Science.gov

Sample records for active hydrothermal vents

  1. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  2. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  3. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  4. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  5. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  6. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures.

    PubMed

    Nakagawa, Tatsunori; Nakagawa, Satoshi; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2004-03-19

    The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.

  7. Ecology of deep-sea hydrothermal vent communities: A review

    SciTech Connect

    Lutz, R.A.; Kennish, M.J. )

    1993-08-01

    The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems to geology. Future directions for hydrothermal vent research are suggested. Since many vent populations are dependent on hydrothermal fluids and are consequently unstable, both short- and long-term aspects of the ecology of the vent organisms and the influence of chemical and geological factors on the biology of vent systems need to be established. 200 refs., 28 figs.

  8. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  9. Aqueous Volatiles in Hydrothermal fluids from the Main Endeavour Vent Field: Temporal Variability Following Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; Cruse, A. M.; Saccocia, P. J.

    2001-12-01

    Volatile species play a critical role in a broad spectrum of physical, chemical, and biological processes associated with hydrothermal circulation at oceanic spreading centers. Earthquake activity at the Main Endeavour vent field, northern Juan de Fuca Ridge in June 1999 [1] provided and opportunity to assess factors that regulate the flux of volatile species from the oceanic crust to the water column following a rapid change in subsurface reaction zone conditions. High temperature vent fluids were collected in gas-tight samplers at the Main Endeavour field in September 1999, approximately four months after the earthquakes, and again in July 2000, and were analyzed for the abundance of aqueous volatile and non-volatile species. Measured concentrations of aqueous H2, H2S, and CO2 increased substantially in September 1999 relative to pre-earthquake values [2,3], and subsequently decreased in July 2000, while aqueous Cl concentrations initially decreased in 1999 and subsequently increased in 2000. Concentrations of Cl in all fluids were depleted relative to seawater values. Aqueous CH4 and NH3 concentrations decreased in both the 1999 and 2000 samples relative to pre- earthquake values. Variations in Cl concentration of Endeavour fluids reflect varying degrees of phase separation under near critical temperature and pressure conditions. Because volatile species efficiently partition into the vapor phase, variations in their abundance as a function of Cl concentration can be used to constrain conditions of phase separation and fluid-rock interaction. For example, concentrations of volatile species that are not readily incorporated into minerals (CH4 and NH3) correlated weakly with Cl suggesting phase separation was occurring under supercritical conditions after the earthquake activity. In contrast, compositional data for fluids prior to the earthquakes indicate a strong negative correlation between these species and Cl suggesting phase separation under subcritical

  10. Heat Source for Active Venting at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Germanovich, L. N.; Lowell, R. P.

    2014-12-01

    Located at the inside corner high of the Mid-Atlantic Ridge (MAR), 30°N and the Atlantis Transform Fault (ATF), the Atlantis Massif has been uplifted over the past ~2 my. The Southern Ridge of this massif hosts the Lost City Hydrothermal Field (LCHF), an off-axis hydrothermal vent field with carbonate chimney ages surpassing 120,000 yrs. The fluids discharging at LCHF carry geochemical signals that show a direct interaction with serpentinites. However, mineralogical evidence suggests that peridotite hydration began early in the formation of oceanic core complexes and previous modeling results indicate that serpentinization is unlikely to generate the heat necessary to maintain current levels of discharge at LCHF. This work develops a model for the LCHF venting based on the evidence of tectonic strain, detachment faulting, serpentinization, and convective fluid flow. We constrain fluid flow at the LCHF by vent geochemistry, vent temperature, seismically inferred faulting, and expected geothermal gradient ≈100°C/km. Present understanding of tectonic processes at the intersection of MAR and ATF suggests that unroofing of the footwall and crustal flexing of the massif induced normal faults, which run parallel to the MAR, throughout the Southern Ridge. In the absence of the evidence of magmatism, we test the feasibility of the geothermal gradient to cause fluid circulation in the high-permeability, sub-vertical fault zone. Fluid circulation in the fault zone is complemented by the bulk porous flow driven through the Southern Ridge by the lateral temperature gradient between the cold water on the steep face along the ATF side and the hot interior of the massif. In this scenario, the high pH hydrothermal fluids pass through the serpentinized zone before discharging as both high-temperature focused flow (40°-91°C) and low-temperature (≈15°C) diffuse flow at the LCHF.

  11. Scientists as stakeholders in conservation of hydrothermal vents.

    PubMed

    Godet, Laurent; Zelnio, Kevin A; VAN Dover, Cindy L

    2011-04-01

    Hydrothermal vents are deep-sea ecosystems that are almost exclusively known and explored by scientists rather than the general public. Continuing scientific discoveries arising from study of hydrothermal vents are concommitant with the increased number of scientific cruises visiting and sampling vent ecosystems. Through a bibliometric analysis, we assessed the scientific value of hydrothermal vents relative to two of the most well-studied marine ecosystems, coral reefs and seagrass beds. Scientific literature on hydrothermal vents is abundant, of high impact, international, and interdisciplinary and is comparable in these regards with literature on coral reefs and seagrass beds. Scientists may affect hydrothermal vents because their activities are intense and spatially and temporally concentrated in these small systems. The potential for undesirable effects from scientific enterprise motivated the creation of a code of conduct for environmentally and scientifically benign use of hydrothermal vents for research. We surveyed scientists worldwide engaged in deep-sea research and found that scientists were aware of the code of conduct and thought it was relevant to conservation, but they did not feel informed or confident about the respect other researchers have for the code. Although this code may serve as a reminder of scientists' environmental responsibilities, conservation of particular vents (e.g., closures to human activity, specific human management) may effectively ensure sustainable use of vent ecosystems for all stakeholders.

  12. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  13. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  14. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  15. Ecology of deep-sea hydrothermal vent communities: A review

    NASA Astrophysics Data System (ADS)

    Lutz, Richard A.; Kennish, Michael J.

    1993-08-01

    Studies of the many active and inactive hydrothermal vents found during the past 15 years have radically altered views of biological and geological processes in the deep sea. The biological communities occupying the vast and relatively stable soft bottom habitats of the deep sea are characterized by low population densities, high species diversity, and low biomass. In contrast, those inhabiting the generally unstable conditions of hydrothermal vent environments exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. Biological processes, such as rates of metabolism and growth, in vent organisms are comparable to those observed in organisms from shallow-water ecosystems. An abundant energy source is provided by chemosynthetic bacteria that constitute the primary producers sustaining the lush communities at the hydrothermal sites. Fluxes in vent flow and fluid chemistry cause changes in growth rates, reproduction, mortality, and/or colonization of vent fauna, leading to temporal and spatial variation of the vent communities. Vent populations that cannot adapt to modified flow rates are adversely affected, as is evidenced by high mortality or lower rates of colonization, growth, or reproduction. Substantial changes in biota have been witnessed at several vents, and successional cycles have been proposed for the Galapagos vent fields. Dramatic temporal and spatial variations in vent community structure may also relate to variations in larval dispersal and chance recruitment, as well as biotic interactions.

  16. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: Large-scale effects on venting

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Baker, E. T.; Massoth, G. J.; Lupton, J. E.; Wright, I. C.; Sparks, R. J.; Bannister, S. C.; Reyners, M. E.; Walker, S. L.; Greene, R. R.; Ishibashi, J.; Faure, K.; Resing, J. A.; Lebon, G. T.

    2007-07-01

    The 2,500-km Kermadec-Tonga arc is the longest submarine arc on the planet. Here, we report on the second of a series of cruises designed to investigate large-scale controls on active hydrothermal venting on this arc. The 2002 NZAPLUME II cruise surveyed 12 submarine volcanic centers along ~580 km of the middle Kermadec arc (MKA), extending a 1999 cruise that surveyed 260 km of the southern Kermadec arc (SKA). Average spacing between volcanic centers increases northward from 30 km on backarc crust along the SKA, to 45 km on backarc crust along the southern MKA, to 58 km where the MKA joins the Kermadec Ridge. Volcanic cones dominate in the backarc, and calderas dominate the Kermadec Ridge. The incidence of venting is higher along the MKA (83%, 10 of 12 volcanic centers) than the SKA (67%, 8 of 12), but the relative intensity of venting, as given by plume thickness, areal extent, and concentration of dissolved gases and ionic species, is generally weaker in the MKA. This pattern may reflect subduction of the ~17-km-thick oceanic Hikurangi Plateau beneath the SKA. Subduction of this basaltic mass should greatly increase fluid loss from the downgoing slab, initiating extensive melting in the upper mantle wedge and invigorating the hydrothermal systems of the SKA. Conversely, volcanic centers in the southern MKA are starved of magma replenishment and so their hydrothermal systems are waning. Farther north, where the MKA centers merge with the Kermadec Ridge, fewer but larger magma bodies accumulate in the thicker (older) crust, ensuring more widely separated, caldera-dominated volcanic centers.

  17. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  18. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  19. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  20. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  1. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  2. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  3. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent

    PubMed Central

    Fortunato, Caroline S; Huber, Julie A

    2016-01-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  4. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.

  5. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  6. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  7. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  8. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  9. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  10. Dispersal mechanisms of deep-sea hydrothermal vent fauna

    NASA Astrophysics Data System (ADS)

    Mullineaux, Lauren S.; France, Scott C.

    Species living at hydrothermal vents are faced with the problem of how to maintain their populations in a habitat that is patchy and ephemeral on time scales as short as decades. Because active hydrothermal venting is essential for the survival of vent communities, species must be capable of dispersing to a new location before a local vent closes. Many vent species are sessile or have limited mobility as adults, so dispersal can occur only in the larval stage of their life cycle. Larvae are typically small and are relatively weak swimmers, but they can potentially be transported long distances in oceanic currents. The range and frequency of larval dispersal influence how far away and how quickly a species can colonize a new vent habitat (i.e., will it be an opportunistic pioneer colonist or a later arrival), and constrain the amount of genetic exchange among existing vent populations. If dispersal between vent habitats is consistently impeded by geographic or physiological barriers, then gene flow will be reduced. Such barriers to dispersal can result in setting boundaries to a species' range and in genetic differentiation between previously interbreeding populations.

  11. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years. PMID:12881565

  12. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.

  13. Evidence for Hydrothermal Vents as "Biogeobatteries" (Invited)

    NASA Astrophysics Data System (ADS)

    Nielsen, M. E.; Girguis, P. R.

    2010-12-01

    Hydrothermal vents are unique systems that play an important role in oceanic biogeochemical cycles. As chemically reduced hydrothermal fluid mixes with cold oxic seawater, minerals precipitate out of solution resulting in chimney structures composed largely of metal sulfides and anhydrite. Pyrite, which is a natural semi-conductor, is the primary sulfide mineral, but other minerals within chimneys are also conductive (e.g. chalcopyrite, wurtzite, and some iron oxides). Sulfide chimneys are also known to host an extensive endolithic microbial community. Accordingly, submarine hydrothermal systems appear to be examples of biogeobatteries, wherein conductive mineral assemblages span naturally occuring redox gradients and enable anaerobic microbes to access oxygen as an oxidant via extracellular electron transfer (or EET). To test this hypothesis, we ran a series of electrochemical laboratory experiments in which pyrite was used as an anode (in a vessel flushed with hydrothermal-like fluid). When placed in continuity with a carbon fiber cathode, pyrite was found to accept and conduct electrons from both abiotic and biological processes (microbial EET). Specifically, electrical current increased 4-fold (5 nA/m2 to 20 nA/m2) in response to inoculation with a slurry prepared from a hydrothermal vent sample. Inspection of the pyrite anode with SEM revealed ubiquitous coverage by microbes. DNA was extracted from the anodes and the inoculum, and was subjected to pyrosequencing to examine prokaryotic diversity. These data suggest that key microbial phylotypes were enriched upon the pyrite, implicating them in EET. In addition, we deployed an in situ experiment based on microbial fuel cell architecture with a graphite anode inserted into a vent wall coupled to a carbon fiber cathode outside the vent. We observed current production over the course of one year, implying microbial EET in situ. Via pyrosequencing, we observed that the microbial community on the anode was

  14. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, K. L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  15. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents.

  16. Naked in toxic fluids: A nudibranch mollusc from hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Valdés, Ángel; Bouchet, Philippe

    1998-01-01

    A new species of the nudibranch genus Dendronotus (Mollusca, Opisthobranchia) is reported from a hydrothermal vent at the Lucky Strike area, on the Mid-Atlantic Ridge. This is the first species of nudibranch recorded with certainty from a vent site. Other species of Dendronotus are distributed in temperate waters on the continental shelf of the northern hemisphere. Two factors that probably account for the occurrence of a nudibranch in this hydrothermal field are that the Lucky Strike area presents potential hydroid prey, and that nudibranchs apparently inhabit a lower activity area. It is hypothesized that the new species, which lacks eyes, is a permanent resident of vent fields on the Mid-Atlantic Ridge, but is probably not restricted to that environment.

  17. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  18. NASA/JPL hydrothermal vent bio-sampler

    NASA Astrophysics Data System (ADS)

    Jonsson, J.; Behar, A.; Bruckner, J.; Matthews, J.

    pagestyle empty begin document On the bottom of the oceans with volcanic activity present hydrothermal vents can be found which spew out mineral rich superheated water from the porous seafloor crust Some of these vents are situated several thousands of meters below the surface where the sunlight never reaches Yet life thrives here on the minerals and chemical compounds that the vent water brings up with it This chemosynthetic microbial community forms the basis of some of the most interesting ecosystems on our planet and could possibly also be found on other water rich planets and moons in the solar system Perhaps under the icy surface of the moon Europa there exist hydrothermal vents with such biota thriving independently of the solar energy The Hydrothermal Vent Bio-sampler HVB is a system which will be used to collect pristine samples of the water emanating from hydrothermal vents An array of temperature and flow sensors will monitor the sampling conditions This will allow for the samples to be collected from defined locations within the plume and the diversity and distribution of the chemosynthetic communities that might live there can be accurately described The samples will have to be taken without any contamination from the surrounding water thus the pristine requirement Monitoring the flow will assure that enough water has been sampled to account for the low biomass of these environments The system will be using a series of filters down to 0 2 mu m in pore size and the samples can be directly collected from the system for both culture-

  19. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  20. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  1. Diversity and distribution of subseafloor Thermococcales populations in diffuse hydrothermal vents at an active deep-sea volcano in the northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huber, Julie A.; Butterfield, David A.; Baross, John A.

    2006-12-01

    The presence, diversity, and distribution of a key group of subseafloor archaea, the Thermococcales, was examined in multiple diffuse flow hydrothermal vents at Axial Seamount, an active deep-sea volcano located in the northeast Pacific Ocean. A polymerase chain reaction (PCR) approach was used to determine if this group of subseafloor indicator organisms showed any phylogenetic distribution that may indicate distinct subseafloor communities at vents with different physical and chemical characteristics. Targeted primers for the Thermococcales 16S rRNA (small subunit ribosomal RNA) gene and intergenic transcribed spacer (ITS) region were designed and applied to organisms filtered directly from a variety of diffuse flow vents. Thermococcales were amplified from 9 of 11 samples examined, and it was determined that the ITS region is a better phylogenetic marker than the 16S rRNA in defining consistent groups of closely related sequences. Results show a relationship between environmental clone distribution and source vent chemistry. The most highly diluted vents with elevated iron and alkalinity contained a distinct group of Thermococcales as defined by the ITS region, suggesting separate subseafloor Thermococcales populations at diffuse vents within the Axial caldera.

  2. Diffuse flow from hydrothermal vents. Doctoral thesis

    SciTech Connect

    Trivett, D.A.

    1991-08-01

    The effluent from a collection of diffuse hydrothermal vents was modelled to determine the fate of the source of flow under typical environmental conditions at seafloor spreading centers. A laboratory simulation was conducted to test an analytic model of diffuse plume rise. The results showed that diffuse plumes are likely to remain near the seafloor, with their maximum rise height scaled with the diameter of the source of diffuse flow. The entrainment of ambient seawater into these plumes is limited by the proximity to the seafloor, thus slowing the rate of dilution. The model of diffuse plume behaviour was used to guide the design and implementation of a scheme for monitoring the flow from diffuse hydrothermal vents in the ocean. A deployment of an array at the Southern Juan de Fuca Ridge yielded measurements of a variety of diffuse plume properties, including total heat output. Two distinct sources of hydrothermal flow were detected during the field deployment. The larger source was 1-1.5km north of the instrument array, and its energy output was 450 + or - 270MW. A smaller source was located 100m east of one instrument in the array. The energy output of the source was 12 + or - 8MW. The rise heights of the centerlines of these plumes were 45m and 10m, respectively.

  3. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  4. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  5. Permeability-Porosity Relationships in Deep Sea Hydrothermal Vent Deposits

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gittings, H.; Tivey, M. K.

    2003-12-01

    To map out the thermal and chemical regimes within vent deposits where micro-and macro-organisms reside requires accurate modeling of mixing and reaction between hydrothermal fluid and seawater within the vent structures. However, a critical piece of information, quantitative knowledge of the permeability of vent deposits, and how it relates to porosity and pore geometry, is still missing. To address this, systematic laboratory measurements of permeability and porosity were conducted on 3 large vent structures from the Mothra Hydrothermal vent field on the Endeavor Segment of the Juan de Fuca Ridge. Twenty-five cylindrical cores with diameters of 2.54 cm and various lengths were taken from Phang (a tall sulfide-dominated spire that was not actively venting when sampled), Roane (a lower temperature spire with dense macrofaunal communities growing on its sides that was venting diffuse fluid of < 300° C) and Finn (an active black smoker with a well-defined inner conduit that was venting 302° C fluids prior to recovery (Delaney et al., 2000; Kelley et al, 2000)). Measurements were made to obtain porosity and permeability of these drill cores using a helium porosimeter (UltraPoreTM300) and a nitrogen permeameter (UltrapermTM400) from Core Laboratories Instruments. The porosimeter uses Boyle's law to determine pore volume from the expansion of a know mass of helium into a calibrated sample holder, whereas the permeameter uses Darcy's law to determine permeability by measuring the steady-state flow rate through the sample under a given pressure gradient. A moderate confining pressure of 1.38 MPa was applied during the measurements to prevent leakage between the sample surface and the sample holder. The permeability and porosity relationship is best described by two different power law relationships with exponents of ˜9 (group I) and ˜3 (group II), respectively. Microstructural observations suggest that the difference in the two permeability-porosity relationships

  6. Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.

    2010-12-01

    Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its

  7. Distributions and contents of the organic carbon and major heavy metals in aquatic environment surrounding the active submarine hydrothermal vent in the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Lee, S.; Iizasa, K.; Shimoda, G.

    2009-12-01

    Since seafloor massive sulfides (SMSs) were firstly found in the central Red Sea in the middle of 20 century, many SMSs have been reported in the settings of oceanic ridges and island arcs. Although seafloor mining of SMSs is likely to be realized in the near future, there are some concerns on hydrothermal biota and ambient environments after seafloor mining. As biota and ambient environments will be affected by the mining of SMSs in direct, researches on the aquatic environment surrounding submarine hydrothermal vents are strongly needed. Because submarine hydrothermal activities are not stable and their life times are relatively short, it is conceivable that the aquatic environments in the hydrothermal field are different from the other site. Therefore, the regular and the long term monitoring in the aquatic environment of the hydrothermal field be strongly required for the more exact and detailed knowledge about the submarine hydrothermal environment. The distributions and the contents of organic carbon and major heavy metals in the seawater columns around hydrothermal fields will be discussed in the present study. In recent, the submarine hydrothermal activities are presumed as one of the factors causing the seasonal fluctuation in concentration of the total organic carbon in the subtropical Northwestern Pacific, but the practical demonstration about this was not carried out yet. The discussion about the distributions and the contents of major heavy metals in the seawater columns around hydrothermal fields will help to understanding of the diffusion through the plume discharged from hydrothermal vents to ambient environments. The samples were collected at and around the hydrothermal fields of the Bayonnaise Knoll caldera on the back-arc rift and the Myojin Knoll and Myojinsho in the Izu-Ogasawara arc, and the Izena cauldron in Okinawa Trough, during at summer in 2008 and 2009 throughout the HT08 cruise by Hakurei-maru and KT09-12 cruise by Tansei-maru. Seawater

  8. Isotopic signatures associated with growth and metabolic activities of chemosynthetic nitrate-reducing microbes from deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Perez-Rodriguez, I. M.; Foustoukos, D.; Fogel, M. L.; Sievert, S. M.

    2013-12-01

    Epsilonproteobacteria and Aquificaceae have been identified as dominant members of microbial communities at deep-sea hydrothermal vents. Cultured representatives from these two groups appear to be mostly genetically wired to perform chemosynthesis at moderate-to-high temperatures (45 - 80oC) under anaerobic and sulfidic conditions. In this study we used Caminibacter mediatlanticus and Thermovibrio ammonificans as model organisms to constrain physiological parameters associated with dissimilatory nitrate reduction to ammonium (DNRA) in deep-sea vent Epsilonproteobacteria and Aquificaceae. We postulate that nitrate-based metabolic processes are of relevance for understanding primary production as well as nitrate mobilization in deep-sea vents. By constraining growth and respiration rates during DNRA, we observed that C. mediatlanticus achieved higher cell densities than T. ammonificans while exhibiting similar growth rates. DNRA kinetic rate constants and cell-specific nitrate reduction rates (csNRR) obtained from our data showed that within similar time frames T. ammonificans used 2.5 to 3 times as much nitrate than C. mediatlanticus and it did so ~3 times faster. However, the increased consumption of nitrate in T. ammonificans did not translate into higher growth yield. This is suggestive of either differential efficiencies in energy generating pathways or differential organic matter production (cell biomass versus extracellular organic material) associated with DNRA in these microorganisms. Nitrogen isotope fractionation for nitrate was similar for both organisms, with discrimination factors of ~ -5 to -6‰ for C. mediatlanticus and ~ -7 to -8‰ for T. ammonificans. Similar experiments performed under high hydrostatic pressure conditions (50 and 200 bar) showed that changes in pressure greatly affected both growth rates and DNRA kinetic rate constants in both microorganisms, however, δ15N discrimination factors for nitrate were not affected. This study provides

  9. Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Jung, Jong-Hyun; Kim, You-Tae; Kwon, Soon-Wo; Park, Cheon-Seok; Holden, James F

    2015-04-01

    A hyperthermophilic methanogen, strain JH146(T), was isolated from 26 °C hydrothermal vent fluid emanating from a crack in basaltic rock at Marker 113 vent, Axial Seamount in the northeastern Pacific Ocean. It was identified as an obligate anaerobe that uses only H2 and CO2 for growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is more than 97% similar to other species of the genus Methanocaldococcus . Therefore, overall genome relatedness index analyses were performed to establish that strain JH146(T) represents a novel species. For each analysis, strain JH146(T) was most similar to Methanocaldococcus sp. FS406-22, which can fix N2 and also comes from Marker 113 vent. However, strain JH146(T) differs from strain FS406-22 in that it cannot fix N2. The average nucleotide identity score for strain JH146(T) was 87%, the genome-to-genome direct comparison score was 33-55% and the species identification score was 93%. For each analysis, strain JH146(T) was below the species delineation cut-off. Full-genome gene synteny analysis showed that strain JH146(T) and strain FS406-22 have 97% genome synteny, but strain JH146(T) was missing the operons necessary for N2 fixation and assimilatory nitrate reduction that are present in strain FS406-22. Based on its whole genome sequence, strain JH146(T) is suggested to represent a novel species of the genus Methanocaldococcus for which the name Methanocaldococcus bathoardescens is proposed. The type strain is JH146(T) ( = DSM 27223(T) = KACC 18232(T)).

  10. Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Jung, Jong-Hyun; Kim, You-Tae; Kwon, Soon-Wo; Park, Cheon-Seok; Holden, James F

    2015-04-01

    A hyperthermophilic methanogen, strain JH146(T), was isolated from 26 °C hydrothermal vent fluid emanating from a crack in basaltic rock at Marker 113 vent, Axial Seamount in the northeastern Pacific Ocean. It was identified as an obligate anaerobe that uses only H2 and CO2 for growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is more than 97% similar to other species of the genus Methanocaldococcus . Therefore, overall genome relatedness index analyses were performed to establish that strain JH146(T) represents a novel species. For each analysis, strain JH146(T) was most similar to Methanocaldococcus sp. FS406-22, which can fix N2 and also comes from Marker 113 vent. However, strain JH146(T) differs from strain FS406-22 in that it cannot fix N2. The average nucleotide identity score for strain JH146(T) was 87%, the genome-to-genome direct comparison score was 33-55% and the species identification score was 93%. For each analysis, strain JH146(T) was below the species delineation cut-off. Full-genome gene synteny analysis showed that strain JH146(T) and strain FS406-22 have 97% genome synteny, but strain JH146(T) was missing the operons necessary for N2 fixation and assimilatory nitrate reduction that are present in strain FS406-22. Based on its whole genome sequence, strain JH146(T) is suggested to represent a novel species of the genus Methanocaldococcus for which the name Methanocaldococcus bathoardescens is proposed. The type strain is JH146(T) ( = DSM 27223(T) = KACC 18232(T)). PMID:25634941

  11. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral

  12. Geomicrobiology of Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Jannasch, Holger W.; Mottl, Michael J.

    1985-08-01

    During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (<= 25 degrees C) and hot (~ 350 degrees C) submarine vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  13. Geomicrobiology of deep-sea hydrothermal vents.

    PubMed

    Jannasch, H W; Mottl, M J

    1985-08-23

    During the cycling of seawater through the earth's crust along the mid-ocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  14. Sulfur Isotope Geochemistry of the Lost City Hydrothermal Vent Fluids

    NASA Astrophysics Data System (ADS)

    Frueh-Green, G. L.; Bernasconi, S. M.; Butterfield, D. A.; Kelley, D. S.

    2004-12-01

    At the Lost City Hydrothermal Vent Field (Mid-Atlantic Ridge, 30° N), reactions between seawater and ultramafic rocks produce high alkaline (pH 9 to 11) fluids that are venting at temperatures of 40 to 90° C and result in the formation of up to 60m tall carbonate-brucite structures. The fluids are enriched in hydrogen, methane and other hydrocarbons, and support dense microbial communities. We present sulfur isotope data of dissolved sulfate and coexisting sulfide in the fluids venting at Lost City, which together with C-isotope data provide constraints on the links between chemical and biological processes associated with serpentinization. The sulfur isotope composition of sulfate increases from seawater values of +21‰ (VCDT) in fluids with sulfate concentrations of 28 mM to values of up to +30‰ in the low sulfate-, high pH end-member hydrothermal fluids. Sulfide concentrations range between 50 and 2780 micromolar. Sulfur isotope compositions of the sulfides lie in a narrow range of +34 to +37‰ (VCDT) and show no clear correlation with concentrations. The isotopic compositions of dissolved inorganic carbon vary between -0.5‰ (VPDB) in the high sulfate samples and -18‰ in the low sulfate samples. This covariance indicates active sulfate reduction in the vent structures and/or in the shallow serpentinite subsurface. Sulfate reduction likely contributes to the variability of carbon isotope compositions observed in both the dissolved inorganic carbon and the carbonate minerals forming the structures. These data, together with C- and O-isotope data of the vent structures, provide evidence that methane oxidation coupled with sulfate reduction during mixing of the more pristine, hydrogen and methane-rich hydrothermal end-member fluids with seawater is an important process in hydrothermal carbonate precipitation at Lost City. Our results are consistent with previous microbiological and organic geochemical studies, which indicate a close association of methane

  15. Earthquakes increase hydrothermal venting and nutrient inputs into the Aegean

    NASA Astrophysics Data System (ADS)

    Dando, P. R.; Hughes, J. A.; Leahy, Y.; Taylor, L. J.; Zivanovic, S.

    1995-05-01

    Areas of submarine gas and water venting around the island of Milos, in the Hellenic volcanic island arc, were mapped. Water samples were collected from five stations in the geothermally active Paleohori Bay on 15 March 1992. Seismic events, of M s 5.0 and 4.4, occurred south of the Bay on 20 March and the sampling was repeated after these. Phosphate and manganese in the water column increased by 360% after the seismic activity. Analysis of water samples collected from gas and water seeps and of interstitial water from sediment cores showed that the hot sediment in the Bay was enriched in phosphate, to a mean concentration of 65 μmol l -1 in the interstitial water. The number of geothermally active areas in the Aegean, together with the extent of venting and the frequency of earthquakes suggests that the hydrothermal areas may be an important source of phosphate in this oligotrophic Sea.

  16. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.

    PubMed

    Perner, Mirjam; Petersen, Jillian M; Zielinski, Frank; Gennerich, Hans-Hermann; Seifert, Richard

    2010-10-01

    Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

  17. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  18. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  19. Geomicrobiology of Hydrothermal Vents in Yellowstone Lake: Phylogenetic and Functional Analysis suggest Importance of Geochemistry (Invited)

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Macur, R.; Jay, Z.; Clingenpeel, S.; Tenney, A.; Lavalvo, D.; Shanks, W. C.; McDermott, T.; Kan, J.; Gorby, Y.; Morgan, L. A.; Yooseph, S.; Varley, J.; Nealson, K.

    2010-12-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large, high-altitude, fresh-water lake that straddles the most recent Yellowstone caldera, and is situated on top of significant hydrothermal activity. An interdisciplinary study is underway to evaluate the geochemical and geomicrobiological characteristics of several hydrothermal vent environments sampled using a remotely operated vehicle, and to determine the degree to which these vents may influence the biology of this young freshwater ecosystem. Approximately six different vent systems (locations) were sampled during 2007 and 2008, and included water obtained directly from the hydrothermal vents as well as biomass and sediment associated with these high-temperature environments. Thorough geochemical analysis of these hydrothermal environments reveals variation in pH, sulfide, hydrogen and other potential electron donors that may drive primary productivity. The concentrations of dissolved hydrogen and sulfide were extremely high in numerous vents sampled, especially the deeper (30-50 m) vents located in the Inflated Plain, West Thumb, and Mary Bay. Significant dilution of hydrothermal fluids occurs due to mixing with surrounding lake water. Despite this, the temperatures observed in many of these hydrothermal vents range from 50-90 C, and elevated concentrations of constituents typically associated with geothermal activity in Yellowstone are observed in waters sampled directly from vent discharge. Microorganisms associated with elemental sulfur mats and filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by members of the deeply-rooted bacterial Order Aquificales, but also contain thermophilic members of the domain Archaea. Assembly of metagenome sequence from the Inflated Plain vent biomass and to a lesser extent, West Thumb vent biomass reveal the importance of Sulfurihydrogenibium-like organisms, also important in numerous terrestrial geothermal

  20. Potential biomass in deep-sea hydrothermal vent ecosystem

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takai, K.

    2012-12-01

    Since the first discovery of black smoker vents hosting chemosynthetic macrofaunal communities (Spiess et al., 1980), submarine hydrothermal systems and associated biota have attracted interest of many researchers (e.g., Humphris et al., 1995; Van Dover, 2000; Wilcock et al., 2004). In the past couple of decades, particular attention has been paid to chemolithoautotrophic microorganisms that sustain the hydrothermal vent-endemic animal communities as the primary producer. This type of microorganisms obtains energy from inorganic substances (e.g., sulfur, hydrogen, and methane) derived from hydrothermal vent fluids, and is often considered as an important modern analogue to the early ecosystems of the Earth as well as the extraterrestrial life in other planets and moons (e.g., Jannasch and Mottl, 1985; Nealson et al., 2005; Takai et al., 2006). Even today, however, the size of this type of chemosynthetic deep-sea hydrothermal vent ecosystem is largely unknown. Here, we present geophysical and geochemical constraints on potential biomass in the deep-sea hydrothermal vent ecosystem. The estimation of the potential biomass in the deep-sea hydrothermal vent ecosystem is based on hydrothermal fluid flux calculated from heat flux (Elderfield and Schltz, 1996), maximum chemical energy available from metabolic reactions during mixing between hydrothermal vent fluids and seawater (McCollom, 2007), and maintenance energy requirements of the chemolithoautotrophic microorganisms (Hoehler, 2004). The result shows that the most of metabolic energy sustaining the deep-sea hydrothermal vent ecosystem is produced by oxidation reaction of reduced sulfur, although some parts of the energy are derived from hydrogenotrophic and methanotrophic reactions. The overall total of the potential biomass in deep-sea hydrothermal vent ecosystem is calculated to be much smaller than that in terrestrial ecosystems including terrestrial plants. The big difference in biomass between the

  1. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  2. Hydrothermal vent flow and turbulence measurements with acoustic scintillation instrumentation

    NASA Astrophysics Data System (ADS)

    di Iorio, D.; Xu, G.

    2009-12-01

    Acoustically derived measurements of hydrothermal vent flow and turbulence were obtained from the active black smoker Dante in the Main Endeavour vent field, using scintillation analysis from one-way transmissions. The scintillation transmitter and receiver array formed a 93 m acoustic path through the buoyant plume 20 m above the structure. The acoustic path was parallel to the valley sidewall where the M2 tidal currents are approximately aligned along ridge due to topographic steering by the valley walls and hence most of the plume displacement is expected to occur along the acoustic path. On one deployment, data were collected for 6.5 weeks and vertical velocities range from 0.1 to 0.2 m/s showing a strong dependence on the spring/neap tidal cycle. The refractive index fluctuations which can be paramaterized in terms of the root-mean-square temperature fluctuations also shows a strong tidal modulation during spring tide.

  3. Antarctic marine biodiversity and deep-sea hydrothermal vents.

    PubMed

    Chown, Steven L

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining.

  4. Deep-sea primary production at the Galapagos hydrothermal vents

    SciTech Connect

    Karl, D.M.; Wirsen, C.O.; Jannasch, H.W.

    1980-03-21

    Dense animal populations surrounding recently discovered hydrothermal vents at the Galapagos Rift sea-floor spreading center, 2550 meters deep, are probably sustained by microbial primary production. Energy in the form of geothermically reduced sulfur compounds emitted from the vents is liberated during oxidation and used for the reduction of carbon dioxide to organic matter by chemosynthetic bacteria.

  5. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were

  6. Chemical signatures from hydrothermal venting on slow spreading ridges

    NASA Astrophysics Data System (ADS)

    Edmonds, Henrietta N.

    At least 24 sites of active venting have been confirmed on slow and ultraslow spreading ridges, with dozens more indicated on the basis of hydrothermal plume distributions and/or dredge recovery of massive sulfides. Fluid chemistry data have been published for 13 sites: 8 on the northern Mid-Atlantic Ridge, 3 on the southern Mid-Atlantic Ridge, and 2 on the Central Indian Ridge. Three of these 13 sites (Rainbow, Logatchev, and Lost City) are known to be hosted in ultramafic terrain, and their fluid chemistries reflect the influence of serpentinization reactions, including elevated hydrogen and methane, and low silica concentrations. This brief review presents the published fluid chemistry for all 13 sites, including time series where available, and demonstrates the diversity of chemical compositions engendered by the myriad settings (near and off axis, young volcanic to ultramafic terrain, and depths up to 4100 m) of hydrothermal systems on slow and ultraslow spreading ridges.

  7. Hydrothermal vents and methane seeps: Rethinking the sphere of influence

    USGS Publications Warehouse

    Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les

    2016-01-01

    Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as

  8. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin)

    NASA Astrophysics Data System (ADS)

    Erickson, K. L.; Macko, S. A.; Van Dover, C. L.

    2009-09-01

    Hydrothermal vents are ephemeral systems. When venting shuts down, sulfide-dependent taxa die off, and non-vent taxa can colonize the hard substrata. In Manus Basin (Papua New Guinea), where hydrothermally active and inactive sites are interspersed, hydroids, cladorhizid sponges, barnacles, bamboo corals, and other invertebrate types may occupy inactive sites. Carbon and nitrogen isotopic compositions of animals occupying inactive sites are consistent with nutritional dependence on either chemoautotrophically or photosynthetically produced organic material, but sulfur isotopic compositions of these animals point to a chemoautotrophic source of sulfur from dissolved sulfide in vent fluids rather than sulfur derived from seawater sulfate through photosynthesis. Given that suspension-feeding and micro-carnivorous invertebrates are the biomass dominants at inactive sites, the primary source of chemoautotrophic nutrition is likely suspended particulates and organisms delivered from nearby active vents.

  9. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. )

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  10. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  11. Hydrogen is an energy source for hydrothermal vent symbioses.

    PubMed

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-11

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant. PMID:21833083

  12. Hydrogen is an energy source for hydrothermal vent symbioses.

    PubMed

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  13. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  14. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea. PMID:26841066

  15. Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

    PubMed Central

    Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Linse, Katrin; Reid, William D. K.; Rogers, Alex D.; Sweeting, Christopher J.; Tyler, Paul A.

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  16. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean.

    PubMed

    Marsh, Leigh; Copley, Jonathan T; Huvenne, Veerle A I; Linse, Katrin; Reid, William D K; Rogers, Alex D; Sweeting, Christopher J; Tyler, Paul A

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m(2) of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m(-2)), followed by a peltospiroid gastropod (>1,500 individuals m(-2)), eolepadid barnacle (>1,500 individuals m(-2)), and carnivorous actinostolid anemone (>30 individuals m(-2)). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ(34)S values of primary consumers with distance from vent sources, and variation in their δ(13)C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  17. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean.

    PubMed

    Marsh, Leigh; Copley, Jonathan T; Huvenne, Veerle A I; Linse, Katrin; Reid, William D K; Rogers, Alex D; Sweeting, Christopher J; Tyler, Paul A

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m(2) of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m(-2)), followed by a peltospiroid gastropod (>1,500 individuals m(-2)), eolepadid barnacle (>1,500 individuals m(-2)), and carnivorous actinostolid anemone (>30 individuals m(-2)). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ(34)S values of primary consumers with distance from vent sources, and variation in their δ(13)C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  18. Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents

    PubMed Central

    Chown, Steven L.

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining. PMID:22235192

  19. The stability of amino acids at submarine hydrothermal vent temperatures

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Miller, Stanley L.; Zhao, Meixun

    1995-01-01

    It has been postulated that amino acid stability at hydrothermal vent temperatures is controlled by a metastable thermodynamic equilibrium rather than by kinetics. Experiments reported here demonstrate that the amino acids are irreversibly destroyed by heating at 240 C and that quasi-equilibrium calculations give misleading descriptions of the experimental observations. Equilibrium thermodynamic calculations are not applicable to organic compounds under high-temperature submarine vent conditions.

  20. Biogeography of hydrothermal vent communities along seafloor spreading centers.

    PubMed

    Van Dover, C L

    1990-08-01

    Compared to terrestrial and shallow-water habitats, deep-sea hydrothermal vents are unique environments characterized by their local insularity, global distribution, individual ephemerality, collective geological longevity, geochemical homogeneity, and their physical and energetic isolation from the catastrophic events implicated in the extinction and speciation of terrestrial and shallow-water forms. Development of vent communities has thus occurred in novel biogeographical contexts that challenge our ability to understand evolutionary processes in the deep sea. Recent field work by French, Canadian, German, Japanese and American scientists has revealed intriguing patterns in the taxonomic composition and distribution of vent organisms at geographically disjunct study sites.

  1. Biogeography of hydrothermal vent communities along seafloor spreading centers.

    PubMed

    Van Dover, C L

    1990-08-01

    Compared to terrestrial and shallow-water habitats, deep-sea hydrothermal vents are unique environments characterized by their local insularity, global distribution, individual ephemerality, collective geological longevity, geochemical homogeneity, and their physical and energetic isolation from the catastrophic events implicated in the extinction and speciation of terrestrial and shallow-water forms. Development of vent communities has thus occurred in novel biogeographical contexts that challenge our ability to understand evolutionary processes in the deep sea. Recent field work by French, Canadian, German, Japanese and American scientists has revealed intriguing patterns in the taxonomic composition and distribution of vent organisms at geographically disjunct study sites. PMID:21232364

  2. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    PubMed

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg. PMID:25748345

  3. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    PubMed

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg.

  4. Shallow Water Hydrothermal Vents in the Gulf of California: Natural Laboratories for Multidisciplinary Research

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Hilton, D. R.; Price, R. E.; Kulongoski, J. T.

    2015-12-01

    Modern and fossil examples of shallow water submarine hydrothermal vents occur throughout the Gulf of California. These sites offer important information about the processes involved in the extensional tectonics that created the Gulf of California and continue to shape the region to this day. Due to their accessibility, shallow water marine hydrothermal vents are far easier to access and study than their deeper analogs, and these settings can provide natural laboratories to study biogeochemical processes. Certain biogeochemical and biomineralizing processes occurring at shallow vents are very similar to those observed around deep-sea hydrothermal vents. In some cases, authigenic carbonates form around shallow vents. However, the hydrothermal precipitates are generally composed of Fe-oxyhydroxides, Mn-oxides, opal, calcite, pyrite and cinnabar, and their textural and morphological characteristics suggest microbial mediation for mineral deposition. Modern shallow-water hydrothermal vents also support complex biotic communities, characterized by the coexistence of chemosynthetic and photosynthetic organisms. These shallow vents are highly productive and provide valuable resources to local fishermen. Extant shallow water hydrothermal activity has been studied in Bahía Concepción, San Felipe, Punta Estrella, El Coloradito, Puertecitos, and around the Islas Encantadas. Discrete streams of gas bubbles are often discharged along with hot liquids at shallow water vents. The vent liquids generally exhibit lower salinities than seawater, and their isotopic compositions indicate that they contain meteoric water mixed with seawater. The composition of the shallow vent gas is primarily made up of CO2, but may also be enriched in N2, H2S, CH4, and other higher hydrocarbons. The geochemistry of these gases can be informative in determining the sources and processes involved in their generation. In particular, 3He/4He ratios may provide valuable information about the origin of

  5. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konno, U.; Tsunogai, U.; Nakagawa, F.; Nakaseama, M.; Ishibashi, J.; Nunoura, T.; Nakamura, K.

    2006-12-01

    In 2000, an active hydrothermal site, venting high-temperature fluid up to 300 oC, was discovered by Shinkai 6500 on the top of Yonaguni Knoll IV during YK 00-06 cruise in Okinawa Trough. During the subsequent subseafloor survey using Shinkai 6500 in 2003 (YK03-05), vents of liquid CO2 droplets were found at the site. Similar liquid CO2 droplets had previously been found at the active hydrothermal sites at JADE hydrothermal field, Okinawa Trough, during the extensive seafloor survey using submersibles in 1989 [Sakai et al., 1990]. Besides, similar liquid CO2 venting has also been recognized in NW Eifuku hydrothermal site on Izu-Bonin- Mariana arc. It thus appears that liquid CO2 venting might be usual phenomenon in some submarine arc volcanoes. The detailed relation between seafloor venting liquid CO2 and the surrounding high-temperature hydrothermal fluid, however, was not clarified in their studies. Furthermore, no definite evidence was obtained for the presence of CO2-hydrate in the subsurface. In this study, in order to discuss the subseafloor processes responsible for producing liquid CO2 at the Yonaguni Knoll IV site, as well as the possibility of the occurrence of solid CO2-hydrate within the sediments, we determined the chemical and isotopic compositions of the liquid CO2 found on the site, as well as those in hydrothermal fluid venting from the surrounding chimneys. In consequence, the ^13C of both CO2 and CH4 in the liquid CO2 almost coincide with those in the hydrothermal fluid, suggesting that the liquid CO2 must be derived from the hydrothermal fluid. While showing homogeneous ^13C, the hydrothermal fluids exhibit wide variation in gas contents. Active phase separation must be taking place within the conduits. Besides, H2-depletion in the liquid CO2 suggests formation of solid CO2-hydrate must also precede the venting of liquid CO2. In conclusion, liquid CO2 must be produced through following subseafloor processes: phase separation of hydrothermal

  6. Mineralization of Alvinella polychaete tubes at hydrothermal vents

    PubMed Central

    Georgieva, M N; Little, C T S; Ball, A D; Glover, A G

    2015-01-01

    Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep-sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine-scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs. PMID:25556400

  7. Mineralization of Alvinella polychaete tubes at hydrothermal vents.

    PubMed

    Georgieva, M N; Little, C T S; Ball, A D; Glover, A G

    2015-03-01

    Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep-sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine-scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs. PMID:25556400

  8. Mineralization of Alvinella polychaete tubes at hydrothermal vents.

    PubMed

    Georgieva, M N; Little, C T S; Ball, A D; Glover, A G

    2015-03-01

    Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep-sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine-scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs.

  9. Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion: A new manifestation of hydrothermal venting

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Humphris, Susan E.; Dick, Henry J. B.

    2013-09-01

    Long-lived detachment faults are now known to be important in tectonic evolution of slow-spreading mid-ocean ridges, and there is increasing evidence that fluid flow plays a critical role in development of detachment systems. Here we document a new manifestation of low-temperature hydrothermal venting associated with the detachment fault that formed Kane Megamullion ˜3.3-2.1 m.y. ago in the western rift-valley wall of the Mid-Atlantic Ridge. Hydrothermal effects on the detachment surface include (1) cemented mounds of igneous rock and chalk debris containing hydrothermal Mn oxides and Fe oxyhydroxides, and (2) layered deposits of similar Fe-Mn minerals ± interbedded chalks. Mounds are roughly conical, ˜1-10 m high, and contain primarily basalts with lesser gabbro, serpentinite, and polymict breccia. The layered Fe-Mn-rich sediments are flat-bedded to contorted and locally are buckled into low-relief linear or polygonal ridges. We propose that the mounds formed where hydrothermal fluids discharged through the detachment hanging wall near the active fault trace. Hydrothermal precipitates cemented hanging-wall debris and welded it to the footwall, and this debris persisted as mounds as the footwall was exhumed and surrounding unconsolidated material sloughed off the sloping detachment surface. Some of the layered Fe-Mn-rich deposits may have precipitated from fluids discharging from the hanging-wall vents, but they also precipitated from low-temperature fluids venting from the exposed footwall through overlying chalks. Observed natural disturbance and abnormally thin hydrogenous Fe-Mn crusts on some contorted, hydrothermal Fe-Mn-rich chalks on ˜2.7 Ma crust suggest diffuse venting that is geologically recent. Results of this study imply that there are significant fluid pathways through all parts of detachment systems and that low-temperature venting through fractured detachment footwalls may continue for several million years off-axis.

