Science.gov

Sample records for active hydroxyl groups

  1. Chemical modification and structure-activity relationships of pyripyropenes. 1. Modification at the four hydroxyl groups.

    PubMed

    Obata, R; Sunazuka, T; Li, Z; Tian, Z; Harigaya, Y; Tabata, N; Tomoda, H; Omura, S

    1996-11-01

    Four hydroxyl groups of pyripyropenes have been modified and evaluated for their ability to inhibit microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity in vitro and to lower cholesterol absorption in vivo in a cholesterol-fed hamster. 7-O-n-Valeryl derivative (8c) improved the in vitro ACAT inhibitory activity (IC50 = 13 nM) about 7 times better than pyripyropene A. Introduction of methanesulfonyl group at 11-hydroxyl group (17a) increased both in vitro activity (IC50 = 19 nM) and in vivo efficacy (ED50 = 10 mg/kg). PMID:8982343

  2. The 4'-hydroxyl group of resveratrol is functionally important for direct activation of PPARα.

    PubMed

    Takizawa, Yoshie; Nakata, Rieko; Fukuhara, Kiyoshi; Yamashita, Hiroshi; Kubodera, Hideo; Inoue, Hiroyasu

    2015-01-01

    Long-term moderate consumption of red wine is associated with a reduced risk of developing lifestyle-related diseases such as cardiovascular disease and cancer. Therefore, resveratrol, a constituent of grapes and various other plants, has attracted substantial interest. This study focused on one molecular target of resveratrol, the peroxisome proliferator activated receptor α (PPARα). Our previous study in mice showed that resveratrol-mediated protection of the brain against stroke requires activation of PPARα; however, the molecular mechanisms involved in this process remain unknown. Here, we evaluated the chemical basis of the resveratrol-mediated activation of PPARα by performing a docking mode simulation and examining the structure-activity relationships of various polyphenols. The results of experiments using the crystal structure of the PPARα ligand-binding domain and an analysis of the activation of PPARα by a resveratrol analog 4-phenylazophenol (4-PAP) in vivo indicate that the 4'-hydroxyl group of resveratrol is critical for the direct activation of PPARα. Activation of PPARα by 5 μM resveratrol was enhanced by rolipram, an inhibitor of phosphodiesterase (PDE) and forskolin, an activator of adenylate cyclase. We also found that resveratrol has a higher PDE inhibitory activity (IC50 = 19 μM) than resveratrol analogs trans-4-hydroxystilbene and 4-PAP (IC50 = 27-28 μM), both of which has only 4'-hydroxyl group, indicating that this 4'-hydroxyl group of resveratrol is not sufficient for the inhibition of PDE. This result is consistent with that 10 μM resveratrol has a higher agonistic activity of PPARα than these analogs, suggesting that there is a feedforward activation loop of PPARα by resveratrol, which may be involved in the long-term effects of resveratrol in vivo. PMID:25798826

  3. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  4. Anaerobic Activation of p-Cymene in Denitrifying Betaproteobacteria: Methyl Group Hydroxylation versus Addition to Fumarate

    PubMed Central

    Strijkstra, Annemieke; Trautwein, Kathleen; Jarling, René; Wöhlbrand, Lars; Dörries, Marvin; Reinhardt, Richard; Drozdowska, Marta; Golding, Bernard T.; Wilkes, Heinz

    2014-01-01

    The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA. PMID:25261521

  5. Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    PubMed

    Sakamoto, Harumi; Hirohashi, Yohei; Saito, Haruka; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of active hydroxyl groups on a titanium (Ti) surface on the bond strength between Ti and segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). Active hydroxyl groups on Ti surface oxide were controlled by immersion in hydrogen peroxide (H2O2) with different lengths of immersion time, and the resulting concentrations of active hydroxyl groups were evaluated using a zinc-complex substitution technique. For the H2O2-treated Ti, it was characterized using X-ray photoelectron spectroscopy and scanning electron spectroscopy. For the bond strength of Ti/ gamma-MPS/SPU interface, it was determined using a shear bond test. Results showed that the bond strength increased with increase in the concentration of active hydroxyl groups. In terms of durability after immersion in water at 310 K for 30 days, it was found that bond strength was improved with increase in active hydroxyl groups. Based on the results obtained, active hydroxyl groups on the surface oxide film were clearly one of the causes governing the interfacial bond strength. PMID:18309616

  6. Boron-doped bismuth oxybromide microspheres with enhanced surface hydroxyl groups: Synthesis, characterization and dramatic photocatalytic activity.

    PubMed

    Liu, ZhangSheng; Liu, JinLong; Wang, HaiYang; Cao, Gang; Niu, JiNan

    2016-02-01

    B-doped BiOBr photocatalysts were successfully synthesized via a facile solvothermal method with boric acid used as boron source. As-obtained products consist of novel hierarchical microspheres, whose nanosheet building units were formed by nanoparticles splicing. They showed dramatic photocatalytic efficiency toward the degradation of Rhodamine B (RhB) and phenol under the visible-light irradiation and the highest activity was achieved by 0.075B-BiOBr. The enhanced photocatalytic activity could be attributed to the enriched surface hydroxyl groups on B-doped BiOBr samples, which not only improved the adsorption of pollutant on the photocatalyst but also promoted the separation of photogenerated electron-hole pairs. In addition, it was found that the main reactive species responsible for the degradation of organic pollutant were h(+) and O2(-) radicals, instead of OH radicals. PMID:26590875

  7. Dependence of antimutagenic activity of simple phenols on the number of hydroxyl groups

    SciTech Connect

    Pashin, Yu.V.; Bakhitova, L.M.; Bentkhen, T.I.

    1987-01-01

    The authors seek to establish the antioxidative and antimutagenetic effects of three phenols--phenol itself, resorcinol, and pyrogallol--on benzopyrene and its metabolic activation both in vivo and in vitro. In the in vivo system the mutagenic activity of the chemicals and their mixtures was tested relative to induction of micronuclei in polychromatophylic bone marrow erythrocytes of mice. The action of the phenols on the mutagenic activity of benzopyrene in an in vitro system was studied by counting induced direct gene mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in cultures of Chinese hamster V-70 somatic cells. It is found that the inhibition of the mutagenic activity of benzopyrene by polyhydric phenols is evidently connected with the presence of reactable hydrogen atoms in these compounds which inhibit free-radical self-oxidation of the mutagen.

  8. Structure-Activity Relationship of Oligomeric Flavan-3-ols: Importance of the Upper-Unit B-ring Hydroxyl Groups in the Dimeric Structure for Strong Activities.

    PubMed

    Hamada, Yoshitomo; Takano, Syota; Ayano, Yoshihiro; Tokunaga, Masahiro; Koashi, Takahiro; Okamoto, Syuhei; Doi, Syoma; Ishida, Masahiko; Kawasaki, Takashi; Hamada, Masahiro; Nakajima, Noriyuki; Saito, Akiko

    2015-01-01

    Proanthocyanidins, which are composed of oligomeric flavan-3-ol units, are contained in various foodstuffs (e.g., fruits, vegetables, and drinks) and are strongly biologically active compounds. We investigated which element of the proanthocyanidin structure is primarily responsible for this functionality. In this study, we elucidate the importance of the upper-unit of 4-8 condensed dimeric flavan-3-ols for antimicrobial activity against Saccharomyces cerevisiae (S. cerevisiae) and cervical epithelioid carcinoma cell line HeLa S3 proliferation inhibitory activity. To clarify the important constituent unit of proanthocyanidin, we synthesized four dimeric compounds, (-)-epigallocatechin-[4,8]-(+)-catechin, (-)-epigallocatechin-[4,8]-(-)-epigallocatechin, (-)-epigallocatechin-[4,8]-(-)-epigallocatechin-3-O-gallate, and (+)-catechin-[4,8]-(-)-epigallocatechin and performed structure-activity relationship (SAR) studies. In addition to antimicrobial activity against S. cerevisiae and proliferation inhibitory activity on HeLa S3 cells, the correlation of 2,2-diphenyl-l-picrylhydrazyl radical scavenging activity with the number of phenolic hydroxyl groups was low. On the basis of the results of our SAR studies, we concluded that B-ring hydroxyl groups of the upper-unit of the dimer are crucially important for strong and effective activity. PMID:26501251

  9. Structure-Activity Relationship of Synthetic 2-Phenylnaphthalenes with Hydroxyl Groups that Inhibit Proliferation and Induce Apoptosis of MCF-7 Cancer Cells

    PubMed Central

    Chang, Chi-Fen; Ke, Ci-Yi; Wu, Yang-Chang; Chuang, Ta-Hsien

    2015-01-01

    In this study, six 2-phenylnaphthalenes with hydroxyl groups were synthesized in high yields by the demethylation of the corresponding methoxy-2-phenylnaphthalenes, and one 2-phenylnaphthalene with an amino group was obtained by hydrogenation. All of the 2-phenylnaphthalene derivatives were evaluated for cytotoxicity, and the structure-activity relationship (SAR) against human breast cancer (MCF-7) cells was also determined. The SAR results revealed that cytotoxicity was markedly promoted by the hydroxyl group at the C-7 position of the naphthalene ring. The introduction of hydroxyl groups at the C-6 position of the naphthalene ring and the C-4' position of the phenyl ring fairly enhanced cytotoxicity, but the introduction of a hydroxyl group at the C-3' position of the phenyl ring slightly decreased cytotoxicity. Overall, 6,7-dihydroxy-2-(4'-hydroxyphenyl)naphthalene (PNAP-6h) exhibited the best cytotoxicity, with an IC50 value of 4.8 μM against the MCF-7 cell line, and showed low toxicity toward normal human mammary epithelial cells (MCF-10A). PNAP-6h led to cell arrest at the S phase, most likely due to increasing levels of p21 and p27 and decreasing levels of cyclin D1, CDK4, cyclin E, and CDK2. In addition, PNAP-6h decreased CDK1 and cyclin B1 expression, most likely leading to G2/M arrest, and induced morphological changes, such as nuclear shrinkage, nuclear fragmentation, and nuclear hypercondensation, as observed by Hoechst 33342 staining. PNAP-6h induced apoptosis, most likely by the promotion of Fas expression, increased PARP activity, caspase-7, caspase-8, and caspase-9 expression, the Bax/Bcl-2 ratio, and the phosphorylation of p38, and decreased the phosphorylation of ERK. This study provides the first demonstration of the cytotoxicity of PNAPs against MCF-7 cells and elucidates the mechanism underlying PNAP-induced cytotoxicity. PMID:26492346

  10. Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area

    SciTech Connect

    Kim, Jongsik; Kim, Dong Ok; Kim, Dong Wook; Sagong, Kil

    2013-01-15

    To accomplish the postsynthetic modification of MOF with organic-metal precursors (OMPs) described in our previous researches more efficiently, synthesis of MOF (HCC-2) possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit than those of HCC-1 has been successfully conducted via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, optimization about the Activation process of HCC-2 was performed to maximize its BET (Brunauer-Emmett-Teller) surface area which was proved to be proportional to the number of exposed active sites on which its postsynthetic modification occurred. However, Activation process having been validated to be so effective with the acquirement of highly-purified HCC-1 (CO{sub 2} supercritical drying step followed by vacuum drying step) was less satisfactory with the case of HCC-2. This might be attributed to relatively higher hydrophilicity and bulkier molecular structure of organic ligand of HCC-2. However, it was readily settled by simple modification of above Activation process. Moreover, indispensable residues composed of both DMF and its thermally degraded derivatives which were chemically attached via coordination bond with hydroxyl functionalities even after Activation process III might enable their H{sub 2} adsorption properties to be seriously debased compared to that of IRMOF-16 having no hydroxyl functionalities. - Graphical abstract: Synthesis of new-structured MOF (HCC-2) simultaneously possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit at the same time than those of HCC-1 has been performed via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, the optimization of activation process for HCC-2

  11. The Hydroxyl at Position C1 of Genipin Is the Active Inhibitory Group that Affects Mitochondrial Uncoupling Protein 2 in Panc-1 Cells

    PubMed Central

    Hou, Jianwei; Ding, Yue; Zhang, Tong; Zhang, Yong; Wang, Jianying; Shi, Chenchen; Fu, Wenwei; Cai, Zhenzhen

    2016-01-01

    Genipin (GNP) effectively inhibits uncoupling protein 2 (UCP2), which regulates the leakage of protons across the inner mitochondrial membrane. UCP2 inhibition may induce pancreatic adenocarcinoma cell death by increasing reactive oxygen species (ROS) levels. In this study, the hydroxyls at positions C10 (10-OH) and C1 (1-OH) of GNP were hypothesized to be the active groups that cause these inhibitory effects. Four GNP derivatives in which the hydroxyl at position C10 or C1 was replaced with other chemical groups were synthesized and isolated. Differences in the inhibitory effects of GNP and its four derivatives on pancreatic carcinoma cell (Panc-1) proliferation were assessed. The effects of GNP and its derivatives on apoptosis, UCP2 inhibition and ROS production were also studied to explore the relationship between GNP’s activity and its structure. The derivatives with 1-OH substitutions, geniposide (1-GNP1) and 1-ethyl-genipin (1-GNP2) lacked cytotoxic effects, while the other derivatives that retained 1-OH, 10-piv-genipin (10-GNP1) and 10-acetic acid-genipin (10-GNP2) exerted biological effects similar to those of GNP, even in the absence of 10-OH. Thus, 1-OH is the key functional group in the structure of GNP that is responsible for GNP’s apoptotic effects. These cytotoxic effects involve the induction of Panc-1 cell apoptosis through UCP2 inhibition and subsequent ROS production. PMID:26771380

  12. A ribozyme that triphosphorylates RNA 5′-hydroxyl groups

    PubMed Central

    Moretti, Janina E.; Müller, Ulrich F.

    2014-01-01

    The RNA world hypothesis describes a stage in the early evolution of life in which RNA served as genome and as the only genome-encoded catalyst. To test whether RNA world organisms could have used cyclic trimetaphosphate as an energy source, we developed an in vitro selection strategy for isolating ribozymes that catalyze the triphosphorylation of RNA 5′-hydroxyl groups with trimetaphosphate. Several active sequences were isolated, and one ribozyme was analyzed in more detail. The ribozyme was truncated to 96 nt, while retaining full activity. It was converted to a trans-format and reacted with rates of 0.16 min−1 under optimal conditions. The secondary structure appears to contain a four-helical junction motif. This study showed that ribozymes can use trimetaphosphate to triphosphorylate RNA 5′-hydroxyl groups and suggested that RNA world organisms could have used trimetaphosphate as their energy source. PMID:24452796

  13. Structure-activity relationship of Au-ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation

    SciTech Connect

    Karwacki, Christopher J; Ganesh, Panchapakesan; Kent, P. R. C.; Gordon, Wesley O; Peterson, Gregory W; Niu, Jun Jie; Gogotsi, Yury G.

    2013-01-01

    The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission Fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m2 g 1) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (>90%) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure activity relationship of both the support and active particles for the design of catalytic materials.

  14. Structure–activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation

    SciTech Connect

    Karwacki, Christopher J.; Ganesh, P.; Kent, Paul R. C.; Gordon, Wesley O.; Peterson, Gregory W.; Niu, Jun Jie; Gogotsi, Yury

    2013-01-01

    The effect of changes in morphology and surface hydroxyl species upon thermal treatment of zirconia on the oxidation activity of Au/ZrO2 catalyst was studied. We observed using transmission fourier transform infrared (FTIR) spectroscopy progressive changes in the presence of monodentate (type I), bidentate (type II) and hydrogen bridged species (type III) for each of the thermally treated (85 to 500 C) supports consisting of bare zirconia and Au/ZrO2 catalysts. Furthermore, structural changes in zirconia were accompanied by an increase in crystal size (7 to 58 nm) and contraction of the supports porosity (SSA 532 to 7 m2/g) with increasing thermal treatment. Deposition of gold nanoparticles under similar preparation conditions on different thermally treated zirconia resulted in changes in the mean gold cluster size, ranging from 3.7 to 5.6 nm. Changes in the surface hydroxyl species, support structure and size of the gold centers are important parameters responsible for the observed decrease (> 90 %) in CO conversion activity for the Au/ZrO2 catalysts. Density functional theory calculations provide evidence of increased CO binding to Au nanoclusters in the presence of surface hydroxyls on zirconia, which increases charge transfer at the perimeter of the gold nanocluster on zirconia support. This further helps in reducing a model CO-oxidation reaction barrier in the presence of surface hydroxyls. This work demonstrates the need to understand the structure-activity relationship of both the support and active particles for the design of catalytic materials.

  15. The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal.

    PubMed

    Shylesh, Sankaranarayanapillai; Hanna, David; Gomes, Joseph; Canlas, Christian G; Head-Gordon, Martin; Bell, Alexis T

    2015-02-01

    The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation. PMID:25314616

  16. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  17. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-05-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  18. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  19. Effect of liquefaction temperature on hydroxyl groups of bio-oil from loblolly pine (Pinus taeda).

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Wu, Yonnie

    2014-10-01

    Loblolly pine was liquefied with ethylene glycol at 100, 150, 200 and 250 °C in order to analyze the effect of liquefaction temperature on hydroxyl groups of bio-oil, and to determine the source and variation of hydroxyl groups. The optimum temperature was found to be 150-200 °C. Hydroxyl number (OHN) of the bio-oil was ranged from 632 to 1430 mg KOH/g. GC-MS analysis showed that 70-90% of OHN was generated from unreacted EG. (31)P NMR analysis showed that the majority of hydroxyl groups were aliphatic, and none of the bio-oil exhibited any detectable hydroxyl groups from phenolic sources. Finally, it was found that all bio-oils were stable in terms of OHN for 2 months when stored at -10 °C. PMID:25113882

  20. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity.

    PubMed

    Hong, Shan; Liu, Songbai

    2016-04-15

    The reactivity profile of all the hydroxyl groups in (+)-catechin towards acylation and their respective contribution to radical scavenging activity were systematically explored in this work. Selective acylation of the hydroxyls on different rings was carried out employing either a basic or acidic activation strategy. Monoacylation of B ring was achieved effectively with the aid of dimethyltin dichloride. Monoacylation of A ring was accomplished by sequential protection and deprotection of B and C rings. Based on specific acylation of all the individual hydroxyls of (+)-catechins, the structure radical scavenging activity relationship of each hydroxyl of (+)-catechin was established. It was demonstrated that the vicinal phenolic hydroxyls on B ring played the most important role in the ABTS radical scavenging activity and those on A and C rings made a much smaller contribution. This study has laid solid groundwork for further modification of the catechins and improvement of their properties. PMID:26616969

  1. Diffusion of hydroxyl groups in silica glass through the binding interface

    NASA Astrophysics Data System (ADS)

    Sato, Naoya; Yamamoto, Takaki; Kuzuu, Nobu; Horikoshi, Hideharu; Niwa, Shohei

    2016-02-01

    Diffusion of hydroxyl groups in silica glass through an interface formed by binding between high-hydroxyl (ca. 1200 wt.ppm) and low-hydroxyl (ca. 130 wt.ppm)-containing silica glasses in the temperature range of 900-1150 °C was investigated. Although the theoretical curve with a hydroxyl-concentration-independent diffusion coefficient deviates from the experimental curve, the diffusion coefficients obtained by fitting to the experimental results by the least squares method coincided with the “effective diffusion coefficients” in the literature, which were obtained from the total absorption change in the IR absorption peak for the hydroxyl group using thin samples. By the analysis considering the hydroxyl concentration dependence of the diffusion coefficient, we showed that the diffusion coefficient is proportional to hydroxyl concentration at each temperature, which is consistent with the model of the diffusion: SiOSi + H2O = 2SiOH. On the basis of this scheme, we tried to evaluate the diffusion coefficients of molecular water using equilibrium constant in the literature.

  2. A theoretical study of O2 activation by the Au7-cluster on Mg(OH)2: roles of surface hydroxyls and hydroxyl defects.

    PubMed

    Jia, Chuanyi; Fan, Weiliu

    2015-11-11

    Using density functional theory (DFT) calculations, we investigated O2 activation by the Au7-cluster supported on the perfect and hydroxyl defective Mg(OH)2(0001) surface. It is revealed that hydroxyl groups on the perfect Mg(OH)2(0001) surface can not only enhance the stability of the Au7-cluster, but also help the adsorption of the O2 molecule through hydrogen-bonding interactions with the 2nd-layered interfacial Au sites. Density of states (DOS) analysis shows that the d-band centers of the 2nd-layered interfacial Au atoms are very close to the Fermi level, which thereby reduce the Pauli repulsion and promote the O2 adsorption. These two responses make the 2nd-layered interfacial Au atoms favor O2 activation. Interestingly, the surface hydrogen atoms activated by the 1st-layered Au atoms can facilitate the O2 dissociation process as well. Such a process is dynamically favorable and more inclined to occur at low temperatures compared to the direct dissociation process. Meanwhile, the hydroxyl defects of Mg(OH)2(0001) located right under the Au7-cluster can also up-shift the d-band centers of the surrounding Au atoms toward the Fermi level, enhancing its catalytic activity for O2 dissociation. In contrast, the d-band center of Au atoms surrounding the hydroxyl defect near the Au7-cluster exhibits an effective down-shift to lower energies, and therefore holds low activity. These results unveiled the roles of surface hydroxyls and hydroxyl defects on the Au/Mg(OH)2 catalyst in O2 activation and could provide a theoretical guidance for chemists to efficiently synthesize Au/hydroxide catalysts. PMID:26529519

  3. Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity.

    PubMed

    Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Molina, María del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2012-07-27

    A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k(cat)(m) and the Michaelis constant, K(M)(m). Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group (δ) and σ(p)(+), enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E(ox) (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant ρ of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of [Formula: see text] / [Formula: see text] against n (atom fractions of deuterium), where [Formula: see text] is the catalytic constant for a molar fraction of deuterium (n) and [Formula: see text] is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group of C-1 to the peroxide of the oxytyrosinase form (E(ox)). After the nucleophilic attack, the incorporation of the oxygen in the benzene ring occurs by means of an electrophilic aromatic substitution mechanism in which there is no isotopic effect. PMID:22732412

  4. Tuning magnetic splitting of zigzag graphene nanoribbons by edge functionalization with hydroxyl groups

    SciTech Connect

    Zhang, Huizhen; Yang, Haifang; Li, Lin; Fu, Huixia; Ma, Wei; Niu, Chunyao; Sun, Jiatao; Meng, Sheng; Gu, Changzhi

    2015-03-21

    The electronic properties and relative stability of zigzag graphene nanoribbons are studied by varying the percentage of hydroxyl radicals for edge saturation using first principle calculations. The passivated structures of zigzag graphene nanoribbon have spin-polarized ground state with antiferromagnetic exchange coupling across the edge and ferromagnetic coupling along the edges. When the edges are specially passivated by hydroxyl, the potentials of spin exchange interaction across the two edges shift accordingly, resulting into a spin-semiconductor. Varying the concentration of hydroxyl groups can alter the maximum magnetization splitting. When the percentage of asymmetrically adsorbed hydroxyl reaches 50%, the magnetization splitting can reach a value as high as 275 meV due to the asymmetrical potential across the nanoribbon edges. These results would favor spintronic device applications based on zigzag graphene nanoribbons.

  5. Entropy Loss of Hydroxyl Groups of Balanol upon Binding to Protein Kinase A

    NASA Astrophysics Data System (ADS)

    Gidofalvi, Gergely; Wong, Chung F.; McCammon, J. Andrew

    2002-09-01

    This article describes a short project for an undergraduate to learn several techniques for computer-aided drug design. The project involves estimating the loss of the rotational entropy of the hydroxyl groups of balanol upon its binding to the enzyme protein kinase A (PKA), as the entropy loss can significantly influence PKA balanol binding affinity. This work employs semiempirical quantum mechanical techniques for estimating the potential energy curves for the rotation of the hydroxyl groups of balanol in vacuum and in PKA, and solves the Poisson equation to correct the potential energy curves for hydration effects. Statistical mechanical principles are then applied to estimate the desired entropy loss from the potential energy curves. The analysis examines the influence of hydration effects on the rotational preference of the hydroxyl groups and the significance of the rotational entropy in determining binding affinity.

  6. IR spectroscopic study of hydroxyl groups of molecular sieves in the fundamental and combination tone regions

    NASA Astrophysics Data System (ADS)

    Löffler, E.; Zscherpel, U.; Peuker, Ch.; Staudte, B.

    1993-03-01

    The fundamental and combination vibrations of hydroxyl groups in zeolites (Y, ZSM-5) and silicoaluminophosphates (SAPO-5, -17, -34) are investigated. The influence of adsorbed molecules (C 6F 6, n-hexane) on the combination vibrations is also studied. Finally, remarks on quantitative evaluation of DRIFT spectra of NaHZSM-5 containing different amounts of bridging OH groups are given.

  7. Solution behavior and solid phase transitions of quaternary ammonium surfactants with head groups decorated by hydroxyl groups.

    PubMed

    Song, Binglei; Shang, Shibin; Song, Zhanqian

    2012-09-15

    Hydrogen bonds are strong intermolecular interactions, which are very important in molecular aggregation and new phase formation. Three long-chain quaternary ammonium surfactants, N,N-diethyl-N-(2-hydroxyethyl)-N-octadecylammonium bromide with one hydroxyl group, N-ethyl-N,N-bis (2-hydroxyethyl)-N-octadecylammonium bromide with two hydroxyl groups and N,N,N-tris (2-hydroxyethyl)-N-octadecylammonium bromide with three hydroxyl groups, abbreviated as SHQ, DHQ, and THQ, respectively, were synthesized in this work. Their solution behavior and solid phase transitions were investigated by surface tension, differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarizing optical microscopy (POM), and Infrared (IR) spectroscopy. The hydrogen bonds introduced by the substituted hydroxyl groups promoted surfactant adsorption at the air/water interface and aggregation in solution. In the crystal state, an increased number of hydroxyl groups caused a larger tilt angle of the long axis of surfactant molecules with the layer normal. Above certain temperatures, SHQ and DHQ formed highly ordered smectic T and smectic A phases while THQ only formed less ordered smectic A phase. The weakened electrostatic attractions between opposite ions and the thicker polar sublayers of mesophases caused by the enhanced number of hydrogen bonds are responsible for the mesophase formation and transition of these surfactants. PMID:22762982

  8. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts

    PubMed Central

    Gupta, Kshitij; Mattingly, Stephanie J; Knipp, Ralph J; Afonin, Kirill A; Viard, Mathias; Bergman, Joseph T; Stepler, Marissa; Nantz, Michael H; Puri, Anu; Shapiro, Bruce A

    2015-01-01

    Aim: To evaluate the structure–activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231). Materials & methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively. Results & conclusion: Introduction of hydroxyl groups to the polar domain of the OELs and unsaturation into the hydrophobic domain favor higher transfection and gene silencing in a cell culture system. PMID:26107486

  9. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    SciTech Connect

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  10. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability.

    PubMed

    Chang, Shinn-Jen; Liao, Wei-Sheng; Ciou, Ci-Jin; Lee, Jyh-Tsung; Li, Chia-Chen

    2009-01-15

    Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors. PMID:18977001

  11. Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli.

    PubMed

    Insomphun, Chayatip; Kobayashi, Shingo; Fujiki, Tetsuya; Numata, Keiji

    2016-12-01

    Polyhydroxyalkanoates (PHAs) containing hydroxyl groups in a side chain were produced in recombinant Escherichia coli JM109 using glycolate as the sole carbon source. The propionate-CoA transferase (pct) gene from Megasphaera elsdenii and the β-ketothiolase (bktB) gene and phaCAB operon from Ralstonia eutropha H16 were introduced into E. coli JM109. A novel monomer containing a hydroxyl group, dihydroxybutyrate (DHBA), was the expected product of the condensation of glycolyl-CoA and acetyl-CoA by BktB. The recombinant strain produced a PHA containing 1 mol% DHBA. The incorporation of DHBA may have been restricted because the expression of phaAB1 competes for acetyl-CoA. The PHA containing DHBA units were evaluated regarding thermal properties, such as melting temperature, glass transition temperature and thermal degradation temperature. The current study demonstrates a potential use of PHA containing hydroxyl groups as renewable resources in biological materials. PMID:27075993

  12. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  13. Hydroxyl radical scavenging-based method for evaluation of TiO₂ photocatalytic activity.

    PubMed

    Mencigar, Danijela Pucko; Strlič, Matija; Štangar, Urška Lavrenčič; Korošec, Romana Cerc

    2013-01-01

    A novel hydroxyl radical scavenging method was developed to establish the photocatalytic activity of TiO₂ thin films. Transparent TiO₂ thin films were prepared on soda-lime glass substrates using the sol-gel method and characterized using X-ray diffraction. During photoirradiation in aqueous buffered solutions, activity of the films was followed using the substituted nitrobenzene N,N'-(5-nitro-1,3-phenylene)bisglutaramide as a hydroxyl radical scavenger and its hydroxylated products were quantified using HPLC. The yield of hydroxyl radicals was evaluated at various pH of the reaction media, and reflected the dependence of the rate of the hydroxylation reaction on the experimental conditions and on the different qualities of the TiO₂ thin films. The proposed method allows for direct assessment of hydroxyl radical production, it is straightforward and is proposed for routine use. PMID:24362997

  14. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.

    PubMed

    Feliks, Mikolaj; Ullmann, G Matthias

    2012-06-21

    A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis. PMID:22626266

  15. Fine structures in vibrational circular dichroism spectra of chiral molecules with rotatable hydroxyl groups and their application in the analysis of local intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Konno, Kohzo; Shiina, Isamu; Yui, Hiroharu

    2013-03-01

    The effect of hydroxyl group on vibrational circular dichroism is addressed. (-)-Menthol is investigated as a representative chiral molecule which has been widely used as a chiral starting material. Free rotation of the hydroxyl group in (-)-menthol allows it to exist in various conformations in solution. The variety of conformations inevitably affects local intermolecular interactions and the resultant efficiency of asymmetric syntheses. However, the precise relationship between the conformations and intermolecular interactions arising from rotation of the hydroxyl group has remained an unsolved issue despite the molecule's importance. Here, the conformations and interactions are investigated using vibrational circular dichroism (VCD). VCD is quite sensitive to slight differences in the conformation of chiral molecules and their local environment. We examined various conformers in (-)-menthol and compared the VCD spectrum with that of (-)-menthone. It revealed the rotation of the polar hydroxyl group sensitively affects the VCD activity, resulting in the emergence of various patterns in the corresponding VCD spectra, especially in the wavenumber regions at around 1064 cm-1 and 1254 cm-1. Among these regions, the latter one is further investigated to examine the feasibility of applying the sensitive response to the analysis on the local intermolecular environment. It includes solute-solvent interactions via hydroxyl groups, which is important for biomacromolecule structural stability and efficient stereoselective syntheses. As a consequence, distinctive fine structures in the VCD spectra, including an unpredicted band, are observed when varying temperature and concentration. Their possible assignment is also discussed.

  16. Chemoenzymatic collective synthesis of optically active hydroxyl(methyl)tetrahydronaphthalene-based bioactive terpenoids.

    PubMed

    Batwal, Ramesh U; Argade, Narshinha P

    2015-12-14

    Starting from succinic anhydride and 2-methylanisole, a chemoenzymatic collective formal/total synthesis of several optically active tetrahydronaphthalene based bioactive natural products has been presented via advanced level common precursors; the natural product and antipode (-)/(+)-aristelegone B. Regioselective benzylic oxidations, stereoselective introduction of hydroxyl groups at the α-position of ketone moiety in syn-orientation, efficient enzymatic resolutions with high enantiomeric purity, stereoselective reductions, samarium iodide induced deoxygenations and tandem acylation-Wittig reactions without racemization and/or eliminative aromatization were the key features. An attempted diastereoselective synthesis of (±)-vallapin has also been described. PMID:26419842

  17. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  18. Inhibition of Pseudomonas aeruginosa Swarming Motility by 1-Naphthol and Other Bicyclic Compounds Bearing Hydroxyl Groups

    PubMed Central

    Oura, Hiromu; Tashiro, Yosuke; Toyofuku, Masanori; Ueda, Kousetsu; Kiyokawa, Tatsunori; Ito, Satoshi; Takahashi, Yurika; Lee, Seunguk; Nojiri, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo; Futamata, Hiroyuki

    2015-01-01

    Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa. PMID:25681177

  19. Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols.

    PubMed

    Cheigh, Chan-Ick; Yoo, Seo-Yeon; Ko, Min-Jung; Chang, Pahn-Shick; Chung, Myong-Soo

    2015-02-01

    This study compared the efficiencies of using subcritical water, hot water, and organic solvents to extract flavonols from black tea, celery, and ginseng leaf. The effect of key operating conditions was determined by varying the temperature (110-200°C), extraction time (5-15min), and pressure (about 10MPa) and the extracts were analysed quantitatively using HPLC. The yields of myricetin, quercetin, and kaempferol from plants were maximal at extraction temperatures of 170°C, 170°C and 200°C, respectively, and they depend on the number of hydroxyl groups included in the chemical structure of the flavonols, with more of those with fewer hydroxyl (OH) groups attached being extracted at higher temperatures. The results also showed that the yields of flavonols by subcritical water extraction were 2.0- to 22.7- and 1.8- to 23.6-fold higher than those obtained using the ethanol and methanol as traditional extraction methods, respectively. PMID:25172678

  20. Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups.

    PubMed

    Oura, Hiromu; Tashiro, Yosuke; Toyofuku, Masanori; Ueda, Kousetsu; Kiyokawa, Tatsunori; Ito, Satoshi; Takahashi, Yurika; Lee, Seunguk; Nojiri, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo; Futamata, Hiroyuki; Nomura, Nobuhiko

    2015-04-01

    Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa. PMID:25681177

  1. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    SciTech Connect

    Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

    2008-09-01

    The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

  2. Adamantyl-Substituted Retinoid-Derived Molecules That Interact with the Orphan Nuclear Receptor Small Heterodimer Partner: Effects of Replacing the 1-Adamantyl or Hydroxyl Group on Inhibition of Cancer Cell Growth, Induction of Cancer Cell Apoptosis, and Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Activity

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin; Jiang, Tao; Ye, Mao; Fontana, Joseph A.; Farhana, Lulu; Patel, Bhaumik; Xue, Li Ping; Bhuiyan, Mohammad; Pellicciari, Roberto; Macchiarulo, Antonio; Nuti, Roberto; Zhang, Xiao-Kun; Han, Young-Hoon; Tautz, Lutz; Hobbs, Peter D.; Jong, Ling; Waleh, Nahid; Chao, Wan-ru; Feng, Gen-Sheng; Pang, Yuhong; Su, Ying

    2014-01-01

    (E)-4-[3-(1-Adamantyl)-4′-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces the cell-cycle arrest and apoptosis of leukemia and cancer cells. Studies demonstrated that 3-Cl-AHPC bound to the atypical orphan nuclear receptor small heterodimer partner (SHP). Although missing a DNA-binding domain, SHP heterodimerizes with the ligand-binding domains of other nuclear receptors to repress their abilities to induce or inhibit gene expression. 3-Cl-AHPC analogues having the 1-adamantyl and phenolic hydroxyl pharmacophoric elements replaced with isosteric groups were designed, synthesized, and evaluated for their inhibition of proliferation and induction of human cancer cell apoptosis. Structure–anticancer activity relationship studies indicated the importance of both groups to apoptotic activity. Docking of 3-Cl-AHPC and its analogues to an SHP computational model that was based on the crystal structure of ultraspiracle complexed with 1-stearoyl-2-palmitoylglycero-3-phosphoethanolamine suggested why these 3-Cl-AHPC groups could influence SHP activity. Inhibitory activity against Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp-2) was also assessed. The most active Shp-2 inhibitor was found to be the 3′-(3,3-dimethylbutynyl) analogue of 3-Cl-AHPC. PMID:18759424

  3. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  4. Layer modulated smectic-C phase in liquid crystals with a terminal hydroxyl group

    NASA Astrophysics Data System (ADS)

    Kimoto, Yasuhiro; Nishizawa, Ayumi; Takanishi, Yoichi; Yoshizawa, Atsushi; Yamamoto, Jun

    2014-04-01

    We investigated local layer structures of the three smectic-C phases (SmC, SmC', and SmC″) in a liquid crystal with the terminal hydroxyl group using high resolution and microbeam x-ray diffraction. It is found that SmC is the conventional SmC1 phase and SmC″ is the bilayer SmC2 phase. The SmC' phase forms an in-plane modulation structure, so that this phase is the smectic-C antiphase. From the Fourier transform infrared spectroscopy, it is suggested that the intermolecular hydrogen bonding is important to induce the SmC' and SmC″ phases.

  5. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system. PMID:26509282

  6. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups.

    PubMed

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b-poly(3,3-bis(Hydroxymethyl-triazolylmethyl) oxetane)-b-polylactide (PLA-b-PHMTYO-b-PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b-poly(3,3-Diazidomethyloxetane)-b-polylactide (PLA-b-PBAMO-b-PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following "Click" reaction of PLA-b-PBAMO-b-PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b-PHMTYO-b-PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b-PHMTYO-b-PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10(-4)mg/mL and 3.9 × 10(-5)mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b-PHMTYO-b-PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. PMID:25175206

  7. The Effect of Terminal Hydroxyl Groups on the Self-Assembly of PEO in Water

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena E.

    2003-03-01

    Applying a mean field-like statistical model we explore the effect of terminal hydroxyl (-OH) groups on the properties of polyethylene oxide, PEO, which is extensively used in biomedical applications. The influence of terminal OH groups is two-fold: it allows PEO-PEO complex formation and additional water is adsorbed. Our theoretical modeling shows that the influence of PEO-PEO network formation on polymer properties is negligible till very high polymer concentration (>90%). At the same time the contribution of terminal OH groups to the overall PEO hydration (which is essential for inhibition of protein adsorption) is considerable, especially for short polymer chains (N<50). As a result, OH termination of short PEO chains may lead to stabilization of PEO solutions in the entire temperature and composition range. For longer chains, hydration via terminal OH groups becomes especially noticeable in the regions of poor hydration, i.e. at high polymer concentration and high temperature, that leads to some decrease of the phase separation region. As expected, very long PEO chains (N>500) have very small sensitivity to OH termination.

  8. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  9. Riccardin C derivatives as anti-MRSA agents: structure-activity relationship of a series of hydroxylated bis(bibenzyl)s.

    PubMed

    Sawada, Hiromi; Okazaki, Miki; Morita, Daichi; Kuroda, Teruo; Matsuno, Kenji; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-12-15

    Members of a series of macrocyclic bis(bibenzyl) riccardin-class derivatives were found to exhibit antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Structure-activity relationship (SAR) studies were conducted, focusing on the number and position of the hydroxyl groups. The minimum essential structure for anti-MRSA activity was also investigated. PMID:23122868

  10. Production of hydroxyl radical by redox active flavonoids

    SciTech Connect

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal and the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.

  11. Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles.

    PubMed

    Bonu, Venkataramana; Das, Arindam; Amirthapandian, S; Dhara, Sandip; Tyagi, Ashok Kumar

    2015-04-21

    We report, for the first time, the luminescence property of the hydroxyl group surface functionalized quantum dots (QDs) and nanoparticles (NPs) of SnO2 using low energy excitations of 2.54 eV (488 nm) and 2.42 eV (514.5 nm). This luminescence is in addition to generally observed luminescence from 'O' defects. The as-prepared SnO2 QDs are annealed at different temperatures under ambient conditions to create NPs with varying sizes. Subsequently, the average size of the NPs is calculated from the acoustic vibrations observed at low frequencies in the Raman spectra and by the transmission electron microscopy measurements. Detailed photoluminescence studies with 3.815 eV (325 nm) excitation reveal the nature of in-plane and bridging 'O' vacancies as well as adsorption and desorption occurring at different annealing temperatures. X-ray photoelectron spectroscopy studies also support this observation. The defect level related to the surface -OH functional groups shows a broad luminescence peak at around 1.96 eV in SnO2 NPs which is elaborated using temperature dependent studies. PMID:25774472

  12. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  13. Catalytic activity of unsaturated coordinated Cu-MOF to the hydroxylation of phenol

    NASA Astrophysics Data System (ADS)

    Jian, Lijuan; Chen, Chao; Lan, Fan; Deng, Shengjun; Xiao, Weiming; Zhang, Ning

    2011-05-01

    A 2D metal-organic framework [Cu 2 (BPTC) (Im) 4(H 2O) (DMF)] n ( 1) with unsaturated coordinated Cu(II) sites has been prepared under solvothermal condition, and applied to the hydroxylation of phenol after activating. The catalytic results indicate that 1a (the activated 1) exhibits an obvious activity for phenol hydroxylation at 40 °C for 4 h. Compared to the control experiments where the free Cu(II) (from Cu(OAc) 2 salt) has been utilized as the catalysts, 1a shows the higher selectivity to diphenols. This suggests that the coordinated environment of unsaturated coordinated Cu(II) sites in the 2D layer play the key role in the phenol hydroxylation.

  14. A new synthesis of lysophosphatidylcholines and related derivatives. Use of p-toluenesulfonate for hydroxyl group protection.

