the Grimsel Pass for in-situ characterization of its structural, petrophysical, mechanical as well as geophysical parameters. With this information, this project aims at improving the knowledge of natural hydrothermal systems as a potentially exploitable energy source. The investigated system is characterized by a central breccia zone surrounded by different types of cataclasites and localized high strain zones. The surrounding includes different altered and deformed granitoid host rocks. In this study, we focus on the ductile and brittle deformation (shear zones, fractures, joints) that provides the main fluid pathways. Their spatial distribution around a central water-bearing breccia zone as well as their continuity and permeability provide constraints on the water flow paths in such structurally controlled hydrothermal systems. The aim will be the connection of detailed structural data with petrophysical parameters such as porosities and permeabilities. The drillcore shows the high variability of deformation structures and related fluid pathways at different scales (millimeter-decameter) demonstrating the urgent need for an improved understanding of the link between mechanical evolution, associated deformation structures as well

  2. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  3. Hydrothermal activity in the Northwest Lau Backarc Basin: Evidence from water column measurements

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Arculus, R. J.; Resing, J.; Massoth, G. J.; Greene, R. R.; Evans, L. J.; Buck, N.

    2012-05-01

    The Northwest Lau Backarc Basin, consisting of the Northwest Lau Spreading Center (NWLSC) and the Rochambeau Rifts (RR), is unique in having elevated 3He/4He ratios (up to 28 Ra) in the erupted lavas, clearly indicating a hot spot or ocean island basalt (OIB)-type signature. This OIB-type helium signature does not appear in any other part of the Lau Basin. Water column plume surveys conducted in 2008 and 2010 identified several sites of active hydrothermal discharge along the NWLSC-RR and showed that the incidence of hydrothermal activity is high, consistent with the high spreading rate of ˜100 mm/year. Hydrocasts into the Central Caldera and Southern Caldera of the NWLSC detected elevated3He/4He (δ3He = 55% and 100%, respectively), trace metals (TMn, TFe), and suspended particles, indicating localized hydrothermal venting at these two sites. Hydrocasts along the northern rift zone of the NWLSC also had excess δ3He, TMn, and suspended particles suggesting additional sites of hydrothermal activity. The RR are dominated by Lobster Caldera, a large volcano with four radiating rift zones. Hydrocasts into Lobster Caldera in 2008 detected high δ3He (up to 239%) and suspended particle and TMn signals, indicating active venting within the caldera. A repeat survey of Lobster in 2010 confirmed the site was still active two years later. Plumes at Lobster Caldera and Central Caldera have end-member3He/4He ratios of 19 Ra and 11 Ra, respectively, confirming that hot spot-type helium is also present in the hydrothermal fluids.

  4. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  5. Evidence for Hesperian Impact-Induced Hydrothermalism on Mars

    NASA Technical Reports Server (NTRS)

    Marzo, Giuseppe A.; Davila, Alfonso F.; Tornabene, Livio L.; Dohm, James M.; Fairen, Alberto G.; Gross, Christoph; Kneissl, Thomas; Bishop, Janice L.; Roush, Ted L.; McKay, Chris P.

    2010-01-01

    Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.

  6. Seismic features of Winnipegosis mounds in Saskatchewan

    SciTech Connect

    Gendzwill, D.J.

    1988-07-01

    The Winnipegosis Formation of southern Saskatchewan is characterized by reefs or reeflike mounds in its upper member. Several characteristic features of the mounds permit their identification from seismic-reflection data. These features include reflections from the flanks of the mound, a change in the reflection continuity in the middle and base of the mound, a velocity pullup under the mound, and subsidence of strata over the mound. Dissolution of the salt which surrounds the mounds sometimes occurs, resulting in a drape structure. Some or all of these features may be present at the correct seismic stratigraphic level for Winnipegosis mounds, depending on the local conditions. Subsidence of strata over the mounds indicates compaction and porosity loss from the original mound or possibly the degree of dolomitization or pressure dissolution. Salt-removal features over or adjacent to the mounds indicate fluid movements. Approximate ages can be estimated from stratigraphic thinning and thickening relationships above such features. Complications in identifying Winnipegosis mounds may arise from thin-bed effects if the mounds are not very thick compared to a seismic wavelength. Confusion may also arise from anhydrite, which may encase the mounds or which may form a thick horizontal layer at the tops of the mounds, causing an interfering signal.

  7. Plume indications from hydrothermal activity on Kawio Barat Submarine Volcano, Sangihe Talaud Sea, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Baker, E. T.; Walker, S. L.; Wirasantosa, S.; Permana, H.; Sulistiyo, B.; Shank, T. M.; Holden, J. F.; Butterfield, D.; Ramdhan, M.; Adi, R.; Marzuki, M. I.

    2010-12-01

    Kawio Barat submarine volcano has formed in response to the active tectonic conditions in Sangihe Talaud, an area that lies in the subduction zone between the Molucca Sea Plate and Celebes Sea Plate. Submarine volcanic activity in the western Sangihe volcanic arc is controlled by the west-dipping Molucca Sea Plate as it subducts beneath the Sangihe Arc. A secondary faulting system on Kawio Barat is in a northwest - southeast direction, and creates a network of deep cracks that facilitate hydrothermal discharge in this area. Hydrothermal activity on Kawio Barat was first discovered by joint Indonesia/Australian cruises in 2003. In 2010, as part of the joint US/Indonesian INDEX-SATAL expedition, we conducted CTD casts that confirmed continuing activity. Hydrothermal plumes were detected by light -scattering (LSS) and oxidation-reduction potential (ORP) sensors on the CTD package. LSS anomalies were found between 1600-1900 m, with delta NTU levels of 0.020-0.040. ORP anomalies coincident with the LSS anomalies indicate strong concentrations of reduced species such as H2S and Fe, confirming the hydrothermal origin of the plumes. Images of hydrothermal vents on Kawio Barat Submarine volcano, recorded by high- definition underwater cameras on the ROV “Little Hercules” operated from the NOAA ship Okeanos Explorer, confirmed the presence and sources of the detected vent plumes in the northern and southwest part of the summit in 1800-1900 m depth. In southwest part of this summit chimney, drips of molten sulfur were observed in the proximity of microbal staining.

  8. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    PubMed

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  9. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    PubMed

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  10. Submarine Hydrothermal Activity on the Aeolian Arc: New Evidence from Helium Isotopes

    NASA Astrophysics Data System (ADS)

    Lupton, J.; de Ronde, C.; Baker, E.; Sprovieri, M.; Bruno, P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; Greene, R.

    2008-12-01

    In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of δ3He = 23% at 610 m depth compared with background values of ~7%. We also found smaller but distinct δ3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had δ3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about δ3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He

  11. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  12. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  13. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  14. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  15. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  16. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  17. From Shell Midden to Midden-Mound: The Geoarchaeology of Mound Key, an Anthropogenic Island in Southwest Florida, USA.

    PubMed

    Thompson, Victor D; Marquardt, William H; Cherkinsky, Alexander; Roberts Thompson, Amanda D; Walker, Karen J; Newsom, Lee A; Savarese, Michael

    2016-01-01

    Mound Key was once the capital of the Calusa Kingdom, a large Pre-Hispanic polity that controlled much of southern Florida. Mound Key, like other archaeological sites along the southwest Gulf Coast, is a large expanse of shell and other anthropogenic sediments. The challenges that these sites pose are largely due to the size and areal extent of the deposits, some of which begin up to a meter below and exceed nine meters above modern sea levels. Additionally, the complex depositional sequences at these sites present difficulties in determining their chronology. Here, we examine the development of Mound Key as an anthropogenic island through systematic coring of the deposits, excavations, and intensive radiocarbon dating. The resulting data, which include the reversals of radiocarbon dates from cores and dates from mound-top features, lend insight into the temporality of site formation. We use these insights to discuss the nature and scale of human activities that worked to form this large island in the context of its dynamic, environmental setting. We present the case that deposits within Mound Key's central area accumulated through complex processes that represent a diversity of human action including midden accumulation and the redeposition of older sediments as mound fill.

  18. From Shell Midden to Midden-Mound: The Geoarchaeology of Mound Key, an Anthropogenic Island in Southwest Florida, USA

    PubMed Central

    Cherkinsky, Alexander; Roberts Thompson, Amanda D.; Walker, Karen J.; Newsom, Lee A.; Savarese, Michael

    2016-01-01

    Mound Key was once the capital of the Calusa Kingdom, a large Pre-Hispanic polity that controlled much of southern Florida. Mound Key, like other archaeological sites along the southwest Gulf Coast, is a large expanse of shell and other anthropogenic sediments. The challenges that these sites pose are largely due to the size and areal extent of the deposits, some of which begin up to a meter below and exceed nine meters above modern sea levels. Additionally, the complex depositional sequences at these sites present difficulties in determining their chronology. Here, we examine the development of Mound Key as an anthropogenic island through systematic coring of the deposits, excavations, and intensive radiocarbon dating. The resulting data, which include the reversals of radiocarbon dates from cores and dates from mound-top features, lend insight into the temporality of site formation. We use these insights to discuss the nature and scale of human activities that worked to form this large island in the context of its dynamic, environmental setting. We present the case that deposits within Mound Key’s central area accumulated through complex processes that represent a diversity of human action including midden accumulation and the redeposition of older sediments as mound fill. PMID:27123928

  19. Bizarre Crater Mound

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 5 June 2003

    The height of the interior mound of sediment inside this crater exceeds the crater rim heights by 900 meters (3,000 ft). This is a confounding problem. How does all this material get inside this crater and actually rise higher than its holding chamber? What is this material? Where did it come from? Why is it still here? It is exactly these kinds of enigmas that makes Mars so very interesting.

    Image information: VIS instrument. Latitude 12.2, Longitude 26.3 East (333.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Drilling the Snake Pit hydrothermal sulfide deposit on the Mid-Atlantic Ridge, lat 23/sup 0/22'N

    SciTech Connect

    Detrick, R.S.; Honnorez, J.; Adamson, A.C.; Brass, G.; Gillis, K.M.; Humphris, S.E.; Mevel, C.; Meyer, P.; Petersen, N.; Rautenschlein, M.; Shibata, T.; Staudigel, H.; Yamamoto, K.

    1986-12-01

    A major high-temperature hydrothermal area has been discovered in the Mid-Atlantic Ridge rift valley about 25 km south of the Kane Fracture Zone. The vent field consists of a wide area (> 40,000 m/sup 2/) of dark hydrothermal deposits, numerous sulfide chimneys and mounds, some up to 11 m high, and high-temperature black-smoker vents. Ten shallow holes, the first ever drilled in an active submarine hydrothermal area, recovered friable, unconsolidated Fe, Cu-Fe, and Zn sulfides and several large fragments of massive sulfide (mainly chalcopyrite) from the locally thick (> 13 m) hydrothermal deposits. The vents are also associated with an unusual biological community of smaller, more mobile organisms than reported from the East Pacific Rise.

  1. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  2. Variability of soil properties within large termite mounds in South Katanga, DRC - origins and applications.

    NASA Astrophysics Data System (ADS)

    Erens, Hans; Bazirake Mujinya, Basile; Boeckx, Pascal; Baert, Geert; Mees, Florias; Van Ranst, Eric

    2014-05-01

    The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1). With an average height of 5.05 m and diameter of 14.88 m, these are some of the largest biogenic structures in the world. The mound material is known to differ considerably from the surrounding Ferralsols. Specifically, mound material exhibits a finer texture, higher CEC and exchangeable basic cation content, lower organic matter content, and an accumulation of phosphorous, nitrate and secondary carbonates. However, as demonstrated by the present study, these soil properties are far from uniform within the volume of the mound. The termites' nesting and foraging activity, combined with pedogenic processes over extended periods of time, generates a wide range of physical, chemical, and biological conditions in different parts of the mound. Analysis of samples taken along a cross-section of a large active mound allowed generating contour plots, thus visualizing the variability of soil properties within the mound. The central columns of three other mounds were sampled to confirm apparent trends. The contour plots show that the mounds comprise four functional zones: (i) the active nest, found at the top; (ii) an accumulation zone , in more central parts of the mound; (iii) a dense inactive zone, surrounding the accumulation zone and consisting of accumulated erosion products from former active nests; and (iv) the outer mantle, characterized by intense varied biological activity and by a well-developed soil structure. Intermittent leaching plays a key role in explaining these patterns. Using radiocarbon dating, we found that some of these mounds are at least 2000 years old. Their current size and shape is likely the result of successive stages of erosion and rebuilding, in the course of alternating periods of mound abandonment and recolonization. Over time, termite foraging combined with limited leaching

  3. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  4. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  5. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  6. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates. PMID:11539654

  7. Upwelling of hydrothermal solutions through ridge flank sediments shown by pore water profiles

    SciTech Connect

    Maris, C.R.P.; Bender, M.L.

    1982-05-07

    High calcium ion and low magnesium ion concentrations in sediment pore waters in cores from the Galapagos Mounds Hydrothermal Field on the flank of the Galapagos Spreading Center are believed to be due to a calcium-magnesium exchange reaction between circulating seawater and basement basalt. The nonlinearity of the calcium ions and magnesium ion gradients indicates that these discharging hydrothermal solutions on the ridge flank are upwelling at the rate of about 1 centimeter per year through the pelagic sediments of the Mounds Field and at about 20 centimeters per year through the hydrothermal mounds themselves.

  8. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  9. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Mendoza, Guillermo F.; Konotchick, Talina; Lee, Raymond

    2009-09-01

    Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000 ind. m -2) and low biomass (0.1-1.07 g m -2), except for the South Su active site, which had higher density (3494 ind. m -2) and biomass (11.94 g m -2), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae ( Prionospio sp.) in active sediments, and tanaids and deposit

  10. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx.

    PubMed

    Moliner, Manuel; Franch, Cristina; Palomares, Eduardo; Grill, Marie; Corma, Avelino

    2012-08-25

    A Cu-exchanged SSZ-39 zeolite has been synthesized and tested for the selective catalytic reduction (SCR) of NOx. This material shows an excellent catalytic activity, and most importantly, an extraordinary hydrothermal stability.

  11. Controls on mound formation and effects of fluid ascent on the gas hydrate system of mound structures offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Planert, L.; Klaeschen, D.; Berndt, C.; Hensen, C.; Brueckmann, W.

    2010-12-01

    Our analysis of 2D MCS seismic data from the Middle America margin provides an insight into the buildup and formation mechanisms of mound structures and the effects of fluid ascent on the gas hydrate system observed on the continental slope offshore Costa Rica. Our targets, Mounds 11&12, are the sites of IODP drilling proposal 633-Full2, which aims to enhance the general understanding of complex forearc dewatering processes of the erosive subduction system off Costa Rica. Major sites of dewatering planned for drilling are mounds, related to mud diapirism/volcanism and precipitation of authigenic carbonates, and large-scale slides related to the subduction of seamounts. Geochemical analysis of methane hydrate and chloride anomalies as well as heat flow modeling of the mounds indicate deeply sourced fluids discharged by clay dehydration at the decollement. Hence, the hydrogeological system at this margin appears to be dominated by the fracture porosity of faults which extend through the overriding plate and provide the paths for fluids liberated by early dehydration reactions from the plate boundary. In order to test the hypothesis of deeply sourced and fault-controlled dewatering sites and to better understand the interactions between gas hydrate formation and dissociation with the fluid ascent from the deep sources, new pre-site survey seismic profiles were acquired using the 36-gun, four-string linear gun array of R/V Marcus Langseth, and a 240 channel streamer with 3000 m of active length. The seismic lines were prestack depth migrated, in which the velocity model is iteratively improved using depth focusing analysis and residual moveout correction on common image point gathers. Improvement of the deep imaging involved multiple attenuation and detailed velocity analysis of the lower sedimentary portions and beneath the basement down to the plate boundary. Our results reveal an upward bending of the bottom simulating reflection (BSR) directly beneath the mounds

  12. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization.

    PubMed

    Mautner, M N; Leonard, R L; Deamer, D W

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.

  13. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization.

    PubMed

    Mautner, M N; Leonard, R L; Deamer, D W

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics. PMID:11538427

  14. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.; Leonard, Robert L.; Deamer, David W.

    1995-02-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350°C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 × 10 -3 N m -1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120°C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of micro-organisms to metabolize extraterrestrial organics.

  15. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Leonard, R. L.; Deamer, D. W.

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.

  16. Electrical Resistivity Monitoring of an Active Hydrothermal Degassing Area at Solfatara, Phlegrean Fields.

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Byrdina, S.; Grangeon, J.; Lebourg, T.; Bascou, P.; Mangiacapra, A.

    2015-12-01

    Campi Flegrei caldera (CFc) is an active volcanic complex covering a ~100 km² densely populated area in the western part of Naples (Italy) that is presently showing clear signs of unrest. Solfatara volcano, a tuff cone crater formed ~4000 yrs B.P. ago by phreato-magmatic eruptions represents the main degassing outflow of CFc. Magmatic gases which are exsolved from a ~8 km deep magmatic reservoir mix at 4 km depth with meteoric hydrothermal fluids then reach the surface in the Solfatara area. These hydrothermal and magmatic gases, mainly H2O and CO2, are released through both diffuse degassing structures and fumaroles. In the frame of the MedSuv (Mediterranean Supervolcanoes) FP7 european project , we are performing a time-lapse electrical resistivity monitoring of an active degassing area of Solfatara. Using a 500-m-long cable and 48 electrodes, an electrical resistivity tomography (ERT) is performed on a two-day basis since May 2013. The time-lapse inversion of the ERT gives an image of the temporal variations of resistivity up to 100 m depth that can be compared with the variations of ground deformation, CO2 flux, soil temperature and seismic ambient noise. Resistivity variations can originate from fluid composition, gas ratio and temperature. For example, the abrupt change of resistivity that was observed mid-2014 during a period of uplift and gas flux increase, could be associated with the rise of hydrothermal fluids.

  17. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures.

    PubMed

    Nakagawa, Tatsunori; Nakagawa, Satoshi; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2004-03-19

    The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.

  18. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  19. A fluorescein tracer release experiment in the hydrothermally active crater of Vailulu'u volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A. A. P.; Girard, A. P.

    2003-08-01

    On 3 April 2001, a 20 kg point source of fluorescein dye was released 30 m above the bottom of the active summit caldera of Vailulu'u submarine volcano, Samoa. Vailulu'u crater is 2000 m wide and at water depths of 600-1000 m, with the bottom 200 m completely enclosed; it thus provides an ideal site to study the hydrodynamics of an active hydrothermal system. The magmatically driven hydrothermal system in the crater is currently exporting massive amounts of particulates, manganese, and helium. The dispersal of the dye was tracked for 4 days with a fluorimeter in tow-yo mode from the U.S. Coast Guard icebreaker Polar Sea. Lateral dispersion of the dye ranged from 80 to 500 m d-1; vertical dispersion had two components: a diapycnal diffusivity component averaging 21 cm2 s-1, and an advective component averaging 0.025 cm s-1. These measurements constrain the mass export of water from the crater during this period to be 8-1.3+4.6 × 107 m3 d-1, which leads to a "turnover" time for water in the crater of ˜3.2 days. Coupled with temperature data from CTD profiles and Mn analyses of water samples, the power output from the crater is 610-100+350 MW, and the manganese export flux is ˜240 kg d-1. The Mn/Heat ratio of 4.7 ng J-1 is significantly lower than ratios characteristic of hot smokers and diffuse hydrothermal flows on mid-ocean ridges and points to phase separation processes in this relatively shallow hydrothermal system.

  20. Mound Spring Complexes in Central Australia: An Analog for Martian Groundwater Fed Outflow Channels?

    NASA Technical Reports Server (NTRS)

    Clarke, J. D. A.; Stoker, C.

    2003-01-01

    The arid inland of Australia contains a diversity of landscapes and landscape processes, often of great antiquity, extending back to the Mesozoic and Paleozoic. The potential of this landscape as a source of Mars analogs has, however, been little explored. The few examples studied so far include radiation-tolerant microbes in thermal springs and hematite-silica hydrothermal alteration near Arkaroola in the Finders Ranges, and aeolian landforms at Gurra Gurra water hole the north east of Arkaroola. Further Australian Mars analog studies were provided by the studies of Bourke and Zimbelman of the paleoflood record of the Todd and Hale Rivers in central Australia. To facilitate study of such analogues, Mars Society Australia has embarked on a project to construct a Mars Analog Research Station near Arkaroola. The international scientific community will soon have the opportunity to participate in Mars analog studies in central Australia utilizing this facility. An area of considerable Mars analog potential is the mound spring complexes that occur at the margins of the Great Artesian Basin (GAB) which underlies 22% of the Australian continent and covers 1.7 million km2. The mound springs are formed when ground water flows to a topographic low, and subsurface strata dips up causing a hydrological head at the surface. Minerals precipitated at the spring discharge zone form low mesas or "mounds", the height of which are controlled by the hydrological head. This paper describes the Dalhousie Mound Spring Complex (DMC) in the northern part of South Australia (Figure 1), and its potential as a Mars analog. Hydrogeology: The DMC consists of a cluster of more than 60 active springs formed by natural discharge from the GAB). Total measured discharge from the GAB is 1.74 GL per day, estimated unfocussed natural leakage through the aquaclude is thought be approximately equal to this figure. Some 54 ML per day are currently discharged by the DMC, 3% of the measured total. The

  1. Mound calorimetry for explosive surveillance

    SciTech Connect

    Shockey, G.C.; Rodenburg, W.W.

    1985-01-01

    Heat of reaction determinations of pyrotechnics and explosives is made at MRC-Mound by bomb calorimetry. Energy releases from ten calories to 94 kilocalories have been measured accurately using four different calorimeter systems. Each system is described and some heat of reaction results are given. 3 figs., 4 tabs.

  2. Silica nanoparticles in E ring ice grains as an indicator for hydrothermal activities at Enceladus

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, H. W.; Sekine, Y.

    2013-09-01

    Since 2004 the Cosmic Dust Analyser (CDA) on board the Cassini spacecraft detects nano-meter sized dust particles, so called stream particles, in the Saturnian system. Recently it has been shown that they are released from E ring ice grains in which they were previously embedded [1]. As a consequence the nanograins must have been generated at Saturns active moon Enceladus which feeds the E ring by its spectacular jets of vapour and ice grains. Liquid water below the moons icy crust is known to be the dominant source of these jets [2, 3]. New results from CDA presented here indicate that stream particles actually are nano-silica grains. The most prominent geological process which produces nano-phase silica are hydrothermal rock-water interactions. This process has recently been intensely studied for hydrothermal systems on Earth [e.g. 4, 5]. The measured concentration, composition and size range observed at in the Saturnian system precisely matches a hydrothermal synthesis origin. Thus, we propose nano-colloidal silica to be present at mMol concentrations in Enceladus' subsurface waters. We were able to reproduce the proposed hydrothermal serpentinisation processes in a geochemical long term experiment in the laboratory. As there are no alternative formation scenarios which are in agreement with the CDA observations our results indicate ongoing rock-water interactions inside Enceladus at temperatures clearly exceeding 100°C. We discuss implications for Enceladus geochemistry, like salinity, possible ranges of temperature and pH, as well as the mineral composition of the Enceladian rock core.

  3. Geochemical studies on the biodiversity and hydrothermal activity; mineralogy, chemistry, and age determination of hydrothermal chimney collected from Suiyo seamount, Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Noguchi, T.; Oomori, T.; Taira, N.; Takada, J.; Urabe, T.

    2004-12-01

    Hydrothermal chimney structure has the steep environmental gradients of temperature, redox potential, pH and chemical concentration, which will provide diverse microhabitats for microbial communities (K.Takai et al. 2001, Hermie J.M. Harmsen et al. 1997). It is important for detailed understanding of the biodiversity to determine the chimney structural environment. Suiyo seamount is located 28.57° N, 140.66° E, where is suitable to compare with the Mid-ocean ridge hydrothermal field, because of few influence of terrestrial sediment. It was reported that the magma chamber below the seamount was very shallow ( ˜1 km), and high temperature hydrothermal fluid chamber was underlying just below the seafloor sealed with anhydrite and barite. Chimney samples used in this study were collected by Dive 1222-1225 of SHINKAI 2000 (JAMSTEC) in 2000. We measured the chemical composition with neutron activation analysis (NAA) and X-ray fluorescence analysis (XRF), mineral composition with X-ray diffraction analysis (XRD), and the precipitation age measurements ( ˜200 years) of these chimneys with γ -ray spectrometry (210Pb/Pb method, 228Th/228Ra method, and 210Pb/226Ra method). The mineral composition of the Suiyo seamount chimney were contained barite (BaSO4), sphalerite ((Zn,Fe)S), pyrite (FeS2), and chalcopyrite (CuFeS2) as a major mineral constituents. The chemical composition shows that gold contents in the chimney collected from Suiyo seamount were much higher (maximum 166 ppm) than other hydrothermal field. The chronological study showed that the precipitation ages of sulfide chimney samples (ranged in 37.2-79.6 years before 2002 by 210Pb/Pb method) were older than barite chimney ((ranged in 2.9-8.2 years before 2002 by 228Th/228Ra method). We will discuss about the process of chimney formation, the temporal variation of the past hydrothermal activity and the difference from other submarine hydrothermal fields (EPR, MAR, Okinawa trough, Loihi seamount).

  4. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  5. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  6. Paleoenvironmental setting of Paleozoic mud mounds

    SciTech Connect

    Wanless, H.R. . Dept. Geological Sciences); Tedesco, L.P. )

    1992-01-01

    Paleozoic carbonate mud mounds formed above storm wave base, which in many settings was in moderate to extremely shallow water. This is concluded by a comparative analysis of sedimentary structures, fabrics and small scale sequences occurring in Mississippian and Pennsylvanian mounds and in modern mud mounds and Halimeda bioherms. Most small mounds studied contain a shallowing sequence that represents shallowing into the zone of daily agitation. The bulk of each mound sequence is detrital deposition of layered mudstones to wackestones in the mound core and packstones to grainstones on the flanks and shoal cap. If macroskeletal fauna and flora are present, an autochthonous skeletal packstone may occur in the upper portion of the shallowing sequence beneath the detrital grainstone cap. Burrow excavations and grainy tubular tempestite infillings partially to completely modify the primary depositional fabric of all of these facies. Larger mounds studied are a composite of several to numerous smaller mound depositional sequences. High vertical relief of some larger mounds may be more the result of continued accommodation space provided by subsidence/downfaulting than be deposition in extremely deep water. Although the biotic components of carbonate mounds vary greatly through the Paleozoic, the contained sedimentary structures, fabrics and fundamental depositional sequences remain very similar. This suggests a general similarity in the mechanism and depositional setting of mound formation.

  7. Astronomical Aspects of Krakow's Monumental Mounds

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, Joanna

    2015-05-01

    Krakus' mound and Wanda's mound are the largest prehistoric mounds in the region. According to the legend, they were raised by prehistoric Slavs as the burial sites of Krakow's founder - Krakus (or Krak), and his daughter - Wanda. Archaeological excavations have only been conducted on the mound of Krakus. They revealed that the mound was erected not earlier than the 1st century AD and not later than the 10th century AD. Furthermore, the studies conducted in the 1970s by professor Kotlarczyk showed that the azimuth connecting these mounds points to the sunrise on 1 May. As this day marks an important festival in the Celtic calendar - Beltaine - the two mounds could be related to the Celtic culture. This study presents the findings of the latest research.

  8. Extensive and Diverse Submarine Volcanism and Hydrothermal Activity in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Lupton, J. E.; Resing, J.; Baker, E. T.; Lilley, M. D.; Arculus, R. J.; Crowhurst, P. V.

    2009-12-01

    The northeast Lau basin, the NE “corner” of the Tonga subduction zone, has an unusual concentration of young submarine volcanism and hydrothermal activity. The area is bounded on the west by overlapping spreading centers opening at rates up to 120 mm/yr, on the north by the E-W trending Tonga trench and on the east by the Tofua arc front. From the south, the Fonualei rift spreading center (FRSC) overlaps with the southern rift of The Mangatolo triple junction spreading center (MTJSC). The northern arm of the MTJSC overlaps with the northeast Lau spreading center (NELSC). Surveys of the area with an EM300 sonar system in November 2008 show high backscatter over the 10-20 km wide neovolcanic zones of the FRSC, MTJSC and NELSC. High backscatter is also associated with: (1) a 10-km diameter, hydrothermally active, volcanic caldera/cone (Volcano “O”) lying between the NELSC and the northern Tofua arc front; (2) a rift zone extending north from volcano “O” and intersecting the NELSC near the Tonga trench; and (3) a series of volcanoes constructed along SW-NE trending crustal tears in the northernmost backarc near the east-west portion of the Tonga Trench. Two eruptions were detected in November 2008 during hydrothermal plume surveys of the area. Subsequent dives with the remotely operated vehicle Jason 2 in May 2009 revealed that the southern NELSC eruption was a short-lived, primarily effusive eruption. The second eruption was detected on the summit of the largest SW-NE trending volcano (West Mata) and was ongoing when Jason 2 arrived on site more than 6 months later. It was producing both pillow lavas and abundant volcaniclastic debris streams that have a characteristic appearance on the sonar backscatter map. There is also an unusual series of lava flows emanating from ridges and scarps between Volcano “O” and West Mata. These flows contain drained-out lava ponds up to 2 km in diameter. The apparent high level of volcanic activity in the NE Lau basin

  9. Using Cold-water Coral Mini-mounds as Analogue for Giant Mound Growth: Assessment of Environmental Drivers and Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Collart, T.; Stewart, H. A.; Howell, K.; Bourillet, J. F.; Llave, E.; Blamart, D.; Mienis, F.; Van Rooij, D.