  10. Evidence for a Chemoautotrophically Based Food Web at Inactive Hydrothermal Vents (Manus Basin)

    NASA Astrophysics Data System (ADS)

    van Dover, C. L.; Erickson, K.; Macko, S.

    2008-12-01

    Hydrothermal vents are ephemeral systems. When venting shuts down, sulfide-dependent taxa die off, and non-vent taxa can colonize the hard substrata. In Manus Basin (Papua New Guinea), where active and inactive sulfide mounds are interspersed, hydroids, cladorhizid sponges, barnacles, and bamboo sponges, and other invertebrate types may occupy inactive sulfide mounds. Carbon and nitrogen isotopic compositions of animals occupying inactive sulfide mounds are consistent with nutritional dependence on either chemoautotrophically or photosynthetically produced organic material, but sulfur isotopic compositions of these animals point to a chemoautotrophic source of sulfur from dissolved sulfide in vent fluids rather than sulfur derived from seawater sulfate through photosynthesis. Given that suspension-feeding and micro- carnivorous invertebrates are the biomass dominants at inactive sulfide mounds, the primary source of chemoautotrophic nutrition is likely suspended particulates and organisms delivered from nearby active vents.

  11. A deep sea Hydrothermal Vent Bio-sampler for large volume in-situ filtration of hydrothermal vent fluids

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar

    2005-01-01

    This paper provides a physical description of the current system, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a hydrothermal vent off the northern coast of Iceland.

  12. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  13. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents

    SciTech Connect

    Stein, J.L.

    1984-02-17

    The black abalone (Haliotis cracherodii), a commercially important shallow-water gastropod common off White Point, Southern California, is found frequently at subtidal hydrothermal vents within mats of filamentous sulfur-oxidizing bacteria. Foraging vent abalones actively consume the bacteria and confine their nightly feeding forays to bacterial mats surrounding the vents. The growth of abalones consuming the sulfur bacteria exceeds that of control individuals consuming microalgae and is comparable to reported growth rates of abalones consuming macroalgae. Thus, off White Point, the black abalone may derive a portion of its nutrition from the subsidy of geothermal energy.

  14. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents.

    PubMed

    Stein, J L

    1984-02-17

    The black abalone (Haliotis cracherodii), a commercially important shallow-water gastropod common off White Point, Southern California, is found frequently at subtidal hydrothermal vents within mats of filamentous sulfur-oxidizing bacteria. Foraging vent abalones actively consume the bacteria and confine their nightly feeding forays to bacterial mats surrounding the vents. The growth of abalones consuming the sulfur bacteria exceeds that of control individuals consuming microalgae and is comparable to reported growth rates of abalones consuming macroalgae. Thus, off White Point, the black abalone may derive a portion of its nutrition from the subsidy of geothermal energy.

  15. Composition and biogeography of hydrothermal vent communities in Western Pacific Back-Arc Basins

    NASA Astrophysics Data System (ADS)

    Desbruyères, Daniel; Hashimoto, Jun; Fabri, Marie-Claire

    Deep-sea hydrothermal vent communities have been located and studied over different geological and dynamic contexts: fast to slow mid-ocean ridges, back-arc basins, volcanic arcs, and active seamounts. The associated vent faunas belong to a small set of mostly endemic taxa relying on chemoautotrophic microbial production, able to stand extreme habitat conditions and to persist in a discontinuous and ephemeral environment. Because of their obligate relations to hydrothermal venting, they disperse only along ridges, stepping from one active hydrothermal vent to another. Discontinuities of the ridges or hydrological barriers can limit along-axis dispersal and thus favor allopatric speciation. Western Pacific back-arc basins are isolated spreading centers, which remain active during a short period of geological time, in the proximity of active and passive continental margins where cold seeps are frequent. The Rim of Fire region thus represents a complex area of potential exchanges between chemosynthetic-based ecosystems. Our present knowledge is restricted to active areas situated in five back-arc basins (Lau and North Fiji Basins, Manus Basin, Mariana Trough, Okinawa Trough) and two arc volcanoes (Izu-Ogasawara, Kermadec Arc). We here review the distribution and composition of vent-associated biological communities in these basins and arcs, and discuss the faunal affinities among them and the possible migration routes between them and the mid-ocean ridges.

  16. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    PubMed

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys. PMID:26154881

  17. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311–318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm

  18. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.

    PubMed

    Huber, Julie A; Cantin, Holly V; Huse, Susan M; Welch, David B Mark; Sogin, Mitchell L; Butterfield, David A

    2010-09-01

    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc. PMID:20533947

  19. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.

    PubMed

    Huber, Julie A; Cantin, Holly V; Huse, Susan M; Welch, David B Mark; Sogin, Mitchell L; Butterfield, David A

    2010-09-01

    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc.

  20. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  1. Microbial geochemistry in rising plumes of two hydrothermal vents at the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Dick, G.; Breier, J. A.; Toner, B. M.; Sheik, C.; Cron, B. R.; Li, M.; Reed, D. C.; Anantharaman, K.; Baker, B. J.; Jain, S.; Klausmeier, C. A.; Jiang, H.; German, C. R.; Seewald, J.; Sylva, S. P.; McDermott, J. M.; Bennett, S. A.

    2012-12-01

    Slow and ultraslow spreading ridges comprise ~50% of the global ridge-axis length and are thus relevant to the impact of hydrothermal activity on global ocean biogeochemistry. These ridges host ultramafic vent systems with reducing chemical environments that yield hydrothermal fluids rich in methane, hydrogen, and organic carbon, thus providing energy sources to biological communities relevant to the origin and early evolution of life on Earth and the potential for life on other planets. Microbial-geochemical interactions are also important for understanding how deep-sea hydrothermal vents impact ocean biogeochemistry, especially in hydrothermal plumes, where vent fluids stimulate chemosynthetic microbial communities and microbes influence the oceanic fate of hydrothermally-sourced elements. Many critical processes occur in the rising portion of hydrothermal plumes, which are dynamic and challenging to sample. To address these questions and challenges, we developed methods for the in situ collection and preservation of paired microbiology and geochemical samples from rising hydrothermal plumes. Samples were collected with ROV Jason from two hydrothermal vent systems, Von Damm and Beebe, which are in close proximity to each other on the Mid Cayman Rise yet are quite distinct in terms of chemistry, temperature, and depth. Bulk geochemistry, spatially-resolved spectroscopy, and molecular microbiological approaches were applied to yield some of the first views into the dynamic biotic and abiotic processes operative in rising hydrothermal plumes from an ultra-slow spreading system. Results indicate that the Cayman plumes are enriched in hydrogen, sulfur, and methane-utilizing microorganisms relative to background deep Caribbean seawater. Clear differences were observed between near-vent samples, which were dominated by seafloor-derived organisms, and samples from the upper buoyant or non-buoyant plume. These Cayman plume microbes are distinct from those observed in

  2. In Situ Materials Study in Hot Hydrothermal Vent Fluid

    NASA Astrophysics Data System (ADS)

    Holland, P. M.; Schindele, W. J.; Holland, C. E.; Lilley, M. D.; Olson, E. J.

    2004-12-01

    We are developing methods and technology for in situ sampling and analysis of volatiles from hot hydrothermal vent fluids inside the mixing boundary. These fluids can reach temperatures of up to 400° C and are known to be corrosive to most materials. While titanium has been the material of choice for contact with these fluids, we wanted to assess whether other materials, such as Hastelloy or nickel might be suitable for in situ sampling from hydrothermal vents. For the present study, small (1/16" o.d.) tubes of chemically pure titanium, Hastelloy C, and Nickel 200 were prepared, using 316 stainless steel as a control. These were placed in an assembly with other test items, and inserted into the hydrothermal vent Sully in the Main Endeavor Field on the Juan de Fuca Plate in June 2003 by the Jason II ROV operated from the R/V Thompson. The assembly was retrieved 46 days later after exposure to approximately 360° C hydrothermal vent fluid at a depth of 2200 m. Inspection showed the stainless steel to be completely eroded away and nickel to be extensively corroded, however both the Hastelloy and titanium tubes were in excellent condition with the 0.030" i.d. passages in the tubes remaining open. Other test items included a miniature titanium filtered inlet fitting containing an 80 mesh titanium screen made of 0.004" (0.1 mm) chemically pure titanium wire, an Inconel washer and a sapphire ball. Apart from some discoloration, there appeared to be no significant degradation in these materials apart from signs of etching on the sapphire.

  3. Variation in the diets of hydrothermal vent gastropods

    NASA Astrophysics Data System (ADS)

    Govenar, Breea; Fisher, Charles R.; Shank, Timothy M.

    2015-11-01

    A prevailing paradigm of hydrothermal vent ecology is that primary consumers feed on chemoautotrophic bacteria. However, for the purposes of reconstructing vent food webs and for tracking energy flow from the generation of rock and fluid chemistry through primary/ secondary productivity and consumption to the overlying water column, it remains unclear which consumers feed on which bacteria. In paired analyses of carbon and nitrogen tissue stable isotope values with unique 16S rRNA sequences from the stomach contents, we determined that two species of gastropod grazers appear to feed on epsilon-proteobacteria, while two other species have more diverse diets, including one species that consumes alpha-proteobacteria, planctomycetes, and non-green sulfur bacteria. Different carbon fixation pathways used by epsilon- and alpha-proteobacteria may account for the variation in the carbon stable isotope values among the consumers. Furthermore, our results indicate that trophic specialization and niche partitioning may contribute to the distribution and abundance of vent-endemic gastropods and support the hypothesis that consumers in the warmer habitats commonly feed on epsilon-proteobacteria that use the rTCA cycle, while in the cooler habitats they feed on additional bacteria that use the CBB cycle. These results suggest that the phylogenetic and metabolic diversity of free-living bacteria may play an important and previously overlooked role in facilitating species coexistence among primary consumers at hydrothermal vents and other chemosynthesis-based ecosystems.

  4. Geological and hydrothermal controls on the distribution of megafauna in Ashes Vent Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arquit, Anne M.

    1990-08-01

    A computerized data base was constructed to aid in the interpretation of biological and geological observations recorded from 7662 photographs taken of Ashes vent field (located along the SW wall of the summit caldera of Axial Volcano, Juan de Fuca Ridge) during 1985-1986 using the Pisces IV submersible and a towed camera system. The transition region between the locus of high-temperature vents in Ashes vent field (i.e., Inferno, 326°C; Hell, 301°C; and Virgin Mound, 298°C) and more typical environmental conditions for the summit caldera of Axial Volcano as a whole is zoned spatially with respect to sediment type and organism assemblage. Three general ecological zones are identified within the vent field: (1) the central vent zone (within 100 m of a high-temperature vent), dominated by vent-associated organisms (vestimentiferan tube worms, clams, bacterial mats) and sedimentation (high-temperature, plume-derived and low-temperature, in situ deposits); (2) the distal vent zone (100-725 m from any high-temperature vent), characterized by extensive fields of iron oxide, iron silicate and silica chimneys and sediment (nontronite assemblage material), as well as maximum densities of most nonvent fauna; and (3) the nonvent impact zone (725-1300 m), indicated by elevated densities of nonvent organisms relative to regional (i.e., caldera-wide) values and maximum Bathydorus sp. sponge densities. The distribution of vestimentiferan tube worms is limited to within 90 m of known high-temperature venting (central vent zone); and anemones were observed only between 30 and 40 m from hot vents. Clams and microbial mats are concentrated in the central vent zone, as well, but occur sporadically up to 1250 m from the hot vents in association with hydrothermal nontronite that is probably precipitating in situ from <60°C vent fluid; thus megafaunal distributions are a useful indicator of poorly defined, often diffuse low-temperature hydrothermal activity on the seafloor. Maximum

  5. Biodiversity and biogeography of hydrothermal vent species in the western Pacific: a biological perspective of TAIGA project

    NASA Astrophysics Data System (ADS)

    Seo, M.; Watanabe, H.; Nakamura, M.; Sasaki, T.; Ogura, T.; Yahagi, T.; Takahashi, Y.; Ishibashi, J.; Kojima, S.

    2012-12-01

    Deep-sea hydrothermal vents are scientifically interesting environments where strong interactions of geology, chemistry, and biology can be observed. The hydrothermal vents are geologically controlled in association with magmatic activities while diversity of chemicals (such as hydrogen sulfide) contained in hydrothermal fluid is controlled by geochemical interaction between heated seawater and surrounding rocks. In addition to those geological and chemical characters of hydrothermal vents, high biomasses of chemosynthetic community have been known around many vents since the first discovery in the 1970s. To understand the unique system and diversity of biological communities associated with vents is highly valuable in geological, chemical, and biological sciences. As an activity of the research project "TAIGA (Trans-crustal Advection & In-situ bio-geochemical processes of Global sub-seafloor Aquifer)" (Representative: Tetsuro Urabe, Department of Earth & Planetary Science, the University of Tokyo), we analyzed population structures and connectivity as well as larval ecology of various hydrothermal vent species in the Okinawa Trough and the Mariana Trough in an attempt to estimate faunal transitional history associated with hydrothermal activities. The specimens analyzed in the present study were collected by R/V Yokosuka with manned submersible Shinkai6500 and R/V Natsushima with ROV Hyper-Dolphin during YK10-11 and NT11-20 cruises, respectively. In the Mariana Trough (YK10-11), benthic and planktonic faunas were investigated by multiple sampling and use of plankton samplers in three hydrothermal vents (Snail, Archaean, and Urashima-Pika fields). Faunal compositions were then compared as well as size compositions and genetic diversities of major vent species among local populations. In the Okinawa Trough (NT11-20), multiple quantitative sampling was made with simultaneous environmental measurements at more than two sites in five hydrothermal vents (Minami

  6. Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates.

    PubMed

    Goffredi, Shana K

    2010-08-01

    Symbioses involving bacteria and invertebrates contribute to the biological diversity and high productivity of both aquatic and terrestrial environments. Well-known examples from chemosynthetic deep-sea hydrothermal vent environments involve ectosymbiotic microbes associated with the external surfaces of marine invertebrates. Some of these ectosymbioses confer protection or defence from predators or the environment itself, some are nutritional in nature, and many still are of unknown function. Several recently discovered hydrothermal vent invertebrates, including two populations of yeti crab (Kiwa spp.), a limpet (Symmetromphalus aff. hageni), and the scaly-foot snail (as yet undescribed), support a consortium of diverse bacteria. Comparisons of these ectosymbioses to those previously described revealed similarities among the associated microorganisms, suggesting that certain microbes are indigenous to the surfaces of marine invertebrates. In particular, members of the Thiovulgaceae (epsilonproteobacteria) and Thiotrichaceae (gammaproteobacteria) appear to preferentially form ectosymbioses with vent crustaceans and gastropods. Interactions between specific Proteobacteria and the surfaces of many marine invertebrates likely have ecological and evolutionary significance at these chemically challenging habitats.

  7. Video Observations by Telepresence Reveal Two Types of Hydrothermal Venting on Kawio Barat Seamount

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Holden, J. F.; Shank, T. M.; Tunnicliffe, V.; Sherrin, J.; Herrera, S.; Baker, E. T.; Lovalvo, D.; Makarim, S.; Malik, M. A.; Wirasantosa, S.; Hammond, S. R.

    2010-12-01

    The INDEX-SATAL 2010 expedition began an international exploration of the seafloor in Indonesian waters using the methodology of telepresence, conducting EM302 multibeam mapping, water column CTD, and ROV high-definition video operations and sending data back to Exploration Command Centers in Indonesia and Seattle. Science observers in other locations in the US and Canada were engaged in real-time observations and interpretation of results. One mission goal was to locate hydrothermal or volcanic activity. Intense light scattering and redox potential measurements in the water column over Kawio Barat (KB)indicated a high level of hydrothermal activity, and direct video observations confirmed venting near the summit. None of the other volcanic features west of the Sangihe arc that were investigated during the mission had confirmed hydrothermal activity. ROV capabilities did not include physical sampling or temperature measurement, so our interpretation is based on visual comparison to other known sites. The steep western flank of KB from 2000 m depth to the summit (1850 m) has many areas of white and orange staining on exposed rocks, with some elemental sulfur, and broad areas covered with dark volcaniclastic sand, but no active venting was seen. KB has a summit ridge running WNW-ESE, with a major cross-cutting ridge on the western portion of the summit. Hydrothermal activity is concentrated near the eastern side of this intersection, on both the northern and southern sides of the summit ridge. Venting on the northern side of the summit ridge is characterized by intense white particle-rich fluids emanating directly from the rocky substrate with frozen flows of elemental sulfur down slope. This type of venting is visually very similar to the venting seen on NW Rota-1, an actively erupting volcano in the Mariana arc, and suggests that KB is actively releasing magmatic gases rich in sulfur dioxide to produce the elemental sulfur flows, inferred fine particulate sulfur

  8. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents.

    PubMed

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-02-25

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater.

  9. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-02-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater.

  10. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents.

    PubMed

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-01-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272

  11. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    PubMed Central

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-01-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272

  12. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konno, Uta; Tsunogai, Urumu; Nakagawa, Fumiko; Nakaseama, Miwako; Ishibashi, Jun-ichiro; Nunoura, Takuro; Nakamura, Ko-ichi

    2006-08-01

    We determined the chemical and isotopic compositions of the liquid CO2 found on Yonaguni IV knoll hydrothermal site, as well as those in hydrothermal fluid venting from the surrounding chimneys. The δ13C of both CO2 and CH4 in the liquid CO2 almost coincide with those in the hydrothermal fluid, suggesting that the liquid CO2 must be derived from the hydrothermal fluid. While showing homogeneous δ13C, the hydrothermal fluids exhibit wide variation in gas contents. Active phase separation must be taking place within the conduits. Besides, H2-depletion in the liquid CO2 suggests formation of solid CO2-hydrate must also precede the venting of liquid CO2. In conclusion, liquid CO2 must be produced through following subseafloor processes: phase separation of hydrothermal fluid due to boiling, formation of solid CO2-hydrate due to cooling of vapor phase, and melting of the solid CO2-hydrate to liquid CO2 due to a temperature increase within the sedimentary layer.

  13. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  14. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations.

    PubMed

    Vrijenhoek, Robert C

    2010-10-01

    Deep-sea hydrothermal vents provide ephemeral habitats for animal communities that depend on chemosynthetic primary production. Sporadic volcanic and tectonic events destroy local vent fields and create new ones. Ongoing dispersal and cycles of extirpation and colonization affect the levels and distribution of genetic diversity in vent metapopulations. Several species exhibit evidence for stepping-stone dispersal along relatively linear, oceanic, ridge axes. Other species exhibit very high rates of gene flow, although natural barriers associated with variation in depth, deep-ocean currents, and lateral offsets of ridge axes often subdivide populations. Various degrees of impedance to dispersal across such boundaries are products of species-specific life histories and behaviours. Though unrelated to the size of a species range, levels of genetic diversity appear to correspond with the number of active vent localities that a species occupies within its range. Pioneer species that rapidly colonize nascent vents tend to be less subdivided and more diverse genetically than species that are slow to establish colonies at vents. Understanding the diversity and connectivity of vent metapopulations provides essential information for designing deep-sea preserves in regions that are under consideration for submarine mining of precious metals. PMID:20735735

  15. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  16. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  17. Chemistry of hydrothermal solutions from Pele's Vents, Loihi Seamount, Hawaii

    SciTech Connect

    Sedwick, P.N.; McMurtry, G.M. ); Macdougall, J.D. )

    1992-10-01

    Hydrothermal fluids were sampled from Pele's Vents on the summit of Loihi Seamount, an intraplate, hotspot volcano, on four occasions from February 1987 to September 1990. The warm ([le]31C) vent solutions are enriched in dissolved Si, CO[sub 2], H[sub 2]S, alkalinity, K[sup +], Li[sup +], Rb[sup +], Ca[sup 2+], Ba[sup 2+], Fe[sup 2+], Mn[sup 2+], NH[sup +][sub 4], and possibly Ni[sup 2+], and depleted in SO[sup 2-][sub 4], O[sub 2], Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, NO[sup -][sub 3], and sometimes Cl[sup -] and Na[sup +] (calculated), relative to ambient seawater. Dissolved Si correlates linearly with sample temperature, suggesting that the solutions sampled from numerous vents in the [approximately]20 m diameter field have a common source and that Si can be used as a conservative tracer for mixing of the vent fluids with ambient seawater. These juvenile inputs likely reflect the shallow, hotspot setting of this hydrothermal system. A simple quantitative fluid-history model is considered and shown to be consistent with mass-balance constraints and saturation-state calculations, which suggest that the Si concentration of the fluids may be controlled by amorphous silica saturation at [approximately]31C. Observed temporal variations in fluid composition between expeditions - specifically, in Cl[sup -], A[sub T], C[sub T], Na[sup +] (calculated), Mg[sup 2+], Ca[sup 2+], Sr[sup 2+], [sup 87]Sr/[sup 86]Sr, Fe[sup 2+], Mn[sup 2+] and perhaps NH[sup +][sub 4], relative to Si - are, excepting Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, and Mn[sup 2+], consistent with the effects of variable phase segregation at the proposed high-temperature endmember.

  18. Iron Oxidizing and Reducing Bacteria as Contributors to Basaltic Glass Colonization and Subsequent Weathering in Active Hydrothermal Vent Systems on Loihi and Vailulu'u Seamounts

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Templeton, A.; Haucke, L.; Staudigel, H.; Tebo, B. M.

    2005-12-01

    The extreme oligotrophic nature of the oceanic crust was once believed to be an inhospitable environment to support microbial life. However, numerous studies in the past two decades have revealed diverse chemolithotrophic microbial communities inhabiting the deep biosphere within the oceanic crust. Vailulu'u Seamount in American Samoa and Loihi Seamount in Hawai'i provide access to the deep biosphere environments through the study of the interaction of hydrothermal vent water, basaltic substrates and microbial communities. Both seamounts have been found to exhibit similar iron-encrusted microbial mats surrounding both high and low temperature hydrothermal vent orifices. We are targeting iron as the main electron donor/acceptor in these environments due to the relative abundance and availability in basalts. Through the use of the HURL Pisces submersibles, we exposed amended basaltic glasses of several different compositions to a host of different environments on both seamounts in order to study the colonization and biofilm characteristics of the microbial communities. A large culturing effort reveals multiple iron oxidizing and reducing bacteria as members of the microbial community responsible for the colonization and subsequent dissolution and alteration of basaltic glass. We employ an annular reactor to expose the same suite of chemically altered basaltic glasses to a sample of iron microbial mats taken from Vailulu'u to provide a laboratory complement the environmental exposure experiments. Here cell counts reveal a 90% enhanced colonization and growth on the basalt glass versus the surrounding epoxy and borosilicate glass. The ability of microbes to leach nutrients (such as iron) out of the host substrate has far reaching astrobiological implications for nutrient sources available to sustain life in a Mars or Europa biosphere.

  19. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    NASA Astrophysics Data System (ADS)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  20. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge.

    PubMed

    Zhou, Huaiyang; Li, Jiangtao; Peng, Xiaotong; Meng, Jun; Wang, Fengping; Ai, Yuncan

    2009-06-01

    Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to epsilon-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (gamma-, delta-, beta-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site. PMID:19557339

  1. Dynamic drivers of a shallow-water hydrothermal vent ecogeochemical system (Milos, Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Yücel, Mustafa; Sievert, Stefan; Giovanelli, Donato; Foustoukos, Dionysis; DeForce, Emelia; Thomas, François; Vetriani, Constantino; Le Bris, Nadine

    2014-05-01

    Shallow-water hydrothermal vents share many characteristics with their deep-sea analogs. However, despite ease of access, much less is known about the dynamics of these systems. Here, we report on the spatial and temporal chemical variability of a shallow-water vent system at Paleochori Bay, Milos Island, Greece, and on the bacterial and archaeal diversity of associated sandy sediments. Our multi-analyte voltammetric profiles of dissolved O2 and hydrothermal tracers (e.g. Fe2+, FeSaq, Mn2+) on sediment cores taken along a transect in hydrothermally affected sediments indicate three different areas: the central vent area (highest temperature) with a deeper penetration of oxygen into the sediment, and a lack of dissolved Fe2+ and Mn2+; a middle area (0.5 m away) rich in dissolved Fe2+ and Mn2+ (exceeding 2 mM) and high free sulfide with potential for microbial sulfide oxidation as suggested by the presence of white mats at the sediment surface; and, finally, an outer rim area (1-1.5 m away) with lower concentrations of Fe2+ and Mn2+ and higher signals of FeSaq, indicating an aged hydrothermal fluid contribution. In addition, high-frequency temperature series and continuous in situ H2S measurements with voltammetric sensors over a 6-day time period at a distance 0.5 m away from the vent center showed substantial temporal variability in temperature (32 to 46 ºC ) and total sulfide (488 to 1329 µM) in the upper sediment layer. Analysis of these data suggests that tides, winds, and abrupt geodynamic events generate intermittent mixing conditions lasting for several hours to days. Despite substantial variability, the concentration of sulfide available for chemoautotrophic microbes remained high. These findings are consistent with the predominance of Epsilonproteobacteria in the hydrothermally influenced sediments Diversity and metagenomic analyses on sediments and biofilm collected along a transect from the center to the outer rim of the vent provide further insights on

  2. New digestive symbiosis in the hydrothermal vent amphipoda Ventiella sulfuris.

    PubMed

    Corbari, Laure; Durand, Lucile; Cambon-Bonavita, Marie-Anne; Gaill, Françoise; Compère, Philippe

    2012-02-01

    Ventiella sulfuris Barnard and Ingram, 1990 is the most abundant amphipod species inhabiting the Eastern Pacific Rise (EPR 9°N) vent fields. This vent-endemic species is frequently encountered near colonies of Pompeii worms Alvinella pompejana. V. sulfuris specimens were collected during the oceanographic cruise LADDER II at the Bio9 (9°50.3'N, 2508m depth) hydrothermal vent site. Main objectives were to highlight the occurrence of bacterial symbiosis in V. sulfuris and to hypothesise their implications in nutrition. Observations in light and electron microscopy (SEM, TEM) showed that the outer body surface and appendages are free of microorganisms. In contrast, the digestive system revealed two major microbial communities settled in the midgut and in the hindgut. Gut contents showed bacterial traces together with abundant fragments of Alvinellid cuticle and setae, from A. pompejana, suggesting that V. sulfuris could directly feed on Alvinellids and/or on their bacterial epibionts. Molecular analyses based on the 16S rRNA genes revealed the diversity of bacterial communities in the digestive system, of which, the Epsilonproteobacteria phylum, could be considered as one of the major bacterial group. Hypotheses were proposed on their symbiotic features and their implications in V. sulfuris nutrition.

  3. Sulphur isotopic compositions of deep-sea hydrothermal vent animals

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1983-01-01

    The S-34/S-32 ratios of tissues from vestimentiferan worms, brachyuran crabs, and giant clams living around deep hydrothermal vents are reported. Clean tissues were dried, ground, suspended in 0.1 M LiCl, shaken twice at 37 C to remove seawater sulfates, dried at 60 C, combusted in O2 in a Parr bomb. Sulfur was recovered as BaSO4, and the isotopic abundances in SO2 generated by thermal decomposition of 5-30-mg samples were determined using an isotope-ratio mass spectrometer. The results are expressed as delta S-34 and compared with values measured in seawater sulfates and in normal marine fauna. The values ranged from -4.7 to 4.7 per thousand, comparable to vent sulfide minerals (1.3-4.1 per thousand) and distinct from seawater sulfates (20.1 per thousand) and normal marine fauna (about 13-20 per thousand). These results indicate that vent sulfur rather than seawater sulfur is utilized by these animals, a process probably mediated by chemoautotrophic bacteria which can use inorganic sulfur compounds as energy sources.

  4. Hg bioaccumulation in marine copepods around hydrothermal vents and the adjacent marine environment in northeastern Taiwan.

    PubMed

    Hsiao, Shih-Hui; Fang, Tien-Hsi

    2013-09-15

    The Hg concentration in seawater and copepod samples collected from the area around hydrothermal vents at Kueishan Island and the adjacent marine environment in northeastern Taiwan were analyzed to study Hg bioaccumulation in copepods living in polluted and clean marine environments. The seawater collected from the hydrothermal vent area had an extremely high concentration of dissolved Hg, 50.6-256 ng l(-1). There was slightly higher Hg content in the copepods, 0.08-0.88 μg g(-1). The dissolved Hg concentration in the hydrothermal vent seawater was two to three orders of magnitude higher than that in the adjacent environment. The bioconcentration factor of the studied copepods ranged within 10(3)-10(6), and showed higher dissolved concentration as the bioconcentration factor was lower. A substantial abundance, but with less copepod diversity was recorded in the seawater around the hydrothermal vent area. Temora turbinata was the species of opportunity under the hydrothermal vent influence.

  5. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    PubMed

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans. PMID:26626941

  6. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    PubMed

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.

  7. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  8. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent.

    PubMed

    Zhu, Si; Ye, Mengwei; Yan, Xiaojun; Zhou, Yadong; Wang, Chunsheng; Xu, Jilin

    2015-12-01

    The shrimp Rimicaris exoculata is the most abundant species in hydrothermal vents. Lipids, the component of membranes, play an important role in maintaining their function normally in such extreme environments. In order to understand the lipid adaptation of R. exoculata (HV shrimp) to hydrothermal vents, we compared its lipid profile with the coastal shrimp Litopenaeus vannamei (EZ shrimp) which lives in the euphotic zone, using ultra performance liquid chromatography electrospray ionization-quadrupole time-of-flight mass spectrometry. As a result, the following lipid adaptation can be observed. (1) The proportion of 16:1 and 18:1, and non-methylene interrupted fatty acid (48.9 and 6.2 %) in HV shrimp was higher than that in EZ shrimp (12.7 and 0 %). While highly-unsaturated fatty acids were only present in the EZ shrimp. (2) Ceramide and sphingomyelin in the HV shrimp were enriched in d14:1 long chain base (96.5 and 100 %) and unsaturated fatty acids (67.1 and 57.7 %). While in the EZ shrimp, ceramide and sphingomyelin had the tendency to contain d16:1 long chain base (68.7 and 75 %) and saturated fatty acids (100 and 100 %). (3) Triacylglycerol content (1.998 ± 0.005 nmol/mg) in the HV shrimp was higher than that in the EZ shrimp (0.092 ± 0.005 nmol/mg). (4) Phosphatidylinositol and diacylglycerol containing highly-unsaturated fatty acids were absent from the HV shrimp. (5) Lysophosphatidylcholine and lysophosphatidylethanolamine were rarely detected in the HV shrimp. A possible reason for such differences was the result of food resources and inhabiting environments. Therefore, these lipid classes mentioned above may be the biomarkers to compare the organisms from different environments, which will be benefit for the further exploitation of the hydrothermal environment.

  9. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent.

    PubMed

    Zhu, Si; Ye, Mengwei; Yan, Xiaojun; Zhou, Yadong; Wang, Chunsheng; Xu, Jilin

    2015-12-01

    The shrimp Rimicaris exoculata is the most abundant species in hydrothermal vents. Lipids, the component of membranes, play an important role in maintaining their function normally in such extreme environments. In order to understand the lipid adaptation of R. exoculata (HV shrimp) to hydrothermal vents, we compared its lipid profile with the coastal shrimp Litopenaeus vannamei (EZ shrimp) which lives in the euphotic zone, using ultra performance liquid chromatography electrospray ionization-quadrupole time-of-flight mass spectrometry. As a result, the following lipid adaptation can be observed. (1) The proportion of 16:1 and 18:1, and non-methylene interrupted fatty acid (48.9 and 6.2 %) in HV shrimp was higher than that in EZ shrimp (12.7 and 0 %). While highly-unsaturated fatty acids were only present in the EZ shrimp. (2) Ceramide and sphingomyelin in the HV shrimp were enriched in d14:1 long chain base (96.5 and 100 %) and unsaturated fatty acids (67.1 and 57.7 %). While in the EZ shrimp, ceramide and sphingomyelin had the tendency to contain d16:1 long chain base (68.7 and 75 %) and saturated fatty acids (100 and 100 %). (3) Triacylglycerol content (1.998 ± 0.005 nmol/mg) in the HV shrimp was higher than that in the EZ shrimp (0.092 ± 0.005 nmol/mg). (4) Phosphatidylinositol and diacylglycerol containing highly-unsaturated fatty acids were absent from the HV shrimp. (5) Lysophosphatidylcholine and lysophosphatidylethanolamine were rarely detected in the HV shrimp. A possible reason for such differences was the result of food resources and inhabiting environments. Therefore, these lipid classes mentioned above may be the biomarkers to compare the organisms from different environments, which will be benefit for the further exploitation of the hydrothermal environment. PMID:26475295

  10. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    PubMed Central

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-01-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents. PMID:27169490

  11. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-01-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents. PMID:27169490

  12. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-12

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  13. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  14. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  15. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    USGS Publications Warehouse

    Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among

  16. Quantifying metabolic rates in submarine hydrothermal vent chimneys: A reaction transport model

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Dale, A.; Aguilera, D.; Amend, J. P.; Regnier, P.

    2012-12-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rate of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. Methanogenesis, hydrogen oxidation by oxygen and sulfate, sulfide oxidation by oxygen and methane oxidation by oxygen and sulfate are the metabolisms included in the reaction network. Model results indicate that microbial catalysis is fastest in the hottest habitable portion of the vent chimney except for methane oxidation by oxygen, which peaks near the seawater-side of the chimney at 20 nmol /cm^3 yr. The dominant metabolisms in the chimney are hydrogen oxidation by sulfate and oxygen and sulfide oxidation at peak rates 3200 , 300 and 900 nmol /cm^3 yr, respectively. The maximum rate of hydrogenotrophic methanogensis is just under 0.07 nmol /cm^3 yr, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). The model developed here provides a quantitative approach to understanding the rates of biogeochemical transformations in hydrothermal systems and can be used to better understand the role of microbial activity in the deep subsurface.

  17. Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana.

    PubMed

    Pradillon, Florence; Le Bris, Nadine; Shillito, Bruce; Young, Craig M; Gaill, Françoise

    2005-04-01

    Dispersal and colonisation processes at deep-sea vents are still not fully understood, essentially because early life stages of vent species remain unknown. The polychaete worm Alvinella pompejana forms colonies on chimney walls at East Pacific Rise vent sites where the temperature can frequently exceed 20 degrees C. In vitro studies in pressure vessels showed that the early embryos tolerate temperatures in a lower range (10-14 degrees C), suggesting that they would have to escape the colony to develop. Pressure vessels offer the advantage that each parameter can be independently controlled, but they do not simulate the more complex and dynamic conditions naturally encountered at vent sites. Accordingly, in addition to incubations in pressure vessels, we incubated embryos directly at a vent site, in different habitats along a gradient of hydrothermal influence. Embryos incubated on an adult A. pompejana colony where temperature and H(2)S concentrations were relatively high showed a very low survival rate and did not develop, whereas embryos incubated in a Riftia pachyptila clump environment with a lower hydrothermal signature, or at the base of the chimney where the influence of the hydrothermal activity was very weak, survived well and developed. Although the average temperature recorded in the A. pompejana colony was within the range tolerated by embryos (13 degrees C), frequent peaks above 20 degrees C were recorded. Estimated sulphide concentration at this site reached 200 mumol l(-1). Punctuated exposure to both high temperature and elevated sulphide levels probably explain the low survival of embryos within the A. pompejana colony. The in situ experiments further support the idea that embryos require conditions with moderate hydrothermal influence not generally found within an adult colony. However, as much more benign physicochemical conditions can be found within a few tens of cm of adult colonies, embryos do not necessarily have to leave their vent of

  18. Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Moyer, Craig L.; Tiedje, James M.; Dobbs, Fred C.; Karl, David M.

    1998-01-01

    Through an examination of SSU rDNA (genes coding for SSU rRNA), the molecular phylogeny of the domain Archaea (e.g. one of the three major lineages of life) was analyzed from a microbial mat at an active, deep-sea hydrothermal vent ecosystem located at Pele's Vents on the summit of Loihi Seamount, Hawaii. These SSU rDNAs were amplified from extracted microbial mat genomic DNA by PCR, cloned into a plasmid vector, and sequenced. The derived archaeal sequences were then used to infer the evolutionary relationships between these microbial mat community members and their closest known relatives. Of the four clones initially chosen for sequence analysis, a cluster of three phylogenetically similar PV A (Pele's Vents Archaea) clones all contained in the archaeal group I lineage of the marine Crenarchaeota were detected. A single PV A clone was contained in the archaeal group II lineage of the marine Euryarchaeota. All four of the PV A clones are novel and constitute the discovery of new archaeal taxa. From further rarefaction results of 75 archaeal SSU rDNA clones, we estimate the organismal diversity of this domain from the microbial mats located at Pele's Vents to be significantly greater than that of the bacterial domain from this same ecosystem. Analyses of archaeal diversity at both the organismal (i.e. rarefaction) and phylogenetic level suggest that hydrothermal vents, such as Pele's Vents, are intimately linked with marine archaeoplankton (a recently discovered component of marine picoplankton) detected from oceans around the world.

  19. Discovery of New Hydrothermal Venting Sites in the Lau Basin, Tonga Back Arc

    NASA Astrophysics Data System (ADS)

    Crowhurst, P. V.; Arculus, R. J.; Massoth, G. J.; Baptista, L.; Stevenson, I.; Angus, R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2009-12-01

    Between 22 April and 25 June 2009, a systematic search for hydrothermal venting along 1340 km of back-arc features was conducted throughout the Lau Basin aboard the CSIRO owned RV Southern Surveyor. The selection of survey areas was based on bathymetry, sidescan and water column anomaly datasets collected during previous marine science research and commercial exploration voyages. During 54 operational days, 76 CTD tows were completed using real-time plume mapping protocols, augmented with mini autonomous plume recorders, to discern anomalies in light scattering, and oxidation-reduction potential with water samples collected within the peak anomalies. Coincident with CTD towing at an average speed of 1.1 knots high resolution EM300 bathymetry and backscatter data was collected which significantly enhanced geological interpretation of possible source sites for follow up cross tows. 32 venting sites were detected, 24 of which are believed to be new discoveries. 13 dredge operations were conducted on 7 of these sites. Sulfides were recovered from 2 sites, one being a new discovery on the NE Lau spreading centre, ~14 km north of the commercial discovery by Teck and ~7km north of the eruption site discovery during a RV Thompson NOAA survey, both during 2008. The new venting field discoveries at North Mata, northern extent of the CLSC and far southern Valu Fa ridge are beyond any previously known areas of hydrothermal activity and further enhances the reputation of the Lau Basin as one of the most productive back arc regions for hydrothermally active spreading centers. A significant number of filter residue samples collected from the vent sites yielded greater than background values for metals including Cu and Zn, which is interpreted to imply they were sourced from active seafloor massive sulfide systems rather than volcanic activity.

  20. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review.

    PubMed

    Van Dover, Cindy Lee

    2014-12-01

    Deep-sea hydrothermal-vent ecosystems have stimulated decades of scientific research and hold promise of mineral and genetic resources that also serve societal needs. Some endemic taxa thrive only in vent environments, and vent-associated organisms are adapted to a variety of natural disturbances, from tidal variations to earthquakes and volcanic eruptions. In this paper, physicochemical and biological impacts of a range of human activities at vents are considered. Mining is currently the only anthropogenic activity projected to have a major impact on vent ecosystems, albeit at a local scale, based on our current understanding of ecological responses to disturbance. Natural recovery from a single mining event depends on immigration and larval recruitment and colonization; understanding processes and dynamics influencing life-history stages may be a key to effective minimization and mitigation of mining impacts. Cumulative impacts on benthic communities of several mining projects in a single region, without proper management, include possible species extinctions and shifts in community structure and function.

  1. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lō'ihi Seamount, Hawai'i).

    PubMed

    Jesser, Kelsey J; Fullerton, Heather; Hager, Kevin W; Moyer, Craig L

    2015-05-01

    The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount.

  2. Quantitative PCR Analysis of Functional Genes in Iron-Rich Microbial Mats at an Active Hydrothermal Vent System (Lō'ihi Seamount, Hawai'i)

    PubMed Central

    Jesser, Kelsey J.; Fullerton, Heather; Hager, Kevin W.

    2015-01-01

    The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lō'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lō'ihi Seamount. PMID:25681182

  3. Sperm ultrastructure of the hydrothermal vent octopod Vulcanoctopus hydrothermalis.

    PubMed

    Roura, A; Guerra, A; González, A F; Pascual, S

    2010-08-01

    Sperm ultrastructure of the deep-sea hydrothermal vent octopod Vulcanoctopus hydrothermalis has been carried out by transmission electron microscopy. Spermatozoa of this species have the shortest head observed so far in octopodids. The acrosome possesses a helix with six gyres. The rod-shaped nucleus is short and wide in relation with other octopodids. Noteworthy features along the nucleus are the regularly disposed dense bands of cytoplasm, which have not been observed before in octopodids. The nuclear fossa is very short and wavy. Mitochondrial sheath has 10 elongated mitochondria running parallel to the axoneme-coarse fibers complex. Sperm morphology of V. hydrothermalis resembles that of Enteroctopus dofleini, suggesting a close phylogenetic relationship. PMID:20623654

  4. Endemic hydrothermal vent species identified in the open ocean seed bank.

    PubMed

    Gonnella, Giorgio; Böhnke, Stefanie; Indenbirken, Daniela; Garbe-Schönberg, Dieter; Seifert, Richard; Mertens, Christian; Kurtz, Stefan; Perner, Mirjam

    2016-01-01

    Hydrothermal vent systems host microbial communities among which several microorganisms have been considered endemic to this type of habitat. It is still unclear how these organisms colonize geographically distant hydrothermal environments. Based on 16S rRNA gene sequences, we compare the bacterial communities of sixteen Atlantic hydrothermal vent samples with our own and publicly available global open ocean samples. Analysing sequences obtained from 63 million 16S rRNA genes, the genera we could identify in the open ocean waters contained 99.9% of the vent reads. This suggests that previously observed vent exclusiveness is, in most cases, probably an artefact of lower sequencing depth. These findings are a further step towards elucidating the role of the open ocean as a seed bank. They can explain the predicament of how species expected to be endemic to vent systems are able to colonize geographically distant hydrothermal habitats and contribute to our understanding of whether 'everything is really everywhere'. PMID:27573109

  5. Endemic hydrothermal vent species identified in the open ocean seed bank.

    PubMed

    Gonnella, Giorgio; Böhnke, Stefanie; Indenbirken, Daniela; Garbe-Schönberg, Dieter; Seifert, Richard; Mertens, Christian; Kurtz, Stefan; Perner, Mirjam

    2016-06-13

    Hydrothermal vent systems host microbial communities among which several microorganisms have been considered endemic to this type of habitat. It is still unclear how these organisms colonize geographically distant hydrothermal environments. Based on 16S rRNA gene sequences, we compare the bacterial communities of sixteen Atlantic hydrothermal vent samples with our own and publicly available global open ocean samples. Analysing sequences obtained from 63 million 16S rRNA genes, the genera we could identify in the open ocean waters contained 99.9% of the vent reads. This suggests that previously observed vent exclusiveness is, in most cases, probably an artefact of lower sequencing depth. These findings are a further step towards elucidating the role of the open ocean as a seed bank. They can explain the predicament of how species expected to be endemic to vent systems are able to colonize geographically distant hydrothermal habitats and contribute to our understanding of whether 'everything is really everywhere'.

  6. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.

    PubMed

    Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun

    2013-02-01

    Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region.

  7. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.

    PubMed

    Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun

    2013-02-01

    Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region. PMID:23002089

  8. Vibrio diabolicus challenge in Bathymodiolus azoricus populations from Menez Gwen and Lucky Strike hydrothermal vent sites.

    PubMed

    Martins, Eva; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-12-01

    Menez Gwen (MG) and Lucky Strike (LS) deep-sea hydrothermal vents are located at 850 m and 1730 m depths respectively and support chemosynthesis-based ecosystems partially differing in heavy metal concentration, temperature range, and faunistic composition. The successfully adapted deep-sea vent mussel Bathymodiolus azoricus is found at both vent locations. In such inhospitable environments survival strategies rely on the establishment of bacteria-vent animal symbiosis In spite of the toxic nature of deep-sea vents, the problem of microbial threat and the need for immunity exist in B. azoricus. This study aims at investigating the immune system of B. azoricus from MG and LS populations by comparing immune gene expressions profiles using the deep-sea vent-related Vibrio diabolicus. Expression of nineteen immune genes was analyzed from gill, digestive gland and mantle tissues upon 3 h, 12 h and 24 h V. diabolicus challenges. Based on quantitative-Polymerase Chain Reaction (qPCR) significant gene expression differences were found among MG and LS populations and challenge times MG mussels revealed that gill and digestive gland gene expression levels were remarkably higher than those from LS mussels. Expression of Carcinolectin, Serpin-2, SRCR, IRGs, RTK, TLR2, NF-κB, HSP70 and Ferritin genes was greater in MG than LS mussels. In contrast, mantle tissue from LS mussels revealed the highest peak of expression at 24 h for most genes analyzed. The activation of immune signaling pathways demonstrated that gene expression profiles are distinct between the two mussel populations. These differences may possibly ensue from intrinsic immune transcriptional activities upon which host responses are modulated in presence of V. diabolicus. mRNA transcript variations were assessed during 24 h acclimatization taking into account the partial depuration to which mussels were subjected to. Additionally, gene expression differences may reflect still accountable effects from the presence

  9. Vibrio diabolicus challenge in Bathymodiolus azoricus populations from Menez Gwen and Lucky Strike hydrothermal vent sites.