    PubMed

    Rosseto, Renato; Bibak, Niloufar; DeOcampo, Rosemarie; Shah, Trishul; Gabrielian, Ara; Hajdu, Joseph

    2007-03-01

    A new stereoselective synthesis of lysophosphatidylcholines is reported. The synthesis is based upon (1) the use of 3-p-toluenesulfonyl-sn-glycerol to provide the stereocenter for construction of the optically active lysophospholipid molecule, (2) tetrahydropyranylation of the secondary alcohol function to achieve orthogonal protection of the sn-2- and sn-3-glycerol positions, and (3) elaboration of the phosphodiester headgroup using a 2-chloro-1,3,2-dioxaphospholane/trimethylamine sequence. In the course of developing the synthesis it has been discovered that methoxyacetate displacement of the sn-3-p-toluenesulfonate yields a reactive methoxyacetyl ester, which in turn can be selectively cleaved with methanol/tert-butylamine, while the ester group at the sn-1-position remains unaffected. The sequence has been shown to be suitable for preparation of spectroscopically labeled lysophosphatidylcholines. One of these compounds was readily converted to a double-labeled mixed-chain phosphatidylcholine applicable for real-time fluorescence resonance energy transfer (FRET) assay of lipolytic enzymes. In addition, the work led to new synthetic strategies based on chemoselective manipulation of the tosyl group in the presence of other base-labile groups such as FMOC derivatives that are often used for the protection of amino and hydroxyl groups in syntheses. PMID:17284078

  15. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  16. ENUMERATION OF CARBOHYDRATE HYDROXYL GROUPS BY SILYLATION AND MATRIX ASSISTED LASER DESORPTION/IONIZATION TIME-OF-FLIGHT MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for enumerating hydroxyl group in analytes is described and applied to various carbohydrates and polyols. The analytes were derivatized in solution by using trimethylsilylimidazole (TMSI) and the products were analyzed without chromatography in a MALDI-TOF-MS. The mass spectra revealed co...

  17. Synthesis and evaluation of lanthanide ion DOTA-tetraamide complexes bearing peripheral hydroxyl groups

    PubMed Central

    Pasha, Azhar; Lin, Mai; Tircsó, Gyula; Rostollan, Cynthia L.; Woods, Mark; Kiefer, Garry E.; Sherry, A. Dean; Sun, Xiankai

    2009-01-01

    The use of lanthanide-based contrast agents for magnetic resonance imaging (MRI) has become an integral component of this important diagnostic modality. These inert chelates typically possess high thermodynamic stability constants that serve as a predictor for in vivo stability and low toxicity. Recently a new class of contrast agents was reported having a significantly lower degree thermodynamic stability while exhibiting biodistribution profiles indicative of high stability under biological conditions. These observations are suggestive that the nature of contrast agent stability is also dependent upon the kinetics of complex dissociation; a feature of potential importance when contemplating the design of new chelates for in vivo use. In this paper we present a study of the kinetics of acid catalyzed dissociation, thermodynamic stability, serum stability and biodistribution of a series of DOTA-tetraamide complexes that have been substituted with peripheral hydroxyl groups. The data indicate that these non-traditional contrast agents exhibit in vivo stability comparable to agents with much higher log KML values demonstrating the important contribution of kinetic inertness. PMID:19083028

  18. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity

    PubMed Central

    Fan, Chenyao; Chen, Chao; Wang, Jia; Fu, Xinxin; Ren, Zhimin; Qian, Guodong; Wang, Zhiyu

    2015-01-01

    The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap. PMID:26133789

  19. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased. PMID:25811170

  20. Structure-dependent activities of polybrominated diphenyl ethers and hydroxylated metabolites on zebrafish retinoic acid receptor.

    PubMed

    Zhao, Jing; Zhu, Xiangwei; Xu, Ting; Yin, Daqiang

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs), a group of potential endocrine-disrupting chemicals (EDCs) have been shown to disrupt retinoid homeostasis in different species in both laboratory and field studies. However, the molecular mechanisms of interactions with the retinoic acid receptor (RAR) are not fully understood. Zebrafish have proven useful for investigating mechanisms of chemical toxicity. In the present study, a reporter gene assay was used to investigate the activities of 11 PBDEs and six OH-PBDEs with different degrees of bromination on zebrafish RAR. All tested OH-PBDEs induced RAR transcriptional activity; however, of the 11 PBDEs examined, only BDE28 and BDE154 affected the RAR transcriptional activity. Homology modeling and molecular docking were employed to simulate the interactions of PBDEs/OH-PBDEs with zebrafish RARs and to identify binding affinities to analyze the specialization of the interaction between RARs and PBDEs/OH-PBDEs. The results showed that although these compounds could bind with RARs, the effects of PBDEs/OH-PBDEs on RAR transcriptional activity did not depend on their RAR-binding abilities. The present study is the first attempt to demonstrate that OH-PBDEs could induce RAR transcriptional activity by binding directly with RAR; these effects are possibly related to the structure of the compounds, especially their hydroxylation and bromination. Most of the PBDEs could not directly interact with the RAR. PMID:25077655

  1. Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group.

    PubMed

    Li, Qintang; Wang, Xudong; Yue, Xiu; Chen, Xiao

    2015-12-22

    The hydroxyl group in the spacer of a cationic Gemini surfactant (12-3OH-12) caused dramatic changes of the phase behaviors in a protic ionic liquid (EAN). Here, the effects of the hydroxyl group on micellization and lyotropic liquid crystal formation were investigated through the surface tension, small-angle X-ray scattering, polarized optical microscopy, and rheological measurements. With the hydroxyl group in the spacer, the critical micellization concentration of 12-3OH-12 was found to be lower than that of the homologue without hydroxyl (12-3-12) and the 12-3OH-12 molecules packed more densely at the air/EAN interface. It was then interesting to observe a coexistence of two separated phases at wide concentration and temperature ranges in this 12-3OH-12/EAN system. Such a micellar phase separation was rarely observed in the ionic surfactant binary system. With the increase of surfactant concentration, the reverse hexagonal and bicontinuous cubic phases appeared in sequence, whereas only a reverse hexagonal phase was found in 12-3-12/EAN system. But, the hexagonal phases formed with 12-3OH-12 exhibited lower viscoelasticity and thermostability than those observed in 12-3-12/EAN system. Such unique changes in phase behaviors of 12-3OH-12 were ascribed to their enhanced solvophilic interactions of 12-3OH-12 and relatively weak solvophobic interactions in EAN. PMID:26634877

  2. Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection

    PubMed Central

    Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R

    2008-01-01

    Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity. PMID:17981760

  3. Self-organizing p-quinquephenyl building blocks incorporating lateral hydroxyl and methoxyl groups into supramolecular nano-assemblies.

    PubMed

    Lu, Zhaoyang; Zhong, Keli; Liu, Yang; Li, Zhaohua; Chen, Tie; Jin, Long Yi

    2016-05-01

    The self-assembling behavior of coil-rod-coil molecules 1a, 1b, and 2a, 2b was investigated using DSC, POM, SAXS, and AFM in bulk and aqueous solutions. These molecules contain p-quinquephenyl groups as rod segments incorporating lateral hydroxyl or methoxyl groups in the center positions and oligo(ethylene oxide)s as the coil segments. Molecules 1a and 1b, with lateral methoxyl groups in the rod segments, self-assemble into oblique columnar structures in the crystalline phase and transform into nematic phases. On the other hand, molecules 2a and 2b, with hydroxyl groups in the center of their rod segments, self-organize into hexagonal perforated lamellar and oblique columnar nano-structures in the crystalline and liquid crystalline phase, respectively. In aqueous solutions, these molecules aggregate into nano-ribbons and vesicles, depending on their lateral groups and oligo(ethylene oxide) chain lengths. These results imply that the lateral methoxyl or hydroxyl groups, present in the center of the rod segments, significantly influence the formation of various supramolecular nano-structures in the bulk state and in aqueous solution. This is achieved via tuning of the non-covalent interactions of the rod building blocks. PMID:27025276

  4. The influence of distribution of hydroxyl groups on vibrational spectra of fullerenol C60(OH)24 isomers: DFT study.

    PubMed

    Dawid, A; Górny, K; Gburski, Z

    2015-02-01

    The infrared and Raman spectra of C60(OH)24 molecule with uniform and non-uniform distribution of hydroxyl groups have been investigated using first principle DFT calculations at the B3LYP/6-31G(d,p) level of theory. The important features of the obtained geometries have been measured and compared to experimental results. The reference calculations of C60 molecule geometry and vibrational spectra have been made and compared to available experimental data. The striking differences of infrared spectra between C60(OH)24 molecule with uniform and non-uniform distribution of hydroxyl groups have been shown and discussed. The OH modes have been identified as the most sensitive to C60(OH)24 isomer configuration. The C-C stretching modes in the Raman spectra of the C60(OH)24 molecule have been found as a potential sensor of OH groups distribution over fullerene C60 surface. PMID:25223813

  5. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  6. Neurosteroids: Can a 2alpha,3alpha-epoxy ring make up for the 3alpha-hydroxyl group?

    PubMed

    Kasal, Alexander; Buděšínský, Miloš; Mareš, Pavel; Krištofíková, Zdena; Leitão, Alcino J; Sá e Melo, Maria Luisa; Silva, Maria Manuel C

    2016-01-01

    Seven steroid epoxides were prepared from 5α-pregn-2-en-20-one and 5α-pregn-3-en-20-one and their side-chain derivatives. All compounds were tested in vitro for binding to γ-aminobutyric acid (GABAA) receptor, some of them also in vivo for anticonvulsant action. 2α,3α-Epoxy-5α-pregnan-20-one inhibited the TBPS binding to the GABAA receptor and showed a moderate anticonvulsant action in immature rats. In contrast, its 3α,4α-isomer was inactive. More polar epoxide derivatives, modified at the side chain were less active or inactive. Noteworthy, diol 20, the product of trans-diaxial opening of the 2α,3α-epoxide 4, was not able to inhibit the TBPS binding, showing that the activity of the epoxide is due to the compound itself and not to its hydrolytic product. The 3α-hydroxyl group is known to be essential for the GABAA receptor binding. Despite the shortness of in vivo effects which are probably due to metabolic inactivation of the products prepared, our results show that the 2α,3α-epoxy ring is another structural pattern with ability to bind the GABAAR. PMID:26631551

  7. Synthesis of dendrigraft poly(ϵ-caprolactone)s using side hydroxyl groups for the grafting of branch chains.

    PubMed

    Cheng, Juan; Ling, Xiujun; Zhong, Zhenlin; Zhuo, Renxi

    2011-11-15

    Dendrigraft poly(ϵ-caprolactone)s with high molecular weight and narrow polydispersity are synthesized via a convenient generation-growth approach. Copolymerization of ϵ-caprolactone (CL) and 4-(2-benzoxyethoxy)-ϵ-caprolactone (BECL) with stannous octanoate as a catalyst affords a functionalized poly(ϵ-caprolactone) (PCL) with benzyl-protected hydroxyl side groups. After removal of benzyl groups by palladium-catalyzed hydrogenolysis, the graft copolymerization of CL and BECL onto the hydroxyl-bearing linear polyester (zero-generation) affords the first-generation graft polyester. Further deprotection and graft polymerization cycles led to dendrigraft polyesters. Molecular weights are multiplied in each graft copolymerization. The second-generation dendrigraft poly(ϵ-caprolactone) has an M(w) of 236 000 g·mol(-1) and M(w) /M(n) of 1.53. PMID:21928304

  8. Synthesis, spectral features and biological activity of some novel hetarylazo dyes derived from 8-chloro-4-hydroxyl-2-quinolone

    NASA Astrophysics Data System (ADS)

    Yahyazadeh, Asieh; Yousefi, Hessamoddin

    2014-01-01

    In this study, 8-chloro-4-hydroxyl-2-quinolone was synthesized from cyclocondensation of corresponding dianilide and subsequently used as a potent coupling component with some diazotized heterocyclic amines. These compounds were characterized by UV-vis, FT-IR, 1H NMR spectroscopic techniques and elemental analysis. Absorption spectra of these dyes were measured in six polar solvents and discussed with respect to the nature of solvents and substituted groups. The effects of acid, base, temperature and concentration on the visible absorption spectra of the dyes were reported. In addition, the antimicrobial activity of the dyes was explored in detail.

  9. Hydrogen peroxide-dependent 4-t-butylphenol hydroxylation by tyrosinase--a new catalytic activity.

    PubMed

    Jiménez, M; García-Carmona, F

    1996-09-13

    The aim of this work was to study the hydroxylation by tyrosinase of 4-t-butylphenol to 4-t-butylcatechol, in the presence of hydrogen peroxide. This hydroxylation reaction does not take place without the addition of hydrogen peroxide. Some properties of this new hydroxylating activity have been analysed. The kinetic parameters of mushroom tyrosinase for hydrogen peroxide (K(m) = 4.9 mM, V(m) = 48.1 microM/min) and 4-t-butylphenol (K(m) = 16 microM/min, V(m) = 6.7 microM/min) were evaluated. A lag period appeared, which was similar to the characteristic lag of monophenolase activity at the expense of molecular oxygen. The length of the lag phase decreased with increasing hydrogen peroxide concentrations but was longer with higher 4-t-butylphenol concentrations. The pH optimum for this hydroxylating activity was close to 5.5. The lag also varied with pH, reaching its highest value at pH 4.8. The lag was shortened by the addition of increasing amounts of 4-t-butylcatechol, and was abolished at 24.5 microM of 4-t-butylcatechol. 4-t-Butylphenol was oxidized by mushroom tyrosinase in the presence of 24.5 microM 4-t-butylcatechol and in the absence of hydrogen peroxide although the enzymatic activity tailed off. The presence of hydrogen peroxide is necessary to maintain a constant steady-state rate of 4-t-butylphenol oxidation by tyrosinase. PMID:8841378

  10. Enhanced visible-light photocatalytic activity of active Al₂O₃/g-C₃N₄ heterojunctions synthesized via surface hydroxyl modification.

    PubMed

    Li, Fa-Tang; Zhao, Ye; Wang, Qing; Wang, Xiao-Jing; Hao, Ying-Juan; Liu, Rui-Hong; Zhao, Dishun

    2015-01-01

    Novel Al2O3/g-C3N4 heterojunction photocatalysts were fabricated through ultrasonic dispersion method. Al2O3, obtained via solution combustion, contained amorphous ingredient with lots of defect sites and was used as active component for transferring photo-induced electrons of g-C3N4. G-C3N4 was grafted surface hydroxyl groups in the presence of ammonia aqueous solution to combine with Al2O3 possessing positive charges via hydrogen bond. The XRD, SEM, element map, TEM, HRTEM, FT-IR, and XPS results indicate that these synthesized materials are two-phase hybrids of Al2O3 and g-C3N4 with interaction. The photocatalytic results for the degradation of rhodamine B (RhB) indicate that the most active heterojunction proportion is 60wt.% g-C3N4:40wt.% Al2O3, the visible light photocatalytic activity of which is 3.8 times that of a mechanical mixture. The enhanced performance is attributed to the high separation efficiency of photo-induced electrons from the LUMO of g-C3N4 injected into the defect sites of Al2O3, which is verified by photoluminescence spectroscopy (PL) and surface photovoltage (SPV) measurements. The electron paramagnetic resonance (EPR) signals and radical scavengers trapping experiments reveal holes (h(+)) and superoxide anion radical (O2(-)) are the main active species responsible for the degradation of RhB. PMID:25306536

  11. Hypochlorous acid-activated carbon: an oxidizing agent capable of producing hydroxylated polychlorinated biphenyls

    SciTech Connect

    Voudrias, E.A.; Larson, R.A.; Snoeyink, V.L.; Chen, A.S.C.; Stapleton, P.L.

    1986-11-01

    Granular activated carbon (GAC), in the presence of dilute aqueous hypochlorite solutions typical of those used in water treatment, was converted to a reagent capable of carrying out free-radical coupling reactions and other oxidations of dilute aqueous solutions of phenols. The products included biphenyls with chlorine and hydroxyl substitution (hydroxylated polychlorinated biphenyls). For example, 2,4-dichlorophenol, a common constituent of waste waters and also natural waters treated with hypochlorite, was converted to 3,5,5'trichloro-2,4'-dihydroxybiphenyl and several related compounds in significant amounts. It is possible that these products pose more of a health hazard than either the starting phenols or the unhydroxylated polychlorinated biphenyl derivatives.

  12. Modulation of arachidonic acid metabolism by phenols: relation to positions of hydroxyl groups and peroxyl radical scavenging properties.

    PubMed

    Alanko, J; Riutta, A; Mucha, I; Vapaatalo, H; Metsä-Ketelä, T

    1993-01-01

    We have shown earlier that catecholamines have opposite regulative effects on prostaglandin (PG)E2 and leukotriene (LT)B4 formation with a receptor-independent mechanism in human polymorphonuclear leukocytes (PMNs) and whole blood. To shed further light on the mechanisms involved and structure-action relationship, we tested the effects of phenols (catechol, hydroquinone, phenol, and resorcinol) on the synthesis of PGE2 and LTB4 in human A23187-stimulated PMNs. To study the mechanism of how phenols influence PGE2 and LTB4 synthesis, their peroxyl radical-scavenging properties were analyzed. In general, low concentrations of phenols stimulated (catechol > hydroquinone > phenol) and high concentrations inhibited (resorcinol > catechol > hydroquinone > phenol) PGE2 formation. Resorcinol was different from the other phenols: It did not stimulate PGE2 synthesis at all, but it was effective inhibitor at high concentrations. Phenols had only an inhibitory effect on LTB4 formation (catechol = hydroquinone > phenol > resorcinol). The order of both stochiometric factors and reactivities of phenols for scavenging peroxyl radicals was catechol > hydroquinone > resorcinol > phenol. According to these results, phenols having hydroxyl groups in ortho- or paraposition have the greatest stimulative effect on PGE2 synthesis, the highest inhibitory action on LTB4 synthesis, and are good antioxidants. Resorcinol, having hydroxyl groups in the metaposition, behaves differently. It neither stimulates PGE2 nor inhibits LTB4 formation, but it is the most potent inhibitor of PGE2 formation. In spite of resorcinol's two hydroxyl groups, it mimics as an antioxidant phenol more than catechol and hydroquinone. PMID:8384148

  13. Studies on the mechanism of activation of microsomal benzo(a)pyrene hydroxylation by flavonoids

    SciTech Connect

    Huang, M.T.; Chang, R.L.; Fortner, J.G.; Conney, A.H.

    1981-07-10

    7,8-benzoflavone or flavone stimulates the hydroxylation of benzo(a)pyrene by liver microsomes from rabbit, hamster, and man severalfold. Little or no activation by the flavonoid occurs in liver microsomes from rat or guinea pig. Intact liver microsomal membranes are not required for the activation. Although 7,8-benzoflavone does not stimulate the NADPH-dependent reduction of cytochrome c by rabbit liver microsomes, the NADPH-dependent reduction of cytochrome P-450 is stimulated by 7,8-benzoflavone either in the presence or absence of benzo(a)pyrene. Purified cytochrome P-450 reductase causes an increase in the rate of benzo(a)pyrene hydroxylation in cholate-solubilized liver microsomes from all of the species studied. In cholate-solubilized microsomes from all of the species susceptible for flavonoid activation, 7,8-benzoflavone decreases the K/sub m/ for cytochrome P-450 reductase and increases the V/sub max/ for benzo(a)pyrene hydroxylation. With cholate-solubilized human liver microsomes, the K/sub m/ for cytochrome P-450 reductase in the absence of flavonoids was about 3-fold higher than in the presence of 100 ..mu..M 7,8-benzoflavone or 500 ..mu..M flavone. 7,8-benzoflavone and flavone stimulate the hydroxylation of benzo(a)pyrene in liver microsomes at least in part by enhancing the interaction between cytochrome P-450 and cytochrome P-450 reductase. 7,8-benzoflavone does not influence the K/sub m/ for benzo(a)pyrene or NADPH, but the V/sub max/ values for benzo(a)pyrene are increased from 2.5- to 4-fold in rabbit liver microsomes. 7,8-benzoflavone does not stimulate the cumene hydroperoxide-dependent hydroxylation of benzo(a)pyrene by rabbit liver microsomes. In two partially purified cytochrome P-450 fractions from rabbit liver microsomes, flavone has a specific stimulatory effect on one of the reconstituted partially purified cytochrome P-450 systems, but an inhibitory effect on the other.

  14. Synthesis, characterization and phytotoxic activity of hydroxylated isobenzofuran-1(3H)-ones

    NASA Astrophysics Data System (ADS)

    Teixeira, R. R.; Pereira, J. L.; Da Silva, S. F.; Guilardi, S.; Paixão, D. A.; Anconi, C. P. A.; De Almeida, W. B.; Ellena, J.; Forlani, G.

    2014-03-01

    Two hydroxylated isobenzofuranones 3 and 4 were synthesized from benzoic acids. The compounds were fully characterized by IR, NMR (1H and 13C), HRMS, and X-ray crystallography. Compounds 3 and 4 crystallized in the space group Pc and P21/n, respectively. DFT calculations were used to confirm undoubtedly their NMR chemical shifts. Biological assays showed that these compounds are capable of interfering with the radicle growth of monocotyledonous and dicotyledonous species, whereas the photosynthetic electron transport chain was substantially unaffected.

  15. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.

    PubMed

    Sreekanth, Vedagopuram; Bajaj, Avinash

    2013-10-10

    Interactions of synthetic phospholipids with model membranes determines the drug release capabilities of phospholipid vesicles at diseased sites. We performed 1,6-diphenyl-1,3,5-hexatriene (DPH)-based fluorescence anisotropy, Laurdan-based membrane hydration, and differential scanning calorimetry (DSC) studies to cognize the interactions of three bile acid phospholipids, lithocholic acid-phosphocholine (LCA-PC), deoxycholic acid-phosphocholine (DCA-PC), and cholic acid-phosphocholine (CA-PC) with model membranes. These studies revealed that bile acid phospholipids increases membrane fluidity in DCA-PC > CA-PC > LCA-PC order, indicating that induction of membrane fluidity is contingent on the number and positioning of free hydroxyl groups on bile acids. Similarly, DCA-PC causes maximum membrane perturbations due to the presence of a free hydroxyl group, whereas LCA-PC induces gel phase in membranes due to hydrophobic bile acid acyl chain interactions. These DCA-PC-induced membrane perturbations induce a drastic decrease in phase transition temperature (Tm) as determined by calorimetric studies, whereas doping of LCA-PC causes phase transition broadening without change in Tm. Doping of CA-PC induces membrane perturbations and membrane hydration like DCA-PC but sharpening of phase transition at higher doping suggests self-association of CA-PC molecules. Therefore these differential mode of interactions between bile acid phospholipids and model membranes would help in the future for their use in drug delivery. PMID:24079709

  16. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids.

    PubMed

    Pensado, Alfonso S; Costa Gomes, Margarida F; Canongia Lopes, José N; Malfreyt, Patrice; Pádua, Agílio A H

    2011-08-14

    Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface. PMID:21643581

  17. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGESBeta

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; et al

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is themore » active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  18. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    SciTech Connect

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; Senanayake, Sanjaya D.

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.

  19. A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix.

    PubMed

    Bi, Xiaoping; You, Zhengwei; Gao, Jin; Fan, Xianqun; Wang, Yadong

    2014-06-01

    Functional groups can control biointerfaces and provide a simple way to make therapeutic materials. We recently reported the design and synthesis of poly(sebacoyl diglyceride) (PSeD) carrying a free hydroxyl group in its repeating unit. This paper examines the use of this polymer to promote biomineralization for application in bone tissue engineering. PSeD promoted more mineralization of extracellular matrix secreted by human mesenchymal stem cells and rat osteoblasts than poly(lactic-co-glycolic acid) (PLGA), which is currently widely used in bone tissue engineering. PSeD showed in vitro osteocompatibility and in vivo biocompatibility that matched or surpassed that of PLGA, as well as supported the attachment, proliferation and differentiation of rat osteoblasts and human mesenchymal stem cells. This demonstrates the potential of PSeD for use in bone regeneration. PMID:24560799

  20. Investigation of water and hydroxyl groups associated with coal fly ash by thermal desorption and fourier transform infrared photoacoustic spectroscopies

    SciTech Connect

    Seaverson, L.M.; McClelland, J.F.; Burnet, G.; Anderegg, J.W.; Iles, M.K.

    1985-01-01

    Thermal desorption spectrometry (TDS) and Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS) have been used in combination to analyze the water and hydroxyl groups associated with four coal fly ashes. Measurements using the former technique on these ashes resulted in identification of three water desorption regions in the temperature range from 25/sup 0/ to 1100/sup 0/C. The regions consisted of a small desorption peak at 50/sup 0/, a broad band from 180/sup 0/ to 400/sup 0/, and an intense peak from 400/sup 0/ to 590/sup 0/. No additional water desorption was observed up to 1100/sup 0/. A fourth ash gave a similar spectrum except that it lacked the intense last peak. The TDS spectra together with FT-IR/PAS spectra taken on samples exposed to pre- and post-desorption peak temperatures allowed the first TDS peak to be assigned to the desorption of physically adsorbed water, the broad band to desorption of hydrogenbonded surface hydroxyls, and the intense last peak to the decomposition of Ca(OH)/sub 2/.

  1. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes. PMID:26274915

  2. Application of activated persulfate for removal of intermediates from antipyrine wastewater degradation refractory towards hydroxyl radical.

    PubMed

    Monteagudo, J M; Durán, A; Latorre, J; Expósito, A J

    2016-04-01

    Complete mineralisation of reaction intermediates refractory towards hydroxyl radical, generated from a previous ineffective degradation of urban wastewater containing antipyrine by HO-mediated sono-photo-Fenton reaction, has been attained using persulfate anions simultaneously activated by heat energy (thermally, ultrasound) and UV-C light. The SO4(-)-based mineralisation process enables another reaction pathway generating more easy degradable derivatives. The influences of the initial concentration of persulfate, ultrasound amplitude, temperature and the reaction time in the previous HO-based previous oxidation on the mineralisation degree were studied by using a Central-Composite Experimental Design. Under optimal conditions ([S2O8(2-)]o=1200mgL(-1), temperature=50°C, amplitude=10%, pH 2.8, HO-based reaction time=25min) practically complete degradation was achieved in approximately 120min. The contribution of HO and SO4(-) radicals in this system was also evaluated. The presence of chloride ion in urban wastewater can benefit the oxidation of acetate by sulfate radical. Results demonstrated that this activated persulfate-based oxidation system is a potential alternative to degrade intermediate compounds, which are refractory against hydroxyl radicals, generated in Advanced Oxidation Processes used to treat wastewater containing emerging contaminants such as antipyrine. PMID:26698672

  3. Band profile of hydroxyl groups in the infrared spectrum of hydrogen-bonded surface complexes: Ammonia on silicon dioxide

    SciTech Connect

    Pavlov, A.Y.; Tsyganenko, A.A.

    1994-07-01

    Dependences of the band maximum and band half-width of the stretching modes of surface OH and OD groups perturbed by ammonia adsorption on Aerosil were studied as functions of sample temperature, amount of adsorbed ammonia, and thermal treatment in vacuum. The appearance of a low-frequency wing was explained by the formation of polymer chains of OH groups coupled via adsorbed molecules. The latter tend to form a second bond with an oxygen atom of the neighboring OH group in addition to a hydrogen bond with a hydroxyl proton via nitrogen. The wide band at 3250 cm{sup -1} was assigned to NH groups of adsorbed molecules perturbed by H-bonding with oxygen. This band is observed as a shoulder of the coupled-OH group band. The large width of the latter as well as its temperature behavior was explained by differences in the arrangement of OH groups and by anharmonic coupling with the low-frequency vibrational modes of the complex. 14 refs., 4 figs., 4 tabs.

  4. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    PubMed

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis. PMID:26776000

  5. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    PubMed

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  6. Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants

    NASA Astrophysics Data System (ADS)

    Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.

    2013-04-01

    A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.

  7. Influence of hydroxyl group position and temperature on thermophysical properties of tetraalkylammonium hydroxide ionic liquids with alcohols.

    PubMed

    Attri, Pankaj; Baik, Ku Youn; Venkatesu, Pannuru; Kim, In Tae; Choi, Eun Ha

    2014-01-01

    In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15-313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (V(E) ) and the deviation in isentropic compressibility (Δκs ) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich-Kister polynomial equation. It was observed that for all studied systems, the V(E) and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7. PMID:24489741

  8. Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols

    PubMed Central

    Attri, Pankaj; Baik, Ku Youn.; Venkatesu, Pannuru; Kim, In Tae; Choi, Eun Ha

    2014-01-01

    In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15–313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (VE) and the deviation in isentropic compressibility (Δκs) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich–Kister polynomial equation. It was observed that for all studied systems, the VE and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7. PMID:24489741

  9. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    NASA Astrophysics Data System (ADS)

    Tang, Shoufeng; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (•OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of •OH. Oxygen atmosphere and a suitable GAC water content were contributed to •OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  10. Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Chong; Li, Qingsong; Tang, Limei; Xin, Kun; Bai, Ailing; Yu, Yingmin

    2015-12-01

    In the present study, monodisperse colloidal zinc oxide (ZnO) nanospheres were successfully synthesized via a newly developed two-stage solution method followed by facile calcination at various temperatures. The effects of calcination temperature on the structure, morphology, and optical properties as well as the photocatalytic activity of the as-made ZnO samples were investigated systematically by Fourier transform infrared spectrometry, X-ray diffraction, field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, diffuse reflectance UV-visible spectroscopy (DRS), photoluminescence, and related photocatalytic activity tests. The thermal decomposition was analyzed by thermogravimetric analysis. The crystallinity was found to gradually increase with increasing calcination temperature, whereas the decrease in the Brunauer-Emmett-Teller specific surface area of the samples with calcination may be ascribed to the increased particle size. The DRS results provided clear evidence for the decrease in band gap energy of ZnO samples with an increase in calcination temperature. The photoluminescence spectra demonstrated the calcination-dependent emission features, especially the UV emission intensity. In particular, the ZnO product calcined at 400 °C exhibited the highest photocatalytic activity, degrading methylene blue by almost 99.1% in 70 min, which is ascribed to the large specific surface area and pore volume, high electron-hole pair separation efficient, and great redox potential of the obtained ZnO nanoparticles. In addition, the production of photogenerated hydroxyl radicals (•OH) was consistent with the methylene blue degradation efficiency over the as-made ZnO nanoparticles. Using isopropanol as a hydroxyl radical scavenger, •OH was determined to be the main active oxygen species in the photocatalytic process. A possible mechanism of photodegradation under UV light irradiation also is proposed.

  11. Heterogeneity of hydroxyl and deuteroxyl groups on the surface of TiO{sub 2} polymorphs

    SciTech Connect

    Contescu, C.; Popa, V.T.; Schwarz, J.A.

    1996-06-01

    Potentiometric titration data from pure rutile, anatase, and a commercial fumed titania (Degussa P25) were analyzed in terms of proton binding isotherms from which proton affinity distributions (PADs) of surface sites were obtained. As-received samples, whose thermal and storage history were not systematically controlled, as well as samples subjected to controlled calcination-rehydration-drying treatments were studied. The results indicated the occurrence of a limited number of surface groups on the two polymorphs. The behavior of pure rutile and anatase could be admixed to simulate the acid-base behavior of the commercial sample; on this basis the surface of fumed titania consists largely of anatase-like structures with a small contribution (7%) of rutile-like groups. The region of {nu}{sub OD} stretching vibrations of isolated -OD groups on extensively dehydroxylated samples was found to correlate with the pK`s determined from PADs. A qualitative assignment of measured pK values based on either the original MUSIC model (Hiemstra, T., de Wit, J.C.M., and Van Riemsdijk, W.H., J. Colloid Interface Sci. 133, 105 (1989)) or a refined version of it is presented.

  12. Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation.

    PubMed

    Turner, S; Senaratna, T; Touchell, D; Bunn, E; Dixon, K; Tan, B

    2001-02-01

    The efficacy of several sugars and polyalcohols in preculture medium was investigated using Anigozanthos viridis ssp terraspectans Hopper (Haemodoraceae), a threatened plant species endemic to the south west of Western Australia. A vitrification protocol involving preculturing of shoot apices for 3 days on different concentrations of sugars and polyalcohols, followed by incubation in plant vitrification solution 2 (PVS2) for 25 min, prior to immersion in liquid nitrogen (LN) and warming resulted in shoot tip survival ranging from 34 to 84%. High levels of survival were obtained with polyalcohols, compared to sucrose, glucose, trehalose and raffinose when used at the same molarity (0.4 M) or at the equivalent concentration of total hydroxyl (OH) groups present in molecules. In both cases glycerol proved more effective. When polyalcohols (ribitol and erythritol) with similar stereochemical arrangement of OH groups as glycerol were examined, at the same molarity (0.4 M) and with equivalent OH numbers, higher survival was achieved when the total number of OH groups present was the same as glycerol. Additionally, when the structural isomers mannitol/sorbitol and ribitol/xylitol were compared at the same molarity (0.4 M), the isomer with the higher number of OH groups along the same side resulted in significantly higher levels of post-LN survival. We propose that the mode of action of polyalcohols is based not on molarity, but on the total number of OH groups present in the medium. Furthermore, based on these results we propose that the orientation of OH groups is a determining factor in effective cryopreservation. PMID:11166436

  13. Short-step chemical synthesis of DNA by use of MMTrS group for protection of 5'-hydroxyl group.

    PubMed

    Shiraishi, Miyuki; Utagawa, Eri; Ohkubo, Akihiro; Sekine, Mitsuo; Seio, Kohji

    2007-01-01

    4-methoxytrithylthio (MMTrS) group was applied for the appropriately protected four canonical nucleosides. We prepared the phosphoroamidite units by use of these nucleosides and developed the synthesis of oligodeoxynucleotides without any acidic treatment. Moreover, the new DNA synthesis protocol was applied to an automated DNA synthesizer for the synthesis of longer oligodeoxynucleotides. PMID:18029620

  14. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-01

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. PMID:25621992

  15. Alkyne versus allene activation in platinum- and gold-catalyzed cycloisomerization of hydroxylated 1,5-allenynes.

    PubMed

    Zriba, Riadh; Gandon, Vincent; Aubert, Corinne; Fensterbank, Louis; Malacria, Max

    2008-01-01

    Chemo- and stereoselective transformations of 3-hydroxy-1,5-allenynes 1 into a variety of new and potentially useful cyclic compounds have been achieved. Substrates bearing a silyl group at the alkyne moiety undergo purely thermal or Lewis acid catalyzed Alder-ene type transformations into 2-methylene-3-vinylcyclopent-3-enol derivatives 2. When heated in the presence of a catalytic amount of PtCl(2) or PtCl(4), these incipient cyclopentenols could be further transformed into 3-vinylcyclopent-2-enones 3. On the other hand, alkyl-substituted 3-hydroxy-1,5-allenynes proved to be stable under refluxing conditions. Nevertheless, PtCl(2) and PtCl(4) could selectively activate the alkyne moiety of these substrates toward intramolecular nucleophilic attack of the internal allene double bond to yield unprecedented 6-methylenebicyclo[3.1.0]hexan-3-one derivatives 4. With gold-based catalysts, provided that the reaction is carried out in dichloromethane, both Au(I) and Au(III) complexes selectively activate the allene fragment of the substrates toward intramolecular nucleophilic attack of the hydroxyl group to yield 2-ethynyl-3,6-dihydro-2H-pyrans 5. Compounds of type 4 can also be formed with Au(I) and Au(III) complexes if the reaction is carried out in toluene. The reactivity of these new compounds has been partially investigated, and polycyclic ketones were obtained after oxidation under mild conditions or gold-catalyzed cycloisomerization. PMID:18034446

  16. Active phase of a Pd-Cu/ZSM-5 catalyst for benzene hydroxylation: In-situ XAFS studies

    NASA Astrophysics Data System (ADS)

    Cho, Kye-Sung; Lee, Yong-Kul

    2012-07-01

    The gas-phase hydroxylation of benzene by using a mixture of oxygen and hydrogen has been carried out over Cu/ZSM-5 catalysts modified with palladium. In-situ X-ray absorption studies employed in the course of H2-tempereature programmed reduction (H2-TPR) followed by benzene hydroxylation confirmed that the oxidic phase of Cu2+ was transformed to Cu+ during the reaction. The addition of Pd to Cu/ZSM-5 noticeably improved the reducibility of the oxidic Cu phase, which resulted in an increase in the activity of the reaction.

  17. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines.

    PubMed

    Kadayat, Tara Man; Song, Chanju; Shin, Somin; Magar, Til Bahadur Thapa; Bist, Ganesh; Shrestha, Aarajana; Thapa, Pritam; Na, Younghwa; Kwon, Youngjoo; Lee, Eung-Seok

    2015-07-01

    A series of novel twenty-eight rigid 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines were synthesized and evaluated for their topoisomerase inhibitory activity as well as their cytotoxicity against several human cancer cell lines. Generally, hydroxylated compounds (16-18, 22-25, and 29-31) containing furyl or thienyl moiety at 4-position of central pyridine exhibited strong topoisomerase I and II inhibitory activity compared to positive control, camptothecin and etoposide, respectively, in low micromolar range. Structure-activity relationship study revealed that indenopyridine compounds with hydroxyl group at 2-phenyl ring in combination with furyl or thienyl moiety at 4-position are important for topoisomerase inhibition. Compounds (22-25) which contain hydroxyl group at meta position of the 2-phenyl ring at 2-position and furanyl or thienyl substitution at 4-position of indenopyridine, showed concrete correlations between topo I and II inhibitory activity, and cytotoxicity against evaluated human cancer cell lines. PMID:26022080

  18. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  19. Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups.

    PubMed

    Sakai, Shinji; Khanmohammadi, Mehdi; Khoshfetrat, Ali Baradar; Taya, Masahito

    2014-10-13

    Horseradish peroxidase-catalyzed cross-linking was applied to prepare hydrogels from aqueous solutions containing chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups (denoted as Ph-chitosan and Ph-PVA, respectively). Comparing the hydrogels prepared from the solution of 1.0% (w/v) Ph-chitosan and 3.0% (w/v) Ph-PVA and that of 3.0% (w/v) Ph-chitosan and 1.0% (w/v) Ph-PVA, the gelation time of the former hydrogel was 47 s, while was 10s longer than that of the latter one. The breaking point for the former hydrogel under stretching (114% strain) was approximately twice larger than that for the latter one. The swelling ratio of the former hydrogel in saline was about half of the latter one. Fibroblastic cells did not adhere on the former hydrogel but adhered and spread on the latter one. The growth of Escherichia coli cells was fully suppressed on the latter hydrogel during 48 h cultivation. PMID:25037368

  20. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  1. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.

    PubMed

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. PMID:25956144

  2. An Active Adventure for Groups.

    ERIC Educational Resources Information Center

    Gillis, H. Lee

    A sequence of action-oriented games and initiatives is provided in this guide for group therapy leaders who wish to employ activities to promote trust, problem solving, and cohesion among group members. Introductory material discusses the objectives of action-oriented therapy, the adaptation of traditionally outdoor activities to indoor settings,…

  3. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).

    PubMed

    Zhang, J S; Stanforth, R S; Pehkonen, S O

    2007-02-01

    Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but

  4. Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity.

    PubMed

    Zhang, Ji; Wang, Xiang-Jing; Yan, Yi-Jun; Jiang, Ling; Wang, Ji-Dong; Li, Bao-Ju; Xiang, Wen-Sheng

    2010-11-01

    A bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from Actinoplanes sp. HBDN08. The structure of the antifungal metabolite was elucidated as 5-hydroxyl-5-methyl-2-hexenoic acid on the basis of spectral analysis. This compound showed strong in vitro antifungal activity against Botrytis cinerea, Cladosporium cucumerinum and Corynespora cassiicola, with an IC(50) of 32.45, 27.17, and 30.66 mg/L, respectively; however, it only moderately inhibited hyphal growth of Rhizoctonia solani with an IC(50) of 61.64 mg/L. The in vivo antifungal activity under greenhouse conditions demonstrated that 5-hydroxyl-5-methyl-2-hexenoic acid could effectively control the diseases caused by B. cinerea, C. cucumerinum and C. cassiicola with 71.42%, 78.63% and 65.13% control values at 350 mg/L, respectively. This strong antifungal activity suggests that 5-hydroxyl-5-methyl-2-hexenoic acid might be a promising candidate for new antifungal agents. PMID:20584599

  5. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs)

    SciTech Connect

    Canton, Rocio F. Scholten, Deborah E.A.; Marsh, Goeran; Jong, Paul C. de; Berg, Martin van den

    2008-02-15

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in many different polymers, resins and substrates. Due to their widespread production and use, their high binding affinity to particles, and their lipophilic properties, several PBDE congeners can bioaccumulate in the environment. As a result, PBDEs and their hydroxylated metabolites (OH-PBDEs) have been detected in humans and various wildlife samples, such as birds, seals, and whales. Furthermore, certain OH-PBDEs and their methoxylated derivatives (MeO-PBDEs) are natural products in the marine environment. Recently, our laboratory focused on the possible effects on steroidogenesis of PBDEs and OH-PBDEs, e.g. in the human adrenocortical carcinoma (H295R) cell line indicating that some OH-PBDEs can significantly influence steroidogenic enzymes like CYP19 (aromatase) and CYP17. In the present study, human placental microsomes have been used to study the possible interaction of twenty two OH-PBDEs and MeO-PBDEs with aromatase, the enzyme that mediates the conversion of androgens into estrogens. All OH-PBDE derivates showed significant inhibition of placental aromatase activity with IC{sub 50} values in the low micromolar range, while the MeO-PBDEs did not have any effect on this enzyme activity. Enzyme kinetics studies indicated that two OH-PBDEs, 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE47) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47), had a mixed-type inhibition of aromatase activity with apparent K{sub i}/K{sub i}' of 7.68/0,02 {mu}M and 5.01/0.04 {mu}M respectively. For comparison, some structurally related compounds, a dihydroxylated polybrominated biphenyl, which is a natural product (2,2'-dihyroxy-3,3',5,5'-tetrabromobiphenyl (2,2'-diOH-BB80)) and its non-bromo derivative were also included in the study. Again inhibition of aromatase activity could be measured, but their potency was significantly less than those observed for the OH-PBDEs. These results show

  6. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.