    2015-12-01

    Cold-water coral (CWC) reefs are formed by framework building scleratinians Lophelia pertusa and Madrepora oculata that baffle sediment and over time, have the potential to develop into large coral mounds of up to 300m high (e.g. Belgica Mound Province). The detailed mechanisms of initiation and build-up of such large CWC mounds are however not yet fully understood. It is therefore essential to study smaller mounds (often termed "mini-mounds") that can be interpreted as earlier growth stages that haven't had the time to coalesce and develop into larger mounds. The FWO Minimound project (2013-2017) aims to investigate CWC mini-mounds within the Bay of Biscay (European Margin) in order to determine the impact of: (1) palaeoceanographic changes related to glacial-interglacial climate change in the last 15 ka, (2) hydrocarbon seepage processes and (3) anthropogenic fishing activities on CWC habitats. The project targets three minimound provinces: the Ferrol Canyon (Cantabrian Margin), the Guilvinec Canyon (Armorican Margin) and the Explorer and Dangeard Canyons (Celtic Margin). These mini-mounds are fossil and occur at relative shallow depths on the interface between the Eastern North Atlantic Central Water (ENACW) and the Mediterranean Outflow Water (MOW). Contrastingly, most living CWC reefs in this region of the Atlantic, dwell in the deeper MOW depth range, relying on the density and dynamics of this water mass for their food supply. In order to investigate the initiation, growth and demise of CWC mini-mounds, 35m of USBL guided sediment cores were retrieved from the Explorer and Dangeard Interfluves. We present data of sedimentological, geochemical and palaeoceanographic analyses throughout the cores, coupled with high-resolution geophysical data. Preliminary results indicate that the mound base is associated with a strong shift in sedimentation regime potentially linked to climate driven palaeoceanographic changes of the MOW-ENACW interface.

  10. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yannick; Scott, Steven D.; Gorton, Michael P.; Zajacz, Zoltan; Halter, Werner

    2007-09-01

    The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350 °C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are

  11. Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling

    NASA Astrophysics Data System (ADS)

    Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

    2014-05-01

    The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

  12. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  13. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  14. Evolution of magmatic and hydrothermal activity in the western Arctic and North Atlantic regions

    NASA Astrophysics Data System (ADS)

    Sorokhtin, N. O.; Lobkovsky, L. I.; Novikov, G. V.; Kozlov, E. E.; Bogdanova, O. Yu.; Nikiforov, S. L.

    2016-07-01

    This paper discusses the geodynamic evolution of the lithosphere in the Arctic region during the Phaneorozic and its polyphase lithotectonic reorganization. Spatiotemporal patterns of the mosaic junction of lithospheric plates of different age are presented for the Caledonian-Hercynian stage and for the Cenozoic evolution of the North Atlantic and Arctic oceanic basins. Special attention is given to the intersections of fault systems with different kinematics, which control the manifestation of peculiar magmatism and the formation of numerous mineral deposits. It is shown that the hydrothermal activity of the region is related to the ocean opening in the Eocene and is confined to the mid-ocean ridge.

  15. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.

  16. Reaction-driven cracking in the TAG deep-sea hydrothermal field: Implications for serpentinization and carbonation of peridotite

    NASA Astrophysics Data System (ADS)

    Sohn, R. A.

    2013-12-01

    Tens of thousands of very small (-1.5 ≤ ML ≤ 0.5) microearthquakes were detected by a small-aperture (200 m) network of 5 ocean bottom seismometers during a 9-month deployment at the TAG active hydrothermal mound on the Mid-Atlantic Ridge (26°N). The earthquakes exhibit purely compressional phase arrivals, are clustered within a narrow depth interval extending from ~50 - 150 m below the seafloor, and are located just beyond the perimeter of the surface expression of the hydrothermal mound. Analyses of these events indicates that they are most likely generated by crack opening resulting from the deposition of anhydrite in the secondary circulation system of the active mound. This reaction-driven cracking is analogous to that expected from serpentinization and/or carbonation of peridotite, and suggests that a properly designed seismic experiment may be able to provide in-situ monitoring of these processes either on land or in the oceans. A straightforward test of this hypothesis could be obtained by deploying a borehole seismic network in a subaerial region, such as the ophiolite terrains of Oman, where serpentinization and carbonation of peridotite are active processes

  17. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits.

    PubMed

    Frank, Kiana L; Rogers, Karyn L; Rogers, Daniel R; Johnston, David T; Girguis, Peter R

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, [Formula: see text], DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.

  18. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  19. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits

    PubMed Central

    Frank, Kiana L.; Rogers, Karyn L.; Rogers, Daniel R.; Johnston, David T.; Girguis, Peter R.

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  20. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits.

    PubMed

    Frank, Kiana L; Rogers, Karyn L; Rogers, Daniel R; Johnston, David T; Girguis, Peter R

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, [Formula: see text], DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  1. The Role of Benthic Currents and Sediment Transport On Deep-water Coral Mound Morphology and Growth: Examples From The Belgica and Moira Mounds, Eastern Porcupine Seabight, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Wheeler, A.; Kozachenko, M.; Olu-Le Roy, K.

    Deep-water corals and associated carbonate mound build-ups are extensive along the European continental margin coincident with areas of strong benthic current activity and, often, regions of active sand transport. Although as yet unsubstantiated links to hydrocarbon seepage may play a defining role in the generation of carbonate mounds, the growth of mounds is strongly influenced by benthic current activity. Furthermore, the morphology of mounds, both in terms of their overall shape and surface morpho- logical features, is strongly dictated by the benthic-currents. Giant carbonate mounds, e.g. the Thérèse Mound, Belgica Mound province, eastern Porcupine Seabight, NE Atlantic, show upstream growth (through biological and sed- imentary accretion) with downstream scour and sediment starvation influencing their overall morphology. The surface morphological details of these giant mounds show distinct relationships to sediment waves that have become colonised and stabilised by coral and associated communities. Once colonised, the sandwave surface-morphology is mimic by biological growth with corals preferential growing on wave crests, taking advantage of stronger current and nutrient flux, to form coral banks. Furthermore, erosion of carbonate mounds by strong current activity exposes suitable hard substrates for further coral colonisation. Paradoxically therefore, mound erosion stimulates further coral growth illustrating another benthic-current control on mound growth. The Moira Mounds in the Belgica Mound Province, Porcupine Seabight are small coral-colonised mound features (tens of metres across and a few metres high) that represent an early stage of mound development and much younger then their giant carbonate mound counterparts. These features occur in areas of active sand transport, on rippled sand sheets and the upstream margins of sediment wave fields. Once coral colonies gained a SfootingT in these areas, coral colonies trap sand and build posi- & cedil; 1

  2. Distribution of Hydrothermal Activity at the Lau ISS: Possible Controlling Parameters

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Baker, E. T.; Resing, J. A.; Edwards, M. H.; Walker, S. L.; Buck, N.

    2008-12-01

    Seismic tomographic studies of intermediate to fast spreading rate mid-ocean ridges (MORs) interpret zones of rapid crustal cooling a few (3-4) km off axis surrounding the axial seismic low velocity zone (LVZ). These zones of rapid cooling also broadly correlate with the initiation and growth of large abyssal hill faults. The close association of both high thermal gradients and development of fault permeability at crustal scales suggests the hypothesis that these areas may be favorable locations for off-axis high temperature hydrothermal activity. In March-May 2008 on R/V Kilo Moana we conducted a near-bottom sidescan sonar and oceanographic survey along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Lau back-arc basin to map the distribution of hydrothermal activity within this region. The survey utilized the deep-towed DSL120A (IMI120) sonar, an array of miniature autonomous plume recorders (MAPRs) attached to the tow cable and tethered beneath the sonar's depressor weight, an in situ chemical scanner (VISA) and 23 CTD hydrocasts (see Baker et al., this session). At the ELSC the survey spanned ~100 x 10 km area encompassing the ABE, Tow Cam and Kilo Moana vent fields with ~ 1 km spaced lines overall and ~500 m spaced lines in the area of the ABE vent field. On the VFR the survey spanned a distance of ~100 km along axis by ~5 km across axis with 700 m spaced lines encompassing the Vai Lili, Mariner and Tui Malila vent sites. Initial results identified particle plumes, indicative of high temperature venting, only within about a km of the ridge axis at the ELSC and VFR with possible diffuse venting indicated by MAPR oxidation-reduction potential (ORP) measurements at flank sites at VFR. The expanded sonar coverage better defines the volcano-tectonic context of the hydrothermal signals and previously mapped vent sites. Initial results suggest, however, no high-T venting more than about 1 km from the ridge axis, an apparently negative test of

  3. Enhanced hydrothermal activity along the East Pacific Rise during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.

    2015-12-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Scaling estimates [1-2] and model results [3-4] indicate that glacial-interglacial changes in sea level should modulate melt production at mid-ocean ridges, an idea that has been confirmed with detailed surveys of ridge bathymetry [4-5]. The nature and timing of associated changes in hydrothermal activity have remained unknown, however, precluding a clear understanding of whether ridge magmatism can act as a negative feedback on ice sheet size. Here we present multiple records of hydrothermal sedimentation spanning 1300 km of the East Pacific Rise (EPR). At each location, the flux of Fe, Mn, and As increased beginning at ~25 kyr BP, reached maximum values by 15 kyr BP, and then decreased into the Holocene. Lateral sediment focusing is an unlikely explanation given the similar signal in multiple cores and the lack of evidence for anomalous horizontal transport in 3He-based focusing factors. Coherent variations in Fe, Mn, and As suggest that diagenetic overprinting is not the primary driver of the down core signal. Elevated metal fluxes also occur during Termination II. The time series of hydrothermal sedimentation bear a strong resemblance to a record of seafloor bathymetry from 17ºS [5], suggesting that both have a common driver. The simplest explanation is glacial-interglacial variations in sea level, which apparently modulates sub-ridge melting, seafloor bathymetry, and hydrothermal activity at the EPR. Our results imply that geothermal heat flux from ridges increases during the last two glacial terminations, which should act to erode the deep ocean stratification, enhance the abyssal circulation, and transmit excess heat to the Southern Ocean, thereby setting the stage for deglaciation. [1] Lund and Asimow (2008) AGU Fall Meeting, Abstract #PP11D-08. [2] Huybers and Langmuir (2009) Earth and Planetary Science Letters 286, 479-491. [3] Lund and Asimow (2011

  4. Environmental survey preliminary report, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Mound Plant, conducted August 18 through 29, 1986. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Mound Plant. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Mound Plant, and interviews with site personnel. The Survey found no environmental problems at the Mound Plant that represent an immediate threat to human life. The environmental problems identified at the Mound Plant by the Survey confirm that the site is confronted with a number of environmental problems which are by and large a legacy from past practices at a time when environmental problems were less well understood. Theses problems vary in terms of their magnitude and risk, as described in this report. Although the sampling and analysis performed by the Mound Plant Survey will assist in further identifying environmental problems at the site, a complete understanding of the significance of some of the environmental problems identified requires a level of study and characterization that is beyond the scope of the Survey. Actions currently under way or planned at the site, particularly the Phase II activities of the Comprehensive Environmental Analysis and Response Program (CEARP) as developed and implemented by the Albuquerque Operations Office, will contribute toward meeting this requirement. 85 refs., 24 figs., 20 tabs.

  5. Kentucky and Tennessee. Mounds of potential pay in Ft. Payne reef trend

    SciTech Connect

    Bigelow, T.

    1983-06-01

    It is one of the hottest areas in Tennessee. Largely centered in Fentress, Scott and Morgan counties, the Ft. Payne reefs are a series of subsurface mounds, parallel to one another, that seemingly align in a northeast- southwest direction. The mounds are at depths of 1000 to 2500 ft. To the west near the Cincinnati Arch, the mounds are relatively shallow. Whereas to the southeast the mounds downdip at a rate of ca 50 ft/mile toward the Appalachian fold belt. Most activity to date has been in the shallower Ft. Payne. Production varies greatly, from 5 bopd/well to more than 900 bopd/well. There are 21 producing fields in the Ft. Payne, with total production in excess of 6 million bbl. The mounds are of Lower Mississippian age and are thought to have been deposited along a transgressive/regressive shoreline.

  6. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge.

    PubMed

    Nitschke, Wolfgang; Russell, Michael J

    2009-11-01

    Energised by the protonmotive force and with the intervention of inorganic catalysts, at base Life reacts hydrogen from a variety of sources with atmospheric carbon dioxide. It seems inescapable that life emerged to fulfil the same role (i.e., to hydrogenate CO(2)) on the early Earth, thus outcompeting the slow geochemical reduction to methane. Life would have done so where hydrothermal hydrogen interfaced a carbonic ocean through inorganic precipitate membranes. Thus we argue that the first carbon-fixing reaction was the molybdenum-dependent, proton-translocating formate hydrogenlyase system described by Andrews et al. (Microbiology 143:3633-3647, 1997), but driven in reverse. Alkaline on the inside and acidic and carbonic on the outside - a submarine chambered hydrothermal mound built above an alkaline hydrothermal spring of long duration - offered just the conditions for such a reverse reaction imposed by the ambient protonmotive force. Assisted by the same inorganic catalysts and potential energy stores that were to evolve into the active centres of enzymes supplied variously from ocean or hydrothermal system, the formate reaction enabled the rest of the acetyl coenzyme-A pathway to be followed exergonically, first to acetate, then separately to methane. Thus the two prokaryotic domains both emerged within the hydrothermal mound-the acetogens were the forerunners of the Bacteria and the methanogens were the forerunners of the Archaea. PMID:19911220

  7. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)

    NASA Astrophysics Data System (ADS)

    Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.

    2016-10-01

    The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for hydrothermal discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no hydrothermal activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of hydrothermal activity; (2) four distinct hydrothermal active areas were identified: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse hydrothermal manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the hydrothermal water column anomalies, most likely due to widespread focused and diffuse hydrothermal discharge in the area. In the Tasi Tulo zone, the hydrothermal signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the

  8. Hydrothermal synthesis of Graphene-TiO2 nanowire with an enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wu, Huitong; Fan, Jun; Yang, Yuhao; Liu, Enzhou; Hu, Xiaoyun; Ma, Yongning; Fan, Xiao; Tang, Chunni

    2015-07-01

    The hydrothermal method was used to synthesize TiO2 nanowire (NW) and then fabricate graphene-TiO2 nanowire nanocomposite (GNW). Graphene oxide (GO) was prepared via improved Hummers'method. GO reduction to graphene and hybridization between NW and graphene by forming chemical bonding. The as-prepared composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), and ultraviolet visible (UV-Vis) diffuse reflectance spectra. The photocatalytic activity was evaluated by the photodegradation of methylene blue (MB). The prepared GNW nanocomposite has superior photocatalytic activity in the degradation test, showing an impressive photocatalytic enhancement over NW. At the same time, in comparison with Graphene-TiO2 nanoparticle (NP) nanocomposite (GNP), GNW have a better activity which because NW have more uniform dispersion on graphene with less agglomeration.

  9. Organic matter remains in the Kess Kess mounds of the Hamar Laghadad (Anti Atlas, Morocco): record of microbial biomineralization

    NASA Astrophysics Data System (ADS)

    Demasi, Fabio; Barbieri, Roberto; Guido, Adriano; Mastandrea, Adelaide; Cavalazzi, Barbara; Russo, Franco

    2010-05-01

    Carbonate Mud Mounds are well documented in the geological record, and span from Proterozoic to recent times, in shallow- and deep-water settings. They are a significant expression of the history of Earth's microbial life. The origin of carbonate mud-mounds has long been debated and the discovery of seep- and vent-related ecosystems from different geotectonic settings, associated to authigenic carbonate mounds, allowed the re-interpretation of some mounds as the product of chemosynthetic microbial mediation. We analyzed the carbonate mounds, informally called 'Kess-Kess', cropping out in the Hamar Laghdad Ridge, eastern Anti-Atlas, SE Morocco. These mounds are the most spectacularly exposed carbonate buildups of the world and, due to differential erosion, they show their original shapes and the relationships with associated strata. The origin of these buildups is still under debate and the most consistent hypotheses are related to submarine hydrothermal vents or hydrocarbon seapage in which bacteria and/or archaea plaied a prominent role in the carbonate biomineralization. To investigate the possible remains of prokaryote metabolic activity we studied the micrite precipitation processes through microfacies and biogeochemical analyses. The more indicative micrite texture is stromatolitic with very fine wrinkled lamination organized in antigravitative pattern. High resolution SEM observations suggest the presence of widespread trace of organic phantoms. The geochemical characterization of extracted organic matter was performed through the functional group analyses by FT-IR spectroscopy. The infrared spectra showed bands between 600 and 3000 cm-1. They contain stretching aliphatic bands (νCHali) at 2950, 2925 and 2850 cm-1, and deformation bands of methyl (δCH3; 1365 cm-1) and both methyl and methylene [δ(CH2 + CH3); 1458 cm-1] groups. The spectra also display the band assigned to carbonyl and/or carboxyl groups (νC=O; 1740 cm-1). The νC-O vibration appears

  10. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  11. Martian Sedimentary Basins and Central Mound Formation

    NASA Astrophysics Data System (ADS)

    Bennett, K. A.; Bell, J. F., III

    2014-12-01

    Central mounds on Mars are observed as sedimentary deposits within crater interiors, but the specific processes responsible for their formation and subsequent modification are still debated. The deposits are hypothesized to have been created by either subaerial or subaqueous processes through one of two general formation mechanisms. The prevailing hypothesis suggests that after their craters were formed, sediment filled the entire crater and was later eroded into the morphologies we observe today. Alternatively, the sediment could have been deposited as the features we observe today without any significant erosion contributing to their mound shape. We conducted a survey of central mounds that occur within craters larger than 25 km in diameter located between ± 60° latitude on Mars. We use mound locations, mound offsets within their host craters, and mound heights to address various mound formation hypotheses. The results of this survey support the hypothesis that mound sediment once filled the entire host crater and was later eroded into the features we observe today. We propose that large Martian impact craters act as simplistic sedimentary basins. These basins "catch" any sediment that is being transported through the region. Any geologic process that involves transport of material (airfall dust, explosive volcanism, impact ejecta, etc.) could have contributed to the growth of this sediment fill, although the dominant process could vary based on location. During this depositional phase, several processes (ice/frost, water, etc.) could have cemented the material; then, at some point, the environment changed from depositional to erosional, leading to the formation of isolated mounds of sediment within these craters. Our study reveals that most mounds are offset from the center of their host crater in the same direction as the regional winds. For example, the mounds in Arabia Terra are offset towards the western portion of their craters. This observation is

  12. Activity and hydrothermal stability of CeO₂-ZrO₂-WO₃ for the selective catalytic reduction of NOx with NH₃.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8 hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties.

  13. Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; Nakamura, Ko-Ichi; Embley, Robert W.; de Ronde, Cornel E. J.; Arculus, Richard J.

    2005-09-01

    The spatial density of hydrothermal venting is strongly correlated with spreading rate on mid-ocean ridges (with the interesting exception of hot spot-affected ridges), evidently because spreading rate is a reliable proxy for the magma budget. This correlation remains untested on spreading ridges in back-arc basins, where the magma budget may be complicated by subduction-induced variations of the melt supply. To address this uncertainty, we conducted hydrothermal plume surveys along slow-spreading (40-60 mm/yr) and arc-proximal (10-60 km distant) sections of the southern Mariana Trough and the Valu Fa Ridge (Lau Basin). On both sections we found multiple plumes overlying ˜15-20% of the total length of each section, a coverage comparable to mid-ocean ridges spreading at similar rates. These conditions contrast with earlier reported results from the two nearest-arc segments of a faster spreading (60-70 mm/yr) back-arc ridge, the East Scotia Ridge, which approaches no closer than 100 km to its arc. There, hydrothermal venting is relatively scarce (˜5% plume coverage) and the ridge characteristics are distinctly slow-spreading: small central volcanic highs bookended by deep median valleys, and axial melt lenses restricted to the volcanic highs. Two factors may contribute to an unexpectedly low hydrothermal budget on these East Scotia Ridge segments: they may lie too far from the adjacent arc to benefit from near-arc sources of melt supply, and subduction-aided migration of mantle from the Bouvet hot spot may reduce hydrothermal circulation by local crustal warming and thickening, analogous to the Reykjanes Ridge. Thus the pattern among these three ridge sections appears to mirror the larger global pattern defined by mid-ocean ridges: a well-defined trend of spreading rate versus hydrothermal activity on most ridge sections, plus a subset of ridge sections where unusual melt delivery conditions diminish the expected hydrothermal activity.

  14. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin

    PubMed Central

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y.; Lipp, Julius S.; Ruff, S. Emil; Biddle, Jennifer F.; McKay, Luke J.; MacGregor, Barbara J.; Lloyd, Karen G.; Albert, Daniel B.; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed “Mat Mound”) were characterized by porewater geochemistry of methane, C2–C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  15. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been

  16. Air sparging: Much ado about mounding

    SciTech Connect

    Lundegard, P.D.

    1995-12-31

    Groundwater mounding is the upward movement of the water table that can occur in association with air injection into the saturated zone. Multiphase flow simulations are here used to define general mounding behavior and dynamics under simplified subsurface conditions. Field observations at three sites are then used to describe a range of expected groundwater mounding responses for subsurface conditions, ranging from relatively homogeneous to highly heterogeneous. Results show that mounding (1) is a transient response that is usually negligible at steady state, (2) dissipates by radial wavelike spreading, and (3) occurs well beyond the saturated zone region of airflow.

  17. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.

    PubMed

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A

    2012-11-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  18. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  19. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  20. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  1. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  2. Origin Hypotheses for Kilometer-Scale Mounds on Dwarf Planet Ceres

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna G.; Platz, Thomas; Schmidt, Britney E.; Scully, Jennifer E. C.; Russell, Christopher T.; Mest, Scott C.; Crown, David A.; Sykes, Mark V.; Hughson, Kynan H. G.; Chilton, Heather T.; Williams, David A.; Pieters, Carle M.; Marchi, Simone; Travis, Bryan; Raymond, Carol A.

    2015-11-01

    The Dawn Framing Camera has revealed numerous domical to conical features on Ceres, which may have relevance to the presence and history of near-surface ice. These features fall into two broad classes, large domes 10s to >100 km in diameter exhibiting 1-5 km of positive relief, and small mounds <10 km in diameter exhibiting sub-kilometer relief. Here, we propose three hypotheses for the origin of the ~150 small mounds identified thus far, and discuss morphological observations that could support each hypothesis as higher resolution data becomes available.Hypothesis 1: Kilometer-scale mounds are produced by localized eruption of cryomagma or hydrothermal material. Observational tests: Kilometer and sub-kilometer scale albedo variations; sub-kilometer flow features on individual mounds; localized vents; conical or domical shape. Challenge: Features are smaller than convective plumes expected from thermal evolution modeling.Hypothesis 2: Kilometer-scale mounds are analogous to terrestrial and martian pingos, which grow by drawing liquid water through a silicate matrix as a freezing front propagates downward. Observational tests: Mounds occurring on smooth material that floods or embays large-scale features; little or no local albedo variation; no small flows associated with individual mounds; domical or ring-shape; concentric or radial fractures on dome, or central depression. Challenge: Small Cerean mounds observed thus far are an order of magnitude larger than terrestrial or martian pingos.Hypothesis 3: Kilometer-scale mounds are rootless cones analogous to features observed on the surface of volcanic flows in volatile-rich regions of Earth and Mars. Rootless cones are produced when layers of fluid material inundate a region; localized devolatilization of a layer mobilizes clasts to form cone-shaped deposits. Observational tests: Mounds on smooth material that floods or embays large-scale features; conical, not domical, profile; large central

  3. The onset of life in a natural submarine hydrothermal fractionation reactor

    NASA Astrophysics Data System (ADS)

    Russell, M. J.; Martin, W.

    There was a strong disequilibrium between the carbon dioxide in the early atmosphere and hydrothermal hydrogen. Such a disequilibrium tends to increase at lower temperatures but so do the kinetic barriers to reaction. Ignoring these kinetic barriers the strongest thermodynamic drive is to the production of methane as carbon dioxide reacts with hydrogen. But kinetic barriers prevent this reaction below 500C. In its stead Shock et al. (1998) demonstrate that metastable acetate is overwhelmingly the best represented carbon compound produced theoretically on the mixing of hydrothermal solution with seawater between 10 and 65C. The minor sticky by-product of this reaction, which involves other reactants, can be considered as evolving to protolife. Thus we argue that the organic building modules of life could be generated from the simplest entities within the hydrothermal mound. And the main waste products would be acetate and water: {407H2+10NH3+HS-hydroth'l +{210CO2+H2PO4- + [Fe,Ni,Co]2+ocean → gC70H129O65N10P(Fe,Ni,Co)Sprotolife+{70H3C.COOH+219H2Owaste We suggest that protolife emerged at ˜ 40C where chemical gradients were steep in a hydrothermal mound which developed where alkaline waters seeped into the Hadean ocean. The mound acted as a fractionation reactor. Reactions were catalysed by such sulfide clusters as would produce greigite (NiFe5S8) in membranes also composed of sulfides (Martin and Russell 2003). A greigite cluster was the precursor to the active sites of carbon monoxide dehydrogenase (NiFe4S5) and acetyl coenzyme-A synthase ([Fe4S4]cysNicys2Ni) (Svetlitchnyi et al. 2004). Activation energy was supplied by reaction between photolytic ferric iron and H2 across the membranes comprising FeS compartments at the mound's surface. Small quantities of amino acids, metal-bearing clusters (Milner-White and Russell 2004), and eventually RNA precursors, self-organised to become involved in the more efficient generation of acetate waste, a thermodynamic

  4. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  5. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used.

  6. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years. PMID:12881565

  7. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  8. Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Xu, Bolian; Fan, Yining

    2013-02-01

    The mixed-phase TiO2 photocatalysts with different anatase/rutile/brookite ratios and high specific surface area (157-218 m2/g) were prepared by hydrothermal method at 100 °C and the effect of rutile content in TiO2 on the BET surface area, light absorption and separation efficiency of photogenerated charge carriers was studied and correlated to the photocatalytic activity of TiO2. Rutile content increased from 0% to 100% by increasing the amount of TiCl4 in aqueous phase and the initial pH value of reaction solution played an important role in the phase composition of TiO2. The photocatalytic mechanism of mixed-phase TiO2 was discussed.

  9. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Morales-Gallardo, M. V.; Ayala, A. M.; Pal, Mou; Cortes Jacome, M. A.; Toledo Antonio, J. A.; Mathews, N. R.

    2016-09-01

    In this work, FeS2 nanorods were synthetized by hydrothermal method. The advantages of our process were the high yield, simplicity and reproducibility. The material was studied in detail using different experimental tools such as XRD, SEM, HRTEM, EDXS, XPS, Raman, and UV-vis reflectance. XRD pattern and Raman data revealed good crystalline quality for the as synthesized pyrite FeS2. SEM analysis displayed the rod-like morphologies of FeS2 which seemed to grow radially from a center giving a flower-like appearance. From TEM images the approximate length and diameter of nano-rods were determined as 275 and 15 nm respectively. The material showed excellent photocatalytic activity which was assessed from the degradation of the methlyene blue.

  10. Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping

    2016-10-01

    Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.

  11. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  12. Geological mounds and their seismic expression

    SciTech Connect

    Swarbrick, R.E. )

    1991-03-01

    Mound geometry (convex upward structure developed above a subhorizontal surface) is common in many geological environments and frequently observed in 2-dimensions on seismic sections. Seismic mounds are typically associated with deep-water clastic sediments, e.g. submarine fans and slumps, and with a variety of carbonate depositional settings, e.g., reefs and banks, but also exist in other depositional settings. Recognition will be dependent on mound dimension, velocity contrast, amplitude strength, and the resolution of the seismic data. Since mounds can represent an important exploration target and recognition of porous, hydrocarbon-bearing section is all-important, careful restitution of the original depositional morphology from the seismic data is required. Details of present velocity distribution are critical, along with a realistic concept of any post-depositional modification, such as compaction, which may have taken place during burial. Where differential compaction is taking place, for example between sand and shale, seismic expression of morphology will be continually modified during progressive burial. Analysis of structure at the top and base of the mound can provide support for lithological interpretation based on other criteria, such as seismic facies analysis based on internal and external reflections. Modeling, using parameters from mounds in a variety of known depositional settings, illustrates many of the interpretational problems associated with seismic mounds and provides some objective criteria for analysis of mound morphology. Comparison is made with real data, principally from northwest Europe and North America.

  13. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  14. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  15. Scaling law for Dictyostelium Discoideum mounds

    NASA Astrophysics Data System (ADS)

    Voeltz, Camilla; Bodenschatz, Eberhard

    2004-03-01

    Little is known about how multicellular organisms regulate the size of their tissues during development. The eukaryote Dictyostelium Discoideum, may be studied as a model system. When starved, these amoebae aggregate and form cell mounds. These mounds develop into moving slugs and fruiting bodies consisting of a spore mass held atop a rigid stem of stalk cells. We report experiments on the development of mounds of Dicty-cells when confined to different heights. At the smallest height the amoebae are confined to a monolayer of cells in a 2d-plane. We found that the confinement inhibited the development of moving slugs and fruiting bodies. The cells aggregated and formed mounds whose size was found to be proportional to the height of the mounds. The precise mechanism is yet unknown. We will present the data and discuss possible mechanisms. This work is supported by the NSF through the Biocomplexity Program.

  16. COCARDE: new view on old mounds - an international network of carbonate mound research

    NASA Astrophysics Data System (ADS)

    Rüggeberg, A.; Foubert, A.; Vertino, A.; van Rooij, D.; Spezzaferri, S.; Henriet, J.-P.; Dullo, W.-C.; Cocarde Science Community

    2012-04-01

    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern cold-water coral carbonate mounds over the last decades made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community with cold-water corals as main framework builders, some fundamental questions could be addressed, until now not yet explored in fossil mound settings. The international network COCARDE (http://www.cocarde.eu) is a platform for exploring new insights in carbonate mound research of recent and ancient mound systems. The aim of the COCARDE network is to bring together scientific communities, studying Recent carbonate mounds in midslope environments in the present ocean and investigating fossil mounds spanning the whole Phanerozoic time, respectively. Scientific challenges in modern and ancient carbonate mound research got well defined during the ESF Magellan Workshop COCARDE in Fribourg, Switzerland (21.-24.01.2009). The Special Volume Cold-water Carbonate Reservoir systems in Deep Environments - COCARDE (Marine Geology, Vol. 282) was the major outcome of this meeting and highlights the diversity of Recent carbonate mound studies. The following first joint Workshop and Field Seminar held in Oviedo, Spain (16.-20.09.2009) highlighted ongoing research from both Recent and fossil academic groups integrating the message from the industry. The field seminar focused on mounds from the Carboniferous platform of Asturias and Cantabria, already intensively visited by industrial and academic researchers. However, by comparing ancient, mixed carbonate-siliciclastic mound systems of Cantabria with the Recent ones in the Porcupine Seabight, striking similarities in their genesis and processes in mound development asked for an integrated drilling campaign to understand better the 3D internal mound build-up. The

  17. Diversity of Active Seafloor Hydrothermal Mineralization in the Manus Back-Arc Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gena, K.; Chiba, H.