    PubMed

    Martins, Eva; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-12-01

    Menez Gwen (MG) and Lucky Strike (LS) deep-sea hydrothermal vents are located at 850 m and 1730 m depths respectively and support chemosynthesis-based ecosystems partially differing in heavy metal concentration, temperature range, and faunistic composition. The successfully adapted deep-sea vent mussel Bathymodiolus azoricus is found at both vent locations. In such inhospitable environments survival strategies rely on the establishment of bacteria-vent animal symbiosis In spite of the toxic nature of deep-sea vents, the problem of microbial threat and the need for immunity exist in B. azoricus. This study aims at investigating the immune system of B. azoricus from MG and LS populations by comparing immune gene expressions profiles using the deep-sea vent-related Vibrio diabolicus. Expression of nineteen immune genes was analyzed from gill, digestive gland and mantle tissues upon 3 h, 12 h and 24 h V. diabolicus challenges. Based on quantitative-Polymerase Chain Reaction (qPCR) significant gene expression differences were found among MG and LS populations and challenge times MG mussels revealed that gill and digestive gland gene expression levels were remarkably higher than those from LS mussels. Expression of Carcinolectin, Serpin-2, SRCR, IRGs, RTK, TLR2, NF-κB, HSP70 and Ferritin genes was greater in MG than LS mussels. In contrast, mantle tissue from LS mussels revealed the highest peak of expression at 24 h for most genes analyzed. The activation of immune signaling pathways demonstrated that gene expression profiles are distinct between the two mussel populations. These differences may possibly ensue from intrinsic immune transcriptional activities upon which host responses are modulated in presence of V. diabolicus. mRNA transcript variations were assessed during 24 h acclimatization taking into account the partial depuration to which mussels were subjected to. Additionally, gene expression differences may reflect still accountable effects from the presence

  10. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Egas, Conceição; Froufe, Hugo; Altermark, Bjørn; Candeias, Carla; Santos, Ricardo S; Bettencourt, Raul

    2015-12-01

    Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field.

  11. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Egas, Conceição; Froufe, Hugo; Altermark, Bjørn; Candeias, Carla; Santos, Ricardo S; Bettencourt, Raul

    2015-12-01

    Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field. PMID:26375668

  12. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

    PubMed

    Edgcomb, Virginia P; Kysela, David T; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L

    2002-05-28

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

  13. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment

    PubMed Central

    Edgcomb, Virginia P.; Kysela, David T.; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L.

    2002-01-01

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats. PMID:12032339

  14. The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific

    PubMed Central

    2011-01-01

    Background Deep-sea hydrothermal vents provide patchy, ephemeral habitats for specialized communities of animals that depend on chemoautotrophic primary production. Unlike eastern Pacific hydrothermal vents, where population structure has been studied at large (thousands of kilometres) and small (hundreds of meters) spatial scales, population structure of western Pacific vents has received limited attention. This study addresses the scale at which genetic differentiation occurs among populations of a western Pacific vent-restricted gastropod, Ifremeria nautilei. Results We used mitochondrial and DNA microsatellite markers to infer patterns of gene flow and population subdivision. A nested sampling strategy was employed to compare genetic diversity in discrete patches of Ifremeria nautilei separated by a few meters within a single vent field to distances as great as several thousand kilometres between back-arc basins that encompass the known range of the species. No genetic subdivisions were detected among patches, mounds, or sites within Manus Basin. Although I. nautilei from Lau and North Fiji Basins (~1000 km apart) also exhibited no evidence for genetic subdivision, these populations were genetically distinct from the Manus Basin population. Conclusions An unknown process that restricts contemporary gene flow isolates the Manus Basin population of Ifremeria nautilei from widespread populations that occupy the North Fiji and Lau Basins. A robust understanding of the genetic structure of hydrothermal vent populations at multiple spatial scales defines natural conservation units and can help minimize loss of genetic diversity in situations where human activities are proposed and managed. PMID:22192622

  15. Arsenic concentrations and species in three hydrothermal vent worms, Ridgeia piscesae, Paralvinella sulficola and Paralvinella palmiformis

    NASA Astrophysics Data System (ADS)

    Maher, W. A.; Duncan, E.; Dilly, G.; Foster, S.; Krikowa, F.; Lombi, E.; Scheckel, K.; Girguis, P.

    2016-10-01

    Hydrothermal vents are surficial expressions of subsurface geological and hydrological processes. Fluids emitting from active vents are chemically distinct from bottom seawater, and are enriched in dissolved metals and metalloids, including arsenic. Vent organisms accumulate arsenic but the arsenic speciation in these non-photosynthetic organisms is largely unknown. Here, arsenic concentrations and chemical species were measured in three deep sea hydrothermal vent worms (Ridgeia piscesae, Paralvinella sulfincola and Paralvinella palmiformis) from the Juan de Fuca Ridge in the Northwest pacific. R. piscesae has similar arsenic concentrations (3.8-35 μg g-1) to shallow water polychaetes while P. sulfincola and P. palmiformis have significantly higher arsenic concentrations (420-1417 and 125-321 μg g-1 respectively). R. piscesae contains appreciable quantities of inorganic arsenic (36±14%), monomethyl arsenic (2±2%), dimethyl arsenic (34±21%), an unknown methyl arsenical (7±16%), OSO3-arsenosugar (5±9%), TETRA (4±5%), ThioPO4/ThioDMAE (1±2%) and an unknown thio-arsenical (12±14%). These results suggests that host and symbionts are either involved in the methylation of arsenic, or are bathed in fluids enriched in methylated arsenic as a result of free-living microbial activity. The host carrying out methylation, however, cannot be ruled out. In contrast, 96-97% of the arsenic in P. sulfincola and P. palmiformis is inorganic arsenic, likely the result of arsenic precipitation within and upon the mucus they ingest while feeding. While all worms have oxo- and thio arsenosugars (2-30%), Paralvinella also have small amounts of arsenobetaine (<0.001-0.21%). The presence of arsenosugars, arsenobetaine and other minor arsenic species in the absence of photosynthesising algae/bacteria indicates that they may be formed by vent animals in the absence of sunlight, but at this time their formation cannot be explained.

  16. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids

    PubMed Central

    Akerman, Nancy H.; Butterfield, David A.; Huber, Julie A.

    2013-01-01

    Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry. PMID:23847608

  17. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids.

    PubMed

    Akerman, Nancy H; Butterfield, David A; Huber, Julie A

    2013-01-01

    Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry.

  18. Draft Genome Sequence of Psychrobacter piscatorii Strain LQ58, a Psychrotolerant Bacterium Isolated from a Deep-Sea Hydrothermal Vent.

    PubMed

    Zhou, Meixian; Dong, Binbin; Liu, Qing

    2016-01-01

    Here, we report the 3.1-Mb draft genome sequence of Psychrobacter piscatorii strain LQ58, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will provide further insight into the environmental adaptation of psychrotolerant bacteria and the development of novel cold-active enzymes for industrial application. PMID:26941137

  19. Draft Genome Sequence of Psychrobacter piscatorii Strain LQ58, a Psychrotolerant Bacterium Isolated from a Deep-Sea Hydrothermal Vent

    PubMed Central

    Dong, Binbin; Liu, Qing

    2016-01-01

    Here, we report the 3.1-Mb draft genome sequence of Psychrobacter piscatorii strain LQ58, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will provide further insight into the environmental adaptation of psychrotolerant bacteria and the development of novel cold-active enzymes for industrial application. PMID:26941137

  20. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  1. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  2. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge.

    PubMed

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Yang, Zamin K; Reysenbach, Anna-Louise

    2011-08-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  3. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  4. GALREX 2011: Extensive hydrothermal venting discovered along the eastern Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Walker, S. L.; White, S. M.; Embley, R. W.; Resing, J. A.; Lobecker, M.

    2011-12-01

    Leg 1 of the Galápagos Rift Expedition (GALREX) on the NOAA Ship Okeanos Explorer, July 2011, conducted a 400-km-long continuous CTD transect to map active hydrothermal areas between 89.33° and 87.75°W. Light backscattering (ΔNTU) and oxidation-reduction potential (ORP) sensors measured the relative concentration of suspended particles and reduced hydrothermal chemicals, respectively. GALREX was designed to complement a similar survey in 2005/2006 that surveyed the central Galápagos Rift from 94.9° to 89.6°W. That survey found only two active high-temperature vent fields, plus robust plume evidence for at least six smaller fields. The spatial density of hydrothermal plumes (ph) along the rift was only 0.11 (based on ΔNTU anomalies), significantly less than expected for intermediate-rate (50-60 mm/yr) spreading but similar to other hotspot-affected ridges (e.g., near the Iceland, Ascension, and St. Paul-Amsterdam hotspots). This low ph value was hypothesized to be an expression of (1) reduced hydrothermal discharge on ridge sections with hotspot-thickened crust, (2), widespread low-temperature discharge undetectable by large-scale surveys, or (3) episodic venting. GALREX found a distinctly different hydrothermal environment on the eastern third of the rift. Overall, ph = 0.19, about twice that of the central Galápagos Rift. Strong venting was concentrated in two areas. Most remarkable was a 50-km-long section (88.56°-88.09°W) where continuous plumes with high (>0.2) ΔNTU values rose as high as 250 m above the seafloor. This area is low amplitude valley and ridge topography, centered on a relatively recent lava flow at 88.33°W. The second area included the historical vent fields Rose Garden and Rosebud, and ranged from 86.25° to 85.87°W. In this area ΔNTU was lower (~0.1) and plumes were patchy. ORP anomalies occasionally occurred in the absence of ΔNTU anomalies, suggesting low-temperature, particle-poor vent sources. No anomalies were detected over

  5. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

    PubMed

    Olins, H C; Rogers, D R; Frank, K L; Vidoudez, C; Girguis, P R

    2013-05-01

    Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the

  6. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

    PubMed

    Olins, H C; Rogers, D R; Frank, K L; Vidoudez, C; Girguis, P R

    2013-05-01

    Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the

  7. The influence of vent fluid chemistry on trophic structure at two deep-sea hydrothermal vent fields on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah; Van Dover, Cindy; Coleman, Max

    2014-05-01

    The two known deep-sea hydrothermal vent fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two vent fields, Piccard (with active venting from Beebe Vents, Beebe Woods and Beebe Sea), at 4980 m is basalt hosted. The shallower vent field, Von Damm, at 2300 m appears to have an ultramafic influence. The Von Damm vent field can be separated into two sites: The Spire and The Tubeworm Field. The dominant vent fluids at the Tubeworm Field are distinct from those at the Spire, as a result of fluid modification in the sub-surface. Von Damm and Piccard vent fields support abundant invertebrates, sharing the same biomass-dominant shrimp species, Rimicaris hybisae. Although there are some other shared species (squat lobsters (Munidopsis sp.) and gastropods (Provanna sp. and Iheyaspira sp.)) between the vent fields, they are much more abundant at one site than the other. In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of microbes and fauna at each vent field. With these data we have deduced the trophic structure of the communities and the influence of vent fluid chemistry. From stable isotope data and end-member vent fluid chemistry, we infer that the basis of the trophic structure at Piccard is dominated by sulfur, iron, and hydrogen-oxidizing microbial communities. In comparison, the basis of the Von Damm trophic structure is dominated by microbial communities of sulfur and hydrogen oxidizers, sulfate reducers and methanotrophs. This microbial diversity at the base of the trophic structure is a result of chemical variations in vent fluids and processes in the sub-surface that alter the vent fluid chemistry. These differences influence higher trophic levels and can be used to explain some of the variability as well as similarity in fauna at the vent sites. Part of this work was performed at the Jet Propulsion Laboratory, California

  8. How Disturbance Influences Community Composition at Hydrothermal Vents: a Theoretical Model of Macrofaunal Coexistence

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Hsing, P.; Roxburgh, S. H.; Shea, K.; Fisher, C. R.

    2012-12-01

    Biological communities at spreading centers experience a continuum of disturbance regimes, with fast spreading ridges characterized by relatively frequent tectonic and magmatic events, and slow spreading ridges displaying more stable environmental conditions. We develop a theoretical model to show how disturbance (or lack thereof) can influence the composition of biological communities at hydrothermal vents. Our model assumptions are based on empirical data, which show that macrofaunal species of interest (Riftia pachyptila, Bathymodiolus thermophilus, Calyptogena magnifica) establish in distinct microhabitats, based on availability of vent fluids that nourish endosymbiotic chemoautotrophs. We focus on how these establishment strategies interact with species fecundity, and with disturbance frequency and intensity, to determine what types of strategies can coexist in the system. We find that species must adopt sufficiently different fecundity-establishment strategies to coexist in the community, though strict tradeoffs between fecundity and establishment ability are not required. Additionally, we describe how the strategies that lead to coexistence depend on habitat availability and disturbance regime. Though other coexistence mechanisms may also play a role, our findings suggest why communities within a single biogeographic province may vary with spreading rate (as from N to S along the East Pacific Rise), and what strategies will allow coexistence under different disturbance regimes. Understanding how changes to disturbance regimes influence community composition is very important, as commercial mining interests are rapidly developing plans to exploit the rich mineral resources associated with hydrothermal vents and their activities will change the disturbance regime.

  9. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered. PMID:26101015

  10. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.

    PubMed

    Jebbar, Mohamed; Franzetti, Bruno; Girard, Eric; Oger, Philippe

    2015-07-01

    Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which "extreme" physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.

  11. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  12. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.

    2004-12-01

    Remotely operated vehicle (ROV) dives were made at 7 submarine volcanoes between 14-23° N in the Mariana Arc in April 2004 with the ROPOS ROV. Six of these volcanoes were known to be hydrothermally active from CTD data collected during a previous expedition in March 2003: NW Rota-1, E Diamante, NW Eifuku, Daikoku, Kasuga-2, and Maug, a partly submerged caldera. The physical setting of hydrothermal venting varies widely from volcano to volcano. High-resolution bathymetric surveys of the summits of NW Rota-1 and NW Eifuku volcanoes were conducted with an Imagenex scanning sonar mounted on ROPOS. Near bottom observations during ROPOS dives were recorded with digital video and a digital still camera and the dives were navigated acoustically from the R/V Thompson using an ultra-short baseline system. The mapping and dive observations reveal the following: (1) The summits of some volcanoes have pervasive diffuse venting (NW Rota-1, Daikoku, NW Eifuku) suggesting that hydrothermal fluids are able to circulate freely within a permeable edifice. At other volcanoes, the hydrothermal venting is more localized (Kasuga-2, Maug, E Diamante), suggesting more restricted permeability pathways. (2) Some volcanoes have both focused venting at depth and diffuse venting near the summit (E Diamante, NW Eifuku). Where the hydrothermal vents are focused, fluid flow appears to be localized by massive lava outcrops that form steep cliffs and ridges, or by subsurface structures such as dikes. High-temperature (240° C) venting was only observed at E Diamante volcano, where the "Black Forest" vent field is located on the side of a constructional cone near the middle of E Diamante caldera at a depth of 350 m. On the side of an adjacent shallower cone, the venting style changed to diffuse discharge and it extended all the way up into the photic zone (167 m). At NW Eifuku, the pattern of both deep-focused and shallow-diffuse venting is repeated. "Champagne vent" is located at 1607 m, ~150 m

  13. First hydrothermal discoveries on the Australian-Antarctic Ridge: Discharge sites, plume chemistry, and vent organisms

    NASA Astrophysics Data System (ADS)

    Hahm, Doshik; Baker, Edward T.; Siek Rhee, Tae; Won, Yong-Jin; Resing, Joseph A.; Lupton, John E.; Lee, Won-Kyung; Kim, Minjeong; Park, Sung-Hyun

    2015-09-01

    The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multiyear effort to locate and characterize hydrothermal activity on two first-order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ˜25 km. Forty profiles on KR1 identified 17 sites, some within a few kilometer of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ˜70 mm/yr. The densest area of hydrothermal activity, named "Mujin," occurred along the 20 km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January-February of 2013 on R/V Araon found CH4/3He (1 - 15 × 106) and CH4/Mn (0.01-0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H2/3He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna.

  14. Microbial Primary Productivity in Hydrothermal Vent Chimneys at Middle Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Frank, K. L.; Girguis, P. R.; Vidoudez, C.

    2012-12-01

    Chemosynthetic primary productivity supports hydrothermal vent ecosystems, but the extent of that productivity has not been well measured. To examine the role that environmental temperature plays in controlling carbon fixation rates, and to assess the degree to which microbial community composition, in situ geochemistry, and mineralogy influence carbon fixation, we conducted a series of shipboard incubations across a range of temperatures (4, 25, 50 and 90°C) and at environmentally relevant geochemical conditions using material recovered from three hydrothermal vent chimneys in the Middle Valley hydrothermal vent field (Juan de Fuca Ridge). Net rates of carbon fixation (CFX) were greatest at lower temperatures, and were similar among structures. Rates did not correlate with the mineralogy or the geochemical composition of the high temperature fluids at each chimney. No obvious patterns of association were observed between carbon fixation rates and microbial community composition. Abundance of selected functional genes related to different carbon fixation pathway exhibited striking differences among the three study sites, but did not correlate with rates. Natural carbon isotope ratios implicate the Calvin Benson Bassham Cycle as the dominant mechanism of primary production in these systems, despite the abundance of genes related to other pathways (and presumably some degree of activity). Together these data reveal that primary productivity by endolithic communities does not exhibit much variation among these chimneys, and further reveal that microbial activity cannot easily be related to mineralogical and geochemical assessments that are made at a coarser scale. Indeed, the relationships between carbon fixation rates and community composition/functional gene abundance were also likely obfuscated by differences in scale at which these measurements were made. Regardless, these data reveal the degree to which endolithic, anaerobic carbon fixation contributes to

  15. Trophic regions of a hydrothermal plume dispersing away from an ultramafic-hosted vent-system: Von Damm vent-site, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Coleman, Max; Huber, Julie A.; Reddington, Emily; Kinsey, James C.; McIntyre, Cameron; Seewald, Jeffrey S.; German, Christopher R.