    PubMed

    Federici Canova, F; Foster, A S; Rasmussen, M K; Meinander, K; Besenbacher, F; Lauritsen, J V

    2012-08-17

    Atom-resolved non-contact atomic force microscopy (NC-AFM) studies of the magnesium aluminate (MgAl(2)O(4)) surface have revealed that, contrary to expectations, the (100) surface is terminated by an aluminum and oxygen layer. Theoretical studies have suggested that hydrogen plays a strong role in stabilizing this surface through the formation of surface hydroxyl groups, but the previous studies did not discuss in depth the possible H configurations, the diffusion behaviour of hydrogen atoms and how the signature of adsorbed H is reflected in atom-resolved NC-AFM images. In this work, we combine first principles calculations with simulated and experimental NC-AFM images to investigate the role of hydrogen on the MgAl(2)O(4)(100) surface. By means of surface energy calculations based on density functional theory, we show that the presence of hydrogen adsorbed on the surface as hydroxyl groups is strongly predicted by surface stability considerations at all relevant partial pressures of H(2) and O(2). We then address the question of how such adsorbed hydrogen atoms are reflected in simulated NC-AFM images for the most stable surface hydroxyl groups, and compare with experimental atom-resolved NC-AFM data. In the appendices we provide details of the methods used to simulate NC-AFM using first principles methods and a virtual AFM. PMID:22827936

  7. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yang, Zewei; An, Hao; Zhai, Jianping; Li, Qin; Cui, Hao

    2015-01-01

    TiO2 was coated on the surface of hydroxylated fly ash cenospheres (FACs) by the sol-gel method. Platinum (Pt) was then deposited on these TiO2/FAC particles by a photoreduction method to form PTF photocatalyst. The photocatalytic activity of PTF for the degradation of methylene blue (MB) under visible-light irradiation was determined. The PTF sample that was calcined at 450 °C and had a Pt/TiO2 mass ratio of 1.5% exhibited the optimal photocatalytic activity for degradation of MB with a catalyst concentration of 3 g L-1. MB was photodecomposed by PTF in aqueous solution more effectively at alkali pH than at acidic pH, because more MB molecules were adsorbed on the surface of PTF under alkaline conditions than that under acidic. The effect of various inorganic anions (HCO3-, F-, SO42-, NO3-, and Cl-) on the photodegradation of MB by PTF was also investigated. Addition of anions with a concentration of 5 mM enhanced the photocatalytic efficiency of PTF because of the improved adsorption of MB. This effect weakened as the anion concentration was increased, which was attributed to the ability of the anions to scavenge hydroxyl radicals and holes. Our results indicated that the photodegradation of MB took place mainly on the catalyst surface. The generation of hydroxyl radicals in the photocatalytic reaction was measured by the fluorescence method. KI was used to determine the participation of holes in the photocatalytic reaction. Both hydroxyl radicals and valence-band holes were detected in the PTF system. Recycling tests revealed that calcination of the used PTF helped to regain its photocatalytic activity.

  8. Optimization of hydroxyl radical scavenging activity of exo-polysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology.

    PubMed

    Chen, Hui; Xu, Xiangqun; Zhu, Yang

    2010-04-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exo-polysaccharides from Inonotus obliquus by response surface methodology. A two-level fractional factorial design was used to evaluate the effect of different components of medium. Corn flour, peptone, and KH2PO4 were important factors significantly affecting hydroxyl radical scavenging activity. These selected variables were subsequently optimized using path of steepest ascent (descent), a central composite design, and response surface analysis. The optimal medium composition was (% w/v): corn flour 5.30, peptone 0.32, KH2PO4 0.26, MgSO4 0.02, and CaCl2 0.01. Under the optimal condition, the hydroxyl radical scavenging rate (49.4%) was much higher than that using either basal fermentation medium (10.2%) and single variable optimization of fermentation medium (35.5%). The main monosaccharides components of the RSM optimized polysaccharides are rhamnose, arabinose, xylose, mannose, glucose and galactose with molar proportion at 1.45%, 3.63%, 2.17%, 15.94%, 50.00%, and 26.81%. PMID:20467262

  9. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    PubMed

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action. PMID:24189590

  10. Structure-activity relationships in aminosterol antibiotics: the effect of stereochemistry at the 7-OH group.

    PubMed

    Tessema, Tsemre-Dingel; Gassler, Frank; Shu, Youheng; Jones, Stephen; Selinsky, Barry S

    2013-06-01

    Squalamine and three aminosterol analogs have been shown to inhibit bacterial cell growth and induce lysis of large unilamellar phospholipid vesicles. The analogs differ in the identity of the polyamine attached at C3 of the sterol, and the stereochemistry of a hydroxyl substituent at C7. Analogs with a tetraammonium spermine polyamine are somewhat more active than analogs with a shorter trisammonium spermidine polyamine, and analogs with an axial (α) hydroxyl substituent at C7 are more active than analogs with the corresponding equatorial (β) hydroxyl group. There is some variability noted; the 7β-OH spermine analog is the most active compound against Escherichia coli, but the least effective against Pseudomonas aeruginosa. Lytic activity correlates well with antimicrobial activity of the compounds, but the lytic activity varies with the phospholipid composition of the vesicles. PMID:23618624

  11. Replacement of the carboxylic acid group of prostaglandin F2α with a hydroxyl or methoxy substituent provides biologically unique compounds

    PubMed Central

    Woodward, D F; Krauss, A H-P; Chen, J; Gil, D W; Kedzie, K M; Protzman, C E; Shi, L; Chen, R; Krauss, H A; Bogardus, A; Dinh, H T T; Wheeler, L A; Andrews, S W; Burk, R M; Gac, T; Roof, M B; Garst, M E; Kaplan, L J; Sachs, G; Pierce, K L; Regan, J W; Ross, R A; Chan, M F

    2000-01-01

    Replacement of the carboxylic acid group of PGF2α with the non-acidic substituents hydroxyl (-OH) or methoxy (-OCH3) resulted in an unexpected activity profile.Although PGF2α 1-OH and PGF2α 1-OCH3 exhibited potent contractile effects similar to 17-phenyl PGF2α in the cat lung parenchymal preparation, they were approximately 1000 times less potent than 17-phenyl PGF2α in stimulating recombinant feline and human FP receptors.In human dermal fibroblasts and Swiss 3T3 cells PGF2α 1-OH and PGF2α 1-OCH3 produced no Ca2+ signal until a 1 μM concentration was exceeded. Pretreatment of Swiss 3T3 cells with either 1 μM PGF2α 1-OH or PGF2α 1-OCH3 did not attenuate Ca2+ signal responses produced by PGF2α or fluprostenol. In the rat uterus, PGF2α 1-OH was about two orders of magnitude less potent than 17-phenyl PGF2α whereas PGF2α 1-OCH3 produced only a minimal effect.Radioligand binding studies on cat lung parenchymal plasma membrane preparations suggested that the cat lung parenchyma does not contain a homogeneous population of receptors that equally respond to PGF2α1-OH, PGF2α1-OCH3, and classical FP receptor agonists.Studies on smooth muscle preparations and cells containing DP, EP1, EP2, EP3, EP4, IP, and TP receptors indicated that the activity of PGF2α 1-OH and PGF2α 1-OCH3 could not be ascribed to interaction with these receptors.The potent effects of PGF2α 1-OH and PGF2α 1-OCH3 on the cat lung parenchyma are difficult to describe in terms of interaction with the FP or any other known prostanoid receptor. PMID:10952685

  12. Copper(II)-complex directed regioselective mono-p-toluenesulfonylation of cyclomaltoheptaose at a primary hydroxyl group position: an NMR and molecular dynamics-aided design.

    PubMed

    Law, Ho; Benito, Juan M; Fernández, José M García; Jicsinszky, Laszlo; Crouzy, Serge; Defaye, Jacques

    2011-06-16

    Interactions between cyclomaltoheptaose (β-cyclodextrin, βCD) and p-toluenesulfonyl chloride (TsCl) were investigated using MD simulations, both in vacuum, approximating the hydrophobic environment of the CD cavity, and with water as a solvent. In both cases, the minimum energy adiabatic paths, and the mean force potentials (MFP) for the insertion of TsCl along a reaction coordinate perpendicular to the CD plane, were calculated for the two possible orientations of TsCl. The results show a preferred entry of TsCl in the CD cavity with the sulfonyl chloride group pointing to the primary hydroxyls rim. In each orientation, two energy minima for the complex are detected in vacuum that reflect the H-H contacts between host and guest observed by NMR spectroscopy (ROESY, NOESY). These separate minima collapsed into a single broader minimum, when the solvent was introduced in the simulations. The resulting association constant between TsCl and βCD (K(a) ≈ 100 M(-1)) is in good agreement with the NMR results (K(a) = 102 ± 12 M(-1)) in deuterated water solution at 298 K. Advantage has been taken of the dynamics of the reagent inclusion to set up a one step process involving a transient Cu(2+) chelate at the secondary hydroxyls rim position for the electrophilic monoactivation of βCD at the primary hydroxyls rim using water as solvent. PMID:21591775

  13. Dehydration and Stabilization of a Reactive Tertiary Hydroxyl Group in Solid Oral Dosage Forms of BMS-779788.

    PubMed

    Adams, Monica L; Sharma, Vijayata; Gokhale, Madhushree; Huang, Yande; Stefanski, Kevin; Su, Ching; Hussain, Munir A

    2016-04-01

    BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl. PMID:26921118

  14. Preparation of hydroxylated polyethylene surfaces.

    PubMed

    Zand, A; Walter, N; Bahu, M; Ketterer, S; Sanders, M; Sikorski, Y; Cunningham, R; Beholz, L

    2008-01-01

    The surfaces of high-density or ultra-high-molecular-weight polyethylenes were hydroxylated using a two-step process. The wetting and wear properties of the untreated (virgin) and surface hydroxylated polyethylenes were compared. The introduction of hydroxyl groups provided an increase in surface hydrophilicity resulting in reduced wear. Hydrophilicity was analyzed by optical analysis of water contact angle. Wear was determined by weight loss under conditions of a reciprocating pin-on-plate apparatus with the panels immersed in water or calf serum. These results suggest that hydroxylation of polyethylene friction-bearing orthopedic surfaces may lead to a longer joint life. PMID:18318959

  15. Activity Group Guidance: A Developmental Approach

    ERIC Educational Resources Information Center

    Hillman, Bill W.; And Others

    1975-01-01

    Illustrates the content, process, and group dynamics of Activity Group Guidance. Describes and evaluates a comprehensive Activity Group Guidance program. Gives specific suggestions to counselors who wish to start Activity Groups. (Author)

  16. Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe.

    PubMed

    Liu, Saisai; Zhao, Jun; Zhang, Kui; Yang, Lei; Sun, Mingtai; Yu, Huan; Yan, Yehan; Zhang, Yajun; Wu, Lijun; Wang, Suhua

    2016-04-01

    This work reports a novel dual-emissive fluorescent probe based on dye hybrid silica nanoparticles for ratiometric measurement of the hydroxyl radical (˙OH). In the probe sensing system, the blue emission of coumarin dye (coumarin-3-carboxylic acid, CCA) immobilized on the nanoparticle surface is selectively enhanced by ˙OH due to the formation of a coumarin hydroxylation product with strong fluorescence, whereas the emission of red fluorescent dye encapsulated in the silica nanoparticle is insensitive to ˙OH as a self-referencing signal, and so the probe provides a good quantitative analysis based on ratiometric fluorescence measurement with a detection limit of 1.65 μM. Moreover, the probe also shows high selectivity for ˙OH determination against metal ions, other reactive oxygen species and biological species. More importantly, it exhibits low cytotoxicity and high biocompatibility in living cells, and has been successfully used for cellular imaging of ˙OH, showing its promising application for monitoring of intracellular ˙OH signaling events. PMID:26958658

  17. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups. PMID:27126078

  18. Detection and measurement of the agonistic activities of PCBs and mono-hydroxylated PCBs to the constitutive androstane receptor using a recombinant yeast assay.

    PubMed

    Kamata, Ryo; Shiraishi, Fujio; Kageyama, Shiho; Nakajima, Daisuke

    2015-10-01

    Polychlorinated biphenyls (PCBs) are thought to exert their toxicities mainly by binding to the aryl hydrocarbon receptor and by stimulating transcription of various genes, notably metabolizing enzymes including the cytochrome P450 (CYP) 1 family. However, PCBs and their metabolites could have potential to activate other nuclear receptors and subsequent events. We focused on the constitutive androstane receptor (CAR) inducing CYP2B and measured the agonistic activity of PCBs and mono-hydroxylated PCBs (OH-PCBs) to the CAR using yeast cells transduced with the human CAR and its response pathway. Twenty-nine of 34 tested PCBs and 72 of 91 OH-PCBs exhibited CAR agonistic effects. Of 41 OH-PCBs that had the same chlorination patterns as the tested PCBs, 9 had activities more than twice those of their non-hydroxylated analogs. In particular, 2',4',6'-trichlorobiphenyl-4-ol and 2,2',4',6'-tetrachlorobiphenyl-4-ol were 332- and 22-fold more potent than their analogs and were 15 times and 2.8 times, respectively, as active as a reference substance, 4-tert-octylphenol. The activities of 17 of the OH-PCBs were reduced to less than half those of their non-hydroxylated analogs. Four OH-PCBs derived from 3 active PCBs were inactive. However, a consistent relationship between hydroxyl substituent position and activity could not be discerned. Comprehensive evaluation of the toxic potential of PCBs and their hydroxylated metabolites and their concentrations in the environment are required. PMID:26231822

  19. Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-02-01

    The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.

  20. Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Mohammadi Ziarani, Ghodsi

    2015-01-01

    In this study, the photocatalytic efficiency of anatase-type TiO2 nanoparticles synthesized using the sol-gel low-temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV-light-assisted photo and NaBH4 -assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed-bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH-modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH-modified Cu/TiO2 nanoparticles. PMID:25809844

  1. Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor

    PubMed Central

    Chen, Yuan-Han; Comeaux, Lindsay M.; Herbst, Robert W.; Saban, Evren; Kennedy, David C.; Maroney, Michael J.; Knapp, Michael J.

    2008-01-01

    Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) α-ketoglutarate (αKG) dependent dioxygenase superfamily, including the human enzyme called the Factor Inhibiting HIF (FIH-1), which couples O2-activation to the hydroxylation of the Hypoxia Inducible Factor α (HIFα). Uncoupled O2-activation by human FIH-1 was studied by exposing the resting form of FIH-1, (αKG+Fe)FIH-1, to air in the absence of HIFα. Uncoupling lead to two distinct enzyme oxidations, one a purple chromophore (λmax = 583 nm) arising from enzyme auto-hydroxylation of Trp296, forming an Fe(III)–O–Trp296 chromophore (Y.-H. Chen, L. M. Comeaux, S. J. Eyles, M. J. Knapp, Chem. Commun. (2008) DOI:10.1039/B809099H); the other a yellow chromophore due to Fe(III) in the active site, which under some conditions also contained variable levels of an oxygenated surface residue, (oxo)Met275. The kinetics of purple FIH-1 formation were independent of Fe(II) and αKG concentrations, however product yield was saturable with increasing [αKG] and required excess Fe(II). Yellow FIH-1 was formed from (succinate+Fe)FIH-1, or by glycerol addition to (αKG+Fe)FIH-1, suggesting that glycerol could intercept the active oxidant from the FIH-1 active site and prevent hydroxylation. Both purple and yellow FIH-1 contained high-spin, rhombic Fe(III) centers, as shown by low temperature EPR. XAS indicated distorted octahedral Fe(III) geometries, with subtle differences in inner-shell ligands for yellow and purple FIH-1. EPR of Co(II)-substituted FIH-1, (αKG+Co)FIH-1, indicated a mixture of 5-coordinate and 6-coordinate enzyme forms, suggesting that resting FIH-1 can readily undergo uncoupled O2-activation by loss of an H2O ligand from the metal center. PMID:18805587

  2. Interaction of Gold Clusters with a Hydroxylated Surface

    SciTech Connect

    Jiang, Deen; Overbury, Steven {Steve} H; Dai, Sheng

    2011-01-01

    We explore the interaction between gold nanoclusters and a fully hydroxylated surface, Mg(OH){sub 2}'s basal plane, by using a density functional theory-enabled local basin-hopping technique for global-minimum search. We find strong interaction of gold nanoclusters with the surface hydroxyls via a short bond between edge Au atoms and O atoms of the -OH groups. We expect that this strong interaction is ubiquitous on hydroxylated support surfaces and helps the gold nanoclusters against sintering, thereby contributing to their CO-oxidation activity at low temperatures.

  3. ESSENTIAL ROLE OF SURFACE HYDROXYLS FOR THE STABILIZATION AND CATALYTIC ACTIVITY OF TiO2-SUPPORTED GOLD NANOPARTICLES

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Dudney, Nancy J

    2009-01-01

    We report the investigation of titania supported gold catalysts prepared by magnetron sputtering. Catalysts grown on natural fumed titania were structurally unstable resulting in the rapid coarsening of 2.3 nm gold clusters into large ~20 nm gold clusters in a few days at room temperature under normal atmospheric conditions. However, treating the titania support powder to a mock-deposition-precipitation process, at pH 4 or pH 10, followed by the subsequent deposition of gold onto this treated powder produced a remarkable enhancement in gold particle stability and a 20-40 fold enhancement of catalytic activity respectively. This enhancement can not be attributed to the formation of oxygen vacancies on the TiO2 surface. Instead, it appears to be associated with the formation of strongly bound hydroxyl species on the TiO2 surface. The formation of surface hydroxyls during the deposition-precipitation method is coincidental and contributes significantly to the properties of Au/TiO2 catalysts.

  4. Synthesis and anti-HIV activity of 4-(naphthalen-1-yl)-1,2,5-thiadiazol-3-hydroxyl derivatives.

    PubMed

    Rai, Diwakar; Chen, Wenmin; Zhan, Peng; Liu, Hong; Tian, Ye; Liang, Xin; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan; Liu, Xinyong

    2014-10-01

    A series of 4-(naphthalen-1-yl)-1,2,5-thiadiazol-3-hydroxyl derivatives (Ia-Im and IIa-IIe) designed as novel HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) was synthesized via an expeditious route and evaluated for their anti-HIV activities in MT-4 cell cultures. All the synthesized compounds were structurally confirmed by spectral analyses. Biological results showed that three analogues displayed moderate inhibitory activity against wild-type (wt) HIV-1 replication with EC(50) values ranging from 16 to 22 μm. Molecular docking of compound Ih with wt HIV-1 RT was performed to understand the binding mode between these inhibitors and the wt HIV-1 RT and to rationalize some SARs. PMID:24674646

  5. Activities of the WASVSO Group

    NASA Astrophysics Data System (ADS)

    Simonsen, Michael A.; van Poucker, Joseph F.; Greene, Stephen M.

    2001-04-01

    This poster outlines the goals, activities, and achievements of the Warren Astronomical Society Variable Star Observers (WASVSO), a special-interest sub-group of the Warren Astronomical Society in Michigan. The WASVSO holds monthly meetings to discuss variable star behavior, terminology, current events, observing techniques, Internet resources, software, and of course, the weather. Ongoing projects include monitoring cataclysmic variables, active galactic nuclei, and stars that need more observations from the AAVSO "News Flashes" and "Alert Notices". We are also actively involved in "spreading the word" about AAVSO and variable star observing through presentations at star parties and a speaker exchange program with other astronomy clubs throughout the Midwest and Canada. The WASVSO also maintains an impressive website featuring member areas, upcoming events, articles on variable stars and observing techniques, charts for obscure cataclsmic variables, utilities for observing, and links to variable star organizations and observers throughout the world. Members of the WASVSO contributed 94% of all variable star observations submitted to the AAVSO from Michigan in the fiscal year 2000-2001, and our enthusiasm has catapulted Michigan from 20th place to 11th in overall numbers of US observations submitted to AAVSO in one year.

  6. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors.

    PubMed

    Huang, Xuan; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-04-21

    In this work, a series of porous carbon materials with hierarchical porosities have been synthesized via a template carbonization method, in which cheap CaCO3 serves as a template and glucose as a carbon precursor. During the carbonization process, CO2 produced by the decomposition of the CaCO3 template can act as an internal activating agent, significantly improving microporosity and mesoporosity. All the carbon materials obtained by regulating the ratio of glucose to CaCO3 exhibit the amorphous features with a low graphitization degree. Among them, the carbon-1 : 2 sample shows a high BET surface area of up to 818.5 m(2) g(-1) and a large total pore volume of 1.78 cm(3) g(-1) as well as a specific capacitance of 107.0 F g(-1) at 1 A g(-1). In addition, a series of hydroquinone (HQ), p-aminophenol (PAP) and p-nitrophenol (PNP) as novel redox additives that can produce pseudo-capacitances have been added into the KOH electrolyte for promoting the total capacitive performances via redox reactions at the electrode-electrolyte interface. As expected, a 2.5-fold increase in the galvanostatic capacitance of 240.0 F g(-1) in the HQ-0.5 electrolyte occurs, compared with the conventional KOH electrolyte. Similarly, the PAP-0.5 electrolyte and the PNP-0.5 electrolyte also show a high specific capacitance of 184.0 F g(-1) at 2 A g(-1) (156.6 F g(-1) at 3 A g(-1)) and 153.0 F g(-1) at 3 A g(-1), respectively. Additionally, the three kinds of electrolytes exhibit excellent cyclic stability. The remarkable improvement of supercapacitors is attributed to the quick reversible Faradaic reactions of amine and hydroxyl groups adhering to the phenyl rings, which largely accelerates electron migration and brings additional pseudocapacitive contribution for carbon-based supercapacitors. PMID:27030290

  7. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.

    PubMed

    Kunishita, Atsushi; Ertem, Mehmed Z; Okubo, Yuri; Tano, Tetsuro; Sugimoto, Hideki; Ohkubo, Kei; Fujieda, Nobutaka; Fukuzumi, Shunichi; Cramer, Christopher J; Itoh, Shinobu

    2012-09-01

    A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated

  8. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Liu, S; Luo, Y; Fu, J; Zhou, J; Kyzas, G Z

    2016-02-01

    The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR. PMID:26848875

  9. Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald.

    PubMed

    de Donato, Philippe; Cheilletz, Alain; Barres, Odile; Yvon, Jacques

    2004-05-01

    An infrared (IR) study of natural deuteration is conducted on minerals containing hydroxyl groups (talc and kaolinite) and channel-water-bearing minerals (beryl and emerald). In talc, the OD valence vibration is located at 2710 cm(-1), corresponding to OD groups surrounded by 3 Mg atoms. In kaolinite, the OD valence vibrations are located at 2671 cm(-1) (inner OD group), 2712, 2706, and 2700 cm(-1) (three inner-surface OD groups). In beryl and emerald, natural deuteration of channel water is observed for the first time by infrared microspectroscopy. In beryl from Minas Gerais (Brazil), the OD profiles are characterized by four bands at 2735, 2686, 2672, and 2641 cm(-1). In emeralds from Colombia and Brazil, the OD profiles are characterized by five or four bands, respectively, at 2816, 2737, 2685, 2673, and 2641 cm(-1) (Colombia) and 2730, 2684, 2672, and 2640 cm(-1) (Brazil). The band at 2816 cm(-1) can be assigned to -OD or OD(-), and bands at 2686-2684, 2673-2672, and 2641-2640 cm(-1) can be assigned to type-I and type-II HOD molecules. The band at 2737-2730 cm(-1) is partially disturbed by combination bands of the mineral. Such OD profiles are different from those obtained by artificial deuteration at higher OD dilution. PMID:15165327

  10. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-01

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant. PMID:27391543

  11. Transesterification of PHA to Oligomers Covalently Bonded with (Bio)Active Compounds Containing Either Carboxyl or Hydroxyl Functionalities

    PubMed Central

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Adamus, Grażyna

    2015-01-01

    This manuscript presents the synthesis and structural characterisation of novel biodegradable polymeric controlled-release systems of pesticides with potentially higher resistance to weather conditions in comparison to conventional forms of pesticides. Two methods for the preparation of pesticide-oligomer conjugates using the transesterification reaction were developed. The first method of obtaining conjugates, which consist of bioactive compounds with the carboxyl group and polyhydroxyalkanoates (PHAs) oligomers, is "one-pot" transesterification. In the second method, conjugates of bioactive compounds with hydroxyl group and polyhydroxyalkanoates oligomers were obtained in two-step method, through cyclic poly(3-hydroxybutyrate) oligomers. The obtained pesticide-PHA conjugates were comprehensively characterised using GPC, 1H NMR and mass spectrometry techniques. The structural characterisation of the obtained products at the molecular level with the aid of mass spectrometry confirmed that both of the synthetic strategies employed led to the formation of conjugates in which selected pesticides were covalently bonded to PHA oligomers via a hydrolysable ester bond. PMID:25781908

  12. Oxidation of amino groups by hydroxyl radicals in relation to the oxidation degree of the alpha-carbon.

    PubMed

    Leitner, N Karpel Vel; Berger, P; Legube, B

    2002-07-15

    Nitrogen organic compounds constitute a large class of aqueous pollutants. These compounds include not only azoic structures, nitrogen heterocycles, and nitrous groups but also amides and amines. This work consisted in studying the OH* induced oxidation of simple primary amines in dilute aqueous solution with special attention to mineralization of the nitrogen group as a function of the nature of the alpha-carbon. H2O2/UV and gamma-irradiation processes were used for the production of OH* radicals, and the molecules studied were one alpha-amino acid i.e., glycine (HOOCCH2NH2), and two primary amides i.e., acetamide (CH3CONH2) and oxamic acid (HOOCCONH2). It was shown that the oxidation of glycine leads to the formation of ammonia, whereas the acetamide molecule is first oxidized into oxamic acid ending in complete mineralization with production of nitrates. Reaction mechanisms are proposed which account for the observed inorganic nitrogen end product depending on the oxidation degree of the carbon atoms of the molecules. It follows that the present study will allow for prediction of the fate of nitrogen resulting from the oxidation of primary amino groups by OH* radicals. PMID:12141487

  13. The Effect of Methyl, Hydroxyl, and Ketone Functional Groups on the Heterogeneous Oxidation of Succinic Acid Aerosol by OH Radicals

    NASA Astrophysics Data System (ADS)

    Chan, M.; Zhang, H.; Wilson, K. R.

    2013-12-01

    The heterogeneous oxidation of atmospheric organic aerosols can influence their effects on climate, human health, and visibility. During oxidation, functionalization occurs when an oxygenated functional group is added to a molecule, leaving the carbon skeleton intact. Fragmentation involves carbon-carbon bond cleavage and produces two products with smaller carbon numbers than the parent compound. To gain better insights into how the molecular structure of more oxygenated organic compounds affects heterogeneous reactivity, succinic acid aerosols are photo-oxidized in an aerosol flow tube reactor, and the reaction products are analyzed using Direct Analysis in Real Time Mass Spectrometry for online chemical analysis. The effect of various functional groups (CH3, OH, C=O) along the carbon backbone on the heterogeneous reaction mechanisms are also investigated using model compounds. For this series of compounds, the formation of more oxygenated products through functionalization can be explained by well-known condensation-phase reactions such as Russell and Bennett and Summers. The number of fragmentation products is found to increase with the presence of OH and CH3 groups. This can be attributed to the increased number of tertiary carbons, enhancing the fragmentation after multiple oxidation steps. Smaller dicaids (oxalic acid and malonic acid) can be formed through the fragmentation processes in the heterogeneous oxidation of succinic acid. The effect of molecular structure on reaction kinetics, volatilization, and the relative importance of functionalization and fragmentation pathways will be discussed.

  14. MEASUREMENT OF HYDROXYL RADICAL ACTIVITY IN A SOIL SLURRY USING THE SPIN TRAP A-(4-PYRIDYL-1-OXIDE)-N-TERT-BUTYLNITRONE

    EPA Science Inventory

    The spin trap compound a-(4-pyridyl-1-oxide)N-tert-butylnitrone (4-POBN) served as a probe to estimate the activity of Fenton-derived hydroxyl radicals (.OH) in a batch suspension comprised of silica sand and crushes goethite ore. The rate of probe disappearance was used to anal...

  15. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram

    2013-06-01

    Preparation of antibacterial polyurethane coatings from novel functional soybean oil was considered in this work. First, epoxidized soybean oil (ESBO) as a low price and widely available renewable resource raw material was subjected to the reaction with aniline using an ionic liquid as a green catalyst. The intermediate phenylamine containing polyol (SAP) was then methylated by reaction with methyl iodide to produce a polyol (QAP) with pendant dimethylphenylammonium iodide groups. To regulate the physical and mechanical properties as well as biological characteristics of final coatings, QAP was mixed with different portions of a similar soybean oil-based polyol (MSP) without quaternary ammonium groups. The mixtures were reacted with isophorone diisocyanate to produce crosslinked polyurethane coatings. Evaluation of viscoelastic properties by DMA method revealed single phase structure with Tg in the range of 50-82°C. Stress-strain analysis of the prepared polyurethanes showed initial modulus, tensile strength, and elongation at break in the ranges of 13-299 MPa, 4.5-13.8 MPa, and 16-109%, respectively. Additionally, the coatings showed good adherence to aluminum and PVC substrates. The solvent extracted samples showed excellent biocompatibility as determined by monitoring L929 fibroblast cells morphology and MTT assay. Meanwhile, very promising antibacterial properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with bacterial reduction in the range of 83-100% was observed. PMID:23172859

  16. Infrared study of the interaction between Lewis bases and surface hydroxyl groups of {Pt}/{Cab-O-Sil}

    NASA Astrophysics Data System (ADS)

    Sárkány, János

    1997-06-01

    Transmission IR spectroscopic study at 298 K has revealed strong H-bonds between Lewis bases (LBs) containing one, [1-O], or two, [2-O], sp 3 hybridized O atoms and the surface OH groups of Cab-O-Sil. LB [1-O] (10 torr = 1.333 kPa) caused a greater | Δν(OH)| (470-520 cm -1) than did LB [2-O] (385-470 cm -1). In contrast with expectations, the intensity of the OH band at 3660 cm -1 decreased to a greater extent for LB [2-O] than for LB [1-O]. The results were interpreted on the basis of chargetransfer theory. The estimated sequence of electron-donating ability (EDA) was: oxepane > oxane > oxolane > diethyl ether ≥ 1,4-dioxane > 1,3-dioxepane > 1,3-dioxane > 1,3-dioxolane.

  17. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  18. Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids.

    PubMed

    Bortolini, Olga; Fantin, Giancarlo; Fogagnolo, Marco; Rossetti, Stefano; Maiuolo, Loredana; Di Pompo, Gemma; Avnet, Sofia; Granchi, Donatella

    2012-06-01

    Bisphosphonates (BPs) are now the most widely used drugs for diseases associated with increased bone resorption, such as osteoporosis, and tumor bone diseases. A significant drawback of the BPs is their poor oral absorption that is enhanced by the presence of bile acid substituents in the bisphosphonate framework, with no toxic effects. A straightforward synthesis of bile acid-containing hydroxy-bisphosphonates and a full characterization of these pharmaceutically important molecules, including an evaluation of affinity and the mechanism of binding to hydroxyapatite, is presented. The biological activity of bile acid-containing bisphosphonate salts was determined using the neutral-red assay on the L929 cell line and primary cultures of osteoclasts. The bioactivity of the new compounds was found superior than bisphosphonates of established activity. PMID:22483634

  19. Hydroxyl 1.563 Micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.; Saar, Steven H.; Mines, Jonathan K.

    2001-10-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563 μm. We detect excess OH absorption due to dark, cool starspots on several active stars of the RS CVn and BY Dra classes. Our results for the single-lined spectroscopic binaries II Pegasi, V1762 Cygni, and λ Andromedae augment those from a previous study that used a less sensitive detector. In this study, we were able for the first time to use molecular absorption features to measure starspot properties on double-lined spectroscopic binaries. Measuring the equivalent widths of these OH lines in inactive giant and dwarf stars of spectral types G, K, and M, we find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 to 3000 K. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and nonspot regions of the star.

  20. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO(2) nanocrystalline.

    PubMed

    Xiao, Qi; Si, Zhichun; Zhang, Jiang; Xiao, Chong; Tan, Xiaoke

    2008-01-15

    Sm(3+)-doped TiO(2) nanocrystalline has been prepared by sol-gel auto-combustion technique and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and also UV-vis diffuse reflectance spectroscopy (DRS). These Sm(3+)-doped TiO(2) samples were tested for methylene blue (MB) decomposition and *OH radical formation. The analysis of *OH radical formation on the sample surface under UV irradiation was performed by fluorescence technique with using terephthalic acid, which readily reacted with *OH radical to produce highly fluorescent product, 2-hydroxyterephthalic acid. It was observed that the presence of Sm(3+) ion as a dopant significantly enhanced the photocatalytic activity for MB degradation under UV light irradiation because both the larger specific surface area and the greater the formation rate of *OH radical were simultaneously obtained for Sm(3+)-doped TiO(2) nanocrystalline. The adsorption experimental demonstrated that Sm(3+)-TiO(2) had a higher MB adsorption capacity than undoped TiO(2) and the adsorption capacity of MB increased with the increase of samarium ion content. The results also indicated that the greater the formation rate of *OH radical was, the higher photocatalytic activity was achieved. In this study, the optimum amount of Sm(3+) doping was 0.5 mol%, at which the recombination of photo-induced electrons and holes could be effectively inhibited, the highest formation rate of *OH radicals was, and thereby the highest photocatalytic activity was achieved. PMID:17540502

  1. Hydroxylated Tropolones Inhibit Hepatitis B Virus Replication by Blocking Viral Ribonuclease H Activity

    PubMed Central

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A.; Meyers, Marvin J.; Le Grice, Stuart F. J.; Thomas, Craig J.; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R.; D'Erasmo, Michael P.; Suyabatmaz, Duygu M.; Murelli, Ryan P.

    2014-01-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] = 25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  2. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity.

    PubMed

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A; Meyers, Marvin J; Le Grice, Stuart F J; Thomas, Craig J; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R; D'Erasmo, Michael P; Suyabatmaz, Duygu M; Murelli, Ryan P; Tavis, John E

    2015-02-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50]=25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  3. Supporting Student Research Group Activities.

    ERIC Educational Resources Information Center

    Lopatin, Dennis E.

    1993-01-01

    This discussion describes methods that foster a healthy Student Research Group (SRG) and permits it to fulfill its responsibility in the development of the student researcher. The model used in the discussion is that of the University of Michigan School of Dentistry SRG. (GLR)

  4. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group.

    PubMed

    Zeng, Liudan; Ma, Huimin; Pan, Shangxia; You, Jing; Zhang, Gan; Yu, Zhiqing; Sheng, Guoying; Fu, Jiamo

    2016-08-01

    Triclosan (TCS), a frequently used antimicrobial agent in pharmaceuticals and personal care products, exerts liver tumor promoter activities in mice. Previous work showed high-dose TCS (1.25-10μM) induced global DNA hypomethylation in HepG2 cells. However, whether or how tumor suppressor gene methylation changed in HepG2 cells after low-dose and long-term TCS exposure is still unknown. We investigate here the effects and mechanisms of DNA methylation of global DNA(GDM), repetitive genes, and liver tumor suppressor gene (p16) after exposing HepG2 cells to low-dose TCS (0.625-5nM)for two weeks using HPLC-MS/MS, Methylight, Q-MSP, Pyrosequencing, and Massarray methods. We found that low-dose TCS exposure decreased repetitive elements LINE-1 methylation levels, but not global DNA methylation, through down-regulating DNMT1 (DNA methyltransferase 1) and MeCP2 (methylated DNA binding domain) expression, and up-regulating 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. Interestingly, low-dose TCS elevated p16 gene methylation and inhibited p16 expression, which were not observed in high-dose (10μM) group. Meanwhile, methyl-triclosan could not induce these two types of DNA methylation changes, suggesting the involvement of hydroxyl in TCS-mediated DNA methylation changes. Collectively, our results suggested low concentrations of TCS adversely affected HepG2 cells through DNA methylation dysregulation, and hydroxyl group in TCS played an important role in the effects. This study provided a better understanding on hepatotoxicity of TCS at environmentally relevant concentrations through epigenetic pathway. PMID:26970259

  5. Role of hydroxyl group in the inhibitive action of benzoic acid toward corrosion of aluminum in nitric acid

    SciTech Connect

    Yadav, P.N.S.; Singh, A.K.; Wadhwani, R.

    1999-10-01

    Corrosion inhibition action of benzoic acid, p-hydroxy benzoic acid, 2-4-dihydroxy benzoic acid, and 3-4-5-trihydroxy benzoic acid toward aluminum alloy 3003 (UNS A93003) in 20% (wt%) nitric acid (HNO{sub 3}) using different concentrations of these compounds at 30 C, 40 C, and 50 C has been studied thoroughly. 3-4-5-trihydroxy benzoic acid (inhibition efficiency (IE): 30% and 72%) was the most effective inhibitor followed by 2-4-dihydroxy benzoic acid (IE: 22% to 62%) p-hydroxy benzoic acid (IE: 11% to 52%), and benzoic acid (IE: 2.5% to 15%). IE increased with concentration and its maximum value was observed at 0.5% concentration of all inhibitors used. The percentage of IE of the inhibitors decreased with an increase in temperature from 30 C to 50 C. Values of heat adsorption and activation energy were calculated from weight loss data, which came out in the range for the reaction occurring at the surface. The behavior of inhibitors studied deviated from the Langmuir isotherm. The IE of higher hydroxy species was improved when more hydroxy centers were added. Anodic and cathodic polarization curves were shifted toward lower current density regions in the presence of inhibitors. This revealed that they were mixed inhibitors.

  6. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.

    PubMed

    Krishnamoorthy, Anand Narayanan; Holm, Christian; Smiatek, Jens

    2014-10-01

    Antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) are synthesized by various organisms to enable their cells to survive low temperature environments like in the polar regions. The presence of antifreeze proteins leads to a temperature difference between the melting and freezing point of the solution known as thermal hysteresis. It is nowadays common knowledge that the antifreeze activity of AFPs is mainly determined by a short-range effect which includes a direct binding to the ice phase. Recently, experimental findings also revealed a long-range effect which implies a significant retardation of the water dynamics to facilitate the ice-binding process specifically for AFGPs. The aim of this work is to examine the dynamics of water molecules around different antifreeze protein residues by using atomistic molecular dynamics simulations. A prototype of AFP from antarctic notothenioids with the main subunit alanine-alanine-threonine (AAT) and a mutant (polyalanine) together with the residues of an antifreeze glycoprotein (AFGP) were simulated and compared with respect to their influence on the local water shell. The analysis of the water hydrogen bond characteristics and the dipolar relaxation times reveals a strong retardation effect of the water dynamics around the AFGP prototype. Our numerical results reveal the significant importance of polar units like threonine and disaccharides for the direct binding of water molecules in terms of hydrogen bonds and a significant retardation of water dynamics. In addition, a considerable change of the hydration dynamics is additionally observed in the presence of osmolytes like urea and hydroxyectoine. Our findings indicate that this effect is even more pronounced in the presence of kosmotropic osmolytes. PMID:25207443

  7. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes.

    PubMed

    Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I

    2011-12-01

    Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K(+) and Ca(2+) fluxes induced by hydroxyl radicals (OH(•)) in pea (Pisum sativum) roots. OH(•), but not hydrogen peroxide, activated a rapid Ca(2+) efflux and a more slowly developing net Ca(2+) influx concurrent with a net K(+) efflux. In isolated protoplasts, OH(•) evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K(+) efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca(2+). Active OH(•)-induced Ca(2+) efflux in roots was suppressed by the PM Ca(2+) pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH(•)-induced ionic currents in root protoplasts and K(+) efflux and Ca(2+) influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH(•)-induced cation fluxes. The net OH(•)-induced Ca(2+) efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH(•)-induced net K(+) efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca(2+) homeostasis by modulating both Ca(2+) influx and efflux transport systems at the root cell PM. PMID:21980172

  8. Hydroxyl Fatty Acids and Hydroxyl Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  9. Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies.

    PubMed

    Rea, V; Kolkman, A J; Vottero, E; Stronks, E J; Ampt, K A M; Honing, M; Vermeulen, N P E; Wijmenga, S S; Commandeur, J N M

    2012-01-24

    Cytochrome P450 BM3 from Bacillus megaterium is a monooxygenase with great potential for biotechnological applications. In this paper, we present engineered drug-metabolizing P450 BM3 mutants as a novel tool for regioselective hydroxylation of steroids at position 16β. In particular, we show that by replacing alanine at position 82 with a tryptophan in P450 BM3 mutants M01 and M11, the selectivity toward 16β-hydroxylation for both testosterone and norethisterone was strongly increased. The A82W mutation led to a ≤42-fold increase in V(max) for 16β-hydroxylation of these steroids. Moreover, this mutation improves the coupling efficiency of the enzyme, which might be explained by a more efficient exclusion of water from the active site. The substrate affinity for testosterone increased at least 9-fold in M11 with tryptophan at position 82. A change in the orientation of testosterone in the M11 A82W mutant as compared to the orientation in M11 was observed by T(1) paramagnetic relaxation nuclear magnetic resonance. Testosterone is oriented in M11 with both the A- and D-ring protons closest to the heme iron. Substituting alanine at position 82 with tryptophan results in increased A-ring proton-iron distances, consistent with the relative decrease in the level of A-ring hydroxylation at position 2β. PMID:22208729

  10. The Important Role of the Hydroxyl Group on the Conformational Adaptability in Bis(l-threoninato)copper(II) Compared to Bis(l-allo-threoninato)copper(II): Quantum Chemical Study.