    2004-12-01

    sulfidation mineralization is considered to be a product of magmatic degassing and is a typical example of an acid-sulphate type of hydrothermal activity developing on the seafloor.

  18. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  19. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  20. Ground-squirrel mounds and related patterned ground along the San Andreas Fault in Central California

    USGS Publications Warehouse

    Wallace, Robert E.

    1991-01-01

    Extensive areas of mound topography and related patterned ground, apparently derived from the mounds of the California Ground Squirrel (Spermophilus beecheyi beecheyi), are in central California.  The relation of patterned ground to the San Andreas fault west of Bakersfield may provide insight into the timing of deformation along the fault as well as the history of ground squirrels.  Mound topography appears to have evolved through several stages from scattered mounds currently being constructed on newly deposited alluvial surfaces, to saturation of areas by mounds, followed by coalescence, elongation and lineation of the mounds.  Elongation, coalescence and modification of the mounds has been primarily by wind, but to a lesser extent by drainage and solifluction.  A time frame including ages of 4,000, 10,500, 29,000, and 73,000 years BP is derived by relating the patterns to slip on the San Andreas fault.  Further relating of the patterns to faulting, tilting, and warping may illuminate details of the rates and history of deformation.  Similarly, relating the patterns to the history of ground squirrel activity may help answer such problems as rates of dispersal and limits on population density.

  1. The hydrophysical evidence for hydrothermal activity intensification in the subtropical MAR in summer, 2002

    NASA Astrophysics Data System (ADS)

    Aleynik, D. L.

    2003-04-01

    The adequate evaluations of heat and matter flux on the ocean - bottom boundary are required as for determination of the overall ocean thermal budget, so for the expected climate transformations. The hydrophysical measurements were obtained by rosette equipped with CTD, nephelometer, pinger and 30-liter bottles, which were deployed from R/V “Ak. M. Keldysh” in a tow-yo regime. The data were supplemented by visual and instrumental observations from submersibles “MIR”. These results at six hydrothermal vent sites of MAR from 23.3 to 37.3 deg. N were compared with data of similar surveys, fulfilled during previous decade. The hydrothermal matter influx irregularity leads to fluctuations in the parameters of the neutral buoyant plumes above five sites (Snake Pit, TAG, Broken Spur, Lucky Strike and Rainbow). The absence of the plume above the Lost City was detected. In July, 2002, northeastern-more off the most active field Rainbow the sizes of the neutral plume again (as well as during the RRS “Discovery” expedition in 1997) increased in three times (up to 6-7 kms along SW-NE line and more than 4 kms across) in contrast to the data of detail survey in autumn, 1999. Now this plume covers the whole peak of Rainbow axial Ridge. The waters contained in this rift valley (160 cubic kms) are remarkably more heated than ambient ocean waters (at depth 2650 m the difference is near 0.5 deg. C). The author thanks crews of R/V “AMK” and submersibles “MIR” for their help in measurements.

  2. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    those with large ridge-ridge offset ( > 30 km), at an advanced stage of opening, represented by stockwork sulfides exposed in the walls of equatorial fracture zones of the Atlantic Ocean and Indian Ocean; (4) the axial zone of volcanic extrusion at an advanced stage of opening. Local tectonic sub-settings with conditions conducive to hydrothermal mineralization at intermediate- to fast-spreading centers (half rate > 2cm y -1; length c. 22,000 km) characterized by an estimated average convective heat transfer of 11.5·10 8 cal. cm -2, relatively wide (up to 20 km at base), shallow-level (c. 1-3 km) magma chambers, and low topographic relief (< 1 km), are: (1) basins along linear sections of the axial zone of volcanic extrusion at an early stage of opening, represented by massive sulfide deposits of the Guaymas Basin of the Gulf of California; (2) the axial zone of volcanic extrusion at an advanced stage of opening, represented by individually small (c. 1·10 3 metric tons), massive sulfide mounds surmounted by chimneys of the East Pacific Rise at latitude 21°N; (3) the marginal zone of active extension at an advanced stage of opening represented by a large, massive sulfide deposit (preliminary tentative estimate c.10·10 6 metric tons) at a double-rifted section of the Galapagos Spreading Center; (4) transform faults, especially those with large ridge-ridge offset ( > 50 km) represented by manganese encrustations in a transform fault at the Galapagos Spreading Center; (5) volcanic seamounts related to persistent hot spots at spreading centers, represented by oxide and sulfide deposits on seamounts off the axis of the East Pacific Rise; (6) portions of spreading centers with anomalous configurations such as multiple, bent or extended rifts, represented by massive sulfide deposits at a double-rifted section of the Galapagos Spreading Center, suggesting the operation of a thermal-structural feedback mechanism indicative of the presence of hydrothermal mineralization; (7

  3. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307)

    PubMed Central

    Webster, Gordon; Blazejak, Anna; Cragg, Barry A; Schippers, Axel; Sass, Henrik; Rinna, Joachim; Tang, Xiaohong; Mathes, Falko; Ferdelman, Timothy G; Fry, John C; Weightman, Andrew J; Parkes, R John

    2009-01-01

    The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (∼270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound. Although total cell numbers at certain depths were lower than the global average for other subseafloor sediments and prokaryotic activities were relatively low (iron and sulfate reduction, acetate oxidation, methanogenesis) they were significantly enhanced compared with the Reference site. In addition, there was some stimulation of prokaryotic activity in the deepest sediments (Miocene, > 10 Ma) including potential for anaerobic oxidation of methane activity below the mound base. Both Bacteria and Archaea were present, with neither dominant, and these were related to sequences commonly found in other subseafloor sediments. With an estimate of some 1600 mounds in the Porcupine Basin alone, carbonate mounds may represent a significant prokaryotic subseafloor habitat. PMID:18826439

  4. Hydrothermal fountains imaged by high resolution side-scan sonar equipped on a cruising AUV, URASHIMA

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Tsukioka, S.; Yamamoto, H.; Shitashima, K.; Yamamoto, F.; Sawa, T.; Hyakudome, T.; Kasaya, T.; Kinoshita, M.

    2007-12-01

    Mapping of an area and intensities of activity at a particular hydrothermal field has required huge effort so far, typically several tens of dives of manned submersibles and/or ROVs to obtain detailed locality map with needed resolutions. Thus, appropriate remote sensing techniques have been desired since the discovery of seafloor hydrothermal field. A series of successful trials has been performed by ABE of WHOI equipped with a Eh-sensor (Yoerger et al., Oceanography, 2007). A 100kHz side-scan sonar (SSS) equipped on a cruising AUV, URASHIMA, caught detailed structural image of hydrothermal fountains rooting active chimneys during YK07-07 Cruise off Okinawa Isl. (May 6-18, 2007). The URASHIMA AUV is a 10-m-length cylindrical-shaped one that originally optimized to long distance cruise. In the expedition, she cruised near the sea floor with 50-100 m altitude, at the area of 1000-1500 m in WD. She has currently basic oceanographic/CTD sensors, a 400kHz echo-sounder and sonars of 100400 kHz side-scan sonar and up to 6 kHz sub-bottom profiler. In this operation, pH and ORP sensors (CRIEPI) were also attached in front of AUV. On the pre-processing image of SSS, numbers of filament-shape echoes were recorded within water column zone. The reason why they should be the echo from hydrothermal plumes are as folows; 1) the echoes in the water column were limitedly recorded above the active hydrothermal field; 2) CTD and pH sensors show temperature and pH anomaly corresponding to the record of echoes; 3) some of the root of the filament-shape echoes correspond to the hydrothermal mound recognized in the detailed bathymetry obtained with SeaBat7125 MNBES. This-like technique should revolute the mapping work prior to the sampling at the particular hydrothermal site.

  5. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  6. Geochemical Arrays at Woolsey Mound Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.

    2011-12-01

    A suite of geochemical monitoring arrays has been developed for the Woolsey Mound Seafloor Observatory in the northern Gulf of Mexico to evaluate the oceanographic and tectonic forcing factors on the formation and stability of gas hydrates. These arrays are designed to collect sustained, time-series data of chemical concentrations, gradients and fluxes from the subsurface to the seafloor and into the near bottom water column. A Pore Fluid Array provides time-series measurements of methane, sulfate and salinity in subsurface pore waters to evaluate microbial activity, hydrate formation and/or hydrate dissociation. A Chimney Sampler Array collects in situ chemical and physical readings at the benthic boundary. The array is designed around a vertical cylinder with a known volume and washout rate for measuring chemical gradients and flux at the seafloor. The Benthic Boundary Layer Array extends into the water column with a package of sensors in a node close to the seafloor and a similar node 20 m above the seafloor to evaluate upward, downward and transversely advecting fluids. The three arrays can be used in concert to evaluate a release of methane by the dissociation of gas hydrates: the Pore Fluid Array identifies the breakdown of gas hydrates in the subsurface, the Chimney Array determines the rate of flux at the seafloor and the Benthic Boundary Layer Array evaluates the fate of the release in the water column. Combining the data from the geochemical arrays with output from the geophysical arrays provides key information to evaluate the specific and relative importance of tectonic and oceanographic triggers for hydrate dissociation. New probes and deployment platforms have been developed for the installation and maintenance of the arrays and new systems are in place and under development for the recovery of the data. Generally, the complete array or its components have to be recovered to download the data. However, this summer 2011, a new optic modem system was

  7. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  8. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  9. Deep-Sea Magnetics on Active and Fossil Hydrothermal Sites: a Tool to Detect and Characterize Submarine Ore Deposits

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Szitkar, F.; Fouquet, Y.; Choi, Y.

    2011-12-01

    Since the first discoveries of hydrothermal sites at mid-ocean ridges in the 70s, international efforts in the deep seafloor exploration have unravelled a wide variety of hydrothermal sites in terms of geological settings, physical parameters, and biological communities as well. Such efforts, coordinated in the InterRidge program since 1992, are becoming even more important when the increasing need in metals for developing economies makes the exploitation of metal sulfides accumulated at deep-sea hydrothermal sites a realistic target. The usual method to find hydrothermal sites is to detect the associated chemical plumes enriched in manganese, methane, hydrogen, helium 3, in the water column. How efficient it has been proven, such a method is limited to the search for active hydrothermal vents. Active vents, however, are not the best places for mining the seafloor, because (1) they host massive sulfides deposits in the making and may not represent the largest accumulation; (2) they are still very hot and would rapidly damage the mining tools; and, last but not the least, (3) they host fragile and precious ecosystem that could be dramatically affected by mining operations. Methods to find fossil hydrothermal sites (i.e. colder and devoid of specific ecosystems) include systematic rock sampling - a very tedious endeavour - and high resolution, near seafloor geophysical surveys. Existing magnetic surveys on basalt-hosted, peridotite-hosted and sediment-hosted sites revealed different types of signatures, which reflect the magnetizations of the host rock and the ore deposit, among others. Basalt-hosted sites exhibit negative magnetic anomalies, i.e. a deficit of magnetization, due to thermal demagnetization and hydrothermal alteration of the highly magnetic basalt, whereas both peridotite-hosted and sediment-hosted sites show positive anomalies, i.e. an excess of magnetization, clearly associated with the ore deposit. Results from recent cruises Serpentine (R

  10. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  11. Geologic form and setting of a hydrothermal vent field at latitude 10/sup 0/56'N, East Pacific Rise: a detailed study using Angus and Alvin

    SciTech Connect

    McConachy, T.F.; Ballard, R.D.; Mottl, M.J.; Von Herzen, R.P.

    1986-04-01

    A hydrothermal vent field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15-20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. Hydrothermal activity occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys vent warm (9-47/sup 0/C) and hot (347/sup 0/C) hydrothermal fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. 19 references, 4 figures.

  12. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation.

    PubMed

    Ben Ali, Monaam; Yolcu, Haci Hasan; Elhouichet, Habib; Sieber, Brigitte; Addad, Ahmed; Boussekey, Luc; Moreau, Myriam; Férid, Mokhtar; Szunerits, Sabine; Boukherroub, Rabah

    2016-07-01

    A facile and efficient one-step hydrothermal approach for the synthesis of Zn2SnO4 nanoparticles/reduced graphene oxide (ZTO/rGO) nanocomposites using zinc acetate, tin chloride and graphene oxide (GO) as precursors, and sodium hydroxide as reducing agent has been developed. This approach allows simultaneous reduction of GO and growth of spinel ZTO nanoparticles (NPs) on the rGO sheets. The morphology and microstructure characterizations of ZTO/rGO nanocomposites revealed that this method leads to close interfacial contact of ZTO NPs and rGO and efficient dispersion of ZTO NPs on the surface of rGO sheets. The photocatalytic activity of the ZTO/rGO nanocomposite was investigated for the reduction of rhodamine B under visible light irradiation. Compared to pure ZTO NPs, ZTO/rGO nanocomposite exhibited superior photocatalytic activity with a full degradation of rhodamine B within 15min. The enhanced photocatalytic performance of ZTO/rGO was mainly attributed to excellent electron trapping and effective adsorption properties of rGO.

  13. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  14. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation.

    PubMed

    Ben Ali, Monaam; Yolcu, Haci Hasan; Elhouichet, Habib; Sieber, Brigitte; Addad, Ahmed; Boussekey, Luc; Moreau, Myriam; Férid, Mokhtar; Szunerits, Sabine; Boukherroub, Rabah

    2016-07-01

    A facile and efficient one-step hydrothermal approach for the synthesis of Zn2SnO4 nanoparticles/reduced graphene oxide (ZTO/rGO) nanocomposites using zinc acetate, tin chloride and graphene oxide (GO) as precursors, and sodium hydroxide as reducing agent has been developed. This approach allows simultaneous reduction of GO and growth of spinel ZTO nanoparticles (NPs) on the rGO sheets. The morphology and microstructure characterizations of ZTO/rGO nanocomposites revealed that this method leads to close interfacial contact of ZTO NPs and rGO and efficient dispersion of ZTO NPs on the surface of rGO sheets. The photocatalytic activity of the ZTO/rGO nanocomposite was investigated for the reduction of rhodamine B under visible light irradiation. Compared to pure ZTO NPs, ZTO/rGO nanocomposite exhibited superior photocatalytic activity with a full degradation of rhodamine B within 15min. The enhanced photocatalytic performance of ZTO/rGO was mainly attributed to excellent electron trapping and effective adsorption properties of rGO. PMID:27054768

  15. Effects of pH and temperature on photocatalytic activity of PbTiO3 synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Yongyu; Sun, Haijie; Wang, Ning; Fang, Wenxue; Li, Zhongjun

    2014-11-01

    PbTiO3 photocatalyst was synthesized successfully by facile hydrothermal method. The effects of the hydrothermal reaction temperatures and the pH values of the systems on the photocatalytic activities of PbTiO3 were investigated in detail. The photocatalytic activities of samples were evaluated by the degradation of methyl orange (MO) aqueous solution under simulated solar irradiation. The as-obtained PbTiO3 sample exhibits anisotropical growth along the (0 0 1) plane, and its photocatalytic activity is about 3 times higher than that of PbTiO3 prepared by precipitation method. Moreover, the as-prepared PbTiO3 has high stability during photocatalytic oxidation process, and does not cause secondary pollution.

  16. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  17. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  18. State of the hydrothermal activity of Soufrière of Guadeloupe volcano inferred by VLF surveys

    NASA Astrophysics Data System (ADS)

    Zlotnicki, J.; Vargemezis, G.; Mille, A.; Bruère, F.; Hammouya, G.

    2006-04-01

    La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976-1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases. In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones

  19. Groundwater Mounding Beneath Stormwater Infiltration Basins

    NASA Astrophysics Data System (ADS)

    Nimmer, M.; Thompson, A. M.; Misra, D.

    2007-12-01

    An accurate understanding of groundwater mound formation is important in the proper design of stormwater infiltration basins since these basins are often required to recharge a portion of pre-development infiltration volume. Mound formation due to localized recharge may reduce the infiltration rate of the basin and the ability of the soil to filter pollutants. The goal of this research was to understand groundwater mounding and the potential for contaminant transport resulting from recharge beneath stormwater infiltration basins. A 0.10 ha infiltration basin serving a 9.4 ha residential subdivision in Oconomowoc, Wisconsin was used in this study. Subsurface conditions included sand and gravel material and a groundwater table at 2.3 m below grade. Three storm events, 4.9 cm, 2.8 cm, and 4.3 cm, between August 2006 and April 2007 were modeled using the two-dimensional numerical model HYDRUS. The calibrated model was used to evaluate hypothetical basin operation scenarios for various basin sizes, soil types, ponding depths, and water table depths. The groundwater mound intersected the basin floor in most scenarios with loamy sand and sandy loam soils, an unsaturated thickness of 1.52 m, and a ponding depth of 0.61 m. No groundwater table response was observed with ponding depths less than 0.31 m with an unsaturated zone thickness of 6.09 m. The mound height was most sensitive to hydraulic conductivity and unsaturated zone thickness. A 7.6 cm sediment layer delayed the time to reach maximum mound height, but had a minimal effect on the magnitude of the mound. Mound heights increased as infiltration basin size increased.

  20. The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Aguilera, F.; Vaselli, O.; Medina, E.; Tedesco, D.; Delgado Huertas, A.; Poreda, R.; Kojima, S.

    2009-03-01

    Low-to-high temperature fumaroles discharging from the Active Crater of Lascar volcano (northern Chile) have been collected in November 2002, May 2005 and October 2006 for chemical and isotopic analysis to provide the first geochemical survey on the magmatic-hydrothermal system of this active volcano. Chemical and isotopic gas composition shows direct addition of high-temperature fluids from magmatic degassing, mainly testified by the very high contents of SO2, HCl and HF (up to 87,800, 29,500 and 2,900 μmol/mol) and the high R/Ra values (up to 7.29). Contributions from a hydrothermal source, mainly in gas discharges of the Active Crater rim, has also been detected. Significant variations in fluid chemistry, mainly consisting of a general decrease of magmatic-related compounds, i.e. SO2, have affected the fumarolic system during the period of observation, indicating an increase of the influence of the hydrothermal system surrounding the ascending deep fluids. The chemical composition of Active Crater fumaroles has been used to build up a geochemical model describing the main processes that regulate the fluid circulation system of Lascar volcano to be utilized in volcanic surveillance.

  1. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    SciTech Connect

    Tiercelin, J.J.; Mondeguer, A. ); Thouin, C. ); Kalala, T. )

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  2. In vitro evaluation of H2O2 hydrothermal treatment of aged titanium surface to enhance biofunctional activity.

    PubMed

    Yoneyama, Yuya; Matsuno, Tomonori; Hashimoto, Yoshiya; Satoh, Tazuko

    2013-01-01

    Surface modification of titanium has been extensively investigated in implant science and technology in an effort to improve its osteoconductivity. The rate of protein adsorption on titanium surfaces is known to vary depending on the chemistry, structure, morphology, and titanium-specific biological aging of the surface. It is thus desirable to modify smooth titanium surfaces of miniimplants used as orthodontic anchors immediately prior to use. In this study, we have developed a simple surface modification of titanium alloy that improves its biofunctional activity. The surface of a Ti-6Al-4V disk was modified by applying 3% H(2)O(2) hydrothermal treatment using an autoclave. A nanostructured porous network TiO(2) was observed on the treated surface. Treated surfaces exhibited higher hydrophilicity, protein adsorption, and cell proliferation than untreated surfaces. 3% H(2)O(2) hydrothermal treatment is thought to provide biofunctional activity for aged titanium surface.

  3. Reef mounds indicate timing of hydrocarbon charge off Seychelles

    SciTech Connect

    Plummer, P.

    1998-07-06

    Carbonate mounds developed on Coetivy Bank and the northern Seychelles Plateau appear to have formed in response to pulses of hydrocarbon fluid migration along underlying faults during the late Paleocene and late Eocene. Gas chimneys emanating from these mounds are evident on seismic data, while gas sniffer and/or UV fluorescence anomalies have been recorded in the overlying waters. Such a combination of hydrocarbon anomalies is indicative of minor active gas seepage and confirms the prospectivity of these features and their underlying sequences. Recently it has also been realized that both authigenic and biogenic carbonates proliferate above faults from which hydrocarbon seepage occurs, forming chemosynthetic reefs. When identified on seismic data, such reef/fault associations constitute seismic hydrocarbon indicators (SHIs), and the reefs/faults off Seychelles have been interpreted as SHIs. This paper discusses the geology, source rocks, thermal history, and chemosynthetic reefs.

  4. Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States

    NASA Astrophysics Data System (ADS)

    Seifert, Christopher L.; Cox, Randel Tom; Forman, Steven L.; Foti, Tom L.; Wasklewicz, Thad A.; McColgan, Andrew T.

    2009-05-01

    The origin and significance of pimple mounds (low, elliptical to circular dune-like features found across much of the south-central United States) have been debated for nearly two centuries. We cored pimple mounds at four sites spanning the Ozark Plateau, Arkansas River Valley, and Gulf of Mexico Coastal Plain and found that these mounds have a regionally consistent textural asymmetry such that there is a significant excess of coarse-grained sediment within their northwest flanks. We interpret this asymmetry as evidence of an eolian depositional origin of these mounds and conclude they are relict nebkhas (coppice dunes) deposited during protracted middle to late Holocene droughts. These four mounds yield optically stimulated luminescence ages between 2400 and 700 yr that correlate with well-documented periods of eolian activity and droughts on the southern Great Plains, including the Medieval Climate Anomaly. We conclude vegetation loss during extended droughts led to local eolian deflation and pimple mound deposition. These mounds reflect landscape response to multi-decadal droughts for the south-central U.S. The spatial extent of pimple mounds across this region further underscores the severity and duration of late Holocene droughts, which were significantly greater than historic droughts.

  5. An exhumed Palaeozoic underwater scenery: the Visean mud mounds of the eastern Anti-Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Wendt, Jobst; Kaufmann, Bernd; Belka, Zdzislaw

    2001-12-01

    About one hundred carbonate mud mounds, covering an area of 440 km 2 in the eastern Anti-Atlas of Morocco, constitute one of the largest mound agglomerations known so far from Lower Carboniferous settings. They occur within a 4000-m-thick succession of shales with intercalated bedded limestones, sandstones, and siltstones. According to conodont and goniatite biostratigraphy, mound formation started in the early Gnathodus texanus Zone and terminated during the G. bilineatus Zone of the Visean stage. Individual mounds are a few metres to 30 m high, have base diameters of up to 300 m and are concentrated in several parallel, WNW-ESE running belts. From their lithology and facies relationships, four types of mounds can be distinguished: (1) massive crinoidal wacke- or packstones without stromatactis; (2) massive crinoidal wacke- or packstones with rare stromatactis; (3) similar to (2), but allochthonous; and (4) biodetrital (skeletal) grainstone mounds. While carbonate deposition in types (1) to (3) was probably triggered by microbial precipitation, type (4) is the result of a predominantly mechanical accumulation of skeletal debris. Biota in the four types comprise a great variety of invertebrates, among which crinoids, sponges, and bryozoans are most common. Diagenesis of the mound carbonates was dominated by recrystallization of micritic matrix and organic remains and late burial cementation. Oxygen and carbon isotope data of brachiopod and crinoid ossicles, matrix, and early marine cements plot in a large field and do not allow definite conclusions about the composition of the ambient seawater. Microbial activity and the absence or scarcity of green algae, colonial corals and coralline sponges suggest deposition of the mounds in moderate water depth close to the lower limit of the photic zone.

  6. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    NASA Astrophysics Data System (ADS)

    Paropkari, Anil L.; Ray, Durbar; Balaram, V.; Surya Prakash, L.; Mirza, Imran H.; Satyanarayana, M.; Gnaneshwar Rao, T.; Kaisary, Sujata

    2010-04-01

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform 'the pedestal' with several 'small' chimneys on its periphery and one 'main mound' superposed over it. The surrounding region is carpeted with lava pillows having ferromanganese 'precipitate' as infillings. The adjoining second field consisted of small chimney like growths termed as 'Christmas Tree' Field. The basal pedestal, the peripheral chimneys and small 'Christmas Tree' like growths (samples collected by MIR submersibles), though parts of the same hydrothermal field, differ significantly in their mineralogy and elemental composition indicating different history of formation. The pedestal slab consisting of chalcopyrite and pyrite as major minerals and rich in Cu is likely to have formed at higher temperatures than sphalerite dominated peripheral chimney. Extremely low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field have two distinct layers, Fe rich orange-red basal part which seems to have formed at very low temperature as precipitates from diffused hydrothermal flows from the seafloor whereas Mn rich black surface coating is formed from hydrothermal fluids emanated from the seafloor during another episode of hydrothermal activity. Perhaps this is for the first time such unique hydrothermal oxide growths are being reported in association with hydrothermal system. Here, we discuss the possible processes responsible for the formation of these different hydrothermal deposits based on their mineralogy and geochemistry.

  7. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  8. Low-temperature hydrothermal synthesis of BiFeO{sub 3} microcrystals and their visible-light photocatalytic activity

    SciTech Connect

    Wei, Jie; Zhang, Chao; Xu, Zhuo

    2012-11-15

    Highlights: ► Urea-assisted hydrothermal synthesis of pure BiFeO{sub 3} at 120 °C was reported. ► Possible formation mechanism of pure phase BiFeO{sub 3} at low temperature was illuminated. ► BiFeO{sub 3} microcrystals exhibited efficient visible-light photocatalytic activity. -- Abstract: Pure BiFeO{sub 3} (BFO) microcrystals were synthesized at the temperature as low as 120 °C via a urea-assisted hydrothermal process. The crystal structure, morphology and photocatalytic property of BFO microcrystals were investigated. The analysis reveals that the hydrolysis of urea in the hydrothermal process plays a key role in the synthesis of pure phase BFO microcrystals. FE-SEM and TEM results show that these BFO microcrystals present a nearly spherical microstructure, and specially exhibit superstructures consisting of large amounts of small particles with the size of 100–150 nm by further observation. Moreover, these BFO microcrystals exhibit efficient photocatalytic activity under visible-light irradiation, suggesting their promising applications as photocatalysts and related fields.

  9. Non-dune eolian sand in Indian mounds

    NASA Astrophysics Data System (ADS)

    Tanner, William F.

    1980-02-01

    Indian mounds, near Careyville, Florida, about 2.0 m high, are located on hillsides and hilltops 10 to 20 m above the floodplain of the nearest river (Choctawhatchee). Each mound is composed largely of quartz sand, with a scattering of artefacts and stream pebbles (not in layers), but with no visible bedding. Probability plots showed 25 Gaussian distributions, 18 having the 'dune hump', three having the 'surf break' and nine being doubly-truncated or having other patterns of unknown or uncertain origin. The surf breaks probably were inherited from pre-Pleistocene marine terraces in the area. The pebbles and the sand were not introduced by the same agency. The sand probability plots, taken as a set, indicate an eolian origin. The rough symmetry of the mounds, and the lack of cross-bedding, argue against a migrating dune origin. On a variability plot (showing the variability of the means versus the variability of the standard deviations), one suite of samples fell clearly within the 'dune' number field, a second suite in the overlap area between 'dune' and 'beach', and a third suite, taken immediately adjacent to a creek bed, plotted in the overlap area between 'beach' and 'coastal plain stream'. The pebbles, of common Southern Appalachian types, are attributed to the activities of the inhabitants, perhaps children. The sand is thought to have been carried by the wind, perhaps from nearby river sand bars, or from areas burned either by lightning-set wildfires or as part of "slash-and-burn" agriculture. The mounds are thought to represent clearings (for huts), and hence good trapping devices for wind-borne sand.

  10. Preliminary Results from IODP Expedition 307, Porcupine Basin Carbonate Mounds

    NASA Astrophysics Data System (ADS)

    Williams, T.; Kano, A.; Ferdelman, T.; Henriet, J.; Shipboard Scientific Party, I.

    2005-12-01

    IODP Expedition 307 (April 26 - May 16, 2005) drilled three sites at Challenger Mound in the Porcupine Seabight, west of Ireland. Deep-water carbonate mounds up to 2 km wide and 200 m high have been found in typical water depths of 500-1000 m along the continental slope of NW Europe from Morocco to Norway. During the last ten years they have been studied using seismics, shallow coring, high resolution bathymetry, and remotely operated vehicles. The partly-buried Challenger Mound is the first to be completely cored to the mound base, with the aim of answering basic questions such as: What is the sedimentology and structure of the mound? What triggered mound initiation? How does the ecosystem interact with sedimentary fluxes to make the mound grow? How are mound growth phases related to glacial-interglacial cycles? What role do microbial communities and geochemical reaction play in the mound? Analytical work is at an early stage, but already shipboard results reveal some of the mound's secrets. The mound body consists of a 155-m-thick sequence of cold-water coral-bearing Pleistocene sediments (floatstone, rudstone, and wackestone), characterized by 10-meter-scale alternation of light gray and dark green intervals. The carbonate-rich and light-colored layers are partially lithified and feature poor coral preservation or even dissolution. The mound base, virtually identical in the on-mound and off-mound holes, is a sharp Pliocene erosional unconformity, separating coral-bearing sediments from a glauconitic and partly sandy siltstone. No evidence was found for a relation between mound development and hydrocarbon seepage. The results from Challenger Mound will help provide a depositional model with which to interpret deep water carbonate mounds in the geological rock record, and we look forward to future drilling of contrasting carbonate mounds.

  11. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  12. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing

  13. Magnetic Structure of Backarc Spreading Axis with Hydrothermal Vents; the Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Mochizuki, N.; Honsho, C.; Szitkar, F.; Dyment, J.; Nakamura, K.