    2013-02-01

    Abstract Deep-sea ultramafic-hosted <span class="hlt">vent</span> systems have the potential to provide large amounts of metabolic energy to both autotrophic and heterotrophic microorganisms in their dispersing <span class="hlt">hydrothermal</span> plumes. Such <span class="hlt">vent</span>-systems release large quantities of hydrogen and methane to the water column, both of which can be exploited by autotrophic microorganisms. Carbon cycling in these <span class="hlt">hydrothermal</span> plumes may, therefore, have an important influence on open-ocean biogeochemistry. In this study, we investigated an ultramafic-hosted system on the Mid-Cayman Rise, emitting metal-poor and hydrogen sulfide-, methane-, and hydrogen-rich <span class="hlt">hydrothermal</span> fluids. Total organic carbon concentrations in the plume ranged between 42.1 and 51.1 μM (background = 43.2 ± 0.7 μM (n = 5)) and near-field plume samples with elevated methane concentrations imply the presence of chemoautotrophic primary production and in particular methanotrophy. In parts of the plume characterized by persistent potential temperature anomalies but lacking elevated methane concentrations, we found elevated organic carbon concentrations of up to 51.1 μM, most likely resulting from the presence of heterotrophic communities, their extracellular products and <span class="hlt">vent</span> larvae. Elevated carbon concentrations up to 47.4 μM were detected even in far-field plume samples. Within the Von Damm <span class="hlt">hydrothermal</span> plume, we have used our data to hypothesize a microbial food web in which chemoautotrophy supports a heterotrophic community of microorganisms. Such an <span class="hlt">active</span> microbial food web would provide a source of labile organic carbon to the deep ocean that should be considered in any future studies evaluating sources and sinks of carbon from <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> to the deep ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMOS43A0989S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMOS43A0989S"><span id="translatedtitle">Macrofauna of shallow <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on the Arctic Mid-Ocean Ridge at 71N</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schander, C.; Rapp, H. T.; Pedersen, R. B.</p> <p>2007-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are usually associated with a highly specialized fauna and since their discovery in 1977, more than 400 species of animals have been described. Specialized <span class="hlt">vent</span> fauna includes various animal phyla, but the most conspicuous and well known are annelids, mollusks and crustaceans. We have investigated the fauna collected around newly discovered <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on the Mohns Ridge north of Jan Mayen. The <span class="hlt">venting</span> fields are located at 71°N and the <span class="hlt">venting</span> takes place within two main areas separated by 5 km. The shallowest <span class="hlt">vent</span> area is at 500-550 m water depth and is located at the base of a normal fault. This <span class="hlt">vent</span> field stretches approximately 1 km along the strike of the fault, and it is composed of 10-20 major <span class="hlt">vent</span> sites each with multiple chimney constructions discharging up to 260°C hot fluids. A large area of diffuse, low- temperature <span class="hlt">venting</span> occurs in the area surrounding the high-temperature field. Here, partly microbial mediated iron-oxide-hydroxide deposits are abundant. The <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites do not show any high abundance of specialized <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fauna. Single groups (i.e. Porifera and Mollusca) have a few representatives but groups otherwise common in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> areas (e.g. vestimentifera, Alvinellid worms, mussels, clams, galathaeid and brachyuran crabs) are absent. Up until now slightly more than 200 species have been identified from the <span class="hlt">vent</span> area. The macrofauna found in the <span class="hlt">vent</span> area is, with few exceptions, an assortment of bathyal species known in the area. One endemic, yet undescribed, species of mollusc has been found so far, an gastropod related to Alvania incognita Warén, 1996 and A. angularis Warén, 1996 (Rissoidae), two species originally described from pieces of sunken wood north and south of Iceland. It is by far the most numerous mollusc species at the <span class="hlt">vents</span> and was found on smokers, in the bacterial mats, and on the ferric deposits. A single specimen of an undescribed tanaidacean has also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4069388','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4069388"><span id="translatedtitle">Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vetriani, Costantino; Voordeckers, James W; Crespo-Medina, Melitza; O'Brien, Charles E; Giovannelli, Donato; Lutz, Richard A</p> <p>2014-01-01</p> <p>Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Furthermore, we have shown that the napA gene is expressed in pure cultures of <span class="hlt">vent</span> Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea <span class="hlt">vents</span> characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow <span class="hlt">vents</span> than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in <span class="hlt">vent</span> Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in <span class="hlt">vent</span> fluids. Taken together, our findings indicate that nitrate reduction is widespread in <span class="hlt">vent</span> Epsilonproteobacteria and provide insight on alternative energy metabolism in <span class="hlt">vent</span> microorganisms. The occurrence of the nap cluster in <span class="hlt">vent</span>, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea <span class="hlt">vents</span> and the human body. PMID:24430487</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24430487','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24430487"><span id="translatedtitle">Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vetriani, Costantino; Voordeckers, James W; Crespo-Medina, Melitza; O'Brien, Charles E; Giovannelli, Donato; Lutz, Richard A</p> <p>2014-07-01</p> <p>Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Furthermore, we have shown that the napA gene is expressed in pure cultures of <span class="hlt">vent</span> Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea <span class="hlt">vents</span> characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow <span class="hlt">vents</span> than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in <span class="hlt">vent</span> Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in <span class="hlt">vent</span> fluids. Taken together, our findings indicate that nitrate reduction is widespread in <span class="hlt">vent</span> Epsilonproteobacteria and provide insight on alternative energy metabolism in <span class="hlt">vent</span> microorganisms. The occurrence of the nap cluster in <span class="hlt">vent</span>, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea <span class="hlt">vents</span> and the human body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS22B..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS22B..08B"><span id="translatedtitle">The trophic structure of fauna and photosynthetic influence at two distinct <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields on the Mid-Cayman Rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, S. A.; Tan, S.; Coleman, M. L.</p> <p>2012-12-01</p> <p>The two known deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two <span class="hlt">vent</span> fields, Piccard (with <span class="hlt">active</span> <span class="hlt">venting</span> from Beebe <span class="hlt">Vents</span>, Beebe Woods and Beebe Sea), at 4960 m is the deepest known <span class="hlt">vent</span> field on Earth and is basalt hosted. The shallower <span class="hlt">vent</span> field, at 2300 m appears to have an ultramafic influence. The diversity of the fauna at Von Damm is greater than that at Piccard, though there is still an overlap in certain species. The two <span class="hlt">vent</span> fields have been selected as analogues to systems that may exist elsewhere in our solar system due to their potential lack of influence from photosynthetic carbon (Piccard) and their potential for abiotic carbon synthesis (Von Damm). In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of fauna at each <span class="hlt">vent</span> field and carried out compound specific carbon isotope analysis on select species. With these data we have deduced the trophic structure of the communities and potential influence of photosynthetic carbon. The diversity of the Von Damm fauna, including the unexpected presence of tubeworms, shows distinct variations in sulfur isotope composition and we will discuss the potential for source variation and fractionation during sulfur assimilation. As analogues, the Piccard <span class="hlt">vent</span> field provides the most photosynthetically detached system currently known on Earth and the distinct sulfur isotope signatures as well as compound specific isotopes may provide important biomarkers for detection of current or previous <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> elsewhere in our solar system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3274706','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3274706"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields and chemosynthetic biota on the world's deepest seafloor spreading centre</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Connelly, Douglas P.; Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally</p> <p>2012-01-01</p> <p>The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on <span class="hlt">hydrothermal</span> <span class="hlt">venting</span>, and the biogeography of <span class="hlt">vent</span> fauna. Here we report the discovery of two <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields on the Mid-Cayman spreading centre. The Von Damm <span class="hlt">Vent</span> Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature <span class="hlt">venting</span> in this off-axis setting suggests that the global incidence of <span class="hlt">vent</span> fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe <span class="hlt">Vent</span> Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C <span class="hlt">venting</span> from the world's deepest known <span class="hlt">hydrothermal</span> system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic <span class="hlt">vents</span>. PMID:22233630</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22233630','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22233630"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields and chemosynthetic biota on the world's deepest seafloor spreading centre.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally</p> <p>2012-01-01</p> <p>The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on <span class="hlt">hydrothermal</span> <span class="hlt">venting</span>, and the biogeography of <span class="hlt">vent</span> fauna. Here we report the discovery of two <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields on the Mid-Cayman spreading centre. The Von Damm <span class="hlt">Vent</span> Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature <span class="hlt">venting</span> in this off-axis setting suggests that the global incidence of <span class="hlt">vent</span> fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe <span class="hlt">Vent</span> Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C <span class="hlt">venting</span> from the world's deepest known <span class="hlt">hydrothermal</span> system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic <span class="hlt">vents</span>. PMID:22233630</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22233630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22233630"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields and chemosynthetic biota on the world's deepest seafloor spreading centre.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally</p> <p>2012-01-10</p> <p>The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on <span class="hlt">hydrothermal</span> <span class="hlt">venting</span>, and the biogeography of <span class="hlt">vent</span> fauna. Here we report the discovery of two <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields on the Mid-Cayman spreading centre. The Von Damm <span class="hlt">Vent</span> Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature <span class="hlt">venting</span> in this off-axis setting suggests that the global incidence of <span class="hlt">vent</span> fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe <span class="hlt">Vent</span> Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C <span class="hlt">venting</span> from the world's deepest known <span class="hlt">hydrothermal</span> system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5544120','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5544120"><span id="translatedtitle">Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ruby, E.G.; Jannasch, H.W.</p> <p>1982-01-01</p> <p>Growth of the obligately chemolithotrophic Thiomicrospira sp. strain L-12, isolated from a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> at a depth of 2,550 m in the Galapagos Rift region, was optimal at pH 8 and required 200 mM Na/sup +/ and divalent ions (Ca/sup 2 +/ and Mg/sup 2 +/). The organism was microaerophilic and tolerated 300 ..mu..M sulfide without a decrease in the rate of CO/sub 2/ incorporation. Growth and CO/sub 2/ incorporation occurred within the temperature range of 10 to 35/sup 0/C, with both optimal at 25/sup 0/C. At the in situ pressure of 250 atm, the rate of CO/sub 2/ incorporation was reduced by 25% relative to that measured at 1 atm; it was entirely suppressed at 500 atm. The results of this physiological characterization suggest that Thiomicrospira sp. strain L-12 can be an <span class="hlt">active</span> autotroph in the <span class="hlt">hydrothermal</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24112684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24112684"><span id="translatedtitle">Microbial community structure and functioning in marine sediments associated with diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> assessed by integrated meta-omics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise</p> <p>2014-09-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature <span class="hlt">venting</span> systems have been studied extensively, the microbiotas associated with low-temperature diffuse <span class="hlt">venting</span> are not well understood. We analysed the structure and functioning of microbial communities in two diffuse <span class="hlt">venting</span> sediments from the Jan Mayen <span class="hlt">vent</span> fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. <span class="hlt">Active</span> metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> sediments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24112684','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24112684"><span id="translatedtitle">Microbial community structure and functioning in marine sediments associated with diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> assessed by integrated meta-omics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise</p> <p>2014-09-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature <span class="hlt">venting</span> systems have been studied extensively, the microbiotas associated with low-temperature diffuse <span class="hlt">venting</span> are not well understood. We analysed the structure and functioning of microbial communities in two diffuse <span class="hlt">venting</span> sediments from the Jan Mayen <span class="hlt">vent</span> fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. <span class="hlt">Active</span> metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> sediments. PMID:24112684</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25911507','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25911507"><span id="translatedtitle">An abyssal mobilome: viruses, plasmids and vesicles from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire</p> <p>2015-12-01</p> <p>Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea <span class="hlt">vent</span> microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. PMID:25911507</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25911507','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25911507"><span id="translatedtitle">An abyssal mobilome: viruses, plasmids and vesicles from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire</p> <p>2015-12-01</p> <p>Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea <span class="hlt">vent</span> microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11449263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11449263"><span id="translatedtitle">An off-axis <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field near the Mid-Atlantic Ridge at 30 degrees N.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P</p> <p>2001-07-12</p> <p>Evidence is growing that <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive <span class="hlt">hydrothermal</span> field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The <span class="hlt">vent</span> field--named 'Lost City'--is distinctly different from all other known sea-floor <span class="hlt">hydrothermal</span> fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' <span class="hlt">hydrothermal</span> fields. We found that <span class="hlt">vent</span> fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and microbial life than previously thought.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T43D2704F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T43D2704F"><span id="translatedtitle">Magnetic Structure of Backarc Spreading Axis with <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span>; the Southern Mariana Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujii, M.; Okino, K.; Mochizuki, N.; Honsho, C.; Szitkar, F.; Dyment, J.; Nakamura, K.</p> <p>2012-12-01</p> <p>Seafloor <span class="hlt">hydrothermal</span> systems are important in relation to global heat and chemical fluxes as well as habitat of microbial communities. The substantial variation of <span class="hlt">hydrothermal</span> systems in various tectonic settings has important implications for the magnetic structure of oceanic crust. It has been very difficult to detect the geophysical signature of <span class="hlt">hydrothermal</span> systems from sea-surface data because the small scale of <span class="hlt">hydrothermal</span> systems is below the limit of resolution. The advance of near-bottom survey methods using a submersible, deep-tow, ROV and AUV has made possible high-resolution geophysical mapping around <span class="hlt">hydrothermal</span> areas. Near-bottom magnetic surveys can provide direct information on the magnetization of the shallower oceanic crust, implying <span class="hlt">hydrothermal</span> alteration both in <span class="hlt">active</span> and fossil <span class="hlt">vent</span> sites. Near-bottom three component magnetic measurements on submersible Shinkai 6500 were carried out at <span class="hlt">hydrothermal</span> fields in the Southern Mariana Trough, a slow spreading backarc basin. Fourteen dive surveys were conducted during cruises YK11-10 and YK10-11. We investigated the magnetic structure of four <span class="hlt">hydrothermal</span> systems located at on- and off-axis to clarify how the geophysical and geological setting controls the fluid circulation at small scale. Recent researches at slow spreading ridges showed a relationship between crustal magnetic structure and host rock around <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (e.g. Tivey and Dyment, 2010), but no observation at backarc spreading axis has been reported so far. We carefully corrected the effects of induced and permanent magnetizations of the submersible by applying the method of Isezaki [1986] with dumped least-square method (Honsho et al., 2009). After subtracting the IGRF from the corrected observed data, we obtained geomagnetic vector anomalies in geographical coordinate. For three transects of the axis, we applied three methods; 2D inversion technique (Parker and Huestis, 1972), 2D forward modeling technique (Honsho et al</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B43L..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B43L..08B"><span id="translatedtitle">Isotopic Approaches to Allying Productivity and Sulfur Metabolism in Three Symbiotic <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Molluscs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beinart, R.; Gartman, A.; Sanders, J. G.; Luther, G. W.; Girguis, P. R.</p> <p>2012-12-01</p> <p>Symbioses between animals and chemosynthetic bacteria predominate at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. In these associations, the endosymbiotic bacteria utilize chemical reductants for the energy to support autotrophy, providing primary nutrition for the host. Despite their ubiquity at <span class="hlt">vents</span> worldwide, little is known about the rates of productivity of these symbioses under different physico-chemical regimes or how their metabolism effects the local geochemical environment. To address this matter, we used high-pressure flow through incubations and stable isotopic tracers to maintain three genera of symbiotic mollusc - the gastropods Alviniconcha and Ifremeria, and the mussel Bathymodiolus - at <span class="hlt">vent</span>-like conditions. Via the incorporation of isotopically labeled compounds, we assessed their productivity when using different reduced sulfur species as reductants. Using cyclic voltammetry, mass spectrometry and discrete geochemical analyses, we concurrently measured their effect on sulfur flux from the vessels. We found that the symbionts of all three genera can support autotrophy with hydrogen sulfide and thiosulfate, though at different rates. Additionally, by examining the rate of isotopic incorporation into biomass, we revealed intra-generic variability in productivity among the individuals in our experimental assemblages that are likely related to differences in the geochemical regime along the length of reactor. These geochemical gradients are due to the <span class="hlt">activity</span> of other individuals within the vessel, since those organisms closest to the influent of the <span class="hlt">vent</span>-like water had the highest measured carbon incorporation. Finally, we measured the uptake and excretion of sulfur species, which illustrate the degree to which these symbioses might impact local sulfur chemistry in situ. These experiments show that A) access to particular sulfur species differentially affects the productivity of <span class="hlt">vent</span> symbioses, suggesting that competition for these substrates, both within and between host</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22275502','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22275502"><span id="translatedtitle">Life and death of deep-sea <span class="hlt">vents</span>: bacterial diversity and ecosystem succession on inactive <span class="hlt">hydrothermal</span> sulfides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sylvan, Jason B; Toner, Brandy M; Edwards, Katrina J</p> <p>2012-01-01</p> <p><span class="hlt">Hydrothermal</span> chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. <span class="hlt">Active</span>, hot, <span class="hlt">venting</span> sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides--structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive <span class="hlt">hydrothermal</span> sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from <span class="hlt">venting</span> to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in <span class="hlt">active</span> chimneys. Members of the phylum Aquificae, which are common in <span class="hlt">active</span> <span class="hlt">vents</span>, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on <span class="hlt">active</span> <span class="hlt">hydrothermal</span> sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of <span class="hlt">venting</span> and also imply a potential shift in microbial <span class="hlt">activity</span> and metabolic guilds on <span class="hlt">hydrothermal</span> sulfides, the dominant biome that results from seafloor <span class="hlt">venting</span>. PMID:22275502</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22275502','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22275502"><span id="translatedtitle">Life and death of deep-sea <span class="hlt">vents</span>: bacterial diversity and ecosystem succession on inactive <span class="hlt">hydrothermal</span> sulfides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sylvan, Jason B; Toner, Brandy M; Edwards, Katrina J</p> <p>2012-01-01</p> <p><span class="hlt">Hydrothermal</span> chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. <span class="hlt">Active</span>, hot, <span class="hlt">venting</span> sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides--structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive <span class="hlt">hydrothermal</span> sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from <span class="hlt">venting</span> to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in <span class="hlt">active</span> chimneys. Members of the phylum Aquificae, which are common in <span class="hlt">active</span> <span class="hlt">vents</span>, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on <span class="hlt">active</span> <span class="hlt">hydrothermal</span> sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of <span class="hlt">venting</span> and also imply a potential shift in microbial <span class="hlt">activity</span> and metabolic guilds on <span class="hlt">hydrothermal</span> sulfides, the dominant biome that results from seafloor <span class="hlt">venting</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3262234','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3262234"><span id="translatedtitle">Life and Death of Deep-Sea <span class="hlt">Vents</span>: Bacterial Diversity and Ecosystem Succession on Inactive <span class="hlt">Hydrothermal</span> Sulfides</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sylvan, Jason B.; Toner, Brandy M.; Edwards, Katrina J.</p> <p>2012-01-01</p> <p>ABSTRACT <span class="hlt">Hydrothermal</span> chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. <span class="hlt">Active</span>, hot, <span class="hlt">venting</span> sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides—structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive <span class="hlt">hydrothermal</span> sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from <span class="hlt">venting</span> to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in <span class="hlt">active</span> chimneys. Members of the phylum Aquificae, which are common in <span class="hlt">active</span> <span class="hlt">vents</span>, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on <span class="hlt">active</span> <span class="hlt">hydrothermal</span> sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of <span class="hlt">venting</span> and also imply a potential shift in microbial <span class="hlt">activity</span> and metabolic guilds on <span class="hlt">hydrothermal</span> sulfides, the dominant biome that results from seafloor <span class="hlt">venting</span>. PMID:22275502</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20975681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20975681"><span id="translatedtitle">Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> animals seek cool fluids in a highly variable thermal environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bates, Amanda E; Lee, Raymond W; Tunnicliffe, Verena; Lamare, Miles D</p> <p>2010-05-04</p> <p>The thermal characteristics of an organism's environment affect a multitude of parameters, from biochemical to evolutionary processes. <span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> on mid-ocean ridges are created when warm <span class="hlt">hydrothermal</span> fluids are ejected from the seafloor and mixed with cold bottom seawater; many animals thrive along these steep temperature and chemical gradients. Two-dimensional temperature maps at <span class="hlt">vent</span> sites have demonstrated order of magnitude thermal changes over centimetre distances and at time intervals from minutes to hours. To investigate whether animals adapt to this extreme level of environmental variability, we examined differences in the thermal behaviour of mobile invertebrates from aquatic habitats that vary in thermal regime. <span class="hlt">Vent</span> animals were highly responsive to heat and preferred much cooler fluids than their upper thermal limits, whereas invertebrates from other aquatic environments risked exposure to warmer temperatures. Avoidance of temperatures well within their tolerated range may allow <span class="hlt">vent</span> animals to maintain a safety margin against rapid temperature fluctuations and concomitant toxicity of <span class="hlt">hydrothermal</span> fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.B31A0955A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.B31A0955A"><span id="translatedtitle">Microbial arsenic oxidation in a shallow marine <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amend, J. P.; Meyer-Dombard, D. R.; Pichler, T.; Price, R.; Herndon, E.; Hsia, N.</p> <p>2005-12-01</p> <p>The toxic effects of arsenic are well documented, but this Group V element can also serve as an energy source to a diverse group of microorganisms. Most of the attention has been on arsenate (AsV) reduction, but the focus is shifting to include arsenite (AsIII) oxidation and subsequent immobilization through coprecipitation with iron (oxy)hydroxides. The shallow marine <span class="hlt">hydrothermal</span> fluids near Ambitle Island, Papua New Guinea are characterized by arsenite concentrations of up to 1,000 μg/L. Directly proximal to the <span class="hlt">vent</span> orifices, arsenate coprecipitates with 2-line ferrihydrite, coating rocks and corals in red and green biofilms up to 1 cm thick. DNA extracted from these coatings was amplified with archaeal- and bacterial-specific primers, and the 16S rRNA gene was sequenced. Both biofilm samples revealed archaeal communities exclusively composed of uncultured Crenarchaea. The bacterial members are primarily gamma Proteobacteria and Planctomycetes in the red biofilm, but 60% of the community in the green biofilm affiliate with the alpha Proteobacteria and candidate group OP11; there is minimal overlap in bacterial phylotypes between the two coatings. Slurries from these coatings were also used to inoculate geochemically designed growth media supplemented with various redox couples, including aerobic and anaerobic As(III) oxidation. On a medium targeting anaerobic, chemolithoautotrophic arsenic oxidation coupled to ferric iron reduction at 50 °C, predominantly rod-shaped organisms (~5×105 cells/ml) were enriched. In contrast, on an aerobic arsenic oxidation medium, coccoid-shaped organisms (~3×106 cells/ml) were enriched. The respective thermophilic microbial communities may be taking advantage of overall metabolisms represented by H3AsO3(aq) + 2FeOOH(s) + 3H+ = H2AsO4- + 2Fe2+ + 3H2O (1) and H3AsO3(aq) + 1/2O2(aq) = H2AsO4- + H+. (2) To date, no arsenite oxidizers are known to use ferric iron as a terminal electron acceptor (reaction 1). However, this</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A2007C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A2007C"><span id="translatedtitle">Mineralogical and Fluid Inclusion Studies on Seafloor <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> at TA25 Caldera, Tonga Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.</p> <p>2015-12-01</p> <p>The extensive <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> on the western caldera wall. These <span class="hlt">active</span> <span class="hlt">hydrothermal</span> crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The <span class="hlt">hydrothermal</span> sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014EGUGA..16.4526S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014EGUGA..16.4526S&link_type=ABSTRACT"><span id="translatedtitle">Stabilization of dissolved trace metals at <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites: Impact on their marine biogeochemical cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sander, Sylvia G.; Powell, Zach D.; Koschinsky, Andrea; Kuzmanovski, Stefan; Kleint, Charlotte</p> <p>2014-05-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> have long been neglected as a significant source of several bioactive trace metals as it was assumed that elements such as Fe, Mn, and Cu etc., precipitate in extensor forming poly-metallic sulfide and oxy-hydroxy sediments in the relative vicinity of the emanation site. However, recently this paradigm has been reviewed since the stabilization of dissolved Fe and Cu from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> was observed [1, 2] and increased concentrations of trace metals can be traced from their <span class="hlt">hydrothermal</span> source thousands of kilometres through the ocean basins [3]. Furthermore several independent modelling attempts have shown that not only a stabilization of dissolved <span class="hlt">hydrothermal</span> Fe and Cu is possible [4] but also that <span class="hlt">hydrothermalism</span> must be a significant source of Fe to be able to balance the Fe-biogeochemical cycle [5]. Here we present new data that gives further evidence of the presence of copper stabilising organic and inorganic compounds in samples characterized by <span class="hlt">hydrothermal</span> input. We can show that there are systematic differences in copper-complexing ligands at different <span class="hlt">vent</span> sites such as 5°S on the Mid Atlantic Ridge, Brother Volcano on the Kermadec Arc, and some shallow <span class="hlt">hydrothermal</span> CO2 seeps in the Bay of Plenty, New Zealand and the Mediterranean Sea. Quantitative and qualitative voltammetric data convincingly indicates that inorganic sulphur and organic thiols form the majority of the strong copper-complexing ligand pool in many of these <span class="hlt">hydrothermal</span> samples. On average, the high temperature <span class="hlt">vents</span> had a significantly higher copper binding capacity than the diffuse <span class="hlt">vents</span> due to higher inorganic sulphur species concentrations. References: [1] Sander, S. G., et al. 2007. Organic complexation of copper in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. Environmental Chemistry 4: 81-89 [2] Bennett, S. A., et al. 2008. The distribution and stabilisation of dissolved Fe in deep-sea <span class="hlt">hydrothermal</span> plumes. Earth and Planetary Science Letters 270: 157-167. [3] Wu J</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11413650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11413650"><span id="translatedtitle">Life in the extreme environment at a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>: haemoglobin in a deep-sea copepod.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sell, A F</p> <p>2000-11-22</p> <p>This is the first study, to my knowledge, quantifying the respiratory pigment haemoglobin discovered in a deep-sea copepod. Haemoglobin in copepods has previously been documented in only one other species from the deep water of an Italian lake. Specimens of the siphonostomatoid Scotoecetes introrsus Humes were collected during submersible dives at 2500 m depth near a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> at the East Pacific Rise (9 degrees N). The haemoglobin content in the copepods' haemolymph was 4.3 +/- 0.6 micrograms per individual female (n = 6) and 1.8 +/- 0.1 micrograms per individual male (n = 6). Weight-specific concentrations of haemoglobin were identical for females and males (0.25 +/- 0.04 and 0.26 +/- 0.02 microgram per microgram dry weight, respectively). These haemoglobin concentrations are higher than those found in other small crustaceans. <span class="hlt">Activity</span> of the electron transport system indicated that the respiration rates in S. introrsus (13.7 +/- 7.7 microliters O2 per milligram dry weight per hour) were similar to those in the shallow-water copepod Acartia tonsa (9.1 +/- 1.3 microliters O2 per milligram dry weight per hour). It was concluded that the possession of highly concentrated haemoglobin allows S. introrsus to colonize a geologically young, thermally <span class="hlt">active</span> site such as the vicinity of a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>, despite the prevailing oxygen depletion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14999274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14999274"><span id="translatedtitle">Arctic Ocean: <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on Gakkel Ridge.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jean-Baptiste, Philippe; Fourré, Elise</p> <p>2004-03-01</p> <p>In the <span class="hlt">hydrothermal</span> circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a <span class="hlt">hydrothermal</span> tracer, to show that this abundance of <span class="hlt">venting</span> sites does not translate, as would be expected, into an anomalous <span class="hlt">hydrothermal</span> 3He output from the ridge. Because of the wide implications of the submarine <span class="hlt">hydrothermal</span> processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and crustal production at mid-ocean ridges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4961709','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4961709"><span id="translatedtitle">Characterization of Chemosynthetic Microbial Mats Associated with Intertidal <span class="hlt">Hydrothermal</span> Sulfur <span class="hlt">Vents</span> in White Point, San Pedro, CA, USA</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miranda, Priscilla J.; McLain, Nathan K.; Hatzenpichler, Roland; Orphan, Victoria J.; Dillon, Jesse G.</p> <p>2016-01-01</p> <p>The shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and <span class="hlt">activity</span> of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic <span class="hlt">activity</span> of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur <span class="hlt">vent</span> microbial mat community is similar, but distinct from other <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. PMID:27512390</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27512390','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27512390"><span id="translatedtitle">Characterization of Chemosynthetic Microbial Mats Associated with Intertidal <span class="hlt">Hydrothermal</span> Sulfur <span class="hlt">Vents</span> in White Point, San Pedro, CA, USA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miranda, Priscilla J; McLain, Nathan K; Hatzenpichler, Roland; Orphan, Victoria J; Dillon, Jesse G</p> <p>2016-01-01</p> <p>The shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and <span class="hlt">activity</span> of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic <span class="hlt">activity</span> of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur <span class="hlt">vent</span> microbial mat community is similar, but distinct from other <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. PMID:27512390</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27512390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27512390"><span id="translatedtitle">Characterization of Chemosynthetic Microbial Mats Associated with Intertidal <span class="hlt">Hydrothermal</span> Sulfur <span class="hlt">Vents</span> in White Point, San Pedro, CA, USA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miranda, Priscilla J; McLain, Nathan K; Hatzenpichler, Roland; Orphan, Victoria J; Dillon, Jesse G</p> <p>2016-01-01</p> <p>The shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and <span class="hlt">activity</span> of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic <span class="hlt">activity</span> of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur <span class="hlt">vent</span> microbial mat community is similar, but distinct from other <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13B1737K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13B1737K"><span id="translatedtitle">Mapping the Piccard <span class="hlt">Hydrothermal</span> Field - The World's Deepest Known <span class="hlt">Vent</span> Area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinsey, J. C.; German, C. R.</p> <p>2012-12-01</p> <p>We report the recent mapping and exploration of the Piccard <span class="hlt">Hydrothermal</span> Field on the Mid-Cayman Rise. Two previous expeditions in 2009 and 2010 led to the discovery of the site, which at 5000m hosts the world's deepest known <span class="hlt">vents</span>. The site was mapped and explored in January 2012 and the Piccard Field was found to be larger than previously appreciated. The site includes 3 separate currently <span class="hlt">active</span> <span class="hlt">hydrothermal</span> mounts together with 4 additional extinct depo-centers. The 3 <span class="hlt">active</span> centers are the Beebe <span class="hlt">Vents</span>, Beebe Woods, and Beebe Sea sites. Beebe <span class="hlt">Vents</span> is an <span class="hlt">active</span> black smoker system with maximum temperatures of 400-403 degrees Celsius. Beebe Woods contains a set of tall beehive smokers with temperatures of approximately 353 degrees Celsius. Beebe Sea, the largest sulfide mound in the field, contains diffuse <span class="hlt">venting</span> together with numerous extinct chimneys that indicate significant past <span class="hlt">active</span> focused flow. Observations of the 4 extinct mounds indicate differences in their apparent ages based on the texture and morphology of the extinct sulfides at the summit of each mound. The entire field is located on top of an axial volcanic ridge with extrusive pillow mounds prominent. A major fault traverses the mound along its long axis, from Southwest to Northeast. Beebe Woods, Beebe Sea, and extinct Beebe mound D abut this fault directly with an apparent monotonic age progression from youngest (Beebe Woods) in the SW to relict mound 'D' in the NE. Similarly, the Beebe <span class="hlt">Vents</span> site and mound is located at the SW limit of a parallel set of mounds, offset from the fault by approximately 100m, which also ages progressively through extinct Beebe Mounds 'E', 'F' and 'G'. The major fault that bisects the axial volcanic ridge at Piccard evidently serves as a controlling mechanism for the mounds abutting that fault however the mechanism for the second line of mounds remains to be determined. Bathymetry suggests the presence of a second, smaller fault which may serve as the control</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GML....36...15C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GML....36...15C"><span id="translatedtitle">Influence of <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis</p> <p>2016-02-01</p> <p>The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the <span class="hlt">hydrothermal</span> field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> has been detected to date. CTD profiles exhibit pronounced anomalies directly above the <span class="hlt">active</span> <span class="hlt">vents</span> on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field and clarifies the influence of fluid discharges in its formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26849440','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26849440"><span id="translatedtitle">Community Structure of Macrobiota and Environmental Parameters in Shallow Water <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> off Kueishan Island, Taiwan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming</p> <p>2016-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. <span class="hlt">Vents</span> are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water <span class="hlt">vents</span> have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water <span class="hlt">vents</span> off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant <span class="hlt">vent</span> fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the <span class="hlt">vent</span>, and continuing for a distance of 2000 m, indicating that the <span class="hlt">vent</span> fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of <span class="hlt">vent</span> fluid were influencing the associated fauna. Only the <span class="hlt">vent</span> crabs of Kueishan Island may have an obligated relationship with <span class="hlt">vents</span> and inhabit the <span class="hlt">vent</span> mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26849440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26849440"><span id="translatedtitle">Community Structure of Macrobiota and Environmental Parameters in Shallow Water <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> off Kueishan Island, Taiwan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming</p> <p>2016-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. <span class="hlt">Vents</span> are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water <span class="hlt">vents</span> have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water <span class="hlt">vents</span> off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant <span class="hlt">vent</span> fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the <span class="hlt">vent</span>, and continuing for a distance of 2000 m, indicating that the <span class="hlt">vent</span> fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of <span class="hlt">vent</span> fluid were influencing the associated fauna. Only the <span class="hlt">vent</span> crabs of Kueishan Island may have an obligated relationship with <span class="hlt">vents</span> and inhabit the <span class="hlt">vent</span> mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4744018','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4744018"><span id="translatedtitle">Community Structure of Macrobiota and Environmental Parameters in Shallow Water <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> off Kueishan Island, Taiwan</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming</p> <p>2016-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. <span class="hlt">Vents</span> are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water <span class="hlt">vents</span> have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water <span class="hlt">vents</span> off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant <span class="hlt">vent</span> fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the <span class="hlt">vent</span>, and continuing for a distance of 2000 m, indicating that the <span class="hlt">vent</span> fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of <span class="hlt">vent</span> fluid were influencing the associated fauna. Only the <span class="hlt">vent</span> crabs of Kueishan Island may have an obligated relationship with <span class="hlt">vents</span> and inhabit the <span class="hlt">vent</span> mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3695286','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3695286"><span id="translatedtitle">Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R</p> <p>2013-01-01</p> <p>Few studies have directly measured sulfate reduction at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in <span class="hlt">vent</span> environments. A better understanding of microbially mediated sulfate reduction in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Middle Valley <span class="hlt">vent</span> field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of <span class="hlt">hydrothermal</span> deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at <span class="hlt">vents</span>. PMID:23535916</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23535916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23535916"><span id="translatedtitle">Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R</p> <p>2013-07-01</p> <p>Few studies have directly measured sulfate reduction at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in <span class="hlt">vent</span> environments. A better understanding of microbially mediated sulfate reduction in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Middle Valley <span class="hlt">vent</span> field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that--within anaerobic niches of <span class="hlt">hydrothermal</span> deposits--heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B13C0630H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B13C0630H"><span id="translatedtitle">Community Structure Comparisons of <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Microbial Mats Along the Mariana Arc and Back-arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hager, K. W.; Fullerton, H.; Moyer, C. L.</p> <p>2015-12-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> with varied <span class="hlt">vent</span> effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby <span class="hlt">vent</span> effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70034843','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70034843"><span id="translatedtitle">Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.</p> <p>2011-01-01</p> <p>Background: Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic <span class="hlt">activities</span> controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of <span class="hlt">vents</span> along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other <span class="hlt">vent</span> species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100261','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3100261"><span id="translatedtitle">Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic <span class="hlt">activities</span> controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of <span class="hlt">vents</span> along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other <span class="hlt">vent</span> species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. PMID:21489281</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3703532','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3703532"><span id="translatedtitle">Diversity and phylogenetic analyses of bacteria from a shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in Milos island (Greece)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Giovannelli, Donato; d'Errico, Giuseppe; Manini, Elena; Yakimov, Michail; Vetriani, Costantino</p> <p>2013-01-01</p> <p>Studies of shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> have been lagging behind their deep-sea counterparts. Hence, the importance of these systems and their contribution to the local and regional diversity and biogeochemistry is unclear. This study analyzes the bacterial community along a transect at the shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> system of Milos island, Greece. The abundance and biomass of the prokaryotic community is comparable to areas not affected by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and was, on average, 1.34 × 108 cells g−1. The abundance, biomass and diversity of the prokaryotic community increased with the distance from the center of the <span class="hlt">vent</span> and appeared to be controlled by the temperature gradient rather than the trophic conditions. The retrieved 16S rRNA gene fragments matched sequences from a variety of geothermal environments, although the average similarity was low (94%), revealing previously undiscovered taxa. Epsilonproteobacteria constituted the majority of the population along the transect, with an average contribution to the total diversity of 60%. The larger cluster of 16S rRNA gene sequences was related to chemolithoautotrophic Sulfurovum spp., an Epsilonproteobacterium so far detected only at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. The presence of previously unknown lineages of Epsilonproteobacteria could be related to the abundance of organic matter in these systems, which may support alternative metabolic strategies to chemolithoautotrophy. The relative contribution of Gammaproteobacteria to the Milos microbial community increased along the transect as the distance from the center of the <span class="hlt">vent</span> increased. Further attempts to isolate key species from these ecosystems will be critical to shed light on their evolution and ecology. PMID:23847607</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23847607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23847607"><span id="translatedtitle">Diversity and phylogenetic analyses of bacteria from a shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in Milos island (Greece).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giovannelli, Donato; d'Errico, Giuseppe; Manini, Elena; Yakimov, Michail; Vetriani, Costantino</p> <p>2013-01-01</p> <p>Studies of shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> have been lagging behind their deep-sea counterparts. Hence, the importance of these systems and their contribution to the local and regional diversity and biogeochemistry is unclear. This study analyzes the bacterial community along a transect at the shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> system of Milos island, Greece. The abundance and biomass of the prokaryotic community is comparable to areas not affected by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and was, on average, 1.34 × 10(8) cells g(-1). The abundance, biomass and diversity of the prokaryotic community increased with the distance from the center of the <span class="hlt">vent</span> and appeared to be controlled by the temperature gradient rather than the trophic conditions. The retrieved 16S rRNA gene fragments matched sequences from a variety of geothermal environments, although the average similarity was low (94%), revealing previously undiscovered taxa. Epsilonproteobacteria constituted the majority of the population along the transect, with an average contribution to the total diversity of 60%. The larger cluster of 16S rRNA gene sequences was related to chemolithoautotrophic Sulfurovum spp., an Epsilonproteobacterium so far detected only at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. The presence of previously unknown lineages of Epsilonproteobacteria could be related to the abundance of organic matter in these systems, which may support alternative metabolic strategies to chemolithoautotrophy. The relative contribution of Gammaproteobacteria to the Milos microbial community increased along the transect as the distance from the center of the <span class="hlt">vent</span> increased. Further attempts to isolate key species from these ecosystems will be critical to shed light on their evolution and ecology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1087270','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/1087270"><span id="translatedtitle">Characterizing Microbial Community and Geochemical Dynamics at <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> Using Osmotically Driven Continuous Fluid Samplers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.</p> <p>2013-05-07</p> <p>Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and <span class="hlt">activities</span>. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, where the ephemeral nature of <span class="hlt">venting</span> underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.148B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.148B"><span id="translatedtitle">From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barge, Laurie</p> <p>2016-07-01</p> <p>Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems where the reducing, heated <span class="hlt">hydrothermal</span> fluid feeds back into the more oxidizing ocean. Alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the <span class="hlt">hydrothermal</span> pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic <span class="hlt">hydrothermal</span> precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in <span class="hlt">hydrothermal</span> systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the <span class="hlt">vent</span> fluid / seawater interface. <span class="hlt">Hydrothermal</span> chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline <span class="hlt">vent</span> have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B13C0636P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B13C0636P"><span id="translatedtitle">A New Microbial Player on the Iron Redox Court of Shallow-Water <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez-Rodriguez, I. M.; Rawls, M.; Coykendall, D. K.; Foustoukos, D.</p> <p>2015-12-01</p> <p>The Fe(III)/Fe(II) couple is thought to have been a significant early energy metabolism involved in some of the first biogeochemical processes on Earth (Weber et al., 2006). The early evolving and metal-rich nature of modern <span class="hlt">hydrothermal</span> systems remain particularly significant for Fe-based <span class="hlt">activities</span> (Vargas et al., 1998). Documented evidence from such systems show a variety of yet unknown microbial lineages potentially linked to the history of Fe (i.e., Meyer-Dombard and Amend, 2014). Here we describe a novel microbe that reduces Fe(III) at shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in Milos Island, Greece. Our laboratory experiments show this strain, MAG-PB1T, to reduce Fe(III) between 30 - 70 °C, 0 - 50 g NaCl l-1 and pH 5.5 - 8.0. Shortest generation time occurred under optimal conditions (60 °C, ~1.8 g NaCl l-1, pH 6.0) with H2 as the energy source, CO2 as the carbon source and Fe(III) as electron acceptor. Its metabolic characteristics are, however, not limited to this pathway. Strain MAG-PB1T can also reduce Mn(IV), arsenate and selenate. Its use of at least 9 organic substrates as energy or carbon sources also demonstrates its mixotrophy. Phylogenetic 16S rRNA gene analyses place strain MAG-PB1T within the Deltaproteobacteria, with the closest match (99%) being an uncultured microbe from <span class="hlt">hydrothermal</span> springs in Ambitle Island, Papua New Guinea (Meyer-Dombard and Amend, 2014). Its next closest match (97%) is Deferrisoma camini, isolated from a deep-sea <span class="hlt">vent</span> in the Eastern Lau Spreading Center (Slobodkina et al. 2012). Our strain represents a novel species, which we named Deferrisoma paleochoriense. The occurrence of D. paleochoriense in the shallow-water <span class="hlt">vents</span> of Milos and Ambitle islands coincides with high arsenic, iron and sulfide contents (Akerman et al., 2011; Price et al., 2013; Yücel et al., 2013). Consequently, our study provides important physiological and metabolic evidence of the feedback between metal chemistry and life in <span class="hlt">hydrothermal</span> sytems rich in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GGG.....5.2003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GGG.....5.2003S"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">venting</span> at Vailulu'u Seamount: The smoking end of the Samoan chain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staudigel, H.; Hart, S. R.; Koppers, A. A. P.; Constable, C.; Workman, R.; Kurz, M.; Baker, E. T.</p> <p>2004-02-01</p> <p>The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an <span class="hlt">active</span> <span class="hlt">hydrothermal</span> system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine <span class="hlt">hydrothermal</span> system. The water is enriched in <span class="hlt">hydrothermal</span> Mn (3.8 ppb) and 3He (1 × 10-11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The <span class="hlt">hydrothermal</span> system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40-50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [, 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20-100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19483771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19483771"><span id="translatedtitle">Survey of genome size in 28 <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> species covering 10 families.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonnivard, Eric; Catrice, Olivier; Ravaux, Juliette; Brown, Spencer C; Higuet, Dominique</p> <p>2009-06-01</p> <p>Knowledge of genome size is a useful and necessary prerequisite for the development of many genomic resources. To better understand the origins and effects of DNA gains and losses among species, it is important to collect data from a broad taxonomic base, but also from particular ecosystems. Oceanic thermal <span class="hlt">vents</span> are an interesting model to investigate genome size in very unstable environments. Here we provide data estimated by flow cytometry for 28 <span class="hlt">vent</span>-living species among the most representative from different <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. We also report the genome size of closely related coastal decapods. Haploid C-values were compared with those previously reported for species from corresponding orders or infraorders. This is the first broad survey of 2C values in <span class="hlt">vent</span> organisms. Contrary to expectations, it shows that certain <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> species have particularly large genomes. The <span class="hlt">vent</span> squat lobster Munidopsis recta has the largest genome yet reported for any anomuran: 2C=31.1 pg=30.4x10(9) bp. In several groups, such as Brachyura, Phyllodocida, and Veneroida, <span class="hlt">vent</span> species have genomes that clearly rank at the high end of published values for each group. We also describe the highest DNA content yet recorded for the Brachyura (coastal crabs Xantho pilipes and Necora puber). Finally, analysis of genome size variation across populations revealed unexpected intraspecific variation in the <span class="hlt">vent</span> shrimp Mirocaris fortunata that could not be attributed simply to ploidy changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26784166','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26784166"><span id="translatedtitle">An Unusual Stress Metabolite from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus Aspergillus sp. WU 243 Induced by Cobalt.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin</p> <p>2016-01-01</p> <p>A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environment. PMID:26784166</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26805789','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26805789"><span id="translatedtitle">An Unusual Stress Metabolite from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus Aspergillus sp. WU 243 Induced by Cobalt.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin</p> <p>2016-01-01</p> <p>A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environment. PMID:26805789</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26784166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26784166"><span id="translatedtitle">An Unusual Stress Metabolite from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus Aspergillus sp. WU 243 Induced by Cobalt.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin</p> <p>2016-01-16</p> <p>A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26805789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26805789"><span id="translatedtitle">An Unusual Stress Metabolite from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus Aspergillus sp. WU 243 Induced by Cobalt.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin</p> <p>2016-01-01</p> <p>A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/7049404','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/7049404"><span id="translatedtitle">Deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. (Latest citations from Oceanic abstracts). Published Search</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1994-04-01</p> <p>The bibliography contains citations concerning biological, chemical, and geophysical investigations of seafloor <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Biological community descriptions, primary production and growth studies, the nature and occurrence of mineral deposits, and the structure and morphology of <span class="hlt">vent</span> systems are among the topics discussed. Specific site studies, and general investigations are considered. (Contains a minimum of 157 citations and includes a subject term index and title list.)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26410427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26410427"><span id="translatedtitle">Characteristics of the cultivable bacteria from sediments associated with two deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in Okinawa Trough.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Qing-lei; Wang, Ming-qing; Sun, Li</p> <p>2015-12-01</p> <p>In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two <span class="hlt">vents</span> differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease <span class="hlt">activities</span>, 21 isolates from 11 genera exhibited extracellular lipase <span class="hlt">activities</span>, and 13 isolates of 8 genera displayed antimicrobial <span class="hlt">activities</span>. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea <span class="hlt">hydrothermal</span> ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26410427','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26410427"><span id="translatedtitle">Characteristics of the cultivable bacteria from sediments associated with two deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in Okinawa Trough.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Qing-lei; Wang, Ming-qing; Sun, Li</p> <p>2015-12-01</p> <p>In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two <span class="hlt">vents</span> differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease <span class="hlt">activities</span>, 21 isolates from 11 genera exhibited extracellular lipase <span class="hlt">activities</span>, and 13 isolates of 8 genera displayed antimicrobial <span class="hlt">activities</span>. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea <span class="hlt">hydrothermal</span> ecosystems. PMID:26410427</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24963774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24963774"><span id="translatedtitle">Complete mitochondrial genome of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ghost shrimp Paraglypturus tonganus (Crustacea, Axiidea, Callianassidae).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Se-Joo; Kim, Jonguk; Ahn, Dong-Ha; Ju, Se-Jong; Min, Gi-Sik; Kim, Sanghee</p> <p>2016-01-01</p> <p>Ghost shrimps are burrowing decapods that serve as bioturbators and habitat providers in seafloor environments. The <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ghost shrimp, Paraglypturus tonganus, was collected from a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in the Tonga Arc. This species has a mitochondrial genome (mitogenome) of 15,924 bp in length with an AT content of 66.1%. The mitogenome was identical to the typical gene arrangement and transcriptional polarity of the infraorder Axiidea. Paraglypturus tonganus showed 65.3-70.1% nucleotide similarity with the known mitogenomes of other axiid shrimps. These results are useful for understanding the phylogenetic relationships among the members of Axiidea within the decapods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70014522','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70014522"><span id="translatedtitle">Submarine fissure eruptions and <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Normark, W.R.</p> <p>1986-01-01</p> <p>The submersible Alvin was used to investigate 3 <span class="hlt">active</span> <span class="hlt">hydrothermal</span> discharge sites along the S Juan de Fuca Ridge in September 1984. The <span class="hlt">hydrothermal</span> zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> coincide with the main eruptive <span class="hlt">vents</span> along the cleft. Each <span class="hlt">hydrothermal</span> zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated <span class="hlt">hydrothermal</span> fluids have the highest chlorinity of any reported to date.-Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22180817','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22180817"><span id="translatedtitle">Draft genome sequence of Caminibacter mediatlanticus strain TB-2, an epsilonproteobacterium isolated from a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giovannelli, Donato; Ferriera, Steven; Johnson, Justin; Kravitz, Saul; Pérez-Rodríguez, Ileana; Ricci, Jessica; O'Brien, Charles; Voordeckers, James W; Bini, Elisabetta; Vetriani, Costantino</p> <p>2011-10-15</p> <p>Caminibacter mediatlanticus strain TB-2(T) [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an <span class="hlt">active</span> deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H(2) as the energy source and CO(2) as the carbon source. Nitrate or sulfur is used as the terminal electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. In view of the widespread distribution, importance and physiological characteristics of thermophilic Epsilonproteobacteria in deep-sea geothermal environments, it is likely that these organisms provide a relevant contribution to both primary productivity and the biogeochemical cycling of carbon, nitrogen and sulfur at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Here we report the main features of the genome of C. mediatlanticus strain TB-2(T). PMID:22180817</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OLEB..tmp...39Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OLEB..tmp...39Z"><span id="translatedtitle">Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua</p> <p>2016-09-01</p> <p>Submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel <span class="hlt">hydrothermal</span> system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature <span class="hlt">hydrothermal</span> fluids were generated in basalt-hosted <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline <span class="hlt">vent</span> systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in origin of life in the early ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GGG....14.4170W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GGG....14.4170W"><span id="translatedtitle">Moytirra: Discovery of the first known deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field on the slow-spreading Mid-Atlantic Ridge north of the Azores</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.</p> <p>2013-10-01</p> <p>Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra <span class="hlt">vent</span> field at 45oN. This is the only high temperature <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra <span class="hlt">vent</span> field is, unusually for tectonically controlled <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra <span class="hlt">vent</span> field consists of an alignment of four sites of <span class="hlt">venting</span>, three <span class="hlt">actively</span> emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously <span class="hlt">venting</span>. The <span class="hlt">vent</span> fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the <span class="hlt">vent</span> chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the <span class="hlt">vent</span> field. The discovery of the Moytirra <span class="hlt">vent</span> field therefore expands the known latitudinal distributions of several <span class="hlt">vent</span>-endemic genera in the north Atlantic, and reveals faunal affinities with <span class="hlt">vents</span> south of the Azores rather than north of Iceland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5040445','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5040445"><span id="translatedtitle">Food-Web Complexity in Guaymas Basin <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> and Cold Seeps</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Olu, Karine; Dubois, Stanislas F.; Escobar-Briones, Elva; Gelinas, Yves; Menot, Lénaick; Sarrazin, Jozée</p> <p>2016-01-01</p> <p>In the Guaymas Basin, the presence of cold seeps and <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four <span class="hlt">vent</span> assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and <span class="hlt">vents</span> on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and <span class="hlt">vent</span> fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological <span class="hlt">activities</span>, foundation species may have the potential to partly release the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..116..118K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..116..118K"><span id="translatedtitle">Geochemical characteristics of sinking particles in the Tonga arc <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field, southwestern Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hyung Jeek; Kim, Jonguk; Pak, Sang Joon; Ju, Se-Jong; Yoo, Chan Min; Kim, Hyun Sub; Lee, Kyeong Yong; Hwang, Jeomshik</p> <p>2016-10-01</p> <p>Studies of sinking particles associated with <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids may help us to quantify mass transformation processes between <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> plumes and deposits. Such studies may also help us understand how various types of <span class="hlt">hydrothermal</span> systems influence particle flux and composition. However, the nature of particle precipitation out of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> plumes in the volcanic arcs of convergent plate boundaries has not been well studied, nor have the characteristics of such particles been compared with the characteristics of sinking particles at divergent boundaries. We examined sinking particles collected by sediment traps for about 10 days at two sites, each within 200 m of identified <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the south Tonga arc of the southwestern Pacific. The total mass flux was several-fold higher than in the non-<span class="hlt">hydrothermal</span> southwest tropical Pacific. The contribution of non-biogenic materials was dominant (over 72%) and the contribution of metals such as Fe, Mn, Cu, and Zn was very high compared to their average levels in the upper continental crust. The particle flux and composition indicate that <span class="hlt">hydrothermal</span> authigenic particles are the dominant source of the collected sinking particles. Overall, our elemental ratios are similar to observations of particles at the divergent plate boundary in the East Pacific Rise (EPR). Thus, the nature of the <span class="hlt">hydrothermal</span> particles collected in the south Tonga arc is probably not drastically different from particles in the EPR region. However, we observed consistent differences between the two sites within the Tonga arc, in terms of the contribution of non-biogenic material, the radiocarbon content of sinking particulate organic carbon, the ratios of iron to other metals (e.g. Cu/Fe and Zn/Fe), and plume maturity indices (e.g. S/Fe). This heterogeneity within the Tonga arc is likely caused by differences in physical environment such as water depth, phase separation due to subcritical boiling and associated sub</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6191629','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6191629"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> clam and tube worm /sup 13/C//sup 12/C: further evidence of nonphotosynthetic food sources</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Rau, G.H.</p> <p>1981-07-17</p> <p>The stable carbon isotope ratios in clam mantle tissues taken from both Galapagos and 21/sup 0/N <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites were similar to the unusually low ratios of carbon-13 to carbon-12 previously reported for a Galapagos <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel. In marked contrast to these bivalues, vestimentiferan worm tissues from a Galapagos <span class="hlt">vent</span> had isotope ratios that were higher than those of open ocean biota. These observations suggest that more than one nonpelagic and nonphotosynthetic carbon fixation pathway is of nutritional importance to <span class="hlt">vent</span> animals, and that at least one of these pathways is common to two geographically separated <span class="hlt">vent</span> sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..116...22Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..116...22Z"><span id="translatedtitle">Molecular diversity and distribution pattern of ciliates in sediments from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Okinawa Trough and adjacent sea areas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Feng; Xu, Kuidong</p> <p>2016-10-01</p> <p>In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of <span class="hlt">active</span> organisms. However, both methods have never been used to evaluate the diversity of ciliates in <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P53E..09T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P53E..09T"><span id="translatedtitle">Microbial community development in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Earth and the Enceladus (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takai, K.; Shibuya, T.; Sekine, Y.; Russell, M. J.</p> <p>2013-12-01</p> <p>Over the past 35 years, researchers have explored seafloor deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environments around the globe and studied a number of microbial ecosystems. Bioinformatics and interdisciplinary geochemistry-microbiology approaches have provided new ideas on the diversity and community composition of microbial life living in deep-sea <span class="hlt">vents</span>. In particular, recent investigations have revealed that the community structure and productivity of chemolithotrophic microbial communities in the deep-sea <span class="hlt">hydrothermal</span> environments are controlled primarily by variations in the geochemical composition of <span class="hlt">hydrothermal</span> fluids. This was originally predicted by a thermodynamic calculation of energy yield potential of various chemolithotrophic metabolisms in a simulated <span class="hlt">hydrothermal</span> mixing zone. The prediction has been finally justified by the relatively quantitative geomicrobiological characterizations in various deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environments all over the world. Thus, there should be a possible principle that the thermodynamic estimation of chemolithotrophic energy yield potentials could predict the realistic chemolithotrophic living community in any of the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environments in this planet. In 2005, a spacecraft Cassini discovered a water vapour jet plume from the sole pole area of the Saturnian moon Enceladus. The chemical composition analyses of Cassini's mass spectrometer strongly suggested that the Enceladus could host certain extent of extraterrestrial ocean beneath the surface ice sheet and possible ocean-rock <span class="hlt">hydrothermal</span> systems. In addition, a recent research has suggests that there is silica nanoparticles in Saturn's E-ring derived from the Enceladus plume. An experimental study simulating the reaction between chondritic material and alkaline seawater reveals that the formation of silica nanoparticles requires <span class="hlt">hydrothermal</span> reaction at high temperatures. Based on these findings, we attempt to built a model of possible <span class="hlt">hydrothermal</span> fluid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRI..106..167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRI..106..167G"><span id="translatedtitle">Differences in recovery between deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> and <span class="hlt">vent</span>-proximate communities after a volcanic eruption</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gollner, Sabine; Govenar, Breea; Arbizu, Pedro Martinez; Mills, Susan; Le Bris, Nadine; Weinbauer, Markus; Shank, Timothy M.; Bright, Monika</p> <p>2015-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and the surrounding basalt seafloor are subject to major natural disturbance events such as volcanic eruptions. In the near future, anthropogenic disturbance in the form of deep-sea mining could also significantly affect the faunal communities of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. In this study, we monitor and compare the recovery of insular, highly productive <span class="hlt">vent</span> communities and <span class="hlt">vent</span>-proximate basalt communities following a volcanic eruption that destroyed almost all existing communities at the East Pacific Rise, 9°50‧N in 2006. To study the recovery patterns of the benthic communities, we placed settlement substrates at <span class="hlt">vent</span> sites and their proximate basalt areas and measured the prokaryotic abundance and compared the meio- and macrofaunal species richness and composition at one, two and four years after the eruption. In addition, we collected samples from the overlying water column with a pelagic pump, at one and two years after the volcanic eruption, to determine the abundance of potential meiofauna colonisers. One year after eruption, mean meio- and macrofaunal abundances were not significantly different from pre-eruption values in <span class="hlt">vent</span> habitats (meio: 8-1838 ind. 64 cm-2 in 2006; 3-6246 ind. 64 cm-2 in 2001/02; macro: 95-1600 ind. 64 cm-2 in 2006; 205-4577 ind. 64 cm-2 in 2001/02) and on non-<span class="hlt">vent</span> basalt habitats (meio: 10-1922 ind. 64 cm-2 in 2006; 8-328 ind. 64 cm-2 in 2003/04; macro: 14-3351 ind. 64 cm-2 in 2006; 2-63 ind. 64 cm-2 in 2003/04), but species recovery patterns differed between the two habitat types. In the <span class="hlt">vent</span> habitat, the initial community recovery was relatively quick but incomplete four years after eruption, which may be due to the good dispersal capabilities of <span class="hlt">vent</span> endemic macrofauna and <span class="hlt">vent</span> endemic dirivultid copepods. At <span class="hlt">vents</span>, 42% of the pre-eruption meio- and 39% of macrofaunal species had returned. In addition, some new species not evident prior to the eruption were found. At the tubeworm site Tica, a total of 26</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26779119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26779119"><span id="translatedtitle">Genomic Reconstruction of an Uncultured <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skennerton, Connor T; Ward, Lewis M; Michel, Alice; Metcalfe, Kyle; Valiente, Chanel; Mullin, Sean; Chan, Ken Y; Gradinaru, Viviana; Orphan, Victoria J</p> <p>2015-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid and is frequently consumed at <span class="hlt">vent</span> sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x-12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic <span class="hlt">vent</span> environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane <span class="hlt">activation</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4688376','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4688376"><span id="translatedtitle">Genomic Reconstruction of an Uncultured <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Skennerton, Connor T.; Ward, Lewis M.; Michel, Alice; Metcalfe, Kyle; Valiente, Chanel; Mullin, Sean; Chan, Ken Y.; Gradinaru, Viviana; Orphan, Victoria J.</p> <p>2015-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid and is frequently consumed at <span class="hlt">vent</span> sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic <span class="hlt">vent</span> environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane <span class="hlt">activation</span>. PMID:26779119</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26779119','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26779119"><span id="translatedtitle">Genomic Reconstruction of an Uncultured <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skennerton, Connor T; Ward, Lewis M; Michel, Alice; Metcalfe, Kyle; Valiente, Chanel; Mullin, Sean; Chan, Ken Y; Gradinaru, Viviana; Orphan, Victoria J</p> <p>2015-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid and is frequently consumed at <span class="hlt">vent</span> sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x-12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic <span class="hlt">vent</span> environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane <span class="hlt">activation</span>. PMID:26779119</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8108D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8108D"><span id="translatedtitle">Carbon fluxes from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Milos, Aegean Volcanic Arc, and the influence of <span class="hlt">venting</span> on the surrounding ecosystem.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla</p> <p>2014-05-01</p> <p>The island of Milos, in the Aegean Sea, has extensive <span class="hlt">hydrothermal</span> fields to the east and southeast of the island with additional <span class="hlt">venting</span> areas near the entrance to and within the central caldera. A calculation of the total area of the <span class="hlt">vent</span> fields, based on ship and aerial surveys, suggested that the <span class="hlt">hydrothermal</span> fields occupy 70 km2, twice the area previously estimated. The <span class="hlt">vents</span> ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the <span class="hlt">vents</span> was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of <span class="hlt">hydrothermal</span> brine seepage occurred between the gas <span class="hlt">vents</span> and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the <span class="hlt">venting</span> and the effect of the brine seeps had a dramatic effect on the surrounding</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.8S06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.8S06S"><span id="translatedtitle">Culture-independent characterization of a novel microbial community at a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> at Brothers volcano, Kermadec arc, New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stott, M. B.; Saito, J. A.; Crowe, M. A.; Dunfield, P. F.; Hou, S.; Nakasone, E.; Daughney, C. J.; Smirnova, A. V.; Mountain, B. W.; Takai, K.; Alam, M.</p> <p>2008-08-01</p> <p>The bacterial and archaeal diversity of a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> microbial community at Brothers volcano situated in the Kermadec arc, ˜400 km off the north coast of New Zealand, was examined using culture-independent molecular analysis. An unusual microbial community was detected with only 1% and 40% of the bacterial phylotypes exhibiting >92% small subunit (SSU) rRNA gene sequence similarity with cultivated and noncultivated microbes, respectively. Of the 29 bacterial representative phylotypes, over one third of the SSU rRNA gene sequences retrieved belonged to uncultivated candidate divisions including OP1, OP3, OP5, OP8, OD1, and OP11. All archaeal phylotypes belonged to the phylum Euryarchaeota in the uncultivated groups deep <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> euryarchaeotal (DHVE) I and II or to the phylum Korarchaeota. Like the bacterial clone library, only a small proportion of archaeal SSU rRNA gene sequences (˜2% and 20%) displayed >92% sequence identity with any archaeal isolates or noncultivated microbes, respectively. Although the bacterial phylotypes detected were phylogenetically most similar to microbial communities detected in methane, hydrocarbon, and carbon dioxide-based <span class="hlt">hydrothermal</span> and seep environments, no phylotypes directly associated with anaerobic methane oxidation and mcrA <span class="hlt">activity</span> could be detected. The geochemical composition of the <span class="hlt">vent</span> fluids at the Brothers-lower cone sample site is unusual and we suggest that it may play a prominent role in the species selection of this microbial community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23665957','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23665957"><span id="translatedtitle">Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martins, Ana; Tenreiro, Tania; Andrade, Gonçalo; Gadanho, Mário; Chaves, Sandra; Abrantes, Marta; Calado, Patrícia; Tenreiro, Rogério; Vieira, Helena</p> <p>2013-05-10</p> <p>Interesting biological <span class="hlt">activities</span> have been found for numerous marine compounds. In fact, screening of phylogenetically diverse marine microorganisms from extreme environments revealed to be a rational approach for the discovery of novel molecules with relevant bioactivities for industries such as pharmaceutical and cosmeceutical. Nevertheless, marine sources deliverables are still far from the expectations and new extreme sources of microbes should be explored. In this work, a marine prokaryotic collection from four Mid-Atlantic Ridge (MAR) deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> near the Azores Islands, Portugal, was created, characterized and tested for its photoprotective capacity. Within 246 isolates, a polyphasic approach, using chemotaxonomic and molecular typing methods, identified 23-related clusters of phenetically similar isolates with high indexes of diversity. Interestingly, 16S rRNA gene sequencing suggested the presence of 43% new prokaryotic species. A sub-set of 139 isolates of the prokaryotic collection was selected for biotechnological exploitation with 484 bacterial extracts prepared in a sustainable upscalling manner. 22% of the extracts showed an industrially relevant photoprotective <span class="hlt">activity</span>, with two extracts, belonging to new strains of the species Shewanella algae and Vibrio fluvialis, uniquely showing UV-A, UV-B and UV-C protective capacity. This clearly demonstrates the high potential of the bacteria MAR <span class="hlt">vents</span> collection in natural product synthesis with market applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24736648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24736648"><span id="translatedtitle">Exopolysaccharides isolated from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> bacteria can modulate the complement system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Courtois, Anthony; Berthou, Christian; Guézennec, Jean; Boisset, Claire; Bordron, Anne</p> <p>2014-01-01</p> <p>The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological <span class="hlt">activity</span>. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from <span class="hlt">vent</span> bacteria in order to find pro or anti-<span class="hlt">activators</span> of complement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16348053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16348053"><span id="translatedtitle">Characterization of Large, Autotrophic Beggiatoa spp. Abundant at <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> of the Guaymas Basin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, D C; Wirsen, C O; Jannasch, H W</p> <p>1989-11-01</p> <p>Filamentous bacteria, identified as members of the genus Beggiatoa by gliding motility and internal globules of elemental sulfur, occur in massive aggregations at the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the Guaymas Basin, Gulf of California. Cell aggregates covering the surface of sulfide-emanating sediments and rock chimneys were collected by DS R/V Alvin and subjected to shipboard and laboratory experiments. Each sample collected contained one to three discrete width classes of this organism usually accompanied by a small number of "flexibacteria" (width, 1.5 to 4 mum). The average widths of the Beggiatoa classes were 24 to 32, 40 to 42, and 116 to 122 mum. As indicated by electron microscopy and cell volume/protein ratios, the dominant bacteria are hollow cells, i.e., a thin layer of cytoplasm surrounding a large central liquid vacuole. <span class="hlt">Activities</span> of Calvin-cycle enzymes indicated that at least two of the classes collected possess autotrophic potential. Judging from temperature dependence of enzyme <span class="hlt">activities</span> and whole-cell CO(2) incorporation, the widest cells were mesophiles. The narrowest Beggiatoa sp. was either moderately thermophilic or mesophilic with unusually thermotolerant enzymes. This was consistent with its occurrence on the flanks of hot smoker chimneys with highly variable exit temperatures. In situ CO(2) fixation rates, sulfide stimulation of incorporation, and autoradiographic studies suggest that these Beggiatoa spp. contribute significantly as lithoautrophic primary producers to the Guaymas Basin <span class="hlt">vent</span> ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5950250','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5950250"><span id="translatedtitle">Characterization of large, autotrophic Beggiatoa spp. abundant at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the Guaymas Basin</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Nelson, D.C. ); Wirsen, C.O.; Jannasch, H.W. )</p> <p>1989-11-01</p> <p>Filamentous bacteria, identified as members of the genus Beggiatoa by gliding motility and internal globules of elemental sulfur, occur in massive aggregations at the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the Guaymas Basin, Gulf of California. Cell aggregates covering the surface of sulfide-emanating sediments and rock chimneys were collected by DS R/V Alvin and subjected to shipboard and laboratory experiments. Each sample collected contained one to three discrete width classes of this organism usually accompanied by a small number of flexibacteria (width, 1.5 to 4 {mu}m). The average widths of the Beggiatoa classes were 24 to 32, 40 to 42, and 116 to 122 {mu}m. As indicated by electron microscopy and cell volume/protein ratios, the dominant bacteria are hollow cells, i.e., a thin layer of cytoplasm surrounding a large central liquid vacuole. <span class="hlt">Activities</span> of Calvin-cycle enzymes indicated that at least two of the classes collected possess autotrophic potential. Judging from temperature dependence of enzyme <span class="hlt">activities</span> and whole-cell CO{sub 2} incorporation, the widest cells were mesophiles. The narrowest Beggiatoa sp. was either moderately thermophilic or mesophilic with unusually thermotolerant enzymes. This was consistent with its occurrence on the flanks of hot smoker chimneys with highly variable exit temperatures. In situ CO{sub 2} fixation rates, sulfide stimulation of incorporation, and autoradiographic studies suggest that these Beggiatoa spp. contribute significantly as lithoautrophic primary producers to the Guaymas Basin <span class="hlt">vent</span> ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A1993B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A1993B"><span id="translatedtitle">COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bemis, K. G.; Xu, G.; Lee, R.</p> <p>2015-12-01</p> <p>COVIS (Cabled Observatory <span class="hlt">Vent</span> Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto <span class="hlt">vent</span> in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of <span class="hlt">hydrothermal</span> plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea <span class="hlt">hydrothermal</span> plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor <span class="hlt">hydrothermal</span> system with geological processes. These findings demonstrate the intimate interconnections of seafloor <span class="hlt">hydrothermal</span> systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor <span class="hlt">hydrothermal</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008GMS...178..259S&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008GMS...178..259S&link_type=ABSTRACT"><span id="translatedtitle">Processes and interactions in macrofaunal assemblages at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>: A modeling perspective</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shea, Katriona; Metaxas, Anna; Young, Curtis R.; Fisher, Charles R.</p> <p></p> <p>Our understanding of the biological assemblages at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is growing rapidly, in part facilitated by the coupling of experimental and observational methods with theoretical modeling efforts. We review theoretical approaches in four main areas and link them to empirical studies of the biology of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. First, we describe models of dispersal of <span class="hlt">vent</span> organisms within and among <span class="hlt">vent</span> sites. These models fall broadly into two categories: those based on larval biology and currents that predict dispersal capabilities from a source, and those using genetic data to address historical genetic links between populations. Then we discuss models for individual and population growth at a location and give examples from work in a biologically similar deep-sea environment: cold seeps. Third, we address how these two aspects can be integrated using models that couple dispersal and demography. Last, we summarize existing modeling approaches for community succession in other types of habitats, and outline the conceptual models and the sorts of data that currently exist for <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. Throughout, we also examine the use of models in improving experimental design.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS52A..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS52A..05B"><span id="translatedtitle">Event Detection for <span class="hlt">Hydrothermal</span> Plumes: A case study at Grotto <span class="hlt">Vent</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bemis, K. G.; Ozer, S.; Xu, G.; Rona, P. A.; Silver, D.</p> <p>2012-12-01</p> <p>Evidence is mounting that geologic events such as volcanic eruptions (and intrusions) and earthquakes (near and far) influence the flow rates and temperatures of <span class="hlt">hydrothermal</span> systems. Connecting such suppositions to observations of <span class="hlt">hydrothermal</span> output is challenging, but new ongoing time series have the potential to capture such events. This study explores using <span class="hlt">activity</span> detection, a technique modified from computer vision, to identify pre-defined events within an extended time series recorded by COVIS (Cabled Observatory <span class="hlt">Vent</span> Imaging Sonar) and applies it to a time series, with gaps, from Sept 2010 to the present; available measurements include plume orientation, plume rise rate, and diffuse flow area at the NEPTUNE Canada Observatory at Grotto <span class="hlt">Vent</span>, Main Endeavour Field, Juan de Fuca Ridge. <span class="hlt">Activity</span> detection is the process of finding a pattern (<span class="hlt">activity</span>) in a data set containing many different types of patterns. Among many approaches proposed to model and detect <span class="hlt">activities</span>, we have chosen a graph-based technique, Petri Nets, as they do not require training data to model the <span class="hlt">activity</span>. They use the domain expert's knowledge to build the <span class="hlt">activity</span> as a combination of feature states and their transitions (actions). Starting from a conceptual model of how <span class="hlt">hydrothermal</span> plumes respond to daily tides, we have developed a Petri Net based detection algorithm that identifies deviations from the specified response. Initially we assumed that the orientation of the plume would change smoothly and symmetrically in a consistent daily pattern. However, results indicate that the rate of directional changes varies. The present Petri Net detects unusually large and rapid changes in direction or amount of bending; however inspection of Figure 1 suggests that many of the events detected may be artifacts resulting from gaps in the data or from the large temporal spacing. Still, considerable complexity overlies the "normal" tidal response pattern (the data has a dominant frequency of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V54A..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V54A..04D"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> Mineralization Along the Volcanically <span class="hlt">Active</span> Mariana Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Ronde, C. E.; Hein, J. R.; Embley, R. W.; Stern, R. J.</p> <p>2004-12-01</p> <p>In March and April, 2004, ROPOS ROV dives took place from the R/V T.G. Thompson along the volcanically <span class="hlt">active</span> Mariana arc to ground truth CTD data collected a year earlier that indicated <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. Dives took place on seven volcanoes, six of which showed <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. We present data on samples collected from NW Rota-1 (14° , 36'N, 144° , 46'E), E. Diamante (15° , 56'N, 145° , 41'E), and NW Eifuku (21° , 29'N, 144° , 03'E), the three sites most studied. All the <span class="hlt">hydrothermal</span> systems found are associated with volcano summits, or with resurgent domes inside a caldera. Brimstone <span class="hlt">vent</span> at NW Rota-1 provided a dramatic display of thick, bellowing, yellow plumes that contained ash and molten sulfur. This site occurs at 500 m water depth and clearly shows closely associated magmatic-<span class="hlt">hydrothermal</span> discharge. Sulfur was the dominant <span class="hlt">hydrothermal</span> mineral deposited around the <span class="hlt">vent</span> and occurs as spheres in the surrounding volcaniclastic sediment, fracture fill and veins, and massive deposits. The Black Forest <span class="hlt">vent</span> field at E Diamante consists of a sulfide-sulfate chimney system developed at about 650 m water depth. This is the only mature system discovered and consists of numerous tall (up to 9 m) chimneys. The measured fluid temperature of 240° C produces boiling at the depth of the <span class="hlt">vents</span>. The chimneys and mounds are composed of varying amounts of pyrite, sphalerite, chalcopyrite, barite, and anhydrite. <span class="hlt">Hydrothermal</span> Mn oxides occur on the surface of inactive chimneys. This mineralogy contrasts with the other two systems, which deposit sulfur as the dominant <span class="hlt">hydrothermal</span> product. The Cu-Zn-Fe-Ba mineralization is perhaps largely controlled by water/rock interaction. A unique <span class="hlt">hydrothermal</span> field (Champagne field) was found at NW Eifuku where liquid CO2 is discharging from focused- and diffuse-flow <span class="hlt">vents</span> at 1600 m water depth. The focused-flow <span class="hlt">vents</span> consist of small chimneys and mounds up to a meter high that are composed of sulfur and yet to be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991DSRA...38.1455P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991DSRA...38.1455P"><span id="translatedtitle">Experimental evidence for filter-feeding by the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel, Bathymodiolus thermophilus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Page, H. M.; Fiala-Medioni, A.; Fisher, C. R.; Childress, J. J.</p> <p>1991-12-01</p> <p>We provide experimental evidence, using a high-pressure recirculating aquarium and radiolabeled bacteria, that the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel. Bathymodiolus thermophilus, can clear and assimilate particulate organic matter. Our results support previous evidence that this mussel can filter-feed on particulate organic matter to supplement nutrients provided by endosymbiotic chemoautotrophic bacteria.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1234403','SCIGOV-DOEDE'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1234403"><span id="translatedtitle">Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Andrew Fowler</p> <p>2015-10-01</p> <p>Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70032871','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70032871"><span id="translatedtitle">Bottom sediments and pore waters near a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in Lake Baikal (Frolikha Bay)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.</p> <p>2007-01-01</p> <p>We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in Frolikha Bay, Lake Baikal. According to our results, the submarine <span class="hlt">vent</span> and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine <span class="hlt">vent</span> have a specific enrichment in major and minor constituents, <span class="hlt">hydrothermal</span> discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22620276','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22620276"><span id="translatedtitle">Scientific gear as a vector for non-native species at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voight, Janet R; Lee, Raymond W; Reft, Abigail J; Bates, Amanda E</p> <p>2012-10-01</p> <p>The fauna of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are among the most isolated and inaccessible biological communities on Earth. Most <span class="hlt">vent</span> sites can only be visited by subsea vehicles, which can and do move freely among these communities. Researchers assume individuals of the regionally homogeneous <span class="hlt">vent</span> fauna are killed by the change in hydrostatic pressure the animals experience when the subsea vehicles, which collected them, rise to the surface. After an Alvin dive, we found 38 apparently healthy individuals of a <span class="hlt">vent</span> limpet in a sample from a <span class="hlt">hydrothermally</span> inactive area. Prompted by our identification of these specimens as Lepetodrilus gordensis, a species restricted to <span class="hlt">vents</span> 635 km to the south of our dive site, we tested whether they were from a novel population or were contaminants from the dive made 36 h earlier. The 16S gene sequences, morphology, sex ratio, bacterial colonies, and stable isotopes uniformly indicated the specimens came from the previous dive. We cleaned the sampler, but assumed pressure changes would kill any organisms we did not remove and that the faunas of the 2 areas were nearly identical and disease-free. Our failure to completely clean the gear on the subsea vehicle meant we could have introduced the species and any diseases it carried to a novel location. Our findings suggest that the nearly inaccessible biological communities at deep-sea <span class="hlt">vents</span> may be vulnerable to anthropogenic alteration, despite their extreme physical conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003DSRI...50..269Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003DSRI...50..269Z"><span id="translatedtitle">Mineralogical gradients associated with alvinellids at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zbinden, Magali; Le Bris, Nadine; Compère, Philippe; Martinez, Isabelle; Guyot, François; Gaill, Françoise</p> <p>2003-02-01</p> <p>Alvinella pompejana and Alvinella caudata live in organic tubes on <span class="hlt">active</span> sulphide chimney walls at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. These polychaete annelids are exposed to extreme thermal and chemical gradients and to intense mineral precipitation. This work points out that mineral particles associated with Pompeii worm ( A. pompejana and A. caudata) tubes constitute useful markers for evaluating the chemical characteristics of their micro-environment. The minerals associated with these worm tubes were analysed on samples recovered from an experimental alvinellid colony, at different locations in the <span class="hlt">vent</span> fluid-seawater interface. Inhabited tubes from the most upper and lower parts of the colony were analysed by light and electron microscopies, X-ray microanalysis and X-ray diffraction. A change was observed from a Fe-Zn-S mineral assemblage to a Zn-S assemblage at the millimeter scale from the outer to the inner face of a tube. A similar gradient in proportions of minerals was observed at a decimeter scale from the lower to the upper part of the colony. The marcasite/pyrite ratio of iron disulphides also displays a steep decrease along the few millimeters adjacent to the external tube surface. The occurrence of these gradients indicates that the micro-environment within the tube differs from that outside the tube, and suggests that the tube wall acts as an efficient barrier to the external environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/6956153','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/6956153"><span id="translatedtitle">Fluid flow and sound generation at <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields. Doctoral thesis</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Little, S.A.</p> <p>1988-04-01</p> <p>Several experiments in this thesis examine methods to measure and monitor fluid flow from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields. Simultaneous velocity temperature, and conductivity data were collected in the convective flow emanating from a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field located on the East Pacific rise. The horizontal profiles obtained indicate that the flow field approaches an ideal plume in the temperature and velocity distribution. Such parameters as total heat flow and maximum plume height can be estimated using either the velocity or the temperature information. The results of these independent calculations are in close agreement, yielding a total heat capacity and volume changes slightly alter the calculations applied to obtain these values. In Guaymas Basin, a twelve day time series of temperature data was collected from a point three centimeters above a diffuse <span class="hlt">hydrothermal</span> flow area. Using concurrent tidal gauge data from the town of Guaymas it is shown that the effects of tidal currents can be strong enough to dominate the time variability of a temperature signal at a fixed point in <span class="hlt">hydrothermal</span> flow and are a plausible explanation for the variations seen in the Guaymas Basin temperature data. The increase in power due to convected flow inhomogeneities, however, was lower in the near field than expected. Indirect evidence of <span class="hlt">hydrothermal</span> sound fields showing anomalous high power and low frequency noise associated with <span class="hlt">vents</span> is due to processes other than jet noise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=20150006657&hterms=thermohaline+circulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2528thermohaline%2Bcirculation%2529','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=20150006657&hterms=thermohaline+circulation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2528thermohaline%2Bcirculation%2529"><span id="translatedtitle">Enceladus: Starting <span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.</p> <p>2011-01-01</p> <p>We describe a process for starting the <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=20060010264&hterms=Hydrothermal+vents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2528Hydrothermal%2Bvents%2529','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=20060010264&hterms=Hydrothermal+vents&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2528Hydrothermal%2Bvents%2529"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Sampler: Does Life Exist in High Temperature Environments?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rivadeneyra, Cesar R.</p> <p>2005-01-01</p> <p>The main purpose of this research is to search for the existence of biomass under extreme temperature and pressure conditions to determine the upper bounds of environments on which life can exist. <span class="hlt">Vents</span> are, simply put, underwater volcano openings located at the bottom of the sea. The conditions at these locations are considerably extreme with pressures of up to 10,000 psi, and enormous temperature gradients. The temperature of the water near these <span class="hlt">vents</span> is around 400 C, while that of the surrounding water is about 3 C. The extremity of these conditions makes it hard to estimate the existence of life in those environments. I n order to find whether such existence happens, we need to search for biomass inside these <span class="hlt">vents</span>. The <span class="hlt">vent</span> sampler is a device that has the purpose of safely and accurately collecting this biomass for examination. This sampler is constituted of a Series of filters of the order of 100-0.2 microns in size. Since this is a 3-year project, it has not concluded yet; however, during the time I contributed to this project, I worked with the mechanical design of this sampler device including the selection, assembly, and testing of the various subsystems and the design and construction of the electronics enclosure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3741630','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3741630"><span id="translatedtitle">New insights into <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael</p> <p>2013-01-01</p> <p>We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on <span class="hlt">hydrothermal</span> ammonia and CO2. Our findings highlight that acidic shallow-submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23939372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23939372"><span id="translatedtitle">New insights into <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael</p> <p>2013-01-01</p> <p>We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on <span class="hlt">hydrothermal</span> ammonia and CO2. Our findings highlight that acidic shallow-submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23939372','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23939372"><span id="translatedtitle">New insights into <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael</p> <p>2013-01-01</p> <p>We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on <span class="hlt">hydrothermal</span> ammonia and CO2. Our findings highlight that acidic shallow-submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate. PMID:23939372</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P12A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P12A..07L"><span id="translatedtitle">Mineralized iron oxidizing bacteria from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>: targeting biosignatures on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leveille, R. J.</p> <p>2010-12-01</p> <p>Putative <span class="hlt">hydrothermal</span> systems have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, <span class="hlt">hydrothermal</span> systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial <span class="hlt">hydrothermal</span> systems, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from <span class="hlt">active</span> Pacific <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor system. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling system. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13C0512M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13C0512M"><span id="translatedtitle">High-pressure hydrogen respiration in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> samples from the deep biosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgan-Smith, D.; Schrenk, M. O.</p> <p>2013-12-01</p> <p>Cultivation of organisms from the deep biosphere has met with many challenges, chief among them the ability to replicate this extreme environment in a laboratory setting. The maintenance of in situ pressure levels, carbon sources, and gas concentrations are important, intertwined factors which may all affect the growth of subsurface microorganisms. Hydrogen in particular is of great importance in <span class="hlt">hydrothermal</span> systems, but in situ hydrogen concentrations are largely disregarded in attempts to culture from these sites. Using modified Hungate-type culture tubes (Bowles et al. 2011) within pressure-retaining vessels, which allow for the dissolution of higher concentrations of gas than is possible with other culturing methods, we have incubated <span class="hlt">hydrothermal</span> chimney and <span class="hlt">hydrothermally</span>-altered rock samples from the Lost City and Mid-Cayman Rise <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields. Hydrogen concentrations up to 15 mmol/kg have been reported from Lost City (Kelley et al. 2005), but data are not yet available from the recently-discovered Mid-Cayman site, and the elevated concentration of 30 mmol/kg is being used in all incubations. We are using a variety of media types to enrich for various metabolic pathways including iron and sulfur reduction under anoxic or microaerophilic conditions. Incubations are being carried out at atmospheric (0.1 MPa), in situ (9, 23, or 50 MPa, depending on site), and elevated (50 MPa) pressure levels. Microbial cell concentrations, taxonomic diversity, and metabolic <span class="hlt">activities</span> are being monitored during the course of these experiments. These experiments will provide insight into the relationships between microbial <span class="hlt">activities</span>, pressure, and gas concentrations typical of deep biosphere environments. Results will inform further culturing studies from both fresh and archived samples. References cited: Bowles, M.W., Samarkin, V.A., Joye, S.B. 2011. Improved measurement of microbial <span class="hlt">activity</span> in deep-sea sediments at in situ pressure and methane concentration</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4705E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4705E"><span id="translatedtitle">Gas Chemistry of Submarine <span class="hlt">Hydrothermal</span> <span class="hlt">Venting</span> at Maug Caldera, Mariana Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Embley, R. W.; Lupton, J. E.; Butterfield, D. A.; Lilley, M. D.; Evans, L. J.; Olson, E. J.; Resing, J. A.; Buck, N.; Larson, B. I.; Young, C.</p> <p>2014-12-01</p> <p>Maug volcano consists of 3 islands that define the perimeter of a submerged caldera that was formed by an explosive eruption. The caldera reaches a depth of ~225 meters, and has a prominent central cone or pinnacle that ascends within 20 meters of the sea surface. Our exploration of Maug began in 2003, when a single hydrocast in the caldera detected a strong suspended particle and helium plume reaching a maximum of δ3He = 250% at ~180 meters depth, clearly indicating <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> within the caldera. In 2004 we returned armed with the ROPOS ROV, and two ROPOS dives discovered and sampled low temperature (~4 °C) diffuse <span class="hlt">venting</span> associated with bacterial mats on the NE flank of the central pinnacle at 145 m depth. Samples collected with titanium gas tight bottles were badly diluted with ambient seawater but allowed an estimate of end-member 3He/4He of 7.3 Ra. Four vertical casts lowered into the caldera in 2004 all had a strong 3He signal (δ3He = 190%) at 150-190 meters depth. A recent expedition in 2014 focused on the shallow (~10 m) gas <span class="hlt">venting</span> along the caldera interior. Scuba divers were able to collect samples of the gas bubbles using evacuated SS bottles fitted with plastic funnels. The gas samples had a consistent ~170 ppm He, 8 ppmNe, 60% CO2, 40%N2, and 0.8% Ar, and an end-member 3He/4He ratio of 6.9 Ra. This 3He/4He ratio falls within the range for typical arc volcanoes. The rather high atmospheric component (N2, Ar, Ne) in these samples is not contamination but appears to be derived from subsurface exchange between the ascending CO2 bubbles and air saturated seawater. A single vertical cast in 2014 had a maximum δ3He = 55% at 140 m depth, much lower than in 2003 and 2004. This decrease is possibly due to recent flushing of the caldera by a storm event, or may reflect a decrease in the deep <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. This area of shallow CO2 <span class="hlt">venting</span> in Maug caldera is of particular interest as a natural laboratory for studying the effects of ocean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.6205C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.6205C"><span id="translatedtitle">Crustal magnetization and the subseafloor structure of the ASHES <span class="hlt">vent</span> field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of <span class="hlt">hydrothermal</span> sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice</p> <p>2016-06-01</p> <p>High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount <span class="hlt">Hydrothermal</span> Emission Study) high-temperature (~348°C) <span class="hlt">vent</span> field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by <span class="hlt">hydrothermal</span> alteration of the host volcanic rocks. Surface manifestations of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the ASHES <span class="hlt">vent</span> field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the <span class="hlt">hydrothermal</span> fluids with a vertical extent of ~100 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRII.121...85B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRII.121...85B"><span id="translatedtitle">The importance of <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> to water-column secondary production in the northeast Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burd, Brenda J.; Thomson, Richard E.</p> <p>2015-11-01</p> <p>The purpose of this study is to show that seafloor <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> in the open northeast Pacific Ocean has a marked impact on secondary biomass and production within the overlying water column. Specifically, we use net tows and concurrently measured acoustic backscatter data collected over six summers to examine the effects of <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> from the Endeavour Segment of Juan de Fuca Ridge on macro-zooplankton biomass and production throughout the entire 2000 m depth range. Previous research shows that ontogenetic diapausing migrators and their predators from the upper ocean aggregate above the neutrally buoyant plumes in summer and resume feeding on plume and bottom upwelled particles, resulting in increased zooplankton reproductive output to the upper ocean. Within the limitations of our sampling methodology, net tows reveal a statistically significant exponential decline in total water-column biomass with increasing lateral distance from the <span class="hlt">vent</span> fields. The acoustic backscatter data show a similar decline, but only below 800 m depth. Near-surface biomass was highly variable throughout the region, but values near <span class="hlt">vents</span> consistently ranged higher than summer values found elsewhere in the offshore northeast Pacific. Water-column biomass was similar in magnitude above and below 800 m depth throughout the region. Because epiplume biomass can be advected a considerable distance from <span class="hlt">vent</span> fields, biomass enhancement of the water column from <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> may extend considerable distances to the west and northwest of the <span class="hlt">vent</span> sites, in the prevailing directions of the subsurface flow. Based on the extensive acoustic Doppler current profiler (ADCP) data collected, and the strong correlation between zooplankton production derived from net sample biomass and acoustic backscatter intensity, we estimate that daily macro-zooplankton production in the upper 400 m of the water column within 10 km of the <span class="hlt">vent</span> fields averages approximately 16% of photosynthetic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25602032','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25602032"><span id="translatedtitle">Evolutionary and biogeographical patterns of barnacles from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herrera, Santiago; Watanabe, Hiromi; Shank, Timothy M</p> <p>2015-02-01</p> <p>The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern <span class="hlt">vent</span> fauna. Here, we characterize the global genetic diversity of <span class="hlt">vent</span> barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction-site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that <span class="hlt">vent</span> barnacles have colonized deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in <span class="hlt">vent</span> ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major <span class="hlt">vent</span> barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of <span class="hlt">vent</span> taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep-sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep-sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep-sea ecosystems. PMID:25602032</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25602032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25602032"><span id="translatedtitle">Evolutionary and biogeographical patterns of barnacles from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herrera, Santiago; Watanabe, Hiromi; Shank, Timothy M</p> <p>2015-02-01</p> <p>The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern <span class="hlt">vent</span> fauna. Here, we characterize the global genetic diversity of <span class="hlt">vent</span> barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction-site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that <span class="hlt">vent</span> barnacles have colonized deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in <span class="hlt">vent</span> ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major <span class="hlt">vent</span> barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of <span class="hlt">vent</span> taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep-sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep-sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep-sea ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B12B..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B12B..04H"><span id="translatedtitle">Microbial anaerobic methane cycling in the subseafloor at the Von Damm <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field, Mid-Cayman Rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.</p> <p>2013-12-01</p> <p>The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the <span class="hlt">venting</span> fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, <span class="hlt">activity</span>, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in <span class="hlt">hydrothermal</span> fluids <span class="hlt">venting</span> at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of <span class="hlt">vents</span>. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all <span class="hlt">vent</span> sites with both 16S rRNA tag sequencing and single cell sorting. Other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801315','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801315"><span id="translatedtitle">Quantifying dispersal from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.</p> <p>2016-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of <span class="hlt">vent</span> animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of <span class="hlt">vent</span> species via ocean circulation in the western Pacific Ocean. We demonstrate that <span class="hlt">vent</span> fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific <span class="hlt">vent</span> complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge <span class="hlt">vent</span> fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among <span class="hlt">vent</span> populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26929376','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26929376"><span id="translatedtitle">Quantifying dispersal from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C</p> <p>2016-03-15</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of <span class="hlt">vent</span> animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of <span class="hlt">vent</span> species via ocean circulation in the western Pacific Ocean. We demonstrate that <span class="hlt">vent</span> fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific <span class="hlt">vent</span> complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge <span class="hlt">vent</span> fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among <span class="hlt">vent</span> populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26929376','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26929376"><span id="translatedtitle">Quantifying dispersal from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C</p> <p>2016-03-15</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of <span class="hlt">vent</span> animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of <span class="hlt">vent</span> species via ocean circulation in the western Pacific Ocean. We demonstrate that <span class="hlt">vent</span> fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific <span class="hlt">vent</span> complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge <span class="hlt">vent</span> fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among <span class="hlt">vent</span> populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC53I..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC53I..04L"><span id="translatedtitle">Nanoparticulate, sub-micron and micron sized particles emanating from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luther, G. W., III; Gartman, A.; Findlay, A.; Yucel, M.; Chan, C. S. Y.</p> <p>2015-12-01</p> <p>Recent data from Geotraces cruises over the MAR and SEPR indicate dissolved and particulate Fe enrichment in waters 1000 and 4000 km from their <span class="hlt">vent</span> sources, respectively. Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and the waters in the reactive mixing zone above <span class="hlt">vent</span> orifices have been suggested to be an important source of fine material that can pass through normal filters (0.2 and 0.4 μm). In this work, nanoparticles are defined operationally as that which can pass through a 0.2 μm filter. We investigated two <span class="hlt">vent</span> sites (Lau Basin and the MAR). Chimneys from both <span class="hlt">vent</span> sites have fluids that can be sulfide rich or metal rich. We also present chemical and physical chemical data (SEM-EDS, TEM, XRD, EELS) showing some of the materials found in these (nano)particulate phases including pyrite, metal sulfides, silicate and aluminosilicate material. Enrichment of Mg and K in the latter suggest that reverse weathering may occur in the waters within 1-2 meters of the <span class="hlt">vent</span> orifice where <span class="hlt">vent</span> waters mix with cold oxygenated bottom waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000ECSS...51..627P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000ECSS...51..627P"><span id="translatedtitle">The Sponge Community of a Subtidal Area with <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span>: Milos Island, Aegean Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pansini, M.; Morri, C.; Bianchi, C. N.</p> <p>2000-11-01</p> <p>Sponges were sampled by SCUBA diving at six subtidal rocky sites, three of which were close to <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, a common feature on the sea-floor off the south-east coast of Milos. Twenty-five species (2 Calcarea and 23 Demospongiae) were found, few compared with the 589 recorded for the Mediterranean, but an important addition to the scant information on the sponge fauna of the Aegean Sea. The number of species found at <span class="hlt">vent</span> sites was consistently higher than that found at non-<span class="hlt">vent</span> sites, but no <span class="hlt">vent</span>-obligate species could be identified. However, Geodia cydonium and three species of Cliona ( C. copiosa, C. nigricans and C. rhodensis) showed a tendency to colonize <span class="hlt">vent</span> areas. The former might take advantage of increased silica availability, the latter of the enhanced deposition of carbonates near <span class="hlt">vents</span>. Substratum cover by sponges (estimated from wire-framed photographs of 0·7 m 2), varied greatly both among and within sites, mostly according to slope. Most sponge species preferred vertical to overhanging, shaded substrata. Proximity to <span class="hlt">vents</span> seemed to have little or no influence on sponge cover, notwithstanding a primary effect on species diversity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4145251','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4145251"><span id="translatedtitle">Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, Milos, Greece</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Shallow-sea (5 m depth) <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor <span class="hlt">vent</span> features include large (>1 m2) white patches containing <span class="hlt">hydrothermal</span> minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the <span class="hlt">vent</span> and non-<span class="hlt">vent</span> sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of <span class="hlt">vent</span> organisms and <span class="hlt">hydrothermalism</span>, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each <span class="hlt">hydrothermal</span> feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted <span class="hlt">hydrothermal</span> inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in <span class="hlt">hydrothermal</span> fluids could not be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25183951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25183951"><span id="translatedtitle">Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, Milos, Greece.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gilhooly, William P; Fike, David A; Druschel, Gregory K; Kafantaris, Fotios-Christos A; Price, Roy E; Amend, Jan P</p> <p>2014-01-01</p> <p>Shallow-sea (5 m depth) <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor <span class="hlt">vent</span> features include large (>1 m(2)) white patches containing <span class="hlt">hydrothermal</span> minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the <span class="hlt">vent</span> and non-<span class="hlt">vent</span> sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of <span class="hlt">vent</span> organisms and <span class="hlt">hydrothermalism</span>, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ(34)S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ(34)SSO4 and δ(18)OSO4 as expected of microbial sulfate reduction. Instead, pore water δ(34)SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each <span class="hlt">hydrothermal</span> feature. We interpret the inverse relationship between temperature and δ(34)SSO4 as a mixing process between oxic seawater and (34)S-depleted <span class="hlt">hydrothermal</span> inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ(34)SSO4, the oxygen isotope composition of sulfate tended to be (18)O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ(18)OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in <span class="hlt">hydrothermal</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B13A0164P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B13A0164P"><span id="translatedtitle">Sulfate Reduction and Sulfide Biomineralization By Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Microorganisms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.</p> <p>2014-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea <span class="hlt">vent</span> chimney at the Grandbonum <span class="hlt">vent</span> site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea <span class="hlt">hydrothermal</span> environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..208V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..208V"><span id="translatedtitle">Previously unsuspected dietary habits of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fauna: the bactivorous shrimp Rimicaris hybisae can be carnivorous or even cannibalistic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Versteegh, Emma; Van Dover, Cindy; Coleman, Max</p> <p>2014-05-01</p> <p>Most <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> support productive communities, with chemosynthetic bacteria at the base of the food web. They form a potentially important link in global geochemical cycles. However, few data yet exist on their significance in ocean biogeochemistry and related ecological processes. We present results on the structure of part of the food web around <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the Mid-Cayman Rise (MCR), revealing previously unknown life-history traits of the alvinocarid shrimp species Rimicaris hybisae. We also demonstrate that stable carbon isotope ratios (δ13C values) are an excellent tracer of trophic positions in these ecosystems, in spite of recent findings arguing otherwise. Two <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields have been described at the ultra-slow spreading ridge of the MCR. These include the world's deepest <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (Piccard field ~4985 m), which support a food web, which includes bactivorous shrimp and carnivorous anemones. The nearby Von Damm <span class="hlt">vent</span> field (~2300 m) supports a more complex food web, with more primary producers, and probably some influx of photosynthetically produced carbon. Rimicaris hybisae is abundant at both known MCR <span class="hlt">vent</span> fields and shows a high degree of spatial variability in population structure and reproductive features. In previous work it has been considered bactivorous. Large variations in tissue δ13C values remained largely unexplained, and it has been argued that δ13C values are not a good food web tracer in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems. We observed that shrimp tended to be either in dense aggregations on <span class="hlt">active</span> chimneys or more sparsely distributed, peripheral shrimp in ambient or near-ambient temperatures. With the hypothesis that varying δ13C values show real differences in food sources between individuals and that shrimp in different locales might have different diets, we collected shrimp from both environments at the Von Damm site during E/V Nautilus (NA034, August 2013) and examined their gut contents. Stomach</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988DSRA...35.1723J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988DSRA...35.1723J"><span id="translatedtitle">Chemical and biological interactions in the Rose Garden <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field, Galapagos spreading center</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.