    PubMed

    Marković, Marijana; Ramek, Michael; Loher, Claudia; Sabolović, Jasmina

    2016-08-01

    Detailed structural properties of physiological bis(amino acidato)copper(II) complexes are generally unknown in solutions. This paper examines how stereochemical differences between the essential amino acid l-threonine and its diastereomer l-allo-threonine, which is rarely present in nature, may affect relative stabilities of bis(l-threoninato)copper(II) and bis(l-allo-threoninato)copper(II) in the gas phase and aqueous solution. These amino acids can bind to Cu(II) via the nitrogen and carboxylato oxygen atoms, the nitrogen and hydroxyl oxygen atoms, and the carboxylato and hydroxyl oxygen atoms. We term these coordination modes G, No, and Oo, respectively. The density functional theory (DFT) calculations with the B3LYP functional of the conformational landscapes for all possible coordination modes of both complexes revealed their very similar stability in the gas phase and in aqueous solution. The conformational analyses resulted in 196 and 267 conformers of isolated copper(II) chelates with l-threonine and l-allo-threonine, respectively. The G-G coordination mode is the most stable, both in the gas phase and aqueous solution. Very similar energy values of the lowest-energy solvated cis and trans G-G conformers in implicitly accounted water medium are in accord with the experimental results that these isomers are present in aqueous solution at physiological pH values. The transition-state structures, activation Gibbs free energies, and reaction rates calculated using DFT/B3LYP and MP2 for the transformations from the most stable cis G-G and trans Oo-G conformers to trans G-G ones for the first time reveal several alternate coordination-mode transformation mechanisms in the copper(II) complexes with amino acids other than glycine. The trans Oo-G conformers are kinetically more stable than cis G-G ones in the gas phase. The only significant difference found between the two complexes is a more suitable position of the hydroxyl group in physiological bis

  11. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    SciTech Connect

    Ren, Xiao-Min Guo, Liang-Hong Gao, Yu Zhang, Bin-Tian Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists.

  12. Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase.

    PubMed

    Montero-Morán, G M; Horjales, E; Calcagno, M L; Altamirano, M M

    1998-05-26

    The involvement of tyrosine residues in the allosteric function of the enzyme glucosamine 6-phosphate deaminase from Escherichia coli was first proposed on the basis of a theoretical analysis of the sequence and demonstrated by spectrophotometric experiments. Two tyrosine residues, Tyr121 and Tyr254, were indicated as involved in the mechanism of cooperativity and in the allosteric regulation of the enzyme [Altamirano et al. (1994) Eur. J. Biochem. 220, 409-413]. Tyr121 replacement by threonine or tryptophan altered the symmetric character of the T --> R transition [Altamirano et al. (1995) Biochemistry 34, 6074-6082]. From crystallographic data of the R allosteric conformer, Tyr254 has been shown to be part of the allosteric pocket [Oliva et al. (1995) Structure 3, 1323-1332]. Although it is not directly involved in binding the allosteric activator, N-acetylglucosamine 6-phosphate, Tyr 254 is hydrogen bonded through its phenolic hydroxyl to the backbone carbonyl from residue 161 in the neighboring polypeptide chain. Kinetic and binding experiments with the mutant form Tyr254-Phe of the enzyme reveal that this replacement caused an uncoupling of the homotropic and heterotropic effects. Homotropic cooperativity diminished and the allosteric activation pattern changed from one of the K-type in the wild-type deaminase to a mixed K-V pattern. On the other hand, Tyr254-Trp deaminase is kinetically closer to a K-type enzyme and it has a higher catalytic efficiency than the wild-type protein. These results show that the interactions of Tyr254 are fundamental in coupling binding in the active site to events occurring in the allosteric pocket of E. coli glucosamine 6-P deaminase. PMID:9601045

  13. Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation.

    PubMed

    Ng, Kok-Yaoh; Tu, Li-Chun; Wang, Yane-Shih; Chan, Sunney I; Yu, Steve S-F

    2008-05-01

    pMMO from M. capsulatus (Bath) oxidizes straight-chain C1-C5 alkanes and alkenes to form their corresponding 2-alcohols and epoxides. According to experiments performed with cryptically chiral ethane and D,L-[2-(2)H(1),3-(2)H(1)]butane, the reactions proceed through the concerted O-atom insertion mechanism. However, when propene and but-1-ene are used as epoxidation substrates, the enantiomeric excesses (ees) of the enzymatic products are only 18 and 37 %, respectively. This relatively poor stereoselectivity in the enzymatic epoxidation presumably reflects low stereochemical differentiation between the re and si faces in the hydrophobic pocket of the active site. Further insights into the reaction mechanism are now provided by studies on trans-but-2-ene, which reveal only the D,L-2,3-dimethyloxirane products, and on cis-but-2-ene, which yield only the meso product. These observations indicate that the enzymatic epoxidation indeed proceeds through electrophilic syn addition. To achieve better facial selectivity, we have also used 3,3,3-trifluoroprop-1-ene as the substrate. The products obtained are 90 % (2S)-oxirane. When 1,1,1-trifluoropropane is the substrate, the hydroxylation at the 2-carbon exhibits an inverse chiral selectivity relative to that seen with normal butane, if we consider the size of the CF(3) group in the fluorinated propane to be comparable to one of the ethyl groups in butane. These experiments are beginning to delineate the factors that influence the orientations of various substrates in the hydrophobic cavity of the active site in the enzyme. PMID:18383583

  14. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.

    PubMed

    Peter, Sebastian; Kinne, Matthias; Wang, Xiaoshi; Ullrich, René; Kayser, Gernot; Groves, John T; Hofrichter, Martin

    2011-10-01

    Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. PMID:21812933

  15. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    PubMed Central

    Yang, Po-Sheng; Lin, Po-Yen; Chang, Chao-Chien; Yu, Meng-Che; Yen, Ting-Lin; Lan, Chang-Chou; Jayakumar, Thanasekaran; Yang, Chih-Hao

    2015-01-01

    Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH•) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals. PMID:26379739

  16. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.

    PubMed

    Vu, Van V; Beeson, William T; Phillips, Christopher M; Cate, Jamie H D; Marletta, Michael A

    2014-01-15

    The ubiquitous fungal polysaccharide monooxygenases (PMOs) (also known as GH61 proteins, LPMOs, and AA9 proteins) are structurally related but have significant variation in sequence. A heterologous expression method in Neurospora crassa was developed as a step toward connecting regioselectivity of the chemistry to PMO phylogeny. Activity assays, as well as sequence and phylogenetic analyses, showed that the majority of fungal PMOs fall into three major groups with distinctive active site surface features. PMO1s and PMO2s hydroxylate glycosidic positions C1 and C4, respectively. PMO3s hydroxylate both C1 and C4. A subgroup of PMO3s (PMO3*) hydroxylate C1. Mutagenesis studies showed that an extra subdomain of about 12 amino acids contribute to C4 oxidation in the PMO3 family. PMID:24350607

  17. Influence of hydroxyl substitution on flavanone antioxidants properties.

    PubMed

    Masek, Anna; Chrzescijanska, Ewa; Latos, Malgorzata; Zaborski, Marian

    2017-01-15

    The aim of our study was to determine the effect of the position of the hydroxyl group on the antioxidant properties of flavonoid derivatives. For this purpose, we performed electrochemical analysis and quantum-mechanical calculations to describe the mechanisms of electrochemical oxidation, and we selected the two methods of ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), which allowed us to determine the ability to scavenge free radicals. On the basis of the research, we found that the derivatives of flavonoids, which have a hydroxyl group substituted at the R-3 position on the C ring, have outstanding antioxidant activity. Flavone, which had an OH group substituted at the R-6 and R-7 position on the ring A, showed similar antioxidant activity to flavone without -OH groups in the structure and slightly higher activity than the di-substituted flavone on the ring A. PMID:27542504

  18. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid.

    PubMed

    Farhoosh, Reza; Johnny, Saeed; Asnaashari, Maryam; Molaahmadibahraseman, Najme; Sharif, Ali

    2016-03-01

    Anti-DPPH radical effect as well as anti-peroxide activity of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid in a bulk fish oil system and its O/W emulsion were investigated. Electronic phenomena, intra- and/or intermolecular hydrogen bonds, interfacial properties, and chemical reaction of the solvent molecules with phenolic compounds were considered to be mainly involved in the antiradical activities observed. Antioxidant activity of the phenolic acids derivatives as a function of these factors was variously affected by the environmental conditions which may occur in practice. PMID:26471535

  19. DNA Binding Hydroxyl Radical Probes

    PubMed Central

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2011-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. PMID:22125376

  20. Hyperbranched Aliphatic Polyester Modified Activated Carbon Particles with Homogenized Surface Groups

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Liuxue

    The hyperbranched aliphatic polyester grafted activated carbon (HAPE-AC), was successfully prepared by the simple "one-pot" method. The surface functional groups of commercial activated carbon particles were homogenized to hydroxyl groups by being oxidized with nitric acid and then reduced with lithium tetrahydroaluminate (LiAlH4) at first. Secondly, the surface hydroxyl groups were used as the active sites for the solution polycondensation of the AB2 monomer, 2, 2-bis(hydroxymethyl)propionic acid (bis-MPA), with the catalysis of p-toluenesulfonic acid (p-TSA). The homogenization of the surface groups of the activated carbon particles and the graft polymerization of the hyperbranched aliphatic polyester were investigated by X-ray photoelectron spectroscopy (XPS) technique. The products were also characterized with Fourier transform infrared (FT-IR) and scanning electron microscope (SEM). The competitive adsorption properties of the products toward the heavy metal ions (Cu(II), Hg(II), Zn(II), and Cd(II)) also proved the translations of the surface groups.

  1. Haptoglobin binding to apolipoprotein A-I prevents damage from hydroxyl radicals on its stimulatory activity of the enzyme lecithin-cholesterol acyl-transferase.

    PubMed

    Salvatore, Alfonso; Cigliano, Luisa; Bucci, Enrico M; Corpillo, Davide; Velasco, Silvia; Carlucci, Alessandro; Pedone, Carlo; Abrescia, Paolo

    2007-10-01

    Apolipoprotein A-I (ApoA-I), a major component of HDL, binds haptoglobin, a plasma protein transporting to liver or macrophages free Hb for preventing hydroxyl radical production. This work aimed to assess whether haptoglobin protects ApoA-I against this radical. Human ApoA-I structure, as analyzed by electrophoresis and MS, was found severely altered by hydroxyl radicals in vitro. Lower alteration of ApoA-I was found when HDL was oxidized in the presence of haptoglobin. ApoA-I oxidation was limited also when the complex of haptoglobin with both high-density lipoprotein and Hb, immobilized on resin beads, was exposed to hydroxyl radicals. ApoA-I function to stimulate cholesterol esterification was assayed in vitro by using ApoA-I-containing liposomes. Decreased stimulation was observed when liposomes oxidized without haptoglobin were used. Conversely, after oxidative stress in the presence of haptoglobin (0.5 microM monomer), the liposome activity did not change. Plasma of carrageenan-treated mice was analyzed by ELISA for the levels of haptoglobin and ApoA-I, and used to isolate HDL for MS analysis. Hydroxyproline-containing fragments of ApoA-I were found associated with low levels of haptoglobin (18 microM monomer), whereas they were not detected when the haptoglobin level increased (34-70 microM monomer). Therefore haptoglobin, when circulating at enhanced levels with free Hb during the acute phase of inflammation, might protect ApoA-I structure and function against hydroxyl radicals. PMID:17824618

  2. Small Group Activities for Introductory Business Classes.

    ERIC Educational Resources Information Center

    Mundrake, George

    1999-01-01

    Describes numerous small-group activities for the following areas of basic business education: consumer credit, marketing, business organization, entrepreneurship, insurance, risk management, economics, personal finance, business careers, global markets, and government regulation. (SK)

  3. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Shanks, William; And Others

    1982-01-01

    Background information and procedures for demonstrating physical phenomena to groups are described: a red plastic sheet that changes to blue, a group activity for understanding energy transfer, and hanging a spoon from one's nose to illustrate forces involved in static equilibrium. (SK)

  4. A Group Recommender System for Tourist Activities

    NASA Astrophysics Data System (ADS)

    Garcia, Inma; Sebastia, Laura; Onaindia, Eva; Guzman, Cesar

    This paper introduces a method for giving recommendations of tourist activities to a group of users. This method makes recommendations based on the group tastes, their demographic classification and the places visited by the users in former trips. The group recommendation is computed from individual personal recommendations through the use of techniques such as aggregation, intersection or incremental intersection. This method is implemented as an extension of the e-Tourism tool, which is a user-adapted tourism and leisure application, whose main component is the Generalist Recommender System Kernel (GRSK), a domain-independent taxonomy-driven search engine that manages the group recommendation.

  5. Water concentrations and hydrogen isotope compositions of alkaline basalt-hosted clinopyroxene megacrysts and amphibole clinopyroxenites: the role of structural hydroxyl groups and molecular water

    NASA Astrophysics Data System (ADS)

    Kovács, István; Demény, Attila; Czuppon, György; Lécuyer, Christophe; Fourel, Francois; Xia, Qun-Ke; Liu, Jia; Pintér, Zsanett; Király, Edit; Török, Kálmán; Szabó, Ábel; Deloule, Etienne; Falus, György; Fancsik, Tamás; Zajacz, Zoltán; Sándorné Kovács, Judit; Udvardi, Beatrix

    2016-05-01

    The aim of this study was to determine both `water' contents (as OH- and H2O) and δD values of several clinopyroxene samples from alkaline basalts. These parameters were first obtained from five clinopyroxene samples using both the classical `off-line' vacuum extraction technique and the `on-line' high-temperature pyrolysis technique. Blanks measured with the `on-line' gas extraction techniques were low enough to prevent any contamination by atmospheric water vapour. The comparison of data has revealed that our `on-line' procedure is more effective for the extraction of `water' from clinopyroxenes and, consequently, this `on-line' technique was applied to ten additional clinopyroxene samples. Sample δD values cover a similar range from -95 to -45 ‰ (VSMOW) regardless of the studied locations, whereas the total `water' content varies from ~115 to ~2570 ppm. The structural hydroxyl content of clinopyroxene samples measured by micro-FTIR spectrometry varies from ~0 to 476 ppm expressed in molecular water equivalent. The total `water' concentrations determined by mass spectrometry differ considerably from structural hydroxyl contents constrained by micro-FTIR, thus indicating that considerable proportion of the `water' may be present in (nano)-inclusions. The structural hydroxyl concentration—apart from clinopyroxenes separated from amphibole clinopyroxenite xenoliths—correlates positively with the δD values of clinopyroxene megacrysts for each locality, indicating that structurally bond hydrogen in clinopyroxenes may have δD values higher than molecular water in inclusions. This implies that there may be a significant hydrogen isotope fractionation for structural hydroxyl during crystallization of clinopyroxene, while for molecular water there may be no or only negligible isotope fractionation.

  6. 3D QSAR studies of hydroxylated polychlorinated biphenyls as potential xenoestrogens.

    PubMed

    Ruiz, Patricia; Ingale, Kundan; Wheeler, John S; Mumtaz, Moiz

    2016-02-01

    Mono-hydroxylated polychlorinated biphenyls (OH-PCBs) are found in human biological samples and lack of data on their potential estrogenic activity has been a source of concern. We have extended our previous in silico 2D QSAR study through the application of advance techniques such as docking and 3D QSAR to gain insights into their estrogen receptor (ERα) binding. The results support our earlier findings that the hydroxyl group is the most important feature on the compounds; its position, orientation and surroundings in the structure are influential for the binding of OH-PCBs to ERα. This study has also revealed the following additional interactions that influence estrogenicity of these chemicals (a) the aromatic interactions of the biphenyl moieties with the receptor, (b) hydrogen bonding interactions of the p-hydroxyl group with key amino acids ARG394 and GLU353, (c) low or no electronegative substitution at para-positions of the p-hydroxyl group, (d) enhanced electrostatic interactions at the meta position on the B ring, and (e) co-planarity of the hydroxyl group on the A ring. In combination the 2D and 3D QSAR approaches have led us to the support conclusion that the hydroxyl group is the most important feature on the OH-PCB influencing the binding to estrogen receptors, and have enhanced our understanding of the mechanistic details of estrogenicity of this class of chemicals. Such in silico computational methods could serve as useful tools in risk assessment of chemicals. PMID:26598992

  7. Hydroxyl radical detection in vivo

    SciTech Connect

    Chevion, M.; Floyd, R.A.

    1986-05-01

    Hydroxyl radicals have been implicated as the actual species responsible for the deleterious effects of active oxygen in biology. However, in most cases, its presence has only been inferred by circumstantial evidence. Using electrochemical detection coupled to HPLC separation technique the authors can identify and quantitate (at sub-picomole level) the hydroxylated products of 3 aromatic compounds (phenol, salicylate, and 2-deoxy-guanosine) as a direct measure of hydroxyl radical formation. Firstly, the authors showed that mixing ascorbate with copper ions (in the absence of presence of a protein) yields catechols, dihydroxybenzoic acids and 8-OH-deoxy-guanosine (8-OHdG). This approach has been used to study the formation of OH in vivo. Human granulocytes stimulated with TPA showed that 8-OHdG was formed in the cellular DNA at high levels (one 8-OHdG/800 DNA bases). Unstimulated granulocytes contained 8-OHdG below detection level. Formation of 8-OHdG in the TPA-stimulated granulocytes DNA was decreased by the addition of SOD and catalase. Using salicylate as an in vivo scavenger of hydroxyl radicals the authors showed that the level of trapped-dihydroxybenzoic acids is increased approx.8 and approx.3 fold in the lungs and liver of paraquat-poisoned mice, respectively, as compared to normal animals. Similarly, the detected level of dihydroxybenzoic acids in the hearts of adriamycin-treated rats was increased over 100-fold as compared to the hearts of control animals.

  8. Studies on cytotoxic, hydroxyl radical scavenging and topoisomerase inhibitory activities of extracts of Tabernaemontana divaricata (L.) R.Br. ex Roem. and Schult.

    PubMed

    Thind, Tarunpreet Singh; Agrawal, Satyam Kumar; Saxena, A K; Arora, Saroj

    2008-08-01

    In the present investigation, the cytotoxic, hydroxyl radical scavenging and topoisomerase inhibition activities of Tabernaemontana divaricata (Apocynaceae) were evaluated. The extracts from leaves of the plant were prepared with different solvents viz. chloroform, methanol, ethyl acetate and hexane. In, in vitro cytotoxicity assay, with cell lines viz HCT-15 (Colon), HT-29 (Colon), 502713 (Colon), MCF-7 (Breast), PC- 3 (Prostrate), it was observed that the ethyl acetate extract was effective against only one colon cell line (502713) at the lowest dose i.e. 10 micro g/ml, whereas the chloroform extract was effective against all the three colon cancer cell lines, at 30 microg/ ml. In order to evaluate the mechanism of cytotoxicity of these extracts, they were assessed for their ability to scavenge hydroxyl radicals in plasmid nicking assay with pBR322. It was observed that all the extracts effectively inhibited the unwinding of supercoiled DNA except hexane extract, which showed the least effect. Since the expression of topo enzymes is linked with cell proliferation so the extracts were also checked for topo I and topo II inhibitory activities. It was noticed that ethyl acetate extract selectively showed inhibition of topo II in topoisomerase II relaxation assay. PMID:18577413

  9. Advanced Extravehicular Activity Breakout Group Summary

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Perka, Alan; Walz, Carl; Cobb, Sharon; Hanford, Anthony; Eppler, Dean

    2005-01-01

    This viewgraph document summarizes the workings of the Advanced Extravehicular Activity (AEVA) Breakout group in a Martian environment. The group was tasked with: identifying potential contaminants and pathways for AEVA systems with respect to forward and backward contamination; identifying plausible mitigation alternatives and obstacles for pertinent missions; identifying topics that require further research and technology development and discuss development strategies with uncertain Planetary Protection (PP) requirements; Identifying PP requirements that impose the greatest mission/development costs; Identifying PP requirements/topics that require further definition;

  10. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  11. Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production.

    PubMed

    Che, Penghua; Lu, Fang; Zhang, Junjie; Huang, Yizheng; Nie, Xin; Gao, Jin; Xu, Jie

    2012-09-01

    5-Hydroxymethylfurfural (HMF) is an important biomass-derived building block, but production and sustainable utilization of HMF remain challenging due to reactions of the highly reactive functional groups of this compound. H(4)SiW(12)O(40)/MCM-41 nanospheres were developed that exhibit 84.1% selectivity to 5-ethoxymethylfurfural (EMF) when HMF conversion reaches 92.0%, during etherification of 5-hydroxymethylfurfural (HMF) with ethanol under mild conditions. The catalyst could be reused, and its activity remained unaffected over five cycles. The strong acidity of the catalyst significantly enhanced etherification. The acetalized byproducts, 5-(diethoxymethyl)-2-furanmethanol and the HMF-dimer (5,5'(oxy-bis(methylene))bis-2-furfural), can be converted into HMF and then transformed to the main product, EMF, by using this catalyst to shift the reaction equilibrium. PMID:22749371

  12. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity.

    PubMed

    Hayes, Martin A; Li, Xue-Qing; Grönberg, Gunnar; Diczfalusy, Ulf; Andersson, Tommy B

    2016-09-01

    The endogenous bile acid metabolite 1β-hydroxy-deoxycholic acid (1β-OH-DCA) excreted in human urine may be used as a sensitive CYP3A biomarker in drug development reflecting in vivo CYP3A activity. An efficient and stereospecific enzymatic synthesis of 1β-OH-DCA was developed using a Bacillus megaterium (BM3) cytochrome P450 (P450) mutant, and its structure was confirmed by nuclear magnetic resonance (NMR) spectroscopy. A [(2)H4]-labeled analog of 1β-OH-DCA was also prepared. The major hydroxylated metabolite of deoxycholic acid (DCA) in human liver microsomal incubations was identified as 1β-OH-DCA by comparison with the synthesized reference analyzed by UPLC-HRMS. Its formation was strongly inhibited by CYP3A inhibitor ketoconazole. Screening of 21 recombinant human cytochrome P450 (P450) enzymes showed that, with the exception of extrahepatic CYP46A1, the most abundant liver P450 subfamily CYP3A, including CYP3A4, 3A5, and 3A7, specifically catalyzed 1β-OH-DCA formation. This indicated that 1β-hydroxylation of DCA may be a useful marker reaction for CYP3A activity in vitro. The metabolic pathways of DCA and 1β-OH-DCA in human hepatocytes were predominantly via glycine and, to a lesser extent, via taurine and sulfate conjugation. The potential utility of 1β-hydroxylation of DCA as a urinary CYP3A biomarker was illustrated by comparing the ratio of 1β-OH-DCA:DCA in a pooled spot urine sample from six healthy control subjects to a sample from one patient treated with carbamazepine, a potent CYP3A inducer; 1β-OH-DCA:DCA was considerably higher in the patient versus controls (ratio 2.8 vs. 0.4). Our results highlight the potential of 1β-OH-DCA as a urinary biomarker in clinical CYP3A DDI studies. PMID:27402728

  13. From Cannibalism to Active Motion of Groups

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Schimansky-Geier, Lutz

    2008-03-01

    The detailed mechanisms leading to collective dynamics in groups of animals and insect are still poorly understood. A recent study by Simpson et. al. suggests cannibalism as a driving mechanism for coordinated migration of mormon crickets [1]. Based on this result we propose a simple generic model of brownian particles interacting by asymmetric, non-conservative collisions accounting for cannibalistic behavior and the corresponding avoidance strategy. We discuss our model in one and two dimensions and show that a certain type of collisions drives the system out of equilibrium and leads to coordinated active motion of groups.[1] Stephen J. Simpson, Gregory A. Sword, Patrick D. Lorch and Iain D. Couzin: Cannibal crickets on a forced march for protein and salt, PNAS, 103:4152-4156, 2006

  14. Induction of CYP2E1 activity in liver transplant patients as measured by chlorzoxazone 6-hydroxylation

    PubMed Central

    Burckart, Gilbert J.; Frye, Reginald F.; Kelly, Patrick; Branch, Robert A.; Jain, Ashok; Fung, John J.; Starzl, Thomas E.; Venkataramanan, Raman

    2010-01-01

    Objective To examine the phenotypic expression of CYP2E1 in liver transplant patients, as measured by the in vivo probe chlorzoxazone, and to evaluate CYP2E1 activity over time after transplantation. Methods Thirty-three stable liver transplant patients were given 250 mg chlorzoxazone within 1 year after transplantation as part of a multiprobe CYP cocktail; urine and blood were collected for 8 hours. Chlorzoxazone and 6-hydroxychlorzoxazone concentrations were determined by HPLC. Twenty-eight healthy control subjects, eight patients with moderate to severe liver disease, and four patients who had not received liver transplants were also studied for comparison. The chlorzoxazone metabolic ratio, calculated as the plasma concentration of 6-hydroxychlorzoxazone/chlorzoxazone at 4 hours after chlorzoxazone administration, was used as the phenotypic index. In a subgroup of patients and control subjects, additional blood samples were obtained to allow for the calculation of chlorzoxazone pharmacokinetic parameters by noncompartmental methods. Results The chlorzoxazone metabolic ratio for the liver transplant patients in the first month after transplantation (mean ± SD, 6.4 ± 5.1) was significantly higher than that after 1 month after surgery (2.1 ± 2.0), when the chlorzoxazone metabolic ratio was not different from control subjects (0.8 ± 0.5). The chlorzoxazone metabolic ratios in the patients who had not received liver transplants (1.1 ± 0.7) were equivalent to those of healthy control subjects. The maximum observed 6-hydroxychlorzoxazone plasma concentration was 3046 ± 1848 ng/ml in seven liver transplant patients in the first month after surgery compared with 1618 ± 320 ng/ml in 16 healthy control subjects (p < 0.05). The maximum observed concentration of chlorzoxazone, the chlorzoxazone apparent oral clearance, and the formation clearance of 6-hydroxychlorzoxazone were also significantly different between the groups. Conclusions We conclude that significant

  15. Hydroxyl radicals in indoor environments

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Corsi, Richard; Kimura, Yosuke; Allen, David; Weschler, Charles J.

    Indoor hydroxyl radical concentrations were estimated using a new indoor air quality model which employs the SAPRC-99 atmospheric chemistry model to simulate indoor homogenous reactions. Model results indicate that typical indoor hydroxyl radical concentrations are lower than typical outdoor summertime urban hydroxyl radical levels of 5-10×10 6 molecules cm -3; however, indoor levels can be similar to or greater than typical nighttime outdoor hydroxyl radical levels of approximately 5×10 4 molecules cm -3. Effects of selected parameters on indoor hydroxyl radical concentrations are presented herein. Indoor hydroxyl radical concentrations are predicted to increase non-linearly with increasing outdoor ozone concentrations, indoor alkene emission rates, and air exchange rates. Indoor hydroxyl radical concentrations decrease with increasing outdoor nitric oxide concentrations. Indoor temperature and indoor light intensity have moderate impacts on indoor hydroxyl radical concentrations. Outdoor hydroxyl radical concentrations, outdoor nitrate (NO 3rad ) radical concentrations, outdoor hydroperoxy radical concentrations, and hydroxyl radical removal by indoor surfaces are predicted to have no appreciable impact on indoor hydroxyl radical concentrations. Production of hydroxyl radicals in indoor environments appears to be controlled primarily by reactions of alkenes with ozone, and nitric oxide with hydroperoxy radical. Estimated indoor hydroxyl radical levels may potentially affect indoor air quality. Two examples are presented in which reactions of d-limonene and α-pinene with indoor hydroxyl radicals produce aldehydes, which may be of greater concern than the original compounds.

  16. Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography-fluorescence detection.

    PubMed

    Pezo, Davinson; Salafranca, Jesús; Nerín, Cristina

    2008-01-18

    An experimental laboratory-made assembly to determine for the first time the antioxidant capacity with respect to hydroxyl (OH*) radicals of several new active packagings directly in the materials has been developed. Gas-phase OH* radicals are generated by UV-light irradiation of an aqueous H(2)O(2) aerosol. After on-line reaction with up to eight parallel test samples, remaining OH* is quantitatively trapped by a salicylic acid solution, and antioxidant capacity is indirectly assessed by HPLC-fluorescence determination of the high sensitive 2,5-dihydroxybenzoic acid formed. Several natural essential oils as well as active plastic films including in their formulation such oils have been subjected to oxidation. Polymers containing clove and oregano were the most efficient ones (up to 7.2 and 4.7 times, respectively, more antioxidant than blanks), whereas rosemary, citronella and propolis showed average efficiency. On the other hand, active materials containing ferulic acid, quercetin, catechin and thymol, as well as commercial active bags with ethylene-absorption properties, showed limited or none antioxidant protection. Experimental results and full details about experimental assembly are given. PMID:18068177

  17. Intracellular Proton-mediated Activation of TRPV3 Channels Accounts for the Exfoliation Effect of α-Hydroxyl Acids on Keratinocytes*

    PubMed Central

    Cao, Xu; Yang, Fan; Zheng, Jie; Wang, KeWei

    2012-01-01

    α-Hydroxyl acids (AHAs) from natural sources act as proton donors and topical compounds that penetrate skin and are well known in the cosmetic industry for their use in chemical peels and improvement of the skin. However, little is known about how AHAs cause exfoliation to expose fresh skin cells. Here we report that the transient receptor potential vanilloid 3 (TRPV3) channel in keratinocytes is potently activated by intracellular acidification induced by glycolic acid. Patch clamp recordings and cell death assay of both human keratinocyte HaCaT cells and TRPV3-expressing HEK-293 cells confirmed that intracellular acidification led to direct activation of TRPV3 and promoted cell death. Site-directed mutagenesis revealed that an N-terminal histidine residue, His-426, known to be involved in 2-aminoethyl diphenylborinate-mediated TRPV3 activation, is critical for sensing intracellular proton levels. Taken together, our findings suggest that intracellular protons can strongly activate TRPV3, and TRPV3-mediated proton sensing and cell death in keratinocytes may serve as a molecular basis for the cosmetic use of AHAs and their therapeutic potential in acidic pH-related skin disorders. PMID:22679014

  18. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    SciTech Connect

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme.

  19. Asymmetric nitrogen. Communications 38. Optically active 1-hydroxyl-, 1-alkoxycarbonyloxy-, and 1-tosyloxy-2, 2-bis(trifluoromethyl)-aziridines

    SciTech Connect

    Kostyanovskii, R.G.; Chervin, I.I.; Kadorkina, G.K.; Maldonado, I.K.A.; Nasibov, S.S.

    1985-08-20

    The authors accomplish the separation of diastereomers Xa,b and KIa,b obtained from chiral alkoxycarbonyl derivatives of hexafluoracetone oxime by reaction with CH/sub 2/N/sub 2/ through the corresponding triazolines, which were decomposed to the aziridines by photolysis or by the action of Et/sub 2/O.BF/sub 3/ at 20 C. Diasteromeric 1-alkoxycarbonyloxy-2,2-bis(trifluormethyl)ariridines, which were speated by crystallization and chromatography, under the influence of phenylhydrazine acylates give optically active 1-hydroxy-2,2-bis(trifluoromethyl)aziridine, on the basis of which optically active 1-tosyloxy-2,2-bis(trifluoromethyl)aziridine was obtained. The activation parameters of the epimerization of diasteromeric 1-alkoxycarbonyloxy-2,2-bis(trifluoromethyl)aziridine were found.

  20. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  1. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  2. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  3. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  4. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  5. Modifications of the 7-Hydroxyl Group of the Transthyretin Ligand Luteolin Provide Mechanistic Insights into Its Binding Properties and High Plasma Specificity.

    PubMed

    Nilsson, Lina; Larsson, Andreas; Begum, Afshan; Iakovleva, Irina; Carlsson, Marcus; Brännström, Kristoffer; Sauer-Eriksson, A Elisabeth; Olofsson, Anders

    2016-01-01

    Amyloid formation of the plasma protein transthyretin (TTR) has been linked to familial amyloid polyneuropathy and senile systemic amyloidosis. Binding of ligands within its natural hormone binding site can stabilize the tetrameric structure and impair amyloid formation. We have recently shown that the flavonoid luteolin stabilizes TTR in human plasma with a very high selectivity. Luteolin, however, is inactivated in vivo via glucuronidation for which the preferred site is the hydroxy group at position 7 on its aromatic A-ring. We have evaluated the properties of two luteolin variants in which the 7-hydroxy group has been exchanged for a chlorine (7-Cl-Lut) or a methoxy group (7-MeO-Lut). Using an in vitro model, based on human liver microsomes, we verified that these modifications increase the persistence of the drug. Crystal structure determinations show that 7-Cl-Lut binds similarly to luteolin. The larger MeO substituent cannot be accommodated within the same space as the chlorine or hydroxy group and as a result 7-MeO-Lut binds in the opposite direction with the methoxy group in position 7 facing the solvent. Both 7-Cl-Lut and 7-MeO-Lut qualify as high-affinity binders, but in contrast to luteolin, they display a highly non-specific binding to other plasma components. The binding of the two conformations and the key-interactions to TTR are discussed in detail. Taken together, these results show a proof-of-concept that the persistence of luteolin towards enzymatic modification can be increased. We reveal two alternative high-affinity binding modes of luteolin to TTR and that modification in position 7 is restricted only to small substituents if the original orientation of luteolin should be preserved. In addition, the present work provides a general and convenient method to evaluate the efficacy of TTR-stabilizing drugs under conditions similar to an in vivo environment. PMID:27050398

  6. Modifications of the 7-Hydroxyl Group of the Transthyretin Ligand Luteolin Provide Mechanistic Insights into Its Binding Properties and High Plasma Specificity

    PubMed Central

    Nilsson, Lina; Larsson, Andreas; Begum, Afshan; Iakovleva, Irina; Carlsson, Marcus; Brännström, Kristoffer; Sauer-Eriksson, A. Elisabeth; Olofsson, Anders

    2016-01-01

    Amyloid formation of the plasma protein transthyretin (TTR) has been linked to familial amyloid polyneuropathy and senile systemic amyloidosis. Binding of ligands within its natural hormone binding site can stabilize the tetrameric structure and impair amyloid formation. We have recently shown that the flavonoid luteolin stabilizes TTR in human plasma with a very high selectivity. Luteolin, however, is inactivated in vivo via glucuronidation for which the preferred site is the hydroxy group at position 7 on its aromatic A-ring. We have evaluated the properties of two luteolin variants in which the 7-hydroxy group has been exchanged for a chlorine (7-Cl-Lut) or a methoxy group (7-MeO-Lut). Using an in vitro model, based on human liver microsomes, we verified that these modifications increase the persistence of the drug. Crystal structure determinations show that 7-Cl-Lut binds similarly to luteolin. The larger MeO substituent cannot be accommodated within the same space as the chlorine or hydroxy group and as a result 7-MeO-Lut binds in the opposite direction with the methoxy group in position 7 facing the solvent. Both 7-Cl-Lut and 7-MeO-Lut qualify as high-affinity binders, but in contrast to luteolin, they display a highly non-specific binding to other plasma components. The binding of the two conformations and the key-interactions to TTR are discussed in detail. Taken together, these results show a proof-of-concept that the persistence of luteolin towards enzymatic modification can be increased. We reveal two alternative high-affinity binding modes of luteolin to TTR and that modification in position 7 is restricted only to small substituents if the original orientation of luteolin should be preserved. In addition, the present work provides a general and convenient method to evaluate the efficacy of TTR-stabilizing drugs under conditions similar to an in vivo environment. PMID:27050398

  7. Group Work vs. Whole Class Activity

    ERIC Educational Resources Information Center

    Tanveer, Asma

    2008-01-01

    Group work has only been recently introduced in the education system of Pakistan but many primary teachers, especially in the public schools, are still not aware of how different kinds of strategies that is group work and whole class teaching facilitate learning among students. This paper aims to provide an overview of teaching strategies to…

  8. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide.

    PubMed

    Govindan, Kadarkarai; Raja, Mohan; Noel, Michael; James, E J

    2014-05-15

    The present study is to investigate the reactivity of free radicals (SO4(-) and HO) generated from common oxidants (peroxomonosulfate (PMS), peroxodisulfate (PDS) and hydrogen peroxide (HP)) activated by electrochemically generated Fe(2+)/Fe(3+) ions which furthermore are evaluated to destroy pentachlorophenol (PCP) in aqueous solution. The effect of solution pH and amount of oxidants (PMS, PDS and HP) in electrocoagulation (EC) on PCP degradation is analyzed in detail. The experimental results reveal that, optimum initial solution pH is 4.5 and PMS is more efficient oxidant addition in EC. 75% PCP degradation is achieved at 60min electrolysis time from PMS assisted EC. According to the first order rate constant, faster PCP degradation rate is obtained by PMS assisted EC. The PCP degradation rate by oxidant assisted EC is observed in the following order: EC/PMS>EC/PDS>EC/HP>EC. Further to identify the influences of experimental factors involved in PCP degradation by oxidant assisted EC, an experimental design based on an orthogonal array (OA) L9 (3(3)) is proposed using Taguchi method. The factors that most significantly affect the process robustness are identified as A (oxidant) and B (pH) which together account for nearly 86% of the variance. PMID:24675613

  9. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    SciTech Connect

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  10. Exploring Group Activity Therapy with Ethnically Diverse Adolescents

    ERIC Educational Resources Information Center

    Paone, Tina R.; Malott, Krista M.; Maldonado, Jose M.

    2008-01-01

    Group activity therapy has been promoted as an effective means of providing growth opportunities for adolescents through the use of structured, developmentally appropriate activities in a group setting. This article qualitatively explores outcomes of 12 sessions of group activity therapy with ethnically diverse adolescents in a school setting. The…

  11. Enhancement of microsomal aniline and acetanilide hydroxylation by haemoglobin.

    PubMed

    Jonen, H G; Kahl, R; Kahl, G F

    1976-05-01

    1. Haemogloblin and myoglobin enhance rat liver microsomal p-hydroxylation of aniline and acetanilide. Microsomal N-demethylation of ethylmorphine and aminopyrine is not increased by haemoproteins. 2. The enhancement of microsomal p-hydroxylation is maximal at high substrate concentration and high haeme compound concentration. 3. Detergent-purified NADPH-cytochrome c reductase, free flavins and manganese ions considerably increase the haemoglobin-mediated, tissue-free hydroxylation of aniline. Microsomal aniline hydroxylation is not enhanced by haeme, ferric ion or albumin. 4 Catalase and cyanide ions are powerful inhibitors of haemoglobin-mediated aniline hydroxylation both in the presence and absence of tissue. Carbon monoxide inhibits the hydroxylase activity of the tissue-free system to a smaller extent than that of a system containing microsomes plus haemoglobin whereas p-chloromercuribenzoate inhibits only the flavoprotein-dependent hydroxylation of aniline mediated by haemoglobin. 5. Several possibilities of interactions between substrate, microsomes and haeme compounds are proposed. PMID:820088

  12. Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1.

    PubMed

    Ekuase, Edugie J; Liu, Yungang; Lehmler, Hans-Joachim; Robertson, Larry W; Duffel, Michael W

    2011-10-17

    Polychlorinated biphenyls (PCBs) are persistent worldwide pollutants that are of concern due to their bioaccumulation and health effects. Metabolic oxidation of PCBs results in the formation of hydroxylated metabolites (OHPCBs). Among their biological effects, OHPCBs have been shown to alter the metabolism of endocrine hormones, including inhibition of mammalian cytosolic sulfotransferases (SULTs) that are responsible for the inactivation of thyroid hormones and phenolic steroids (i.e., hSULT1A1, hSULT1B1, and hSULT1E1). OHPCBs also interact with a human hydroxysteroid sulfotransferase that plays a role in the sulfation of endogenous alcohol-containing steroid hormones and bile acids (i.e., hSULT2A1). The objectives of our current study were to examine the effects of a series of OHPCB congeners on the activity of hSULT2A1 and to develop a three-dimensional quantitative structure-activity relationship (3D-QSAR) model for OHPCBs as inhibitors of the enzyme. A total of 15 OHPCBs were examined, and the sulfation of 1 μM [(3)H] dehydroepiandrosterone (DHEA) was utilized as a model reaction catalyzed by the enzyme. All 15 OHPCBs inhibited the sulfation of DHEA, with IC(50) values ranging from 0.6 μM to 96 μM, and eight of these OHPCBs were also substrates for the enzyme. Comparative molecular field analysis (CoMFA) provided a predictive 3D-QSAR model with a q(2) value of 0.697 and an r(2) value of 0.949. The OHPCBs that had the highest potency as inhibitors of DHEA sulfation were those with a 3, 5-dichloro-4-hydroxy substitution pattern on the biphenyl ring system, and these congeners were also substrates for sulfation catalyzed by hSULT2A1. PMID:21913674

  13. Ultraviolet irradiation-induced substitution of fluorine with hydroxyl radical for mass spectrometric analysis of perfluorooctane sulfonyl fluoride.

    PubMed

    Wang, Peng; Tang, Xuemei; Huang, Lulu; Kang, Jie; Zhong, Hongying

    2016-01-28

    A rapid and solvent free substitution reaction of a fluorine atom in perfluorooctane sulfonyl fluoride (PFOSF) with a hydroxyl radical is reported. Under irradiation of ultraviolet laser on semiconductor nanoparticles or metal surfaces, hydroxyl radicals can be generated through hole oxidization. Among all fluorine atoms of PFOSF, highly active hydroxyl radicals specifically substitute the fluorine of sulfonyl fluoride functional group. Resultant perfluorooctane sulfonic acid is further ionized through capture of photo-generated electrons that switch the neutral molecules to negatively charged odd electron hypervalent ions. The unpaired electron subsequently initiates α O-H bond cleavage and produces perfluorooctane sulfonate negative ions. Hydroxyl radical substitution and molecular dissociation of PFOSF have been confirmed by masses with high accuracy and resolution. It has been applied to direct mass spectrometric imaging of PFOSF adsorbed on surfaces of plant leaves. PMID:26755143

  14. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Green, Glenn; Insley, Peter

    1985-01-01

    Explains two activities: (1) a "rotator demonstration" (a turntable, pendulum, chalk, and other materials), which can be used in many activities to demonstrate rotational concepts; and (2) an "Eskimo yo-yo," consisting of two balls (plus long strings and a glass tube) which rotate in opposite directions to show centripetal force. (JN)

  15. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Describes an activity which demonstrates standing waves in air generated by a loudspeaker driven by an audio oscillator. The waves are detected by cool spots on a glowing nichrome wire contained in an inexpensive piece of equipment. Also describes activities involving analysis of kinematics through data taking and graphing. (JM)

  16. Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17 alpha-esters containing a functional group.