    2012-12-01

    Seafloor hydrothermal systems are important in relation to global heat and chemical fluxes as well as habitat of microbial communities. The substantial variation of hydrothermal systems in various tectonic settings has important implications for the magnetic structure of oceanic crust. It has been very difficult to detect the geophysical signature of hydrothermal systems from sea-surface data because the small scale of hydrothermal systems is below the limit of resolution. The advance of near-bottom survey methods using a submersible, deep-tow, ROV and AUV has made possible high-resolution geophysical mapping around hydrothermal areas. Near-bottom magnetic surveys can provide direct information on the magnetization of the shallower oceanic crust, implying hydrothermal alteration both in active and fossil vent sites. Near-bottom three component magnetic measurements on submersible Shinkai 6500 were carried out at hydrothermal fields in the Southern Mariana Trough, a slow spreading backarc basin. Fourteen dive surveys were conducted during cruises YK11-10 and YK10-11. We investigated the magnetic structure of four hydrothermal systems located at on- and off-axis to clarify how the geophysical and geological setting controls the fluid circulation at small scale. Recent researches at slow spreading ridges showed a relationship between crustal magnetic structure and host rock around hydrothermal vents (e.g. Tivey and Dyment, 2010), but no observation at backarc spreading axis has been reported so far. We carefully corrected the effects of induced and permanent magnetizations of the submersible by applying the method of Isezaki [1986] with dumped least-square method (Honsho et al., 2009). After subtracting the IGRF from the corrected observed data, we obtained geomagnetic vector anomalies in geographical coordinate. For three transects of the axis, we applied three methods; 2D inversion technique (Parker and Huestis, 1972), 2D forward modeling technique (Honsho et al

  14. Intertidal rocky shore seaweed communities subject to the influence of shallow water hydrothermal activity in São Miguel (Azores, Portugal)

    NASA Astrophysics Data System (ADS)

    Wallenstein, Francisco M.; Couto, Ruben P.; Torrão, Daniel F.; Neto, Ana I.; Rodrigues, Armindo S.; Wilkinson, Martin

    2013-09-01

    The volcanic origin of the Azores archipelago (Portugal) gives rise to active deep sea and shallow water hydrothermal activity that affects benthic communities. Intertidal seaweed surveys were conducted at two shores affected by intense shallow water hydrothermal vents. Water temperature, acidity and salinity were monitored. Seaweed communities were found to be species poor and have a disproportionally larger number of filamentous early successional species on shores that are subject to the effect of hot and acidic freshwater of volcanic origin. There is an ecological resemblance between hydrothermally affected seaweed communities in the Azores and those affected by acid mine drainage in the UK, thus indicating that hydrothermalism can be a useful scenario for pollution studies under conditions of ocean warming and acidification.

  15. Aqueous Volatiles in Hydrothermal fluids from the Main Endeavour Vent Field: Temporal Variability Following Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; Cruse, A. M.; Saccocia, P. J.

    2001-12-01

    Volatile species play a critical role in a broad spectrum of physical, chemical, and biological processes associated with hydrothermal circulation at oceanic spreading centers. Earthquake activity at the Main Endeavour vent field, northern Juan de Fuca Ridge in June 1999 [1] provided and opportunity to assess factors that regulate the flux of volatile species from the oceanic crust to the water column following a rapid change in subsurface reaction zone conditions. High temperature vent fluids were collected in gas-tight samplers at the Main Endeavour field in September 1999, approximately four months after the earthquakes, and again in July 2000, and were analyzed for the abundance of aqueous volatile and non-volatile species. Measured concentrations of aqueous H2, H2S, and CO2 increased substantially in September 1999 relative to pre-earthquake values [2,3], and subsequently decreased in July 2000, while aqueous Cl concentrations initially decreased in 1999 and subsequently increased in 2000. Concentrations of Cl in all fluids were depleted relative to seawater values. Aqueous CH4 and NH3 concentrations decreased in both the 1999 and 2000 samples relative to pre- earthquake values. Variations in Cl concentration of Endeavour fluids reflect varying degrees of phase separation under near critical temperature and pressure conditions. Because volatile species efficiently partition into the vapor phase, variations in their abundance as a function of Cl concentration can be used to constrain conditions of phase separation and fluid-rock interaction. For example, concentrations of volatile species that are not readily incorporated into minerals (CH4 and NH3) correlated weakly with Cl suggesting phase separation was occurring under supercritical conditions after the earthquake activity. In contrast, compositional data for fluids prior to the earthquakes indicate a strong negative correlation between these species and Cl suggesting phase separation under subcritical

  16. Mound-Interface Kinetics in Dictyostelium Aggregation

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki

    2002-09-01

    The mound development of the cellular slime mold amoebae Dictyostelium discoideum is studied with an interface kinetic model for the height of cell layers. As a competitive role for the chemotaxis, we compare two types of curvature relaxations; the surface relaxation induced by cell-substrate affinity (model A), and that comes from a cell-cell adhesive effect (model B). It is found that both models are characterized by the growth law for the maximum mound height. Based on a self-similarity scaling hypothesis for the spatial structure of streaming pattern, we suggest a scaling law for the growth of mound-height hmax ˜ t1-1/α+β/α with α = 2 (4) for the model A (B) and a number 0 ≤ β < 1.

  17. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  18. A global survey of martian central mounds: Central mounds as remnants of previously more extensive large-scale sedimentary deposits

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Bell, James F.

    2016-01-01

    We conducted a survey of central mounds within large (>25 km diameter) impact craters on Mars. We use mound locations, mound offsets within their host craters, and relative mound heights to address and extend various mound formation hypotheses. The results of this survey support the hypothesis that mound sediments once filled their host craters and were later eroded into the features we observe today. The majority of mounds are located near the boundaries of previously identified large-scale sedimentary deposits. We discuss the implications of the hypothesis that central mounds are part of previously more extensive sedimentary units that filled and overtopped underlying impact craters. In this scenario, as erosion of the sedimentary unit occurred, the sediment within impact craters was preserved slightly longer than the overlying sediment because it was sheltered by the crater walls. Our study also reveals that most mounds are offset from the center of their host crater in the same direction as the present regional winds (e.g., the mounds in Arabia Terra are offset towards the western portion of their craters). We propose that this implies that wind has been the dominant agent causing the erosion of central mounds. Mound offset (r) is normalized to each crater's radius. The Mound offset (θ) is such that 0 is north and 270 is west.

  19. Interplay of instabilities in mounded surface growth

    SciTech Connect

    Chakrabarti, Buddhapriya; Dasgupta, Chandan

    2005-02-01

    We numerically study a one-dimensional conserved growth equation with competing linear (Ehrlich-Schwoebel) and nonlinear instabilities. As a control parameter is varied, this model exhibits a nonequilibrium phase transition between two mounded states, one of which exhibits slope selection and the other does not. The coarsening behavior of the mounds in these two phases is studied in detail. In the absence of noise, the steady-state configuration depends crucially on which of the two instabilities dominates the early time behavior.

  20. Hg Isotopic Compositions of Chimneys and Pelagic Sediments at Active Submarine Hydrothermal Field in the Okinawa Trough, Japan

    NASA Astrophysics Data System (ADS)

    Takeuchi, A.; Marumo, K.; Tomiyasu, T.; Yamamoto, M.; Komuro, K.

    2012-12-01

    Mercury (Hg) is a globally distributed and highly toxic pollutant in the environment. It is known that a submarine hydrothermal activity is one of the natural processes to emit Hg to marine environment. In order to estimate the degree to which the Hg found in the marine environment is from anthropogenic versus natural sources, it is important to characterize the Hg from the hydrothermal vents. Samples of chimneys and a ~20 cm sediment core, collected by a deep-sea remotely operated vehicle, from Iheya North hydrothermal field in Okinawa Trough, Japan, were analyzed for Hg concentrations and Hg isotopic compositions. Total Hg concentrations of chimneys range between 8.2 and 16.9 mg/kg, whereas seafloor sediment total Hg concentrations are from 3.8 to 34.8 mg/kg. Approximately 0.4 to 1.1 μg/kg of monomethyl Hg (MMHg) was detected in the top 6 cm sediment cores. Hg isotopic compositions (δ202Hg) of chimneys are between -0.30 and -0.96 ‰, whereas δ202Hg values of sediment samples range from -0.85 to -1.60 ‰. Neither chimneys nor sediment samples exhibit the significant mass independent fractionations in Hg isotopes (Δ201Hg > ± 0.10). The chimney δ202Hg values are slightly higher than the δ202Hg values of sediments. This may indicate that the heavier Hg isotopes tend to be incorporated with mercury-bearing sulfides in chimneys, and the lighter isotopes tend to be remained in the hydrothermal fluid and distributed in the surrounding sediments. Also, the sediment samples from the upper portion of cores demonstrate approximately 0.4 - 0.5 ‰ lower δ202Hg values than those from the lower part. This isotopic fractionation may be resulted from a demethylated process of MMHg by microbes. Several studies have previously demonstrated the rapid demethylation of MMHg by microbes in Hg-contaminated aquatic sediments, and range of the isotopic fractionation is similar to that of the experimentally determined isotopic fractionation of MMHg by bacterial reduction

  1. Sulfur Isotope Chemistry of the Uzon Caldera Active Hydrothermal System, Kamchatka, Far-East Russia

    NASA Astrophysics Data System (ADS)

    Hollingsworth, E. R.; Crowe, D. E.

    2006-05-01

    The Uzon Caldera is an actively precipitating As-Sb-Au epithermal system located on the Kamchatka Peninsula of Far-East Russia. Present at the surface of the caldera is a remarkable diversity of thermal fluid types discharging within the geothermal fields. These fluids have subsequently produced a broad array of S- bearing alteration minerals both within and around pools, hotsprings, mudpots, and fumaroles. Using the δD/δ18O/δ34S and dissolved ion chemistry of the thermal fluids, three types were distinguished as follows: 1) an acid sulfate type with δD/δ18O/δ34S values ranging between -74.66‰ to -100.33‰, - 2.30‰ to -9.57‰, and -0.3‰ to 0.3‰ respectively with sulfate being the dominant anion ranging between 504ppm and 3439ppm 2) an alkali chloride type with δD/δ18O/δ34S values ranging between -97.22‰ to -104.37‰, - 8.8‰ to -11.43‰ respectively with chloride being the dominant anion ranging between 1090ppm to 2405ppm, and 3) a dilute type resulting from the mixture of the alkali-chloride endmember with the cold meteoric waters present at the surface subsequently generating δD/δ18O/δ34S values ranging between -82.00‰ to -119.34‰, -6.02‰ to -15.76‰, and +1.9‰ to +13.5‰ with dissolved ion concentrations falling along a mixing line between the two endmember components. The interpretations made from the presence of these three fluid types were used in conjunction with the δ34S of the S-bearing alteration minerals from within and around the various water and gas sources (values ranging between -1.94‰ to +5.7‰ and -5.19‰ to +1.6‰ respectively) to construct a sulfur evolution model for the Uzon's hydrothermal system. Results of the model show the chemical and isotopic processes responsible for the speciation and isotopic signature of the S-bearing phases collected at the surface (both aqueous and mineral) are not only dictated by the geologic processes at depth, but are also influenced by microbiological processes at the

  2. Three-dimensional sampling method for characterizing ant mounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field-portable 3D laser scanner was employed as a means of digitizing the surface of fire ant (Solenopsis invicta Buren) mounds for analysis of shape and orientation in Mississippi and Oklahoma. Estimates of above-ground mound volume obtained through manual measurements of mound length, width, an...

  3. Dynamic Thermal Structure of Imported Fire Ant Mounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was undertaken to characterize surface temperatures of imported fire ant (Solenopsis invicta Buren, S. richteri Forel, and their hybrid) mounds as it relates to sun position and shape of the mounds, to better understand factors that affect absorption of solar radiation by the nest mound and ...

  4. A geophysical multi-parametric analysis of hydrothermal activity at Dallol, Ethiopia

    NASA Astrophysics Data System (ADS)

    Carniel, Roberto; Jolis, Ester Muñoz; Jones, Josh

    2010-12-01

    During December 2003, three seismic stations were installed close to the hornitos of the hydrothermal system at Dallol, complemented by radiometer and infrasonic measurements. A combined geophysical data set was collected for about three days. During this period thermal, seismic and acoustic records indicate the presence of two regimes characterized by a different energy distribution in frequency. Few volcano-tectonic events appear superimposed to the continuous hydrothermal tremor. The continuous data indicate variable shallow processes most likely related with variations in temperature and degassing processes within the shallow geothermal system. This alternation of low and high regimes shows significant similarities with other volcanic systems of different nature, although at Dallol the transition is more evident in the thermal than in the seismic and acoustic data.

  5. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  6. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  7. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent

    PubMed Central

    Fortunato, Caroline S; Huber, Julie A

    2016-01-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  8. Photocatalytic activity of BiFeO{sub 3} nanoparticles synthesized through hydrothermal method

    SciTech Connect

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2015-06-24

    Multiferroic BiFeO{sub 3} (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W.

  9. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems.

  10. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  11. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    NASA Astrophysics Data System (ADS)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  12. Space-time relations of hydrothermal sulfide-sulfate-silica deposits at the northern Cleft Segment, Juan de Fuca Ridge

    SciTech Connect

    Koski, R.A.; Smith, V.K. ); Embley, R.W. ); Jonasson, I.R. ); Kadko, D.C. . Rosenstiel School of Marine and Atmospheric Science)

    1993-04-01

    Submersible investigations along the northern Cleft Segment of the Juan de Fuca Ridge indicate that a newly erupted sheet flow and two recent megaplume events are spatially related to a NNE-trending fissure system that is now the locus for active hydrothermal venting and deposition of massive sulfide mounds and chimneys. Samples from active high-temperature vent sites located east and north of the sheet flow terrain include zoned Cu-sulfide-rich chimneys (Type 1), bulbous anhydrite-rich chimneys (Type 2), and columnar Zn-sulfide-rich chimneys (Type 3). Type 1 chimneys with large open channelways result from the focused discharge of fluid at temperatures between 310 and 328 C from the Monolith sulfide mound. Type 2 chimneys are constructed on the Monolith and Fountain mounds where discharge of fluid at temperatures between 293 and 315 C is diffuse and sluggish. Type 3 chimneys, characterized by twisting narrow channelways, are deposited from focused and relatively low-temperature fluid discharging directly from basalt substrate. Inactive sulfide chimneys (Type 4) located within 100 m of the fissure system have bulk compositions, mineral assemblages, colloform and bacteroidal textures, and oxygen isotope characteristics consistent with low-temperature (< 250 C ) deposition from less robust vents. Field relations and [sup 210]Pb ages (> 100 years) indicate that the Type 4 chimneys formed prior to the sheet flow eruption. The sulfide mounds and Type 1 and Type 2 chimneys at the Monolith and Fountain vents, however, are an expression of the same magmatic event that caused the sheet flow eruption and megaplume events.

  13. Diurnal respiration of a termite mound

    NASA Astrophysics Data System (ADS)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  14. Mound site environmental report for calendar year 1991

    SciTech Connect

    Bauer, L.R.

    1992-06-01

    Mound is a government-owned facility operated by EG&G Mound Applied Technologies for the U.S. Department of Energy (DOE). This integrated production, development, and research site performs work in support of DOE`s weapon and energy related programs, with emphasis on explosive, nuclear, and energy technology. The purpose of this report is to inform the public about the impact of Mound`s operations on the population and the environment. This report summarizes data from the Environmental Monitoring Program, through which Mound maintains continuous surveillance of radiological and nonradiological substances released from the facility.

  15. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  16. Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: A view from the Vulcano active hydrothermal system (Aeolian Island, Italy)

    NASA Astrophysics Data System (ADS)

    Boyce, Adrian J.; Fulignati, Paolo; Sbrana, Alessandro; Fallick, Anthony E.

    2007-10-01

    High-sulfidation (HS) epithermal systems have elements in common with passively degassing volcanoes associated with high T, acid fumarole fields or acid crater lakes. They are considered to form in two stages, the first of which involves advanced argillic alteration resulting from intense, strongly acidic fluid-rock interaction. The La Fossa hydrothermal system (Vulcano Island) represents a classic example of such an active HS system and can be considered as a modern analogue of this early stage of alteration, resulting in a core of intense silicic (90-95% pure SiO 2) alteration surrounded by alunitic alteration zones. This paper focuses on a geochemical and stable isotope study of the surficial alteration facies of Vulcano - particularly the horizon characterized by strong silicic alteration - and on deep seated xenoliths ejected during the last eruption of La Fossa volcano (1888-90) that can be considered as representative of fragments of the deep conduit system of La Fossa volcano. Using directly measured temperatures at the sites of sampling, we have calculated fluid composition in isotopic equilibrium with the alteration products. The large range of measured silica δ18O (12.3 to 29‰) reflects the wide range of formation temperatures (80-240 °C). The fluid compositions calculated for intense silicic alteration vary from - 0.9 to + 6.5‰. These are significantly heavier than local meteoric water (- 6‰), and are consistent with derivation from the condensation of high-temperature fumarolic gases, dominated by magmatic fluids and rich in acid gases (SO 2, H 2S, HCl, HF), into shallow groundwaters of meteoric origin, with dynamically variable ratios of fumarolic steam/meteoric water. The calculated δ18O and δD of water in equilibrium with alunite also suggest the mixing of magmatic and meteoric waters for the fluids involved in the genesis of advanced argillic alteration facies. The calculated δ18O of water in equilibrium with hedenbergitic clinopyroxene

  17. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: Large-scale effects on venting

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Baker, E. T.; Massoth, G. J.; Lupton, J. E.; Wright, I. C.; Sparks, R. J.; Bannister, S. C.; Reyners, M. E.; Walker, S. L.; Greene, R. R.; Ishibashi, J.; Faure, K.; Resing, J. A.; Lebon, G. T.

    2007-07-01

    The 2,500-km Kermadec-Tonga arc is the longest submarine arc on the planet. Here, we report on the second of a series of cruises designed to investigate large-scale controls on active hydrothermal venting on this arc. The 2002 NZAPLUME II cruise surveyed 12 submarine volcanic centers along ~580 km of the middle Kermadec arc (MKA), extending a 1999 cruise that surveyed 260 km of the southern Kermadec arc (SKA). Average spacing between volcanic centers increases northward from 30 km on backarc crust along the SKA, to 45 km on backarc crust along the southern MKA, to 58 km where the MKA joins the Kermadec Ridge. Volcanic cones dominate in the backarc, and calderas dominate the Kermadec Ridge. The incidence of venting is higher along the MKA (83%, 10 of 12 volcanic centers) than the SKA (67%, 8 of 12), but the relative intensity of venting, as given by plume thickness, areal extent, and concentration of dissolved gases and ionic species, is generally weaker in the MKA. This pattern may reflect subduction of the ~17-km-thick oceanic Hikurangi Plateau beneath the SKA. Subduction of this basaltic mass should greatly increase fluid loss from the downgoing slab, initiating extensive melting in the upper mantle wedge and invigorating the hydrothermal systems of the SKA. Conversely, volcanic centers in the southern MKA are starved of magma replenishment and so their hydrothermal systems are waning. Farther north, where the MKA centers merge with the Kermadec Ridge, fewer but larger magma bodies accumulate in the thicker (older) crust, ensuring more widely separated, caldera-dominated volcanic centers.

  18. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  19. Mass transfer constraints on the chemical evolution of an active hydrothermal system, Valles caldera, New Mexico

    USGS Publications Warehouse

    White, A.F.; Chuma, N.J.; Goff, F.

    1992-01-01

    Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the hydrothermal system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other hydrothermal systems in rhyolitic rocks. ?? 1992.

  20. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update

    NASA Astrophysics Data System (ADS)

    Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I.

    2014-06-01

    New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 ± 0.1 Ma and 13.4 ± 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 ± 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 ± 0.03 Ma and 5.35 ± 0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70 ± 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 ± 0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.

  1. Heat Source for Active Venting at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Germanovich, L. N.; Lowell, R. P.

    2014-12-01

    Located at the inside corner high of the Mid-Atlantic Ridge (MAR), 30°N and the Atlantis Transform Fault (ATF), the Atlantis Massif has been uplifted over the past ~2 my. The Southern Ridge of this massif hosts the Lost City Hydrothermal Field (LCHF), an off-axis hydrothermal vent field with carbonate chimney ages surpassing 120,000 yrs. The fluids discharging at LCHF carry geochemical signals that show a direct interaction with serpentinites. However, mineralogical evidence suggests that peridotite hydration began early in the formation of oceanic core complexes and previous modeling results indicate that serpentinization is unlikely to generate the heat necessary to maintain current levels of discharge at LCHF. This work develops a model for the LCHF venting based on the evidence of tectonic strain, detachment faulting, serpentinization, and convective fluid flow. We constrain fluid flow at the LCHF by vent geochemistry, vent temperature, seismically inferred faulting, and expected geothermal gradient ≈100°C/km. Present understanding of tectonic processes at the intersection of MAR and ATF suggests that unroofing of the footwall and crustal flexing of the massif induced normal faults, which run parallel to the MAR, throughout the Southern Ridge. In the absence of the evidence of magmatism, we test the feasibility of the geothermal gradient to cause fluid circulation in the high-permeability, sub-vertical fault zone. Fluid circulation in the fault zone is complemented by the bulk porous flow driven through the Southern Ridge by the lateral temperature gradient between the cold water on the steep face along the ATF side and the hot interior of the massif. In this scenario, the high pH hydrothermal fluids pass through the serpentinized zone before discharging as both high-temperature focused flow (40°-91°C) and low-temperature (≈15°C) diffuse flow at the LCHF.

  2. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan

    SciTech Connect

    Marumo, Katsumi; Longstaffe, F.J.; Matsubaya, Osamu

    1995-06-01

    Miocene submarine to Quaternary terrestrial volcanism in southwestern Hokkaido, Japan, is associated with hydrothermal clay alteration and mineralization, including Kuroko-type deposits at Kagenosawa (14.2 Ma, Cu > Zn, Pb > Au) and Minamishiraoi (12.5 Ma, Ba > Zn, Pb, Cu), vein-style at Noboribetsu ({le} 1.8 Ma). The {delta}D and {delta}{sup 18}O values of mica (sericite), mica-smectite, chlorite, chlorite-smectite, nacrite, dickite, kaolinite, and smectite were used to deduce the type(s) of hydrothermal fluid at each locality. Calculated compositions for Minamishiraoi and Kagenosawa fluids suggest that seawater was dominant, but some mixing with magmatic water is also indicated, particularly for the polymetallic Kagenosawa deposit. Hydrothermal fluids at Date, Chitose, and the Noboribetsu geothermal area were dominated by meteoric water. The {delta}D and {delta}{sup 18}O values of modern hot-spring waters at Noboribetsu closely parallel fluid compositions calculated for the clay alteration at Date, Chitose, and Noboribetsu. In vacuo TG patterns of other smectitic clays suggested gradual loss of hydroxyl-groups beginning near 200{degrees}C, rather than the more typical distinct separation between interlayer water at <200{degrees}C and hydroxyl-groups at >400{degrees}C. This behaviour constrains the maximum temperature that can be used for in vacuo preheating. Furthermore, shifts to lower {delta}D values (by as much as 19{per_thousand}) were obtained when this smectite was dispersed in low-D water for three weeks, perhaps indicating isotopic exchange. However, with appropriate care, {delta}D values obtained by conventional procedures (including preheating to {le}200{degrees}C) normally reproduced natural compositions of the smectitic clays with acceptable accuracy and precision.

  3. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-08-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  4. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route.

    PubMed

    Patrinoiu, Greta; Calderón-Moreno, José Maria; Chifiriuc, Carmen Mariana; Saviuc, Crina; Birjega, Ruxandra; Carp, Oana

    2016-01-15

    A family of distinct ZnO morphologies - hollow, compartmented, core-shell and full solid ZnO spheres, dispersed or interconnected - is obtained by a simple hydrothermal route, in the presence of the starch biopolymer. The zinc-carbonaceous precursors were characterized by infrared spectroscopy, thermal analysis and scanning electron microscopy, while the ZnO spheres, obtained after the thermal processing, were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-VIS spectroscopy, photoluminescence measurements, antimicrobial, anti-biofilm and flow cytometry tests. The formation mechanism proposed for this versatile synthesis route is based on the gelling ability of amylose, one of the starch template constituents, responsible for the effective embedding of zinc cations into starch prior to its hydrothermal carbonization. The simple variation of the raw materials concentration dictates the type of ZnO spheres. The micro-sized ZnO spheres exhibit high antibacterial and anti-biofilm activity against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) reference and methicillin resistant clinical strains especially for Gram-negative biofilms (P. aeruginosa), demonstrating great potential for new ZnO anti-biofilm formulations. PMID:26433479

  5. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    PubMed Central

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  6. Mineralogical and chemical characteristics of newer dolerite dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting

    NASA Astrophysics Data System (ADS)

    Sengupta, Piyali; Ray, Arijit; Pramanik, Sayantani

    2014-06-01

    The newer dolerite dykes around Keonjhar within the Singbhum Granite occur in NE-SW, NW-SE and NNE-SSW trends. The mafic dykes of the present study exhibit several mineralogical changes like clouding of plagioclase feldspars, bastitisation of orthopyroxene, and development of fibrous amphibole (tremolite-actinolite) from clinopyroxene, which are all considered products of hydrothermal alterations. This alteration involves addition and subtraction of certain elements. Graphical analyses with Alteration index and elemental abundances show that elements like Rb, Ba, Th, La and K have been added during the alteration process, whereas elements like Sc, Cr, Co, Ni, Si, Al, Fe, Mg and Ca have been removed. It is observed that in spite of such chemical alteration, correlation between major and trace elements, characteristic of petrogenetic process, is still preserved. This might reflect systematic Alteration (addition or subtraction) of elements without disturbing the original element to element correlation. It has also been established by earlier workers that the evolution of newer dolerite had occurred in an arc-back arc setting which may also be true for newer dolerites of the present study. This is evident from plots of pyroxene composition and whole rock composition of newer dolerite samples in different tectonic discrimination diagrams using immobile elements. The newer dolerite dykes of the Keonjhar area may thus be considered to represent an example of hydrothermal activity on mafic rocks in an arc setting.

  7. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  8. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-15

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  9. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D’Ars, Jean; Komorowski, Jean-Christophe

    2016-09-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [‑0.8‑0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  10. A national drilling program to study the roots of active hydrothermal systems related to young magmatic intrusions

    SciTech Connect

    Not Available

    1984-01-01

    The importance of studies of active hydrothermal-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling activities, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.

  11. Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature.

    PubMed

    Zou, Xinwei; Fan, Huiqing; Tian, Yuming; Zhang, Mingang; Yan, Xiaoyan

    2015-05-01

    Cu/Cu2O nano-heterostructure hollow spheres with a submicron diameter (200-500 nm) were prepared by a microwave-assisted hydrothermal method using Cu(OAc)2·H2O, PVP and ascorbic acid solution as the precursors. The morphology of the products could evolve with the hydrothermal time from solid spheres to thick-shell hollow spheres, then to thin-shell hollow spheres, and finally to nanoparticles. Moreover, the content of Cu in the products could be controlled by adjusting the hydrothermal time. The spontaneous forming of the hollow structure spheres was found to result from the Ostwald ripening effect during the low temperature (100 °C) hydrothermal reaction process. The photocatalytic degradation activities on MO under visible-light irradiation and the gas sensing activities toward the oxidizing NO2 gas of different Cu/Cu2O nano-heterostructure hollow spheres were investigated. As a result, the Cu/Cu2O nano-heterostructure hollow spheres obtained at the hydrothermal time of 30 min, with a rough/porous thin-shell structure and a Cu content of about 10.5 wt%, exhibited the best photocatalytic and gas sensing performances compared with others.

  12. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  13. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  14. Geology of Damon Mound Salt Dome, Texas

    SciTech Connect

    Collins, E.W.

    1989-01-01

    Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

  15. Dynamic thermal structure of imported fire ant mounds.

    PubMed

    Vogt, James T; Wallet, Bradley; Coy, Steven

    2008-01-01

    A study was undertaken to characterize surface temperatures of mounds of imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) and S. richteri Forel, and their hybrid, as it relates to sun position and shape of the mounds, to better understand factors that affect absorption of solar radiation by the nest mound and to test feasibility of using thermal infrared imagery to remotely sense mounds. Mean mound surface temperature peaked shortly after solar noon and exceeded mean surface temperature of the surrounding surface. Temperature range for mounds and their surroundings peaked near solar noon, and the temperature range of the mound surface exceeded that of the surrounding area. The temperature difference between mounds and their surroundings peaked around solar noon and ranged from about 2 to 10 degrees C. Quadratic trends relating temperature measurements to time of day (expressed as percentage of daylight hours from apparent sunrise to apparent sunset) explained 77 to 88% of the variation in the data. Mounds were asymmetrical, with the apex offset on average 81.5 +/- 1.2 mm to the north of the average center. South facing aspects were about 20% larger than north facing aspects. Mound surface aspect and slope affected surface temperature; this affect was greatly influenced by time of day. Thermal infrared imagery was used to illustrate the effect of mound shape on surface temperature. These results indicate that the temperature differences between mounds and their surroundings are sufficient for detection using thermal infrared remote sensing, and predictable temporal changes in surface temperature may be useful for classifying mounds in images.

  16. Upper Carboniferous reef mounds and climate change

    SciTech Connect

    West, R.R.; Archer, A.W. )

    1992-01-01

    Tetractinomorph demosponges (chaetetids) are a minor component of extant tropical reefs, but they were the major framebuilder of reef mounds during the Westphalian (Carboniferous). These chaetetids were confined to tropical latitudes during the Carboniferous, reached an abundance peak in the Westphalian, and then declined suddenly until the Upper Triassic. After their decline, red and green algae became the dominant reef builders of the Stephanian. The marked decline of chaetetids corresponds with the disappearance, and/or decline of other marine benthic invertebrates, as well as some terrestrial plants and is the basis for the biostratigraphic boundary between the Westphalian and Stephanian (Desmoinesian and Missourian). This biostratigraphic boundary coincides with a minor extinction event and a major'' climatic change. The Westphalian climate was wetter than that of the Stephanian, and in the midcontinent this change is recorded by a gradual decline in coals and siliciclastic lithologies and a corresponding increase in carbonate lithologies. A rise in water temperature might be expected in a drier tropical climate, and if extant chaetetids are any clue, elevated water temperature may have been detrimental. Extant chaetetids are associated with tropical coral reefs that are confined to a narrow temperature range. It is not unreasonable to suggest that elevated seawater temperatures were responsible, in part, for the disappearance of chaetetid reef mounds. Red and green algae, presumably more tolerate of higher water temperatures, became the major framebuilders of reef mounds in the Stephanian. Thus, the demise of chaetetid reef mounds, and other organisms at the end of the Westphalian, may be the result of global warming.

  17. Troubleshooting guide for Mound calorimeter systems

    SciTech Connect

    Breakall, K.L.; Duff, M.F.; Rodenburg, W.W.

    1988-06-29

    This report is to be used as a tool for troubleshooting Mound calorimeter systems. It describes in simple language the equilibration, prediction, and servo-control modes of operation. A problem-cause-action table provides suggestions and, in some cases, directs personnel to one of six troubleshooting flow charts included in the report. Using the flow charts, laboratory personnel should be able to rcognize and troubleshoot most problems that occur. 4 figs., 1 tab.