</p> <p>1988-10-01</p> <p>The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the <span class="hlt">hydrothermal</span> solution as it flows past the <span class="hlt">vent</span> animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the <span class="hlt">vent</span> organisms. The analysis of other data sets from this <span class="hlt">vent</span> field indicate no significant consumption of methane by the <span class="hlt">vent</span> organisms, as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008DSRI...55.1718P&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008DSRI...55.1718P&link_type=ABSTRACT"><span id="translatedtitle">Vertebrate nutrition in a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystem: Fatty acid and stable isotope evidence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pond, D. W.; Fallick, A. E.; Stevens, C. J.; Morrison, D. J.; Dixon, D. R.</p> <p>2008-12-01</p> <p>The <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> zoarcid fish Thermarces cerberus is a top predator that inhabits deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on the East Pacific Rise (EPR). Bacterial chemoautotrophy at these sites supports abundant animal communities. Paradoxically, these chemoautotrophic bacteria are not known to produce polyunsaturated fatty acids (PUFA), dietary nutrients essential for all marine vertebrates. To understand how T. cerberus successfully exploits the <span class="hlt">vent</span> environment and obtains essential PUFA, we compared its fatty acid composition to those of its invertebrate prey. Levels of 20:5(n-3) and 22:6(n-3) in muscle and ovary tissues of T. cerberus were low and contained higher amounts of 20:5(n-3) than 22:6(n-3). This is in contrast to most marine fish where 22:6(n-3) typically dominates. Prey items include the limpet ( Lepetodrilus elevatus) and amphipods ( Halice hesmonectes and Ventiella sulfuris) and all contained PUFA dominated by 20:5(n-3) in amounts likely to support the requirements of T. cerberus. δC13 values of 20:5(n-3) in the invertebrate prey were consistent with synthesis from a chemoautotrophic carbon source within the <span class="hlt">vent</span> environment. The potential origins of these PUFA are discussed in terms of the nutrition of T. cerberus and more generally in terms of the evolution of <span class="hlt">vent</span> taxa.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4184897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4184897"><span id="translatedtitle">Evolutionary Strategies of Viruses, Bacteria and Archaea in <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Ecosystems Revealed through Metagenomics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.</p> <p>2014-01-01</p> <p>The deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in <span class="hlt">hydrothermal</span> systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25279954','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25279954"><span id="translatedtitle">Evolutionary strategies of viruses, bacteria and archaea in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems revealed through metagenomics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, Rika E; Sogin, Mitchell L; Baross, John A</p> <p>2014-01-01</p> <p>The deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in <span class="hlt">hydrothermal</span> systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities. PMID:25279954</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/23183981','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/23183981"><span id="translatedtitle">Detection of putatively thermophilic anaerobic methanotrophs in diffuse <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merkel, Alexander Y; Huber, Julie A; Chernyh, Nikolay A; Bonch-Osmolovskaya, Elizaveta A; Lebedinsky, Alexander V</p> <p>2013-02-01</p> <p>The anaerobic oxidation of methane (AOM) is carried out by a globally distributed group of uncultivated Euryarchaeota, the anaerobic methanotrophic arachaea (ANME). In this work, we used G+C analysis of 16S rRNA genes to identify a putatively thermophilic ANME group and applied newly designed primers to study its distribution in low-temperature diffuse <span class="hlt">vent</span> fluids from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. We found that the G+C content of the 16S rRNA genes (P(GC)) is significantly higher in the ANME-1GBa group than in other ANME groups. Based on the positive correlation between the P(GC) and optimal growth temperatures (T(opt)) of archaea, we hypothesize that the ANME-1GBa group is adapted to thrive at high temperatures. We designed specific 16S rRNA gene-targeted primers for the ANME-1 cluster to detect all phylogenetic groups within this cluster, including the deeply branching ANME-1GBa group. The primers were successfully tested both in silico and in experiments with sediment samples where ANME-1 phylotypes had previously been detected. The primers were further used to screen for the ANME-1 microorganisms in diffuse <span class="hlt">vent</span> fluid samples from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Pacific Ocean, and sequences belonging to the ANME-1 cluster were detected in four individual <span class="hlt">vents</span>. Phylotypes belonging to the ANME-1GBa group dominated in clone libraries from three of these <span class="hlt">vents</span>. Our findings provide evidence of existence of a putatively extremely thermophilic group of methanotrophic archaea that occur in geographically and geologically distinct marine <span class="hlt">hydrothermal</span> habitats. PMID:23183981</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3568577','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3568577"><span id="translatedtitle">Detection of Putatively Thermophilic Anaerobic Methanotrophs in Diffuse <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fluids</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huber, Julie A.; Chernyh, Nikolay A.; Bonch-Osmolovskaya, Elizaveta A.; Lebedinsky, Alexander V.</p> <p>2013-01-01</p> <p>The anaerobic oxidation of methane (AOM) is carried out by a globally distributed group of uncultivated Euryarchaeota, the anaerobic methanotrophic arachaea (ANME). In this work, we used G+C analysis of 16S rRNA genes to identify a putatively thermophilic ANME group and applied newly designed primers to study its distribution in low-temperature diffuse <span class="hlt">vent</span> fluids from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. We found that the G+C content of the 16S rRNA genes (PGC) is significantly higher in the ANME-1GBa group than in other ANME groups. Based on the positive correlation between the PGC and optimal growth temperatures (Topt) of archaea, we hypothesize that the ANME-1GBa group is adapted to thrive at high temperatures. We designed specific 16S rRNA gene-targeted primers for the ANME-1 cluster to detect all phylogenetic groups within this cluster, including the deeply branching ANME-1GBa group. The primers were successfully tested both in silico and in experiments with sediment samples where ANME-1 phylotypes had previously been detected. The primers were further used to screen for the ANME-1 microorganisms in diffuse <span class="hlt">vent</span> fluid samples from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Pacific Ocean, and sequences belonging to the ANME-1 cluster were detected in four individual <span class="hlt">vents</span>. Phylotypes belonging to the ANME-1GBa group dominated in clone libraries from three of these <span class="hlt">vents</span>. Our findings provide evidence of existence of a putatively extremely thermophilic group of methanotrophic archaea that occur in geographically and geologically distinct marine <span class="hlt">hydrothermal</span> habitats. PMID:23183981</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.123..440T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.123..440T"><span id="translatedtitle">Reconstructing the oxygen isotope composition of late Cambrian and Cretaceous <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turchyn, Alexandra V.; Alt, Jeffrey C.; Brown, Shaun T.; DePaolo, Donald J.; Coggon, Rosalind M.; Chi, Guoxiang; Bédard, Jean H.; Skulski, Thomas</p> <p>2013-12-01</p> <p>Oxygen isotope analyses (δ18O) of 16 quartz-epidote pairs from late Cambrian (Betts Cove and Mings Bight, Newfoundland), Ordovician (Thetford Mines, Québec, Canada) and Cretaceous (Troodos, Cyprus) ophiolites are used to calculate the δ18O of the <span class="hlt">hydrothermal</span> fluids from which they crystallized. We combine these with 3 quartz-fluid inclusion measurements and 3 quartz-magnetite measurements from the Cambrian ophiolites to explore how the range in the δ18O of submarine <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid has varied between the late Cambrian, Cretaceous and today. The range of calculated δ18O values of <span class="hlt">vent</span> fluid (-4 to +7.4) is larger than that of modern seafloor <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid (0 to +4). We employ two numerical models to ascertain whether this range is most consistent with changes in paleo-seawater δ18O or with changes in the reactive flow path in ancient <span class="hlt">hydrothermal</span> systems. A static calculation of the <span class="hlt">vent</span> fluid oxygen isotope composition as a function of the water-rock ratio suggests that in an ocean with a lower δ18O than today, the range of <span class="hlt">vent</span> fluid δ18O should be larger. Our data, however, show little evidence that the δ18O of the ocean was much lower than the global ice-free value of -1.2. A dual porosity model for reactive flow through fractured and porous media is used to model the relative evolution of the 87Sr/86Sr and δ18O of <span class="hlt">vent</span> fluid in contact with rock. Our 87Sr/86Sr and δ18O for Cretaceous epidotes suggest the strontium concentration of the Cretaceous oceans may have been much higher than at present. The 87Sr/86Sr and δ18O data from Cambrian epidotes are strikingly different from the younger samples, and are difficult to model unless fluid-rock interaction in the Cambrian <span class="hlt">hydrothermal</span> systems was substantially different. It is also possible that some of the quartz-epidote veins have been reset by obduction-related metamorphism. Our data suggest that the high calcium-to-sulfate ratio in early (and Cretaceous) seawater may have affected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21A1469R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21A1469R"><span id="translatedtitle">Cameras on the NEPTUNE Canada seafloor observatory: Towards monitoring <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystem dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robert, K.; Matabos, M.; Sarrazin, J.; Sarradin, P.; Lee, R. W.; Juniper, K.</p> <p>2010-12-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> environments are among the most dynamic benthic habitats in the ocean. The relative roles of physical and biological factors in shaping <span class="hlt">vent</span> community structure remain unclear. Undersea cabled observatories offer the power and bandwidth required for high-resolution, time-series study of the dynamics of <span class="hlt">vent</span> communities and the physico-chemical forces that influence them. The NEPTUNE Canada cabled instrument array at the Endeavour <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> provides a unique laboratory for researchers to conduct long-term, integrated studies of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystem dynamics in relation to environmental variability. Beginning in September-October 2010, NEPTUNE Canada (NC) will be deploying a multi-disciplinary suite of instruments on the Endeavour Segment of the Juan de Fuca Ridge. Two camera and sensor systems will be used to study ecosystem dynamics in relation to <span class="hlt">hydrothermal</span> discharge. These studies will make use of new experimental protocols for time-series observations that we have been developing since 2008 at other observatory sites connected to the VENUS and NC networks. These protocols include sampling design, camera calibration (i.e. structure, position, light, settings) and image analysis methodologies (see communication by Aron et al.). The camera systems to be deployed in the Main Endeavour <span class="hlt">vent</span> field include a Sidus high definition video camera (2010) and the TEMPO-mini system (2011), designed by IFREMER (France). Real-time data from three sensors (O2, dissolved Fe, temperature) integrated with the TEMPO-mini system will enhance interpretation of imagery. For the first year of observations, a suite of internally recording temperature probes will be strategically placed in the field of view of the Sidus camera. These installations aim at monitoring variations in <span class="hlt">vent</span> community structure and dynamics (species composition and abundances, interactions within and among species) in response to changes in environmental conditions at different</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V14A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V14A..06B"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> Plume Mapping Along the Hotspot-affected Galapagos Spreading Center Finds High-Temperature <span class="hlt">Vent</span> Sites are Anomalously Scarce</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. T.; Resing, J. A.; Walker, S. L.; Lebon, G. T.; Nakamura, K.; Haymon, R. M.; White, S. M.; MacDonald, K. C.</p> <p>2006-12-01</p> <p>Systematic searches for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> along midocean ridges (MORs) demonstrate that the spatial density of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> is a robust linear function of spreading rate. This trend argues that the availability of mantle heat is the first order control on the distribution of seafloor <span class="hlt">vent</span> fields. However, some crustal thermal models predict that the thicker, hotter, more ductile crust associated with hotspots substantially reduces convective <span class="hlt">hydrothermal</span> cooling, explaining observations of axial magma chambers (AMC) at shallower depths than found on normal MORs. In Dec-Jan 2006 we tested this hypothesis by mapping <span class="hlt">hydrothermal</span> plumes overlying the hotspot-affected Galapagos Spreading Center (GSC) from 95°-89.6°W, using a dual-pass, side-scan deep tow with an array of plume sensors spanning 50- 250 m above bottom. The western GSC near 91°-92.5°W has axial-high morphology, shallow and quasi-continuous AMC, and thick (8 km) crust, changing to a transitional morphology, deeper and more discontinuous AMC, and normal (6 km) crust from 93° to 95°W. The eastern GSC, 90.5°- 89.6°W is also an axial high and presumably has crustal characteristics similar to the western GSC at 91°-92.5°W. We identified <span class="hlt">hydrothermal</span> plumes by anomalies in light backscattering (NTU) from a vertical array of MAPR sensors along the tow line, plus redox potential (Eh) measured continuously in-situ on the tow body at a nominal elevation of 100 m. Many plumes were subsequently confirmed by CTD tows and sampling. Only three areas of extensive and intense plumes were observed: 90.52°-90.63°W, 91.78°- 91.96°W, and 94°-94.1°W. Maximum plume rise at the latter two sites exceeded 200 m, indicative of high-temperature <span class="hlt">venting</span> that was confirmed by camera tows. Some 25 other NTU and Eh anomalies were detected along ~1000 km of trackline, but none were >5 km in length. The primary result of our survey is that <span class="hlt">hydrothermal</span> plumes were scarce for a ridge spreading at ~60 mm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24496055','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24496055"><span id="translatedtitle">Microbial iron uptake as a mechanism for dispersing iron from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Meng; Toner, Brandy M; Baker, Brett J; Breier, John A; Sheik, Cody S; Dick, Gregory J</p> <p>2014-01-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are a significant source of oceanic iron. Although <span class="hlt">hydrothermal</span> iron rapidly precipitates as inorganic minerals on mixing with seawater, it can be stabilized by organic matter and dispersed more widely than previously recognized. The nature and source of this organic matter is unknown. Here we show that microbial genes involved in cellular iron uptake are highly expressed in the Guaymas Basin deep-sea <span class="hlt">hydrothermal</span> plume. The nature of these microbial iron transporters, taken together with the low concentration of dissolved iron and abundance of particulate iron in the plume, indicates that iron minerals are the target for this microbial scavenging and uptake. Our findings indicate that cellular iron uptake is a major process in plume microbial communities and suggest new mechanisms for generating Fe-C complexes. This 'microbial iron pump' could represent an important mode of converting <span class="hlt">hydrothermal</span> iron into bioavailable forms that can be dispersed throughout the oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AGUFM.V21A4738D&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014AGUFM.V21A4738D&link_type=ABSTRACT"><span id="translatedtitle">Recent Investigation of In-Situ pH in <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fluids at Main Endeavour Field (MEF) and ASHES <span class="hlt">Vent</span> Field (ASHES): Implications for Dynamic Changes in Subseafloor <span class="hlt">Hydrothermal</span> System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, K.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.</p> <p>2014-12-01</p> <p>In-situ pH is among the key factors affecting chemical reactions involved with fluid-rock interaction and metal transport in <span class="hlt">hydrothermal</span> systems. A small variation in pH will often result in a large difference in dissolved metal concentrations. For instance, at 400oC, a decrease of ~0.15 pH unit will cause dissolved Fe concentration to double in fluid coexisting with a Fe-bearing mineral assemblage. This parameter also offers us an opportunity to better understand processes controlling the temporal evolution of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluid chemistry at mid-ocean ridges. During our recent cruise AT 26-17 with newly upgraded DSV2 Alvin, in-situ measurements of pH were carried out along with gas-tight sampling of <span class="hlt">vent</span> fluids. Our efforts were focused at MEF and ASHES on the Juan de Fuca Ridge. These <span class="hlt">hydrothermal</span> systems have been shown to be particularly responsive to subseafloor seismic and magmatic events. The measured fluid temperature was approximately 333˚C and 300˚C at Dante <span class="hlt">vent</span> orifice of MEF and Inferno <span class="hlt">vent</span> orifice of ASHES, respectively. The corresponding measured in-situ pH values for both <span class="hlt">vents</span> are: 4.94 and 4.88, respectively. Dissolved gases and other species were also measured from gas-tight fluid samples providing a means of comparison with the in-situ data. As we have known the earthquake and magmatic <span class="hlt">activity</span> often places the system at higher temperature and more reducing conditions in connection with a new evolutionary cycle. Comparing these relatively low in-situ pH values with those measured in the past, especially with the ones obtained at MEF in 1999 after an intense swarm of earthquakes, we see the system trending towards more acidic conditions along with decreasing temperature and dissolved H2 and H2S. Taking an example from Dante <span class="hlt">vent</span> site, in-situ pH value of 5.15 was recorded with a measured temperature of 363oC two month after the event in 1999, which gives 0.2 pH unit greater than the more recent data. Measured dissolved H2 and H2S</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70013515','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70013515"><span id="translatedtitle">Biological communities at the Florida Escarpment resemble <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> taxa</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Paull, C.K.; Hecker, Barbara; Commeau, R.; Freeman-Lynde, R. P.; Neumann, C.; Corso, W.P.; Golubic, S.; Hook, J.E.; Sikes, E.; Curray, J.</p> <p>1984-01-01</p> <p>Dense biological communities of large epifaunal taxa similar to those found along ridge crest <span class="hlt">vents</span> at the East Pacific Rise were discovered in the abyssal Gulf of Mexico. These assemblages occur on a passive continental margin at the base of the Florida Escarpment, the interface between the relatively impermeable hemipelagic clays of the distal Mississippi Fan and the jointed Cretaceous limestone of the Florida Platform. The fauna apparently is nourished by sulfide rich hypersaline waters seeping out at near ambient temperatures onto the sea floor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRB..107.2130B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRB..107.2130B"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">venting</span> along Earth's fastest spreading center: East Pacific Rise, 27.5°-32.3°</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. T.; Hey, R. N.; Lupton, J. E.; Resing, J. A.; Feely, R. A.; Gharib, J. J.; Massoth, G. J.; Sansone, F. J.; Kleinrock, M.; Martinez, F.; Naar, D. F.; Rodrigo, C.; Bohnenstiehl, D.; Pardee, D.</p> <p>2002-07-01</p> <p>During March/April 1998 we conducted detailed mapping and sampling of <span class="hlt">hydrothermal</span> plumes along six segments of Earth's fasting spreading mid-ocean ridge, 27.5°-32.3°S on the East Pacific Rise. We compared the distribution and chemistry of <span class="hlt">hydrothermal</span> plumes to geological indicators of long-term (spreading rate) and moderate-term (ridge inflation) variations in magmatic budget. In this large-offset, propagating rift setting, these geological indices span virtually the entire range found along fast spreading ridges worldwide. <span class="hlt">Hydrothermal</span> plumes overlaid ~60% of the length of superfast (>130 km/Myr) spreading axis surveyed and defined at least 14 separate <span class="hlt">vent</span> fields. We observed no plumes over the slower spreading propagating segments. Finer-scale variations in the magmatic budget also correlated with <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>, as the location of the five most intense plumes corresponded to subsegment peaks in ridge inflation. Along the entire ridge crest, the more inflated a ridge location the more likely it was to be overlain by a <span class="hlt">hydrothermal</span> plume. Plume chemistry mostly reflected discharge from mature <span class="hlt">vent</span> fields apparently unperturbed by magmatic <span class="hlt">activity</span> within the last few years. Plume samples with high volatile/metal ratios, generally indicating recent seafloor volcanism, were scarce. Along-axis trends in both volatile (3He; CH4; ΔpH, a proxy for CO2; and particulate S) and nonvolatile (Fe, Mn) species showed a first-order agreement with the trend of ridge inflation. Nevertheless, a broad correspondence between the concentration of volatile species in plumes and geological proxies of magma supply identifies a pervasive magmatic imprint on this superfast spreading group of ridge segments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRII.121...31O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRII.121...31O"><span id="translatedtitle">Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino</p> <p>2015-11-01</p> <p>At deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, reduced, super-heated <span class="hlt">hydrothermal</span> fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow <span class="hlt">vents</span> indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the <span class="hlt">hydrothermal</span> fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of <span class="hlt">active</span> diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of <span class="hlt">hydrothermal</span> fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, <span class="hlt">active</span> <span class="hlt">hydrothermal</span> flow, and the composition of chemosynthetic microbial biofilms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3246237','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3246237"><span id="translatedtitle">Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus puteoserpentis</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wendeberg, Annelie; Zielinski, Frank U; Borowski, Christian; Dubilier, Nicole</p> <p>2012-01-01</p> <p>The <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the <span class="hlt">activity</span> and distribution of these two symbionts in juvenile mussels from the Logatchev <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field (14°45′N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5′-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in <span class="hlt">vent</span> fluid geochemistry. PMID:21734728</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3250512','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3250512"><span id="translatedtitle">The Discovery of New Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Communities in the Southern Ocean and Implications for Biogeography</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rogers, Alex D.; Tyler, Paul A.; Connelly, Douglas P.; Copley, Jon T.; James, Rachael; Larter, Robert D.; Linse, Katrin; Mills, Rachel A.; Garabato, Alfredo Naveira; Pancost, Richard D.; Pearce, David A.; Polunin, Nicholas V. C.; German, Christopher R.; Shank, Timothy; Boersch-Supan, Philipp H.; Alker, Belinda J.; Aquilina, Alfred; Bennett, Sarah A.; Clarke, Andrew; Dinley, Robert J. J.; Graham, Alastair G. C.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura; Hilario, Ana; Huvenne, Veerle A. I.; Marsh, Leigh; Ramirez-Llodra, Eva; Reid, William D. K.; Roterman, Christopher N.; Sweeting, Christopher J.; Thatje, Sven; Zwirglmaier, Katrin</p> <p>2012-01-01</p> <p>Since the first discovery of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> along the Galápagos Rift in 1977, numerous <span class="hlt">vent</span> sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> hosting high-temperature black smokers up to 382.8°C and diffuse <span class="hlt">venting</span>. The chemosynthetic ecosystems hosted by these <span class="hlt">vents</span> are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in <span class="hlt">vent</span> ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR <span class="hlt">vents</span>. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for <span class="hlt">vent</span> taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic <span class="hlt">vent</span> ecosystems represent a new <span class="hlt">vent</span> biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> globally indicate that <span class="hlt">vent</span> biogeography is more complex than</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22235194','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22235194"><span id="translatedtitle">The discovery of new deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities in the southern ocean and implications for biogeography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rogers, Alex D; Tyler, Paul A; Connelly, Douglas P; Copley, Jon T; James, Rachael; Larter, Robert D; Linse, Katrin; Mills, Rachel A; Garabato, Alfredo Naveira; Pancost, Richard D; Pearce, David A; Polunin, Nicholas V C; German, Christopher R; Shank, Timothy; Boersch-Supan, Philipp H; Alker, Belinda J; Aquilina, Alfred; Bennett, Sarah A; Clarke, Andrew; Dinley, Robert J J; Graham, Alastair G C; Green, Darryl R H; Hawkes, Jeffrey A; Hepburn, Laura; Hilario, Ana; Huvenne, Veerle A I; Marsh, Leigh; Ramirez-Llodra, Eva; Reid, William D K; Roterman, Christopher N; Sweeting, Christopher J; Thatje, Sven; Zwirglmaier, Katrin</p> <p>2012-01-01</p> <p>Since the first discovery of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> along the Galápagos Rift in 1977, numerous <span class="hlt">vent</span> sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> hosting high-temperature black smokers up to 382.8°C and diffuse <span class="hlt">venting</span>. The chemosynthetic ecosystems hosted by these <span class="hlt">vents</span> are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in <span class="hlt">vent</span> ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR <span class="hlt">vents</span>. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for <span class="hlt">vent</span> taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic <span class="hlt">vent</span> ecosystems represent a new <span class="hlt">vent</span> biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> globally indicate that <span class="hlt">vent</span> biogeography is more complex than</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A1995H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A1995H"><span id="translatedtitle">The NOAA/PMEL <span class="hlt">Vents</span> Program - 1983 to 2013: A History of Deep-Sea Volcanic and <span class="hlt">Hydrothermal</span> Exploration and Research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hammond, S. R.; Baker, E. T.; Embley, R. W.</p> <p>2015-12-01</p> <p>Inspiration for the <span class="hlt">Vents</span> program arose from two serendipitous events: the discovery of seafloor spreading-center <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the <span class="hlt">Vents</span> program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and <span class="hlt">hydrothermal</span> <span class="hlt">venting</span>. The <span class="hlt">Vents</span> program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by <span class="hlt">Vents</span> researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an <span class="hlt">active</span> deep volcanic eruption in 1993. To continue the <span class="hlt">Vents</span> mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the <span class="hlt">Vents</span> tradition of pioneering ocean exploration and research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996Geo....24..435P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996Geo....24..435P"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">venting</span> within a coral reef ecosystem, Ambitle Island, Papua New Guinea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pichler, Thomas; Dix, George R.</p> <p>1996-05-01</p> <p>Shallow-water (5 10 m) <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> in a nearshore coral reef environment at Ambitle Island in the Tabar-Feni island arc, east of Papua New Guinea, occurs as focused discharge of boiling fluid from discrete ports 10 15 cm in diameter, and as dispersed discharge of diffuse bubble streams that issue through the sandy mixed carbonate-volcaniclastic sea floor. Abiotic aragonite and microcrystalline ferroan, low-Mg calcite, interlaminated with Fe-oxyhydroxides, are the prominent <span class="hlt">hydrothermal</span> precipitates. Geochemical attributes of aragonite (δ18O, δ13C, and fluid inclusions) suggest that cements formed from a solution with salinities <5‰ at temperatures of ˜100 °C, with probable contribution of <span class="hlt">hydrothermal</span> CO2. Sr isotope ratios in abiotic (<span class="hlt">hydrothermal</span>) aragonite (˜ 0.704 15) are similar to those in island-arc basalt and denote considerable subsurface water-rock interaction of meteoric water derived from the adjacent volcanic island. The Sr isotope ratio of a coral sample (0.707 46) collected adjacent to a <span class="hlt">vent</span> portal suggests coral growth within a mixed seawater-<span class="hlt">hydrothermal</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B13C0632G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B13C0632G"><span id="translatedtitle">Using metatranscriptomics to understand the roles of Fe(II)-oxidizing microbes in marine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.</p> <p>2015-12-01</p> <p>Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. However, we do not have tools to track their <span class="hlt">activity</span>, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the <span class="hlt">activity</span> of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were <span class="hlt">active</span>, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=167429','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=167429"><span id="translatedtitle">Phylogenetic characterization of the epibiotic bacteria associated with the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> polychaete Alvinella pompejana.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Haddad, A; Camacho, F; Durand, P; Cary, S C</p> <p>1995-01-01</p> <p>Alvinella pompejana is a polychaetous annelid that inhabits <span class="hlt">active</span> deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites along the East Pacific Rise, where it colonizes the walls of <span class="hlt">actively</span> <span class="hlt">venting</span> high-temperature chimneys. An abundant, morphologically diverse epibiotic microflora is associated with the worm's dorsal integument, with a highly integrated filamentous morphotype clearly dominating the microbial biomass. It has been suggested that this bacterial population participates in either the nutrition of the worm or in detoxification of the worm's immediate environment. The primary goal of this study was to phylogenetically characterize selected epibionts through the analysis of 16S rRNA gene sequences. Nucleic acids were extracted from bacteria collected from the dorsal surface of A. pompejana. 16S rRNA genes were amplified with universal bacterial primers by the PCR. These genes were subsequently cloned, and the resulting clone library was screened by restriction fragment length polymorphism analysis to identify distinct clone types. The restriction fragment length polymorphism analysis identified 32 different clone families in the library. Four of these families were clearly dominant, representing more than 65% of the library. Representatives from the four most abundant clone families were chosen for complete 16S rRNA gene sequencing and phylogenetic analysis. These gene sequences were analyzed by a variety of phylogenetic inference methods and found to be related to the newly established epsilon subdivision of the division Proteobacteria. Secondary structural model comparisons and comparisons of established signature base positions in the 16S rRNA confirmed the placement of the Alvinella clones in the epsilon subdivision of the Proteobacteria. PMID:7544093</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21856628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21856628"><span id="translatedtitle">Biogeography revisited with network theory: retracing the history of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moalic, Yann; Desbruyères, Daniel; Duarte, Carlos M; Rozenfeld, Alejandro F; Bachraty, Charleyne; Arnaud-Haond, Sophie</p> <p>2012-01-01</p> <p>Defining biogeographic provinces to understand the history and evolution of communities associated with a given kind of ecosystem is challenging and usually requires a priori assumptions to be made. We applied network theory, a holistic and exploratory method, to the most complete database of faunal distribution available on oceanic <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, environments which support fragmented and unstable ecosystems, to infer the processes driving their worldwide biogeography. Besides the identification of robust provinces, the network topology allowed us to identify preferential pathways that had hitherto been overlooked. These pathways are consistent with the previously proposed hypothesis of a role of plate tectonics in the biogeographical history of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. A possible ancestral position of the Western Pacific is also suggested for the first time. Finally, this work provides an innovative example of the potential of network tools to unravel the biogeographic history of faunal assemblages and to supply comprehensive information for the conservation and management of biodiversity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1982EOSTr..63..537H&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1982EOSTr..63..537H&link_type=ABSTRACT"><span id="translatedtitle">[Comment on “Submarine hot springs: Origin of life?”] <span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> revisited</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, Sarah</p> <p></p> <p>It was gratifying to read Peter Bell's synopsis of our paper [Corliss et al., 1981] in the March 23 issue of Eos (Submarine hot springs: Origin of life?) however, in the last sentence, he wrote, ‘They note that microorganisms found in recent expeditions to the submarine hot springs of the East Pacific Rise would be evidence that the processes are still occurring.’In our final paragraph we actually said that while “events leading to the formation of complex organic compounds and “protocell” structures may still be occurring in present-day oceanic <span class="hlt">hydrothermal</span> systems … the complex communities of bacteria in modern oceanic environments would outcompete and consume abiotically synthesized protocells…” Modern-day <span class="hlt">vent</span> microbiota will probably mask or destroy any evidence for abiotic synthesis in the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21856628','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21856628"><span id="translatedtitle">Biogeography revisited with network theory: retracing the history of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moalic, Yann; Desbruyères, Daniel; Duarte, Carlos M; Rozenfeld, Alejandro F; Bachraty, Charleyne; Arnaud-Haond, Sophie</p> <p>2012-01-01</p> <p>Defining biogeographic provinces to understand the history and evolution of communities associated with a given kind of ecosystem is challenging and usually requires a priori assumptions to be made. We applied network theory, a holistic and exploratory method, to the most complete database of faunal distribution available on oceanic <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, environments which support fragmented and unstable ecosystems, to infer the processes driving their worldwide biogeography. Besides the identification of robust provinces, the network topology allowed us to identify preferential pathways that had hitherto been overlooked. These pathways are consistent with the previously proposed hypothesis of a role of plate tectonics in the biogeographical history of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. A possible ancestral position of the Western Pacific is also suggested for the first time. Finally, this work provides an innovative example of the potential of network tools to unravel the biogeographic history of faunal assemblages and to supply comprehensive information for the conservation and management of biodiversity. PMID:21856628</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B23J..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B23J..05S"><span id="translatedtitle">Metaproteomic Analysis of a Chemosynthetic <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Community Reveals Insights into Key-Metabolic Processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.</p> <p>2010-12-01</p> <p>In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two <span class="hlt">active</span> <span class="hlt">vent</span> fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker <span class="hlt">vents</span>. Distinct microbial mats were abundantly present and located in close vicinity to the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community <span class="hlt">activities</span>, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ≥ 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group <span class="hlt">actively</span> expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11202U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11202U"><span id="translatedtitle">Molecular isotopic evidence for anaerobic oxidation of methane in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environment in Okinawa Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchida, M.; Takai, K.; Inagaki, F.</p> <p>2003-04-01</p> <p>Large amount of methane in anoxic marine sediments as well as cold seeps and <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is recycled through for an anoxic oxidation of methane processes. Now that combined results of field and laboratory studies revealed that microbiological <span class="hlt">activity</span> associated with syntrophic consortium of archaea performing reversed methanogenesis and sulfate-reducing bacteria is significant roles in methane recycling, anaerobic oxidation of methane (AOM). In this study, we examined the diversity of archaeal and bacterial assemblages of AOM using compound-specific stable carbon isotopic and phylogenetic analyses. "Iheya North" in Okinawa Trough is sediment-rich, back arc type <span class="hlt">hydrothermal</span> system (27^o47'N, 126^o53'E). Sediment samples were collected from three sites where are "bubbling sites", yellow-colored microbial mats are formed with continuous bubbling from the seafloor bottom, <span class="hlt">vent</span> mussel's colonies site together with slowly <span class="hlt">venting</span> and simmering, and control site off 100 m distance from thermal <span class="hlt">vent</span>. This subsea floor structure has important effect in the microbial ecosystem and interaction between their <span class="hlt">activity</span> and geochemical processes in the subseafloor habitats. Culture-independent, molecular biological analysis clearly indicated the presence of thermophilic methanogens in deeper area having higher temperatures and potential <span class="hlt">activity</span> of AMOs consortium in the shallower area. AMO is composed with sulfate-reducing bacterial components (Desulfosarcina spp.) and anoxic methane oxidizing archaea (ANME-2). These results were consistent with the results of compound-specific carbon analysis of archaeal biomarkers. They showed extremely depleted 13C contents (-80 ppm ˜ -100 ppm), which also appeared to be capable of directly oxidizing methane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4077841','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4077841"><span id="translatedtitle">Comparative Population Structure of Two Deep-Sea <span class="hlt">Hydrothermal-Vent</span>-Associated Decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific Back-Arc Basins</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thaler, Andrew David; Plouviez, Sophie; Saleu, William; Alei, Freddie; Jacobson, Alixandra; Boyle, Emily A.; Schultz, Thomas F.; Carlsson, Jens; Van Dover, Cindy Lee</p> <p>2014-01-01</p> <p>Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from <span class="hlt">vent</span> effluent for survival. Relatively little attention has been paid to <span class="hlt">vent</span>-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two <span class="hlt">vent</span>-associated invertebrates—the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis—that are common at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the western Pacific. While Chorocaris sp. 2 has only been observed at <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of <span class="hlt">active</span> <span class="hlt">vents</span> We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the <span class="hlt">vent</span>-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems. PMID:24983244</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24983244','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24983244"><span id="translatedtitle">Comparative population structure of two deep-sea <span class="hlt">hydrothermal-vent</span>-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from southwestern Pacific back-arc basins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thaler, Andrew David; Plouviez, Sophie; Saleu, William; Alei, Freddie; Jacobson, Alixandra; Boyle, Emily A; Schultz, Thomas F; Carlsson, Jens; Van Dover, Cindy Lee</p> <p>2014-01-01</p> <p>Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from <span class="hlt">vent</span> effluent for survival. Relatively little attention has been paid to <span class="hlt">vent</span>-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two <span class="hlt">vent</span>-associated invertebrates--the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis--that are common at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the western Pacific. While Chorocaris sp. 2 has only been observed at <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of <span class="hlt">active</span> <span class="hlt">vents</span> We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the <span class="hlt">vent</span>-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems. PMID:24983244</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999917','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999917"><span id="translatedtitle">An Unusual Conformational Isomer of Verrucosidin Backbone from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus, Penicillium sp. Y-50-10</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin</p> <p>2016-01-01</p> <p>A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic <span class="hlt">activity</span> against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27548192','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27548192"><span id="translatedtitle">An Unusual Conformational Isomer of Verrucosidin Backbone from a <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Fungus, Penicillium sp. Y-50-10.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin</p> <p>2016-01-01</p> <p>A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic <span class="hlt">activity</span> against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1762412','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1762412"><span id="translatedtitle">The Sound Generated by Mid-Ocean Ridge Black Smoker <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.</p> <p>2006-01-01</p> <p><span class="hlt">Hydrothermal</span> flow through seafloor black smoker <span class="hlt">vents</span> is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these <span class="hlt">vents</span> radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. <span class="hlt">Vent</span> sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..115L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..115L"><span id="translatedtitle">Morphology of cone-fields in SW Elysium Planitia - Traces of <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> on Mars?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanz, J. K.; Saric, M. B.</p> <p>2008-09-01</p> <p> band 2-3 km wide along the APF-lava contact. A connection between APF-lava interaction and cone-forming processes is therefore likely. We propose that a combination of contact metamorphosis and associated <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> comparable to <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> complexes on Earth could have been the driving force of cone-formation in the study area based on the assumption of a high volatile content of the APF. The processes might then have proceeded as follows: Phase 1: The flooding of the study area by lava caused initial explosive reactions along the lava-APF-boundary forming clusters of pseudocraters. Pseudocraters are only visible towards the edges of the depression where the lava cover is thinnest. Towards the center the thick lava coverage prevented pseudocrater formation or quickly reburied forming cones. Phase 2: The heat of the cooling lava, which could be as thick as 500 m based on the diameters of flooded craters, causes contact metamorphosis and the mobilization of volatiles in the surrounding APF-sediments. Similar to <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> complexes on Earth, this may have caused hydrofracturing of the sediments and the formation of sediment pipes and dikes that transport the volatiles to the surface. Pre-existing fissures would have served as additional pathways. At the surface rapid decompression causes phreatic explosions and the formation of small cones. Phase 3: Close to the lava-body mobilization of volatiles (e.g. by dehydratation of hydrated minerals, mobilization of ground- or pore ice or even juvenile waters and other volatiles from the lava itself) was strongest. In combination with lower sediment thickness and shorter pathways to the surface, phreatic explosion were more violent and conduits may have been repeatedly <span class="hlt">active</span>. The lower atmospheric pressure and lower gravity on Mars would have further enhanced the explosive <span class="hlt">activity</span>. While the lower gravity leads to a faster ascent of the volatile-sediment-phase, thereby preventing early degassing, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16844198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16844198"><span id="translatedtitle">Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields food web.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colaço, A; Bustamante, P; Fouquet, Y; Sarradin, P M; Serrão-Santos, R</p> <p>2006-12-01</p> <p>In this work, mercury (Hg), copper (Cu) and zinc (Zn) concentrations and tissue distribution are determined in seven benthic invertebrates species (the key species) from the Mid Atlantic Ridge (MAR) <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields. The samples were collected from three <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields--Menez Gwen, 840 m; Lucky Strike, 1700 m and Rainbow, 2300 m--near the Azores Triple Junction. These fields are characterized by different depths, geological context and chemical composition of the <span class="hlt">hydrothermal</span> fluid, particularly the metal content, which is reflected by the metal concentrations in the organisms. Indeed, our results show that organisms from Menez Gwen presented the highest Hg concentrations, while those from Lucky Strike and Rainbow were richer in Cu and Zn. The potential transfer of these metals through two trophic links are also evaluated and include (1) the mussel Bathymodiolus azoricus and the commensal worm Branchipolynoe seepensis, and (2) three different species of shrimps and the crab Segonzacia mesatlantica. No evidence of Hg biomagnification in either of the <span class="hlt">vent</span> food chains is clearly observed but an increase in Hg accumulation from prey to predator in the crustacean food chain. The same pattern was observed for Cu and Zn, even though these metals are not known to be generally biomagnified in food chains.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25658053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25658053"><span id="translatedtitle">Predicting the response of the deep-ocean microbiome to geochemical perturbations by <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reed, Daniel C; Breier, John A; Jiang, Houshuo; Anantharaman, Karthik; Klausmeier, Christopher A; Toner, Brandy M; Hancock, Cathrine; Speer, Kevin; Thurnherr, Andreas M; Dick, Gregory J</p> <p>2015-08-01</p> <p>Submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in <span class="hlt">hydrothermal</span> plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE <span class="hlt">vent</span> field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature <span class="hlt">hydrothermal</span> systems are found less than 100 km apart on average, plumes may act as important vectors between different <span class="hlt">vent</span> fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26147346','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26147346"><span id="translatedtitle">Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> biofilm.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stokke, Runar; Dahle, Håkon; Roalkvam, Irene; Wissuwa, Juliane; Daae, Frida Lise; Tooming-Klunderud, Ave; Thorseth, Ingunn H; Pedersen, Rolf B; Steen, Ida Helene</p> <p>2015-10-01</p> <p>Little is known about how lithoautotrophic primary production is connected to microbial organotrophic consumption in <span class="hlt">hydrothermal</span> systems. Using a multifaceted approach, we analysed the structure and metabolic capabilities within a biofilm growing on the surface of a black smoker chimney in the Loki's Castle <span class="hlt">vent</span> field. Imaging revealed the presence of rod-shaped Bacteroidetes growing as ectobionts on long, sheathed microbial filaments (> 100 μm) affiliated with the Sulfurovum genus within Epsilonproteobacteria. The filaments were composed of a thick (> 200 nm) stable polysaccharide, representing a substantial fraction of organic carbon produced by primary production. An integrated -omics approach enabled us to assess the metabolic potential and in situ metabolism of individual taxonomic and morphological groups identified by imaging. Specifically, we provide evidence that organotrophic Bacteroidetes attach to and glide along the surface of Sulfurovum filaments utilizing organic polymers produced by the lithoautotrophic Sulfurovum. Furthermore, in situ expression of acetyl-CoA synthetase by Sulfurovum suggested the ability to assimilate acetate, indicating recycling of organic matter in the biofilm. This study expands our understanding of the lifestyles of Epsilonproteobacteria in <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, their metabolic properties and co-operative interactions in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> food webs. PMID:26147346</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17148377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17148377"><span id="translatedtitle">Occurrence and recent long-distance dispersal of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimps.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tokuda, Gaku; Yamada, Akinori; Nakano, Kazuma; Arita, Nao; Yamasaki, Hideo</p> <p>2006-06-22</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and methane seeps are extreme environments that have a high concentration of hydrogen sulphide. However, abundant unique invertebrates including shrimps of the family Bresiliidae have been found in such environments. The bresiliid shrimps are believed to have radiated in the Miocene (less than 20 Myr); however, the period when and the mechanisms by which they dispersed across the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and cold seeps in oceans worldwide have not been clarified. In the present study, we collected the deep-sea blind shrimp Alvinocaris longirostris from the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> site in the Okinawa Trough and carried out the first investigation of the 18S rRNA gene of a bresiliid shrimp. The phylogenetic analysis revealed that the bresiliid shrimp is situated at an intermediate lineage within the infraorder Caridea and shows monophyly with palaemonid shrimps, which live in shallow sea and freshwater. Furthermore, the mitochondrial cytochrome oxidase I (COI) gene sequences were analysed to determine the phylogenetic relationship with known bresiliid shrimps. A. longirostris of the Okinawa Trough had two haplotypes of the COI gene, one of which was identical to the Alvinocaris sp. of the cold seeps in Sagami Bay. These results indicate that a long-distance dispersal of A. longirostris occurred possibly within the last 100,000 years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23630523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23630523"><span id="translatedtitle">Biogeography of Persephonella in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the Western Pacific.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mino, Sayaka; Makita, Hiroko; Toki, Tomohiro; Miyazaki, Junichi; Kato, Shingo; Watanabe, Hiromi; Imachi, Hiroyuki; Watsuji, Tomo-O; Nunoura, Takuro; Kojima, Shigeaki; Sawabe, Tomoo; Takai, Ken; Nakagawa, Satoshi</p> <p>2013-01-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea <span class="hlt">vents</span>. Although this group of bacteria has cosmopolitan distribution in deep-sea <span class="hlt">hydrothermal</span> ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> bacteria.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMEP31A..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMEP31A..03C"><span id="translatedtitle">Geothermic Potential Assessment of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of Township Barranca De Upia - Meta - Colombia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chica, J.; Chicangana, G.; Eco Energy Research Group</p> <p>2013-05-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> have been traditionally exploited in Colombia as a source of tourism revenue such as pools and saunas. Leaving aside its high potential for geothermal power generation in applications like heating, drying, cooling, extensive use in crops, livestock, electricity generation and more. Currently the use given to this natural resource in the town of Barranca de Upia in Meta department, central Colombia, is like Wellness Centre. However, the geothermal gradient for the area where <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> occur, indicates that the water emerges at temperatures above 70 ° C (Alfaro et al., 2003), which opens a window of opportunity to assess their geothermal potential, in order to know the actual energy potential of the region as an option of augmenting their development. this research is the analysis of information gathered from databases in gravimetry and magnetometry of the study area and the temperatures measured in wells derived from the oil industry. Based on that information, a numerical analysis of the data will be performed in order to establish a model to parameterize the energy potential of the study area and identify possible uses of the energy contained by the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26147346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26147346"><span id="translatedtitle">Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> biofilm.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stokke, Runar; Dahle, Håkon; Roalkvam, Irene; Wissuwa, Juliane; Daae, Frida Lise; Tooming-Klunderud, Ave; Thorseth, Ingunn H; Pedersen, Rolf B; Steen, Ida Helene</p> <p>2015-10-01</p> <p>Little is known about how lithoautotrophic primary production is connected to microbial organotrophic consumption in <span class="hlt">hydrothermal</span> systems. Using a multifaceted approach, we analysed the structure and metabolic capabilities within a biofilm growing on the surface of a black smoker chimney in the Loki's Castle <span class="hlt">vent</span> field. Imaging revealed the presence of rod-shaped Bacteroidetes growing as ectobionts on long, sheathed microbial filaments (> 100 μm) affiliated with the Sulfurovum genus within Epsilonproteobacteria. The filaments were composed of a thick (> 200 nm) stable polysaccharide, representing a substantial fraction of organic carbon produced by primary production. An integrated -omics approach enabled us to assess the metabolic potential and in situ metabolism of individual taxonomic and morphological groups identified by imaging. Specifically, we provide evidence that organotrophic Bacteroidetes attach to and glide along the surface of Sulfurovum filaments utilizing organic polymers produced by the lithoautotrophic Sulfurovum. Furthermore, in situ expression of acetyl-CoA synthetase by Sulfurovum suggested the ability to assimilate acetate, indicating recycling of organic matter in the biofilm. This study expands our understanding of the lifestyles of Epsilonproteobacteria in <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, their metabolic properties and co-operative interactions in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> food webs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26250301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26250301"><span id="translatedtitle">New Sericosura (Pycnogonida:Ammotheidae) from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Southern Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arango, Claudia P; Linse, Katrin</p> <p>2015-08-05</p> <p>Three new species of Sericosura (Pycnogonida: Ammotheidae) are described from recently discovered <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the East Scotia Ridge, Southern Ocean: Sericosura bamberi sp. nov., S. dimorpha sp. nov. and S. curva sp. nov. The eleven species known to date in the genus Sericosura are all inhabitants of chemosynthetic environments in different oceans around the world. Morphology and preliminary DNA data from the COI locus suggest the East Scotia Ridge pycnogonids have relatively close evolutionary affinities with species known from the East Pacific Rise and the Mid-Atlantic Ridge. This finding highlights the importance of Sericosura as a characteristic taxon of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and the great potential of this genus for global scale ecological and evolutionary studies of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> fauna. The use of pycnogonid DNA data combined with recent models explaining biogeographic provinces along the mid-ocean ridge system should prove extremely useful to understanding the patterns of diversification of endemic fauna from chemosynthetic environments and from the deep-sea in general.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26250301','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26250301"><span id="translatedtitle">New Sericosura (Pycnogonida:Ammotheidae) from deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the Southern Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arango, Claudia P; Linse, Katrin</p> <p>2015-01-01</p> <p>Three new species of Sericosura (Pycnogonida: Ammotheidae) are described from recently discovered <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the East Scotia Ridge, Southern Ocean: Sericosura bamberi sp. nov., S. dimorpha sp. nov. and S. curva sp. nov. The eleven species known to date in the genus Sericosura are all inhabitants of chemosynthetic environments in different oceans around the world. Morphology and preliminary DNA data from the COI locus suggest the East Scotia Ridge pycnogonids have relatively close evolutionary affinities with species known from the East Pacific Rise and the Mid-Atlantic Ridge. This finding highlights the importance of Sericosura as a characteristic taxon of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and the great potential of this genus for global scale ecological and evolutionary studies of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> fauna. The use of pycnogonid DNA data combined with recent models explaining biogeographic provinces along the mid-ocean ridge system should prove extremely useful to understanding the patterns of diversification of endemic fauna from chemosynthetic environments and from the deep-sea in general. PMID:26250301</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS33F..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS33F..03R"><span id="translatedtitle">Investigations of a novel fauna from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> along the Arctic Mid-Ocean Ridge (AMOR) (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.</p> <p>2010-12-01</p> <p>The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker <span class="hlt">venting</span> and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle <span class="hlt">vent</span> field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature <span class="hlt">venting</span> and barite chimneys. The Jan Mayen sites show low abundance of specialized <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fauna. Single groups have a few specialized representatives but groups otherwise common in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> areas are absent. Slightly more than 200 macrofaunal species have been identified from this <span class="hlt">vent</span> area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle <span class="hlt">vent</span> field contains a much more diverse <span class="hlt">vent</span> endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24391244','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24391244"><span id="translatedtitle">Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kalanetra, Karen M; Nelson, Douglas C</p> <p>2010-01-01</p> <p>Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> (White Point, CA) were found at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near <span class="hlt">vents</span> at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge. A phylogenetic analysis comparing their 16S rRNA gene sequences to those collected from the shallow White Point site showed that all vacuolate-attached filament sequences form a monophyletic group within the vacuolate sulfur-oxidizing bacteria clade in the gamma proteobacteria. Abundance of the attached filaments was quantified over the length of the exterior surface of the tubes of Ridgeia piscesae worms collected from the Clam Bed site at Juan de Fuca yielding a per worm average of 0.070 ± 0.018 cm(3) (n = 4). In agreement with previous results for White Point filaments, anion measurements by ion chromatography showed no detectable internal nitrate concentrations above ambient seawater (n = 9). For one R. piscesae tube worm "bush" at the Easter Island <span class="hlt">vent</span> site, potential gross epibiont productivity is estimated to be 15 to 45× the net productivity of the worms. PMID:24391244</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26439286','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26439286"><span id="translatedtitle">Characterization of miRNAs from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Yadong; He, Yaodong; Wang, Chunsheng; Zhang, Xiaobo</p> <p>2015-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata is a dominant species aggregating in <span class="hlt">vent</span> fields along the Mid-Atlantic Ocean Ridge. MicroRNAs play important roles in life cycles of eukaryotes. However, little is known about miRNAs of <span class="hlt">vent</span> animals. In the present study, a small RNA cDNA library from the muscle of R. exoculata was constructed and the miRNA sequencing was performed. The results indicated that a total of 7,983,331 raw reads were obtained, representing 569,354 unique sequences. Based on sequence analysis, R. exoculata contained 159 conserved miRNAs and 34 novel miRNAs. The conserved miRNAs included 54 families belonging to three different taxonomic units (bilaterian, protostomes and arthropods). The results also showed that miR-2001, a lost miRNA in crustaceans, existed in R. exoculata. Among the conserved miRNAs, iso-miRs were detected. Therefore, this study presented the first insight into the miRNAs of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> animals. PMID:26439286</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25428684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25428684"><span id="translatedtitle">An origin-of-life reactor to simulate alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herschy, Barry; Whicher, Alexandra; Camprubi, Eloi; Watson, Cameron; Dartnell, Lewis; Ward, John; Evans, Julian R G; Lane, Nick</p> <p>2014-12-01</p> <p>Chemiosmotic coupling is universal: practically all cells harness electrochemical proton gradients across membranes to drive ATP synthesis, powering biochemistry. Autotrophic cells, including phototrophs and chemolithotrophs, also use proton gradients to power carbon fixation directly. The universality of chemiosmotic coupling suggests that it arose very early in evolution, but its origins are obscure. Alkaline <span class="hlt">hydrothermal</span> systems sustain natural proton gradients across the thin inorganic barriers of interconnected micropores within deep-sea <span class="hlt">vents</span>. In Hadean oceans, these inorganic barriers should have contained catalytic Fe(Ni)S minerals similar in structure to cofactors in modern metabolic enzymes, suggesting a possible abiotic origin of chemiosmotic coupling. The continuous supply of H2 and CO2 from <span class="hlt">vent</span> fluids and early oceans, respectively, offers further parallels with the biochemistry of ancient autotrophic cells, notably the acetyl CoA pathway in archaea and bacteria. However, the precise mechanisms by which natural proton gradients, H2, CO2 and metal sulphides could have driven organic synthesis are uncertain, and theoretical ideas lack empirical support. We have built a simple electrochemical reactor to simulate conditions in alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, allowing investigation of the possibility that abiotic <span class="hlt">vent</span> chemistry could prefigure the origins of biochemistry. We discuss the construction and testing of the reactor, describing the precipitation of thin-walled, inorganic structures containing nickel-doped mackinawite, a catalytic Fe(Ni)S mineral, under prebiotic ocean conditions. These simulated <span class="hlt">vent</span> structures appear to generate low yields of simple organics. Synthetic microporous matrices can concentrate organics by thermophoresis over several orders of magnitude under continuous open-flow <span class="hlt">vent</span> conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25428684','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25428684"><span id="translatedtitle">An origin-of-life reactor to simulate alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herschy, Barry; Whicher, Alexandra; Camprubi, Eloi; Watson, Cameron; Dartnell, Lewis; Ward, John; Evans, Julian R G; Lane, Nick</p> <p>2014-12-01</p> <p>Chemiosmotic coupling is universal: practically all cells harness electrochemical proton gradients across membranes to drive ATP synthesis, powering biochemistry. Autotrophic cells, including phototrophs and chemolithotrophs, also use proton gradients to power carbon fixation directly. The universality of chemiosmotic coupling suggests that it arose very early in evolution, but its origins are obscure. Alkaline <span class="hlt">hydrothermal</span> systems sustain natural proton gradients across the thin inorganic barriers of interconnected micropores within deep-sea <span class="hlt">vents</span>. In Hadean oceans, these inorganic barriers should have contained catalytic Fe(Ni)S minerals similar in structure to cofactors in modern metabolic enzymes, suggesting a possible abiotic origin of chemiosmotic coupling. The continuous supply of H2 and CO2 from <span class="hlt">vent</span> fluids and early oceans, respectively, offers further parallels with the biochemistry of ancient autotrophic cells, notably the acetyl CoA pathway in archaea and bacteria. However, the precise mechanisms by which natural proton gradients, H2, CO2 and metal sulphides could have driven organic synthesis are uncertain, and theoretical ideas lack empirical support. We have built a simple electrochemical reactor to simulate conditions in alkaline <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>, allowing investigation of the possibility that abiotic <span class="hlt">vent</span> chemistry could prefigure the origins of biochemistry. We discuss the construction and testing of the reactor, describing the precipitation of thin-walled, inorganic structures containing nickel-doped mackinawite, a catalytic Fe(Ni)S mineral, under prebiotic ocean conditions. These simulated <span class="hlt">vent</span> structures appear to generate low yields of simple organics. Synthetic microporous matrices can concentrate organics by thermophoresis over several orders of magnitude under continuous open-flow <span class="hlt">vent</span> conditions. PMID:25428684</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRI..106..154L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRI..106..154L"><span id="translatedtitle">Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim</p> <p>2015-12-01</p> <p>A significant focus of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by <span class="hlt">vent</span> species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> macrofauna at a diffuse flow <span class="hlt">vent</span>. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto <span class="hlt">vent</span> in the Main Endeavour <span class="hlt">vent</span> field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in <span class="hlt">vent</span> discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge <span class="hlt">vent</span> invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213957H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213957H"><span id="translatedtitle">Lithosphere-biosphere interaction at a shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> site; Hot Lake, Panarea, Italy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Chia-I.; Amann, Rudolf; Amend, Jan P.; Bach, Wolfgang; Brunner, Benjamin; Meyerdierks, Anke; Price, Roy E.; Schubotz, Florence; Summons, Roger; Wenzhöfer, Frank</p> <p>2010-05-01</p> <p>Deep-Sea <span class="hlt">hydrothermal</span> systems are unique habitats for microbial life with primary production based on chemosynthesis and are considered to be windows to the subsurface biosphere. It is often overlooked, however, that their far more accessible shallow-sea counterparts are also valuable targets to study the effects of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on geology, seawater chemistry and finally, on microbial life. Such an area of shallow marine <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> is observed approximately 2.5 km east of Panarea Island (Sicily, Italy). This system is characterized by fluid temperatures of up to 135° C, gas emissions dominated by CO2 and precipitation of elemental sulfur on the seafloor. In an interdisciplinary project to investigate the influence of geofuels on marine microbiota, sediment cores and pore fluids were sampled for geological and geochemical analyses. An attempt was made to link these geochemical data with a characterization of the microbial community. One of the investigated sites (Lago Caldo, Hot Lake) is an oval-shaped (~10 by 6 meters) shallow (~2.5 m deep) depression covered by elemental sulfur. The sediments in this depression are strongly affected by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>: the pH of pore fluids is in a range between 5 and 6; the salinity is approximately two times higher than seawater. In situ temperatures of 36° C and 74° C (10 cm sediment depth) at two different locations within Hot Lake indicate variability in <span class="hlt">hydrothermal</span> flux. The sediment surface layer is anoxic, and with increasing depth from the sediment-water interface, sulfate concentrations decrease from ~30 mM to less than 10 mM, whereas sulfide concentrations increase from less than 50 μm to ~1000 μm at 25 cm sediment depth, thus suggesting a higher potential for energy gain based on sulfur disequilibrium. As indicated by the variability in the sediment temperatures at 10 cm, fluid fluxes and mixing with seawater is not found to be uniform at Hot Lake. This is reflected in variability of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..836L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..836L"><span id="translatedtitle">Moored observation of abyssal flow and temperature near a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> on the Southwest Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Guanghong; Zhou, Beifeng; Liang, Chujin; Zhou, Huaiyang; Ding, Tao; Wang, Yuan; Dong, Changming</p> <p>2016-01-01</p> <p>Four moorings were deployed near "Dragon Flag," an <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in the valley of the Southwest Indian Ridge. The goal was to examine the variability of currents and temperature, which will guide the trajectory of spreading plumes. The mean current was cross-isobath, and the circulation was characterized by a submesoscale circulation. Observed currents also showed fluctuations with periods of 1-15 days. The inferred phase speed and wavelength for the wave with a period of 4.4 day are 10.4 km d-1 and 45.8km, respectively, which are consistent with the topographic Rossby wave theory. The persistent warming tendency with corresponding variation of salinity based on background θ-S properties may be caused by background circulation and divergence of the water column. The warming or cooling episodes were most likely as signatures of isopycnal surface depression or uplifting induced by the moving of mesoscale eddies. Well-resolved rotary spectra exhibited important nonlinear interactions between inertial and semidiurnal tide in the velocity and temperature records. Amplification of near-inertial currents in the near bottom is also exposed. These discoveries provided new evidence for the nonlinear interaction and trapped near-inertial waves by the ridge, which occurred in the deep ocean of the Southern Hemisphere. Such nonlinear interaction may represent a significant energy loss pathway for the internal waves, and part of the decay of such motion would likely result in increased mixing to maintain the abyssal stratification. Enhanced near-inertial motions can play a major role for the local advection of <span class="hlt">hydrothermal</span> plumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12711435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12711435"><span id="translatedtitle">Radiometric dating of sediment cores from a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> zone off Milos Island in the Aegean Sea.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ugur, Aysun; Miquel, Juan-Carlos; Fowler, Scott W; Appleby, Peter</p> <p>2003-05-20</p> <p>Sediment cores from a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> zone off Milos Island in the Aegean Sea were dated using the 210Pb method. The average unsupported 210Pb inventory in the cores was calculated to be 3256 Bq m(-2). The corresponding mean annual 210Pb flux of 105 Bq m(-2) year(-1) is comparable to estimates of the atmospheric flux given in the literature. 210Pb fluxes calculated from the unsupported 210Pb inventories in cores are also comparable with the 210Pb vertical fluxes determined from settling particles off the coast of Milos Island. The highest unsupported 210Pb concentrations (89 Bq kg(-1)) were measured in the sediments nearest to the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> area suggesting that the sedimentation rate is lowest at this site. Direct gamma measurements of 210Pb were used to date three sediment cores that are located at different distances from the <span class="hlt">vent</span> zone: one is in the immediate vicinity of the <span class="hlt">vent</span>; and others are outside the zone. Sedimentation rates for these cores, calculated using the CRS and CIC models, ranged from 0.088+/-0.008 cm year(-1) to 0.14+/-0.01 cm year(-1). Where both models were applicable, the results given by the two methods were in good agreement. 137Cs concentrations in all three cores generally declined with depth but showed no clear signal of either the period of maximum fallout from weapons testing or the Chernobyl accident. 210Po <span class="hlt">activities</span> were also measured and the maximum 210Po concentration was in the sediment surface layer (166 Bq kg(-1)).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5435606','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5435606"><span id="translatedtitle">Geologic form and setting of a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field at latitude 10/sup 0/56'N, East Pacific Rise: a detailed study using Angus and Alvin</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>McConachy, T.F.; Ballard, R.D.; Mottl, M.J.; Von Herzen, R.P.</p> <p>1986-04-01</p> <p>A <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15-20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. <span class="hlt">Hydrothermal</span> <span class="hlt">activity</span> occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys <span class="hlt">vent</span> warm (9-47/sup 0/C) and hot (347/sup 0/C) <span class="hlt">hydrothermal</span> fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. 19 references, 4 figures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A2033H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A2033H"><span id="translatedtitle">Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> (Lucky Strike, MAR 37°N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.</p> <p>2015-12-01</p> <p>Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically <span class="hlt">active</span> seamounts, coastal waters, to diffuse <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in <span class="hlt">hydrothermal</span> systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike <span class="hlt">hydrothermal</span> field (MAR), a new <span class="hlt">hydrothermal</span> site was discovered at about 1.5 km eastward from the lava lake and from the main <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. This <span class="hlt">active</span> <span class="hlt">venting</span> site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The <span class="hlt">hydrothermal</span> end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an <span class="hlt">active</span> chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the <span class="hlt">hydrothermal</span> samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered <span class="hlt">hydrothermal</span> site of the slow spreading Mid-Atlantic Ridge. Emerson</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3670190','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3670190"><span id="translatedtitle">Arsenic speciation in food chains from mid-Atlantic <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary</p> <p>2012-01-01</p> <p>Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. The shrimp species, Rimicaris exoculata, the <span class="hlt">vent</span> chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus, and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate, and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the <span class="hlt">vent</span> chimneys, covered with microbial mat, which is a presumed food source for many <span class="hlt">vent</span> organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of <span class="hlt">vent</span> origin, suggests that organic arsenicals can occur in a food web without algae or other photosynthetic life. PMID:23741175</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70043449','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70043449"><span id="translatedtitle">Arsenic speciation in food chains from mid-Atlantic <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew R.; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary</p> <p>2012-01-01</p> <p>Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. The shrimp species, Rimicaris exoculata, the <span class="hlt">vent</span> chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the <span class="hlt">vent</span> chimneys covered with microbial mat, which is a presumed food source for many <span class="hlt">vent</span> organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of <span class="hlt">vent</span> origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025"><span id="translatedtitle">Diffuse flow environments within basalt- and sediment-based <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems harbor specialized microbial communities</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig</p> <p>2013-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from <span class="hlt">vents</span> at a basalt-based <span class="hlt">hydrothermal</span> system along the East Pacific Rise (EPR) and a sediment-based <span class="hlt">hydrothermal</span> system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea <span class="hlt">hydrothermal</span> environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and <span class="hlt">hydrothermal</span> system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct <span class="hlt">hydrothermal</span> diffuse flow environments. PMID</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23898323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23898323"><span id="translatedtitle">Diffuse flow environments within basalt- and sediment-based <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> ecosystems harbor specialized microbial communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig</p> <p>2013-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vents</span> differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from <span class="hlt">vents</span> at a basalt-based <span class="hlt">hydrothermal</span> system along the East Pacific Rise (EPR) and a sediment-based <span class="hlt">hydrothermal</span> system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea <span class="hlt">hydrothermal</span> environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and <span class="hlt">hydrothermal</span> system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct <span class="hlt">hydrothermal</span> diffuse flow environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4568656','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4568656"><span id="translatedtitle">Endosymbionts escape dead <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworms to enrich the free-living population</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Klose, Julia; Polz, Martin F.; Wagner, Michael; Schimak, Mario P.; Gollner, Sabine; Bright, Monika</p> <p>2015-01-01</p> <p>Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by <span class="hlt">active</span> larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments. PMID:26283348</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3111178','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3111178"><span id="translatedtitle">The Biological Deep Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> as a Model to Study Carbon Dioxide Capturing Enzymes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Minic, Zoran; Thongbam, Premila D.</p> <p>2011-01-01</p> <p>Deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are located along the mid-ocean ridge system, near volcanically <span class="hlt">active</span> areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21673885','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21673885"><span id="translatedtitle">The biological deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> as a model to study carbon dioxide capturing enzymes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minic, Zoran; Thongbam, Premila D</p> <p>2011-01-01</p> <p>Deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are located along the mid-ocean ridge system, near volcanically <span class="hlt">active</span> areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21673885','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21673885"><span id="translatedtitle">The biological deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> as a model to study carbon dioxide capturing enzymes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minic, Zoran; Thongbam, Premila D</p> <p>2011-01-01</p> <p>Deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> are located along the mid-ocean ridge system, near volcanically <span class="hlt">active</span> areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26283348','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26283348"><span id="translatedtitle">Endosymbionts escape dead <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworms to enrich the free-living population.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klose, Julia; Polz, Martin F; Wagner, Michael; Schimak, Mario P; Gollner, Sabine; Bright, Monika</p> <p>2015-09-01</p> <p>Theory predicts that horizontal acquisition of symbionts by plants and animals must be coupled to release and limited dispersal of symbionts for intergenerational persistence of mutualisms. For deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworms (Vestimentifera, Siboglinidae), it has been demonstrated that a few symbiotic bacteria infect aposymbiotic host larvae and grow in a newly formed organ, the trophosome. However, whether viable symbionts can be released to augment environmental populations has been doubtful, because (i) the adult worms lack obvious openings and (ii) the vast majority of symbionts has been regarded as terminally differentiated. Here we show experimentally that symbionts rapidly escape their hosts upon death and recruit to surfaces where they proliferate. Estimating symbiont release from our experiments taken together with well-known tubeworm density ranges, we suggest a few million to 1.5 billion symbionts seeding the environment upon death of a tubeworm clump. In situ observations show that such clumps have rapid turnover, suggesting that release of large numbers of symbionts may ensure effective dispersal to new sites followed by <span class="hlt">active</span> larval colonization. Moreover, release of symbionts might enable adaptations that evolve within host individuals to spread within host populations and possibly to new environments. PMID:26283348</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T31A0486C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T31A0486C"><span id="translatedtitle">The Acoustic Signature of High-Temperature Deep Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crone, T. J.; Wilcock, W. S.; Parsons, J. D.; Barclay, A. H.</p> <p>2005-12-01</p> <p>Motivated by a desire to find new measurements that might be sensitive to flow rate variations within mid-ocean ridge <span class="hlt">hydrothermal</span> systems, we have conducted field studies to collect passive acoustic measurements at black smoker <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> using two versions of a simple dual-hydrophone recording device capable of collecting continuous acoustic data for about one week at sampling rates of 1000--2000 Hz. We deployed the first-generation instrument on the Sully sulfide structure in the Main Endeavour Field of the Juan de Fuca Ridge during September of 2004. We were able to collect approximately 48 hours of data before the instrument was partially destroyed by <span class="hlt">venting</span> fluid. We are in the process of obtaining additional measurements in the same <span class="hlt">vent</span> field with a second-generation instrument. For the 2004 deployment, the <span class="hlt">venting</span> fluid produced an acoustic signal that was far above the background level at all measured frequencies. The acoustic spectrum contains a broadband signal that is weighted toward the low frequencies and extends to the Nyquist frequency at 500 Hz. The spectrum also contains several sharp peaks below 150 Hz. The signal is variable in time, with the broadband and peak amplitudes fluctuating by ~20 dB, and the frequencies of the sharp spectral peaks fluctuating by ~1--3 Hz. The complex nature of the acoustic signal suggests that more than one sound production mechanism is operating within the <span class="hlt">vent</span>. The sharp peaks suggest the presence of a resonant mechanism such as pipe resonance excited by turbulent flow. The high level of the broadband signal is not predicted by theoretical investigations of low Mach number jet acoustics. It is likely that another broadband sound source is present, which could be related to phase separation or to the mixing of different density fluids. More observations will be required to fully understand the basic mechanisms of sound production within black smoker chimneys.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008E%26PSL.275...61M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008E%26PSL.275...61M"><span id="translatedtitle">First evidence for high-temperature off-axis <span class="hlt">venting</span> of deep crustal/mantle heat: The Nibelungen <span class="hlt">hydrothermal</span> field, southern Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melchert, B.; Devey, C. W.; German, C. R.; Lackschewitz, K. S.; Seifert, R.; Walter, M.; Mertens, C.; Yoerger, D. R.; Baker, E. T.; Paulick, H.; Nakamura, K.</p> <p>2008-10-01</p> <p>During segment-scale studies of the southern Mid-Atlantic Ridge (MAR), 7-12° S, we found evidence in the water column for high-temperature <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>, off-axis, east of Ascension Island. Extensive water column and seafloor work using both standard CTD and deep submergence AUV and ROV deployments led to the discovery and sampling of the "Drachenschlund" ("Dragon Throat") black smoker <span class="hlt">vent</span> at 8°17.87' S/13°30.45' W in 2915 m water depth. The <span class="hlt">vent</span> is flanked by several inactive chimney structures in a field we have named "Nibelungen". The site is located 6 km south of a non-transform offset between two adjacent 2nd-order ridge-segments and 9 km east of the presently-<span class="hlt">active</span>, northward-propagating A2 ridge-segment, on a prominent outward-facing fault scarp. Both <span class="hlt">vent</span>-fluid compositions and host-rock analyses show this site to be an ultramafic-hosted system, the first of its kind to be found on the southern MAR. The thermal output of this single <span class="hlt">vent</span>, based on plume rise-height information, is estimated to be 60 ± 15 MW. This value is high for a single "black smoker" <span class="hlt">vent</span> but small for an entire field. The tectonic setting and low He content of the <span class="hlt">vent</span> fluids imply that high-temperature off-axis <span class="hlt">venting</span> at "Drachenschlund" is driven not by magmatic processes, as at the majority of on-axis <span class="hlt">hydrothermal</span> systems, but by residual heat "mined" from the deeper lithosphere. Whether this heat is being extracted from high-temperature mantle peridotites or deep crustal cumulates formed at the "duelling" non-transfrom offset is unclear, in either case the Drachenschlund <span class="hlt">vent</span> provides the first direct observations of how cooling of deeper parts of the lithosphere, at least at slow-spreading ridges, may be occurring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3106P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3106P"><span id="translatedtitle">Modelling of <span class="hlt">hydrothermal</span> fluid circulation in a heterogeneous medium: Application to the Rainbow <span class="hlt">Vent</span> site (Mid-Atlantic-Ridge, 36°14N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.</p> <p>2012-04-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">activity</span> at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such <span class="hlt">hydrothermal</span> circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of <span class="hlt">hydrothermal</span> circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow <span class="hlt">Vent</span> site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with <span class="hlt">hydrothermal</span> circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the <span class="hlt">venting</span> site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the <span class="hlt">hydrothermal</span> circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted <span class="hlt">vent</span> field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B12B..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B12B..03M"><span id="translatedtitle">Constraints on hydrocarbon and organic acid abundances in <span class="hlt">hydrothermal</span> fluids at the Von Damm <span class="hlt">vent</span> field, Mid-Cayman Rise (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.</p> <p>2013-12-01</p> <p>The generation of organic compounds in <span class="hlt">vent</span> fluids has been of interest since the discovery of seafloor <span class="hlt">hydrothermal</span> systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in <span class="hlt">hydrothermal</span> systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during <span class="hlt">active</span> circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm <span class="hlt">vent</span> field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in <span class="hlt">vent</span> fluids at Von Damm. An ultramafic-influenced <span class="hlt">hydrothermal</span> system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm <span class="hlt">vent</span> fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted <span class="hlt">vent</span> fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during <span class="hlt">hydrothermal</span> circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during <span class="hlt">hydrothermal</span> circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm <span class="hlt">vent</span> fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212826I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212826I"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> fluids <span class="hlt">vented</span> at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio</p> <p>2010-05-01</p> <p>Scuba diving investigations carried out over the last two decades at the Aeolian islands revealed the existence of submarine magmatic and late-magmatic <span class="hlt">hydrothermalism</span> at all the islands, despite the absence of on-shore <span class="hlt">activity</span> at some of the islands. The results gained by diving <span class="hlt">activities</span> provided useful information to evaluate the volcanic and geothermal <span class="hlt">activity</span> and to manage the volcanic crisis occurred on November 2002 off the island of Panarea. Scuba diving investigations carried out from middle 80's, had shown that despite the absence of on shore volcanic manifestations, submarine <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> is recognizable at shallow depth around all the Aeolian islands related either to volcanic and geothermal <span class="hlt">activity</span>. The sampled gases are CO2-dominated with low amounts of oxygen and reactive gases (H2, CO, CH4 and H2S) with concentrations ranging from a few ppm to some mole percent. Sometimes significant N2 amount are detectable together with high helium contents. Samples having low CO2 content, besides relevant N2 and He amounts, are the consequence of CO2 dissolution in sea-water due to gas-water interactions (GWI) occurred before the sample collection. The high CO2 solubility (878 ml/l, T=20°C, P=1bar) may, in fact, decrease the CO2 content in the <span class="hlt">venting</span> gases thus increasing the concentrations of the less soluble species (e.g. He 8 ml/l, CO 23 ml/l and CH4 33.8 ml/l) in the gas mixture. Such a process might occur at any level, however, because of the slow water circulation in deep sediments, CO2 is able to saturate the circulating sea-water. The isotopic composition of carbon displays a small range of values while helium isotopes are in the range of 4.1<Rac<7. Despite the gases come from both <span class="hlt">active</span> and extinct Volcanoes, their chemical composition is similar. Contrastingly the isotope composition of helium shows a large heterogeneity with the highest isotopic ratios surprisingly measured at the extinct volcanic islands in the western sector, and much</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GMS...188...67P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GMS...188...67P"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">activity</span> at the Arctic mid-ocean ridges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.</p> <p></p> <p>Over the last 10 years, <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 <span class="hlt">active</span> and extinct <span class="hlt">vent</span> sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling <span class="hlt">hydrothermal</span> deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated <span class="hlt">hydrothermal</span> systems. The known <span class="hlt">vent</span> sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type <span class="hlt">venting</span> is common. Several of these fields may be peridotite-hosted. The <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the <span class="hlt">vent</span> fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19050821','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19050821"><span id="translatedtitle">Bacterial and archaeal populations at two shallow <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Panarea Island (Eolian Islands, Italy).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maugeri, Teresa Luciana; Lentini, Valeria; Gugliandolo, Concetta; Italiano, Francesco; Cousin, Sylvie; Stackebrandt, Erko</p> <p>2009-01-01</p> <p>The aim of this study was to investigate the microbial community thriving at two shallow <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Panarea Island (Italy). Physico-chemical characteristics of thermal waters were examined in order to establish the effect of the <span class="hlt">vents</span> on biodiversity of both Bacteria and Archaea. Water and adjacent sediment samples were collected at different times from two <span class="hlt">vents</span>, characterised by different depth and temperature, and analysed to evaluate total microbial abundances, sulphur-oxidising and thermophilic aerobic bacteria. Total microbial abundances were on average of the order of 10(5) cells ml(-1), expressed as picoplanktonic size fraction. Picophytoplanktonic cells accounted for 0.77-3.83% of the total picoplanktonic cells. The contribution of bacterial and archaeal taxa to prokaryotic community diversity was investigated by PCR-DGGE fingerprinting method. The number of bands derived from bacterial DNA was highest in the DGGE profiles of water sample from the warmest and deepest site (site 2). In contrast, archaeal richness was highest in the water of the coldest and shallowest site (site 1). Sulphur-oxidising bacteria were detected by both culture-dependent and -independent methods. The primary production at the shallow <span class="hlt">hydrothermal</span> system of Panarea is supported by a complex microbial community composed by phototrophs and chemolithotrophs. PMID:19050821</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25764538','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25764538"><span id="translatedtitle">Biogeography and ecology of the rare and abundant microbial lineages in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, Rika E; Sogin, Mitchell L; Baross, John A</p> <p>2015-01-01</p> <p>Environmental gradients generate countless ecological niches in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in <span class="hlt">vents</span> are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. PMID:25764538</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25764538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25764538"><span id="translatedtitle">Biogeography and ecology of the rare and abundant microbial lineages in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, Rika E; Sogin, Mitchell L; Baross, John A</p> <p>2015-01-01</p> <p>Environmental gradients generate countless ecological niches in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in <span class="hlt">vents</span> are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23750565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23750565"><span id="translatedtitle">Diversity and distributional patterns of ciliates in Guaymas Basin <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sediments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Coyne, Kathryn J; Countway, Peter D; Pilditch, Conrad A; Lee, Charles K; Caron, David A; Cary, Stephen C</p> <p>2013-01-01</p> <p>Little is known about protists at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. The <span class="hlt">vent</span> sites at Guaymas Basin in the Gulf of California are characterized by dense mats of filamentous pigmented or nonpigmented Beggiatoa that serve as markers of subsurface thermochemical gradients. We constructed 18S rRNA libraries to investigate ciliate assemblages in Beggiatoa mats and from bare sediments at the Guaymas <span class="hlt">vent</span> site. Results indicated a high diversity of ciliates, with 156 operational taxonomic units identified in 548 sequences. Comparison between mat environments demonstrated that ciliate and bacterial assemblages from pigmented mats, nonpigmented mats, and bare sediments were significantly different and highly correlated with bacterial assemblages. Neither bacterial nor ciliate assemblages were correlated with environmental factors. The most abundant ciliates at Guaymas were more likely to be represented in clone libraries from other <span class="hlt">hydrothermal</span>, deep-sea, and/or anoxic or microaerophilic environments, supporting the hypothesis that these ciliate species are broadly distributed. The orange mat environment included a higher proportion of ciliate sequences that were more similar to those from other environmental studies than to cultured ciliate species, whereas clone libraries from bare sediments included sequences that were the most highly divergent from all other sequences and may represent species that are endemic to Guaymas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP11A..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP11A..07F"><span id="translatedtitle">Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span>; Insight from Shinkai 6500 Magnetic Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.</p> <p>2013-12-01</p> <p>Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or <span class="hlt">hydrothermal</span> alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the <span class="hlt">active</span> back-arc spreading center, to detect signals from <span class="hlt">hydrothermally</span> altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with <span class="hlt">hydrothermal</span> deposits identified in video records. These results suggest that low magnetic signals are due to <span class="hlt">hydrothermal</span> alteration zones where host rocks are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/7049433','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/7049433"><span id="translatedtitle"><span class="hlt">Active</span> and relict sea-floor <span class="hlt">hydrothermal</span> mineralization at the TAG <span class="hlt">hydrothermal</span> field, Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )</p> <p>1993-12-01</p> <p>The TAG <span class="hlt">hydrothermal</span> field is a site of major <span class="hlt">active</span> and inactive volcanic-hosted <span class="hlt">hydrothermal</span> mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>: (1) an <span class="hlt">actively</span> <span class="hlt">venting</span> high-temperature sulfide mound; (2) two former high-temperature <span class="hlt">vent</span> areas; (3) a zone of low-temperature <span class="hlt">venting</span> and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these <span class="hlt">active</span> fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for <span class="hlt">hydrothermal</span> upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the <span class="hlt">hydrothermal</span> zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the <span class="hlt">active</span> sulfide mound indicate multiple episodes of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically <span class="hlt">active</span> rift valley of the slow-spreading oceanic ridge. <span class="hlt">Hydrothermal</span> reworking of a relict <span class="hlt">hydrothermal</span> zone by high-temperature <span class="hlt">hydrothermal</span> episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13A1696Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13A1696Y"><span id="translatedtitle">Structural and functional diversity of microbial communities beneath the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> at the Iheya North field of the Mid-Okinawa Trough (IODP Expedition 331)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yanagawa, K.; Nunoura, T.; Kawagucci, S.; Hirai, M.; Sunamura, M.; Breuker, A.; Brandt, L.; House, C. H.; McAllister, S. M.; Moyer, C. L.; Takai, K.</p> <p>2012-12-01</p> <p>Complex and diverse microbial communities in deep-sea <span class="hlt">hydrothermal</span> fluids are apparently different from those in ambient seawater, some of which are predicted to migrate along <span class="hlt">hydrothermal</span> vein from "subvent biosphere". Subseafloor environment just beneath <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> has been expected to be one of the most conceivable habitats for metabolically <span class="hlt">active</span> and diverse microbial community. We conducted the scientific ocean drilling (IODP Expedition 331) for the Iheya North <span class="hlt">hydrothermal</span> field in the Mid-Okinawa Trough in Sept. 2010, and collected core samples from the subseafloor biosphere beneath the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>. IODP Site C0014 was located 450 m east off the main <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>. Temperature exceeded the limit of life at the depth of approximately 40 m below the seafloor. Both microscopy and quantitative PCR analyses successfully detected microbial populations in the shallower zone above 15 mbsf. However, the cultivation attempts of (hyper-)thermophiles were unsuccessful all over the depth. Culture-independent molecular biological experiments showed that microbial community composition distinctly changed with depth, possibly because of physicochemical conditions such as methane, sulfate and temperature. Microbial <span class="hlt">activities</span> of methanogenesis and anaerobic methane oxidation were in accordance with the geochemical profiles of methane and sulfate. These results indicated the presence of functionally <span class="hlt">active</span> subseafloor microbial communities but those were different from expected members in subvent biosphere. Site C0017 located 1.6 km east off the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> is a potential seawater recharge zone of the <span class="hlt">hydrothermal</span> system, where seawater penetrates into the oceanic crust. The lithostratigraphy consists of characteristic coarse angular pumiceous gravel, lying above and below hemipelagic mud, in which high permeability may allow entrainment of seawater. As is the case with sedimentary subsurface environments, uncultivated archaeal groups were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013EGUGA..15.4729D&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013EGUGA..15.4729D&link_type=ABSTRACT"><span id="translatedtitle">Neotectonic <span class="hlt">activity</span> at the Giant Gjallar <span class="hlt">Vent</span> (Norwegian Sea) indicates a future phase of <span class="hlt">active</span> fluid <span class="hlt">venting</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dumke, Ines; Berndt, Christian; Crutchley, Gareth; Couillard, Mélanie; Gay, Aurélien</p> <p>2013-04-01</p> <p>The Giant Gjallar <span class="hlt">Vent</span> (GGV) is a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> complex that formed during the opening of the North Atlantic at about 55 Ma. Sill intrusions into Cretaceous organic-rich sediments led to the production and subsequent vigorous seafloor <span class="hlt">venting</span> of methane. A later phase of fluid escape occurred in mid-Oligocene times. The GGV is characterised by two pipes of 440 m and 480 m in diameter that reach up to the Base Late Pliocene Unconformity (BLPU) between the Kai and Naust formations. The unconformity is strongly deformed over an area of c. 18,000 km² across the <span class="hlt">vent</span>, with a positive relief of up to 38 m above the surrounding paleo-seafloor. The overlying sediments of the Naust Formation conformally drape this deformation, smoothing its relief to a maximum of 15 m at the modern seafloor. The sediment drape indicates present inactivity of the <span class="hlt">vent</span> system, as does the absence of indicators of <span class="hlt">active</span> fluid escape in the water column during RV METEOR cruise M87-2 in 2012. However, high-resolution 2D seismic and Parasound data from the same cruise, and exploration-type 3D seismic data acquired by Norsk Hydro, show several indications for recent to ongoing <span class="hlt">activity</span> at the GGV. Beneath the BLPU, strong frequency attenuation and chaotic reflections indicate the presence of free gas. At the edges of the extent of chaotic reflections, subvertical faults cut the unconformity as well as horizons of the lower and middle Naust Formation, suggesting tectonic <span class="hlt">activity</span> after deposition of these horizons. Neotectonic <span class="hlt">activity</span> is further indicated by the extensive occurrence of shallow faults apparent in Parasound records in the immediate vicinity of the <span class="hlt">vent</span> and up to 16 km away. Some of these faults reach the seafloor. The observed deformation and faults may be the result of fluids accumulating beneath the BLPU due to increased loading of the oozy Kai Formation by denser glacigenic Naust sediments. Because of the lower permeability of the Naust Formation, the unconformity acts as a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997GeoRL..24.2351R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997GeoRL..24.2351R"><span id="translatedtitle">Acoustic mapping of diffuse flow at a seafloor <span class="hlt">hydrothermal</span> site: Monolith <span class="hlt">Vent</span>, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rona, P. A.; Jackson, D. R.; Wen, T.; Jones, C.; Mitsuzawa, K.; Bemis, K. G.; Dworski, J. G.</p> <p></p> <p>Diffuse flow of <span class="hlt">hydrothermal</span> solutions commonly occurs in patchy areas up to tens of meters in diameter in seafloor <span class="hlt">hydrothermal</span> fields. It is recognized as a quantitatively significant component of thermal and chemical fluxes, yet is elusive to map. We report a new acoustic method to detect and map areas of diffuse flow using phase-coherent correlation techniques. The sonar system was modified to record phase information and mounted on DSV SEA CLIFF. The submersible occupied a stationary position on the seafloor and the transducer scanned the seafloor surrounding Monolith <span class="hlt">Vent</span>, a sulfide edifice <span class="hlt">venting</span> black smokers, at a nominal range of 17 m at a depth of 2249 m on the Juan de Fuca Ridge. Patchy areas of uncorrelated returns clearly stood out from a background of returns that exhibited ping-to-ping correlation. The areas of uncorrelated returns coincided with areas of diffuse flow as mapped by a video survey with the Navy's Advanced Tethered Vehicle (ATV). Correlated returns were backscattered from invariant seafloor. Uncorrelated returns were distorted by index of refraction inhomogeneities as they passed through diffuse flow between the seafloor and the transducer. The acoustic method presented can synoptically map areas of diffuse flow. When combined with standard in situ measurement and sampling methods the acoustic mapping will facilitate accurate determination of diffuse thermal and chemical fluxes in seafloor <span class="hlt">hydrothermal</span> fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010GGG....11.3012C&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010GGG....11.3012C&link_type=ABSTRACT"><span id="translatedtitle">Flow rate perturbations in a black smoker <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> in response to a mid-ocean ridge earthquake swarm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crone, Timothy J.; Wilcock, William S. D.; McDuff, Russell E.</p> <p>2010-03-01</p> <p>Although there is indirect evidence for strong connections between tectonic processes and mid-ocean ridge <span class="hlt">hydrothermal</span> flow, there are no direct observations of these links, primarily because measuring flow in these systems is difficult. Here we use an optical analysis technique to obtain a 44 day record of flow rate changes in a black smoker <span class="hlt">vent</span> in the Main Endeavour field of the Juan de Fuca Ridge. We show that variations in the flow rate coincide with an earthquake swarm observed using an ocean bottom seismometer array. These observations indicate that connections between tectonics and flow are indeed strong, that hydraulic connections within this <span class="hlt">hydrothermal</span> system are long ranging, and that enhanced tidal pumping of fluids may be initiated by earthquake <span class="hlt">activity</span>. Because the effects of the swarm cross over an intervening <span class="hlt">vent</span> field, we infer that the upflow zones feeding this field are narrow. Using the time lag between the swarm onset and the flow rate changes we estimate that the bulk permeability of the crust on the Endeavour segment ranges from 3.0 × 10-13 m2 to 6.0 × 10-12 m2.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17684750','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17684750"><span id="translatedtitle">Shell nacre ultrastructure and depressurisation dissolution in the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus azoricus.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kadar, Eniko; Checa, Antonio G; Damasceno-Oliveira, Alfredo; Oliveira, Alfredo N D P; Machado, Jorge P</p> <p>2008-01-01</p> <p>This study describes the micro-morphological features of the shell nacre in the <span class="hlt">vent</span> mytilid Bathymodiolus azoricus collected along a bathymetric gradient of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> of the mid-Atlantic ridge (MAR). Pressure-dependent crystallisation patterns were detected in animals subjected to post-capture hydrostatic simulations. We provide evidence for the following: (1) shell micro morphology in B. azoricus is similar to that of several <span class="hlt">vent</span> and cold-seep species, but the prismatic shell layers may vary among bathymodiolids; (2) nacre micro-morphology of mussels from three <span class="hlt">vent</span> sites of the MAR did not differ significantly; minor differences do not appear to be related to hydrostatic pressure, but rather to calcium ion availability; (3) decompression stress may cause drop off in pH of the pallial fluid that damages nascent crystals, and in a more advanced phase, the aragonite tablets as well as the continuous layer of mature nacre; and (4) adverse effects of decompression on calcium salt deposition in shells was diminished by re-pressurisation of specimens. The implications of the putative influence of hydrostatic pressure on biomineralisation processes in molluscs are discussed. PMID:17684750</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16820492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16820492"><span id="translatedtitle">Anaerobic respiration on tellurate and other metalloids in bacteria from <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields in the eastern Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir</p> <p>2006-07-01</p> <p>This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> animals indicates that a greater proportion of the bacterial community associated with certain <span class="hlt">vent</span> fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with <span class="hlt">vent</span> fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983Sci...219..297P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983Sci...219..297P"><span id="translatedtitle">Blood Components Prevent Sulfide Poisoning of Respiration of the <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Tube Worm Riftia pachyptila</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, Mar A.; Somero, George N.</p> <p>1983-01-01</p> <p>Respiration of plume tissue of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tube worm Riftia pachyptila is insensitive to sulfide poisoning in contrast to tissues of animals that do not inhabit <span class="hlt">vents</span>. Permeability barriers may not be responsible for this insensitivity since plume homogenates are also resistant to sulfide poisoning. Cytochrome c oxidase of plume, however, is strongly inhibited by sulfide at concentrations less than 10 μ M. Factors present in blood, but not in cytosol, prevent sulfide from inhibiting cytochrome c oxidase. Avoidance of sulfide poisoning of respiration in Riftia pachyptila thus appears to involve a blood-borne factor having a higher sulfide affinity than that of cytochrome c oxidase, with the result that appreciable amounts of free sulfide are prevented from accumulating in the blood and entering the intracellular compartment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....99.4969C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....99.4969C"><span id="translatedtitle">In situ observations of dissolved iron and manganese in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> plumes, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chin, Carol S.; Coale, Kenneth H.; Elrod, Virginia A.; Johnson, Kenneth S.; Massoth, Gary J.; Baker, Edward T.</p> <p>1994-03-01</p> <p>In situ mesaurements of dissolved manganese and total dissolved iron were conducted in <span class="hlt">hydrothermal</span> plumes over the Juan de Fuca Ridge using a submersible chemical analyzer (Scanner). The Scanner was deployed as part of a conductivity, temperature, depth (CTD)/transmissometer rosette instrument package on both tow-yos and vertical casts during the <span class="hlt">VENTS</span> Leg I cruise in 1989. Dissolved manganese and total dissolved iron concentrations, along with temperature and light attenuation anomalies, were determined over the ridge crest every 5 s. Discrete samples for laboratory analyses of dissolved iron II, total dissolved iron II+III and manganese were also collected. Metal to heat ratios (Me:Q) measured in situ were extremely variable in one steady state plume, while an event plume had constant Me:Q. Uniform values of Mn:Q in the event plume demonstrate that Mn behaves conservatively in the near-field plume. Variability in the Mn:Q ratios in a steady state plume indicated the presence of at least two <span class="hlt">hydrothermal</span> sources with distinct Me:Q values. A simple mixing model shows that the contribution of Mn from high Me:Q sources, with a composition characteristic of black smoker <span class="hlt">vents</span>, varies between 1% and 99% within the core of the steady state plume with an average value of 55%. On average, over 50% of the excess heat within the plume originates from low Me:Q ratio sources, with a composition characteristic of low-temperature, diffuse flow <span class="hlt">vent</span> fluids. Less than 4% of the volume of <span class="hlt">hydrothermal</span> fluids in the plume originates from black smokers. The Fe II concentrations were used to provide an estimate of plume age on a transect across the ridge axis. Plume ages were about 2.5 days on axis and greater than 12 days off axis. These plume ages were modeled to provide estimates of plume transport and horizontal diffusion and show excellent agreement with ages determined using Rn-222.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/25658053','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/25658053"><span id="translatedtitle">Predicting the response of the deep-ocean microbiome to geochemical perturbations by <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reed, Daniel C; Breier, John A; Jiang, Houshuo; Anantharaman, Karthik; Klausmeier, Christopher A; Toner, Brandy M; Hancock, Cathrine; Speer, Kevin; Thurnherr, Andreas M; Dick, Gregory J</p> <p>2015-08-01</p> <p>Submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in <span class="hlt">hydrothermal</span> plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE <span class="hlt">vent</span> field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature <span class="hlt">hydrothermal</span> systems are found less than 100 km apart on average, plumes may act as important vectors between different <span class="hlt">vent</span> fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones. PMID:25658053</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511942','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511942"><span id="translatedtitle">Predicting the response of the deep-ocean microbiome to geochemical perturbations by <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reed, Daniel C; Breier, John A; Jiang, Houshuo; Anantharaman, Karthik; Klausmeier, Christopher A; Toner, Brandy M; Hancock, Cathrine; Speer, Kevin; Thurnherr, Andreas M; Dick, Gregory J</p> <p>2015-01-01</p> <p>Submarine <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in <span class="hlt">hydrothermal</span> plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE <span class="hlt">vent</span> field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature <span class="hlt">hydrothermal</span> systems are found less than 100 km apart on average, plumes may act as important vectors between different <span class="hlt">vent</span> fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones. PMID:25658053</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006DSRI...53.1363Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006DSRI...53.1363Z"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zekely, J.; Van Dover, C. L.; Nemeschkal, H. L.; Bright, M.</p> <p>2006-08-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> occur along the mid-ocean ridges and back-arc basins around the globe. There are very few community analyses of <span class="hlt">vent</span> meiobenthos. The central objectives of this study were to identify and quantify for the first time the entire metazoan meiobenthic community associated with mussel aggregations of Bathymodiolus thermophilus Kenk and Wilson, 1985 from the EPR, 11°N and of Bathymodiolus puteoserpentis Cosel et al., 1994 from the Mid-Atlantic Ridge (MAR), 23°N. Using a quantitative sampling method, abundance, biomass, sex ratio, species richness, diversity, evenness, and trophic structure were studied based on three samples from each site. Meiobenthic abundance in each sample was unexpectedly low, but similar between sites. The community was composed of nematodes, copepods, ostracods, and mites, with a total of 24 species at EPR <span class="hlt">vents</span>, and 15 species at MAR <span class="hlt">vents</span>. While most copepod species were <span class="hlt">vent</span> endemics within the family Dirivultidae, nematodes and harpacticoid copepods belonged to generalist genera, which occur at a variety of habitats and are not restricted to <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> or the deep sea. The meiobenthos of <span class="hlt">hydrothermal-vent</span> mussel beds constitutes a unique community unlike those of other sulfidic habitats, including the thiobios of shallow-water sediments and the meiobenthos of deep-sea, cold-seep sediments. The trophic structure was dominated by primary consumers, mainly deposit feeders, followed by parasites. Predatory meiofaunal species were absent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23C2028S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23C2028S"><span id="translatedtitle">Noble Gas geochemistry of the newly discovered <span class="hlt">hydrothermal</span> fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin <span class="hlt">vent</span> sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.</p> <p>2015-12-01</p> <p>Numerous submarine deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> related to volcanic <span class="hlt">activity</span> of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new <span class="hlt">active</span> <span class="hlt">vent</span> sites. In this study, we aimed to sample the high-temperature <span class="hlt">hydrothermal</span> fluids emanating from two distinct <span class="hlt">vent</span> sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in <span class="hlt">hydrothermal</span> fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka <span class="hlt">hydrothermal</span> fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka <span class="hlt">vent</span> field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22869718','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22869718"><span id="translatedtitle">Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ver Eecke, Helene C; Butterfield, David A; Huber, Julie A; Lilley, Marvin D; Olson, Eric J; Roe, Kevin K; Evans, Leigh J; Merkel, Alexandr Y; Cantin, Holly V; Holden, James F</p> <p>2012-08-21</p> <p>Microbial productivity at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at <span class="hlt">vents</span> are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature <span class="hlt">hydrothermal</span> fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one <span class="hlt">vent</span> at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at <span class="hlt">vents</span> and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea. PMID:22869718</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22869718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22869718"><span id="translatedtitle">Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ver Eecke, Helene C; Butterfield, David A; Huber, Julie A; Lilley, Marvin D; Olson, Eric J; Roe, Kevin K; Evans, Leigh J; Merkel, Alexandr Y; Cantin, Holly V; Holden, James F</p> <p>2012-08-21</p> <p>Microbial productivity at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at <span class="hlt">vents</span> are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature <span class="hlt">hydrothermal</span> fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one <span class="hlt">vent</span> at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at <span class="hlt">vents</span> and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3427048','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3427048"><span id="translatedtitle">Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ver Eecke, Helene C.; Butterfield, David A.; Huber, Julie A.; Lilley, Marvin D.; Olson, Eric J.; Roe, Kevin K.; Evans, Leigh J.; Merkel, Alexandr Y.; Cantin, Holly V.; Holden, James F.</p> <p>2012-01-01</p> <p>Microbial productivity at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at <span class="hlt">vents</span> are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H2 threshold measurements for hyperthermophilic methanogenesis in low-temperature <span class="hlt">hydrothermal</span> fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H2 concentrations. Their H2 half-saturation value was 66 μM, and growth ceased below 17–23 μM H2, 10-fold lower than previously predicted. By comparison, measured H2 and CH4 concentrations in fluids suggest that there was generally sufficient H2 for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one <span class="hlt">vent</span> at Axial (Marker 113) had anomalously high CH4 concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2–6% of the total archaeal community. Field and coculture data suggest that H2 limitation may be partly ameliorated by H2 syntrophy with hyperthermophilic heterotrophs. These data support our estimated H2 threshold for hyperthermophilic methanogenesis at <span class="hlt">vents</span> and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea. PMID:22869718</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS11A0350S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS11A0350S"><span id="translatedtitle">Time Series Studies of Faunal Colonization and Temperature Variations at Diffuse-Flow <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Sites Near 9° 50'N, EPR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shank, T. M.; Scheirer, D.; Fornari, D. J.</p> <p>2001-12-01</p> <p>The April 1991 discovery of newly-formed <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in areas of intense volcanic <span class="hlt">activity</span> along the East Pacific Rise (EPR) between 9\\deg 45' and 9\\deg 52'N provided a unique opportunity to follow temporal changes in biological community structure and <span class="hlt">vent</span> fluid temperature and chemistry since the birth of numerous deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>. Discrete high resolution biological imaging and fluid chemistry samples have been collected in conjunction with autonomous temperature probe arrays that have monitored the fluid temperature at 10-15 minute intervals since 1993, within four diffuse-flow regions of the BioTransect at 9\\deg 50'N on the EPR. During ~1 year deployments between 1993 and 2000, <span class="hlt">active</span> <span class="hlt">vent</span> invertebrate colonization by greater than 500 individuals (representing 8 species) occurred on more than 60 recovered temperature probes comprising 12 arrays. On each temperature probe, the position and length of individual organisms were mapped to correlate the position of settlement and growth rates with the environmental temperatures experienced by these colonists. Regressions of colonization parameters with temperature measures (such as average, minimum, and maximum T) from multiple communities, along with size-frequency histograms and growth rates, indicate that the abundance of the vestimentiferan Tevnia jerichonana was greater than Riftia pachyptila tube worms and bathymodiolid mussels on temperature probes bathed in significantly higher average and maximum temperatures. Results strongly suggest that Tevnia has a greater physiological tolerance to higher temperatures and elevated geochemical concentrations (e.g., sulfide species) than Riftia and mussels. Significant differential colonization onto probes within an array demonstrates thermal and chemical habitat preferences by vestimentiferan tubeworms and mussels. Thus, patterns of <span class="hlt">active</span> faunal colonization in <span class="hlt">hydrothermal</span> areas vary with differing temperature regimes and associated environmental</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRB..108.2429S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRB..108.2429S"><span id="translatedtitle">Chemistry of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seyfried, W. E.; Seewald, J. S.; Berndt, M. E.; Ding, Kang; Foustoukos, D. I.</p> <p>2003-09-01</p> <p>In June 1999, an intense swarm of earthquakes occurred on the Endeavour segment of the Juan de Fuca Ridge influencing <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> in and around the Main Endeavour Field (MEF). Here we report the dissolved concentrations of 31 species from five high-temperature <span class="hlt">vents</span> sampled 3 months after the seismic event. The spatial variability of <span class="hlt">vent</span> fluid chemistry is extreme. Vapor-dominated <span class="hlt">vent</span> fluids at Cantilever and Sully sites have high measured temperatures (375°-379°C), high dissolved gas and boron concentrations, but low SiO2. Modeling results indicate that these fluids can be accounted for by supercritical phase separation and brine condensation. Other <span class="hlt">vent</span> fluids have moderate temperatures (340°-366°C) and chloride concentrations (208-426 mmol/kg), and may result from mixing of supercritical, vapor-rich fluids with evolved seawater. Phase equilibria calculations indicate that in addition to chloride, redox, temperature, and especially pressure play key roles in accounting for compositional variability of <span class="hlt">vent</span> fluids at MEF. In comparison with earlier (1988) data, the 1999 data set reveals significantly lower chloride concentrations and higher boron, whereas alkali and alkaline earth cations are lower by 10-20% in keeping with chloride decrease. That dissolved chloride, boron, and other elements returned to preevent levels when again sampled in 2000 provide additional data documenting the inherently dynamic nature of <span class="hlt">hydrothermal</span> systems at mid-ocean ridges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70014063','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70014063"><span id="translatedtitle">Fossils of <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> worms from Cretaceous sulfide ores of the Samail ophiolite, Oman</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haymon, R.M.; Koski, R.A.; Sinclair, C.</p> <p>1984-01-01</p> <p>Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1607..104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1607..104C"><span id="translatedtitle">The possible role of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> in chemical evolution: Succinic acid radiolysis and thermolysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cruz-Castañeda, J.; Colín-García, M.; Negrón-Mendoza, A.</p> <p>2014-07-01</p> <p>In this research, the behavior under a high radiation field or high temperature of succinic acid, a dicarboxylic acid clue in metabolic routes, is studied. For this purpose, the molecule was irradiated with gamma rays in oxygen-free aqueous solutions, and the thermal decomposition was studied in a static system at temperatures up to 90 °C, simulating a white <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>. Our results indicate that a succinic acid is a relatively stable compound under irradiation. The gamma radiolysis yields carbon dioxide and di- and tricarboxylic acids such as malonic, carboxysuccinic, and citric acids. The main products obtained by the thermal treatment were CO2 and propionic acid.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B13C1102O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B13C1102O"><span id="translatedtitle">Imaging microbial metal metabolism in situ under conditions of the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oger, P. M.; Daniel, I.; Simionovici, A.; Picard, A.</p> <p>2006-12-01</p> <p>High-pressure biotopes are the most widely spread biotopes on Earth. They represent one possible location for the origin of life. They also share striking similarities with extraterrestrial biotopes such as those postulated for Europe or Mars. In absence of light, dissimilatory reduction of metals (DMR) is fueling the ecosystem. Monitoring the metabolism of the deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> microbial fauna under P, T and chemical conditions relevant to their isolation environment can be difficult because of the confinement and because most spectroscopic probes do not sense metallic ions in solution. We demonstrated the possibility to use Xray spectroscopy to monitor the speciation of metallic species in solution. Experiments were performed at The ESRF using Selenium (Se) detoxification by Agrobacterium tumefaciens as an analog of DMR. The reduction of Se from selenite to the metal was monitored by a combiantion of two Xray spectroscopic techniques (XANES and μXRF). Cells were incubated in the low pressure DAC in growth medium supplemented with 5mM Selenite and incubated under pressures up to 60 Mpa at 30°C for 24h. The evolution of the speciation can be easily monitored and the concentration of each Se species determined from the Xray spectra by linear combinations of standard spectra. Selenite is transformed by the bacterium into a mixture of metal Se and methylated Se after 24 hours. Se detoxification is observed in situ up to at least 25 MPa. The technique, developped for Se can be adapted to monitor other elements more relevant to DMR such as As, Fe or S, which should allow to monitor in situ under controlled pressure and temperature the metabolism of <span class="hlt">vent</span> organisms. It is also amenable to the monitoring of toxic metals. Xray spectroscopy and the lpDAC are compatible with other spectroscopic techniques, such as Raman, UV or IR spectroscopies, allowing to probe other metabolic <span class="hlt">activities</span>. Hence, enlarging the range of metabolic information that can be obtained in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3740784','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3740784"><span id="translatedtitle">A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Background The inhabitants of deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically <span class="hlt">active</span> seamounts. The majority of <span class="hlt">vent</span> taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V32A0959O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V32A0959O"><span id="translatedtitle">Study of <span class="hlt">Hydrothermal</span> Particulate Matter from a Shallow <span class="hlt">Venting</span> System, offshore Nayarit, Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.