    PubMed

    Ueno, H; Maruyama, A; Miyake, M; Nakao, E; Nakao, K; Umezu, K; Nitta, I

    1991-08-01

    A series of 21-desoxy-21-chlorocorticosteroids that contain a functionalized ester group at 17 alpha has been prepared and examined to separate their systemic activity from topical antiinflammatory activity. Introduction of the functionalized ester group at 17 alpha was carried out by an acid-catalyzed formation of cyclic ortho esters with 17 alpha,21-hydroxyl groups of corticosteroids and subsequent acid-catalyzed hydrolysis. As for the functional group, chloro, methoxy, acetoxy, cyano, cyclopropyl, or alkoxycarbonyl group was introduced at the terminal carbon atom of the 17 alpha-alkanoate group. The topical antiinflammatory activity and systemic activity of these compounds were examined and found to be significantly dependent on the functionalities in the 17 alpha-esters. Among these derivatives, a series of 17 alpha-(alkoxycarbonyl)alkanoates (17 alpha-OCO(CH2)nCOOR) showed an excellent separation of the systemic activity from topical activity. The effects of the number of methylene groups (n) and of the alkyl groups of the ester (R) on either topical or systemic activity of the corticosteroid derivatives were also investigated. PMID:1875343

  17. Mountain Biking with Groups: A "Safe" Activity?

    ERIC Educational Resources Information Center

    Allen, Terry

    2001-01-01

    A survey mailed to 200 British mountain bike leaders found that rates of cycling accidents and injuries were greater in forests and woodlands than on terrain where a license is required to lead groups of young cyclists. Excessive speed was mentioned in most accidents, coupled with poor use of breaks in many cases. (SV)

  18. Group Learning as Relational Economic Activity

    ERIC Educational Resources Information Center

    Saito, Eisuke; Atencio, Matthew

    2014-01-01

    The purpose of this paper is to discuss group learning in line with economic perspectives of embeddedness and integration emanating from the work of Karl Polanyi. Polanyi's work defines economy as a necessary interaction among human beings for survival; the economy is considered inextricably linked from broader society and social relations…

  19. Active microwave users working group program planning

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.

    1978-01-01

    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.

  20. Doing Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Materials needed and procedures for conducting two activities are provided. The first investigates drops of a liquid which float on water in a watchglass resting on top of a loudspeaker. The second investigates electromagnetic phenomena. (JN)

  1. Identification, Synthesis, and Biological Evaluation of Metabolites of the Experimental Cancer Treatment Drugs Indotecan (LMP400) and Indimitecan (LMP776) and Investigation of Isomerically Hydroxylated Indenoisoquinoline Analogues as Topoisomerase I Poisons

    PubMed Central

    Cinelli, Maris A.; Reddy, P.V. Narasimha; Lv, Peng-Cheng; Liang, Jian-Hua; Chen, Lian; Agama, Keli; Pommier, Yves; van Breemen, Richard B.; Cushman, Mark

    2012-01-01

    Hydroxylated analogues of the anticancer topoisomerase I (Top1) inhibitors indotecan (LMP400) and indimitecan (LMP76) have been prepared because: 1) a variety of potent Top1 poisons are known that contain strategically placed hydroxyl groups, which provides a clear rationale for incorporating them in the present case, and 2) the hydroxylated compounds could conceivably serve as synthetic standards for the identification of metabolites. Indeed, incubating LMP400 and LMP776 with human liver microsomes resulted in two major metabolites of each drug, which had HPLC retention times and mass fragmentation patterns identical to the synthetic standards. The hydroxylated indotecan and indimitecan metabolites and analogues were tested as Top1 poisons and for antiproliferative activity in a variety of human cancer cell cultures, and in general were found to be very potent. Differences in activity resulting from the placement of the hydroxyl group are explained by molecular modeling analyses. PMID:23215354

  2. DOING Physics--Physics Activities for Groups.

    ERIC Educational Resources Information Center

    Zwicker, Earl, Ed.

    1984-01-01

    Describes an activity in which two pulleys are connected by a wire loop; when the bottom pulley is dipped into hot water, the pulleys rotate. Also suggests that students design/build a machine to propel a bean; the machine must use materials including one bean, two plastic straws, and two rubber bands. (JN)

  3. Individual and group dynamics in purchasing activity

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Guo, Jin-Li; Fan, Chao; Liu, Xue-Jiao

    2013-01-01

    As a major part of the daily operation in an enterprise, purchasing frequency is in constant change. Recent approaches on the human dynamics can provide some new insights into the economic behavior of companies in the supply chain. This paper captures the attributes of creation times of purchase orders to an individual vendor, as well as to all vendors, and further investigates whether they have some kind of dynamics by applying logarithmic binning to the construction of distribution plots. It’s found that the former displays a power-law distribution with approximate exponent 2.0, while the latter is fitted by a mixture distribution with both power-law and exponential characteristics. Obviously, two distinctive characteristics are presented for the interval time distribution from the perspective of individual dynamics and group dynamics. Actually, this mixing feature can be attributed to the fitting deviations as they are negligible for individual dynamics, but those of different vendors are cumulated and then lead to an exponential factor for group dynamics. To better describe the mechanism generating the heterogeneity of the purchase order assignment process from the objective company to all its vendors, a model driven by product life cycle is introduced, and then the analytical distribution and the simulation result are obtained, which are in good agreement with the empirical data.

  4. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  5. Iron(II)/reductant(DH2)-induced activation of dioxygen for the hydroxylation and ketonization of hydrocarbons; mimics for the cytochrome P-450 hydroxylase/reductase system.

    PubMed

    Sawyer, D T; Liu, X; Redman, C; Chong, B

    1994-12-01

    Several metal complexes [(FeII(DPAH)2 (DPAH2 = 2,6-dicarboxyl pyridine), FeII(PA)2 (PAH = picolinic acid), FeII(bpy)2(2+), FeII(OPPh3)4(2+), (Cl8TPP)FeIIIX (X = Cl, OH, SCH2Ph) [Cl8TPP = tetrakis (2,6-dichlorophenyl)porphyrin], (TPP) FeIIICl (TPP = tetraphenylporphyrin), and CuI(tpy)2+ (typ = 2,2'-6,2"-terpyridine)] in combination with one of several reductants [DH2; PhNHNHPh (mimic of dihydroflavin), PhNHNH2, ascorbic acid (H2asc), and PhCH2SH (model ligand for cysteine residue)] catalytically activate O2 (1 atm) for the hydroxylation of saturated hydrocarbons (e.g. c-C6H12-->c-C6H11OH). This chemistry closely parallels that of cytochrome P-450 proteins, and both appear to involve a Fenton-like reactive intermediate), [LxFeOOH(DH)]. With cyclohexane as the substrate the dominant product is its ketone (as well as significant amounts of its hydroperoxide). 1,4-Cyclohexadiene (with two double-allylic carbon centers) undergoes dehydrogenation to give benzene, but also yields substantial amounts of phenol via ketonization of an allylic carbon. The 1:1 FeII(bpy)2(2+)/(PhNHNH2 or H2asc), FeII(PA)2/H2asc, and (Cl8TPP)FeIIICl/PhNHNH2 combinations initiate the autoxidation of 1,4-cyclohexadiene with turnover numbers (moles of product per mole of reductant) from 71 to 26, respectively (alpha-tocophenol reduces the turnover numbers by 20-80%). With respect to aerobic biology, the present results indicate that dysfunctional transition metals (degradation products of metalloproteins) in combination with biological reductants activate O2 for reaction with organic substrates. The level of activation is similar to that for Fenton reagents and cytochrome P-450 hydroxylases. Hence, dysfunctional transition metals, reductants, and O2 are a hazardous combination within a biological matrix. PMID:7788301

  6. Formation of nanostructured Group IIA metal activated sensors: The transformation of Group IIA metal compound sites

    NASA Astrophysics Data System (ADS)

    Tune, Travis C.; Baker, Caitlin; Hardy, Neil; Lin, Arthur; Widing, Timothy J.; Gole, James L.

    2015-05-01

    Trends in the Group IIA metal oxides and hydroxides of magnesium, calcium, and barium are unique in the periodic table. In this study we find that they display novel trends as decorating nanostructures for extrinsic semiconductor interfaces. The Group IIA metal ions are strong Lewis acids. We form these M2+ ions in aqueous solution and bring these solutions in contact with a porous silicon interface to form interfaces for conductometric measurements. Observed responses are consistent with the formation of MgO whereas the heavier elements display behaviors which suggest the effect of their more basic nature. Mg(OH)2, when formed, represents a weak base whereas the heavier metal hydroxides of Ca, Sr, and Ba are strong bases. However, the hydroxides tend to give up hydrogen and act as Brönsted acids. For the latter elements, the reversible interaction response of nanostructures deposited to the porous silicon (PS) interface is modified, as the formation of more basic sites appears to compete with M2+ Lewis acidity and hydroxide Brönsted acidity. Mg2+ forms an interface whose response to the analytes NH3 and NO is consistent with MgO and well explained by the recently developing Inverse Hard/Soft Acid/Base model. The behavior of the Ca2+ and Ba2+ decorated interfaces as they interact with the hard base NH3 follows a reversal of the model, indicating a decrease in acidic character as the observed conductometric response suggests the interaction with hydroxyl groups. A change from oxide-like to hydroxide-like constituents is supported by XPS studies. The changes in conductometric response is easily monitored in contrast to changes associated with the Group IIA oxides and hydroxides observed in XPS, EDAX, IR, and NMR measurements.

  7. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3′-hydroxyl group of A76 of the unacylated A-site tRNA

    SciTech Connect

    Simonović, Miljan; Steitz, Thomas A.

    2008-11-24

    The last step in ribosome-catalyzed protein synthesis is the hydrolytic release of the newly formed polypeptide from the P-site bound tRNA. Hydrolysis of the ester link of the peptidyl-tRNA is stimulated normally by the binding of release factors (RFs). However, an unacylated tRNA or just CCA binding to the ribosomal A site can also stimulate deacylation under some nonphysiological conditions. Although the sequence of events is well described by biochemical studies, the structural basis of the mechanism underlying this process is not well understood. Two new structures of the large ribosomal subunit of Haloarcula marismortui complexed with a peptidyl-tRNA analog in the P site and two oligonucleotide mimics of unacylated tRNA, CCA and CA, in the A site show that the binding of either CA or CCA induces a very similar conformational change in the peptidyl-transferase center as induced by aminoacyl-CCA. However, only CCA positions a water molecule appropriately to attack the carbonyl carbon of the peptidyl-tRNA and stabilizes the proper orientation of the ester link for hydrolysis. We, thus, conclude that both the ability of the O3'-hydroxyl group of the A-site A76 to position the water and the A-site CCA induced conformational change of the PTC are critical for the catalysis of the deacylation of the peptidyl-tRNA by CCA, and perhaps, an analogous mechanism is used by RFs.

  8. Hydroxyl speciation in felsic magmas

    NASA Astrophysics Data System (ADS)

    Malfait, Wim J.; Xue, Xianyu

    2014-09-01

    The hydroxyl speciation of hydrous, metaluminous potassium and calcium aluminosilicate glasses was investigated by 27Al-1H cross polarization and quantitative 1H MAS NMR spectroscopy. Al-OH is present in both the potassium and the calcium aluminosilicate glasses and its 1H NMR partial spectrum was derived from the 27Al-1H cross polarization data. For the calcium aluminosilicate glasses, the abundance of Al-OH could not be determined because of the low spectral resolution. For the potassium aluminosilicate glasses, the fraction of Al-OH was quantified by fitting its partial spectrum to the quantitative 1H NMR spectra. The degree of aluminum avoidance and the relative tendency for Si-O-Si, Si-O-Al and Al-O-Al bonds to hydrolyze were derived from the measured species abundances. Compared to the sodium, lithium and calcium systems, potassium aluminosilicate glasses display a much stronger degree of aluminum avoidance and a stronger tendency for the Al-O-Al linkages to hydrolyze. Combining our results with those for sodium aluminosilicate glasses (Malfait and Xue, 2010a), we predict that the hydroxyl groups in rhyolitic and phonolitic magmas are predominantly present as Si-OH (84-89% and 68-78%, respectively), but with a significant fraction of Al-OH (11-16% and 22-32%, respectively). For both rhyolitic and phonolitic melts, the AlOH/(AlOH + SiOH) ratio is likely smaller than the Al/(Al + Si) ratio for the lower end of the natural temperature range but may approach the Al/(Al + Si) ratio at higher temperatures.

  9. Activities of the Boom and Chassis Group

    NASA Technical Reports Server (NTRS)

    Dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom

    1992-01-01

    Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.

  10. Adsorption of volatile sulphur compounds onto modified activated carbons: effect of oxygen functional groups.

    PubMed

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J

    2013-08-15

    The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions. PMID:23708449

  11. The effects of activity-elicited humor and group structure on group cohesion and affective responses.

    PubMed

    Banning, M R; Nelson, D L

    1987-08-01

    The ability to analyze the therapeutic components of an activity is an important skill for occupational therapists. This study examined two potentially significant factors in activity analysis: the use of humor and the effect of group structure. Four groups (two with a parallel structure and two with a project structure) participated in a hat-making activity designed to elicit humor. Four groups (two with a parallel structure and two with a project structure) participated in a bookmark-making activity. The 28 female subjects' affective responses were measured by Osgood's short-form semantic differential, and the cohesion among group members was assessed by the Group Environment Scale. Results indicated that subjects who participated in groups which included humor rated their activity significantly higher on two factors of affective meaning (evaluation and action) and significantly higher in terms of cohesion. There was a significant interaction between the two activities and group structure in terms of the action factor and cohesion. In both cases the parallel groups making bookmarks received particularly low scores. The findings have implications for conceptualizing occupational therapy group activities. PMID:3434603

  12. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals

    PubMed Central

    Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng

    2015-01-01

    A systematic study of the antioxidation mechanisms behind hydroxyl (•OH) and hydroperoxyl (•OOH) radical scavenging activity of piceatannol (PIC) and isorhapontigenin (ISO) was carried out using density functional theory (DFT) method. Two reaction mechanisms, abstraction (ABS) and radical adduct formation (RAF), were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB) are considerable in determining the antioxidant activity of PIC and ISO. PMID:26176778

  13. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    PubMed

    Lu, Yang; Wang, AiHua; Shi, Peng; Zhang, Hui; Li, ZeSheng

    2015-01-01

    A systematic study of the antioxidation mechanisms behind hydroxyl (•OH) and hydroperoxyl (•OOH) radical scavenging activity of piceatannol (PIC) and isorhapontigenin (ISO) was carried out using density functional theory (DFT) method. Two reaction mechanisms, abstraction (ABS) and radical adduct formation (RAF), were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB) are considerable in determining the antioxidant activity of PIC and ISO. PMID:26176778

  14. High-performance liquid chromatographic assay for 4-nitrophenol hydroxylation, a putative cytochrome P-4502E1 activity, in human liver microsomes.

    PubMed

    Tassaneeyakul, W; Veronese, M E; Birkett, D J; Miners, J O

    1993-06-23

    A high-performance liquid chromatographic method which measures formation of product 4-nitrocatechol (4NC) has been developed and applied to the study of human liver microsomal 4-nitrophenol (4NP) hydroxylation. Following diethyl ether extraction, 4NC and the assay internal standard (salicylamide) were separated by reversed-phase (C18) liquid chromatography. Extraction efficiencies of 4NC and internal standard were both > 90%. The assay, which has a limit of detection of 15 pmol injected (or an incubation 4NC concentration of 0.25 microM), is accurate, reproducible and straightforward. With a chromatographic time of 12 min, 40-50 samples may be analyzed per day. Rates of 4NC formation were linear with time and protein concentration to 50 min and 0.5 mg/ml, respectively. Preliminary studies of 4NP hydroxylation showed that this reaction followed single enzyme Michaelis-Menten kinetics in human liver microsomes. PMID:8376495

  15. PEGASUS: Designing a System for Supporting Group Activity

    ERIC Educational Resources Information Center

    Kyprianidou, Maria; Demetriadis, Stavros; Pombortsis, Andreas; Karatasios, George

    2009-01-01

    Purpose: The purpose of this paper is to present the design and first results of the integration of a web-based system person-centred group-activity support system (PEGASUS) in university instruction, as a means for advancing person-centred learning by supporting group activity. The PEGASUS is expected to help students and teachers in two distinct…

  16. Supporting "Learning by Design" Activities Using Group Blogs

    ERIC Educational Resources Information Center

    Fessakis, Georgios; Tatsis, Konstantinos; Dimitracopoulou, Angelique

    2008-01-01

    The paper presents a case study of the educational exploitation of group blogging for the implementation of a "learning by design" activity. More specifically, a group of students used a blog as a communication and information management tool in the University course of ICT-enhanced Geometry learning activities. The analysis of the designed…

  17. Hydroxylated PBDEs induce developmental arrest in zebrafish

    SciTech Connect

    Usenko, Crystal Y. Hopkins, David C.; Trumble, Stephen J. Bruce, Erica D.

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  18. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    PubMed

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite. PMID:26745008

  19. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  20. Evaluation of alcoholic hydroxyl derivatives for chemically amplified extreme ultraviolet resist

    NASA Astrophysics Data System (ADS)

    Furukawa, Kikuo; Kozawa, Takahiro; Tagawa, Seiichi

    2009-03-01

    Extreme ultraviolet (EUV) lithography is the most favorable process as next-generation lithography. For the development of EUV resists, phenolic materials such as poly (4-hydroxystyrene) have been investigated. Phenolic hydroxyl groups of polymers play an important role in acid diffusion, dissolution kinetics, and adhesion to substrates. Besides these important roles, phenolic hydroxyl groups are also an effective proton source in acid generation in EUV resists. However, the roles of alcohol hydroxyl groups have not been well-studied. To clarify the difference between phenolic and alcoholic hydroxyl groups upon exposure to EUV radiation, we synthesized acrylic terpolymers containing alcoholic hydroxyl groups as model photopolymers and exposed the resist samples based on these polymers to EUV radiation. On the basis of the lithographic performances of these resist samples, we evaluated the characteristics of alcoholic hydroxyl groups upon exposure to EUV radiation. We discuss the relationship between the chemical structures of these derivatives and lithographic performance.

  1. Hydroxyl Motion in Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2015-11-01

    We report on pulsed 1H NMR studies of the hydroxyl OH groups in magnesium hydroxide Mg(OH)2 at 77-355 K at 42.5772 MHz. The Fourier-transformed NMR spectra show the superposition of broad and narrow components. The broad NMR spectrum is assigned to dipole-coupled protons on a rigid lattice in the bulk Mg(OH)2, while the narrow NMR spectrum is assigned to extrinsic protons, e.g., conduction protons facilitated by lattice defects. We found a monotonically decreasing linewidth of the broad NMR spectrum on heating. The monotonic decrease in the linewidth is associated with hopping protons around a threefold axis (rotational hydroxyl protons).

  2. Group-wise FMRI Activation Detection on DICCCOL Landmarks

    PubMed Central

    Lv, Jinglei; Guo, Lei; Zhu, Dajiang; Zhang, Tuo; Hu, Xintao; Han, Junwei; Liu, Tianming

    2014-01-01

    Group-wise activation detection in task-based fMRI has been widely used because of its robustness to noises and its capacity to deal with variability of individual brains. However, current group-wise fMRI activation detection methods typically rely on the co-registration of individual brains’ fMRI images, which has difficulty in dealing with the remarkable anatomic variation of different brains. As a consequence, the resulted misalignments could significantly degrade the required inter-subject correspondences, thus substantially reducing the sensitivity and specificity of group-wise fMRI activation detection. To deal with these challenges, this paper presents a novel approach to detecting group-wise fMRI activation on our recently developed and validated Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL). The basic idea here is that the first-level general linear model (GLM) analysis is first performed on the fMRI signal of each corresponding DICCCOL landmark in individual brain’s own space, and then the estimated effect sizes of the same landmark from a group of subjects are statistically assessed with the mixed-effect model at the group level. Finally, the consistently activated DICCCOL landmarks are determined and declared in a group-wise fashion in response to external block-based stimuli. Our experimental results have demonstrated that the proposed approach can detect meaningful activations. PMID:24777386

  3. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    PubMed Central

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600

  4. Bacterial metabolism of hydroxylated biphenyls.

    PubMed Central

    Higson, F K; Focht, D D

    1989-01-01

    Isolates able to grow on 3- or 4-hydroxybiphenyl (HB) as the sole carbon source were obtained by enrichment culture. The 3-HB degrader Pseudomonas sp. strain FH12 used an NADPH-dependent monooxygenase restricted to 3- and 3,3'-HBs to introduce an ortho-hydroxyl. The 4-HB degrader Pseudomonas sp. strain FH23 used either a mono- or dioxygenase to generate a 2,3-diphenolic substitution pattern which allowed meta-fission of the aromatic ring. By using 3-chlorocatechol to inhibit catechol dioxygenase activity, it was found that 2- and 3-HBs were converted by FH23 to 2,3-HB, whereas biphenyl and 4-HB were attacked by dioxygenation. 4-HB was metabolized to 2,3,4'-trihydroxybiphenyl. Neither organism attacked chlorinated HBs. The degradation of 3- and 4-HBs by these strains is therefore analogous to the metabolism of biphenyl, 2-HB, and naphthalene in the requirement for 2,3-catechol formation. PMID:2729993

  5. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  6. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  7. Effects of Collaborative Activities on Group Identity in Virtual World

    ERIC Educational Resources Information Center

    Park, Hyungsung; Seo, Sumin

    2013-01-01

    The purpose of this study was to analyze the effects of collaborative activities on group identity in a virtual world such as "Second Life." To achieve this purpose, this study adopted events that promoted participants' interactions using tools inherent in "Second Life." The interactive tools given to the control group in…

  8. Implementing Small-Group Activities in Large Lecture Classes

    ERIC Educational Resources Information Center

    Yazedjian, Ani; Kolkhorst, Brittany Boyle

    2007-01-01

    This study examines student perceptions regarding the effectiveness of small-group work in a large lecture class. The article considers and illustrates from students' perspectives the ways in which small-group activities could enhance comprehension of course material, reduce anonymity associated with large lecture classes, and promote student…

  9. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl

  10. Aromatic hydroxylations in peroxidations by haemoglobin systems.

    PubMed

    Esclade, L; Guillochon, D; Thomas, D

    1986-07-01

    The catalytic activity of haemoglobin on aromatic substrates was studied in three systems: NADH-methylene blue-haemoglobin, ascorbic acid-haemoglobin, and red blood cells. Aniline and phenol but not acetanilide or p-toluidine are hydroxylated by haemoglobin. Dealkylations are not observed. Hydroxylations are postulated to be intermediate reactions in peroxidations catalysed by haemoglobin. The lifetime of the products depends on the presence of electron donors, such as NADH or ascorbic acid, in the medium. In the red blood cells where endogenous electron donors are recycled, levels of the products are higher and their lifetime is longer. This could have implications on drug metabolism by haemoglobin, as haemoglobin is present in large quantities in the organism. PMID:3751116

  11. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  12. Problem-Based Group Activities for Teaching Sensation and Perception

    ERIC Educational Resources Information Center

    Kreiner, David S.

    2009-01-01

    This article describes 14 problem-based group activities for a sensation and perception course. The intent was to provide opportunities for students to practice applying their knowledge to real-world problems related to course content. Student ratings of how effectively the activities helped them learn were variable but relatively high. Students…

  13. Applying an Activity System to Online Collaborative Group Work Analysis

    ERIC Educational Resources Information Center

    Choi, Hyungshin; Kang, Myunghee

    2010-01-01

    This study determines whether an activity system provides a systematic framework to analyse collaborative group work. Using an activity system as a unit of analysis, the research examined learner behaviours, conflicting factors and facilitating factors while students engaged in collaborative work via asynchronous computer-mediated communication.…

  14. Influences on preschool children's physical activity: exploration through focus groups.

    PubMed

    Hinkley, Trina; Salmon, Jo; Okely, Anthony D; Crawford, David; Hesketh, Kylie

    2011-01-01

    This study explored mothers' perceptions of influences on preschoolers' physical activity. Six semistructured focus groups with 23 mothers were conducted across a range of socioeconomic position locations. Mothers identified 4 key areas of influence: child fundamentals (eg, sex, personality), parent power (eg, rules, support), people to share with (eg, peers, adults), and places and things (eg, physical environments, toys). No substantial differences in themes were identified among socioeconomic position groups. Influences on preschoolers' physical activity are multidimensional, multifactorial, and support the use of ecological models to conceptualize and understand the influencing factors. Associations among factors influencing preschoolers' physical activity should be further investigated through quantitative research. PMID:21135627

  15. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution. PMID:16984186

  16. Terpene hydroxylation with microbial cytochrome P450 monooxygenases.

    PubMed

    Janocha, Simon; Schmitz, Daniela; Bernhardt, Rita

    2015-01-01

    Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes. PMID:25682070

  17. Comparison of cytochrome P-450 species which catalyze the hydroxylations of the aromatic ring of estradiol and estradiol 17-sulfate.

    PubMed

    Watanabe, K; Takanashi, K; Imaoka, S; Funae, Y; Kawano, S; Inoue, K; Kamataki, T; Takagi, H; Yoshizawa, I

    1991-06-01

    For identification of microsomal cytochrome P-450 (P-450) enzymes which catalyze 2- or 4-hydroxylations of estrogens in the rat liver, estradiol (E2) and estradiol 17-sulfate (E2-17-S) were selected as the substrates and incubated with various kinds of purified P-450 enzymes: PB-1, PB-2, PB-4 and PB-5 obtained from phenobarbital-treated male rats (Sprague-Dawley); MC-1 and MC-5 from 3-methylcholanthrene-treated male rats; and UT-1, UT-2, UT-4 and UT-5 from untreated animals. The reactions were carried out under the P-450-reconstructed system, and the resulting products were determined by HPLC using electrochemical detection. All the enzymes tested were shown to have varying degrees of catalytic activities for 2-hydroxylation of the two substrates; UT-1 and UT-2 had the highest activity. Of the induced P-450 enzymes, PB-2 and MC-1 showed fairly high catalytic activity for 4-hydroxylation of E2. The P-450 enzymes obtained from the untreated male rats, especially UT-4, showed the highest catalytic activity for 4-hydroxylation of the two substrates. From these results and also from kinetic experiments, the P-450 enzymes which catalyze 2- and 4-hydroxylations of estrogen were considered to be different species. A part of E2 was converted to such metabolites as estrone and those having a hydroxyl group at positions 6 beta, 15 alpha or 16 alpha, each production of which was estimated to be catalyzed by single or multiple P-450s. PMID:2064989

  18. Using Research Cruise Data to Improve Group Activities

    NASA Astrophysics Data System (ADS)

    King, D. B.

    2009-12-01

    Group activities can be used to create an interactive classroom learning environment. POGIL (Process Oriented Guided Inquiry Learning) is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to new content. These activities have primarily been developed for chemistry courses, using general information in the model. New activities have been developed for an environmental chemistry course using real-world data as the model. The data used for one of these activities were collected during a research cruise in the Pacific Ocean. Halocarbons were measured in surface seawater and the overlying atmosphere as part of a research study on the natural cycling of compounds involved in ozone depletion. The coupled air and water measurements are used to help students learn about the solubility of gases in water. Students are first given a graph of atmospheric mixing ratios as a function of latitude for several halocarbons and then asked to predict what the corresponding graph of seawater concentrations will look like. The students are then guided through the interpretation of the seawater concentration graph. Plotting the data as a function of latitude enables the discussion of the temperature dependence of the solubility. This activity will be presented as an example of how research data can be incorporated into a classroom module. The effectiveness of this approach will be discussed.

  19. The essential activated carboxyl group of inorganic pyrophosphatase.

    PubMed

    Avaeva, S M; Bakuleva, N P; Baratova, L A; Nazarova, T I; Fink, N Y

    1977-05-12

    1. A carboxyl group of high reactivity has been found in inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from yeast. This group interacts with agents which react neither with carboxyl groups of low molecular weight compounds nor with other carboxyl groups of the protein. 2. The reaction of this activated carboxyl group with inorganic phosphate, hydroxylamine, N-methyl- and O-methylhydroxylamines, and glycine methyl ester has been studied. 3. Homoserine and homoserine lactone were found in the hydrolyzate of phosphorylated and NaBH4-reduced pyrophosphatase, indicating that an aspartyl residue is phosphorylated. 4. Hydroxylamine and other nucleophilic agents cause inactivation of pyrophosphatase as a result of interaction with a carboxyl group. Both diaminobutyric and diaminopropionic acids were seen in the acid hydrolyzate of the protein treated with hydroxylamine and subjected to rearrangement in the presence of carbodiimide. 5. The ways in which the activation of a carboxyl group in the enzyme is achieved and the presumed mechanism of action of inorganic pyrophosphatase are discussed. PMID:16652

  20. 7-alpha-hydroxylation of cholestanol by rat liver microsomes.

    PubMed

    Shefer, S; Hauser, S; Mosbach, E H

    1968-05-01

    In a study of the mechanism whereby 5alpha-bile acids are formed from cholestanol, the 7alpha-hydroxylation of cholestanol was investigated in rat liver preparations in vitro. It was found that in the presence of NADPH and oxygen, rat liver microsomes catalyzed the 7alpha-hydroxylation of cholestanol to the same extent as that of cholesterol. The rate of the hydroxylation was enhanced by prior treatment of the experimental rats with cholestyramine (a bile acid sequestrant) or by establishment of bile fistulas-i.e., by partial or complete removal of bile acids from the enterohepatic circulation. The 7-hydroxylation reaction was further stimulated by pretreatment of the animals with phenobarbital, a drug known to produce increased biosynthesis of hepatic endoplasmic membranes. The 7alpha-hydroxylase was inhibited by the reaction product, by sterols with 7-keto or 7beta-hydroxyl groups, and also by mono- and dihydroxy bile acids of the 5beta-series, although cholic acid or taurocholate produced no inhibition unless added in high concentrations. The results of these studies are in accord with the concept that the presence of a Delta(5)-double bond is not required for the enzymatic formation of the 7alpha-hydroxy derivative. The rate of this hydroxylation reaction in vitro appears to depend on the concentration of bile salts in the enterohepatic circulation of the experimental animals from whom the microsomes were obtained. PMID:5650927

  1. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression. PMID:22565543

  2. Ceftaroline activity tested against viridans group streptococci from US hospitals.

    PubMed

    Sader, Helio S; Rhomberg, Paul R; Castanheira, Mariana; Farrell, David J; Flamm, Robert K; Mendes, Rodrigo E; Jones, Ronald N

    2016-03-01

    A total of 840 clinically relevant viridans group streptococci (VGS) isolates (1/patient episode) were collected from 71 US medical centers in 2013-2014. These organisms were tested for susceptibility by reference broth microdilution methods against ceftaroline and selected comparator agents. All isolates were speciated by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry and were primarily from skin/soft tissue (32.6%) and bloodstream (32.3%) infections. Ceftaroline was highly active against all VGS species/groups with MIC50 and MIC90 values ranging from ≤0.015 to 0.03μg/mL and ≤0.015 to 0.06μg/mL, respectively. The highest ceftaroline MIC value was only 0.5μg/mL (0.5% of strains) and ceftaroline (MIC50/90, 0.03/0.06μg/mL) was 8-fold more active than ceftriaxone (MIC50/90, 0.25/0.5μg/mL). The VGS groups most susceptible to ceftaroline were Streptococcus mutans and Streptococcus bovis (MIC90, ≤0.015μg/mL), whereas the highest ceftaroline MIC values were observed among Streptococcus mitis and Streptococcus sanguinis groups. In summary, ceftaroline exhibited potent in vitro activity against VGS, including many uncommonly isolated species/groups for which very limited susceptibility information is currently available to guide therapy. PMID:26658313

  3. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon.

    PubMed

    Chung, Tsui-Yun; Tsao, Cheng-Si; Tseng, Hui-Ping; Chen, Chien-Hung; Yu, Ming-Sheng

    2015-03-01

    The hydrogen storage performance of Pd-doped oxidized activated carbon (Pd/AC-ox) with various oxygen contents or functional groups was investigated. The surface chemistry of the Pd/AC-ox sample was modified by treatment with hydrogen gas. Temperature-programmed desorption was performed to characterize the oxygen functional groups in each sample. In this study, low- and high-pressure hydrogen adsorption isotherm experiments were conducted using a static volumetric measurement at room temperature (RT) and pressures of up to 8 MPa. The results showed that increasing the oxygen content and functional groups on the surface of the Pd/AC-ox significantly improved the reversible RT hydrogen storage capacity due to the spillover effect. The hydrogen spillover enhancement factors at 0.12 MPa were greater than 100% for all samples. The hydrogen uptake of Pd/AC-ox1 at RT and 8 MPa with an oxygen content of 8.94 wt.% was 0.37 wt.%, which was 48% greater than that of Pd-free AC-ox (0.25 wt.%). In addition, the hydrogen uptake of Pd/AC-ox3 with lower oxygen contents demonstrates that the hydrogen spillover enhancement gradually disappears when the pressure is increased to more than 2 MPa (i.e., a transition from spillover to physisorption). The surface diffusion, or reversible adsorption, of the spiltover H atoms, which is enhanced by oxygen functional groups, was affected by a threshold amount of oxygen groups (such as hydroxyl groups). PMID:25490569

  4. Forestry Activities. A Guide for Youth Group Leaders.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Twenty-six activities related to forestry, conservation, and outdoor education comprise the content of this leader's guide. Designed for use with youth groups, ideas and techniques range from forest conservation mobiles, locating forest fires, and Christmas tree uses to litterbug campaigns, watershed experiments, and crossword puzzles. Activities…

  5. Active Classroom Participation in a Group Scribbles Primary Science Classroom

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit

    2011-01-01

    A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…

  6. Division Iv/v Working Group on Active B Stars

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Jones, Carol E.; Townsend, Richard D.; Fabregat, Juan; Bjorkman, Karen S.; McSwain, M. Virginia; Mennickent, Ronald E.; Neiner, Coralie; Stee, Philippe; Fabregat, Juan

    2010-05-01

    The meeting of the Working Group on Active B Stars consisted of a business session followed by a scientific session containing nine talks. The titles of the talks and their presenters are listed below. We plan to publish a series of articles containing summaries of these talks in Issue No. 40 of the Be Star Newsletter. This report contains an account of the announcements made during the business session, an update on a forthcoming IAU Symposium on active B stars, a report on the status of the Be Star Newsletter, the results of the 2009 election of the SOC for the Working Group for 2009-12, a listing of the Working Group bylaws that were recently adopted, and a list of the scientific talks that we presented at the meeting.

  7. IGM Heating and AGN activity in Fossil Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.; Klöckner, H.-R.; Ponman, T. J.; Jetha, N. N.; Raychaudhury, S.

    2014-07-01

    Fossil galaxy groups are energetically and morphologically ideal environments to study the intergalactic medium (IGM) heating, because their inter-galactic gas is undisturbed due to the lack of recent group scale mergers. We study the role of active galactic nuclei (AGN) in heating the IGM in a sample of five fossil galaxy groups by employing properties at 610 MHz and 1.4 GHz. We find that two of the dominant galaxies in fossil groups, ESO 3060170 and RX J1416.4+2315, are associated with the radio lobes. We evaluate the PdV work of the radio lobes and their corresponding heating power and compare to the X-ray emission loss within cooling radius. Our results show that the power due to mechanical heating is not sufficiently high to suppress the cooling.

  8. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. PMID:26945637

  9. Adherence to physical activity guidelines among cancer support group participants.

    PubMed

    Stevinson, C; Lydon, A; Amir, Z

    2014-03-01

    Physical activity is recommended after cancer diagnosis for physical function, quality of life and survival benefits. This study provided preliminary data on the prevalence of physical activity among adult men and women with cancer in the UK. As part of a national survey of cancer support group participation, questionnaires including items on leisure-time physical activity and demographic information were completed by 748 cancer survivors. Overall, 395 (52.8%) participants reported no weekly moderate or vigorous intensity physical activity, 221 (29.5%) reported some activity but below minimum recommendations and 132 (17.6%) were meeting published guidelines. Gender, health status and socio-economic status were independently associated with meeting guidelines. Among participants in good or fair health who were not meeting guidelines, 59.9% thought that they ought to be more physically active. In conclusion, overall levels of physical activity are low among cancer survivors in the UK. However, the majority of insufficiently active participants showed awareness of the need to increase their activity, and may be receptive to interventions for promoting physical activity in this population. PMID:24127843

  10. Effective inhibition of hydroxyl radicals by hydroxylated biphenyl compounds.

    PubMed

    Taira, J; Ikemoto, T; Mimura, K; Hagi, A; Murakami, A; Makino, K

    1993-01-01

    In aqueous media, approximate rate constants for the reactions between hydroxyl radicals (.OH) and biphenyl compounds such as dehydrodieugenol, magnolol, honokiol, dehydrodidihydroeugenol, dehydrodivanillyl alcohol, and dehydrodicreosol were estimated by competition reactions for .OH between these biphenyls and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). By measuring the decrease in the height of the EPR signals of the .OH spin adduct, rate constants in the order of 10(9) to 10(10) M were measured. PMID:8282234

  11. H 3SiOH and F 3SiOH as models for isolated hydroxyl groups of amorphous silica: an ab initio study of the adducts with dihydrogen and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Senchenya, I. N.; Civalleri, B.; Ugliengo, P.; Garrone, E.

    1998-09-01

    Ab initio calculations have been performed at both the self-consistent field (SCF) and the second-order Møller-Plesset (MP2) levels of theory, using both double-zeta plus polarisation functions basis sets and augmented correlation-consistent valence-polarised (aug-cc-pVDZ and aug-cc-pVTZ) ones, to compare the acidic and vibration features and the geometry of H 3SiOH, the model usually adopted for the isolated hydroxyls of silica, with those of its fluorinated analogue, F 3SiOH. Their complexes with H 2 and CO have also been studied. Passing from the MP2/DZP level of computation to MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels results in a considerable improvement of calculated data for H 3SiOH and its complexes when compared with experimental data. H 3SiOH is, however, less acidic than isolated hyroxyls of silica. In contrast, the use of F 3SiOH as a model yields an overestimation of the acidic properties; e.g., the stretching O-H mode frequency shifts caused by hydrogen-bond interaction with the base molecules. The combined use of both models may provide guidelines for prediction of the adducts of the isolated hydroxyl of silica with small molecules.

  12. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    PubMed Central

    Matsumura, Shigeyoshi; Ito, Tatsunobu; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2015-01-01

    The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules. PMID:25811638

  13. The evolution of star formation activity in galaxy groups

    NASA Astrophysics Data System (ADS)

    Erfanianfar, G.; Popesso, P.; Finoguenov, A.; Wuyts, S.; Wilman, D.; Biviano, A.; Ziparo, F.; Salvato, M.; Nandra, K.; Lutz, D.; Elbaz, D.; Dickinson, M.; Tanaka, M.; Mirkazemi, M.; Balogh, M. L.; Altieri, M. B.; Aussel, H.; Bauer, F.; Berta, S.; Bielby, R. M.; Brandt, N.; Cappelluti, N.; Cimatti, A.; Cooper, M.; Fadda, D.; Ilbert, O.; Le Floch, E.; Magnelli, B.; Mulchaey, J. S.; Nordon, R.; Newman, J. A.; Poglitsch, A.; Pozzi, F.

    2014-12-01

    We study the evolution of the total star formation (SF) activity, total stellar mass (ΣM*) and halo occupation distribution (HOD) in massive haloes by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of star formation rate (SFR) for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from spectral energy distribution (SED) fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high-redshift groups (0.5 < z < 1.1) is higher with respect to the low-redshift (0.15 < z < 0.5) sample at any mass by 0.8 ± 0.12 dex. A milder difference (0.35 ± 0.1 dex) is observed between the low-redshift bin and the groups at z ˜ 0. We show that the level of SF activity is declining more rapidly in the more massive haloes than in the more common lower mass haloes. We do not observe any evolution in the HOD and total stellar mass-halo mass relations in groups. The picture emerging from our findings suggests that the galaxy population in the most massive systems is evolving faster than galaxies in lower mass haloes, consistently with a `halo downsizing' scenario.

  14. Structure-cardiac activity relationship of C19-diterpenoid alkaloids.

    PubMed

    Jian, Xi-Xian; Tang, Pei; Liu, Xiu-Xiu; Chao, Ruo-Bing; Chen, Qiao-Hong; She, Xue-Ke; Chen, Dong-Lin; Wang, Feng-Peng

    2012-06-01

    Thirty three C19-diterpenoid alkaloids, twenty-two prepared from known C19-diterpenoid alkaloids and eleven isolated from Aconitum and Delphinium spp. were evaluated for their cardiac activity in the isolated bullfrog heart assay. Among them, eleven compounds exhibited cardiac activity, with average rate of amplitude increase in the range of 16-118%. Compound 7, mesaconine (17), hypaconine (25), and beiwutinine (26) exhibited strong cardiac activities relative to the reference drug. The structure-activity relationship data acquired indicated that an alpha-hydroxyl group at C-15, a hydroxyl group at C-8, an alpha-methoxyl or hydroxyl group at C-1, and a secondary amine or N-methyl group in ring A are important structure features necessary for the cardiac activities of the aconitine-type C19-diterpenoid alkaloids without any ester groups. In addition, an alpha-hydroxyl group at C-3 is also helpful for the cardiac activity of these alkaloids. PMID:22816290

  15. Regioselective hydroxylation of steroid hormones by human cytochromes P450.

    PubMed

    Niwa, Toshiro; Murayama, Norie; Imagawa, Yurie; Yamazaki, Hiroshi

    2015-05-01

    This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug-steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds. PMID:25678418

  16. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode

    DOE PAGESBeta

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; Liu, Xiao; Wang, Hua; Mei, Donghai; Ge, Qingfeng

    2016-01-16

    In this study, tin oxide (SnOx) formation on tin-based electrode surfaces during CO2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnOx in CO2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnOx. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface. CO2 energetically prefers to react withmore » the hydroxyl, forming a bicarbonate (HCO3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnOx monolayer on the electrode under the operating conditions promotes CO2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  17. [Health education for varicose ulcer patients through group activities].