  18. Evidence of hydrothermal activity on Marsili Seamount, Tyrrhenian Basin. Technical report

    SciTech Connect

    Uchupi, E.; Ballard, R.D.

    1989-01-01

    In this paper we describe the finding of what appears to be an extensive hydrothermal mineral deposit on the crest of Marsili Seamount in the Tyrrhenian Basin, western Mediterranean Sea. The deposit on the seamount was discovered during a study of the geology of the Tyrrhenian Basin with the Argo video system (HARRIS and BALLARD, 1986) aboard the R.V. Starella during June 1988. Mounted on the vehicle were three Silicon Intensified target (SIT) cameras, a digital charge Couple Device (CCD) camera and a 35 mm camera with a 16 mm lens. The site was revisited in mid August aboard the R.V. Knorr during a cruise to test the dynamic position system on the Knorr.

  19. EG G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  20. Geological framework of an active hydrothermal site in the North Fiji Basin: Starmer cruise of the submersible Nautile

    SciTech Connect

    Auzende, J. )

    1990-06-01

    During the summer of 1989 the French submersible Nautile carried out a diving cruise on the North Fiji Basin ridge axis in the frame of the Starmer French-Japanese joint project. The diving sites were selected using the Seapso 3, Kaiyo 87, and Kaiyo 88 cruises Seabeam surveys. They are located around 17{degree}S in the axial graben at the northern end of the N15 ridge. The axis consists of an 18 km wide, N15 elongated dome cut by a 2 km wide axial graben. The elevation of the dome with respect to adjacent oceanic floor is 500-600 m. It culminates at less than 1,900 m, which is higher than a normal oceanic ridge. The axial graben width (2 km) is also unusual compared to oceanic ridge with intermediate spreading rates such as the EPR at 21{degree}N. Six Nautile dives have been devoted to the detailed exploration of the axial graben between 16{degree}58'S and 17{degree}00'S in order to locate the hydrothermal vents in the inferred most active part of the axial graben. A structural map has been established on the basis of dive observation. Between 17{degree}S and 16{degree}58'S, the axis shows a succession of N15-trending horsts and grabens paralleling the main orientation of the ridge. Two main lateral grabens and a central graben can be recognized. The central graben shows remarkably constant width (200 m) and depth (2,000 m). It is bounded by two small horsts, few tens of meters wide. Observed tectonic features include N15 normal fault scarps and abundant open fissures with the same direction. The whole area is dusted with sediments indicating that volcanism was not active recently. Evidence of recent hydrothermal activity such as oxide staining, dead munch, dead chimney is abundant all along the central graben.

  1. Geological setting of hydrothermal activity at 12°50'N on the East Pacific Rise: A submersible study

    NASA Astrophysics Data System (ADS)

    Ballard, R. D.; Hekinian, Roger; Francheteau, Jean

    1984-07-01

    A detailed submersible investigation of a 20-km segment of the East Pacific Rise near 12°50'N between the Orozco and Clipperton fracture zones has resulted in the localization of 24 active hydrothermal vent fields and over 80 sites of sulfide accumulations. The active vents range from low-temperature vents characterized by exotic benthic communities to high-temperature "black smokers" and the deposition of polymetallic sulfides. The study is based upon a combination of fine scale topography obtained using the SEABEAM sonar system on N/O "Jean Charcot", camera lowerings along the axis using the RAIE vehicle, and 32 dives by the submersible "Cyana" operating from N/O "Le Suroit". The observations made between the Orozco and Clipperton fracture zones show topographic highs situated along the strike of the accreting plate segment separated by a small ridge offset at 11°49'N. This offset divides this portion of the ridge into two separate spreading segments each of which has a primary topographic high along strike. Secondary highs are associated with each segment of the ridge separated by either small offsets (or relay zones) or in some cases, zones where spreading centers overlap. Dives made on the tops of both primary highs (12°50'N and 11°30'N) confirm the presence inferred from previous surface work of high-temperature vent fields while one reconnaissance dive (14°20'N) near the Orozco fracture zone/ridge axis intersection reveals the absence of any hydrothermal activity in the present or recent past. The vast majority of vent fields investigated were found at the topographic high near 12°50'N, are associated with the most recent period of volcanism, and are confined to lava ponds situated within the axial graben.

  2. Tectonic Windows Reveal Off-axis Volcanic and Hydrothermal Activity and Along-strike Variations in Eruption Effusion Rates

    NASA Astrophysics Data System (ADS)

    MacDonald, K. C.

    2005-12-01

    Alvin transects of faulted escarpments 50-500m high provide tectonic windows to investigate the top 500m of oceanic crustal structure and lava stratigraphy. The Alvin archives were used to review dives from the East Pacific Rise, the Mid-Atlantic Ridge, the Juan de Fuca Ridge, the Blanco Trough, Cayman Trough and the Galapagos Spreading Center. A spreading rate dependence in lava morphology based solely on areal coverage(Bonatti and Harrison, 1988) was confirmed in scarp transects: mostly pillow lavas at slow spreading rates and sheet flows/lobate flows at faster spreading rates. More interestingly; there is a systematic variation within first, second and third order segments on intermediate and fast-spreading centers such that sheet/lobate flows dominate at segment centers and pillow flows and lava domes are more common at segment ends. This confirms earlier studies which were based on areal coverage (White et al, 2000, 2002, Soule et al 2005). This suggests higher eruption effusion rates and perhaps higher magma pressure and lower magma viscosity at segment centers relative to segment ends. This has important implications for the relationship between segmentation, magma supply, volcanism and hydrothermal activity (Haymon and White 2005). A conundrum remains; based on areal photographic surveys, why are pillow lavas so much more common off-axis than on-axis for intermediate to fast-spreading ridges? If there is an eruption cycle in which sheeted and lobate flows dominate early on, and pillow lavas dominate the waning stages of eruption (e.g. Ballard et al 1979), then more pillow lavas should be seen on axis than are seen on-axis in either areal or transect data. Another explanation is that pillow lavas off-axis are primarily produced by off-axis eruptions (except near segment ends, they may also occur as the pillowed terminations of channeled sheet and lobate flows; the association with channels will make this obvious.) Off-axis volcanism is also indicated by a

  3. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity

    PubMed Central

    Phromviyo, Nutthakritta; Boueroy, Parichart; Chompoosor, Apiwat

    2016-01-01

    Background There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in

  4. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  5. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  6. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian

  7. Signature of hydrothermal alteration in ground-magnetic surveys at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.; McPhee, D. K.

    2011-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Although hydrothermal alteration in YNP has been extensively studied with field observations, remote-sensing imagery, and core drilling, the volume and geometry of hydrothermal systems at depth remain poorly constrained. Magnetic surveys can help to investigate buried hydrothermal alteration as demonstrated by the high-resolution aeromagnetic survey of YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity. This suggests large volumes of buried demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although the interpretation of magnetic anomalies is non-unique, Finn and Morgan (2002) used these magnetic lows to estimate a minimum volume of buried altered rock assuming complete demagnetization of the substratum. This aeromagnetic survey was of relatively high resolution (flight line spacing < 500 m and flight elevation <350 m above ground), but it was insufficient for detailed mapping of individual thermal areas. In order to obtain a closer look at several areas, we performed ground-based magnetic surveys within YNP using a cesium-vapor magnetometer along 4-5 km long transects crossing four thermal areas (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser Basin, and Smoke Jumper Hot-springs). We also performed a detailed survey over an area of about 800 m x 500 m around Lone Star Geyser. We also collected gravity data to help characterize the subsurface geologic structures and performed magnetic susceptibility, magnetic remanence, and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. The long magnetic transects show that magnetic anomalies are damped in altered areas suggesting a significant

  8. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process.

    PubMed

    Huang, Chun-Yung; Wu, Shu-Jing; Yang, Wen-Ning; Kuan, Ai-Wei; Chen, Cheng-Yo

    2016-04-15

    Fucoidan, a multifunctional marine polymer, is normally extracted from brown algae via extensive use of acid, solvent or high temperature water and a long reaction time. In present study, we developed a novel compressional-puffing-hydrothermal extraction (CPHE) process which primarily decomposes the cellular structure of algae and facilitates the release of fucoidan by hot water extraction. The CPHE process provides a number of advantages including simple procedure, reactant-saving, reduced pollution, and feasibility for continuous production. Sargassum glaucescens (SG) was utilized in this study, and the maximum extraction yield of polysaccharide was approximately 9.83 ± 0.11% (SG4). Thin layer chromatography (TLC), Fourier transform infrared (FTIR) analysis, and measurements of monosaccharide composition, fucose, sulfate, and uronic acid contents revealed that the extracted polysaccharide showed characteristics of fucoidan. All extracts exhibited antioxidant activities, and thus, further exploration of these extracts as potential natural and safe antioxidant agents is warranted.

  9. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process.

    PubMed

    Huang, Chun-Yung; Wu, Shu-Jing; Yang, Wen-Ning; Kuan, Ai-Wei; Chen, Cheng-Yo

    2016-04-15

    Fucoidan, a multifunctional marine polymer, is normally extracted from brown algae via extensive use of acid, solvent or high temperature water and a long reaction time. In present study, we developed a novel compressional-puffing-hydrothermal extraction (CPHE) process which primarily decomposes the cellular structure of algae and facilitates the release of fucoidan by hot water extraction. The CPHE process provides a number of advantages including simple procedure, reactant-saving, reduced pollution, and feasibility for continuous production. Sargassum glaucescens (SG) was utilized in this study, and the maximum extraction yield of polysaccharide was approximately 9.83 ± 0.11% (SG4). Thin layer chromatography (TLC), Fourier transform infrared (FTIR) analysis, and measurements of monosaccharide composition, fucose, sulfate, and uronic acid contents revealed that the extracted polysaccharide showed characteristics of fucoidan. All extracts exhibited antioxidant activities, and thus, further exploration of these extracts as potential natural and safe antioxidant agents is warranted. PMID:26675848

  10. Cartografical And Geodetical Aspects Of The Krakus Mound In Cracow

    NASA Astrophysics Data System (ADS)

    Banasik, Piotr

    2015-12-01

    In this work the fate of the Krakus Mound, the oldest of all existing Krakow's mounds, has been presented. The work was carried out based on selected iconographic, cartographic and geodetic documents. Using as an example old views, panoramas of the city and maps, various functions that the Krakus Mound was fulfilling over its long history were shown. An attempt was made to document the military significance of this mound and the surrounding hills. The particular astro-geodetic importance of the Krakus Mound on the scale of the city and southern Poland region was widely discussed. The Krakus Mound also inscribed itself in the history of the use of GPS technology as well as research on the local determination of the geoid in the area of Krakow.

  11. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin.

    PubMed

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem.

  12. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    SciTech Connect

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

  13. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  14. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    PubMed

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-01

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts. PMID:25714902

  15. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics

    SciTech Connect

    Marumo, Katsumi; Hattori, K.H.

    1999-09-01

    Seafloor hydrothermal activity at Jade has resulted in extensive alteration of the host epiclastic sediments and pumiceous tuffs, forming mica, kaolins (kaolinite and halloysite), Mg-rich chlorite, talc, montmorillonite, and a mixed-layer mineral of dioctahedral chlorite and montmorillonite (Chl/Mont). Clay mineral assemblages show a vertical variation, which reflects variable amounts of cold seawater incorporated into hot hydrothermal fluids in subsurface sediments and tuff. However, mixing alone cannot explain the occurrence of abundant kaolin minerals at Jade. The formation of kaolin minerals requires much more acidic fluid than expected from simple mixing of hydrothermal fluids and cold seawater. Low pH values are likely attained by oxidation of H{sub 2}S either dissolved in the hydrothermal fluid or released from the fluid during decompression. The fluid reaching the seafloor is discharged into cold seawater, which caused precipitation of sulfides close to vents and native sulfur and barite at the margins of the vent areas. Halloysite, barite and anhydrite show Sr isotope compositions similar to marine Sr, indicating the derivation of marine Sr directly from seawater or by the dissolution of calcareous nannoplanktons. At Jade, there is only one black smoker actively discharging high temperature ({approximately}320 C) fluid, but there are many fossil sulfide chimneys and mounds in the area. The mineralogy and high Au and Cu in these precipitates suggest highly metalliferous hydrothermal activity in the past. These activities likely resulted in discharge of hydrothermal plumes and fall-outs of sulfides and sulfates on the seafloor. These fall-outs were incorporated in sediments far from the vent areas. They are now recorded as high metal contents in sediments with no petrographic and mineralogical evidence of in-situ hydrothermal activity. Some are high as 8,100 ppm for Cu, 12,500 ppm for Zn, 1,000 ppm for As, 100 ppm for Ag and 21,000 ppm for Pb. Detrital

  16. A lone biodetrital mound in the Chesterian (Carboniferous) of Alabama?

    USGS Publications Warehouse

    Kopaska-Merkel, D. C.; Haywick, D.W.

    2001-01-01

    A carbonate mound in the Chesterian Bangor Limestone of Lawrence County, Alabama, consists chiefly of packstone and grainstone dominated by echinoderm ossicles and fragments of fenestrate bryozoans. In-situ colonies of the rugose coral Caninia flaccida comprise about 8% of the mound by volume. The exposed portion of the mound is approximately 25 m wide, 1.6 m thick at the thickest point and roughly circular in plan. The mound developed on top of a shallow ooid shoal that had been cemented and stabilised during an earlier episode of sub-aerial exposure. Subsequent flooding of the exposed shoal surface permitted establishment of the mound biota. Lateral and vertical facies relationships suggest that the mound possessed about 45 cm of synoptic relief when fully developed. Rugose corals, fenestrate and ramose bryozoans, stalked echinoderms, and sessile soft-bodied organisms encrusted by foraminifera colonised the shoal, forming a mound. Baffling resulted in deposition of mixed-fossil packstone containing locally derived debris and coated grains from the surrounding sea floor. Strong currents within the mound are indicated by preferred orientation of corals and by coarse, commonly cross-stratified grainstone in channels between neighboring coral colonies. Corals are most abundant on the windward side of the mound, where they account for about 13% of the mound compared to 6- 10% in the central part of the mound, and 2-4% on the leeward flank. Biodetrital mounds such as the one described here are uncommon in upper Paleozoic strata and previously unknown in the Bangor Limestone. Of 10 carbonate buildups we examined in the Bangor in Alabama and Tennessee, only one is a biodetrital mound. Two are rugose coral-microbial reefs, one is a coral biostrome, and six are dominated by microbialite. The Bangor shelf, previously interpreted as sedimentologically simple, appears to contain many small mounds of quite varied characteristics. Also, the discovery of a biodetrital mound in

  17. The Goodlett-Denny mound: a glimpse at 45 years of Pennsylvania treethrow mound evolution with implications for mass wasting

    NASA Astrophysics Data System (ADS)

    Small, Thomas W.

    1997-03-01

    A rootplate/mound formed by the uprooting of a black cherry tree ( Prunus serotina) in Potter County, Pennsylvania, was photographed in 1950 near the time of formation and again in 1952 and 1963 by J.C. Goodlett and C.S. Denny. The mound was located and photographed by the author in 1989 with the aid of background trees with identifying peculiarities and using the earlier consistent perspectives. Between 1950 and 1963 most of the rootmass had decomposed, leaving a mound with an estimated volume of 5.28 m 3 in 1963. By 1989 the mound had lost 60% of its 1963 height and its volume had diminished to 2.09 m 3. Mean annual erosion on the mound from 1989 to 1995 was much less than during the 1963-1989 period indicating a diminishing sediment contribution to the forest floor commensurate with lowering of the mound surface.

  18. Dynamics of active magmatic and hydrothermal systems at Taal Volcano, Philippines, from continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Bartel, Beth A.; Hamburger, Michael W.; Meertens, Chuck M.; Lowry, Anthony R.; Corpuz, Ernesto

    2003-10-01

    A dense network of continuous single- and dual-frequency GPS receivers at Taal Volcano, Philippines, reveals four major stages of volcanogenic deformation: deflation, from installation in June 1998 to December 1998; inflation, from January to March 1999; deflation, from April 1999 to February 2000; and inflation, from February to November 2000. The largest displacements occurred during the February-November 2000 period of inflation, which was characterized by ˜120 mm of uplift of the center of Volcano Island relative to the northern caldera rim at average rates up to 216 mm/yr. Deformation sources were modeled using a constrained least squares inversion algorithm. The source of 1999 deflation and inflation in 2000 were modeled as contractional and dilatational Mogi point sources centered at 4.2 and 5.2 km depth, respectively, beneath Volcano Island. The locations of the inflationary and deflationary sources are indistinguishable within the 95% confidence estimates. Modeling using a running 4-month time window from June 1999 to March 2001 reveals little evidence for source migration. We suggest that the two periods of inflation observed at Taal result from episodic intrusions of magma into a shallow reservoir centered beneath Volcano Island. Subsequent deflation may result from exsolution of magmatic fluids and/or gases into an overlying, unconfined hydrothermal system.

  19. Distributions and contents of the organic carbon and major heavy metals in aquatic environment surrounding the active submarine hydrothermal vent in the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Lee, S.; Iizasa, K.; Shimoda, G.

    2009-12-01

    Since seafloor massive sulfides (SMSs) were firstly found in the central Red Sea in the middle of 20 century, many SMSs have been reported in the settings of oceanic ridges and island arcs. Although seafloor mining of SMSs is likely to be realized in the near future, there are some concerns on hydrothermal biota and ambient environments after seafloor mining. As biota and ambient environments will be affected by the mining of SMSs in direct, researches on the aquatic environment surrounding submarine hydrothermal vents are strongly needed. Because submarine hydrothermal activities are not stable and their life times are relatively short, it is conceivable that the aquatic environments in the hydrothermal field are different from the other site. Therefore, the regular and the long term monitoring in the aquatic environment of the hydrothermal field be strongly required for the more exact and detailed knowledge about the submarine hydrothermal environment. The distributions and the contents of organic carbon and major heavy metals in the seawater columns around hydrothermal fields will be discussed in the present study. In recent, the submarine hydrothermal activities are presumed as one of the factors causing the seasonal fluctuation in concentration of the total organic carbon in the subtropical Northwestern Pacific, but the practical demonstration about this was not carried out yet. The discussion about the distributions and the contents of major heavy metals in the seawater columns around hydrothermal fields will help to understanding of the diffusion through the plume discharged from hydrothermal vents to ambient environments. The samples were collected at and around the hydrothermal fields of the Bayonnaise Knoll caldera on the back-arc rift and the Myojin Knoll and Myojinsho in the Izu-Ogasawara arc, and the Izena cauldron in Okinawa Trough, during at summer in 2008 and 2009 throughout the HT08 cruise by Hakurei-maru and KT09-12 cruise by Tansei-maru. Seawater

  20. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun

    2012-02-01

    Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.

  1. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  2. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  3. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates.

    PubMed

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-12-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  4. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-09-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  5. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy).

    NASA Astrophysics Data System (ADS)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono

    2015-04-01

    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  6. Estimating Heat Transfer from Grotto Mound, NEPTUNE Canada Cabled Observatory, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.

    2012-12-01

    Heat flux is a fundamental property of a seafloor hydrothermal system that relates to magnitude of sub-seafloor heat source and biosphere conditions, to distribution and style of seafloor venting and benthic biota, to chemical flux, plume formation, and dispersal of biological matter in the water column. We are working to estimate heat flux from Grotto mound, the site of the NEPTUNE Canada Cabled Observatory in the Main Endeavour Field on the Juan de Fuca Ridge. The mound is formed of two sulfide edifices that lie between ~2190 and 2180 m isobaths: 1) an elliptical edifice with major NE-SW-trending axis ~30 m long and minor axis ~ 14 m wide (area ~ 330 m2); 2) a columnar edifice ~ 10 m in diameter and 10 m high (area ~80 m2) named the North Tower, situated across a narrow (~5 m wide) saddle (area ~40 m2) at the W end of the elliptical edifice. Several black smokers discharge relatively small plumes at the E end of the elliptical edifice. A cluster of vigorous black smokers discharge from the top of North Tower and merge to form a large plume. Patchy diffuse flow occurs in areas around all of the black smokers and in the saddle between the two edifices. We are in process of measuring heat flux from components of hydrothermal discharge on Grotto mound, as follows: 1) for smokers on the North Tower an integrated heat flux of 28-55 MW is calculated based on temperature measurements in the initial 20 m rise of the plume assuming that the highest temperatures measured are closest to those of the plume centerline ; 2) for smokers on the E end of the elliptical edifice based on measurements of flow rate from video and acoustic Doppler phase shift, video of vent diameters, and in situ temperature measurements; 3) for discharge from flanges on some chimneys based on video of flow and in situ temperature measurements; 4) for diffuse flow based on area measured by Acoustic Scintillation Thermography and direct measurements of temperature and flow rate. We are evaluating

  7. Paleoenvironmental reconstruction of microbial mud mound derived boulders from gravity-flow polymictic megabreccias (Visean, SW Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, M.; Moreno-González, I.; Mas, R.; Reitner, J.

    2012-07-01

    The Upper Visean outcrops from the Guadiato Valley (Córdoba, SW Spain) provide a well-preserved record of the mud mound factory, which was developed in a mainly siliciclastic synorogenic foreland basin during the oblique sinistral collision of two terranes (Ossa Morena and Central Iberian blocks). The first onset of mud mound development has been recorded as microbial mud mound-derived boulders in polymictic megabreccias as result of strong tectonic activity. The Upper Visean record from the Mississippian central band at Guadiato Valley starts with lower heterolithic units (up to 180 m thick) and shows two major tectonically-controlled cycles: a fining upwards interval (FU) followed by a coarsening upwards interval (CU). These cycles are linked to two active margins with gravelly fan delta development and different source areas. Mud mound-derived boulders occur in the CU interval and are formed by peloidal primary and secondary (reworked) automicrites and allomicrites, showing a diverse faunal and floral assemblage, although never as the main skeletal framebuilders. However, the observed coeval richness in sponges (lyssacinose hexactinellids and non-lithistid demosponges) and the diverse calcareous algae assemblage in mud mound derived boulders are not common in other Visean buildups. The growth cavities display changes in the geopetal relationships between fillings and the secondary cavities containing sand to gravel fillings reflecting a complex pre-boulder and mud mound derived boulder history. Detailed mapping, sampling, stratigraphic and microfacial analyses have allowed the reconstruction of the mud mounds sedimentary environment prior to the collapse, transport and emplacement as boulders with polymictic gravels.

  8. Preliminary results of trace elements mobility in soils and plants from the active hydrothermal area of Nisyros island (Greece)

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; Calabrese, Sergio; Milazzo, Silvia; Brusca, Lorenzo; D'Alessandro, Walter; Kyriakopoulos, Konstantinos; Tassi, Franco; Parello, Francesco

    2014-05-01

    Trace elements, i.e. chemical constituents of rocks with concentration <1000 ppm, play a structural role in the organisms and use proteins as a carrier to their target site. Their toxicity depends on their concentration, speciation and reactions with other elements. In volcanic environments, significant amounts of trace elements discharged from gas emissions, contribute to produce air particulate. Nisyros Island is a stratovolcano located at the South Aegean active Volcanic Arc. Intense hydrothermal activity characterise the Lakki caldera. In particular, the fumaroles located in the craters of Stefanos, Kaminakia, Lofos Dome and the area comprising Phlegeton, Polyvotes Micros and Polyvotes Megalos discharge hydrothermal fluids rich in H2O (91- 99%), SO2 and H2S. Their temperatures are almost 100o C and H2S is highly abundant accounting for 8-26 % of the released dry gas phase. On June 2013, during a multidisciplinary field trip on Nisyros island, 39 samples of top soils and 31 of endemic plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected in the caldera area, with the aim to investigate the distribution of concentrations of trace elements related to the contribution of deep originated fluids. Moreover, one sample of plant and soil was collected outside the caldera as local background, for comparison. All the soil samples were powdered avoiding metal contamination and they were extracted twice, using HNO3 + HCl for one extraction (closed microwave digestion) and ultrapure de- ionized water for the other one (leaching extraction). The leaves of plants were gently isolated, dried and powdered for acid microwave extraction (HNO3 + H2O2). All the solutions were analysed for major and trace elements contents by using ionic chromatography (IC) and inductively plasma spectrometry (ICP-MS and ICP-OES). The preliminary results showed high enrichment of many trace elements both in plant and soils respect to the local background, in

  9. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two

  10. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  11. Mineral elements, lipoxygenase activity, and antioxidant capacity of okara as a byproduct in hydrothermal processing of soy milk.

    PubMed

    Stanojevic, Sladjana P; Barac, Miroljub B; Pesic, Mirjana B; Zilic, Sladjana M; Kresovic, Mirjana M; Vucelic-Radovic, Biljana V

    2014-09-10

    Minerals and antioxidative capacity of raw okara that was obtained as a byproduct from six soybean varieties during hydrothermal cooking (HTC) of soy milk were assessed. Lipoxygenase (Lox), an enzyme deteriorating the sensory characteristics of okara, was also investigated. All genotypes had very similar concentrations of Lox (4.32-5.62%). Compared to raw soybeans, the applied HTC significantly reduced Lox content in okara (0.54-0.19%) and lowered its activity to 0.004-0.007 μmol g(-1) min (-1). Correlation between the content of Lox in soybeans and that in okara (r = 0.21;p < 0.05) was not registered. This indicates that the content of this enzyme in okara depended much more on the technological process than on soybean genotype. Very strong correlation (r = 0.99; p < 0.05) between okara Lox content and its activity was found. The most abundant minerals in raw okara were potassium (1.04-1.21 g/100g), phosphorus (0.45-0.50 g/100 g), calcium (0.26-0.39 g/100 g), and iron (5.45-10.95 mg/100 g). A very high antioxidant capacity (19.06-29.36 mmol Trolox kg(-1)) contributes to the nutritional value of raw okara. PMID:25167333

  12. High-temperature hydrothermal synthesis of crystalline mesoporous TiO2 with superior photo catalytic activities

    NASA Astrophysics Data System (ADS)

    Liu, Fujian; Liu, Chun-Lin; Hu, Baowei; Kong, Wei-Ping; Qi, Chen-Ze

    2012-07-01

    Mesoporous titanium dioxide with crystalline mesopore walls (M-TiO2-ns) have been successfully synthesized through the self-assembly of poly 4-Vinylpyridine template and tetrabutyl titanate precursor based on their complex bond interaction under high temperature (180 °C) hydrothermal conditions. X-ray diffraction shows that M-TiO2-ns have highly crystalline mesopore walls with anatase phase characters; N2 sorption-desorption isotherms, SEM and TEM images show that M-TiO2-ns have high BET surface areas (85 and 120 m2/g, respectively), large pore volumes (0.32 and 0.34 cm3/g, respectively) and crystalline mesopore walls, which exhibit monolithic morphology with crystal sizes around 3-5 μm. Interestingly, M-TiO2-ns exhibit much higher catalytic activities and good recyclability in both induced reduction of decabromodiphenyl and oxidation of Rhodamine B under UV light than those of nonporous crystalline TiO2 and M-TiO2 templated by hydrocarbon surfactant of F127, which is even comparable with that of commercial P25. Combination of the unique characters such as crystallinity, stable mesostructure, large BET surface areas and superior photo catalytic activities make M-TiO2-ns a kind of potentially important material for removing of organic pollutions in environment through green photo irradiation processes.

  13. Low Temperature Hydrothermal Synthesis of Visible-Light-Activated I-Doped TiO2 for Improved Dye Degradation.

    PubMed

    Wang, Dongting; Li, Jianwen; Zhou, Guangsheng; Wang, Wenxu; Zhang, Xianxi; Pan, Xu

    2016-06-01

    Iodine doped TiO2 with different iodine/Ti molar ratios has been firstly synthesized with a low temperature hydrothermal route and has been studied systematically in photocatalysis under visible light condition. The resulting iodine doped TiO2 were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic performance investigations were conducted by means of the degradation of Rhodamine B (RhB) under the visible light irradiation in aqueous solution. Under an optimized I/Ti doping ratio of 10 mol%, the photocatalytic performance is greatly better, with degradation efficiency of 95%, which is almost double that of pure TiO2. The superior photocatalytic activity of iodine-doped TiO2 could be mainly attributed to extended visible light absorption originated from the formation of continuous states existed in the band gap of the doped TiO2 introduced by iodine. Active oxygen species, that is, *OH and O2-, were evidenced to be involved in the degradation process and a possible mechanism was also proposed.