</p> <p>2001-12-01</p> <p>A shallow (30 ft) <span class="hlt">hydrothermal</span> site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of <span class="hlt">hydrothermal</span> fluid, gas, rocks, and particulate matter were collected directly from the <span class="hlt">vent</span>. Water samples and <span class="hlt">hydrothermal</span> fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing <span class="hlt">hydrothermal</span> particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the <span class="hlt">vent</span>. Analyses of dissolved and particulate trace metals are still ongoing at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20403751','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20403751"><span id="translatedtitle">The complete mitogenome of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ki, Jang-Seu; Dahms, Hans-Uwe; Hwang, Jiang-Shiou; Lee, Jae-Seong</p> <p>2009-12-01</p> <p>In this study, we analyzed the complete mitochondrial (mt) genome of a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> crab Xenograpsus testudinatus (Decapoda: Brachyura) obtained from the <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Kueishantao Island, Taiwan, which extend from the deep sea Okinawa Trench. The mitogenome of X. testudinatus was 15,796 bp in length and contained the same 37 genes (e.g. 2 rRNAs, 22 tRNAs, and 13 PCGs) found in other metazoan mitogenomes. Analysis of the structural mt gene order in X. testudinatus revealed that the 13 PCGs, excluding a translocation of ND6-Cyt b cluster, were similarly ordered when compared to the pancrustacean ground pattern; however the tRNAs were severely rearranged. Phylogenetic analysis of decapod mitogenomes showed that the molecular taxonomy of the <span class="hlt">vent</span> crab was in accordance with its morphological systematics. Together, these findings suggest that the <span class="hlt">vent</span> crab studied here has little mitochondrial genetic variation when compared with morphologically defined conspecifics from other marine habitats.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP51B0840W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP51B0840W"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">Venting</span> at Lake Rotomahana, New Zealand, 125 Years After the Tarawera Eruption of 1886</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, S. L.; de Ronde, C. E.; Fornari, D. J.; Leybourne, M. I.; Ferrini, V.; Kukulya, A.; Littlefield, R.; Scott, B. J.; Immenga, D.; Baker, E. T.</p> <p>2011-12-01</p> <p>In early 1886 Lake Rotomahana (North Island, NZ) was a small, shallow lake surrounded on its northern side by a geothermal field that included New Zealand's first major tourist attraction: the beautiful Pink and White (silica sinter) Terraces. The lake dramatically changed on 10 June 1886 when nearby Mt Tarawera erupted. Volcanic and <span class="hlt">hydrothermal</span> explosions left the landscape scarred with explosion craters, blanketed with ash and mud, and devoid of vegetation. A large, steaming crater replaced the lake and the Pink and White Terraces were apparently destroyed. The crater re-filled during the next 15 years and today Lake Rotomahana is considerably deeper (125 m) and ~5 times larger than pre-eruption. While the evolution of a new geothermal field adjacent to the lake (Waimangu) has been visible and documented over the past 125 years, the evolution of the area perturbed by the eruption then subsequently submerged has been mostly inaccessible. A detailed survey of Lake Rotomahana was conducted in Jan/Feb 2011 to identify the extent and nature of present-day <span class="hlt">venting</span>. Two autonomous underwater vehicles (AUV) with temperature, pH, turbidity, and oxidation-reduction potential (ORP) sensors completed 18 missions covering a total distance of ~250 km (20-50 m line spacing; 10-15 m altitude). Water samples were collected at 14 CTD stations for chemical analyses. The lake is stratified during summer months with average surface (0-10 m depth) temperatures ~21.5°C. The topmost 1-3 meters are 0.5-1°C warmer near the boiling springs and geysers that flow into the lake on the western shore. Temperatures decrease from 21.2-16.5°C within the thermocline (12-16 m), then to 14.54°C at depth (110 m). pH values in the surface layer range from 7.4-7.9, decreasing to 6.50 below ~30 m. Temperature, pH and ORP anomalies in the water column identify at least five areas where warm water is <span class="hlt">venting</span> into the lake: 1) in the area of the historic Pink Terraces (+3.5°C, -0.1 pH, -142 mv); 2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V43F..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V43F..08L"><span id="translatedtitle">Liquid Carbon Dioxide <span class="hlt">Venting</span> at the Champagne <span class="hlt">Hydrothermal</span> Site, NW Eifuku Volcano, Mariana Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Olson, E.; Proskurowski, G.; Resing, J.; Roe, K.; Greene, R.; Lebon, G.</p> <p>2004-12-01</p> <p>In March/April 2004, submersible dives with the remotely-operated vehicle ROPOS discovered an unusual CO2-rich <span class="hlt">hydrothermal</span> system near the summit of NW Eifuku, a submarine volcano located at 21.49° N, 144.04° E in the northern Mariana Arc. Although several sites of <span class="hlt">hydrothermal</span> discharge were located on NW Eifuku, the most intense <span class="hlt">venting</span> was found at 1600-m depth at the Champagne site, slightly west of the volcano summit. The Champagne site was found to be discharging two distinct fluids into the ocean: a) several small white chimneys were emitting milky 103° C gas-rich <span class="hlt">hydrothermal</span> fluid with at least millimolar levels of H2S and b) cold (< 4° C) droplets coated with a milky skin were rising slowly from the sediment. These droplets were later determined to consist mainly of liquid CO2, with H2S as a probable secondary component. The droplets were sticky, and did not tend to coalesce into larger droplets, even though they adhered to the ROV like clumps of grapes. The film coating the droplets was assumed to be CO2 hydrate (or clathrate) which is known to form whenever liquid CO2 contacts water under these P,T conditions. Samples of the 103° C <span class="hlt">hydrothermal</span> fluids were collected in special gas-tight titanium sampling bottles that were able to withstand the high internal pressures created by the dissolved gases. The Champagne <span class="hlt">hydrothermal</span> fluids contained a surprising 2.3 moles/kg of CO2, an order of magnitude higher than any CO2 values previously reported for submarine <span class="hlt">hydrothermal</span> fluids. The overall gas composition was 87% CO2, < 0.1% CH4, < 2 ppm H2, 0.012 mM/kg 4He, with the remaining 13% (322 mM/kg) assumed to be sulfur gases (H2S, SO2, etc.). (Additional analyses planned will confirm the speciation of this sulfur gas component). The helium had R/RA = 7.3, typical of subduction zone systems (R = 3He/4He and RA = Rair). Isotopic analysis of the CO2 yielded δ 13C = -1.75 ‰ , much heavier than the -6.0 ‰ typical for carbon in MOR <span class="hlt">vent</span> fluids. The C/3He</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V23B0614G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V23B0614G"><span id="translatedtitle">The Sasquatch <span class="hlt">Hydrothermal</span> Field: Linkages Between Seismic <span class="hlt">Activity</span>, <span class="hlt">Hydrothermal</span> Flow, and Geology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glickson, D. A.; Kelley, D. S.; Delaney, J. R.</p> <p>2006-12-01</p> <p>The Sasquatch <span class="hlt">Hydrothermal</span> Field is the most northern known <span class="hlt">vent</span> field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased <span class="hlt">venting</span> temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, <span class="hlt">hydrothermal</span>, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized <span class="hlt">hydrothermal</span> sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that <span class="hlt">vent</span> fluids up to 289°C. The <span class="hlt">active</span> field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19041413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19041413"><span id="translatedtitle">Innate immunity in the deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus azoricus.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bettencourt, Raul; Dando, Paul; Collins, Patrick; Costa, Valentina; Allam, Bassem; Serrão Santos, Ricardo</p> <p>2009-02-01</p> <p>The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the <span class="hlt">activation</span> of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca(2+) indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015FrES....9..691C&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015FrES....9..691C&link_type=ABSTRACT"><span id="translatedtitle">Multiple-scale temporal variations and fluxes near a <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> over the Southwest Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xiaodan; Liang, Chujin; Dong, Changming; Zhou, Beifeng; Liao, Guanghong; Li, Junde</p> <p>2015-12-01</p> <p>A deep-ocean mooring system was deployed 100 m away from an <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away from the ocean floor and on velocities at four levels (44 m, 40 m, 36 m, and 32 m away from the ocean floor) were collected by the mooring system. Multiplescale variations were extracted from these data: seasonal, tidal, super-tidal, and eddy scales. The semidiurnal tide was the strongest tidal signal among all the tidal constituents in both currents and temperature. With the multiple-scale variation presented in the data, a new method was developed to decompose the data into five parts in terms of temporal scales: time-mean, seasonal, tidal, super-tidal, and eddy. It was shown that both eddy and tidal heat (momentum) fluxes were characterized by variation in the bottom topography: the tidal fluxes of heat and momentum in the along-isobath direction were much stronger than those in the cross-isobath direction. For the heat flux, eddy heat flux was stronger than tidal heat flux in the cross-isobath direction, while eddy heat flux was weaker in the along-isobath direction. For the momentum flux, the eddy momentum flux was weaker than tidal momentum flux in both directions. The eddy momentum fluxes at the four levels had a good relationship with the magnitude of mean currents: it increased with the mean current in an exponential relationship.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17014490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17014490"><span id="translatedtitle">Off-axis symbiosis found: Characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeChaine, Eric G; Bates, Amanda E; Shank, Timothy M; Cavanaugh, Colleen M</p> <p>2006-11-01</p> <p>Organisms at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> inhabit discontinuous chemical 'islands' along mid-ocean ridges, a scenario that may promote genetic divergence among populations. The 2003 discovery of mussels at the Lost City <span class="hlt">Hydrothermal</span> Field provided a means of evaluating factors that govern the biogeography of symbiotic bacteria in the deep sea. The unusual chemical composition of <span class="hlt">vent</span> fluids, the remote location, and paucity of characteristic <span class="hlt">vent</span> macrofauna at the site, raised the question of whether microbial symbioses existed at the extraordinary Lost City. If so, how did symbiotic bacteria therein relate to those hosted by invertebrates at the closest known <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> along the Mid-Atlantic Ridge (MAR)? To answer these questions, we performed microscopic and molecular analyses on the bacteria found within the gill tissue of Bathymodiolus mussels (Mytilidae, Bathymodiolinae) that were discovered at the Lost City. Here we show that Lost City mussels harbour chemoautotrophic and methanotrophic endosymbionts simultaneously. Furthermore, populations of the chemoautotrophic symbionts from the Lost City and two sites along the MAR are genetically distinct from each other, which suggests spatial isolation of bacteria in the deep sea. These findings provide new insights into the processes that drive diversification of bacteria and evolution of symbioses at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B34A..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B34A..03F"><span id="translatedtitle">Dissolved Carbon Species in Diffuse and Focused Flow <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> at the Main Endeavour Field, Northern Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foustoukos, D. I.; Seyfried, W. E.; Ding, K.; Pester, N. J.</p> <p>2006-12-01</p> <p>The magmatic and tectonic event of 1999 had a significant impact on the chemical composition of <span class="hlt">vent</span> fluids issuing from the Main Endeavour Field (MEF), Juan de Fuca Ridge. Here, we report dissolved concentrations of H2, CO2, CO and C1-C3 alkanes measured in low and high-temperature <span class="hlt">hydrothermal</span> fluids collected in August 2005 during an RV Atlantis/DSV Alvin expedition at MEF. In comparison with time series data, temperatures of the 2005 <span class="hlt">vent</span> fluids were slightly lower than those recorded in the aftermaths of the tectonic event of 1999. The possible cooling of the <span class="hlt">hydrothermal</span> subseafloor reaction zone is consistent with the observed increase in dissolved Cl to pre-1999 values. Converging compositional trends to pre-1999 conditions are also suggested for dissolved CO2 concentrations (~20 mmol/kg) in Puffer, Sully, Bastille and S&M <span class="hlt">vent</span> fluids. In these focused flow and high-temperature <span class="hlt">vent</span> fluids, dissolved CO2 is in thermodynamic equilibrium with CO(aq). The systematics of organic species in diffuse flow fluids, however, appears to be closely related to processes occurring within the near-seafloor environment. For example, excess CO(aq) observed in the diffuse flow fluids at Easter Island is attributed to sluggish CO- CO2(aq) equilibria at low temperatures, suggesting <span class="hlt">hydrothermal</span> circulation of short-residence times. Short-lived <span class="hlt">hydrothermal</span> circulation is further supported by the nearly identical C1/(C2+C3) ratios between focused and diffuse flow fluids. Furthermore, alkane distribution in the MEF diffuse flow fluids suggests direct mixing between seawater and <span class="hlt">hydrothermal</span> fluid with minimal biological inputs, in contrast with the greater effect of microbial methanogenesis proposed in other ridge-crest <span class="hlt">hydrothermal</span> environments. Thus, the coupling of CO2(aq)-CO(aq) redox equilibrium with dissolved carbon species in low- temperature <span class="hlt">vent</span> fluids could provide a better understanding of the effect of subsurface microbial communities upon the composition of mid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMOS21C..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMOS21C..05H"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span> and Volcanism on the Southern Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haase, K. M.; Scientific Party, M.</p> <p>2005-12-01</p> <p>In April 2005 four recently discovered different <span class="hlt">hydrothermal</span> fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these <span class="hlt">hydrothermally</span> <span class="hlt">active</span> fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very <span class="hlt">active</span>. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits <span class="hlt">hydrothermal</span> field with four <span class="hlt">active</span> <span class="hlt">vent</span> structures lies some 300 m west of the diffuse <span class="hlt">vent</span> field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive <span class="hlt">hydrothermal</span> mounds includes massive magnetite+hematite+sulfate and differs from that of the presently <span class="hlt">active</span> <span class="hlt">vents</span> and indicates more oxidizing conditions during the earlier <span class="hlt">activity</span>. The <span class="hlt">vent</span> fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion <span class="hlt">hydrothermal</span> field lies some 2 km north of the Turtle Pits field and consists of at least four <span class="hlt">active</span> black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth <span class="hlt">hydrothermally</span> <span class="hlt">active</span> field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature <span class="hlt">vents</span>. A shallow <span class="hlt">hydrothermal</span> plume in the water column</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V11E..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V11E..03C"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">Venting</span> at Kick'Em Jenny Submarine Volcano (West Indies)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.</p> <p>2014-12-01</p> <p>Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like <span class="hlt">vent</span> at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse <span class="hlt">venting</span> with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of <span class="hlt">hydrothermal</span> fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DSRI...62...10K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DSRI...62...10K"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> community zonation along environmental gradients at the Lau back-arc spreading center</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Stacy; Hammerstrom, Kamille</p> <p>2012-04-01</p> <p>The Lau back-arc spreading center exhibits gradients in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> habitat characteristics from north to south. Biological zonation within a few meters of <span class="hlt">vents</span> has been described as temperature driven. We constructed georeferenced photomosaics of the seafloor out to tens of meters beyond <span class="hlt">vents</span> to describe peripheral zonation and explore correlations between environmental conditions and the biological community. Cluster analysis separated northern sites from southern sites, corresponding to a break in substrate from basalt in the north to andesite in the south. Northern sites were dominated by anemones, and southern by sponges. A previous suggestion that dominants may be dependent on friability of the substrate was not supported; when visually distinguishable, individual species within taxa showed different patterns. Northern sites hosted proportionally more suspension feeding species. Sulfide that can support microbial food sources is at higher concentrations at these sites, though bathymetry that may enhance bottom currents is less rugged. Northern sites had higher diversity that may result from the overall northwards flow, which would generally permit easier dispersal downcurrent, though we observed no difference in dispersal strategies at different sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRII.121...53Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRII.121...53Z"><span id="translatedtitle">Intergradation between discrete lineages of Tevnia jerichonana, a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Haibin; Johnson, Shannon B.; Flores, Vanessa R.; Vrijenhoek, Robert C.</p> <p>2015-11-01</p> <p>We describe a broad zone of intergradation between genetically differentiated, northern and southern lineages of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> tubeworm, Tevnia jerichonana. DNA sequences from four genes, nuclear HSP and ATPsα and mitochondrial COI and Cytb were examined in samples from eastern Pacific <span class="hlt">vent</span> localities between 13°N and 38°S latitude. Allelic frequencies at these loci exhibited concordant latitudinal clines, and genetic differentiation (pairwise ΦST's) increased with geographical distances between sample localities. Though this pattern of differentiation suggested isolation-by-distance (IBD), it appeared to result from hierarchical population structure. Genotypic assignment tests identified two population clusters comprised of samples from the northern East Pacific Rise (NEPR: 9-13°N) and an extension of the Pacific-Antarctic Ridge (PAR: 31-32°S) with a zone of intergradation along the southern East Pacific Rise (SEPR: 7-17°S). The overall degrees of DNA sequence divergence between the NEPR and PAR populations were slight and not indicative of lengthy isolation. Bayesian assignment methods suggested that the SEPR populations constitute intergrades that connect the NEPR and PAR populations. Though it typically is difficult to distinguish between primary and secondary intergradation, our results were consistent with parallel studies of <span class="hlt">vent</span>-restricted species that suggest a high degree of demographic instability along the superfast-spreading SEPR axis. Frequent local extinctions and immigration from NEPR and PAR refugia probably shaped the observed pattern of intergradation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23663201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23663201"><span id="translatedtitle">Nuclear mitochondrial pseudogenes in Austinograea alayseae <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> crabs (Crustacea: Bythograeidae): effects on DNA barcoding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Se-Joo; Lee, Kyeong Yong; Ju, Se-Jong</p> <p>2013-09-01</p> <p>Members of the brachyuran crab family, Bythograeidae, are among the most abundant and common crabs in <span class="hlt">vent</span> fields. However, their identification based on morphological characteristics often leads to incorrect species recognition due to a lack of taxonomic factors and the existence of sibling (or cryptic) species. For these reasons, we used DNA barcoding for <span class="hlt">vent</span> crabs using mitochondrial cytochrome c oxidase subunit 1 (CO1). However, several nuclear mitochondrial pseudogenes (Numts) were amplified from Austinograea alayseae Guinot, 1990, using universal primers (Folmer primers). The Numts were characterized in six haplotypes, with 13.58-14.11% sequence divergence from A. alayseae, a higher nonsynonymous substitution ratio than true CO1, and the formation of an independent clade in bythograeids. In a neighbour-joining tree, the origin of the Numts would be expected to incorporate into the nucleus at an ancestral node of Austinograea, and they mutated more slowly in the nucleus than CO1 in the mitochondria. This evolutionary process may have resulted in the higher binding affinity of Numts for the Folmer primers than CO1. In the present study, we performed long PCR for the amplification of CO1 in A. alayseae. We also present evidence that Numts can introduce serious ambiguity into DNA barcoding, including overestimating the number of species in bythograeids. These results may help in conducting taxonomic studies using mitochondrial genes from organisms living in <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V11E2542R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V11E2542R"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> flow at Main Endeavour Field imaged and measured with Cable Operated <span class="hlt">Vent</span> Imaging Sonar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rona, P. A.; Bemis, K. G.; Xu, G.; Jackson, D. R.; Jones, C. D.</p> <p>2011-12-01</p> <p>Initial acoustic monitoring of <span class="hlt">hydrothermal</span> flow in the Main Endeavour Field (MEF) captures the spatial distribution of diffuse and focused discharge and shows potential for flux determinations. Our Cabled Observatory <span class="hlt">Vent</span> Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory in September 2010. Using a customized Reson 7125 multi-beam sonar, COVIS acquired a 29 day time series of black smoker plume and associated diffuse <span class="hlt">hydrothermal</span> flow from Grotto, a 30 m diameter <span class="hlt">vent</span> cluster in the MEF, Juan de Fuca Ridge. Detection of the spatial patterns of diffuse flow utilizes phase decorrelation of the acoustic signal (200kHz) by buoyancy-driven turbulence (acoustic scintillation) to produce a time series of maps. Substantial fluctuation in the detected diffuse flow area (0.1 - 18 m^2) was observed over the 29 days of observation, although position remained stable. Acoustic imaging of focused flow (400 kHz) utilizes high volume backscatter (attributed to particles and turbulent sound speed fluctuations) to image in 3D the initial tens of meters of rise of buoyant plumes. Spectral analysis of bending inclination of a strong plume from multiple fast smokers on the NW end of Grotto (north tower) indicates that the dominant modes correspond with the ambient mixed semi-diurnal tide (based on current meter data at a mooring 2.9 km to the north and on a tidal model), with at least one secondary mode attributable to sub-inertial flow related to inflow to the axial valley. A weaker plume from several slower smokers is present on the NE end of Grotto. On first analysis, the bending inclination of the weaker plume appears to be affected by the stronger plume. Quantification of flow velocity and volume flux of plumes begins with measuring the Doppler phase shift through plume cross-sections beginning at 5 m above source <span class="hlt">vents</span> where discharge merges. The volume flux measurements enable calculation of entrainment coefficients, which prior work on the same</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3105715','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3105715"><span id="translatedtitle">Comparative metagenomics of microbial communities inhabiting deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> chimneys with contrasting chemistries</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xie, Wei; Wang, Fengping; Guo, Lei; Chen, Zeling; Sievert, Stefan M; Meng, Jun; Huang, Guangrui; Li, Yuxin; Yan, Qingyu; Wu, Shan; Wang, Xin; Chen, Shangwu; He, Guangyuan; Xiao, Xiang; Xu, Anlong</p> <p>2011-01-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> chimneys harbor a high diversity of largely unknown microorganisms. Although the phylogenetic diversity of these microorganisms has been described previously, the adaptation and metabolic potential of the microbial communities is only beginning to be revealed. A pyrosequencing approach was used to directly obtain sequences from a fosmid library constructed from a black smoker chimney 4143-1 in the Mothra <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field at the Juan de Fuca Ridge. A total of 308 034 reads with an average sequence length of 227 bp were generated. Comparative genomic analyses of metagenomes from a variety of environments by two-way clustering of samples and functional gene categories demonstrated that the 4143-1 metagenome clustered most closely with that from a carbonate chimney from Lost City. Both are highly enriched in genes for mismatch repair and homologous recombination, suggesting that the microbial communities have evolved extensive DNA repair systems to cope with the extreme conditions that have potential deleterious effects on the genomes. As previously reported for the Lost City microbiome, the metagenome of chimney 4143-1 exhibited a high proportion of transposases, implying that horizontal gene transfer may be a common occurrence in the deep-sea <span class="hlt">vent</span> chimney biosphere. In addition, genes for chemotaxis and flagellar assembly were highly enriched in the chimney metagenomes, reflecting the adaptation of the organisms to the highly dynamic conditions present within the chimney walls. Reconstruction of the metabolic pathways revealed that the microbial community in the wall of chimney 4143-1 was mainly fueled by sulfur oxidation, putatively coupled to nitrate reduction to perform inorganic carbon fixation through the Calvin–Benson–Bassham cycle. On the basis of the genomic organization of the key genes of the carbon fixation and sulfur oxidation pathways contained in the large genomic fragments, both obligate and facultative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRI...55.1707L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRI...55.1707L"><span id="translatedtitle">Biotic interactions at <span class="hlt">hydrothermal</span> <span class="hlt">vents</span>: Recruitment inhibition by the mussel Bathymodiolus thermophilus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.</p> <p>2008-12-01</p> <p>The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of <span class="hlt">vent</span> invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21A1481B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21A1481B"><span id="translatedtitle">Loki's Castle: A sediment-influenced <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field at the ultra-slow spreading Arctic Mid-Ocean Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baumberger, T.; Frueh-Green, G. L.; Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Moeller, K.</p> <p>2010-12-01</p> <p>The chemical composition as well as the stable and radiogenic isotope signatures of <span class="hlt">hydrothermal</span> fluids from the Loki’s Castle <span class="hlt">vent</span> field, located at the Mohns-Knipovich bend in the Norwegian-Greenland Sea (73°N), are substantially different from sediment-starved mid-ocean ridge <span class="hlt">hydrothermal</span> systems. Geochemical studies of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids and the adjacent rift valley sediments provide insights into the influence of sediments on the <span class="hlt">hydrothermal</span> fluid composition and provide constraints on acting redox conditions. Additionally, they reflect the degree of fluid-rock-sediment interaction at this arctic <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> field. Here we present an overview of the geochemical characteristics of the <span class="hlt">hydrothermal</span> and sedimentary components at Loki’s Castle, obtained during expeditions in 2008, 2009 and 2010, with emphasis on the stable and radiogenic isotope signatures. We compare these data with other sediment-influenced and sediment-starved mid-ocean ridge <span class="hlt">hydrothermal</span> systems. The <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids are characterized by a pH of ˜ 5.5 and by elevated concentrations of methane, hydrogen and ammonia, which reflect a sedimentary contribution. δ13CDIC (dissolved inorganic carbon) are depleted relative to mantle carbon values, consistent with an organic carbon input. The δ18OH2O values of the <span class="hlt">vents</span> fluids are enriched compared to background bottom seawater, whereas the δD values are not. 87Sr/86Sr ratios are more radiogenic than those characteristic of un-sedimented mid-ocean ridge <span class="hlt">vent</span> fluids. S-isotope data reflect mixing of a MORB source with sulphide derived from reduced seawater sulphate. To document the background sediment input of the ridge system, short gravity cores and up to 18 m long piston cores were recovered from various localities in the rift valley. The pore-fluid isotope chemistries of the sediments show vertical gradients that primarily reflect diagenesis and degradation of organic matter. The vertical gradient is locally enhanced</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23D..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23D..08B"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span> in the Northern Guaymas Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.</p> <p>2015-12-01</p> <p>Rift-related magmatism in the Guaymas Basin, Gulf of California induces <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young <span class="hlt">vent</span> sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep <span class="hlt">hydrothermal</span> fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V53A3123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V53A3123C"><span id="translatedtitle"><span class="hlt">Hydrothermal</span> <span class="hlt">venting</span> on the Juan de Fuca Ridge over the last 600,000 years</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, K.; McManus, J. F.; Winckler, G.; Huybers, P. J.; Langmuir, C. H.; Giosan, L.; Middleton, J. L.; Mukhopadhyay, S.</p> <p>2015-12-01</p> <p>Mid-ocean ridges provide a unique chemical, physical, and biological environment on the seafloor. They are a significant source of dissolved Fe, a critical micronutrient in the ocean, and they are a primary source of CO2 from the mantle, Earth's largest carbon reservoir. Although more than a hundred modern <span class="hlt">hydrothermal</span> systems have been discovered, few records of their variation through geological time have been obtained. Sediments near ocean ridges hold the potential to provide such records, and here we investigate sediments near the Juan de Fuca Ridge through continuous XRF scans coupled with oxygen isotope temporal constraints to explore <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> over the past 600,000 years. These are the first records over multiple glacial-interglacial cycles and permit investigation of potential feedbacks between glacial-interglacial climate change and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. Today, <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on the Juan de Fuca Ridge is characterized by <span class="hlt">hydrothermal</span> particles with high concentrations of Fe, Cu, and Zn (Feely et. al., 1987). Over longer time scales, Fe concentrations are positively correlated with Ti (r2≥0.75), so that the dominant variability in Fe is due to the input of lithogenic material. Additional Fe inputs from <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> increase the Fe/Ti ratio above the lithogenic value of 11.7 wt%/wt%. Intense <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> (Fe/Ti > 25 wt%/wt%) is observed on the Juan de Fuca Ridge from ~375-430ka, and less intense but still elevated <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> (Fe/Ti > 17 wt%/wt%) recurs at near 100kyr cyclicity, from 80-120ka, 180-220ka, 290-330ka, and 470-520ka. These time periods correspond to times of sea level fall owing to expanding ice volume, supporting a link between sea level changes and ridge crest <span class="hlt">activity</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.173...64J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.173...64J"><span id="translatedtitle">Precipitation and growth of barite within <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> deposits from the Endeavour Segment, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia</p> <p>2016-01-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">vent</span> deposits form on the seafloor as a result of cooling and mixing of hot <span class="hlt">hydrothermal</span> fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at <span class="hlt">vent</span> sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich <span class="hlt">hydrothermal</span> fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of <span class="hlt">hydrothermal</span> barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior <span class="hlt">vent</span> walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and <span class="hlt">hydrothermal</span> fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% <span class="hlt">hydrothermal</span> fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% <span class="hlt">hydrothermal</span> component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of <span class="hlt">hydrothermal</span> fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26934591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26934591"><span id="translatedtitle">Bacterial Community Associated with Organs of Shallow <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Crab Xenograpsus testudinatus near Kuishan Island, Taiwan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Shan-Hua; Chiang, Pei-Wen; Hsu, Tin-Chang; Kao, Shuh-Ji; Tang, Sen-Lin</p> <p>2016-01-01</p> <p>Shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75-4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea <span class="hlt">hydrothermal</span> systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water <span class="hlt">hydrothermal</span> system, and as such, may be a convenient animal model for studying these systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26934591','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26934591"><span id="translatedtitle">Bacterial Community Associated with Organs of Shallow <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Crab Xenograpsus testudinatus near Kuishan Island, Taiwan.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Shan-Hua; Chiang, Pei-Wen; Hsu, Tin-Chang; Kao, Shuh-Ji; Tang, Sen-Lin</p> <p>2016-01-01</p> <p>Shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75-4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea <span class="hlt">hydrothermal</span> systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water <span class="hlt">hydrothermal</span> system, and as such, may be a convenient animal model for studying these systems. PMID:26934591</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4774926','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4774926"><span id="translatedtitle">Bacterial Community Associated with Organs of Shallow <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Crab Xenograpsus testudinatus near Kuishan Island, Taiwan</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Shan-Hua; Chiang, Pei-Wen; Hsu, Tin-Chang; Kao, Shuh-Ji; Tang, Sen-Lin</p> <p>2016-01-01</p> <p>Shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> off Kueishan Island (northeastern Taiwan) provide a unique, sulfur-rich, highly acidic (pH 1.75–4.6) and variable-temperature environment. In this species-poor habitat, the crab Xenograpsus testudinatus is dominant, as it mainly feeds on zooplankton killed by sulfurous plumes. In this study, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate diversity and composition of bacteria residing in digestive gland, gill, stomach, heart, and mid-gut of X. testudinatus, as well as in surrounding seawater. Dominant bacteria were Gamma- and Epsilonproteobacteria that might be capable of autotrophic growth by oxidizing reduced sulfur compounds and are usually resident in deep-sea <span class="hlt">hydrothermal</span> systems. Dominant bacterial OTUs in X. testudinatus had both host and potential organ specificities, consistent with a potential trophic symbiotic relationship (nutrient transfer between host and bacteria). We inferred that versatile ways to obtain nutrients may provide an adaptive advantage for X. testudinatus in this demanding environment. To our knowledge, this is the first study of bacterial communities in various organs/tissues of a crustacean in a shallow-water <span class="hlt">hydrothermal</span> system, and as such, may be a convenient animal model for studying these systems. PMID:26934591</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B33A0846R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B33A0846R"><span id="translatedtitle">Zeta-Proteobacteria dominate the formation of microbial mats in low-temperature <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> at Loihi Seamount</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rassa, A. C.; McAllister, S. M.; Safran, S. A.; Moyer, C. L.</p> <p>2007-12-01</p> <p>Loihi Seamount is Hawaii's youngest volcano and one of the earth's most <span class="hlt">active</span>. Loihi is located 30 km SE of the big island of Hawaii and rises over 3000m above the sea floor and summits at 1100m below sea level. An eruption in 1996 of Loihi led to the formation of Pele's Pit, a 300 meter deep caldera. The current observations have revealed diffuse <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> causing low to intermediate temperatures (10 to 65°C). The elevated temperatures, coupled with high concentrations of Fe(II) (ranging from 50 to 750 μM) support conditions allowing for extensive microbial mat formation. The focus of this study was to identify the colonizing populations of bacteria generated by the microbial mats at Loihi Seamount. Twenty-six microbial growth chambers were deployed and recovered after placement in the flow of <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> for 3 to 8 days from within Loihi's caldera. Genomic DNA was extracted from samples and analyzed by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) using eight restriction enzyme treatments to generate fingerprints from bacterial amplicons of small subunit rRNA genes (SSU rDNAs). Pearson product-moment coupled with UPGMA cluster analysis of these T-RFLP fingerprints showed that these communities bifurcated into two primary clusters. The first (Group 1) had an average <span class="hlt">vent</span> effluent temperature of 44°C, and the second (Group 2) had an average <span class="hlt">vent</span> effluent temperature of 64°C. Representative samples from within the two clusters (or groups) were chosen for further clone library and sequencing analysis. These libraries revealing a dominance of the recently discovered zeta- Proteobacteria in the lower temperature group (Group 1) indicating that they were the dominant colonizers of the microbial mats. These microaerophilic, obligately lithotrophic, Fe-oxidizing bacteria are most closely related to Mariprofundus ferrooxydans. The higher temperature group (Group 2) was dominated by epsilon- Proteobacteria primarily of the genus</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JVGR..137..311P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JVGR..137..311P"><span id="translatedtitle"><span class="hlt">Vent</span> fluid chemistry in Bahía Concepción coastal submarine <span class="hlt">hydrothermal</span> system, Baja California Sur, Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prol-Ledesma, R. M.; Canet, C.; Torres-Vera, M. A.; Forrest, M. J.; Armienta, M. A.</p> <p>2004-10-01</p> <p>Shallow submarine <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused <span class="hlt">venting</span> of <span class="hlt">hydrothermal</span> water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW-SE-trending onshore-offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments. Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO 3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO 4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine <span class="hlt">vent</span> fluid. Chemical geothermometers (Na/Li, Na-K-Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K-Mg and Na/Li geothermometers for <span class="hlt">vent</span> fluids points to a shallow equilibrium temperature of about 120 °C. Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. <span class="hlt">Vent</span> fluid is generated by further mixing with seawater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/9134716','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/9134716"><span id="translatedtitle">Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raguénès, G H; Peres, A; Ruimy, R; Pignet, P; Christen, R; Loaec, M; Rougeaux, H; Barbier, G; Guezennec, J G</p> <p>1997-04-01</p> <p>A deep-sea, aerobic, mesophilic and heterotrophic new bacterium was isolated from a sample of fluid collected among a dense population of Riftia pachyptila, in the vicinity of an <span class="hlt">active</span> <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> of the Southern depression of the Guaymas basin (Gulf of California). On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, the strain GY785 was recognized as a new species of the genus Alteromonas and the name of Alteromonas infernus is proposed. During the stationary phase in batch cultures in the presence of glucose, this bacterium secreted two unusual polysaccharides. The water-soluble exopolysaccharide-1 produced contained glucose, galactose, galacturonic and glucuronic acids as monosaccharides. The gel-forming exopolysaccharide-2 was separated from the bacterial cells by dialysis against distilled water and partially characterized. PMID:9134716</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.156..122M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.156..122M"><span id="translatedtitle">Investigation of extractable organic compounds in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fluids along the Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.</p> <p>2015-05-01</p> <p>The possibility that deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of <span class="hlt">vent</span> fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea <span class="hlt">hydrothermal</span> fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City <span class="hlt">hydrothermal</span> fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial <span class="hlt">activity</span> occurring within the <span class="hlt">hydrothermal</span> chimney proximal to the site of fluid discharge or are transported from deeper within the system. <span class="hlt">Hydrothermal</span> fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS53C1057B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS53C1057B"><span id="translatedtitle">Abundant <span class="hlt">Hydrothermal</span> <span class="hlt">Venting</span> in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.</p> <p>2014-12-01</p> <p>Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and chemosynthetic ecosystems. The InterRidge <span class="hlt">Vents</span> Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) <span class="hlt">active</span> sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known <span class="hlt">vent</span> fields than any other <span class="hlt">vent</span> site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple <span class="hlt">active</span> sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise <span class="hlt">venting</span> locations. We call this area the Mujin "Misty Harbor" <span class="hlt">vent</span> field. <span class="hlt">Vent</span> frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic <span class="hlt">venting</span>, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS43B0556H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS43B0556H"><span id="translatedtitle">Laser-induced Native Fluorescence Detection of Organic Molecules in <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harju, E.; Kidd, R. D.; Bhartia, R.; Conrad, P. G.</p> <p>2004-12-01</p> <p>We have developed a Multi-channel Deep Ultraviolet Excitation (McDuve) fluorescence detector that has been deployed at several Pacific <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites [1]. The in situ McDuve detector was able to detect organic molecules at the <span class="hlt">vent</span> site on rock surfaces and in the water, the signatures being distinguishable one from the other. The McDuve fluorescence detector uses a 224.3 nm helium-silver hollow cathode laser to induce native fluorescence from a sample. Spectral separation is achieved with optical band-pass filters which are coupled to photomultiplier tubes (PMTs) for detection. Samples were recovered at the <span class="hlt">vent</span> sites and returned from the expedition for bench-top analysis for correlation of the McDuve observations with standard analytical tools-GCMS and X-ray diffraction (for mineralogical ID), as well as with a bench-top version of the McDuve fluorescence detector. Here we report the corroborative results of the laboratory studies. Several preserved samples were subjected to 224.3 nm ultraviolet excitation under wet and dry conditions. Organic molecules were detected on the wet samples analyzed in the lab, corroborating the in situ McDuve data. The fluorescence emission wavelengths associated with the detected organic molecules suggest they are 3-5 ring polycyclic aromatic hydrocarbons [2,3]. The samples were also pyrolized at 500 ºC to decompose any organic molecules present and subsequently reanalyzed. This McDuve analysis revealed a significant decrease in laser induced native fluorescence, a result consistent with the pyrolytic decomposition of the organic content of the rock samples. [1] Conrad, P.G., A.L. Lane, R. Bhartia, W. Hug, (March 2004) Optical Detection of Organic Chemical Biosignatures at <span class="hlt">Hydrothermal</span> <span class="hlt">Vents</span> 35th Lunar Plan. Sci. XXXV, 2055. [2] Karcher, W. (1985), Spectral Atlas of Polycyclic Aromatic Compounds, vol. I, Kluwer Academic Publishing Company, Dordrecht, Holland. [3] Bhartia, R., McDonald, G.D., Salas, E.C., Hug, W., Reid, R</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4683240','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4683240"><span id="translatedtitle">Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao</p> <p>2015-01-01</p> <p>Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26679595','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26679595"><span id="translatedtitle">Draft Genome Sequence of Caloranaerobacter sp. TR13, an Anaerobic Thermophilic Bacterium Isolated from a Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Meixian; Xie, Yunbiao; Dong, Binbin; Liu, Qing; Chen, Xiaoyao</p> <p>2015-01-01</p> <p>Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter. PMID:26679595</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DSRII..92..172T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DSRII..92..172T"><span id="translatedtitle">Population ecology of the tonguefish Symphurus thermophilus (Pisces; Pleuronectiformes; Cynoglossidae) at sulphur-rich <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> on volcanoes of the northern Mariana Arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tunnicliffe, Verena; Tyler, Jennifer; Dower, John F.</p> <p>2013-08-01</p> <p>Flatfish are a major component of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> community on three seamounts of the northern Mariana Volcanic Arc in the northwest Pacific. Nikko, Kasuga-2 and Daikoku seamounts host <span class="hlt">vent</span> fields between 375 and 480 m depth where high temperature <span class="hlt">vents</span> release molten sulphur. The small cynoglossid tonguefish, Symphurus thermophilus Munroe and Hashimoto, is ubiquitous in all <span class="hlt">vent</span> habitats observed on these seamounts: among extensive fields of tubeworms and mussels and on solid sulphur surfaces on Nikko; on sulphur-rich sediments and barnacle-covered boulders on Kasuga-2; and on recent sulphur flows and on broad areas of loose and semi-consolidated sediments on Daikoku. We recorded repeated forays by individuals onto flows of molten sulphur as these surfaces cooled. Based on observations using ROVs, the mean density is 90 fish/m2 with maximum counts over 200 fish/m2 on Daikoku sediments. Compared to collected tonguefish from Daikoku and Kasuga-2, those from Nikko have significantly greater lengths and, on average, six times the mass. Otolith data indicate upper ages of 13 years with Nikko tonguefish growing significantly faster. Diets of tonguefish on the three seamounts reflect the different habitats and prey availability; in Daikoku specimens, small crustaceans and polychaetes are most common while on Nikko, gut contents are predominantly larger shrimp. We made the unusual observation of stunned midwater fish falling to the seafloor near the <span class="hlt">vents</span> where S. thermophilus immediately attacked them. This tonguefish has a wide diet range and foraging behaviour that likely influence the differing growth rates and sizes of fish inhabiting the different <span class="hlt">vent</span> sites. Limited genetic data suggest that larval exchange probably occurs among sites where the common habitat factor is high levels of elemental sulphur forming hard and partly unconsolidated substrata. Here, in the northern range of the Mariana Trench Marine National Monument, S. thermophilus, despite having an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20137812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20137812"><span id="translatedtitle">Sub-lethal effects of cadmium on the antioxidant defence system of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> mussel Bathymodiolus azoricus.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Company, Rui; Serafim, Angela; Cosson, Richard P; Fiala-Médioni, Aline; Camus, Lionel; Serrão-Santos, Ricardo; João Bebianno, Maria</p> <p>2010-07-01</p> <p>The mussel Bathymodiolus azoricus is one of the most abundant species in the Mid-Atlantic Ridge <span class="hlt">hydrothermal</span> <span class="hlt">vents</span> and is continually exposed to the high-temperature <span class="hlt">venting</span> fluids containing high metal concentrations and enriched in sulphides and methane, which constitute a potential toxic environment for marine species. The aim of this study was to assess the effects of a sub-lethal Cd concentration on the antioxidant defence system of this mussel. B. azoricus were collected at Menez Gwen <span class="hlt">vent</span> site (37 degrees 51'N, 32 degrees 31'W) and exposed to Cd (50 microg l(-1)) during 24 days, followed by a depuration period of six days. A battery of stress related biomarkers including antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT; glutathione peroxidases-GPx), metallothioneins (MT), lipid peroxidation (LPO) and total oxyradical scavenging capacity (TOSC) were measured in the gills and mantle of B. azoricus. Cd was accumulated linearly during the exposure period in both tissues and no significant elimination occurred after the 6 days of depuration. Antioxidant enzymes <span class="hlt">activities</span> were significantly higher in the gills. Cyt-SOD, T-GPx and Se-GPx were induced during the experiment but this was also observed in control organisms. Mit-SOD and CAT <span class="hlt">activities</span> remained relatively unchanged. MT levels increased linearly in the gills of exposed mussels in the first 18 days of exposure. No significant differences were observed between LPO levels of control and exposed mussels. TOSC levels remained unchanged in control and exposed mussels. This suggests that although Cd is being accumulated in the tissues of exposed mussels, MT defence system is enough to detoxify the effect of Cd accumulated in the tissues. Furthermore, other factors besides the presence of Cd are influencing the antioxidant defence system in B. azoricus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70033459','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70033459"><span id="translatedtitle">Deposition of talc - kerolite-smectite - smectite at seafloor <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> fields: Evidence from mineralogical, geochemical and oxygen isotope studies</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.</p> <p>2008-01-01</p> <p> controls on the precipitation of this sequence are the silica <span class="hlt">activity</span> and Mg/Al ratio (i.e. the degree of mixing of seawater with <span class="hlt">hydrothermal</span> fluid). Higher silica <span class="hlt">activity</span> favors the formation of talc relative to tri-octahedral smectite. <span class="hlt">Vent</span> structures and sedimentary cover preclude complete mixing of <span class="hlt">hydrothermal</span> fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original <span class="hlt">hydrothermal</span> fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are <span class="hlt">hydrothermal</span> alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V72A1285P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V72A1285P"><span id="translatedtitle">Impact of the Colonization by Paralvinella sulfincola on the Microbial Diversity Associated with a Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Sulfide Chimney (Axial Seamount, Juan de Fuca Ridge)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Page, A.; Juniper, K.; Olagnon, M.; Alain, K.; Desrosiers, G.; Querellou, J.; Cambon-Bonavita, M.</p> <p>2002-12-01</p> <p>In the early stages of high temperature deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> chimneys growth, the walls remain porous and allow the escape of <span class="hlt">hydrothermal</span> fluids as well as an inflow of seawater. This gradual mixing creates sharp thermal and geochemical gradients and provides potential habitats for physiologically diverse microorganisms. The annelid polychaete Paralvinella sulfincola colonizes the external surfaces of these structures, covering them with layered mucous tubes that locally alter the mixing of discharged <span class="hlt">hydrothermal</span> fluids and surrounding seawater. Modifications of the physical and chemical conditions combined with an accumulation of elemental sulfur (S0) in P. sulfincola mucous tube are thought to be responsible for the deposition of a thin marcassite (FeS2) crust on outer surfaces of anhydrite chimneys (Juniper et al. 1992). This marcassite deposition could partly be induced by a shift in the composition of microbial communities that would to be locally associated with the presence of P. sulfincola. To test this hypothesis, we evaluated the impact of the colonization by P. sulfincola on the microbial communities present at the surface of an <span class="hlt">active</span> sulfide chimney. Bacterial and archaeal 16S rRNA genes were amplified from DNA extracted from a P. sulfincola tube and from a chimney mineral sample. Using the statistical analysis demonstrated by Singleton et al. (2001), both clone libraries from the chimney sample have been shown to be significantly different from those of the P. sulfincola tube sample, even though the major phylogenetic groups of these libraries were similar. As it has been observed at other deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites, the Epsilon-Proteobacteria and the Deep-sea <span class="hlt">Hydrothermal</span> <span class="hlt">Vent</span> Euryarchaeotic Group 1 were the dominant components of both bacterial and archaeal clone libraries. These results seem to indicate that P. sulfincola affect the microbial community composition on high temperature chimneys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1988DSRA...35.1759B&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1988DSRA...35.1759B&link_type=ABSTRACT"><span id="translatedtitle">Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21$deg;N <span class="hlt">hydrothermal</span> <span class="hlt">vents</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bucklin, Ann</p> <p>1988-10-01</p> <p>Species endemic to <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> environments face difficult ecological and evolutionary conditions, especially since <span class="hlt">vent</span> sites are irregularly distributed in space and ephemeral. Theoretical predictions for an optimal life history for an endemic organism may not be matched by one of the <span class="hlt">vent</span> community's prominent species, the vestimentiferan Riftia pachyptila. Population samples were collected by submersible from <span class="hlt">vent</span> sites along the Galapagos Rift and at 21°N along the East Pacific Rise. Allozymes were used to examine the population genetics of R. pachyptila, including the estimation of genetic variability of the species and differentiation of populations at different <span class="hlt">vent</span> sites. For the 13 enzyme loci assayed by starch-gel electrophoresis, 31% were polymorphic. Heterozygosity was low: 1.5%. Genetic divergence between samples from the two regions was small but significant: genetic distance, Nei's D, was 0.008 and Wright's measure of variance partitioning, FST = 0.025 ( p < 0.05) after correction for small sample sizes. Genotypic frequencies also provided evidence of the differentiation of populations: there was a deficiency of one class of heterozygotes ( Pgm-1 98/100) in the pooled samples. The slight genetic differentiation may result from low genetic variability, which may prevent the use of allozymes as markers of gene flow. Endemic <span class="hlt">vent</span> species may experience bottlenecks during colonization of new <span class="hlt">vent</span> sites and extinction as <span class="hlt">vents</span> become inactive. Low variability is a predictable outcome of repeated bouts of colonization and extinction, during which the effects of random genetic drift may rapidly decrease genetic variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17904200','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17904200"><span id="translatedtitle">Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen <span class="hlt">hydrothermal</span> <span class="hlt">vent</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Company, Rui; Serafim, Angela; Cosson, Richard P; Fiala-Médioni, Aline; Camus, Lionel; Colaço, Ana; Serrão-Santos, Ricardo; Bebianno, Maria João</p> <p>2008-01-25</p> <p>Copper (Cu) is essential to various physiological processes in marine organisms. However, at high concentrations this redox-<span class="hlt">active</span> transition metal may enhance the formation of reactive oxygen species (ROS) and subsequently initiate oxidative damage. High concentrations of Cu may increase oxidative damage to lipids, proteins and DNA. Bathymodiolus azoricus is a Mytilid bivalve very common in <span class="hlt">hydrothermal</span> environments near the Azores Triple Junction continuously exposed to high metal concentrations, including Cu, emanating from the <span class="hlt">vent</span> fluids. The knowledge of antioxidant defence system and other stress related biomarkers in these organisms is still scarce. The aim of this work was to study the effect of Cu (25 microg l(-1); 24 days exposure; 6 days depuration) on the antioxidant stress biomarkers in the gills and mantle of B. azoricus. The expression of stress related biomarkers was tissue-dependent and results suggest that other factors than metal exposure may influence stress biomarkers, since little variation in antioxidant enzymes <span class="hlt">activities</span>, MT concentrations, LPO and total oxyradical scavenging capacity (TOSC) occurred in both control and Cu-exposed mussels. Moreover, there is a general tendency for these parameters to increase with time, in both control and Cu-exposed mussels, suggesting that reactive oxygen species (ROS) formation is not metal dependent, and may be related with poor physiological conditions of the animals after long periods in adverse conditions compared to those in <span class="hlt">hydrothermal</span> environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/27101410','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/27101410"><span id="translatedtitle">Development of an ecotoxicological protocol for the deep-sea fauna using the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Auguste, M; Mestre, N C; Rocha, T L; Cardoso, C; Cueff-Gauchard, V; Le Bloa, S; Cambon-Bonavita, M A; Shillito, B; Zbinden, M; Ravaux, J; Bebianno, M J</p> <p>2016-06-01</p> <p>In light of deep-sea mining industry development, particularly interested in massive-sulphide deposits enriched in metals with high commercial value, efforts are increasing to better understand potential environmental impacts to local fauna. The aim of this study was to assess the natural background levels of biomarkers in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata and their responses to copper exposure at in situ pressure (30MPa) as well as the effects of depressurization and pressurization of the high-pressure aquarium IPOCAMP. R. exoculata were collected from the chimney walls of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> site TAG (Mid Atlantic Ridge) at 3630m depth during the BICOSE cruise in 2014. Tissue metal accumulation was quantified in different tissues (gills, hepatopancreas and muscle) and a battery of biomarkers was measured: metal exposure (metallothioneins), oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase) and oxidative damage (lipid peroxidation). Data show a higher concentration of Cu in the hepatopancreas and a slight increase in the gills after incubations (for both exposed groups). Significant induction of metallothioneins was observed in the gills of shrimps exposed to 4μM of Cu compared to the control group. Moreover, <span class="hlt">activities</span> of enzymes were detected for the in situ group, showing a background protection against metal toxicity. Results suggest that the proposed method, including a physiologically critical step of pressurizing and depressurizing the test chamber to enable the seawater exchange during exposure to contaminants, is not affecting metal accumulation and biomarkers response and may prove a useful method to assess toxicity of contaminants in deep-sea species. PMID:27101410</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27101410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27101410"><span id="translatedtitle">Development of an ecotoxicological protocol for the deep-sea fauna using the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Auguste, M; Mestre, N C; Rocha, T L; Cardoso, C; Cueff-Gauchard, V; Le Bloa, S; Cambon-Bonavita, M A; Shillito, B; Zbinden, M; Ravaux, J; Bebianno, M J</p> <p>2016-06-01</p> <p>In light of deep-sea mining industry development, particularly interested in massive-sulphide deposits enriched in metals with high commercial value, efforts are increasing to better understand potential environmental impacts to local fauna. The aim of this study was to assess the natural background levels of biomarkers in the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> shrimp Rimicaris exoculata and their responses to copper exposure at in situ pressure (30MPa) as well as the effects of depressurization and pressurization of the high-pressure aquarium IPOCAMP. R. exoculata were collected from the chimney walls of the <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> site TAG (Mid Atlantic Ridge) at 3630m depth during the BICOSE cruise in 2014. Tissue metal accumulation was quantified in different tissues (gills, hepatopancreas and muscle) and a battery of biomarkers was measured: metal exposure (metallothioneins), oxidative stress (catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase) and oxidative damage (lipid peroxidation). Data show a higher concentration of Cu in the hepatopancreas and a slight increase in the gills after incubations (for both exposed groups). Significant induction of metallothioneins was observed in the gills of shrimps exposed to 4μM of Cu compared to the control group. Moreover, <span class="hlt">activities</span> of enzymes were detected for the in situ group, showing a background protection against metal toxicity. Results suggest that the proposed method, including a physiologically critical step of pressurizing and depressurizing the test chamber to enable the seawater exchange during exposure to contaminants, is not affecting metal accumulation and biomarkers response and may prove a useful method to assess toxicity of contaminants in deep-sea species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS22C..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS22C..03P"><span id="translatedtitle">Seafloor <span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span> in the Southern Gulf of California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Zierenberg, R. A.; Troni, G.; Wheat, C. G.; Spelz, R. M.</p> <p>2015-12-01</p> <p><span class="hlt">Active</span> <span class="hlt">hydrothermal</span> <span class="hlt">venting</span> was previously unknown between Guaymas Basin and 21°N on the East Pacific Rise. MBARI AUV surveys and ROV dives in 2012 and 2015 discovered 7 <span class="hlt">hydrothermal</span> <span class="hlt">vent</span> sites with diverse and varied <span class="hlt">vent</span> communities within that gap. One field in the Pescadero Basin <span class="hlt">vents</span> clear shimmering fluids at 3685 m depth and four vigorous black smoker fields and several extinct chimney fields are between 2225 and 2400 m depth on the Alarcón Rise. Low-temperature <span class="hlt">vent</span> sites are present on both of the Pescadero and Tamayo Transforms. The chimneys were discovered in 1-m resolution AUV bathymetric data, with some indicated to be <span class="hlt">active</span> based on temperature anomalies in the AUV CTD data and confirmed during later ROV dives. The low-tem