    PubMed

    da Silva, Jodo Luis Almeida; Lopes, Marta Julia Marques

    2006-06-01

    It is a report on the group activities carried out with carriers of varicose ulcer in a health unit in Porto Alegre, Rio Grande do Sul, Brazil. The varicose ulcer presents factors, besides the biological ones, which interfere in the cicatrization, in the relapse cases and in its effective resolution. The proposed activities aimed at producing behavior changes with the intention of achieving self-care, providing information, socializing the participants, and stimulating cooperation, searching for joint solutions, aggregating interdisciplinary spirit and improving the care. Two groups have been formed and a thematic schedule established. The results have showed higher adhesion to the treatment, behavioral changes, and adapted and more effective attitudes of the health team. PMID:17025041

  18. Silanone groups on the surface of mechanically activated silicon dioxide

    SciTech Connect

    Bobyshev, A.A.; Radtsig, V.A.

    1988-12-01

    A new type of natural defects, namely, silanone groups, was identified on the surface of mechanically activated SiO/sub 2/. A study was carried out on their thermal stability, optical properties (a characteristic absorption band was found with maximum at 5.3 eV), and reactivity relative to simple molecules such as CO/sub 2/ and N/sub 2/O and radicals such as H, D, and CH/sub 3/.

  19. Knowledge discovery in group activities through sequential observation analysis

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2014-06-01

    Understanding of Group Activities (GA) has significant applications in civilian and military domains. The process of understanding GA is typically involved with spatiotemporal analysis of multi-modality sensor data. Video imagery is one popular sensing modality that offers rich data, however, data associated with imagery source may become fragmented and discontinued due to a number of reasons (e.g., data transmission, or observation obstructions and occlusions). However, making sense out of video imagery is a real challenge. It requires a proper inference working model capable of analyzing video imagery frame by frame, extract and inference spatiotemporal information pertaining to observations while developing an incremental perception of the GA as they emerge overtime. In this paper, we propose an ontology based GA recognition where three inference Hidden Markov Models (HMM's) are used for predicting group activities taking place in outdoor environments and different task operational taxonomy. The three competing models include: a concatenated HMM, a cascaded HMM, and a context-based HMM. The proposed ontology based GA-HMM was subjected to set of semantically annotated visual observations from outdoor group activity experiments. Experimental results from GA-HMM are presented with technical discussions on design of each model and their potential implication to Persistent Surveillance Systems (PSS).

  20. Obscured Starburst Activity in High Redshift Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; Lemaux, B.; Lubin, L.; Gal, R.

    2011-01-01

    Using Spitzer MIPS 24um imaging and extensive Keck spectroscopy we have found evidence for environmentally triggered starburst activity within six clusters and groups at z 0.9. I will show that the density of 24um-detected galaxies in the cluster environment is nearly twice that of the surrounding field at this redshift and that this overdensity scales with the cluster's dynamical state. The 24um-bright members often appear optically unremarkable and exhibit only moderate [OII] line emission due to severe obscuration. Although their spatial distribution suggests they are an infalling population, a close examination of their spectral properties, morphologies and optical colors indicate they are not simply analogs of the field population that have yet to be quenched. Using stacked DEIMOS spectra, we find the 24um-detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared to galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using HST ACS imaging we find that disturbed morphologies are common among the obscured starburst population and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the group galaxies, while a mix of harassment and mergers are likely driving the activity of the cluster galaxies.

  1. Obscured Starburst Activity in High-redshift Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale D.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy; McGrath, Elizabeth J.; Fassnacht, Christopher D.; Squires, Gordon K.; Surace, Jason A.; Lacy, Mark

    2011-07-01

    Using Spitzer-Multiband Imaging Photometer 24 μm imaging and extensive Keck spectroscopy, we examine the nature of the obscured star-forming population in three clusters and three groups at z ~ 0.9. These six systems are the primary components of the Cl1604 supercluster, the largest structure imaged by Spitzer at redshifts approaching unity. We find that the average density of 24 μm detected galaxies within the Cl1604 clusters is nearly twice that of the surrounding field and that this overdensity scales with the cluster's dynamical state. The 24 μm bright members often appear optically unremarkable and exhibit only moderate [O II] line emission due to severe obscuration. Their spatial distribution suggests that they are an infalling population, but an examination of their spectral properties, morphologies, and optical colors indicates that they are not simply analogs of the field population that have yet to be quenched. Using stacked composite spectra, we find that the 24 μm detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared with galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using Hubble Space Telescope Advanced Camera for Surveys imaging, we find that disturbed morphologies are common among the 24 μm detected cluster and group members and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the Cl1604 groups, while a mix of harassment and mergers are likely

  2. Mechanistic basis for the enantioselectivity of the anaerobic hydroxylation of alkylaromatic compounds by ethylbenzene dehydrogenase.

    PubMed

    Szaleniec, Maciej; Dudzik, Agnieszka; Kozik, Bartłomiej; Borowski, Tomasz; Heider, Johann; Witko, Małgorzata

    2014-10-01

    The enantioselectivity of reactions catalyzed by ethylbenzene dehydrogenase, a molybdenum enzyme that catalyzes the oxygen-independent hydroxylation of many alkylaromatic and alkylheterocyclic compounds to secondary alcohols, was studied by chiral chromatography and theoretical modeling. Chromatographic analyses of 22 substrates revealed that this enzyme exhibits remarkably high reaction enantioselectivity toward (S)-secondary alcohols (18 substrates converted with >99% ee). Theoretical QM:MM modeling was used to elucidate the structure of the catalytically active form of the enzyme and to study the reaction mechanism and factors determining its high degree of enantioselectivity. This analysis showed that the enzyme imposes strong stereoselectivity on the reaction by discriminating the hydrogen atom abstracted from the substrate. Activation of the pro(S) hydrogen atom was calculated to be 500 times faster than of the pro(R) hydrogen atom. The actual hydroxylation step (i.e., hydroxyl group rebound reaction to a carbocation intermediate) does not appear to be enantioselective enough to explain the experimental data (the calculated rate ratios were in the range of only 2-50 for pro(S): pro(R)-oriented OH rebound). PMID:24950385

  3. Biotechnological production of plant-specific hydroxylated phenylpropanoids.

    PubMed

    Lin, Yuheng; Yan, Yajun

    2014-09-01

    Hydroxylated phenylpropanoid compounds (e.g., esculetin, piceatannol, and eriodictyol) have been proved to possess important biological activities and pharmacological properties. These compounds exist at low abundance in nature, which hampers their cost-effective isolation, and broad application. Meanwhile, regiospecific hydroxylation of complex aromatic compounds is still quite challenging for chemical synthesis. In past decades, biocatalytic hydroxylation of plant phenylpropanoids was achieved due to the identification and engineering of some cytochrome P450 hydroxylases; however, the conversion efficiency was still too low for scale-up production use. In this work, we identify a non-P450 monooxygenase (HpaBC) from Escherichia coli, which is able to catalyze the efficient ortho-hydroxylation towards plant phenylpropanoids umbelliferone and resveratrol; meanwhile it also exhibits activity towards naringenin. On this basis, whole-cell biocatalysis enables the production of esculetin and piceatannol at high titers (2.7 and 1.2 g/L, respectively, in shake flasks) and high yields (close to 100%). To our knowledge, this work reports the highest titers and yields for biotechnological production of esculetin and piceatannol, representing a promising hydroxylation platform. PMID:24752627

  4. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations. PMID:26507217

  5. Intramolecular gamma-hydroxylations of nonactivated C-H bonds with copper complexes and molecular oxygen.

    PubMed

    Schönecker, Bruno; Zheldakova, Tatjana; Lange, Corinna; Günther, Wolfgang; Görls, Helmar; Bohl, Martin

    2004-11-19

    Copper(I) complexes incorporating the isomeric bidentate ligands IMPY (iminomethyl-2-pyridines) or AMPY (aminomethylene-2-pyridines) are quite unusual in their ability to bind and activate molecular oxygen. Using these complexes, hydroxylations of nonactivated CH, CH2, or CH3 groups in the gamma-position in relation to the imino-nitrogen atom, and with a specific orientation of one H atom with respect to the binuclear Cu-O species, can be achieved in synthetically useful yields. Through mechanistic studies employing conformationally well-defined molecules (for example, cyclic isoprenoids), coupled with solid-state X-ray structure analyses and force-field calculations, we postulate a seven-membered transition state for this reaction in which six atoms lie approximately in a plane. This plane is defined by the positions of the lone pairs on the nitrogen atoms, as well as the copper and the oxygen atoms. For a successful hydroxylation, one hydrogen atom should be located close to this plane. Prediction of the stereochemical course of these reactions is possible based on a simple geometrical criterion. The convenient introduction of IMPY and AMPY groups as auxiliaries into oxo and primary amino compounds and the simple hydrolysis after the hydroxylation procedure has allowed the synthesis of 3-hydroxy-1-oxo and 3-hydroxy-1-amino compounds. If desired, the 3-hydroxy-1-IMPY and -1-AMPY compounds can be reduced with NaBH4 to obtain 3-hydroxy-1-aminomethylpyridines. For a successful hydroxylation procedure, the method employed for the synthesis of the CuI complexes is very important. Starting either from CuI salts or from CuII salts with a subsequent reduction with benzoin/triethylamine may turn out to be the better way, depending on the ligand and the molecular structure. PMID:15521055

  6. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis. PMID:22999383

  7. Activities of the PNC Nuclear Safety Working Group

    SciTech Connect

    Kato, W.Y.

    1991-12-31

    The Nuclear Safety Working Group of the Pacific Nuclear Council promotes nuclear safety cooperation among its members. Status of safety research, emergency planning, development of lists of technical experts, severe accident prevention and mitigation have been the topics of discussion in the NSWG. This paper reviews and compares the severe accident prevention and mitigation program activities in some of the areas of the Pacific Basin region based on papers presented at a special session organized by the NSWG at an ANS Topical Meeting as well as papers from other sources.

  8. Activities of the PNC Nuclear Safety Working Group

    SciTech Connect

    Kato, W.Y.

    1991-01-01

    The Nuclear Safety Working Group of the Pacific Nuclear Council promotes nuclear safety cooperation among its members. Status of safety research, emergency planning, development of lists of technical experts, severe accident prevention and mitigation have been the topics of discussion in the NSWG. This paper reviews and compares the severe accident prevention and mitigation program activities in some of the areas of the Pacific Basin region based on papers presented at a special session organized by the NSWG at an ANS Topical Meeting as well as papers from other sources.

  9. Steroid Hydroxylation by Basidiomycete Peroxygenases: a Combined Experimental and Computational Study

    PubMed Central

    Babot, Esteban D.; del Río, José C.; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T.

    2015-01-01

    The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. PMID:25862224

  10. Space station group activities habitability module study: A synopsis

    NASA Technical Reports Server (NTRS)

    Nixon, David; Glassman, Terry

    1987-01-01

    Space station habitability was studied by investigating crew activity routines, proximities, ergonomic envelopes, and group volumes. Ten alternative schematic interior designs were proposed. Preliminary conclusions include: (1) in-service interior modifications may be necessary and should be planned for; (2) design complexity will be increased if the module cluster is reduced from five to three; (3) the increased crew circulation attendant upon enhancement of space station activity may produce human traffic bottlenecks and should be planned for; (4) a single- or two-person quiet area may be desirable to provide crew members with needed solitude during waking hours; and (5) the decision to choose a two-shift or three-shift daily cycle will have a significant impact on the design configuration and operational efficiency of the human habitat.

  11. Anti-Inflammatory Effects of 3-(4'-Hydroxyl-3',5'-Dimethoxyphenyl)Propionic Acid, an Active Component of Korean Cabbage Kimchi, in Lipopolysaccharide-Stimulated BV2 Microglia.

    PubMed

    Jeong, Jin-Woo; Choi, Il-Whan; Jo, Guk-Heui; Kim, Gi-Young; Kim, Jinwoo; Suh, Hongsuk; Ryu, Chung-Ho; Kim, Wun-Jae; Park, Kun-Young; Choi, Yung Hyun

    2015-06-01

    We investigated the protective ability of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), an active principle in Korean cabbage kimchi, against the production of proinflammatory mediators and cytokines, and the mechanisms involved in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. HDMPPA significantly suppressed the production of nitric oxide (NO) and prostaglandin E2, along with the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV2 cells, at concentrations with no cytotoxicity. HDMPPA also attenuated the LPS-induced expression and secretion of proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-1β. Furthermore, HDMPPA inhibited LPS-induced nuclear factor-κB (NF-κB) activation, which was associated with the abrogation of IκB-α degradation and phosphorylation, and subsequent decreases in NF-κB p65 levels. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) and Akt, a downstream molecule of phosphatidylinositol-3-kinase (PI3K), in LPS-stimulated BV2 cells was suppressed markedly by HDMPPA. This effect was associated with a significant reduction in the formation of intracellular reactive oxygen species. The findings in this study suggest that HDMPPA may exert anti-inflammatory responses by suppressing LPS-induced expression of proinflammatory mediators and cytokines through blockage of NF-κB, MAPKs, and PI3K/Akt signaling pathways and oxidative stress in microglia. PMID:25919915

  12. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  13. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  14. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  15. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  16. Biologically Active Acetylenic Amino Alcohol and N-Hydroxylated 1,2,3,4-Tetrahydro-β-carboline Constituents of the New Zealand Ascidian Pseudodistoma opacum.

    PubMed

    Wang, Jiayi; Pearce, A Norrie; Chan, Susanna T S; Taylor, Richard B; Page, Michael J; Valentin, Alexis; Bourguet-Kondracki, Marie-Lise; Dalton, James P; Wiles, Siouxsie; Copp, Brent R

    2016-03-25

    The first occurrence of an acetylenic 1-amino-2-alcohol, distaminolyne A (1), isolated from the New Zealand ascidian Pseudodistoma opacum, is reported. The isolation and structure elucidation of 1 and assignment of absolute configuration using the exciton coupled circular dichroism technique are described. In addition, a new N-9 hydroxy analogue (2) of the known P. opacum metabolite 7-bromohomotrypargine is also reported. Antimicrobial screening identified modest activity of 1 toward Escherichia coli, Staphylococcus aureus, and Mycobacterim tuberculosis, while 2 exhibited a moderate antimalarial activity (IC50 3.82 μM) toward a chloroquine-resistant strain (FcB1) of Plasmodium falciparum. PMID:26670413

  17. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. PMID:26774252

  18. Inhibitory effects of hydroxylated cinnamoyl esters on lipid absorption and accumulation.

    PubMed

    Imai, Masahiko; Kumaoka, Takaya; Hosaka, Makiko; Sato, Yui; Li, Chuan; Sudoh, Masashi; Tamada, Yoshiko; Yokoe, Hiromasa; Saito, Setsu; Tsubuki, Masayoshi; Takahashi, Noriko

    2015-07-01

    Obesity is a risk factor associated with several lifestyle-related diseases, for example, diabetes, high blood pressure, hyperlipidemia and cancer. Caffeic acid 2-phenylethyl ester (CAPE, 1), a naturally-occurring compound found in various plants and propolis, which exhibits anti-inflammatory, immunomodulatory and cytotoxic activities and inhibits 3T3-L1 differentiation to adipocytes. As part of our efforts to moderate lifestyle-related diseases, we synthesized analogs of 1 and studied their effects on pancreatic lipase activities, lipid absorption, and 3T3-L1 differentiation. We found that catechols 1-4 show inhibitory activities against pancreatic lipase in a dose-dependent manner in vitro. Compounds 1-3 proved to be more potent inhibitors of pancreatic lipase than 5, 6, 8, and 9, which have one hydroxyl group, respectively. Compound 7 has three aromatic hydroxyl groups and restrains greater lipase inhibitory activity than the other compounds. In addition, 7 and 3 significantly suppress a rise in blood triglyceride (TG) levels in mice given corn oil orally. Furthermore, 2 and 3 are more potent at preventing 3T3-L1 differentiation (lipid accumulation) than 1, while 7 is more potent than 3, 8, and 9 in these assays. Compounds 2, 3, and 7 inhibit lipid absorption and accumulation, with new compound 7 being the most potent. These results indicate that 7 may have potential benefits as a health agent with anti-obesity properties. PMID:25910587

  19. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite.

    PubMed

    Rosa, Angela; Ricciardi, Giampaolo; Jan Baerends, Evert

    2010-04-19

    Arguments are put forward that the active alpha-oxygen site in the Fe-ZSM-5 catalyst consists of the FeO(2+) moiety. It is demonstrated that this zeolite site for FeO(2+) indeed obeys the design principles for high reactivity of the FeO(2+) moiety proposed earlier: a ligand environment consisting of weak equatorial donors (rather oxygen based than nitrogen based) and very weak or absent trans axial donor. The alpha-oxygen site would then owe its high reactivity to the same electronic structure features that lends FeO(2+) its high activity in biological systems, as well as in the classical Fenton chemistry. PMID:20302356

  20. Cyp2D6 catalyzes 5-hydroxylation of 1-(2-pyrimidinyl)-piperazine, an active metabolite of several psychoactive drugs, in human liver microsomes.

    PubMed

    Raghavan, Nirmala; Zhang, Donglu; Zhu, Mingshe; Zeng, Jianing; Christopher, Lisa

    2005-02-01

    1-(2-Pyrimidinyl)-piperazine (1-PP) is an active metabolite of several psychoactive drugs including buspirone. 1-PP is also the major metabolite in the human circulation and in rat brains following oral administration of buspirone. This study was conducted to identify the enzyme responsible for the metabolic conversion of 1-PP to 5-hydroxy-1-(2-pyrimidinyl)-piperazine (HO-1-PP) in human liver microsomes (HLMs). The product HO-1-PP was quantified by a validated liquid chromatography-tandem mass spectrometry method. In the presence of NADPH, 1-PP (100 microM) was incubated separately with human cDNA-expressed cytochrome P450 isozymes (including CYP2D6, 3A4, 1A2, 2A6, 2C9, 2C19, 2E1, and 2B6) at 37 degrees C. CYP2D6 catalyzed the formation of HO-1-PP from 1-PP. This catalytic activity was >95% inhibited by quinidine, a CYP2D6 inhibitor. HO-1-PP formation rates correlated well with the bufuralol 1-hydroxylase (CYP2D6) activities of individual HLMs. The formation of HO-1-PP followed a Michaelis-Menten kinetics with a K(m) of 171 microM and V(max) of 313 pmol/min x mg protein in HLMs. Collectively, these results indicate that polymorphic CYP2D6 is responsible for the conversion of 1-PP to HO-1-PP. PMID:15507542

  1. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  2. Peroxidized coelenterazine, the active group in the photoprotein aequorin.

    PubMed Central

    Shimomura, O; Johnson, F H

    1978-01-01

    The photoprotein aequorin emits light by an intramolecular reaction when Ca2+ is added under either aerobic or anaerobic conditions. Previously reported evidence has indicated two possibilities: (i) the functional group of aequorin is coelenterazine itself, a compond that plays key roles in the bioluminescence of various other types of organisms, or (ii) it is the enolized form of this compound. Present data rule out both of these possibilities, through elucidation of the structure of the yellow compound that is split off aequorin by treatment with NaHSO3. The yellow compound is now shown to be a tertiary alcohol of coelenterazine on the basis of chemical reactions, mass spectral data, and relationships to known derivatives of coelenterazine. From this structure and the method of forming the yellow compound from aequorin, aequorin evidently contains a peroxide of coelenterazine as the active group. The presence of such a peroxide is consistent with the fact that aequorin yields free coelenterazine upon treatment with Na2S2O4. Although there is no applicable technique at present to determine with assurance the specific state of the peroxide in the protein, a study with 18O tracer indicates that a linear peroxide structure is more likely than the alternative possibility of a dioxetane structure. PMID:275832

  3. An Update on the VAMOS Extremes Working Group Activities

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Cavalcanti, Iracema

    2011-01-01

    We review here the progress of the Variability of the American MOnsoon Systems (VAMOS) extremes working group since it was formed in February of 2010. The goals of the working group are to 1) develop an atlas of warm-season extremes over the Americas, 2) evaluate existing and planned simulations, and 3) suggest new model runs to address mechanisms and predictability of extremes. Substantial progress has been made in the development of an extremes atlas based on gridded observations and several reanalysis products including Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR). The status of the atlas, remaining issues and plans for its expansion to include model data will be discussed. This includes the possibility of adding a companion atlas based on station observations based on the software developed under the World Climate Research Programme (WCRP) Expert Team on Climate Change. Detection and Indices (ETCCDI) activity. We will also review progress on relevant research and plans for the use and validation of the atlas results.

  4. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities.

    PubMed Central

    Babizhayev, M A; Seguin, M C; Gueyne, J; Evstigneeva, R P; Ageyeva, E A; Zheltukhina, G A

    1994-01-01

    Carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) are natural imidazole-containing compounds found in the non-protein fraction of mammalian tissues. Carcinine was synthesized by an original procedure and characterized. Both carnosine and carcinine (10-25 mM) are capable of inhibiting the catalysis of linoleic acid and phosphatidylcholine liposomal peroxidation (LPO) by the O2(-.)-dependent iron-ascorbate and lipid-peroxyl-radical-generating linoleic acid 13-monohydroperoxide (LOOH)-activated haemoglobin systems, as measured by thiobarbituric-acid-reactive substance. Carcinine and carnosine are good scavengers of OH. radicals, as detected by iron-dependent radical damage to the sugar deoxyribose. This suggests that carnosine and carcinine are able to scavenge free radicals or donate hydrogen ions. The iodometric, conjugated diene and t.l.c. assessments of lipid hydroperoxides (13-monohydroperoxide linoleic acid and phosphatidylcholine hydroperoxide) showed their efficient reduction and deactivation by carnosine and carcinine (10-25 mM) in the liberated and bound-to-artificial-bilayer states. This suggests that the peroxidase activity exceeded that susceptible to direct reduction with glutathione peroxidase. Imidazole, solutions of beta-alanine, or their mixtures with peptide moieties did not show antioxidant potential. Free L-histidine and especially histamine stimulated iron (II) salt-dependent LPO. Due to the combination of weak metal chelating (abolished by EDTA), OH. and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biological membranes and aqueous environments. PMID:7998987

  5. Pumping the stellar hydroxyl maser

    NASA Technical Reports Server (NTRS)

    Dickinson, Dale F.

    1987-01-01

    IRAS far-IR flux data for 163 OH maser stars were analyzed to quantify the contributions 35 and 53 microns inversions make to pumping of the hydroxyl maser. The 35 microns transition is from the 3,3 ground state to the 1,5 rotationally excited level and subsequent decay; the 53 microns transition is a change from the ground state to the 1,3 excited level and relaxation. The stars examined included Mira, short period semi-regular and long-period semi-regular variables. Both transition lines had rough parity in contributing to the approximately 8 percent pumping efficiency at 1612 MHz. However, the individual contributions of the lines could not be determined for the stellar population studied.

  6. Generation of hydroxyl radicals during ascites experimentally induced in broilers.

    PubMed

    Arab, H A; Jamshidi, R; Rassouli, A; Shams, G; Hassanzadeh, M H

    2006-04-01

    Increased metabolic rates, pulmonary hypertension and cardiac dysfunction are the most important features of the ascites syndrome in broiler chickens. However, the mechanism of cell injury causing the pathogenesis of the syndrome is not clearly understood. Our study aimed to examine the generation of hydroxyl radicals (OH*) in broiler chickens experiencing ascites. The hundred and fifty 1-d-old chickens were purchased from a local hatchery and reared in an open poultry house for 46 d. They were divided at random into three groups and ascites was induced in two groups by exposing them to low temperature or administration of triiodothyronine (T(3)). The third group served as control and was reared normally. Haematological, biochemical and pathological tests were used to determine the incidence of ascites: including total red blood cell (RBC), packed cell volume (PCV), release of alanine transaminase (ALT) and aspartate transaminase (AST) and ratio of right ventricular weight to total ventricular weight (RV/TV). A salicylate hydroxylation method was used to examine the generation of hydroxyl radicals (OH*) in treated groups. TWo hydroxylated salicylic acid metabolites, 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), were measured by HPLC to detect the generation of OH*. An ascites syndrome was observed in T(3) and low-temperature treated groups, as shown by necropsy changes and increases in f RBC, PCV, ALT, AST and the ratio of RV/TV. Concentrations of 2,3- and 2,5-DHBA were increased in groups experiencing ascites compared to control group. It is suggested that reactive oxygen species that is OH* ions, may be involved in the pathogenesis of the ascites syndrome in broiler chickens. PMID:16641033

  7. Hepatic drug hydroxylation and lipid peroxidation in riboflavin-deficient rats*

    PubMed Central

    Patel, J. M.; Galdhar, N. R.; Pawar, S. S.

    1974-01-01

    The effect of riboflavin deficiency and phenobarbital pretreatment on drug hydroxylation and lipid peroxidation was investigated. A significant decrease in aniline and acetanilide hydroxylation as well as NADPH-linked and ascorbate-induced lipid peroxidation was observed during 4- and 7-week riboflavin deficiency in both adult male and adult female rats. The drug-hydroxylation and lipid-peroxidation activities were further lowered with the increase in riboflavin deficiency. The phenobarbital pretreatment induced aniline and acetanilide hydroxylase activity even in riboflavin-deficient animals. Drug hydroxylation inhibits lipid peroxidation in both deficient and normal rats. The administration of riboflavin was followed by a significant increase in drug hydroxylation and lipid peroxidation. PMID:4374935

  8. Hepatic drug hydroxylation and lipid peroxidation in riboflavin-deficient rats.

    PubMed

    Patel, J M; Galdhar, N R; Pawar, S S

    1974-06-01

    The effect of riboflavin deficiency and phenobarbital pretreatment on drug hydroxylation and lipid peroxidation was investigated. A significant decrease in aniline and acetanilide hydroxylation as well as NADPH-linked and ascorbate-induced lipid peroxidation was observed during 4- and 7-week riboflavin deficiency in both adult male and adult female rats. The drug-hydroxylation and lipid-peroxidation activities were further lowered with the increase in riboflavin deficiency. The phenobarbital pretreatment induced aniline and acetanilide hydroxylase activity even in riboflavin-deficient animals. Drug hydroxylation inhibits lipid peroxidation in both deficient and normal rats. The administration of riboflavin was followed by a significant increase in drug hydroxylation and lipid peroxidation. PMID:4374935

  9. Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl

    PubMed Central

    Chen, Jie; Zhang, Weili; Sun, Yuanyuan; Zheng, Yongping; Tang, Nujiang; Du, Youwei

    2016-01-01

    Creation of high-density localized spins in the basal plane of graphene sheet by introduction of sp3-type defects is considered to be a potential route for the realization of high-magnetization graphene. Theoretical and experimental studies confirmed that hydroxyl can be an effective sp3-type candidate for inducing robust magnetic moment. However, the artificial generation of hydroxyl groups for creating high-density spins on the basal plane of graphene sheet is very scarce. Here we demonstrate that high-content hydroxyl groups can be generated on the basal plane of graphene oxide (GO) sheet by ring opening of epoxy groups. We show that by introduction of 10.74 at.% hydroxyl groups, the density of localized spins of GO can be significantly increased from 0.4 to 5.17 μB/1000 C. Thus, this study provided an effective method to obtain graphene with high-density localized spins. PMID:27225991

  10. Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Zhang, Weili; Sun, Yuanyuan; Zheng, Yongping; Tang, Nujiang; Du, Youwei

    2016-05-01

    Creation of high-density localized spins in the basal plane of graphene sheet by introduction of sp3-type defects is considered to be a potential route for the realization of high-magnetization graphene. Theoretical and experimental studies confirmed that hydroxyl can be an effective sp3-type candidate for inducing robust magnetic moment. However, the artificial generation of hydroxyl groups for creating high-density spins on the basal plane of graphene sheet is very scarce. Here we demonstrate that high-content hydroxyl groups can be generated on the basal plane of graphene oxide (GO) sheet by ring opening of epoxy groups. We show that by introduction of 10.74 at.% hydroxyl groups, the density of localized spins of GO can be significantly increased from 0.4 to 5.17 μB/1000 C. Thus, this study provided an effective method to obtain graphene with high-density localized spins.

  11. Creation of localized spins in graphene by ring-opening of epoxy derived hydroxyl.

    PubMed

    Chen, Jie; Zhang, Weili; Sun, Yuanyuan; Zheng, Yongping; Tang, Nujiang; Du, Youwei

    2016-01-01

    Creation of high-density localized spins in the basal plane of graphene sheet by introduction of sp(3)-type defects is considered to be a potential route for the realization of high-magnetization graphene. Theoretical and experimental studies confirmed that hydroxyl can be an effective sp(3)-type candidate for inducing robust magnetic moment. However, the artificial generation of hydroxyl groups for creating high-density spins on the basal plane of graphene sheet is very scarce. Here we demonstrate that high-content hydroxyl groups can be generated on the basal plane of graphene oxide (GO) sheet by ring opening of epoxy groups. We show that by introduction of 10.74 at.% hydroxyl groups, the density of localized spins of GO can be significantly increased from 0.4 to 5.17 μB/1000 C. Thus, this study provided an effective method to obtain graphene with high-density localized spins. PMID:27225991

  12. Hydroxylation of a metal-supported hexagonal boron nitride monolayer by oxygen induced water dissociation.

    PubMed

    Guo, Yufeng; Guo, Wanlin

    2015-07-01

    Hydroxylated hexagonal boron nitride (h-BN) nanosheets exhibit potential application in nanocomposites and functional surface coating. Our first-principles calculations reveal possible hydroxylation of a h-BN monolayer on a Ni substrate by surface O adatom induced spontaneous dissociation of water molecules. Here one H atom is split from a water molecule by bonding with the O adatom on the B atom and the resulting O-H radical then bonds with an adjacent B atom, which leads to two hydroxyl groups formed on h-BN/Ni. Hydroxylation slightly influences the electronic properties of a Ni-supported h-BN layer. Similar water dissociation and hydroxylation can occur on the surface of O functionalized h-BN/Cu depending on the O adsorption configuration. Metal substrates play an important catalytic role in enhancing the chemical reactivity of O adatoms on h-BN with water molecules through transferring additional charges to them. PMID:26051363

  13. Activities of the EMRAS Tritium/C14 Working Group

    SciTech Connect

    Davis, P.A.; Balonov, M.; Venter, A

    2005-07-15

    A new model evaluation program, Environmental Modeling for Radiation Safety (EMRAS), was initiated by the International Atomic Energy Agency in September 2003. EMRAS includes a working group (WG) on modeling tritium and C-14 transfer through the environment to biota and man. The main objective of this WG is to develop and test models of the uptake, formation and translocation of organically bound tritium (OBT) in food crops, animals and aquatic systems. To the extent possible, the WG is carrying out its work by comparing model predictions with experimental data to identify the modeling approaches and assumptions that lead to the best agreement between predictions and observations. Results for scenarios involving a chronically contaminated aquatic ecosystem and short-term exposure of soybeans are presently being analyzed. In addition, calculations for scenarios involving chronically contaminated terrestrial food chains and hypothetical short-term releases are currently underway, and a pinetree scenario is being developed. The preparation of datasets on tritium dynamics in large animals and fish is being encouraged, since these are the areas of greatest uncertainty in OBT modeling. These activities will be discussed in this paper.

  14. Update on Activities of CEOS Disaster Management Support Group

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The Committee on Earth Observation Satellites (CEOS) Disaster Management Support Group (DMSG) has supported natural and technological disaster management on a worldwide basis by fostering improved utilization of existing and planned Earth Observation (EO) satellite data. The DMSG has focused on developing and refining recommendations for the application of satellite data to selected hazard areas--drought, earthquake, fire, flood, ice, landslide, oil spill, and volcanic hazards. Particular emphasis was placed on working closely with space agencies, international and regional organizations, and commercial organizations on the implementation of these recommendations. The DMSG is in its last year with its primary focus on documenting its work and migrating on going activities to other fora. With over 300 participants from more than 140 organizations, the DMSG has found strong support among CEOS space agencies and the Integrated Global Observing Strategy (IGOS), as well as an enthusiastic reception from numerous international, regional, and national emergency managers, and distinct interest from the commercial sector. In addition, the group has worked to give full support to the work of the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) in pursuit of decisions taken at UNISPACE III and the United Nations International Strategy on Disaster Reduction (ISDR). In conjunction with the IGOS, several of the DMSG hazards teams (earthquake, landslide, and solid Earth dimensions of volcanoes) are joining in the effort to develop an IGOS Geohazards theme team. Cooperation efforts with organizations such as IGOS, COPUOS, and ISDR will hopefully lead to the pick up of much of the on going DMSG activities. Since the inception of this ad hoc working group and its predecessor project, the DMSG has developed and refined recommendations for the application of satellite data by bringing together experts from eight hazard areas to identify user needs, as well as

  15. Quantity, Quality, and Variety of Pupil Responses during an Open-Communication Structured Group Directed Reading-Thinking Activity and a Closed Communication Structured Group Directed Reading Activity.

    ERIC Educational Resources Information Center

    Petre, Richard M.

    The quality, quantity, and variety of pupil responses while using two different group directed reading activities, the Directed Reading Activity (DRA), and the Directed Reading-Thinking Activity (DRTA) were investigated in this study. The subjects, all fourth graders in two nearby communities, were grouped into above-grade-level, at-grade-level,…

  16. Some Factors Relevant to Group Activities in Language Teaching

    ERIC Educational Resources Information Center

    Mugglestone, Patricia

    1975-01-01

    Discusses the handling of groups. The teacher should be aware of variables: size of group, composition (by ability, needs, etc.), seating arrangement, group structure, etc. Cooperative, competitive or individual work should be used, depending on the learning goal. The teacher must be perceptive, flexible, and must have good organizing ability.…

  17. Incorporating More Individual Accountability in Group Activities in General Chemistry

    ERIC Educational Resources Information Center

    Cox, Charles T., Jr.

    2015-01-01

    A modified model of cooperative learning known as the GIG model (for group-individual-group) designed and implemented in a large enrollment freshman chemistry course. The goal of the model is to establish a cooperative environment while emphasizing greater individual accountability using both group and individual assignments. The assignments were…

  18. Substrate specificity for the 12beta-hydroxylation of bufadienolides by Alternaria alternata.

    PubMed

    Ye, Min; Guo, Dean

    2005-05-25

    Hydroxylation is an important route to synthesize more hydrophilic compounds of pharmaceutical significance. Microbial hydroxylation offers advantages over chemical means for its high specificity. In this study, a fungal strain Alternaria alternata AS 3.4578 was found to be able to catalyze the specific 12beta-hydroxylation of a variety of cytotoxic bufadienolides. Cinobufagin and resibufogenin could be completely metabolized by A. alternata to generate their 12beta-hydroxylated products in high yields (>90%) within 8 h of incubation. A. alternata could also convert 3-epi-desacetylcinobufagin into 3-epi-12beta-hydroxyl desacetylcinobufagin as the major product (70% yield). C-3 dehydrogenated products were detected in these reactions in fair yields, while their accumulation was relatively slow. The 12beta-hydroxylation of bufadienolides could be significantly inhibited by the substitution of 1beta-, 5-, or 16alpha-hydroxyl groups, and the 14beta,15beta-epoxy ring appeared to be a necessary structural requirement for the specificity. For the biotransformation of bufalin, a 14beta-OH bufadienolide, this reaction was not specific, and accompanied by 7beta-hydroxylation as a parallel and competing metabolic route. The biotransformation products were identified by comparison with authentic samples or tentatively characterized by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionization-mass spectrometry analyses. PMID:15862355

  19. RF-Hydroxysite: a random forest based predictor for hydroxylation sites.

    PubMed

    Ismail, Hamid D; Newman, Robert H; Kc, Dukka B

    2016-07-19

    Protein hydroxylation is an emerging posttranslational modification involved in both normal cellular processes and a growing number of pathological states, including several cancers. Protein hydroxylation is mediated by members of the hydroxylase family of enzymes, which catalyze the conversion of an alkyne group at select lysine or proline residues on their target substrates to a hydroxyl. Traditionally, hydroxylation has been identified using expensive and time-consuming experimental methods, such as tandem mass spectrometry. Therefore, to facilitate identification of putative hydroxylation sites and to complement existing experimental approaches, computational methods designed to predict the hydroxylation sites in protein sequences have recently been developed. Building on these efforts, we have developed a new method, termed RF-hydroxysite, that uses random forest to identify putative hydroxylysine and hydroxyproline residues in proteins using only the primary amino acid sequence as input. RF-Hydroxysite integrates features previously shown to contribute to hydroxylation site prediction with several new features that we found to augment the performance remarkably. These include features that capture physicochemical, structural, sequence-order and evolutionary information from the protein sequences. The features used in the final model were selected based on their contribution to the prediction. Physicochemical information was found to contribute the most to the model. The present study also sheds light on the contribution of evolutionary, sequence order, and protein disordered region information to hydroxylation site prediction. The web server for RF-hydroxysite is available online at . PMID:27292874

  20. Studies on 16α-Hydroxylation of Steroid Molecules and Regioselective Binding Mode in Homology-Modeled Cytochrome P450-2C11

    PubMed Central

    Ali, Hamed I.; Yamada, Morio; Fujita, Yukihisa; Maeda, Mitsuko; Akaho, Eiichi

    2011-01-01

    We investigated the 16α-hydroxylation of steroid molecules and regioselective binding mode in homology-modeled cytochrome P450-2C11 to correlate the biological study with the computational molecular modeling. It revealed that there was a positive relationship between the observed inhibitory potencies and the binding free energies. Docking of steroid molecules into this homology-modeled CYP2C11 indicated that 16α-hydroxylation is favored with steroidal molecules possessing the following components, (1) a bent A-B ring configuration (5β-reduced), (2) C-3 α-hydroxyl group, (3) C-17β-acetyl group, and (4) methyl group at both the C-18 and C-19. These respective steroid components requirements were defined as the inhibitory contribution factor. Overall studies of the male rat CYP2C11 metabolism revealed that the above-mentioned steroid components requirements were essential to induce an effective inhibition of [3H]progesterone 16α-hydroxylation. As far as docking of homology-modeled CYP2C11 against investigated steroids is concerned, they are docked at the active site superimposed with flurbiprofen. It was also found that the distance between heme iron and C16α-H was between 4 to 6 Å and that the related angle was in the range of 180 ± 45°.

  1. Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*

    PubMed Central

    Singleton, Rachelle S.; Trudgian, David C.; Fischer, Roman; Kessler, Benedikt M.; Ratcliffe, Peter J.; Cockman, Matthew E.

    2011-01-01

    The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower Km value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate. PMID:21808058

  2. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders. PMID:26742324

  3. The Use of a Group Blog to Actively Support Learning Activities

    ERIC Educational Resources Information Center

    Duarte, Paulo

    2015-01-01

    Despite the widespread use of blogs in higher education, there remains a lack of knowledge and consensus about the use and value of blogging in higher education, particularly when used for long periods. This article investigates the use of a group blog to assist traditional teaching activities and foster collaborative learning through the…

  4. Sulfur Dioxide Capture by Heterogeneous Oxidation on Hydroxylated Manganese Dioxide.

    PubMed

    Wu, Haodong; Cai, Weimin; Long, Mingce; Wang, Hairui; Wang, Zhiping; Chen, Chen; Hu, Xiaofang; Yu, Xiaojuan

    2016-06-01

    Here we demonstrate that sulfur dioxide (SO2) is efficiently captured via heterogeneous oxidation into sulfate on the surface of hydroxylated manganese dioxide (MnO2). Lab-scale activity tests in a fluidized bed reactor showed that the removal efficiency for a simulated flue gas containing 5000 mg·Nm(-3) SO2 could reach nearly 100% with a GHSV (gas hourly space velocity) of 10000 h(-1). The mechanism was investigated using a combination of experimental characterizations and theoretical calculations. It was found that formation of surface bound sulfate proceeds via association of SO2 with terminal hydroxyls. Both H2O and O2 are essential for the generation of reactive terminal hydroxyls, and the indirect role of O2 in heterogeneous SO2 oxidation at low temperature was also revealed. We propose that the high reactivity of terminal hydroxyls is attributed to the proper surface configuration of MnO2 to adsorb water with degenerate energies for associative and dissociative states, and maintain rapid proton dynamics. Viability analyses suggest that the desulfurization method that is based on such a direct oxidation reaction at the gas/solid interface represents a promising approach for SO2 capture. PMID:27123922

  5. Space Weather Activities of IONOLAB Group: IONOLAB-TEC

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Arikan, O.; Ugurlu, O.; Nayir, H.