  14. Low Temperature Hydrothermal Synthesis of Visible-Light-Activated I-Doped TiO2 for Improved Dye Degradation.

    PubMed

    Wang, Dongting; Li, Jianwen; Zhou, Guangsheng; Wang, Wenxu; Zhang, Xianxi; Pan, Xu

    2016-06-01

    Iodine doped TiO2 with different iodine/Ti molar ratios has been firstly synthesized with a low temperature hydrothermal route and has been studied systematically in photocatalysis under visible light condition. The resulting iodine doped TiO2 were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic performance investigations were conducted by means of the degradation of Rhodamine B (RhB) under the visible light irradiation in aqueous solution. Under an optimized I/Ti doping ratio of 10 mol%, the photocatalytic performance is greatly better, with degradation efficiency of 95%, which is almost double that of pure TiO2. The superior photocatalytic activity of iodine-doped TiO2 could be mainly attributed to extended visible light absorption originated from the formation of continuous states existed in the band gap of the doped TiO2 introduced by iodine. Active oxygen species, that is, *OH and O2-, were evidenced to be involved in the degradation process and a possible mechanism was also proposed. PMID:27427614

  15. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey; Cruse, Anna; Saccocia, Peter

    2003-12-01

    The Main Endeavour Field, northern Juan de Fuca Ridge, experienced intense seismic activity in June 1999. Hydrothermal vent fluids were collected from sulfide structures in September 1999 and July 2000 and analyzed for the abundance of H2, H2S, CH4, CO2, NH3, Mg and Cl to document temporal and spatial changes following the earthquakes. Dissolved concentrations of CO2, H2, and H2S increased dramatically in the September 1999 samples relative to pre-earthquake abundances, and subsequently decreased during the following year. In contrast, dissolved NH3 and CH4 concentrations in 1999 and 2000 were similar to or less than pre-earthquake values. Aqueous Cl abundances showed large decreases immediately following the earthquakes followed by increases to near pre-earthquake values. The abundances of volatile species at the Main Endeavour Field were characterized by strong inverse correlations with chlorinity. Phase separation can account for 20-50% enrichments of CO2, CH4, and NH3 in low-chlorinity fluids, while temperature- and pressure-dependent fluid-mineral equilibria at near-critical conditions are responsible for order of magnitude greater enrichments in dissolved H2S and H2. The systematic variation of dissolved gas concentrations with chlorinity likely reflects mixing of a low-chlorinity volatile-enriched vapor generated by supercritical phase separation with a cooler gas-poor hydrothermal fluid of seawater chlorinity. Decreased abundances of sediment-derived NH3 and CH4 in 1999 indicate an earthquake-induced change in subsurface hydrology. Elevated CO2 abundances in vent fluids collected in September 1999 provide evidence that supports a magmatic origin for the earthquakes. Temperature-salinity relationships are consistent with intrusion of a shallow dike and suggest that the earthquakes were associated with movement of magma beneath the ridge crest. These data demonstrate the large and rapid response of chemical fluxes at mid-ocean ridges to magmatic activity and

  16. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  17. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  18. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  19. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  20. The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific

    PubMed Central

    2011-01-01

    Background Deep-sea hydrothermal vents provide patchy, ephemeral habitats for specialized communities of animals that depend on chemoautotrophic primary production. Unlike eastern Pacific hydrothermal vents, where population structure has been studied at large (thousands of kilometres) and small (hundreds of meters) spatial scales, population structure of western Pacific vents has received limited attention. This study addresses the scale at which genetic differentiation occurs among populations of a western Pacific vent-restricted gastropod, Ifremeria nautilei. Results We used mitochondrial and DNA microsatellite markers to infer patterns of gene flow and population subdivision. A nested sampling strategy was employed to compare genetic diversity in discrete patches of Ifremeria nautilei separated by a few meters within a single vent field to distances as great as several thousand kilometres between back-arc basins that encompass the known range of the species. No genetic subdivisions were detected among patches, mounds, or sites within Manus Basin. Although I. nautilei from Lau and North Fiji Basins (~1000 km apart) also exhibited no evidence for genetic subdivision, these populations were genetically distinct from the Manus Basin population. Conclusions An unknown process that restricts contemporary gene flow isolates the Manus Basin population of Ifremeria nautilei from widespread populations that occupy the North Fiji and Lau Basins. A robust understanding of the genetic structure of hydrothermal vent populations at multiple spatial scales defines natural conservation units and can help minimize loss of genetic diversity in situations where human activities are proposed and managed. PMID:22192622

  1. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  2. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.

  3. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents.

  4. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    SciTech Connect

    Chen Zhixin; Li Danzhen; Xiao Guangcan; He Yunhui; Xu Yijun

    2012-02-15

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{sub 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.

  5. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description

  6. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  7. NaF-assisted hydrothermal synthesis of Ti-doped hematite nanocubes with enhanced photoelectrochemical activity for water splitting

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Zhu, Zezhou; Wang, Sibo; Hou, Yidong

    2015-12-01

    Ti-doped α-Fe2O3 nanocubes on FTO substrate was prepared by hydrothermal deposition β-FeOOH onto FTO glass with a solution of FeCl3, TiOCl2 and NaF, followed by an appropriate annealing. In comparison to Ti-doped α-Fe2O3 nanorods Ti-doped α-Fe2O3 nanocubes showed an enhanced photoelectrochemical activity for water splitting, with a remarkable IPCE of 25.2% at 340 nm at the potential of 1.23 V vs. RHE. The hematite films were studied in detail by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and electrochemical impedance spectroscopy. On the basis of the obtained results, the improved performance of Ti-doped α-Fe2O3 nanocubes can be ascribed to the porous structure, good electrical conductivity and fast charge transportation of hematite.

  8. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities.

    PubMed

    Chen, Ping; Xiao, Tian-Yuan; Li, Hui-Hui; Yang, Jing-Jing; Wang, Zheng; Yao, Hong-Bin; Yu, Shu-Hong

    2012-01-24

    Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on. PMID:22136425

  9. Compositions, growth mechanisms, and temporal realtions of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Koski, Randolph A.; Jonasson, Ian R.; Kadko, David C.; Smith, Virginia K.; Wong, Florence L.

    1994-03-01

    Three active hydrothermal vents forming sulfide mounds and chimneys (Monolith, Fountain, and Pipe Organ) and more widely distributed inactive chimneys are spatially related to a system of discontinuous fissures and young sheet flow lavas at the northern Cleft segment, Juan de Fuca Ridge. The formation of zoned tubular Curich chimneys (type I) on the Monolith sulfide mound is related to focused flow of high-temperature (to 328 C) fluid. Bulbous chimneys (type II or 'beehives') at the Monolith and Fountain vents are products of diffuse high-temperature (to 315 C) discharge. A broader zone of vigorous mixing between the hydrothermal fluid and seawater results in quench crystallization of anhydrite-rich shells. Columnar Zn-sulfide-rich chimneys with narrow channelways (type III) are constructed where focused and relatively low-temperature (261 C) fluid vents directly from the basalt substrate. The bulk chemistry (low Cu; high Pb, Ag, and SiO2 contents), mineralogy (pyrite-marcasite-wurtzite-amorphous silica-anglesite), colloform and filamentous textures, and oxygen isotope characteristics of inactive (type IV) chimneys indicate a low-temperature (less than 250 C) origin involving diffuse and sluggish flow patterns and conductive cooling. Seafloor observations and Pb-210 data indicate that (1) type IV chimneys are products of an earlier period of hydrothermal activity that ended no more than 60 years ago but prior to the sheet flow eruption; (2) the high-temperature Monolith and Fountain vents are manifestations of the same heating event (shallow emplacement of magma) that led to the sheet flow eruption and recent megaplumes; and (3) the Pipe Organ Vent is in a very youthful stage of development, and chimney deposition postdates the sheet flow eruption.

  10. Environmental assessment for Mound Plant decontamination and decommissioning projects, Mound Plant, Miamisburg, Ohio

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA) for seven decontamination and decommissioning (D&D) projects at the Mound Plant in Miamisburg, Ohio, that have not been previously addressed in the Final Environmental Impact Statement for the Mound Facility (June 1979). Based on the information presented in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and the Department is issuing this Finding of No Significant Impact (FONSI).

  11. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    PubMed Central

    Levas, Stephen J.; Grottoli, Andréa G.; Hughes, Adam; Osburn, Christopher L.; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ13C of the skeletal, δ13C, and δ15N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via 13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of fixed carbon

  12. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    PubMed

    Levas, Stephen J; Grottoli, Andréa G; Hughes, Adam; Osburn, Christopher L; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13)C of the skeletal, δ(13)C, and δ(15)N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13)C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of

  13. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals.

    PubMed

    Sharma, Rishabh; Uma; Singh, Sonal; Verma, Ajit; Khanuja, Manika

    2016-09-01

    In the present work, monoclinic bismuth vanadate (m-BiVO4) nanostructures have been synthesized via simple hydrothermal method and employed for visible light driven antimicrobial and photocatalytic activity. Morphology (octahedral) and size (200-300nm) of the m-BiVO4 are studied using transmission electron microscopy (TEM). The crystal structure of m-BiVO4 (monoclinic scheelite structure) is confirmed by high resolution-TEM (HRTEM) and X-ray diffraction (XRD) studies. The band gap of m-BiVO4 was estimated to be ca. 2.42eV through Kubelka-Munk function F(R∞) using diffuse reflectance spectroscopy (DRS). Antimicrobial action of m-BiVO4 is anticipated by (i) shake flask method, (ii) MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assay for cytotoxicity. SEM analysis has been carried on Escherichia coli (E.coli) before and after treatment with nanostructure materials to reveal the mechanism underlying the antimicrobial action. Antimicrobial activity is studied as a function of m-BiVO4 concentration viz. 20, 40, 60 and 80ppm. The bacterial growth is decreased 80% to 96%, with the increase in m-BiVO4 concentration from 20ppm to 80ppm, respectively, in 2h. Photocatalytic activity and rate kinetics of m-BiVO4 nanostructures have been studied as a function of time on methylene blue (MB) dye degradation which is one of the waste products of textile industries and responsible for water pollution. PMID:27394009

  14. Biotic Origin for Mima Mounds Supported by Numerical Model

    NASA Astrophysics Data System (ADS)

    Gabet, E. J.; Perron, J.; Johnson, D. L.

    2013-12-01

    Mima mounds are ~1-m-high hillocks found on every continent except Antarctica. Despite often numbering in the millions within a single field, their origin has been a mystery, with proposed explanations ranging from glacial processes to seismic shaking. One hypothesis proposes that mounds in North America are built by burrowing mammals to provide refuge from seasonally saturated soils. We test this hypothesis with a numerical model, parameterized with measurements of soil transport by gophers from a California mound field, that couples animal behavior with geomorphic processes. The model successfully simulates the development of the mounds, as well as key details such as the creation of vernal pools, small intermound basins that provide habitat for endemic species. Furthermore, we demonstrate that the spatial structure of the modeled mound fields is similar to actual mound fields and provides an example of self-organized topographic features. We conclude that, scaled by body mass, Mima mounds are the largest structures built by non-human mammals, and may provide a rare example of an evolutionary coupling between landforms and the organisms that create them.

  15. Biotic origin for Mima mounds supported by numerical modeling

    NASA Astrophysics Data System (ADS)

    Gabet, Emmanuel J.; Perron, J. Taylor; Johnson, Donald L.

    2014-02-01

    Mima mounds are ~ 1-m-high hillocks found on every continent except Antarctica. Despite often numbering in the millions within a single field, their origin has been a mystery, with proposed explanations ranging from glacial processes to seismic shaking. One hypothesis proposes that mounds in North America are built by burrowing mammals to provide refuge from seasonally saturated soils. We test this hypothesis with a numerical model, parameterized with measurements of soil transport by gophers from a California mound field, that couples animal behavior with geomorphic processes. The model successfully simulates the development of the mounds as well as key details such as the creation of vernal pools, small intermound basins that provide habitat for endemic species. Furthermore, we demonstrate that the spatial structure of the modeled mound fields is similar to actual mound fields and provides an example of self-organized topographic features. We conclude that, scaled by body mass, Mima mounds are the largest structures built by nonhuman mammals and may provide a rare example of an evolutionary coupling between landforms and the organisms that create them.

  16. Late Mississippian lime mud mounds, Pitkin Formation, northern Arkansas

    SciTech Connect

    Manger, W.L.; Ar, V.P.; Webb, G.E.

    1984-04-01

    Carbonates deposited under shallow, open shelf conditions during the Late Mississippian in northern Arkansas exhibit numerous discrete to coalescing lime mud mounds up to 20 m (65 ft) high and tens of meters in diameter. The mounds are composed of a carbonate mud core, typically with fenestrate texture, entrapped by a loosely organized framework dominated by cystoporate bryozoans and rugose corals in the lower part, and by blue-green algae and cryptostomous bryozoans in the upper part. Disarticulated crinozoan detritus is common throughout the core, suggesting that these organisms also contributed to entrapment of lime mud. During deposition, the mud core was indurated enough to support and preserve vertical burrows. Also, rubble of core mudstone is found on the flanks of some mounds, suggesting some erosion. Intermound lithology is a shoaling-upward sequence dominated by oolitic and bioclastic grainstones and packstones. Shale is also present in minor amounts. The Pitkin mounds, interbedded with these intermound sequences, developed contemporaneously with them. Depositional relief was probably less than 3 m (10 ft). The mounds expanded laterally during periods of quieter water; their growth was impeded during times of higher energy. Contacts of the mound and intermound lithologic characteristics are sharp, truncating surfaces. Mound deposition ended with the onset of high energy conditions throughout the region.

  17. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18°-20° S.

    PubMed

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990

  18. Ecophysiology of iron-oxidizing Zetaproteobacteria in an iron oxyhydroxide mound in a shallow marine environment at Satsuma Iwo-jima, Japan.

    NASA Astrophysics Data System (ADS)

    Hoshino, T.; Kuratomi, T.; Morono, Y.; Hori, T.; Kiyokawa, S.; Inagaki, F.

    2015-12-01

    The Satsuma Iwo-Jima is a small volcanic island located 40 km south of the Kyusyu Island, Japan. In the Nagahama Bay of the island, venting hydrothermal fluids from iron oxyhydroxide mounds on the seafloor. Using a light microscopy, numerous twisted stalk structures in the deposits were observed, suggesting the presence of neutrophilic iron-oxidizing microbial communities. Sequencing of 16S rRNA gene-tagged fragments followed by correlation analysis showed that iron-oxidizing Zetaproteobacteria inhabit the iron deposits in the vicinity of anaerobic iron-reducing bacteria, indicating the occurrence of iron cycling mediated by the microbial ecosystem. We successfully identified Zetaproteobacteria cells using CARD-FISH technique at the different depths of the cored sample, suggesting that the number of Zetaproteobacteria cells and the frequency of the twisted stalk structures are not always consistent. In stalk-abundant horizons that harbor relatively small Zetaproteobacteria populations, accumulation of polyphosphate within Zetaproteobacteria cells was clearly observed. This indicates that Zetaproteobacteria physiologically store energy and phosphorus substrates during the active iron oxidation. In marked contrast, in other horizons with fewer stalks and large populations of Zetaproteobacteria, polyphosphate was rarely observed in the cells, suggesting that Zetaproteobacteria have already used up the intracellular reservoir of energy and phosphorous substrates, and the iron-oxidizing activity is most likely lower than those cells inhabiting the redox interface.

  19. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa trough: Mineralogy, geochemistry and isotope characteristics

    NASA Astrophysics Data System (ADS)

    Marumo, Katsumi; Hattori, Kéiko H.

    1999-09-01

    is usually consumed to form metal sulfides. Therefore, abundant native sulfur at Jade suggests high H 2S/metals ratios of the hydrothermal fluids. The alteration assemblages and isotopic data of hydrothermal minerals from Jade are very similar to those of Kuroko-type barite deposits of middle Miocene age, which formed from fluids of high S/metals ratios at less than 200°C. At Jade, there is only one black smoker actively discharging high temperature (˜320°C) fluid, but there are many fossil sulfide chimneys and mounds in the area. The mineralogy and high Au and Cu in these precipitates suggest highly metalliferous hydrothermal activity in the past. These activities likely resulted in discharge of hydrothermal plumes and fall-outs of sulfides and sulfates on the seafloor. These fall-outs were incorporated in sediments far from the vent areas. They are now recorded as high metal contents in sediments with no petrographic and mineralogical evidence of in-situ hydrothermal activity. Some are high as 8,100 ppm for Cu, 12,500 ppm for Zn, 1,000 ppm for As, 100 ppm for Ag and 21,000 ppm for Pb. Detrital grains of montmorillonite in such sediments are coated with Fe-oxyhydroxides during the suspension in seawater before settling on the seafloor. The depths of such metal anomalies in sediments suggest high levels of metalliferous hydrothermal activities from 1,800 to 300 ybp.

  20. Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA

    SciTech Connect

    Kupecz, J.A.; Arestad, J.F.; Blott, J. E.

    1996-06-01

    Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximal flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.

  1. Morphology-dependent photocatalytic activity of octahedral anatase particles prepared by ultrasonication-hydrothermal reaction of titanates

    NASA Astrophysics Data System (ADS)

    Wei, Zhishun; Kowalska, Ewa; Verrett, Jonathan; Colbeau-Justin, Christophe; Remita, Hynd; Ohtani, Bunsho

    2015-07-01

    Octahedral anatase particles (OAPs) were prepared by an ultrasonication (US)-hydrothermal (HT) reaction of partially proton-exchanged potassium titanate nanowires (TNWs). The structural/physical properties of OAP-containing samples, including specific surface area, crystallinity, crystallite size, particle aspect ratio, composition and total OAP content, were analyzed. Photocatalytic activities of samples were measured under irradiation (>290 nm) for oxidative decomposition of acetic acid (CO2 system) and dehydrogenation of methanol (H2 system) under aerobic and deaerated conditions, respectively. Total density of electron traps (ETs) was measured by double-beam photoacoustic spectroscopy (DB-PAS). Mobility and lifetime of charge carriers (electrons) were investigated by the time-resolved microwave conductivity (TRMC) method. The effects of synthesis parameters, i.e., HT duration, HT temperature and US duration, on properties and photocatalytic activities of final products were examined in detail. The sample prepared with 1 h US duration and 6 h HT duration at 433 K using 267 mg of TNWs in 80 mL of Milli-Q water exhibited the highest photocatalytic activity. It was found that change in HT duration or HT temperature while keeping the other conditions the same resulted in changes in all properties and photocatalytic activity. On the other hand, duration of US treatment, before HT reaction, influenced the morphology of both the reagent (by TNWs breaking) and final products (change in total OAP content); samples prepared with various US durations exhibited almost the same structural/physical properties evaluated in this study but were different in morphology and photocatalytic activity. This enabled clarification of the correlation between morphology and photocatalytic activity, i.e., the higher the total OAP content was, the higher was the level of photocatalytic activity, especially in the CO2 system. Although the decay after maximum TRMC signal intensity (Imax) was

  2. NeMO-Net: A System for Near Real-Time Remote Sensing of Hydrothermal and Biological Activity in the Caldera of an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.; Butterfield, D.; Embley, R. W.; Meinig, C.; Stalin, S.

    2001-12-01

    In July of 2000, a camera and three temperature sensors were placed on the seafloor near a hydrothermal vent located in the caldera of an active submarine volcano. The volcano's summit lies at a depth of about 1500 m and is located at 46° N, 130° W, approximately 250 nautical miles off the Oregon coast. The volcano is the site of a long-term interdisciplinary study focused in part on discovering relationships between submarine volcanic and hydrothermal activity and a microbial biosphere which exists beneath the sea floor within the volcano's summit caldera. NeMO-Net utilizes an acoustic modem to communicate with a surface mooring anchored nearby. The mooring, in turn, is linked from the ocean surface to the Pacific Marine Environmental Laboratory by means of satellite systems. A unique feature of NeMO-Net is that it enables shore-based investigators to interrogate and command the system to perform specific tasks, the results of which are then reported back typically within several minutes . In the initial year-long deployment, photographic images, along with hourly readings from the three temperature probes, were available on a website which was updated every 24 hours. During the year, the camera documented a dynamic vent biological community as well as water temperature variations due to the influence of tides, and possibly with changing vent fluid temperatures The NeMO-Net system is under continuing development with particular emphasis on linking it to multiple sea floor instruments including near-real-time chemical and water samplers. Near-future plans also call for NeMO Net to be linked to a resident sea floor AUV.

  3. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes

  4. Fractal-mound growth of pentacene thin films

    NASA Astrophysics Data System (ADS)

    Zorba, Serkan; Shapir, Yonathan; Gao, Yongli

    2006-12-01

    The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This growth morphology thus combines horizontal DLA-like growth with vertical mound growth.

  5. Hydrothermal regime of the Iheya-North hydrothermal field inferred from surface heat flow data and, IODP Expedition 331 drilling results

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Takai, K.; Mottl, M. J.; Hartnett, H. E.; Kinoshita, M.; IODP Expedition 331 scientists

    2011-12-01

    The Okinawa trough is a backarc basin, located between the Ryukyu arc-trench system and the Asian continent. It is considered to be in a rifting stage of the continental lithosphere. The trough contains both hemipelagic and volcanic sediments, and numerous hydrothermal sites have been discovered inside the trough. Iheya-North hydrothermal field is surrounded by the Iheya-North knolls in the middle Okinawa trough. Active chimneys as well as diffuse venting area has been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and 78 heat flow data were obtained from 2002 to 2008 in and around the knolls. In 2010, drilling study was carried out during the IODP Expedition 331, and new subbottom temperature data were obtained around the hydrothermal site. Three distinct zones are identified with different heat flow values which we termed the high-heat-flow zone (>1 W/m^2; HHZ), moderate-heat-flow zone (1-0.1 W/m^2; MHZ), and low-heat-flow zone (<0.1 W/m^2) within 3 km from the active hydrothermal field. In the HHZ located near the western edge of the basin, extremely high and widely scattered heat flow values were measured within ~500 m of the active hydrothermal mounds, venting black smoker fluid of maximum 311 °C. With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. We suggest that such anomalously low heat flow can be explained by the recharge of seawater into the formation, and that hydrothermal vents or diffuse flow in the HHZ can dribe this kilometer-scale hydrothermal circulation. During IODP Expedition 331, we carried out coring and in-situ temperature measurements in the HHZ and LHZ. We could not obtain enough core (less than 1 % core recovery). In the HHZ, the temperature data showed over 55 °C only few meters below the seafloor. After drilling, the temperature in the bore

  6. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  7. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  8. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: a monitoring report. Report No. 1017

    SciTech Connect

    Not Available

    1980-01-20

    Four key geothermal-impacting bills presently before the California legislature are described. Two deal with state financial backing for geothermal projects. The third relates to the use of the state's share of the BLM geothermal revenues and the fourth to the protection of sensitive hot springs. The current regulatory activities of the California Energy Commission, the California Division of Oil and Gas, and the counties are discussed. (MHR)

  9. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Roberts, J. Murray

    2007-04-01

    The cold-water scleractinian corals Lophelia pertusa and Madrepora oculata form mound structures on the continental shelf and slope in the NE Atlantic. This study is the first to compare the taxonomic biodiversity and ecological composition of the macrobenthos between on- and off-mound habitats. Seven box cores from the summits of three mounds and four cores from an adjacent off-mound area in the Belgica Mound Province in the Porcupine Seabight yielded 349 species, including 10 undescribed species. On-mound habitat was three times more speciose, and was richer with higher evenness and significantly greater Shannon's diversity than off-mound. Species composition differed significantly between habitats and the four best discriminating species were Pliobothrus symmetricus (more frequent off-mound), Crisia nov. sp, Aphrocallistes bocagei and Lophelia pertusa (all more frequent on-mound). Filter/suspension feeders were significantly more abundant on-mound, while deposit feeders were significantly more abundant off-mound. Species composition did not significantly differ between mounds, but similarity within replicates decreased from Galway MoundMound. We propose that, despite having greater vertical habitat heterogeneity that supports higher biodiversity, coral mounds have a characteristic "reef fauna" linked to species' biology that contrasts with the higher horizontal habitat heterogeneity conferred by the action of deposit feeders and a varied seabed sedimentary facies off-mound. Standardisation of equipment and restriction of analyses to higher taxonomic levels would facilitate prospective comparative analyses of cold-water coral biodiversity across larger spatio-temporal scales.

  10. Double, double, (but mostly) toil, and trouble: A multidisciplinary approach to quantify the permeability of an active volcanic hydrothermal system (Whakaari volcano, New Zealand)

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Kennedy, Ben; Farquharson, Jamie; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, Albert; Scheu, Betty; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Art; Dingwell, Donald

    2016-04-01

    Our multidisciplinary approach, which combines field techniques and traditional laboratory methods, aims to better understand the permeability of an active volcanic hydrothermal system, a vital prerequisite for understanding and modelling the behaviour of hydrothermal systems worldwide. Whakaari volcano (an active stratovolcano located 48 km off New Zealand's North Island) hosts an open, highly reactive hydrothermal system (hot springs and mud pools, fumaroles, acid streams and lakes) and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. Due to the variable nature of these altered lithologies (mainly lavas and tuffs), we measured porosity-permeability for in excess of a hundred rock hand samples using field techniques. We also measured the permeability of recent, unconsolidated deposits using a field soil permeameter. Our field measurements were then groundtruthed on a subset of these samples (~40-50) using traditional laboratory techniques: helium pycnometry and measurements of permeability using a benchtop permeameter, including measurements under increasing confining pressure (i.e., depth). In all, our measurements highlight that the porosity of the materials at Whakaari can vary from ~0.01 to ~0.6, and permeability can vary by eight orders of magnitude. However, our data show no discernable trend between porosity and permeability. A combination of macroscopic and microscopic observations, chemistry (XRF), mineralogy (XRD), and mercury porosimetry highlight that the absence of a robust porosity-permeability relationship is the product of an insane variability in alteration and microstructure (pore size, particle size, pore connectivity, presence/absence of microcracks, layering, amongst others). While our systematic study offers the most complete porosity-permeability dataset

  11. Synthesis of large surface area nano-sized BiVO{sub 4} by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity

    SciTech Connect

    Sun Wanting; Xie Mingzheng; Jing Liqiang; Luan Yunbo; Fu Honggang

    2011-11-15

    In this work, monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been successfully synthesized, using Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} as raw materials, through a hydrothermal process in the presence of ethylene diamine tetraacetic acid (EDTA). It is demonstrated that the nanoparticle size of as-prepared BiVO{sub 4} becomes small by decreasing hydrothermal temperature, shortening hydrothermal reaction time and increasing EDTA amount used. The resulting BiVO{sub 4} nanoparticle with large surface area exhibits a good photocatalytic performance for degrading phenol solution as a model organic pollutant under visible illumination. The key of this method is the chelating role of EDTA group in the synthetic process that it can greatly control the concentration of Bi{sup 3+}, leading to the growth inhibition of BiVO{sub 4} crystallite. The work provides a route for the synthesis of Bi-containing nano-sized composite oxides with large surface area. - Graphical abstract: High visible active nano-sized BiVO{sub 4} photocatalyst with large surface area is successfully synthesized, which is attributed to the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. Highlights: > Monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been synthesized by a hydrothermal process. > Key of this method is the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. > Resulting nano-sized BiVO{sub 4} exhibits a good photocatalytic activity for degrading phenol under visible illumination.

  12. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  13. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.

    1998-07-01

    Cu-, Eu-, or Mn-doped ZnS nanocrystalline phosphors were prepared at room temperature using a chemical synthesis method. Transmission electron microscopy observation shows that the size of the ZnS clusters is in the 3-18 nm range. New luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the doped ZnS nanocrystals at room temperature. These results strongly suggest that impurities, especially transition metals and rare-earth metals-activated ZnS nanoclusters form a new class of luminescent materials.

  14. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  15. A case study of impact-induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Lee, Pascal; Parnell, John; Spray, John G.; Baron, Martin

    2005-12-01

    The well-preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid-size complex impact craters. A moderate- to low-temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ˜100-120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (˜250 down to ˜90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ˜150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher

  16. The giant cold-water coral mound as a nested microbial/metazoan system: physical, chemical, biological and geological picture (ESF EuroDiversity MiCROSYSTEMS)

    NASA Astrophysics Data System (ADS)

    Henriet, J. P.; Microsystems Team

    2009-04-01

    carbonate is derived from corals and suggests a selective enrichment of the hemipelagic carbonate fraction, compared to adjacent sediment drift deposits. • The detection of allochthonous fluids, in particular brines, in the pore space of the surficial mound sediments on the Pen Duick Escarpment hints towards the presence of salt deposits deep underneath, and simultaneously provides the first direct evidence of advective fluid transfer from the deep, throughout the mound substrate and the full mound height. Potential stratigraphic pathways leading from the deeper basinal realms directly to the mound setting have been imaged in a spectacular way through high-resolution pseudo-3D seismic imaging. Geophysical signatures of free gas accumulations have been detected a few hundreds of meters below the mound base, but low concentrations of methane and the absence of lipid biomarkers from methane-dependent prokaryotes suggest low fluxes of methane-derived carbon and thus very small rates of anaerobic oxidation of methane (AOM) in the immediate mound subsurface. Local changes in the sediment biogeochemistry are most likely dictated by slow diffusive fluid transfer, operating in a heterogeneous way in the subsurface. • Cultivation experiments with sediments from microbially active mound zones have allowed to study microbially induced carbonate precipitation and provide a tool for the interpretation of carbonate mineralogy. The development and operation of a continuous high-pressure bioreactor (100 bars) allows to simulate in an ex situ mode the impact of environmental parameter changes onto the functioning of relevant microbial communities. • The detected influx of sulfate in mound sediments implies that bacterial sulfate reduction can be the dominant anaerobic carbon mineralization process. Groundwater flow modeling suggests that currents impinging on the escarpment and the flanks of an exposed mound can account for a significant influx and transport of sulfate through

  17. Distribution and Sources of Trace Metals in Volcaniclastic Sediments of the SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Hrischeva, E. H.; Scott, S. D.

    2007-12-01

    fragments do not exhibit clear metal anomalies. Local strong anomalies in metal concentrations caused by dispersal of chimney sulfides in the volcaniclastic sediments were found on the rim of the mound. More widespread anomalies were detected down to 80 cm depth in greenish-brown and greenish- black volcaniclastic sediments from the western slope of the mound. Metal anomalies in these sediments may be a result of dispersal of fine-grained particles of secondary minerals, such as atacamite and Fe-oxyhydroxides, derived from oxidation of sulfide chimneys. Another possible source of the metals is hydrothermal particles that were deposited in the sediments within fecal pellets. With the exception of local anomalies in surface sediments around active chimneys, the current particulate plume emanating from black smokers does not leave a clear signal in the sediments covering the mound.

  18. Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Fumin; Gao, Xueqing; Xue, Qi; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-02-01

    Reduced graphene oxide (rGO) supported platinum nanocubes (Pt-NCs) composites (Pt-NCs/rGO) were synthesized successfully by a water-based co-chemical reduction method, in which polyallylamine hydrochloride acted as a multi-functional molecule for the functionalization of graphene oxide, anchorage of PtII precursor, and control of Pt crystal facets. The morphology, structure, composition, and catalytic property of Pt-NCs/rGO composites were characterized in detail by various spectroscopic techniques. Transmission electron microscopy images showed well-defined Pt-NCs with an average size of 9 nm uniformly distributed on the rGO surface. The as-prepared Pt-NCs/rGO composites had excellent colloidal stability in the aqueous solution, and exhibited superior catalytic activity towards the hydrogenation reduction of nitro groups compared to commercial Pt black. The improved catalytic activity originated from the abundant exposed Pt{100} facets of Pt-NCs, excellent dispersion of Pt-NCs on the rGO surface, and synergistic effect between Pt-NCs and rGO.

  19. Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100)

    SciTech Connect

    Zuo, J.; Wendelken, J.