    2009-04-01

    Space Weather (SW) is the concept of changing environmental conditions in outer space and affect Earth and its technological systems. SW is a consequence of the solar activities and the coupling of solar energy on Earth's atmosphere due to the Earth's magnetic field. The monitoring and prediction of SW has utmost importance for HF communication, Satellite communication, navigation and guidance systems, Low Earth Orbit (LEO) satellite systems, Space Craft exit and entry into the atmosphere. Ionosphere is the plasma layer of the atmosphere that is ionized by solar radiation and it is a key player of SW. Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. IONOLAB is a group of researchers of various disciplines, getting together to handle challenges of the Earth's ionosphere. The team has researchers from Hacettepe University and Bilkent University, Department of Electrical and Electronics Engineering and General Command of Mapping of Turkish Army. One of the most important contributions of IONOLAB group is the automated web-based computation service for Total Electron Content (TEC). TEC corresponds to the line integral of electron density distribution on a given path. TEC can also be expressed as the amount of free electrons within 1 m2 cross-sectional area of the cylinder on the ray path. Global Position System (GPS) provides a cost-effective medium for monitoring of ionosphere using the signals recorded by stationary GPS receivers in estimating TEC. IONOLAB group has developed IONOLAB-TEC for reliable and robust estimates for all latitudes and both calm and disturbed days by using RINEX, IONEX and satellite ephemeris data provided from the IGS centers. IONOLAB-TEC consists of a regularized signal estimation algorithm which combines signals from all GPS satellites for a given instant and a given receiver, for a desired time period or for 24 hours

  6. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  7. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  8. Surface studies of hydroxylated multi-wall carbon nanotubes

    SciTech Connect

    Bradley, Robert; Cassity, Kelby; Andrews, Rodney; Meier, Mark; Osbeck, Susan; Andreu, Aurik; Johnston, Colin; Crossley, Alison

    2012-01-01

    CVD grown MWCNTs, of typical diameter 5 to 50 nm and with approximately 15-20 concentric graphene layers in the multi-walls, have been surface functionalised using the Fenton hydroxylation reaction. HRTEM reveals little physical difference between the treated and untreated materials; images from both exhibit similar multi-wall structure and contain evidence for some low-level disruption of the very outermost layers. Raman spectra from the two types of nanotubes are almost identical displaying the disorder (D) peaks at approximately 1350 cm{sup -1} and graphite (G) peaks at approximately 1580 cm{sup -1}, characteristic of graphene-based carbon materials, in approximately equal intensity ratios. Equilibrium adsorption data for nitrogen at 77 K leads to BET surface areas of 60.4 m{sup 2} g{sup -1} for the untreated and 71.8 m{sup 2} g{sup -1} for the hydroxylated samples; the increase in area being due to separation of the tube-bundles during functionalization. This is accompanied by a decrease in measured porosity, mostly at high relative pressures of nitrogen, i.e. where larger (meso 2-5 nm and macro >5 nm) pores are being filled, which is consistent with an attendant loss of inter-tube capillarity. X-ray photoelectron spectroscopy (XPS) shows that hydroxylation increases the nanotube surface oxygen level from 4.3 at.% to 22.3 at.%; chemical shift data indicate that approximately 75% of that oxygen is present as hydroxyl (-OH) groups. Water vapour adsorption by the hydroxylated surfaces leads to Type II isotherms which are characteristic of relatively high numbers of hydrogen bonding interactions compared to the untreated materials which exhibit Type III curves. This difference in polar surface energy is confirmed by calorimetric enthalpies of immersion in water which are -54 mJ m{sup -2} for the untreated and -192 mJ m{sup -2} for the hydroxylated materials. The treated materials therefore have significantly increased water wettability/dispersivity and a greater

  9. Skills for Living: Group Counseling Activities for Elementary Students.

    ERIC Educational Resources Information Center

    Morganett, Rosemarie Smead

    This book can help counselors in the school or mental health setting create meaningful group experiences for children who, for whatever reason, are behind in social and life skill development. The group agendas have been developed with children from grades 2-5 in mind. Although each topic stands alone, children can benefit from more than one…

  10. The Fantastic Facilitator: Engaging Activities for Leading Groups.

    ERIC Educational Resources Information Center

    Duttweiler, Patricia Cloud

    This document is designed to help facilitators with the formation and development of effective teams of people who have no previous history as a team and no training in group processes. Part 1 provides a narrative explanation of the stages of group development (investing in membership, forming attachments to subgroups, confronting/debating issues,…

  11. Sexually active groups in cattle-a novel estrus sign.

    PubMed

    Sveberg, G; Refsdal, A O; Erhard, H W; Kommisrud, E; Aldrin, M; Tvete, I F; Buckley, F; Waldmann, A; Ropstad, E

    2013-07-01

    The current study presents a novel objective measure for characterizing sexually active groups (SAG 3-5) and relates this measure to other behaviors of lactating Holstein-Friesian cows. Cows in SAG 3-5 were required to participate in a minimum of 1 estrus behavior per 5min while staying within 3m (2 cow lengths) of its partner(s) for a minimum of 5min. Twenty Holstein-Friesian cows were video-monitored continuously through 1 complete estrous cycle (22d). Standing behavior, SAG 3-5, secondary estrus signs (SEC), and other social and agonistic behaviors were recorded continuously. The period of mounting estrus (MTE) was divided into the 3 parts: prestand, standing estrus (STE), and poststand. The mean durations of MTE, prestand, STE, and poststand period were 12.9±1.84, 4.0±1.93, 7.1±1.44, and 1.8±0.57h (n=13). The fractions of time spent in SAG 3-5 during MTE, prestand, STE, and poststand period were 13, 8, 19, and 1% (n=11). During MTE, cows participated, on average, in 5.8±1.24 SAG 3-5 and initiated 9.5±2.99 mounts, with mean durations of 0.25±0.03h and 4.00±0.36s, respectively. The novel measure SAG 3-5 was a sign of long duration not confined only to groups of STE cows. On one day when no cows were in estrus and during the periods 4 to 24h before and after MTE, no SAG 3-5 behaviors were observed. Luteal-phase cows participated in SAG 3-5 only when the partner was a single cow in estrus. The time spent in SAG 3-5 increased between 1 and 3h before MTE and the prestand period (3 vs. 8%) and reached a peak level during STE. From STE to poststand, time spent in SAG 3-5 decreased considerably (19 vs. 1%). The observed decrease in nonmutual agonistic behaviors 4 to 24h before MTE is suggested as an early sign of pre-estrus. Changes in SAG 3-5, agonistic behaviors, and SEC are suggested as indicators of the specific stages of MTE. Increased SEC initiated and SAG 3-5 were indicators of late pre-estrus and early estrus (prestand). Peak levels of SAG 3-5, SEC, and

  12. Adolescent Girls' Perceptions of Physical Activity: A Focus Group Study

    ERIC Educational Resources Information Center

    Whitehead, Sarah; Biddle, Stuart

    2008-01-01

    Low levels of physical activity among adolescent girls are a cause for concern. Examining girls' physical activity perceptions and motivations through in-depth qualitative research allows for greater understanding of the reasons behind their physical activity-related choices. Forty-seven girls aged 14 to 16 years participated in exploratory focus…

  13. An Activity Group Experience for Disengaged Elderly Persons.

    ERIC Educational Resources Information Center

    Harris, John Ewing; Bodden, Jack L.

    1978-01-01

    Tested the activity theory (which proposes that elderly persons remain in active contact with their environment) and disengagement theory (which suggests adjustment comes through reduction of activity and social contact). Disengaged elderly were identified. Subjects demonstrated significant improvement over the untreated control subjects. Results…

  14. Group Problem Solving as a Zone of Proximal Development activity

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  15. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris).

    PubMed

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group. PMID:26890886

  16. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris)

    PubMed Central

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V. Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group. PMID:26890886

  17. Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.

    PubMed

    Homan, Erica P; Lietman, Caressa; Grafe, Ingo; Lennington, Jennifer; Morello, Roy; Napierala, Dobrawa; Jiang, Ming-Ming; Munivez, Elda M; Dawson, Brian; Bertin, Terry K; Chen, Yuqing; Lua, Rhonald; Lichtarge, Olivier; Hicks, John; Weis, Mary Ann; Eyre, David; Lee, Brendan H L

    2014-01-01

    Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A) ). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity

  18. Differential Effects of Collagen Prolyl 3-Hydroxylation on Skeletal Tissues

    PubMed Central

    Homan, Erica P.; Lietman, Caressa; Grafe, Ingo; Lennington, Jennifer; Morello, Roy; Napierala, Dobrawa; Jiang, Ming-Ming; Munivez, Elda M.; Dawson, Brian; Bertin, Terry K.; Chen, Yuqing; Lua, Rhonald; Lichtarge, Olivier; Hicks, John; Weis, Mary Ann; Eyre, David; Lee, Brendan H. L.

    2014-01-01

    Mutations in the genes encoding cartilage associated protein (CRTAP) and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1) were the first identified causes of recessive Osteogenesis Imperfecta (OI). These proteins, together with cyclophilin B (encoded by PPIB), form a complex that 3-hydroxylates a single proline residue on the α1(I) chain (Pro986) and has cis/trans isomerase (PPIase) activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1H662A). This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I) and α1(II) collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase activity

  19. Parents' Networking Strategies: Participation of Formal and Informal Parent Groups in School Activities and Decisions

    ERIC Educational Resources Information Center

    Wanat, Carolyn L.

    2010-01-01

    This case study examined parent groups' involvement in school activities and their participation in decision making. Research questions included the following: (1) What is the nature of parent groups in schools? (2) What activities and issues gain parent groups' attention and participation? (3) How do parent groups communicate concerns about…

  20. CYP4 isoform specificity in the omega-hydroxylation of phytanic acid, a potential route to elimination of the causative agent of Refsum's disease.

    PubMed

    Xu, Fengyun; Ng, Valerie Y; Kroetz, Deanna L; de Montellano, Paul R Ortiz

    2006-08-01

    The saturated C20 isoprenoid phytanic acid is physiologically derived from phytol released in the degradation of chlorophyll. The presence of a C-3 methyl group in this substrate blocks normal beta-oxidation, so phytanic acid degradation primarily occurs by initial peroxisomal alpha-oxidation to shift the register of the methyl group. However, individuals with Refsum's disease are genetically deficient in the required phytanoyl-CoA alpha-hydroxylase and suffer from neurological pathologies caused by the accumulation of phytanic acid. Recent work has shown that phytanic acid can also be catabolized by a pathway initiated by omega-hydroxylation of the hydrocarbon chain, followed by oxidation of the alcohol to the acid and conventional beta-oxidation. However, the enzymes responsible for the omega-hydroxylation of phytanic acid have not been identified. In this study, we have determined the activities of all of the rat and human CYP4A enzymes and two of the rat CYP4F enzymes, with respect to the omega-hydroxylation of phytanic acid. Furthermore, we have shown that the ability to omega-hydroxylate phytanic acid is elevated in microsomes from rats pretreated with clofibrate. The results support a possible role for CYP4 enzyme elevation in the elimination of phytanic acid in Refsum's disease patients. PMID:16707724

  1. HETEROGENOUS PHOTOREACTION OF FORMALDEHYDE WITH HYDROXYL RADICALS

    EPA Science Inventory

    Atmospheric heterogeneous photoreactions occur between formaldehyde and hydroxyl radicals to produce formic acid. hese photoreactions not only occur in clouds, but also in other tropospheric hydrometeors such as precipitation and dew droplets. xperiments were performed by irradia...

  2. Selective Aromatic C–H Hydroxylation Enabled by η6-Coordination to Iridium(III)

    PubMed Central

    D'Amato, Erica M.; Neumann, Constanze N.; Ritter, Tobias

    2016-01-01

    We report an aromatic C–H hydroxylation protocol in which the arene is activated through η6-coordination to an iridium(III) complex. η6-Coordination of the arene increases its electrophilicity and allows for high positional selectivity of hydroxylation at the site of least electron density. Through investigation of intermediate η5-cyclohexadienyl adducts and arene exchange reactions, we evaluate incorporation of arene π-activation into a catalytic cycle for C–H functionalization. PMID:26877574

  3. Influence of functional groups on organic aerosol cloud condensation nucleus activity.

    PubMed

    Suda, Sarah R; Petters, Markus D; Yeh, Geoffrey K; Strollo, Christen; Matsunaga, Aiko; Faulhaber, Annelise; Ziemann, Paul J; Prenni, Anthony J; Carrico, Christian M; Sullivan, Ryan C; Kreidenweis, Sonia M

    2014-09-01

    Organic aerosols in the atmosphere are composed of a wide variety of species, reflecting the multitude of sources and growth processes of these particles. Especially challenging is predicting how these particles act as cloud condensation nuclei (CCN). Previous studies have characterized the CCN efficiency for organic compounds in terms of a hygroscopicity parameter, κ. Here we extend these studies by systematically testing the influence of the number and location of molecular functional groups on the hygroscopicity of organic aerosols. Organic compounds synthesized via gas-phase and liquid-phase reactions were characterized by high-performance liquid chromatography coupled with scanning flow CCN analysis and thermal desorption particle beam mass spectrometry. These experiments quantified changes in κ with the addition of one or more functional groups to otherwise similar molecules. The increase in κ per group decreased in the following order: hydroxyl ≫ carboxyl > hydroperoxide > nitrate ≫ methylene (where nitrate and methylene produced negative effects, and hydroperoxide and nitrate groups produced the smallest absolute effects). Our results contribute to a mechanistic understanding of chemical aging and will help guide input and parametrization choices in models relying on simplified treatments such as the atomic oxygen:carbon ratio to predict the evolution of organic aerosol hygroscopicity. PMID:25118824

  4. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway. PMID:12398993

  5. Supporting Mobile Collaborative Activities through Scaffolded Flexible Grouping

    ERIC Educational Resources Information Center

    Boticki, Ivica; Looi, Chee-Kit; Wong, Lung-Hsiang

    2011-01-01

    Within the field of Mobile Computer-Supported Collaborative Learning (mCSCL), we are interested in exploring the space of collaborative activities that enable students to practice communication, negotiation and decision-making skills. Collaboration is via learning activities that circumvent the constraints of fixed seating or locations of…

  6. Classroom-Based Interdependent Group Contingencies Increase Children's Physical Activity

    ERIC Educational Resources Information Center

    Kuhl, Sarah; Rudrud, Eric H.; Witts, Benjamin N.; Schulze, Kimberly A.

    2015-01-01

    This study investigated the effects of 2 interdependent group contingencies (individual vs. cumulative classroom goal setting) on the number of pedometer-recorded steps taken per day. Thirty third-grade students in 2 classrooms participated. An ABACX design was conducted in which the X phase referred to a replication of the most successful phase…

  7. Structural insights into the epimerization of β-1,4-linked oligosaccharides catalyzed by cellobiose 2-epimerase, the sole enzyme epimerizing non-anomeric hydroxyl groups of unmodified sugars.

    PubMed

    Fujiwara, Takaaki; Saburi, Wataru; Matsui, Hirokazu; Mori, Haruhide; Yao, Min

    2014-02-01

    Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand. PMID:24362032

  8. Aromatic hydroxylation by Fenton reagents (reactive intermediate [Lx+FeIIOOH(BH+)], not free hydroxyl radical (HO.)).

    PubMed

    Hage, J P; Llobet, A; Sawyer, D T

    1995-10-01

    Several iron complexes [FeII(bpy)2(2+), FeII(OPPh3)4(2+), and FeII(PA)2] in combination with hydrogen peroxide (HOOH) catalytically hydroxylate aromatic substrates (ArH). The base-induced nucleophilic addition of HOOH to the electrophilic iron center yields the reactive intermediate of Fenton reagents [FeIILx2+ + HOOH<-->Lx+FeIIOOH(BH+)(1)]. The latter includes a 'stabilized' hydroxyl radical that is able to replace an aromatic hydrogen (H) with a hydroxyl group (HO) via an initial addition reaction. With PhCH3 and PhCH2CH3 as substrates free HO. (from the radiolysis of H2O) reacts via aryl addition (97 and 85%, respectively) to give Ar-Ar as the predominant product, whereas 1 favors H-atom abstraction from the alkyl group (50 and 80%, respectively) and the only detectable products from aryl addition are the respective substituted phenols (o:p-ArOH). Other substituted benzenes (PhX) undergo addition by free HO at the ortho and para aryl carbons (o:p ratio, 2), followed by dimerization and elimination of two H2O molecules to yield substituted biphenyls. In contrast, 1 reacts with PhX to yield substituted phenol (ArOH; o:p ratio, 0.5-1.1). With phenol (PhOH) as the substrate, reaction with 1 yields mainly catechol (o-Ar(OH)2; o:p ratio, 20). In a solvent matrix of MeCN:H2O (3:1 mol:mol ratio) the reaction efficiencies with FeII(bpy)2(2+) and FeII(OPPh3)4(2+) for the hydroxylation of benzene to phenol are 36 and 42%, respectively (product per HOOH). PMID:8564405

  9. A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio

    PubMed Central

    2012-01-01

    Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i) LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii) xanthophylls are needed for normal level of Photosystem I and LHCII accumulation. PMID:22513258

  10. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    NASA Astrophysics Data System (ADS)

    Lu, Quanfang; Yu, Jie; Gao, Jinzhang; Yang, Wu

    2005-06-01

    In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg·l-1) is completely converted within 2h at 30°C and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.

  11. 6-hydroxylation: effect on the psychotropic potency of tryptamines.

    PubMed

    Taborsky, R G; Delvigs, P; Page, I H

    1966-08-26

    6-Hydroxy-5-methoxy-N,N dimethyltryptamine and 5-methoxy-N, N-dimnethyltryptamine were synthesized and their psychotropic effects compared on trained rats in a Skinner box. The nonhydroxylated form was the more po tent. The metabolism of 5-methoxytryp tophol acetate ester was also studied to determine whether hydroxylation might occur in other than the six position with exogenous indoles. One metabolite was formed, with properties of a hydroxy-5-methoxyindole-3-acetic acid, which proved on chromatography not to be the 6-hydroxy structural isomer. Phar macologic and metabolic studies suggest that psychotropic activity of trypt amines may result from metabolites other than the 6-hydroxylated forms. PMID:5917552

  12. Working Group 5: Measurements technology and active experiments

    NASA Technical Reports Server (NTRS)

    Whipple, E.; Barfield, J. N.; Faelthammar, C.-G.; Feynman, J.; Quinn, J. N.; Roberts, W.; Stone, N.; Taylor, W. L.

    1986-01-01

    Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed.

  13. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    PubMed

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase. PMID:18785929

  14. Reactivity of activated phenyl groups in supercritical water

    SciTech Connect

    Hibbs, M.R.; Yao, J.; Evilia, R.F.

    1996-08-01

    The reactivities of phenol, anisole, aniline, and N,N-dimethylaniline in deuterium oxide and sodium deuteroxide solution at 400 C and 250 bar are reported. Ortho/para deuteration characteristic of electrophilic substitution is found for phenol in both media and for all of the compounds in deuterium oxide. However, under basic conditions, only ortho deuteration of anisole and aniline and no deuteration of N,N-dimethylaniline is observed. These latter results in basic media suggest that, in these cases, the reaction proceeds via attack by deuteroxide ion at the site closest to the inductively electron withdrawing group, rather than by the more common electrophilic mechanism. N,N-dimethylaniline undergoes electrophilic substitution under neutral conditions, but does not react in basic media because either the acidity of its ortho hydrogen is too weak and/or it is sterically hindered by the presence of the methyl groups. N,N,N-trimethyl ammonium chloride decomposes to uncharacterized products under the reaction conditions employed.

  15. Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution.

    PubMed

    Elmas, Begum; Tuncel, Murvet; Senel, Serap; Patir, S; Tuncel, Ali

    2007-09-01

    N-isopropylacrylamide (NIPA) based uniform thermosensitive microgels were synthesized by dispersion polymerization by using relatively hydrophilic crosslinking agents with hydroxyl functionality. Glycerol dimethacrylate (GDMA), pentaerythritol triacrylate (PETA) and pentaerythritol propoxylate triacrylate (PEPTA) were used as crosslinking agents with different hydrophilicities. A protocol was first proposed to determine the crosslinking density distribution in the thermosensitive microgel particles by confocal laser scanning microscopy (CLSM). The microgels were fluorescently labeled by using hydroxyl group of the crosslinking agent. The CLSM observations performed with the microgels synthesized by three different crosslinking agents showed that the crosslinking density exhibited a quadratic decrease with the increasing radial distance in the spherical microgel particles. This structure led to the formation of more loose gel structure on the particle surface with respect to the center. Then the use of hydrophilic crosslinking agents in the dispersion polymerization of NIPA made possible the synthesis of thermosensitive microgels carrying long, flexible and chemically derivatizable (i.e., hydroxyl functionalized) fringes on the surface by a single-stage dispersion polymerization. The microgels with all crosslinking agents exhibited volume phase transition with the increasing temperature. The microgel obtained by the most hydrophilic crosslinking agent, GDMA exhibited higher hydrodynamic diameters in the fully swollen form at low temperatures than those obtained by PETA and PEPTA. Higher hydrodynamic size decrease from fully swollen form to the fully shrunken form was also observed with the same microgel. PMID:17532327

  16. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A.; Gámez-Corrales, R.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  17. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Gámez-Corrales, R.; Guirado-López, R. A.

    2014-11-01

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ˜2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ˜0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  18. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-01

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications. PMID:25381534

  19. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    PubMed

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM. PMID:26018644

  20. Meta-Analysis of Group Learning Activities: Empirically Based Teaching Recommendations

    ERIC Educational Resources Information Center

    Tomcho, Thomas J.; Foels, Rob

    2012-01-01

    Teaching researchers commonly employ group-based collaborative learning approaches in Teaching of Psychology teaching activities. However, the authors know relatively little about the effectiveness of group-based activities in relation to known psychological processes associated with group dynamics. Therefore, the authors conducted a meta-analytic…

  1. Effect of Different Types of Small-Group Activities on Students' Conversations

    ERIC Educational Resources Information Center

    Young, Krista K.; Talanquer, Vicente

    2013-01-01

    Teaching reform efforts in chemistry education often involve engaging students in small-group activities of different types. This study focused on the analysis of how activity type affected the nature of group conversations. In particular, we analyzed the small-group conversations of students enrolled in a chemistry course for nonscience majors.…

  2. Synthesis and cytotoxic activity of a new group of heterocyclic analogues of the combretastatins.

    PubMed

    Lipeeva, Alla V; Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Pokrovsky, Andrey G

    2014-01-01

    A series of new analogs of combretastatin A-4 (CA-4, 1) with the A or B-ring replaced by a 3-oxo-2,3-dihydrofurocoumarin or a furocoumarin residue have been designed and synthesized by employing a cross-coupling approach. All the compounds were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using conventional MTT assays. Structure-activity relationship analysis reveals that compounds 2, 3, 6-8 in which the (Z)-styryl substituent was connected to the 2-position of the 3-oxo-2,3-dihydrofurocoumarin core, demonstrated increased potency compared to 3-(Z)-styrylfurocoumarins 4, 5, 9-11. The methoxy-, hydroxyl- and formyl- substitution on the aromatic ring of the (Z)-styryl moiety seems to play an important role in this class of compounds. Compounds 2 and 3 showed the best potency against the CEM-13 cell lines, with CTD50 values ranging from 4.9 to 5.1 μM. In comparison with CA-4, all synthesized compounds presented moderate cytotoxic activity to the T-cellular human leucosis cells MT-4 and lymphoblastoid leukemia cells CEM-13, but most of them were active in the human monocyte cell lines U-937. PMID:24962392

  3. Hydroxyl radical oxidation of feruloylated arabinoxylan.

    PubMed

    Bagdi, Attila; Tömösközi, Sándor; Nyström, Laura

    2016-11-01

    Feruloylated arabinoxylan (AX) has a unique capacity to form covalent gels in the presence of certain oxidizing agents. The present study demonstrates that hydroxyl radical oxidation does not provoke ferulic acid dimerization and thus oxidative gelation. We studied the hydroxyl radical mediated oxidation of an alkali-extracted AX preparation (purity: 92g/100g dry matter) that showed gel-forming capability upon peroxidase/hydrogen peroxide treatment. Hydroxyl radicals were produced with ascorbate-driven Fenton reaction and the radical formation was monitored with electron paramagnetic resonance, using a POBN/EtOH spin trapping system. Oxidation was carried out at different catalytic concentrations of iron (50 and 100μM) and at different temperatures (20°C, 50°C, and 80°C). It was demonstrated that hydroxyl radical oxidation does not provoke gel formation, but viscosity decrease in AX solution, which suggests polymer degradation. Furthermore, it was demonstrated that hydroxyl radical formation in AX solution can be initiated merely by increasing temperature. PMID:27516272

  4. Current activities of the Atmospheric Composition Sub-Group of the CEOS Working Group on Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Bojkov, Bojan

    The Atmospheric Sub-Group of the CEOS Calibration and Validation Working Group (CEOS WGCV/ASCG) was established in November 2001 with mission to ensure accurate and traceable calibration of remotely-sensed atmospheric chemistry radiance data and validation of higher level products, for application to atmospheric chemistry and climate research. This working-group, consisting of 15 members from space agencies and other relevant agencies and organizations with broad experience in calibration, modeling, algorithm development and validation, meet on an annual basis to promote international collaboration and technical exchanges, encourage interactions between mission scientists and data users, recommend network validation sites, develop comprehensive validation methodologies involving ground-based and space-borne assets, and specify comprehensive and consistent multi-mission validation datasets. Recent activities of the ACSG, including the recent ground-based intercomparisons, the ongoing NASA-ESA-NDACC validation data sharing activities, and the planned multi-agency CO2 validation efforts, will be presented.

  5. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.

    PubMed

    Dančo, Michal; Hnatič, Michal; Komarova, Marina V; Lučivjanský, Tomáš; Nalimov, Mikhail Yu

    2016-01-01

    A quantum field model that incorporates Bose-condensed systems near their phase transition into a superfluid phase and velocity fluctuations is proposed. The stochastic Navier-Stokes equation is used for a generation of the velocity fluctuations. As such this model generalizes model F of critical dynamics. The field-theoretic action is derived using the Martin-Siggia-Rose formalism and path integral approach. The regime of equilibrium fluctuations is analyzed within the perturbative renormalization group method. The double (ε,δ)-expansion scheme is employed, where ε is a deviation from space dimension 4 and δ describes scaling of velocity fluctuations. The renormalization procedure is performed to the leading order. The main corollary gained from the analysis of the thermal equilibrium regime suggests that one-loop calculations of the presented models are not sufficient to make a definite conclusion about the stability of fixed points. We also show that critical exponents are drastically changed as a result of the turbulent background and critical fluctuations are in fact destroyed by the developed turbulence fluctuations. The scaling exponent of effective viscosity is calculated and agrees with expected value 4/3. PMID:26871026

  6. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach

    NASA Astrophysics Data System (ADS)

    Dančo, Michal; Hnatič, Michal; Komarova, Marina V.; Lučivjanský, Tomáš; Nalimov, Mikhail Yu.

    2016-01-01

    A quantum field model that incorporates Bose-condensed systems near their phase transition into a superfluid phase and velocity fluctuations is proposed. The stochastic Navier-Stokes equation is used for a generation of the velocity fluctuations. As such this model generalizes model F of critical dynamics. The field-theoretic action is derived using the Martin-Siggia-Rose formalism and path integral approach. The regime of equilibrium fluctuations is analyzed within the perturbative renormalization group method. The double (ɛ ,δ ) -expansion scheme is employed, where ɛ is a deviation from space dimension 4 and δ describes scaling of velocity fluctuations. The renormalization procedure is performed to the leading order. The main corollary gained from the analysis of the thermal equilibrium regime suggests that one-loop calculations of the presented models are not sufficient to make a definite conclusion about the stability of fixed points. We also show that critical exponents are drastically changed as a result of the turbulent background and critical fluctuations are in fact destroyed by the developed turbulence fluctuations. The scaling exponent of effective viscosity is calculated and agrees with expected value 4 /3 .

  7. Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate.

    PubMed

    Farjadian, Fatemeh; Ghasemi, Sahar; Mohammadi-Samani, Soliman

    2016-05-17

    In this work, novel hydroxyl-modified magnetite nanocarriers are introduced as efficient host for methotrexate conjugation. The modification was based on the Micheal type addition reaction between tris(hydroxymethyl) aminomethane and acrylamidopropyl functionalized, silica-coated magnetite nanoparticle. The chemical structure characterization was carried out by FT-IR and the organic content was determined by CHN analysis. The topography was studied by SEM, TEM, AFM. DLS was performed to show particles' mean diameter. Furthermore, the magnetite properties of modified particles were evaluated by VSM and the crystallinity was proved by XRD. To illustrate the efficiency of the modified particles, the anti-cancer drug methotrexate was conjugated to hydroxyl groups through estric bond formation. The controlled release activity of established nanoparticles was evaluated in simulated cellular fluid. Later, the anti-cancer behavior of drug conjugated nanoparticles was evaluated in vitro in MCF-7 cell line which showed enhanced toxicity after 48 h. Conclusively, the modified nanoparticles have remarked as powerful carrier to be applied as an anti-cancer agent. PMID:26994523

  8. Reaction Mechanism of the Bicopper Enzyme Peptidylglycine α-Hydroxylating Monooxygenase*

    PubMed Central

    Abad, Enrique; Rommel, Judith B.; Kästner, Johannes

    2014-01-01

    Peptidylglycine α-hydroxylating monooxygenase is a noninteracting bicopper enzyme that stereospecifically hydroxylates the terminal glycine of small peptides for its later amidation. Neuroendocrine messengers, such as oxytocin, rely on the biological activity of this enzyme. Each catalytic turnover requires one oxygen molecule, two protons from the solvent, and two electrons. Despite this enzyme having been widely studied, a consensus on the reaction mechanism has not yet been found. Experiments and theoretical studies favor a pro-S abstraction of a hydrogen atom followed by the rebinding of an OH group. However, several hydrogen-abstracting species have been postulated; because two protons are consumed during the reaction, several protonation states are available. An electron transfer between the copper atoms could play a crucial role for the catalysis as well. This leads to six possible abstracting species. In this study, we compare them on equal footing. We perform quantum mechanics/molecular mechanics calculations, considering the glycine hydrogen abstraction. Our results suggest that the most likely mechanism is a protonation of the abstracting species before the hydrogen abstraction and another protonation as well as a reduction before OH rebinding. PMID:24668808

  9. Induction of lauric acid omega-hydroxylation by peroxisomal proliferators in bluegill and catfish

    SciTech Connect

    Haasch, M.L.; Henderson, M.C.; Buhler, D.R.

    1995-12-31

    Peroxisome proliferating agents (PPAs) are a structurally diverse group of chemicals that include environmental chemical contaminants such as certain chlorinated herbicides, solvents and plasticizers. PPAs have previously been shown to induce anti-trout laruci acid hydroxylase immunoreactive proteins in bluegill and catfish. In this investigation, induction of lauric acid hydroxylase activity and immunoreactive proteins was confirmed, and the mass spectral analysis of specific hydroxylation products was performed in order to identify possible species-specific differences in fatty acid metabolism. Male bluegill (Lepomis macrochirus) and channel catfish (Ictalurus punctatus) were administered clofibrate or ciprofibrate 48 hr prior to hepatic or trunk kidney (catfish only) microsome preparation. While no significant differences were observed in male catfish, male bluegill had significant decreases in hematocrit and plasma protein indicating hemodilution due to possible gill or kidney damage. Both bluegill and catfish exhibited induction of hepatic and kidney (catfish only) anti-trout lauric acid hydroxylase immunoreactive proteins. In general, total metabolism of lauric acid was greater, and higher levels of wP2, wP3, and wP4 products were produced in control catfish than in juvenile male trout. In male bluegill, lauric acid hydroxylation products wP, wP4 and wP5 were significantly induced by clofibrate treatment. Taken together the above data indicate that peroxisome proliferation may be an important consideration for responsive species exposed to PPAs by environmental chemical contamination.

  10. BRAIN REWARD ACTIVITY TO MASKED IN-GROUP SMILING FACES PREDICTS FRIENDSHIP DEVELOPMENT

    PubMed Central

    Chen, Pin-Hao A.; Whalen, Paul J.; Freeman, Jonathan B.; Taylor, James M.; Heatherton, Todd F.

    2015-01-01

    This study examined whether neural responses in the ventral striatum (VS) to in-group facial expressions—presented without explicit awareness—could predict friendship patterns in newly arrived individuals from China six months later. Individuals who initially showed greater VS activity in response to in-group happy expressions during functional neuroimaging later made considerably more in-group friends, suggesting that VS activity might reflect reward processes that drive in-group approach behaviors. PMID:26185595

  11. Neodymium Fluorescence Quenching by Hydroxyl Groups in Phosphate Laser Glasses

    SciTech Connect

    Ehrmann, P R; Carlson, K; Campbell, J H; Click, C A; Brow, R K

    2003-09-02

    Non-radiative losses due to OH fluorescence quenching of the Nd{sup 3+} {sup 4}F{sub 3/2} state are quantified over a range of OH concentrations from 4 x 10{sup 18}/cm{sup 3} to 4 x 10{sup 20}/cm{sup 3} and Nd doping levels from 0.4 to 9 x 10{sup 20}/cm{sup 3} in two K{sub 2}O-MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} metaphosphate glasses having different K/Mg ratios ({approx}1/1 and 2/1). The quenching rate is found to vary linearly with the Nd and OH concentrations as predicted by Forster-Dexter theory. However, in contrast to theory the OH quenching rate extrapolates to a non-zero value at low Nd{sup 3+} doping levels. It is proposed that at low Nd{sup 3+} concentrations the OH is correlated with Nd sites in the glass. The quenching strength of OH on a per ion basis is found to be weak compared to other common transition metal impurities (e.g. Fe{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}). Nevertheless, OH dominates the Nd quenching in phosphate glass because under most processing conditions OH is present at concentrations 10{sup 2} to 10{sup 3} greater than transition metal ion impurities. A correlation of the quenching strength of OH and common metal impurity ions with the degree of spectral overlap of the impurity absorption bands and the four {sup 4}F{sub 3/2} to {sup 4}I{sub J} transitions shows good agreement.

  12. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors

    PubMed Central

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-01-01

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3−/− but not in mGluR2−/− mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity. PMID:21628565

  13. Suppression of adipogenesis and obesity in high-fat induced mouse model by hydroxylated polymethoxyflavones.

    PubMed

    Lai, Ching-Shu; Ho, Min-Hau; Tsai, Mei-Ling; Li, Shiming; Badmaev, Vladimir; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-10-30

    This study demonstrated that hydroxylated polymethoxyflavones (HPMFs) effectively and dose-dependently suppressed accumulation of lipid droplets in adipocytes by approximately 51-55%. Western blot analysis revealed that HPMFs markedly down-regulated adipogenesis-related transcription factors peroxisome proliferator-activated receptor (PPAR) γ and sterol regulatory element-binding protein (SREBP)-1c as well as downstream target fatty acid binding protein 2 (aP2), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). In addition, HPMFs also activated adenosine monophosphate-activated protein kinase (AMPK) signaling in 3T3-L1 adipocytes. In the early phase of adipogenesis, HPMF-treated preadipocytes displayed a delayed cell cycle entry into G2/M phase at 24 h (35.5% for DMI group and 4.8% for 20 μg/mL HPMFs-treated group) after initiation of adipogenesis. Furthermore, administration of HPMFs (0.25 and 1%) decreased high-fat diet (HFD) induced weight gain (15.3 ± 3.9 g for HFD group, 10.3 ± 0.3 g and 7.9 ± 0.7 g for 0.25 and 1% HPMFs groups, respectively) and relative perigonadal, retroperitoneal, mesenteric fat weight in C57BL/6 mice. Administration of HPMFs reduced serum levels of aspartate aminotransferase (GOT), alanine aminotransferase (GPT), triglycerides (TG), and total cholesterol (T-cho). The results suggested that HPMFs may have a potential benefit in preventing obesity. PMID:24089698

  14. Direct Hydroxylation and Amination of Arenes via Deprotonative Cupration.

    PubMed

    Tezuka, Noriyuki; Shimojo, Kohei; Hirano, Keiichi; Komagawa, Shinsuke; Yoshida, Kengo; Wang, Chao; Miyamoto, Kazunori; Saito, Tatsuo; Takita, Ryo; Uchiyama, Masanobu

    2016-07-27

    Deprotonative directed ortho cupration of aromatic/heteroaromatic C-H bond and subsequent oxidation with t-BuOOH furnished functionalized phenols in high yields with high regio- and chemoselectivity. DFT calculations revealed that this hydroxylation reaction proceeds via a copper (I → III → I) redox mechanism. Application of this reaction to aromatic C-H amination using BnONH2 efficiently afforded the corresponding primary anilines. These reactions show broad scope and good functional group compatibility. Catalytic versions of these transformations are also demonstrated. PMID:27348154

  15. Communication Status and Semantic Network of Students in Small Group Activity

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho

    2014-05-01

    The purpose of the study was to investigate the relationship between the communication status in group and the semantic network of science gifted students. Seven small groups, 5 members in each, participated in small group activities, in which they discussed the calculation of earth density. Both the communication status in group and the semantic network of science gifted students were analyzed using KrKwic, Ucinet 6.0 for Windows. As a result, the semantic network of prime movers in group represented more frequently used words, lesser rate of component, and higher density than that of out lookers. It means that the prime movers have coherent knowledge compared to out lookers, and they output more knowledge for problem solving than out lookers. Therefore, the results of this study may be applied to evaluating the cognitive level of science gifted students and group organization for small group activity. Keywords: small group activity, science gifted students, communication status, semantic network

  16. Latent activity rhythm disturbance sub-groups and longitudinal change in depression symptoms among older men.

    PubMed

    Smagula, Stephen F; Boudreau, Robert M; Stone, Katie; Reynolds, Charles F; Bromberger, Joyce T; Ancoli-Israel, Sonia; Dam, Thuy-Tien; Barrett-Connor, Elizabeth; Cauley, Jane A

    2015-01-01

    Activity rhythm disturbances and depression often co-occur among older adults. However, little is known about how activity rhythm disturbances themselves co-occur, or how disturbances to multiple aspects of the activity rhythm relate to depression over time. In this study, we performed a Latent Class Analysis to derive sub-groups of older men [total n = 2933, mean age = 76.28, standard deviation (SD) = 5.48] who shared similar patterns of activity rhythm disturbances (defined as extreme values of modeled activity rhythm parameters). We found eight sub-groups with distinct combinations of activity rhythm disturbances: one had all normative activity rhythm parameters (32.09%), one had only lower activity (10.06%), three had earlier activity (totaling 26.96%) and three had later activity (totaling 30.89%). Groups with similar timing were distinguished depending on whether the relative length of the active period was shorter and/or if the activity rhythm had lesser amplitude/robustness. We next examined whether the derived activity rhythm sub-groups were associated with different rates of change in depression symptom levels over an average of 5.5 (0.52 SD) follow-up years. The sub-group with lower activity only had faster increases in depressive symptoms over time (compared with the group with normative rhythm parameters), but this association was accounted for by adjustments for concurrently assessed health status covariates. Independent of these covariates, we found that four activity rhythm disturbance sub-groups experienced faster depressive symptom increases (compared with the normative sub-group): These included all three sub-groups that had later activity timing and one sub-group that had earlier activity timing plus a shorter active period and a dampened rhythm. Low activity rhythm height/robustness with normal timing therefore may mark depression risk that is attributable to co-occurring disease processes; in contrast, having late or combined early

  17. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    PubMed

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  18. The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway

    PubMed Central

    Halbwirth, Heidi

    2010-01-01

    Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have in common a basic C6-C3-C6 skeleton structure consisting of two aromatic rings (A and B) and a heterocyclic ring (C) containing one oxygen atom, whereas chalcones, as the intermediates in the formation of flavonoids, have not yet established the heterocyclic C-ring. Flavonoids are grouped into eight different classes, according to the oxidative status of the C-ring. The large number of divergent chalcones and flavonoid structures is from the extensive modification of the basic molecules. The hydroxylation pattern influences physiological properties such as light absorption and antioxidative activity, which is the base for many beneficial health effects of flavonoids. In some cases antiinfective properties are also effected. PMID:20386656

  19. The Effect of Science Activities on Concept Acquisition of Age 5-6 Children Groups

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Seker, Fatih

    2012-01-01

    Present research aims to determine the effect of science activities on concept development of preschool period age 5-6 children groups. Parallel to research objective, qualitative research pattern has been the selected method. Study group comprises of collectively 48 children from 5-6 age group attending to a private education institution in city…

  20. Independent and Small Group Activities for Social Studies in the Primary Grades.

    ERIC Educational Resources Information Center

    Ball, Barbara; And Others

    A teachers' guide for social studies, this manual stresses geography curriculum and activities for the primary grades. It is suggested that a teacher work with one group while the other children work individually. Children first work independently for a team, and then progress to less structured small group activities. Positive reinforcement by…

  1. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

    PubMed

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-10-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available. PMID:25033327

  2. Similar barriers and facilitators to physical activity across different clinical groups experiencing lower limb spasticity.