    1997-04-01

    Evolution of mound morphology in reversible homoepitaxy on Cu(100) was studied via spot-profile-analysis (SPA) LEED and scanning tunneling microscopy. The mound separation shows coarsening vs growth time with L(t){approximately}t{sup 1/4}, in support of theory based on capillarity between mounds. The growth ultimately reaches a steady state characterized by a selected mound angle of {approximately}5.6{degree}. We suggest that this results from a downhill current driven by step edge line tension in balance with an uphill current due to the Schwoebel barrier effect. Also, we have clarified the interpretation for the evolution of the SPA-LEED profile from a ring structure to a single time-invariant peak. {copyright} {ital 1997} {ital The American Physical Society}

  20. 2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONCRETE PADDING AREA BETWEEN BERM MOUNDS, LOOKING NORTH FROM TOP OF BERM. - NIKE Missile Base C-84, Acid Fueling Station, North of Launch Area Entrance Drive, eastern central portion of base, Barrington, Cook County, IL

  1. Possible Frost Mounds in an Ancient Martian Lake Bed

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.; Pollard, Wayne H.

    2000-05-01

    Circular to elongated mounds are observed in Gusev crater in the Aeolis subquadrangle of Mars. They are arranged in a large cluster and show different stages of evolution, from fresh to scar structures. Their morphology and morphometric ratios are comparable to those of terrestrial frost mounds. This study shows how the paleolacustrine environment of the Ma'adim Vallis/Gusev crater hydrogeologic system may have provided a suitable environment for the formation of frost mounds. Alternate hypotheses of formation including volcanism, fluvial erosion, and eolian erosion are discussed. Other features such as heavings, curvilinear troughs, hills, ridges, and depressions support the idea of a sediment/ice interaction. The typology of the mounds and plausible mechanisms for their formation are proposed. Their presence could support the model of a massive water body in Gusev during the Amazonian and provide indicators of paleoenvironmental conditions at the time of their formation.

  2. VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS USED FOR OBSERVATION EQUIPMENT AND PERISCOPE TOPS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  4. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    USGS Publications Warehouse

    Carleton, Glen B.

    2010-01-01

    Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the

  5. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    SciTech Connect

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  6. Environmental assessment for commercialization of the Mound Plant

    SciTech Connect

    Not Available

    1994-10-26

    In November 1993 US DOE decided to phase out operations at the Mound Plant in Miamisburg, Ohio, with the goal of releasing the site for commercial use. The broad concept is to transform the plant into an advanced manufacturing center with the main focus on commercializing products and other technology. DOE proposes to lease portions of the Mound Plant to commercial enterprises. This Environmental Impact statement has a finding of no significant impact in reference to such action.

  7. The latest on hydrothermal activity on Enceladus from Cassini and Laboratory work

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-10-01

    Various observations from the Cassini spacecraft [1,2,3], suggest the existence of subsurface water beneath the south polar region of Saturn's geologically active icy moon Enceladus. They provide information on the composition and physical conditions of water reservoirs occurring at shallow depth from which the plumes emerge [1,2,4], and about the dimensions of the south polar ocean beneath the ice crust at a depth of about 50km [3]. However, constraints on the physical and chemical conditions at the interface of the rocky core and the deep ocean are sparse. We report in situ measurements of tiny grains, so called stream particles, by Cassini's Cosmic Dust Analyser (CDA) in the Saturnian system. CDA data shows that these nano-particles are composed of silica that were initially embedded in larger μm-sized icy grains emitted from Enceladus subsurface waters and released by sputter erosion in Saturn's E ring. Comprehensive long- term laboratory experiments and model calculations were carried out to investigate the reaction conditions at the bottom of Enceladus' ocean.

  8. Termite mounds harness diurnal temperature oscillations for ventilation

    PubMed Central

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2015-01-01

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023

  9. Termite mounds harness diurnal temperature oscillations for ventilation.

    PubMed

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  10. Termite mounds harness diurnal temperature oscillations for ventilation.

    PubMed

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations. PMID:26316023

  11. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  12. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  13. Food preferences and mound-building behaviour of the mound-building mice Mus spicilegus

    NASA Astrophysics Data System (ADS)

    Hölzl, Michaela; Krištofík, Ján; Darolová, Alžbeta; Hoi, Herbert

    2011-10-01

    Optimal foraging strategies and food choice are influenced by various factors, e.g. availability, size and caloric content of the food type and predation risk. However, food choice criteria may change when food is not eaten immediately but has to be carried to a storage site for later use. For example, handling time in terms of harvesting and transport time should be optimized, particularly when the risk of predation is high. Thus, it is not clear whether food selected by hoarding animals reflects their food preference due to intrinsic features of the food type, e.g. size, caloric or lipid content, or whether the food type selected is a compromise that also considers the handling time required for harvesting and transport. We investigate this question in relation to food hoarding behaviour in mound-building mice. In autumn, mound-building mice Mus spicilegus collect seeds and other plant material and cover it with soil. Such above-ground storage is quite unusual for rodents. Here, we investigated whether there is a relationship between the seed species preferred as building materials and those preferred for food. We conducted a seed preference test using three most collected weed species for mound building. Controlling factors like food availability or predation risk, mice prefer Setaria spp. as food, although Amaranthus spp. and Chenopodium spp. were preferentially harvested and stored. By including the availability of the three species, our experimental results were confirmed, namely, a clear preference for Setaria spp. Also, handling time and seed size revealed to influence plant choice.

  14. Geochemistry of Phosphorus and Nitrogen in Volcanic Rocks Altered by Submarine Hydrothermal Activities at the Suiyo Seamount in Japan

    NASA Astrophysics Data System (ADS)

    Noda, M.; Kakegawa, T.; Naraoka, H.; Marumo, K.; Urabe, T.

    2002-12-01

    Phosphorus and nitrogen are essential major elements for all microorganisms. In order to understand the ecological conditions of subvent microorganisms and thermophilic microorganisms on ocean floor, it is necessary to understand the behavior of bio-essential elements not only in hydrothermal fluids but also in the subvent environment. Nine sites of hydrothermal discharging area were drilled in the Suiyo volcanic caldera, Izu-Ogasawara (Bonin) island-arc, western Pacific. Approximately 2 to 10 m deep drill core samples were recovered in the last two years. Chemical compositions and hydrothermal mineral assemblages in the drilled core samples were determined by XRF, ICP-MS, and XRD. Morphology of phosphorous-bearing minerals and their chemistry were examined by electron microprobe. Nitrogen isotopes were measured by the EA-IRMS system. Primary igneous-rock texture (such as euhedral plagioclase phenocryst) is found in the less altered rocks. They often associated with montmorillonite. Highly altered rocks are divided into two groups. First group is characterized by extensive (up to 90%) replacement of primary igneous mineral assemblage by chlorite, mica and sulfide. Second group is cemented with large amounts of sulfates with sulfide (mainly pyrite). It is found in a few drill core sections that hydrothermal hydrous silicate minerals change with depth from montmorillonite to chlorite and mica through mixed layer of chlorite/montmorillonite. This may suggest the more extensive and higher temperature alteration in deeper zones in a certain area. Electron microprobe analyses and bulk chemical composition indicate that the depletion of phosphorous in altered rocks (below 0.1 wt%) but enrichment of phosphorous in sulfide zones. This suggests that phosphorous was easily dissolved from igneous rocks by hydrothermal process, but readily precipitated with sulfides. The reason for co-precipitation of phosphates with sulfides is not certain, but such co-precipitation mechanism

  15. Chemistry and mineralogy of samples from the strategic petroleum reserve Bryan Mound site

    SciTech Connect

    Bild, R. W.

    1980-08-01

    The goal of the Strategic Petroleum Reserve (SPR) program is to protect the United States from a temporary cutoff of imported crude oil by stockpiling a reserve of oil in caverns in Gulf Coast salt domes. Some suitable caverns already exist as a result of solution mining activities by commercial mining companies. Most of the caverns for the program, however, will be solution mined specifically for the SPR program. The tasks assigned to Sandia National Laboratories include conducting a geotechnical program and providing interim technical support for the leaching of the first five caverns in the Bryan Mound, Texas, salt dome. This report describes chemical, mineralogical and petrological work done at Sandia as of May 1, 1980 in support of Bryan Mound activities. Samples of Bryan Mound salt cores, sidewall samples and drill cuttings have been subjected to chemical, mineralogical and petrographic analysis. Halite (NaCl) was the major mineral in all samples with anhydrite (CaSO/sub 4/) a common accessory. Minor or trace sylvite (KCl) and quartz (SiO/sub 2/) were detected in some sidewall samples. Other minor minerals found in drill cuttings included quartz; mixed carbonates of Fe, Ca and Mg; and several iron oxides. Possibly the carbonates are reaction products with the basic drilling mud or possibly pieces of caprock which contaminated the cuttings. The iron oxides were probably produced by corrosion of the drill stem or bit. Densities of several core samples were determined and insoluble residue was counted for radioactivity.

  16. Hydrodynamic Conditions Influencing Cold-Water Coral Carbonate Mound Development (Challenger Mound, Porcupine Seabight, NE Atlantic): a Contribution to IODP Exp307

    NASA Astrophysics Data System (ADS)

    Thierens, M.; Odonnell, R.; Stuut, J.; Titschack, J.; Dorschel, B.; Wheeler, A. J.

    2007-12-01

    Cold-water coral carbonate mounds are complex geo-biological systems, originating from the interplay of hydrodynamic, sedimentological and biological factors. As changes in hydrodynamic and sedimentary regime are assumed to be amongst the main controls on mound evolution, reconstruction of the hydrodynamic and palaeoclimatic microenvironment on-mound, compared to the background environmental conditions (as seen off- mound), contributes to the fundamental understanding of these intriguing features and the development of a cold- water coral carbonate mound development model. Challenger Mound, one of the large cold-water coral carbonate mounds along the eastern Porcupine Seabight continental margin (NE Atlantic, SW off Ireland), was successfully drilled during IODP Expedition 307, providing the first complete recovery of a continuous sedimentary sequence through a carbonate mound. High-resolution particle size analysis of the terrigenous sediment component is used as primary proxy for reconstructing the hydrodynamic conditions during mound development. First results indicate repeated shifts in hydrodynamic conditions during sediment deposition on Challenger Mound, from lower-energetic conditions to higher-energetic environments and visa versa, which might reflect environmental variation over interglacial-glacial timescales throughout the whole mound development period. In conjunction with other available data, this dataset provides insight in local current regimes and sediment dynamics, the specific role of cold-water corals in these complex geo-biological systems and the differentiation of different sediment contributors to the coral mound system and its surroundings.

  17. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S.W. Ireland (IODP Expedition 307).

    PubMed

    Wehrmann, L M; Titschack, J; Böttcher, M E; Ferdelman, T G

    2015-09-01

    Challenger Mound, a 150-m-high cold-water coral mound on the eastern flank of the Porcupine Seabight off SW Ireland, was drilled during Expedition 307 of the Integrated Ocean Drilling Program (IODP). Retrieved cores offer unique insight into an archive of Quaternary paleo-environmental change, long-term coral mound development, and the diagenetic alteration of these carbonate fabrics over time. To characterize biogeochemical carbon-iron-sulfur transformations in the mound sediments, the contents of dithionite- and HCl-extractable iron phases, iron monosulfide and pyrite, and acid-extractable calcium, magnesium, manganese, and strontium were determined. Additionally, the stable isotopic compositions of pore-water sulfate and solid-phase reduced sulfur compounds were analyzed. Sulfate penetrated through the mound sequence and into the underlying Miocene sediments, where a sulfate-methane transition zone was identified. Small sulfate concentration decreases (<7 mM) within the top 40 m of the mound suggested slow net rates of present-day organoclastic sulfate reduction. Increasing δ(34)S-sulfate values due to microbial sulfate reduction mirrored the decrease in sulfate concentrations. This process was accompanied by oxygen isotope exchange with water that was indicated by increasing δ(18)O-sulfate values, reaching equilibrium with pore-water at depth. Below 50 mbsf, sediment intervals with strong (34)S-enriched imprints on chromium-reducible sulfur (pyrite S), high degree-of-pyritization values, and semi-lithified diagenetic carbonate-rich layers characterized by poor coral preservation, were observed. These layers provided evidence for the occurrence of enhanced microbial sulfate-reducing activity in the mound in the past during periods of rapid mound aggradation and subsequent intervals of non-deposition or erosion when geochemical fronts remained stationary. During these periods, especially during the Early Pleistocene, elevated sulfate reduction rates facilitated

  18. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S.W. Ireland (IODP Expedition 307).

    PubMed

    Wehrmann, L M; Titschack, J; Böttcher, M E; Ferdelman, T G

    2015-09-01

    Challenger Mound, a 150-m-high cold-water coral mound on the eastern flank of the Porcupine Seabight off SW Ireland, was drilled during Expedition 307 of the Integrated Ocean Drilling Program (IODP). Retrieved cores offer unique insight into an archive of Quaternary paleo-environmental change, long-term coral mound development, and the diagenetic alteration of these carbonate fabrics over time. To characterize biogeochemical carbon-iron-sulfur transformations in the mound sediments, the contents of dithionite- and HCl-extractable iron phases, iron monosulfide and pyrite, and acid-extractable calcium, magnesium, manganese, and strontium were determined. Additionally, the stable isotopic compositions of pore-water sulfate and solid-phase reduced sulfur compounds were analyzed. Sulfate penetrated through the mound sequence and into the underlying Miocene sediments, where a sulfate-methane transition zone was identified. Small sulfate concentration decreases (<7 mM) within the top 40 m of the mound suggested slow net rates of present-day organoclastic sulfate reduction. Increasing δ(34)S-sulfate values due to microbial sulfate reduction mirrored the decrease in sulfate concentrations. This process was accompanied by oxygen isotope exchange with water that was indicated by increasing δ(18)O-sulfate values, reaching equilibrium with pore-water at depth. Below 50 mbsf, sediment intervals with strong (34)S-enriched imprints on chromium-reducible sulfur (pyrite S), high degree-of-pyritization values, and semi-lithified diagenetic carbonate-rich layers characterized by poor coral preservation, were observed. These layers provided evidence for the occurrence of enhanced microbial sulfate-reducing activity in the mound in the past during periods of rapid mound aggradation and subsequent intervals of non-deposition or erosion when geochemical fronts remained stationary. During these periods, especially during the Early Pleistocene, elevated sulfate reduction rates facilitated

  19. Seafloor doming driven by active mantle degassing offshore Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Ventura, Guido; Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Caliro, Stefano; Chiodini, Giovanni; Sacchi, Marco; Rizzo, Andrea

    2016-04-01

    Structures and processes associated with shallow water hydrothermal fluid discharges on continental shelves are poorly known. We report geomorphological, geophysical, and geochemical evidences of a 5.5 x 5.3 km seabed doming located 5 km offshore the Naples harbor (Italy). The dome lies between 100 and 170 m of water depth and it is 15-20 m higher than the surrounding seafloor. It is characterized by a hummocky morphology due to 280 sub-circular to elliptical mounds, about 660 cones, and 30 pockmarks. The mounds and pockmarks alignments follow those of the main structural discontinuity affecting the Gulf of Naples. The seafloor swelling and breaching require relatively low pressures (about 2-3 MPa), and the sub-seafloor structures, which consists of 'pagodas' affecting the present-day seabed, record the active upraise, pressurization, and release of magmatic fluids. The gas composition of the sampled submarine emissions is consistent with that of the emissions from the hydrothermal systems of Ischia, CampiFlegrei and Somma-Vesuvius active volcanoes, and CO2 has a magmatic/thermometamorphic origin. The 3He/4He ratios (1.66-1.96 Ra) are slightly lower than in the Somma-Vesuvius and Campi Flegrei volcanoes (~2.6-3.0 Ra) indicating the contamination of fluids originated from the same magmatic source by crustal-derived radiogenic 4He. All these evidences concur to hypothesize an extended magmatic reservoir beneath Naples and its offshore. Seabed doming, faulting, and hydrothermal discharges are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. We conclude that seabed deformations and hydrothermal discharge must be included in the coastal hazard studies.

  20. Three-dimensional sea-urchin-like hierarchical TiO{sub 2} microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity

    SciTech Connect

    Zhou, Yi; Huang, Yan; Li, Dang; He, Wenhong

    2013-07-15

    Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized on a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.

  1. Decadal-scale variations in geomagnetic field intensity from ancient Cypriot slag mounds

    NASA Astrophysics Data System (ADS)

    Shaar, Ron; Tauxe, Lisa; Ben-Yosef, Erez; Kassianidou, Vasiliki; Lorentzen, Brita; Feinberg, Joshua M.; Levy, Thomas E.

    2015-01-01

    models based on direct observations since the 1830s show that the averaged relative change in field intensity on Earth's surface over the past 170 years is less than 4.8% per decade. It is unknown if these rates represent the typical behavior of secular variations due to insufficient temporal resolution of archaeomagnetic records from earlier periods. To address this question, we investigate two ancient slag mounds in Cyprus—Skouriotissa Vouppes (SU1, fourth to fifth centuries CE, 21 m in height), and Mitsero Kokkinoyia (MK1, seventh to fifth centuries BCE, 8 m in height). The mounds are multilayered sequences of slag and charcoals that accumulated near ancient copper production sites. We modeled the age-height relation of the mounds using radiocarbon dates, and estimated paleointensities using Thellier-type IZZI experiments with additional anisotropy, cooling rate, and nonlinear TRM assessments. To screen out ambiguous paleointensity interpretations, we applied strict selection criteria at the specimen/sample levels. To ensure objectivity, consistency, and robust error estimation, we employed an automatic interpretation technique and put the data available in the MagIC database. The analyses yielded two independent subcentury-scale paleointensity time series. The MK1 data indicate relatively stable field at the time the mound accumulated. In contrast, the SU1 data demonstrate changes that are comparable in magnitude to the fastest changes inferred from geomagnetic models. We suggest that fast changes observed in the published archaeomagnetic data from the Levant are driven by two longitudinally paired regions, the Middle East and South Africa, that show unusual activity in geomagnetic models.

  2. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  3. SeaVOICE: Sea-going Experiments to Test Potential Linkages among Sea Level Change, Ocean Ridge Volcanism, and Hydrothermal Activity.

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.; Carbotte, S. M.; Huybers, P. J.; McManus, J. F.; Mukhopadhyay, S.; Winckler, G.; Boulahanis, B.; Costa, K.; Ferguson, D.; Katz, R. F.; Li, Y.; Middleton, J. L.

    2015-12-01

    Changes in sea level influence the pressure of the solid Earth over entire ocean basins. While the absolute changes in sea level caused by glacial cycles are small relative to ocean depths, the temporal variations in sea level can lead to pressure changes of similar order to mantle upwelling rates, with the potential to significantly perturb short term rates of melt production at ocean ridges (Huybers and Langmuir, EPSL, 2009). Such changes could then lead to fluctuations in crustal thickness, magma composition and hydrothermal activity. To investigate possible relationships between glacial cycles and ocean ridge processes, we carried out an 18 day cruise of mapping and sediment coring to the Cleft Segment of the Juan de Fuca ridge. High resolution bathymetry was obtained on the west side of the ridge axis to beyond 1Ma to test whether abyssal hill fabric shows periodicities consistent with glacial cycles. Nine successful piston cores up to 7.6m in length provide a sedimentary record back to more than 600kyr to test for spatial and temporal variations in hydrothermal activity. Oxygen isotope stratigraphy on these cores is systematic and provides good age constraints. Short cores near the ridge axis provide a record of the current trace of hydrothermal activity in youngest sediments. Several of the cores impacted basement and recovered a basement sample. Above basement, basaltic glass shards were recovered in the bottom meter of sediment, raising the possibility of temporal records of basalt chemical compositions using the age constraints the sediments provide. The glass samples provide a unique and new perspective on ridge volcanism, since previous off-axis samples were restricted to dredging old fault scarps. Cores can be taken anywhere, raising the potential for global time series studies of ridge volcanism. The coupled bathymetry, sediment geochemistry and magmatic glass compositions hold the promise of a definitive advance in our understanding of the

  4. Genesis and fluid source in Arabia crater mounds: mapping, fractal analysis, and impact simulations

    NASA Astrophysics Data System (ADS)

    Pozzobon, R.; Mazzarini, F.; Rossi, A.; Lucchetti, A.; Pondrelli, M.; Marinangeli, L.; Martellato, E.; Cremonese, G.; Massironi, M.

    2013-12-01

    Arabia Terra is dominated by heavily cratered terrains, and some peculiar landforms can be found mostly in craters interior. With high-resolution images from HiRISE (25 cm/px) and CTX (6 m/px) cameras pitted cones, mounds and knobs can be easily recognized. Those mounds are interpreted to have worked as pathways for subsurface fluid. It is commonly hypothesized that Arabia Terra is an area of past fluid activity, being crater central bulges a place of sulfate precipitation. In this work we investigate the presence, origin and timing of their formation as well as the the depth of the mounds fluid source. The spatial distribution of monogenic eruptive structures within volcanic areas on Earth has been linked to fracture systems that allowed an efficient hydraulic connection between surface and crustal or subcrustal magma reservoirs. Self-similarity in vent distribution is described by a power law distribution with fractal exponent D and defined over a range of lengths comprised between a lower limit (lower cutoff, Lco) and an upper limit (upper cutoff, Uco). On Earth, volcanic vents as well as mud volcanoes have shown that the Uco of their fractal distribution scales with the depth of pressurized fluid reservoirs. The same approach has been this applied to mounds mapped at Firsoff and Crommelin craters. 431 mounds were mapped on Firsoff Crater's floor, and 160 on Crommelin Crater's floor. The reslulting Uco for both craters are similar giving a source depth of 2.3 ×0.3 km from Firsoff Crater's ground floor and 2.6 ×0.5 km from Crommelin's floor. Hence it is possible to hypothesize a common regional-scale pressurized fluid level at 2.5 km of depth from craters floor. Morphogic and stratigraphical analyses of the high-resolution imagery and topography of those mounds allowed us to discern from actual mud volcano candidates and stratigraphic erosional remnants. We also studied the craters formation by simulating the impact with the hydrocode. We used iSALE shock code

  5. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Spray, John G.

    2001-05-01

    Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact-generated rocks following formation of the 24 km-diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact-generated concentric fault systems. The intra-breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault-related hydrothermal alteration occurs in 1-7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz-carbonate breccia showing pronounced Fe-hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 degC), with the precipitation of quartz (vapour phase dominated); (2) Main Stage (200-100 deg C), with the development of a two phase (vapour plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation, and (3) Late Stage (<100 degC), with selenite and fibroferrite development through liquid phase-dominanted precipitation. We estimate that it took several tens of thousands of years to cool below 50 deg C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results also reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.

  6. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    SciTech Connect

    Sturchio, N.C.; Seitz, M.G.

    1984-12-31

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables.

  7. A reassessment of the evidence for hydrothermal activity in the Neogene-Quaternary lacustrine environments of the Baza basin (Betic Cordillera, SE Spain) and its paleoecological implications

    NASA Astrophysics Data System (ADS)

    García-Aguilar, José Manuel; Guerra-Merchán, Antonio; Serrano, Francisco; Flores-Moya, Antonio; Delgado-Huertas, Antonio; Espigares, M. Patrocinio; Ros-Montoya, Sergio; Martínez-Navarro, Bienvenido; Palmqvist, Paul

    2015-03-01

    In a recent paper, García-Aguilar et al. (2014) reported on lithological, mineralogical and geochemical evidence of intense, tectonically-induced hydrothermal activity during the continental sedimentary infilling of the Baza basin, a postorogenic, intramontane area developed on the boundary between the Internal and External Zones of the Betic Cordillera, Southeast Spain (Fig. 1). This evidence includes the finding of sulfur contents, magnesium clays, fluorspar and celestine deposits, thermogene stromatolites and travertine growths in the latest Miocene (Turolian) to Middle Pleistocene lacustrine sediments and is particularly concentrated at certain stages and places (e.g. at Calabrian times in the Orce area).

  8. News and Views: Betelgeuse bubbles up dust; Hydrothermal activity on early asteroids; Is this a record? Galaxy evolution in 3D; LOFAR looks farther; IOPD makes plans

    NASA Astrophysics Data System (ADS)

    2011-08-01

    Red supergiant star Betelgeuse is surrounded by a vast halo of silicate and aluminium dust, visible in false colour in this infrared image from the European Southern Observatory's Very Large Telescope. This material may eventually form planets around a new star. Biochemical analysis of the Tagish Lake meteorites, some of the most pristine samples of carbonaceous chondrites known, suggests that much of the variation in organic matter between different meteorite samples can be ascribed to hydrothermal activity on meteorite parent bodies. European Southern Observatory astronomers have discovered the most distant quasar yet - and reckon it is one of the brightest objects in the early universe.

  9. Environmental monitoring at Mound: 1986 report

    SciTech Connect

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of the DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.

  10. Sorptive removal of arsenate using termite mound.

    PubMed

    Fufa, Fekadu; Alemayehu, Esayas; Lennartz, Bernd

    2014-01-01

    Long-term consumption of arsenic results in severe and permanent health damages. The aim of the study was to investigate arsenate (As(V)) sorption capacity of termite mound (TM), containing mainly silicon, aluminum, iron and titanium oxides, under batch adsorption setup. The pattern of As(V) removal with varying contact time, solution pH, adsorbent dose, As(V) concentration and competing anions was investigated. Dissolution of the adsorbent was insignificant under the equilibrium conditions. Equilibrium was achieved within 40 min of agitation time. Kinetic data of As(V) adsorption followed well the pseudo-second order equation (R(2) > 0.99). High As(V) removal efficiency (∼ 99%) was observed over a pH range ∼ 3-∼ 10, which is of great importance in the practical application. The Freundlich and Dubinin-Radushkevich isotherms well described (R(2) > 0.99, χ(2) ∼ 0.05) the equilibrium As(V) adsorption, giving a coefficient of adsorption 1.48 mg(1-1/n)L(1/n)/g and a saturation capacity 13.50 mg/g respectively. The obtained value of mean sorption energy (EDR = 13.32 kJ/mol) suggested the chemisorption mechanism of As(V) adsorption on TM. The removal of As(V) was significantly decreased in the presence of phosphate ions. The As(V) loaded adsorbent was successfully regenerated using NaOH solution with insignificant loss of metals. Therefore, the results of the study demonstrated that TM could be considered as a promising adsorbent for the treatment of As(V) in drinking water. PMID:24309232

  11. The Gale Crater Mound in a Regional Geologic Setting

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Korn, L. K.

    2012-01-01

    The Mars Science Laboratory Rover Curiosity is commencing a two-year investigation of Gale crater and Mt. Sharp, the crater s prominent central mound. Gale is a 155 km, late Noachian / early Hesperian impact crater located near the dichotomy boundary separating the southern highlands from the northern plains. The central mound is composed of layered sedimentary rock, with upper and lower mound units separated by a prominent erosional unconformity (Milliken et al., 2010). The lower mound is of particular interest, as it contains secondary minerals indicative of a striking shift from water-rich to water-poor conditions on early Mars. A key unknown in the history of Gale is the relationship between the sedimentary units in the mound and sedimentary sequences in the surrounding region. We employed orbital remote sensing data to determine if areas within a 1,000 km radius of Gale match the characteristics of sedimentary units in Mt. Sharp. Regions of interest were defined based on: the mound s inferred age (late Noachian to early Hesperian), altitude range (-4,600 m to +400 m), and THEMIS nighttime brightness (a proxy for thermal inertia). This combination of characteristics is matched by two extensive units, the late Noachian subdued cratered unit Npl2 and Noachian / Hesperian undivided material HNu (Greeley and Guest, 1987), located along the dichotomy. Geomorphic units have been mapped within the Gale mound by Thomson et al. (2011) based on albedo, layering and erosional characteristics. Using orbital CTX, MOC and HiRISE images we examined all areas within our regions of interest for analogous geomorphic units in the same altitude ranges as the corresponding units in Mt. Sharp. The most convincing geomorphic analogs to lower mound units, dominated by fine-scale layering and prominent yardangs, were located approximately 200 km northeast and southeast of Gale in late Noachian unit Npl2. The most convincing geomorphic analogs to upper mound layered units are located

  12. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  13. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  14. HiRISE observations of fractured mounds: Possible Martian pingos

    USGS Publications Warehouse

    Dundas, C.M.; Mellon, M.T.; McEwen, A.S.; Lefort, A.; Keszthelyi, L.P.; Thomas, N.

    2008-01-01

    Early images from the High Resolution Imaging Science Experiment (HiRISE) camera have revealed small fractured mounds in the Martian mid-latitudes. HiRISE resolves fractures on the mound surfaces, indicating uplift, and shows that the mound surface material resembles that of the surrounding landscape. Analysis of Mars Orbiter Camera (MOC) images shows that in Utopia Planitia the mounds lie almost exclusively between 35-45??N. This range coincides with the peak-abundance latitudes of several landforms attributed to ground water or ice, including gullies, and suggests a ground ice-related origin. The best terrestrial analogues for the observed mound morphology are pingos, although some differences are noted. The presence of uncollapsed. pingos would indicate the presence of near-surface ground ice in the Martian mid-latitudes, at depths greater than the ???1 meter sampled by orbital spectrometers. Pingo formation may require near-surface liquid water, which is consistent with a shallow groundwater model for the origin of gullies. Copyright 2008 by the American Geophysical Union.

  15. HiRISE observations of fractured mounds: Possible Martian pingos

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Mellon, Michael T.; McEwen, Alfred S.; Lefort, Alexandra; Keszthelyi, Laszlo P.; Thomas, Nicolas

    2008-02-01

    Early images from the High Resolution Imaging Science Experiment (HiRISE) camera have revealed small fractured mounds in the Martian mid-latitudes. HiRISE resolves fractures on the mound surfaces, indicating uplift, and shows that the mound surface material resembles that of the surrounding landscape. Analysis of Mars Orbiter Camera (MOC) images shows that in Utopia Planitia the mounds lie almost exclusively between 35-45°N. This range coincides with the peak-abundance latitudes of several landforms attributed to ground water or ice, including gullies, and suggests a ground ice-related origin. The best terrestrial analogues for the observed mound morphology are pingos, although some differences are noted. The presence of uncollapsed pingos would indicate the presence of near-surface ground ice in the Martian mid-latitudes, at depths greater than the ~1 meter sampled by orbital spectrometers. Pingo formation may require near-surface liquid water, which is consistent with a shallow groundwater model for the origin of gullies.

  16. Synsedimentary tectonics, mud-mounds and sea-level changes on a Palaeozoic carbonate platform margin: a Devonian Montagne Noire example (France)

    NASA Astrophysics Data System (ADS)

    Bourrouilh, Robert; Bourque, Pierre-André; Dansereau, Pauline; Bourrouilh-Le Jan, Françoise; Weyant, Pierre

    1998-06-01

    The Devonian sedimentary succession of the southern flank of the Montagne Noire (France) was deposited along a divergent margin. This paper is a contribution to describe and evaluate biogenic, sedimentary, geochemical and micropalaeontological features as indicators of sea-level changes and global history of the Devonian in this area. Following transgression and shallow-water environments during Early Devonian time (Lochkovian to early Emsian), biogenic mud-rich mounds with stromatactis developed during latest Emsian at the platform margin. The depth of the Devonian sea was increasing and the seafloor passed below the photic zone and the lower limit of storm wave base during the Emsian. Growth and seismic faults affected the mounds and created Neptunian cracks and crevices, quickly filled with sedimentary material (pisoids) and cements (Neptunian dykes and veins). Light and CL-microscopy, and stable isotope geochemistry show that stromatactis, cements of Neptunian dykes, veins and pisoid cortices are early marine, whereas the red finely crystalline material that forms the bulk of the mound has been cemented in the near-surface diagenetic environment, after the early marine cementation of stromatactis and Neptunian dykes and veins, by meteoric or hydrothermal fluids. The sedimentary rocks overlying the stromatactis mounds exhibit regularly condensed iron and manganese-rich layers, interrupted by the Kellwasser hypoxic horizon. These condensed deposits developed up to the Famennian in a context of carbonate gravity sedimentation and became more and more rhythmic and frequent up section. The occurrence and irregular distribution of large-scale submarine mass flows during Frasnian and Famennian times can be related to block faulting on which Lower Devonian stromatactis mounds could have been uplifted by this block faulting to form seamounts. The sea-level fluctuations detected in the southern flank of Montagne Noire are compared to the Devonian eustatic sea-level curve

  17. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    NASA Astrophysics Data System (ADS)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  18. Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection

    PubMed Central

    Wayu, Mulugeta B.; Spidle, Ryan T.; Devkota, Tuphan; Deb, Anup K.; Delong, Robert K.; Ghosh, Kartik C.; Wanekaya, Adam K.; Chusuei, Charles C.

    2013-01-01

    We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1–20 mM concentration range. PMID:25684785

  19. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  20. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  1. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  2. Tin-bearing chalcopyrite and platinum-bearing bismuthinite in the active Tiger sulfide chimney, Yonaguni Knoll IV seafloor hydrothermal system, Okinawa Trough, Japan

    NASA Astrophysics Data System (ADS)

    Gena, K.; Kase, K.; Chiba, H.; Nakashima, K.

    2005-12-01

    The active submarine hydrothermal field at the Yonaguni Knoll IV is located in the southern Okinawa Trough, behind the Ryukyu trench-arc system, Japan. This field consists of seven active hydrothermal venting sites (Mosquito chimney, Carp Chimney, Abyss vent, Shallow Chimney, Tiger Chimney, Lion Chimney, Crystal Chimney) which are hosted by thick sediments and an underlying felsic volcanic rock of rhyolitic composition. The sulfides from the flank of the Tiger chimney consist of chalcopyrite, bismuthinite, pyrite, galena, sphalerite and gangue mineral of anhydrite which is slightly different to the mineral assemblage of sphalerite, pyrite, wurtzite, chalcopyrite, galena, tennanite-tetrahedrite series, stibnite, As-Sb-Tl-Hg-S bearing phase, bornite, covellite, nukundamite, alabandite and gangue minerals of barite, anhydrite, calcite, and rhodocrosite seen in the other chimneys in this field. Electron microprobe analysis of the chalcopyrite and bismuthinite from the flank of the Tiger chimney, indicates that the chalcopyrite and bismuthinite contain significantly high tin (0.51 to 2.40wt.% Sn, n = 16 ) and platinum (1.30 to 1.69 wt.% Pt, n = 9)respectively and are quite different to the sulfide chemistry of the other chimneys in this field The high Sn and Pt content in chalcopyrite and bismuthinite respectively, are significantly high and has never been reported previously for the submarine hydrothermal systems. The high Sn content in chalcopyrite confirms that the Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+ while the high Pt content in bismuthinite might indicate that Pt probably enters the bismuthinite by interstitial substitution of Pt2+Cu1+ for Bi3+ although very limited published data is available to verify this observation. Fluid inclusion data of anhydrite (297-313°C) and measured end-member temperature of the vent fluid (325°C) does not exceed 400°C. Previous experimental studies

  3. Cell Sorting in the Mound Stage of Dictyostelium

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Levine, Herbert; Glazier, James

    1998-03-01

    In the mound stage of slime mold Dictyostelium discoideum, cells differentiated into two types: pre-stalk and pre-spore. Pre-stalk cells sort and form a tip at the apex of the mound of prespore cells. How this pattern forms is as yet unknown. A cellular level model allows us to simulate both differential cell adhesion and chemotaxis, two principle mechanisms for cell migration. Simulations show that with differential adhesion only, pre-stalk cells move to the surface of the mound but form no tip. With chemotaxis driven by an outgoing circular wave only, a tip forms but contains both pre-stalk and pre-spore cells. Only for a narrow range of relative strengths between differential adhesion and chemotaxis, can both mechanisms work in concert to form a tip which contains only pre-stalk cells. The simulations provide a method to determine the processes necessary for patterning and suggest a series of further experiments.

  4. Environmental controls on cold-water coral mound distribution, morphology, and development in the straits of Florida

    NASA Astrophysics Data System (ADS)

    Simoes Correa, Thiago Barreto

    influenced by unidirectional flowing current, whereas the mounds on the GBB slope are influenced by tidal current regime. The GBB mounds also experience higher sedimentation rates relative to the sites away from the GBB slope. Sub-surface data document partially or completely buried mounds on the GBB sites. The sediments burying mounds are off-bank material transported downslope by mass gravity flow. Mass gravity transport creates complex slope architecture on the toe-of-slope of GBB, with canyons, slump scars, and gravity flow deposits. Cold-water corals use all three of these features as location for colonization. Coral mounds growing on such pre-existing topography keep up with off-bank sedimentation. In contrast, away from the GBB slope, off-bank sedimentation is absent and coral ridges grow independently of antecedent topography. In the sediment-starved Miami Terrace site, coral ridge initiation is related to a cemented mid-Miocene unconformity. In the center of the Straits, coral ridges and knobs develop over an unconsolidated sand sheet at the tail of the Pourtales drift. Coral features at the Miami Terrace and center of the Straits have intricate morphologies, including waveform and chevron-like ridges, which result from asymmetrical coral growth. Dense coral frameworks and living coral colonies grow preferentially on the current-facing ridge sides in order to optimize food particle capture, whereas coral rubble and mud-sized sediments accumulate in the ridge leesides. Finally, this study provides a method using solely acoustic data for discriminating habitats in which cold-water corals are actively growing. Results from this method can guide future research on and management of cold-water coral ecosystems. Taken together, spatial quantitative analyses of the large-scale, high-resolution integrated surveys indicate that cold-water coral habitats in the Straits of Florida: (1) are significantly more diverse and abundant than previously thought, and (2) can be

  5. Geoarchaeology and aggradation around Kinet Höyük, an archaeological mound in the Eastern Mediterranean, Turkey

    NASA Astrophysics Data System (ADS)

    Beach, Timothy P.; Luzzadder-Beach, Sheryl

    2008-10-01

    We examined the alluvial history of the plain near Kinet Höyük, an archaeological mound (or Tell) with a sequence of six millennia of occupation on the southeast Mediterranean coast of Turkey, through 17 excavations over a 1000 m transect near the Mound. Excavations ranged from 2 to 6 m deep and up to 20 m across. This low gradient, alluvial plain shows significantly different rates and processes of near-Mound sedimentation, with one unit having nearly 4 m of Late Bronze Age habitation and flood deposits and another having 4 m of Hellenistic channel and floodplain deposition. This flat, alluvial surface turns out to be a rich geoarchaeological landscape that shrouds Early and Late Bronze Age settlements, Hellenistic walls, and two epochs of Roman Roads. One widespread phenomenon was a Hellenistic or earlier paleosol and occupation level covered by channel gravels and overbank deposits mostly from the Hellenistic to the Late Roman period. These channel and floodplain deposits filled in and flattened out the off-Mound settlements, blanketing the Pre-Hellenistic topography and silting in a long active port. This glut of alluvium correlates in time with drier conditions and the most intensive land uses in the watershed, where Roman and Hellenistic sites today are severely eroded.

  6. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.

    PubMed

    Perner, Mirjam; Petersen, Jillian M; Zielinski, Frank; Gennerich, Hans-Hermann; Seifert, Richard

    2010-10-01

    Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

  7. Perennial mounds in Utopia Planitia: (HiRISE) Evidence of a Glacial Origin

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Osinski, G. R.; Thomson, L.

    2009-03-01

    Here, we use HiRISE and high-resolution MOC images to discuss sub-kilometer pingo-like mounds in Utopia Planita. The mounds show geological characteristics consistent with formation by glacial accumulation, and ablation by sublimation.

  8. High-temperature hydrothermal activities around suboceanic Moho: An example from diopsidite and anorthosite in Wadi Fizh, Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Akizawa, Norikatsu; Tamura, Akihiro; Fukushi, Keisuke; Yamamoto, Junji; Mizukami, Tomoyuki; Python, Marie; Arai, Shoji

    2016-10-01

    Reaction products between hydrothermal fluids and uppermost mantle harzburgite-lowermost crustal gabbro have been reported along Wadi Fizh, northern Oman ophiolite. They are named mantle diopsidite (MD) or crustal diopsidite (CD) depending on the stratigraphic level. They construct network-like dikes crosscutting structures of the surrounding harzburgite or gabbro. The MD is mainly composed of diopsidic clinopyroxene, whereas the CD is of diopsidic clinopyroxene and anorthitic plagioclase. Here, we report a new reaction product, crustal anorthosite (CA), from the lowermost crustal section. The CA is always placed in the center of the CD network, and mainly consists of anorthitic plagioclase with minor titanite and chromian minerals such as chromite and uvarovite. Aqueous fluid inclusions forming negative crystals are evenly distributed in minerals of the CA. The fluid inclusions contain angular-shaped or rounded daughter minerals as calcite or calcite-anhydrite composite, which were identified by Raman spectroscopic analysis. We estimated their captured temperature at 530 °C at least by conducting microthermometric analysis of the fluid inclusions. Furthermore, we examined their chemical characteristics by direct laser-shot sampling conducted by laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). The results indicate that the trapped aqueous fluids contain an appreciable amount of Na, but no K and Cr. Hydrothermal fluids involved in the CA formation transported Cr, which was probably taken up from chromite seams in the uppermost mantle section. Cr got soluble by forming complexes with anions as SO42-, CO32- and Cl-. In addition, these hydrothermal fluids transported Fe, Mg and trace elements (Ti, Sr, Y, Zr and rare-earth elements) governing whole-rock chemical compositions of the MDs, CDs and CAs. Our estimation for the condition of CA formation yielded rather low temperatures (530-600 °C), which indicates a later stage production of the CA

  9. Feasibility of Using Template-Based and Object Based Automated Detection Methods for Quantifying Black and Hybrid Iimported Fire Ant (Solenopsis invicta Buren and S. invicta x richteri) Mound in Aerial Digital Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imported fire ants construct earthen nests (=mounds) that exhibit many characteristics which make them potentially good targets for remote sensing programs, including geographical orientation, topography, and bare soil surrounded by actively growing vegetation. Template based features and object-ba...

  10. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    NASA Astrophysics Data System (ADS)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy

  11. Native American Calendric Orientation at Town Creek Indian Mound

    NASA Astrophysics Data System (ADS)

    Tiede, V. R.

    2005-12-01

    Evidence is presented for a newly discovered set of interior solar alignments - the equinox and summer solstice meridian transits - at a prehistoric Native American structure in the Southeast United States. Because North Carolina's Town Creek Indian Mound is the only Mississippian temple-mound accurately reconstructed from overhead photo-mosaics, the site is uniquely suited for applying the techniques of astro-archaeology (G. S. Hawkins 1983). Implications of the new findings for interpreting Muskogean ethnographic literature as well as future archaeoastronomical research at other Southeastern sites (e.g., Ocmulgee National Monument Earth Lodge, Georgia) are discussed.

  12. Analysis of Subsidence Data for the Bryan Mound Site, Texas

    SciTech Connect

    Bauer, Stephen J.

    1999-07-01

    The elevation change data measured at the Bryan Mound Strategic Petroleum Reserve (SPR) site over the last 16+ years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Bryan Mound is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  13. Evidence for Pulsed Hydrothermal Venting from Young Abyssal Hills on the EPR Flank Suggests Frequent Seismic Pumping of Ridge Flank Fluid Flow

    NASA Astrophysics Data System (ADS)

    Haymon, R. M.; MacDonald, K. C.; Benjamin, S. B.; Ehrhardt, C. J.

    2004-12-01

    Although measured heat flow suggests that 40-50% of oceanic hydrothermal heat and fluid flux is from young (0.1-5 Ma) abyssal hill terrain on MOR flanks, hydrothermal vents in this setting rarely have been found. On the EPR flanks, seafloor evidence of venting from abyssal hills has been discovered recently at two sites: on ˜0.1 Ma seafloor at 10° 20'N, 103° 33.2'W ("Tevnia Site") and on ˜0.5 Ma seafloor at 9° 27'N, 104° 32.3'W ("Macrobes Site"). Manifestations of venting at these sites include: fault scarp hydrothermal mineralization and macrofauna; fault scarp flocculations containing hyperthermophilic microbes; and hilltop sediment mounds and craters possibly created by fluid "blow-outs." Hydrothermal deposits recovered at the ˜0.1 Ma "Tevnia Site" are fault breccias that record many episodes of brecciation followed by hydrothermal cementation (Benjamin et al., this session). Tubeworm casings, live crabs, and "dandelions" observed at this site indicate that the most recent episode of venting was active during, or shortly before, this site was visited with Alvin in 1994. To create the 200 m-high axis-facing fault scarp at Tevnia Site in 100,000 years, an average uplift rate of at least 2 cm/y is required. Since off-axis earthquakes located on abyssal hill fault scarps typically are hydrothermal flow on a very frequent basis. In addition, close proximity to Clipperton Transform may subject Tevnia Site to frequent M5-M6 seismic events with strong ground shaking and hydraulic pressure pulses capable of breaking open subseafloor pathways clogged with fragile minerals. We hypothesize that the multiple brecciation/cementation events recorded in the Tevnia Site samples, and biological evidence for recent venting at the

  14. Cold-water coral carbonate mounds and associated habitats of the Chella Seamount (Alboran Sea - SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lo Iacono, C.; Bartolomé, R.; Gràcia, E.; Monteys, X.; Perea, H.; Gori, A.; Event-Shelf Team

    2009-04-01

    This study focuses on the characterization of cold-water carbonate mounds and of the associated habitats detected and mapped in the Chella Seamount, off the Almeria Margin, along the eastern Alboran Sea (SW Mediterranean). The study has been carried out by means of an integrated geophysical dataset, comprising large-scale sidescan sonar (TOBI), high resolution swath-bathymetry, TOPAS and Sparker high-resolution seismics. The acoustic dataset has been ground-truthed by images from an ROV and a deep-towed video-camera. Carbonate mounds range from 10 to 60 m in height and from 150 to 250 m in width, typically displaying a sub-circular shape. They are found within a depth range of 80-400 m and generally occur along the structural ridges of the Chella Seamount. Some of the mounds are distributed NW-SE and N-S, coinciding with the orientation of the active fault lineations observed North and West of the study area. On the other hand, the orientation of some other mounds suggests that the presence of strong bottom currents and reduced sedimentary fluxes are environmental factors suitable for their development. The images obtained from video inspections have been key for the characterization of the benthic communities and abundance of the species identified along the mounds. Video stills suggest that most of the mounds are in a "sub-fossil" stage and are mainly composed of patchy distributed Madrepora oculata and Lophelia pertusa. Additionally, other environments have been detected, in which sponges, boulders, coarse sands and bedforms prevail. Wide and dense patches of gorgonian (Callogorgia verticillata) have been observed along the top of the Chella Seamount. The integration of different marine geophysical methods supported by ground-truthing calibrations, allowed to recognize in detail the structural, sedimentary and hydrodynamic constrains suitable for the development of cold-water coral carbonate mounds in the Chella Seamount and to recognize and map some of the

  15. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Kirk Nordstrom, D.; Blaine McCleskey, R.

    2014-11-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1-2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  16. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging.

    PubMed

    Su, Wenkang; Li, Zhenguo; Peng, Yue; Li, Junhua

    2015-11-21

    The relative framework stability of Cu/CHA zeolites (SAPO-34 and SSZ-13) was studied during hydrothermal aging at 800 °C, and the fundamental mechanism for the framework change was investigated. Additionally, the relationship between the variation in the framework and active SCR reaction sites was established. SAPO-34 showed stronger stability during hydrothermal aging than SSZ-13. The results showed that dealumination occurred in the SSZ-13 zeolite, leading to the loss of crystallinity and a severe decrease of the Brönsted acid sites. Simultaneously, the detached Al(OH)3 species deactivated the Cu species by the transformation of isolated Cu(2+) ions to CuAlOx species. While the vacancy in the SAPO-34 framework caused by desilication could be healed with the migration of extra-framework Al and P atoms to the defects. And the Cu species showed a certain degree of aggregation with the improved redox ability of the aged Cu/SAPO-34 zeolite and the acidic properties were well maintained. PMID:26462874

  17. Topographic features of gas hydrate mounds of shallow gas hydrate areas in Joetsu Basin , eastern margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Hiromatsu, M.; Machiyama, H.; Matsumoto, R.

    2010-12-01

    Mega pockmarks and mounds, both of which are 300m to 500m in diamater and 30m to 40 m deep or high, characterize the Umitaka Spur and Joetsu Knoll of the Joetsu Basin. A number of pockmarks and mounds develop in NNE to SSW direction parallel to the general trend of mobile belt along the eastern margin of Japan Sea, suggesting that the topography has been strongly controlled by regional tectonics. Seismic profiles have revealed well-developed chaotic to transparent zones (gas chimneys) in the area of pockmarks and mounds, from which a number of active methane plumes stand up to 700m above sea floor. Ultra-high resolution bathymetric data and reflection images were acquired by Multi Beam Echo Sounder (MBES) and Side Scan Sonar (SSS) of the AUV "URASHIMA” during the YK10-08 cruise of R/V Yokosuka (JAMSTEC), July 2010. Based on mosaic images of MBES and SSS, we could identify several types of the hydrate mounds over gas chimney zones. Some are represented as a smooth and low bulge without strong reflections of background level, but the others show rough and uneven topography, featured by a few meter scale depressions, crevasses and minor ridges with strong reflector images, indicating the development of hard ground. Such strong reflectors are due to carbonate crusts and concretions and gas hydrate exposures as observed by ROV . Micro-topographic features are likely to represent a growth stage of hydrate mounds, and perhaps the accumulation of shallow gas hydrates. MBES and SSS onboard AUV are powerful tools to identify gas hydrate accumulation and evolution of shallow gas hydrate system.

  18. One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhu, Shiwen; Li, Quanguo; Li, Feng; Cao, Wei; Li, Taohai

    2016-05-01

    The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product's crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.

  19. General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties.

    PubMed

    Li, Di; Qin, Qing; Duan, Xiaochuan; Yang, Jiaqin; Guo, Wei; Zheng, Wenjun

    2013-09-25

    A general and facile one-pot template-free hydrothermal strategy has been developed to synthesize various metal oxide (TiO2, SnO2 and α-Fe2O3) hollow spheres with unified morphologies. The formation of hollow structure involves a trifluoroacetic acid (TFA)-assisted Ostwald ripening process. Photocatalytic activities of the as-prepared TiO2 product are evaluated by the photodegradation of Rhodamine B (RhB), which the TiO2 hollow spheres obtained from 450 °C thermal treatment exhibit higher photocatalytic activity than Degussa P25. In addition, electrochemical measurements demonstrate that all of the as-prepared metal oxides hollow spheres have the potential applications in lithium-ion battery. We have a great expectation that this synthesis strategy can afford a new universal route for functional metal oxide hollow materials preparation without using template.

  20. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  1. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  2. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  3. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  4. Hydrothermal activity and its paleoecological implications in the latest Miocene to Middle Pleistocene lacustrine environments of the Baza Basin (Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    García-Aguilar, José Manuel; Guerra-Merchán, Antonio; Serrano, Francisco; Palmqvist, Paul; Flores-Moya, Antonio; Martínez-Navarro, Bienvenido

    2014-07-01

    The continental sedimentary record of the Baza Basin (Guadix-Baza Depression, Betic Cordillera, SE Spain) shows six sedimentary units of lacustrine origin deposited from the latest Miocene to the Middle Pleistocene. Depending on the interval considered, the lacustrine deposits are mainly composed of marls, carbonates or gypsiferous evaporites, showing lithological, mineralogical and geochemical features (i.e., magnesium, strontium and sulfur contents, celestine deposits and travertine growths) that are evidence of intense, tectonically-induced hydrothermal activity. According to the high concentrations of strontium and sulfur as well as the abundance of travertines and magnesium clays, the supply of hot waters was greater during the Zanclean, the Gelasian and the Calabrian, as a result of tectonic activity. Hydrothermal activity has continued until the present time and is responsible of the hot springs that are nowadays active in the Guadix-Baza Depression. The paleoenvironmental consequences of these sublacustrine hot springs were that during some intervals the lakes maintained a relatively permanent water table, not subject to periodic desiccations in the dry season, and warmer temperatures throughout the year. This resulted in a high level of organic productivity, especially for the Calabrian, which allowed the development of a rich and well diversified mammalian community, similar to those of modern African savannas with tree patches. In this mild environment, the permanent water sheet favored the presence of drought intolerant megaherbivores such as the giant extinct hippo Hippopotamus antiquus. The high standing crop biomass of ungulates resulted in the availability of abundant carcasses for scavengers such as hyenas and hominins, which explains the very high densities of skeletal remains preserved in the sediments distributed along the lake surroundings.

  5. 29. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Overall view taken from top of water storage mound showing building 104, mess hall in lower left, building 101, administration, recreation, and storage building in center, and building 103, non-commissioned officers quarters and enlisted men barracks on far right, looking northeast - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  6. Stable isotope sales: Mound customer and shipment summaries, FY 1988

    SciTech Connect

    Flayler, K.A.

    1990-04-23

    This report lists Mound's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, bromine, and sulfur for fiscal year 1988. Purchasers are listed alphabetically and are divided into domestic and foreign groups. Cross-reference indexes by location and by isotope purchases are included for all customers. 3 tabs.

  7. 28. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Overall view taken from top of water storage mound showing building 154, missile assembly building on right, Minnesota Department of Transportation communication tower in center, and Minnesota Bureau of Mines wind tunnel on left, looking southwest toward launch pad area - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  8. VIEW LOOKING SOUTHWEST AT THE EARTH MOUND USED TO ENCASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING SOUTHWEST AT THE EARTH MOUND USED TO ENCASE THE INSTRUMENTATION AND CONTROL TANKS AND PROTECT EQUIPMENT. NOTE THE TEST STAND IN THE BACKGROUND RIGHT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. Imported Fire Ant Mound Building in Response to Simulated Rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imported fire ant (Solenopsis richteri x invicta) mounds in northeastern Mississippi were subjected to four treatments from late July through early September, 2006: application of water (7.5 L) and placement of an inverted 19 L bucket on top; application of water only; application of an inverted buc...

  10. 32. Overall view taken from top of water storage mound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Overall view taken from top of water storage mound showing building 154, missile assembly building in center, and building 161, fallout shelter in lower right corner, looking west - Nike Missile Battery MS-40, County Road No. 260, Farmington, Dakota County, MN

  11. Test fire environmental testing operations at Mound Applied Technologies

    SciTech Connect

    1992-03-01

    This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

  12. Stable isotope sales: Mound customer and shipment summaries, FY 1986

    SciTech Connect

    Kramer, L.R.; Flayler, K.A.

    1988-05-20

    A listing is given of Mound's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for fiscal year 1986. Purchasers are listed alphabetically and are divided into domestic and foreign groups. Cross-reference indexes by location and by isotope are included for all customers. 3 tabs.

  13. Stable isotopes sales: Mound customer and shipment summaries, FY 1985

    SciTech Connect

    Flayler, K.A.

    1987-12-15

    A listing is given of Mound's sales of stable isotopes of noble gases, deuterium, carbon, oxygen, nitrogen, chlorine, bromine, and sulfur for fiscal year 1985. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic and foreign customers. Cross-reference listings by isotope purchased are included for all customers.

  14. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  15. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  16. Characterization of Active Hydrothermal Fluid Discharge and Recharge Zones in the Endeavour Axial Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Salmi, M.; Hutnak, M.; Hearn, C.; Tivey, M.; Bjorklund, T.; Johnson, H. P.

    2012-12-01

    Sites where warm hydrothermal fluid vents at mid-ocean spreading centers are important for understanding a wide range of critical oceanic processes, but discharge zones represent a very limited portion of crustal fluid circulation pathways. Mapping the distribution of both fluid recharge and discharge sites within the axial valley provides wider insight into the larger scale features of hydrothermal circulation. Our 2011 survey consisted of 180 conductive heat flow stations within the Endeavour axial valley in roughly a 400 m by 1000 m grid, extending across the entire axial valley from the outer flank of the western boundary ridge to the eastern wall. Data acquisition used thermal blankets which measured conductive heat flow without requiring substantial sediment cover. A surprising result from this survey was zones of high heat flow extending across-strike, from the summit of the west valley wall across the entire axial valley floor. This trend was correlated with anomalously low seafloor magnetization from a near-bottom survey with the ROV JASON. Unexpectedly, over half of the axial valley floor was anomalously low at <50 mW m-2, while a small portion of the sites within the 'warm zone' had heat flow values >1 W m-2. The areas of extremely low heat flow values are interpreted as being directly influenced by recharge zones. Based on MCS estimates of partial melt depth below the axial valley and the assumption of no fluid advection, the purely conductive heat flow for this region should be on the order of 1 W m-2.The observation that conductive heat flux is suppressed over large portions of the axial valley floor suggests that heat transfer within the crustal sub-surface fluid reservoir is widespread, and impacts a large portion of our survey area. The largely bi-modal distribution of high and low conductive heat flow, coupled with geophysical and video observations, suggest current Endeavour axial valley crustal fluid circulation models need to be re-evaluated.

  17. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  18. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  19. Diversity of fungi from the mound nests of Formica ulkei and adjacent non-nest soils.

    PubMed

    Duff, Lyndon B; Urichuk, Theresa M; Hodgins, Lisa N; Young, Jocelyn R; Untereiner, Wendy A

    2016-07-01

    Culture-based methods were employed to recover 3929 isolates of fungi from soils collected in May and July 2014 from mound nests of Formica ulkei and adjacent non-nest sites. The abundance, diversity, and richness of species from nest mounds exceeded those of non-mound soils, particularly in July. Communities of fungi from mounds were more similar to those from mounds than non-mounds; this was also the case for non-mound soils with the exception of one non-mound site in July. Species of Aspergillus, Paecilomyces, and Penicillium were dominant in nest soils and represented up to 81.8% of the taxa recovered. Members of the genus Aspergillus accounted for the majority of Trichocomaceae from nests and were represented almost exclusively by Aspergillus navahoensis and Aspergillus pseudodeflectus. Dominant fungi from non-mound sites included Cladosporium cladosporioides, Geomyces pannorum, and species of Acremonium, Fusarium, Penicillium, and Phoma. Although mound nests were warmer than adjacent soils, the dominance of xerotolerant Aspergillus in soils from mounds and the isolation of the majority of Trichocomaceae at 25 and 35 °C suggests that both temperature and water availability may be determinants of fungal community structure in nests of F. ulkei.

  20. How cold-water coral mounds modify their physical environment and therefore influence reef development

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Lavaleye, M.; van Haren, H.; Mohn, C.; Cyr, F.

    2015-12-01

    Cold-water coral framework acts as a sediment trap and as a result kilometres long and up to 360m high mound structures have formed on the SE Rockall Bank. Earlier observations showed that most of the mounds have their summits around 550 m water depth and summits have been reported as being covered with living coral. Pelagia cruises in 2012 and 2013 revealed completely new insights in mound development. Video transects across mounds with different morphology showed that summits of the highest and largest mounds are presently not covered by living coral as opposed to smaller and lower mounds which are covered with a thriving living coral framework. Measurements in the water column with CTD and near-bottom with benthic landers and thermistor string showed that turbulence is likely the most important factor influencing nutrient and food supply and thus coral growth. It seems that the large mounds have outgrown themselves and that their relatively large size and flat summits are limiting turbulence, thereby limiting oxygen, nutrient and food replenishment. Redistribution of nutrients, oxygen and food is vital for ecosystem functioning and reef development. The presence of a healthy coral cover on the summits of the small mounds was also shown by the vertical mound growth rate measured in sediment cores. These showed fourfold higher sedimentation rates during the Holocene on small mounds compared to highest mounds.

  1. Diversity of fungi from the mound nests of Formica ulkei and adjacent non-nest soils.

    PubMed

    Duff, Lyndon B; Urichuk, Theresa M; Hodgins, Lisa N; Young, Jocelyn R; Untereiner, Wendy A

    2016-07-01

    Culture-based methods were employed to recover 3929 isolates of fungi from soils collected in May and July 2014 from mound nests of Formica ulkei and adjacent non-nest sites. The abundance, diversity, and richness of species from nest mounds exceeded those of non-mound soils, particularly in July. Communities of fungi from mounds were more similar to those from mounds than non-mounds; this was also the case for non-mound soils with the exception of one non-mound site in July. Species of Aspergillus, Paecilomyces, and Penicillium were dominant in nest soils and represented up to 81.8% of the taxa recovered. Members of the genus Aspergillus accounted for the majority of Trichocomaceae from nests and were represented almost exclusively by Aspergillus navahoensis and Aspergillus pseudodeflectus. Dominant fungi from non-mound sites included Cladosporium cladosporioides, Geomyces pannorum, and species of Acremonium, Fusarium, Penicillium, and Phoma. Although mound nests were warmer than adjacent soils, the dominance of xerotolerant Aspergillus in soils from mounds and the isolation of the majority of Trichocomaceae at 25 and 35 °C suggests that both temperature and water availability may be determinants of fungal community structure in nests of F. ulkei. PMID:27192606

  2. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  3. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    NASA Astrophysics Data System (ADS)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  4. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge

    USGS Publications Warehouse

    Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.

    2004-01-01

    The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.

  5. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.