    PubMed

    Hundza, Sandra; Quartly, Caroline; Kim, Jasmine M; Dunnett, James; Dobrinsky, Jill; Loots, Iris; Choy, Kim; Chow, Brayley; Hampshire, Alexis; Temple, Viviene A

    2016-07-01

    Purpose Given the importance of physical activity in maintaining health and wellness, an improved understanding of physical activity patterns across different clinical populations is required. This study examines the facilitators for, and barriers to, participation in physical activity across multiple contexts for three clinical groups with chronic lower limb spasticity (individuals with stroke, multiple sclerosis and incomplete spinal cord injury). Method This cross-sectional study employed quantitative measures for spasticity, ankle range of motion, pain, falls, cognition, mobility, and physical activity as well as qualitative semi-structured interviews. Results There were similar impairments in body functions and structures and limitations in activities across the clinical groups. These impairments and limitations negatively impacted participation in physical activity, which was low. Environmental and personal factors exacerbated or mitigated the limiting effects of body functions and structures and activities on physical activity in many areas of life. Conclusions In this population, participation in physical activity includes activities such as housework which are different than what is typically considered as physical activity. Further, the presence of similar barriers and facilitators across the groups suggests that support and services to promote valued forms of physical activity could be organised and delivered based on limitations in mobility and functioning rather than clinical diagnosis. Implications for rehabilitation Physical activity is of utmost importance in maintaining health and wellness in clinical populations. This research highlights the desired and actual physical activity for these populations can look different than what may traditionally be considered as physical activity (e.g. housework is not typically considered participation physical activity). Therefore, rehabilitation interventions need to be directly designed to enhance clients

  3. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  4. Group cognitive behavioural therapy and group recreational activity for adults with autism spectrum disorders: A preliminary randomized controlled trial

    PubMed Central

    Plenty, Stephanie; Bejerot, Susanne

    2014-01-01

    Although adults with autism spectrum disorder are an increasingly identified patient population, few treatment options are available. This preliminary randomized controlled open trial with a parallel design developed two group interventions for adults with autism spectrum disorders and intelligence within the normal range: cognitive behavioural therapy and recreational activity. Both interventions comprised 36 weekly 3-h sessions led by two therapists in groups of 6–8 patients. A total of 68 psychiatric patients with autism spectrum disorders participated in the study. Outcome measures were Quality of Life Inventory, Sense of Coherence Scale, Rosenberg Self-Esteem Scale and an exploratory analysis on measures of psychiatric health. Participants in both treatment conditions reported an increased quality of life at post-treatment (d = 0.39, p < 0.001), with no difference between interventions. No amelioration of psychiatric symptoms was observed. The dropout rate was lower with cognitive behavioural therapy than with recreational activity, and participants in cognitive behavioural therapy rated themselves as more generally improved, as well as more improved regarding expression of needs and understanding of difficulties. Both interventions appear to be promising treatment options for adults with autism spectrum disorder. The interventions’ similar efficacy may be due to the common elements, structure and group setting. Cognitive behavioural therapy may be additionally beneficial in terms of increasing specific skills and minimizing dropout. PMID:24089423

  5. 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls

    PubMed Central

    Dettori, Maria Antonietta; Fabbri, Davide; Pisano, Marina; Rozzo, Carla; Palmieri, Giuseppe; Dessµ, Alessandro; Dallocchio, Roberto; Delogu, Giovanna

    2015-01-01

    A small collection of eugenol- and curcumin-analog hydroxylated biphenyls was prepared by straightforward methods starting from natural 4-substituted-2-methoxyphenols and their antitumoral activity was evaluated in vitro. Two curcumin-biphenyl derivatives showed interesting growth inhibitory activities on different malignant melanoma cell lines with IC50 ranging from 13 to 1 µM. Preliminary molecular modeling studies were carried out to evaluate conformations and dihedral angles suitable for antiproliferative activity in hydroxylated biphenyls bearing a side aliphatic chain. PMID:26074750

  6. Tunable photoluminescence and spectrum split from fluorinated to hydroxylated graphene

    NASA Astrophysics Data System (ADS)

    Gong, Peiwei; Wang, Jinqing; Sun, Weiming; Wu, Di; Wang, Zhaofeng; Fan, Zengjie; Wang, Honggang; Han, Xiuxun; Yang, Shengrong

    2014-02-01

    Tunable control over the functionalization of graphene is significantly important to manipulate its structure and optoelectronic properties. Yet the chemical inertness of this noble carbon material poses a particular challenge for its decoration without forcing reaction conditions. Here, a mild, operationally simple and controllable protocol is developed to synthesize hydroxylated graphene (HOG) from fluorinated graphene (FG). We successfully demonstrate that under designed alkali environment, fluorine atoms on graphene framework are programmably replaced by hydroxyl groups via a straightforward substitution reaction pathway. Element constituent analyses confirm that homogeneous C-O bonds are successfully grafted on graphene. Rather different from graphene oxide, the photoluminescence (PL) emission spectrum of the obtained HOG becomes split when excited with UV radiation. More interestingly, such transformation from FG facilitates highly tunable PL emission ranging from greenish white (0.343, 0.392) to deep blue (0.156, 0.094). Additionally, both experimental data and density function theory calculation indicate that the chemical functionalization induced structural rearrangement is more important than the chemical decoration itself in tuning the PL emission band tail and splitting energy gaps. This work not only presents a new way to effectively fabricate graphene derivatives with tunable PL performance, but also provides an enlightening insight into the PL origin of graphene related materials.Tunable control over the functionalization of graphene is significantly important to manipulate its structure and optoelectronic properties. Yet the chemical inertness of this noble carbon material poses a particular challenge for its decoration without forcing reaction conditions. Here, a mild, operationally simple and controllable protocol is developed to synthesize hydroxylated graphene (HOG) from fluorinated graphene (FG). We successfully demonstrate that under designed

  7. A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial holocene and the present

    SciTech Connect

    Crutzen, P.J.; Bruehl, C. )

    1993-06-07

    This paper presents a one and one half D calculation of the atmospheric content of CO[sub 2], CH[sub 4], and N[sub 2]O, along with temperature changes, from the glacial, pre-industrial holocene, to the industrial era. The question is what the changes in these gases have done to the atmospheric abundance of ozone and hydroxyl radical. There have been large increases in the first three gases over this time span, and yet the column abundance of ozone has remained relatively constant. Todays heterogeneous reactions with halogen compounds are decreasing ozone abundance, particularly in certain seasons and regions. The atmospheric loss rates of CH[sub 4] have varied considerably over this period.

  8. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.

    PubMed

    Altun, Ahmet; Shaik, Sason; Thiel, Walter

    2007-07-25

    We have investigated C-H hydroxylation of camphor by Compound I (Cpd I) of cytochrome P450cam in different electronic states and by its one-electron reduced and oxidized forms, using QM/MM calculations in the native protein/solvent environment. Cpd I species with five unpaired electrons (pentaradicaloids) are ca. 12 kcal/mol higher in energy than the ground state Cpd I species with three unpaired electrons (triradicaloids). The H-abstraction transition states of pentaradicaloids lie ca. 21 (9) kcal/mol above the triradicaloid (pentaradicaloid) reactants. Hydroxylation via pentaradicaloids is thus facile provided that they can react before relaxing to the ground-state triradicaloids. Excited states of Cpd I with an Fe(V)-oxo moiety lie more than 20 kcal/mol above the triradicaloid ground state in single-point gas-phase calculations, but these electronic configurations are not stable upon including the point-charge protein environment which causes SCF convergence to the triradicaloid ground state. One-electron reduced species (Cpd II) show sluggish reactivity compared with Cpd I in agreement with experimental model studies. One-electron oxidized species are more reactive than Cpd I but seem too high in energy to be accessible. The barriers to hydrogen abstraction for the various forms of Cpd I are generally not affected much by the chosen protonation states of the Asp297 and His355 residues near the propionate side chains of the heme or by the appearance of radical character at Asp297, His355, or the propionates. PMID:17595079

  9. The physical activity profiles of South Asian ethnic groups in England

    PubMed Central

    Bhatnagar, Prachi; Townsend, Nick; Shaw, Alison; Foster, Charlie

    2016-01-01

    Background To identify what types of activity contribute to overall physical activity in South Asian ethnic groups and how these vary according to sex and age. We used the White British ethnic group as a comparison. Methods Self-reported physical activity was measured in the Health Survey for England 1999 and 2004, a nationally representative, cross-sectional survey that boosted ethnic minority samples in these years. We merged the two survey years and analysed data from 19 476 adults. The proportions of total physical activity achieved through walking, housework, sports and DIY activity were calculated. We stratified by sex and age group and used analysis of variances to examine differences between ethnic groups, adjusted for the socioeconomic status. Results There was a significant difference between ethnic groups for the contributions of all physical activity domains for those aged below 55 years, with the exception of walking. In women aged 16–34 years, there was no significant difference in the contribution of walking to total physical activity (p=0.38). In the 35–54 age group, Bangladeshi males have the highest proportion of total activity from walking (30%). In those aged over 55 years, the proportion of activity from sports was the lowest in all South Asian ethnic groups for both sexes. Conclusions UK South Asians are more active in some ways that differ, by age and sex, from White British, but are similarly active in other ways. These results can be used to develop targeted population level interventions for increasing physical activity levels in adult UK South Asian populations. PMID:26677257

  10. Human blood group activity of human and canine intestinal glycolipids containing fucose

    PubMed Central

    Smith, E. L.; Bowdler, A. J.; Bull, R. W.; McKibbin, J. M.

    1973-01-01

    A number of fucose-containing glycolipids (fuco-lipids), which are similar in composition to those of human normal and malignant gastrointestinal tissue, have been isolated from whole small intestines of individual dogs. Dogs from which these fuco-lipids were isolated fell into two types according to the qualitative sugar composition of their fuco-lipids. Glycolipids from type I dogs contained glucose, galactose, glucosamine, galactosamine and fucose, while those from type II dogs contained the same sugars but lacked galactosamine. Fucolipids isolated from type I and II dogs were tested for both canine blood group and human A, B, H and Lea and Leb blood group activity. At the concentrations tested, only human blood group A activity was found in significant amounts, and only in those fuco-lipids which contained galactosamine (type I dogs). Of the fuco-lipids with human blood group A activity, some had activity comparable to that of glycoprotein blood group substances, while others had lower, but significant, activity. These latter fuco-lipids also had marked chromatographic differences, indicating that they are of several different structural types, a finding similar to the A active glycolipids of human red cell stroma. None of the isolated intestinal fuco-lipids had canine blood group activity. A fuco-lipid with Lea activity was also isolated in relatively large amounts from a normal human whole small intestine. PMID:4753403

  11. Green organocatalytic α-hydroxylation of ketones.

    PubMed

    Voutyritsa, Errika; Theodorou, Alexis; Kokotos, Christoforos G

    2016-06-28

    An efficient and green method for the α-hydroxylation of substituted ketones has been developed. This method includes the in situ conversion of various ketones into the corresponding silyl enol ethers and their oxidation to the corresponding α-hydroxy ketones. Two protocols have been established leading either to protected α-hydroxy carbonyls or free α-hydroxy ketones. Both procedures are easy to follow and lead to good to high yields for a variety of ketones. PMID:26867154

  12. Palladium-catalysed hydroxylation and alkoxylation.

    PubMed

    Enthaler, Stephan; Company, Anna

    2011-10-01

    The formation of oxygen-carbon bonds is one of the fundamental transformations in organic synthesis. In this regard the application of palladium-based catalysts has been extensively studied during recent years. Nowadays it is an established methodology and the success has been proven in manifold synthetic procedures. This tutorial review summarizes the advances on palladium-catalysed C-O bond formation, means hydroxylation and alkoxylation reactions. PMID:21643619

  13. Comparison of Hemagglutination and Hemolytic Activity of Various Bacterial Clinical Isolates Against Different Human Blood Groups

    PubMed Central

    HRV, Rajkumar; Devaki, Ramakrishna

    2016-01-01

    Among the various pathogenic determinants shown by microorganisms hemagglutination and hemolysin production assume greater significance in terms of laboratory identification. This study evaluated the hemagglutination and hemolytic activity of various bacterial isolates against different blood groups. One hundred and fifty bacterial strains, isolated from clinical specimens like urine, pus, blood, and other body fluids were tested for their hemagglutinating and hemolytic activity against human A, B, AB, and O group red blood cells. Among the 150 isolates 81 were Escherichia coli, 18 were Klebsiella pneumoniae, 19 were Pseudomonas aeruginosa, 10 were Pseudomonas spp, six were Proteus mirabilis, and the rest 16 were Staphylococcus aureus. Nearly 85% of the isolates agglutinated A group cells followed by B and AB group (59.3% and 60.6% respectively). Least number of isolates agglutinated O group cells (38.0%). When the hemolytic activity was tested, out of these 150 isolates 79 (52.6%) hemolyzed A group cells, 61 (40.6%) hemolyzed AB group cells, 46 (30.6%) hemolyzed B group cells, and 57 (38.6%) isolates hemolyzed O group cells. Forty-six percent of the isolates exhibited both hemagglutinating and hemolytic property against A group cells, followed by B and AB group cells (28.6% and 21.3% respectively). Least number of isolates i.e., 32 (21.3%) showed both the properties against O group cells. The isolates showed wide variation in their hemagglutination and hemolytic properties against different combinations of human blood group cells. The study highlights the importance of selection of the type of cells especially when human RBCs are used for studying the hemagglutination and hemolytic activity of bacterial isolates because these two properties are considered as characteristic of pathogenic strains. PMID:27014523

  14. Comparison of Hemagglutination and Hemolytic Activity of Various Bacterial Clinical Isolates Against Different Human Blood Groups.

    PubMed

    Hrv, Rajkumar; Devaki, Ramakrishna; Kandi, Venkataramana

    2016-01-01

    Among the various pathogenic determinants shown by microorganisms hemagglutination and hemolysin production assume greater significance in terms of laboratory identification. This study evaluated the hemagglutination and hemolytic activity of various bacterial isolates against different blood groups. One hundred and fifty bacterial strains, isolated from clinical specimens like urine, pus, blood, and other body fluids were tested for their hemagglutinating and hemolytic activity against human A, B, AB, and O group red blood cells. Among the 150 isolates 81 were Escherichia coli, 18 were Klebsiella pneumoniae, 19 were Pseudomonas aeruginosa, 10 were Pseudomonas spp, six were Proteus mirabilis, and the rest 16 were Staphylococcus aureus. Nearly 85% of the isolates agglutinated A group cells followed by B and AB group (59.3% and 60.6% respectively). Least number of isolates agglutinated O group cells (38.0%). When the hemolytic activity was tested, out of these 150 isolates 79 (52.6%) hemolyzed A group cells, 61 (40.6%) hemolyzed AB group cells, 46 (30.6%) hemolyzed B group cells, and 57 (38.6%) isolates hemolyzed O group cells. Forty-six percent of the isolates exhibited both hemagglutinating and hemolytic property against A group cells, followed by B and AB group cells (28.6% and 21.3% respectively). Least number of isolates i.e., 32 (21.3%) showed both the properties against O group cells. The isolates showed wide variation in their hemagglutination and hemolytic properties against different combinations of human blood group cells. The study highlights the importance of selection of the type of cells especially when human RBCs are used for studying the hemagglutination and hemolytic activity of bacterial isolates because these two properties are considered as characteristic of pathogenic strains. PMID:27014523

  15. Psychosocial mediators of group cohesion on physical activity intention of older adults.

    PubMed

    Caperchione, Cristina; Mummery, Kerry

    2007-01-01

    Considerable evidence has indicated that group-based physical activity may be a promising approach to reducing and preventing age-related illness. However, this research has not examined the mechanisms by which cohesion may impact on behaviour. The purpose of the present research was to utilise the theory of planned behaviour to investigate the mechanism by which group cohesion may affect physical activity intention. Participants were recruited from an existing physical activity intervention studying the effects of group cohesion on physical activity behaviour. The outcomes of this intervention are reported elsewhere. This paper presents data from a sub-sample of the intervention population (N=74) that examined the mediating relationships between the theory of planned behaviour and group cohesion on physical activity intention. Analyses showed that attitude and perceived behavioural control mediated the relationship between specific group cohesion concepts and physical activity intention. The direct measure of subjective norm failed to display a mediating relationship. The mediating relationships displayed between attitude and perceived behavioural control and physical activity intention provide insight into potential mechanisms by which group cohesion may affect behaviour. PMID:17129936

  16. Investigating Hydroxyl at Asteroid 951 Gaspra

    NASA Astrophysics Data System (ADS)

    Granahan, James C.

    2015-11-01

    Recent investigations [Granahan, 2011; 2014] of Galileo Near Infrared Mapping Spectrometer (NIMS) observations of asteroid 951 Gaspra have detected an infrared absorption feature near 2.8 micrometers. These were detected in NIMS data acquired by the Galileo spacecraft on October 29, 1991 at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. This abstract presents a summary of the investigation to identify the material creating the 2.8 micrometer spectral absorption feature. The current best match for the observed 951 Gaspra feature is the phyllosilicate bound hydroxyl signature present in a thermally desiccated QUE 99038 carbonaceous chondrite as measured by Takir et al. [2013].The 951 Gaspra absorption feature has been compared to a variety of hydroxyl bearing signatures. Many phyllosilicates, hydroxyl bearing minerals, have absorption minima at different positions (2.7 or 2.85 micrometers). It also differs from similar absorptions in a potential R chondrite analog, LAP 04840. The spectra LAP 04840 has a 2.7 micrometer feature due to biotite and a 2.9 micrometer feature due to adsorbed water [Klima et al., 2007]. 2.8 micrometer absorption minima have been found for adsorbed hydroxyl on the Moon [McCord et al., 2011] and various carbonaceous chondrites [Calvin and King, 1997; Takir et al., 2013]. The best match, with a minimum Euclidean distance difference to the 951 Gaspra feature, is found in the spectrum of QUE 99038 [Takir et al., 2013]. This spectrum is the product of an infrared measurement of a sample that had its adsorbed water baked off and removed in a vacuum chamber. The remaining hydroxyl in the sample belongs to a mixture of phyllosilicates dominated by the presence of cronstedtite.References: Calvin, W. M., and T. V. King (1997), Met. Planet. Sci., 32, 693-702. Carlson, R. W., et al. (1992), Bull. American Astro. Soc., 24, 932. Granahan, J. C. (2011), Icarus, 213, 265-272. Granahan, J. C. (2014), 45th LPSC, #1092. Klima, R., C. et

  17. Active Learning in the Classroom: The Use of Group Role Plays.

    ERIC Educational Resources Information Center

    Kitzerow, Phyllis

    1990-01-01

    Describes group role-playing activities that have been used to teach about education, criminology, and sex roles. Suggests that role play helps students to absorb and retain many of the insights about the issues involved. (DB)

  18. 75 FR 49913 - Active Duty Service Determinations For Civilian or Contractual Groups

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ..., determined that service of the group known as the ``''Honorably Discharged Members of The Gold Coast Native... at Then `American Camp,' Now Named `Burma Camp,' Ghana' '' shall not be considered ``active...

  19. Need for Cognition and Active Information Search in Small Student Groups

    ERIC Educational Resources Information Center

    Curseu, Petru Lucian

    2011-01-01

    In a sample of 213 students organized in 44 groups this study tests the impact of need for cognition on active information search by using a multilevel analysis. The results show that group members with high need for cognition seek more advice in task related issues than those with low need for cognition and this pattern of information exchange is…

  20. Anger Management and Violence Prevention: A Group Activities Manual for Middle and High School Students.

    ERIC Educational Resources Information Center

    Schmidt, Teresa M.

    This group-activity manual is intended for adolescents who have risk factors on any of the four ecological levels: personal, family, social, and societal. It contains everything needed to lead a group of middle or high school students through this anger-management program. Part 1 provides guidelines to help initiate and implement a support-group…

  1. DHPG Activation of Group 1 mGluRs in BLA Enhances Fear Conditioning

    ERIC Educational Resources Information Center

    Rudy, Jerry W.; Matus-Amat, Patricia

    2009-01-01

    Group 1 metabotropic glutamate receptors are known to play an important role in both synaptic plasticity and memory. We show that activating these receptors prior to fear conditioning by infusing the group 1 mGluR agonist, (R.S.)-3,5-dihydroxyphenylglycine (DHPG), into the basolateral region of the amygdala (BLA) of adult Sprague-Dawley rats…

  2. 77 FR 58608 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... (77 FR 55372), with comments due by November 6, 2012. No additional System Safety Task Group meetings... announcement of working group activities and status reports of April 23, 2012 (77 FR 24257). The 46th full RSAC... published on August 24, 2006 (71 FR 50275), and was open for comment until October 23, 2006. The...

  3. 76 FR 72997 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... announcement of working group activities and status reports of December 7, 2010 (75 FR 76070). The 44th full..., 2006 (71 FR 50275), and was open for comment until October 23, 2006. The working group agreed upon... rescue access, was published on February 1, 2008 (73 FR 6370). The task force met on October 17-18,...

  4. The Relationship between Students' Small Group Activities, Time Spent on Self-Study, and Achievement

    ERIC Educational Resources Information Center

    Kamp, Rachelle J. A.; Dolmans, Diana H. J. M.; van Berkel, Henk J. M.; Schmidt, Henk G.

    2012-01-01

    The purpose of this study was to investigate the relationship between the contributions students make to the problem-based tutorial group process as observed by their peers, self-study time and achievement. To that end, the Maastricht Peer Activity Rating Scale was administered to students participating in Problem-Based Learning tutorial groups.…

  5. Hydroxyl radical mediated DNA base modification by manmade mineral fibres.

    PubMed Central

    Leanderson, P; Söderkvist, P; Tagesson, C

    1989-01-01

    Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416

  6. DFT STUDY OF ALPHA-MALTOSE: INFLUENCE OF HYDROXYL ORIENTATIONS ON THE GLYCOSIDIC BOND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The result of DFT geometry optimization of 68 unique alpha-maltose conformers at the B3LYP/6-311++G** level of theory is described. Particular attention is paid to the hydroxyl group rotational positions and their influence on the glycosidic bond dihedral angles. The orientation of lone pair elect...

  7. Hydroxyl orientations in cellobiose and other polyhydroxy compounds – modeling versus experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theoretical and experimental gas-phase studies of carbohydrates show that their hydroxyl groups are located in homodromic partial rings that resemble cooperative hydrogen bonds, albeit with long H…O distances and small O-H…O angles. On the other hand, anecdotal experience with disaccharide crystal ...

  8. Development of a Concise Synthesis of Ouabagenin and Hydroxylated Corticosteroid Analogues

    PubMed Central

    2016-01-01

    The natural product ouabagenin is a complex cardiotonic steroid with a highly oxygenated skeleton. This full account describes the development of a concise synthesis of ouabagenin, including the evolution of synthetic strategy to access hydroxylation at the C19 position of a steroid skeleton. In addition, approaches to install the requisite butenolide moiety at the C17 position are discussed. Lastly, methodology developed in this synthesis has been applied in the generation of novel analogues of corticosteroid drugs bearing a hydroxyl group at the C19 position. PMID:25594682

  9. Hydroxyl-decorated Graphene Systems: Organic metal-free Ferroelectrics, Multiferroics, and Proton battery Cathode Materials

    NASA Astrophysics Data System (ADS)

    Wu, Menghao; Burton, J. D.; Tsymbal, Evgeny; Zeng, Xiao; Jena, Puru; Jena's Group Team, Prof.; Burton's Group Team, Prof.; Tsymbal's Group Team, Prof.; Zeng's Group Team, Prof.

    2013-03-01

    Through density-functional-theory calculations we show that hydroxylized graphene systems are ideal candidates for light-weight organic ferroelectric materials with giant polarizations. For example, the polarization of semi-hydroxylized graphane and graphone as well as fully hydroxylized graphane are, respectively, 41.1, 43.7, 67.7 μC/cm2, much higher than any organic ferroelectric materials known to date. In addition, hydroxylized graphone is multiferroic due to the coexistence of ferroeletricity and ferromagnetism. Zigzag graphene nanoribbons decorated by hydroxyl groups also exhibit ferroelectric properties with a large polarization of 27.0 μC/cm2. Moreover, proton vacancies at the end of ribbons can induce large dipole moments that can be reversed by both hopping of protons and rotation of O-H bonds under an electric field. These materials have the potential as high-capacity cathode materials with specific capacity six times larger than lead-acid batteries and five times that of lithium-ion batteries.

  10. Group cohesion and between session homework activities predict self-reported cognitive-behavioral skill use amongst participants of SMART Recovery groups.

    PubMed

    Kelly, Peter J; Deane, Frank P; Baker, Amanda L

    2015-04-01

    SMART Recovery groups are cognitive-behaviorally oriented mutual support groups for individuals with addictions. The aim of the study was to assess the extent to which the quality of group facilitation, group cohesion and the use of between session homework activities contribute to self-rated use of cognitive-behavioral skills amongst group participants. Participants attending SMART Recovery groups in Australia completed a cross sectional survey (N=124). The survey included measures of cognitive and behavioral skill utilization, group cohesion, quality of group facilitation and a rating of how frequently participants leave group meetings with an achievable between session homework plan. On average, participants had been attending SMART Recovery meetings for 9 months. Participants were most likely to attend SMART Recovery for problematic alcohol use. Regression analyses indicated that group cohesion significantly predicted use of cognitive restructuring, but that only provision of homework at the end of each group session predicted self-reported behavioral activation. Both group cohesion and leaving a group with an achievable homework plan predicted participant use of cognitive behavioral skills. The concrete actions associated with homework activities may facilitate behavioral activation. There is a need for longitudinal research to examine the relationship between the utilization of cognitive and behavioral skills and participant outcomes (e.g. substance use, mental health) for people attending SMART Recovery groups. PMID:25535099

  11. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE PAGESBeta

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  12. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    SciTech Connect

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  13. Mechanism of the N-hydroxylation of primary and secondary amines by cytochrome P450.

    PubMed

    Seger, Signe T; Rydberg, Patrik; Olsen, Lars

    2015-04-20

    Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT) for four different amines (aniline, N-methylaniline, propan-2-amine, and dimethylamine). The hydrogen abstraction and rebound mechanism is found to be preferred over a direct oxygen transfer mechanism for all four amines. However, in contrast to the same mechanism for the hydroxylation of aliphatic carbon atoms, the rebound step is shown to be rate-limiting in most cases. PMID:25651340

  14. Distinct activity of the oxyl FeIIIsbnd Orad group in the methane dissociation by activated iron hydroxide: DFT predictions

    NASA Astrophysics Data System (ADS)

    Shubin, Aleksandr A.; Ruzankin, Sergey Ph.; Zilberberg, Igor L.; Parmon, Valentin N.

    2015-11-01

    The abstraction of hydrogen from methane on the terminal iron-oxo group in the ferryl FeIVdbnd O and oxyl FeIIIsbnd Orad states, the hydrogen peroxide group Fesbnd OOH and the peroxo group Fesbnd OOsbnd Fe created in iron hydroxide was modeled by means of the density functional theory. The active groups were built using the Fe4O4(OH)4 starting complex having one hydrogen removed imitating the effect of the external oxidizer. Among considered groups the oxyl group is predicted to have the highest reactivity. A clear distinction in reactivity between the FeIIIsbnd Orad and FeIVdbnd O quasi-degenerate states has been attributed to the sign of terminal oxygen spin polarization.

  15. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  16. What Do We Want Small Group Activities For? Voices from EFL Teachers in Japan

    ERIC Educational Resources Information Center

    Kato, Yoshitaka

    2016-01-01

    This paper discusses the fundamental issue of why small group activities are utilized in the language learning classroom. Although these activities have gained popularity in the field of Teaching English as a Second Language (TESL), supported by a sound theoretical base, few studies have so far examined the reasons why language teachers are…

  17. Integration of Structured Expressive Activities within a Humanistic Group Play Therapy Format for Preadolescents

    ERIC Educational Resources Information Center

    Bratton, Sue C.; Ceballos, Peggy L.; Ferebee, Kelly Webb

    2009-01-01

    The integration of expressive activities in play groups with preadolescents encourages them to reach more deeply into their own resources, enabling them to handle future challenges more effectively. Developmental and therapeutic rationale, along with research support, is given for the integration of creative activities into a humanistic play group…

  18. Upper Elementary Boys' Participation during Group Singing Activities in Single-Sex and Coeducational Classes

    ERIC Educational Resources Information Center

    Bazzy, Zadda M.

    2010-01-01

    As boys in the upper elementary grades become increasingly influenced by peer pressure, many are less likely to participate in singing activities because singing is considered a "feminine" activity. The purpose of this research was to explore if there was an effect on upper elementary boys' level of participation during group singing activities…

  19. Taking It to the Classroom: Number Board Games as a Small Group Learning Activity

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Siegler, Robert S.; Hitti, Aline

    2012-01-01

    We examined whether a theoretically based number board game could be translated into a practical classroom activity that improves Head Start children's numerical knowledge. Playing the number board game as a small group learning activity promoted low-income children's number line estimation, magnitude comparison, numeral identification, and…

  20. Resident-Assisted Montessori Programming (Ramp): Training Persons with Dementia to Serve as Group Activity Leaders

    ERIC Educational Resources Information Center

    Camp, Cameron J.; Skrajner, Michael J.

    2004-01-01

    Purpose: The purpose of this study was to determine the effects of an activity implemented by means of Resident-Assisted Montessori Programming (RAMP). Design and Methods: Four persons with early-stage dementia were trained to serve as leaders for a small-group activity played by nine persons with more advanced dementia. Assessments of leaders'…

  1. Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.

    PubMed

    Wang, Jianqiao; Yamamoto, Ryoko; Yamamoto, Yotaro; Tokumoto, Toshinobu; Dong, Jing; Thomas, Peter; Hirai, Hirofumi; Kawagishi, Hirokazu

    2013-10-01

    Bisphenol A (BPA) is one of the representative compounds of the endocrine disrupting compounds group and the highest volume chemicals produced worldwide. As a result, BPA is often detected in many soil and water environments. In this study, we demonstrated the transformation of BPA from liquid cultures inoculated with hyper lignin-degrading fungus Phanerochaete sordida YK-624. Under non-ligninolytic condition, approximately 80% of BPA was eliminated after 7d of incubation. High-resolution electrospray ionization mass spectra and nuclear magnetic resonance analyses of a metabolite isolated from the culture supernatant suggested that BPA was metabolized to hydroxy-BPA, 4-(2-(4-hydroxyphenyl)propan-2-yl)benzene-1,2-diol, which has a much lower estrogenic activity than BPA. In addition, we investigated the effect of the cytochrome P450 inhibitor piperonyl butoxide (PB) on the hydroxylation of BPA, markedly lower transformation activity of BPA was observed in cultures containing PB. These results suggest that cytochrome P450 plays an important role in the hydroxylation of BPA by P. sordida YK-624 under non-ligninolytic condition. PMID:23942019

  2. Mutualistic Benefits Generate an Unequal Distribution of Risky Activities Among Unrelated Group Members

    NASA Astrophysics Data System (ADS)

    Kukuk, Penelope F.; Ward, Seamus A.; Jozwiak, Amy

    Recent studies provide a new challenge to the adequacy of theories concerning the evolution of cooperation among nonrelatives: some individuals perform high-risk activities while others do not. We examined a communal hymenopteran species, Lasioglossum(Chilalictus)hemichalceum, to determine why group members engaged in demonstrably risky activities (foraging) tolerate the selfish behavior (remaining in the nest) of unrelated nestmates. Experimental removal of adult females indicated that their presence is required for the protection of brood from ant predators. Nonforagers ensure the continued presence of adults in the nest if the risk-taking foragers die, thereby safeguarding the survival of forager offspring. This results in an unequal distribution of risky activities within social groups in which avoidance of risky activities by some group members is ultimately beneficial to risk takers.

  3. Electrocatalytic hydrocarbon hydroxylation by ethylbenzene dehydrogenase from Aromatoleum aromaticum.

    PubMed

    Kalimuthu, Palraj; Heider, Johann; Knack, Daniel; Bernhardt, Paul V

    2015-02-26

    We report the electrocatalytic activity of ethylbenzene dehydrogenase (EBDH) from the β-proteobacterium Aromatoleum aromaticum. EBDH is a complex 155 kDa heterotrimeric molybdenum/iron-sulfur/heme protein which catalyzes the enantioselective hydroxylation of nonactivated ethylbenzene to (S)-1-phenylethanol without molecular oxygen as cosubstrate. Furthermore, it oxidizes a wide range of other alkyl-substituted aromatic and heterocyclic compounds to their secondary alcohols. Hydroxymethylferrocenium (FM) is used as an artificial electron acceptor for EBDH in an electrochemically driven catalytic system. Electrocatalytic activity of EBDH is demonstrated with both its native substrate ethylbenzene and the related substrate p-ethylphenol. The catalytic system has been modeled by electrochemical simulation across a range of sweep rates and concentrations of each substrate, which provides new insights into the kinetics of the EBDH catalytic mechanism. PMID:25635950

  4. Role of hydroxyl radical during electrolytic degradation of contaminants.

    PubMed

    Li, Liang; Goel, Ramesh K

    2010-09-15

    The role of hydroxyl radical is investigated in electrochemical oxidation of organic contaminants with naphthalene as a model compound. The strategy employed was competitive kinetic for hydroxyl radical between naphthalene and other hydroxyl scavengers if the hydroxyl radical is produced in situ at the anode by the electrolysis of water. Methanol, d3-methanol, acetone and d6-acetone were used as competitors for hydroxyl radical and their molar concentrations were calculated based on their reaction constants with hydroxyl radical. The hydroxyl radical was not responsible for naphthalene loss in these experiments. The first order reaction rate constants in the batch experiments containing only naphthalene, 2 mM of each of acetone and d6-acetone were 0.093, 0.094 and 0.118 h(-1), respectively. Higher concentrations (4 mM) acetone and d6-acetone did not affect naphthalene degradation. Rate constants using methanol and d6-methanol as competitors for hydroxyl radical in batch degradations test were 0.128 and 0.099 h(-1), respectively. Based on the naphthalene degradation trends and reaction rate constants, it was concluded that, under the given set of conditions, hydroxyl radical was not responsible for naphthalene degradation during electrolytic degradation tests. This research suggests that the role of hydroxyl radical should be considered very carefully in modeling such indirect electrolytic oxidation processes. PMID:20580488

  5. Bacteriostatic activities of monoacyl sugar alcohols against thermophilic sporeformers.

    PubMed

    Piao, Junkui; Kawahara-Aoyama, Yumiko; Inoue, Takashi; Adachi, Shuji

    2006-01-01

    The bacteriostatic activities of monoacyl sugar alcohols with different acyl chains and hydrophilic heads were examined against some thermophilic sporeformers. Monomyristoyl erythritol and xylitol efficaciously suppressed their spore development. The number and orientation of the hydroxyl groups also played important roles in this activity, and monomyristoyl xylitol exhibited the highest activity among the monomyristoyl sugar alcohols. PMID:16428845

  6. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899

    PubMed Central

    Vences-Guzmán, Miguel Ángel; Guan, Ziqiang; Ormeño-Orrillo, Ernesto; González-Silva, Napoleón; López-Lara, Isabel M.; Martínez-Romero, Esperanza; Geiger, Otto; Sohlenkamp, Christian

    2011-01-01

    Ornithine lipids (OLs) are widespread among gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalyzed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis. PMID:21205018

  7. Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation

    SciTech Connect

    Korzekwa, K.R.; Swinney, D.C.; Trager, W.F. )

    1989-11-14

    Noncompetitive and competitive intermolecular deuterium isotope effects were measured for the cytochrome P-450 catalyzed hydroxylation of a series of selectively deuterated chlorobenzenes. An isotope effect of 1.27 accompanied the meta hydroxylation of chlorobenzene-2H5 as determined by two totally independent methods (EC-LC and GC-MS assays). All isotope effects associated with the meta hydroxylation of chlorobenzenes-3,5-2H2 and -2,4,6-2H3 were approximately 1.1. In contrast, competitive isotope studies on the ortho and para hydroxylation of chlorobenzenes-4-2H1, -3,5-2H2, and -2,4,6-2H3 resulted in significant inverse isotope effects (approximately 0.95) when deuterium was substituted at the site of oxidation whereas no isotope effect was observed for the oxidation of protio sites. These results eliminate initial epoxide formation and initial electron abstraction (charge transfer) as viable mechanisms for the cytochrome P-450 catalyzed hydroxylation of chlorobenzene. The results, however, can be explained by a mechanism in which an active triplet-like oxygen atom adds to the pi system in a manner analogous to that for olefin oxidation. The resulting tetrahedral intermediate can then rearrange to phenol directly or via epoxide or ketone intermediates.

  8. Hydroxylation of quinocetone and carbadox is mediated by CYP1As in the chicken (Gallus gallus).

    PubMed

    Yang, Jiannan; Liu, Zhaoying; Li, Mei; Qiu, Xinghui

    2013-08-01

    Quinoxaline derivatives (quinoxalines) comprise a class of drugs that have been widely used as animal antimicrobial agents and feed additives. Although the metabolism of quinoxaline drugs has been mostly studied using chicken liver microsomes, the biochemical mechanism of biotransformation of these chemicals in the chicken has yet to be characterized. In this study, using bacteria produced enzymes, we demonstrated that both CYP1A4 and CYP1A5 participate in the oxidative metabolism of quinoxalines. For CYP1A5, three hydroxylated metabolites of quinocetone were generated. In addition, CYP1A5 is able to hydroxylate carbadox. For CYP1A4, only one hydroxylated product of quinocetone on the phenyl ring was identified. Neither CYP1A5 nor CYP1A4 showed hydroxylation activity towards mequindox and cyadox. Our results suggest that CYP1A4 and CYP1A5 have different and somewhat overlapping substrate specificity in quinoxaline metabolism, and CYP1A5 represents a crucial enzyme in hydroxylation of both quinocetone and carbadox. PMID:23726999

  9. Rapid clinical induction of bupropion hydroxylation by metamizole in healthy Chinese men

    PubMed Central

    Qin, Wen-Jie; Zhang, Wei; Liu, Zhao-Qian; Chen, Xiao-Ping; Tan, Zhi-Rong; Hu, Dong-Li; Wang, Dan; Fan, Lan; Zhou, Hong-Hao

    2012-01-01

    AIMS This study aimed to investigate the effect of metamizole on bupropion hydroxylation related to different CYP2B6 genotype groups in healthy volunteers. METHODS Sixteen healthy male volunteers (6 CYP2B6*1/*1, 6 CYP2B6*1/*6 and 4 CYP2B6*6/*6) received orally administered bupropion alone and during daily treatment with metamizole 1500 mg day–1 (500 mg tablet taken three times daily) for 4 days. Serial blood samples were obtained up to 48 h after each bupropion dose. RESULTS After metamizole treatment relative to bupropion alone, the geometric mean ratios (GMRs) and 90% confidence interval (CI) of the AUC(0,∞) ratio of 4-hydroxybupropion over bupropion were 1.99 (1.57, 2.55) for the CYP2B6*1/*1 group, 2.15 (1.53, 3.05) for the CYP2B6*1/*6 group and 1.86 (1.36, 2.57) for the CYP2B6*6/*6 group. The GMRs and 90% CI of bupropion were 0.695 (0.622, 0.774) for AUC(0,∞) and 0.400 (0.353, 0.449) for Cmax, respectively. The corresponding values for 4-hydroxybupropion were 1.43 (1.28, 1.53) and 2.63 (2.07, 2.92). The t1/2 value was significantly increased for bupropion and decreased for 4-hydroxybupropion. The tmax values of bupropion and 4-hydroxybupropion were both significantly decreased. The mean percentage changes in pharmacokinetic parameters among the CYP2B6 genotype groups were not significantly different. CONCLUSIONS Oral administration of metamizole for 4 days significantly altered the pharmacokinetics of both bupropion and its active metabolite, 4-hydroxybupropion, and significantly increased the CYP2B6-catalyzed bupropion hydroxylation in all of the subjects. Cautions should be taken when metamizole is co-administered with CYP2B6 substrate drugs. PMID:22519658

  10. Personality traits of aggression-submissiveness and perfectionism associate with ABO blood groups through catecholamine activities.

    PubMed

    Hobgood, Donna K

    2011-08-01

    Personality trait research has shown associations with many genes, prominently those of the catecholamine metabolism such as dopamine beta hydroxylase (DBH), catechol-O-methyltransferase (COMT), and monoamine oxidase A (MAOA). Because DBH gene is in linkage disequilibrium with ABO gene, there is reason to think that other catecholamine genes using the same substrate as DBH may also have associations with ABO blood groups, and this paper demonstrates how this may be so. Reasons include similarities in hapmap population frequency distributions, similarities in illness risks between ABO blood groups and DBH activities as well as between ABO blood groups and COMT activities and between ABO blood groups and MAOA activities. If ABO blood groups can be demonstrated to associate with all these catecholamine genes, then the catecholamine personality trait research can be applied to ABO blood groups and tested for confirmation. ABO blood typing is widely available and affords ability to test this hypothesis and thus confirm the possible joint association of personality traits of aggression-submissiveness and perfectionism to catecholamine genes and to ABO blood groups. Clinical applications and implications are discussed. PMID:21601990

  11. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  12. [Angiotensin-converting enzyme inhibitors as neutralizers of hydroxyl radical].

    PubMed

    Mira, M L; Silva, M M; Queirós, M J; Manso, C

    1992-05-01

    Angiotensin converting enzyme inhibitors are utilized in the treatment of essential hypertension and of chronic cardiac failure. They are also employed in the treatment of the myocardial lesion of ischemia-reperfusion, which involves oxygen free radicals. In the present study we investigated the possibility of three angiotensin converting enzyme inhibitors (captopril, enalapril, lisinopril) to act as hydroxyl radical scavengers. The rate constants for reactions of those compounds with .OH were determined using the deoxyribose method. All there compounds proved to be good scavengers of .OH with rate constants of about 10(10)M-1s-1 and are iron chelators specially enalapril. The fact that captopril possesses a thiol group does not confer an higher antioxidative capacity. These results suggest that scavenging of oxygen free radicals may be a possible mechanism contributing to the therapeutic effect of angiotensin converting enzyme inhibitors. PMID:1325814

  13. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  14. Making sense(s) in dementia: a multisensory and motor-based group activity program.

    PubMed

    Cruz, Joana; Marques, Alda; Barbosa, Ana; Figueiredo, Daniela; Sousa, Liliana X

    2013-03-01

    Lack of engagement in meaningful activities is associated with poor quality of life in dementia; thus, the development of these activities has been recommended. This pilot study aimed to develop a multisensory and motor-based group activity program for residents with dementia and assess its impact on residents' behavior. The program was designed using a multisensory and motor-based approach in sixteen 45-minute weekly sessions tailored to residents' characteristics. Four residents with advanced dementia participated in the program. The frequency and duration of the residents' behavior were assessed using video recordings. All residents participated in the proposed activities, although they were more participative and communicative in some sessions than in others. Group activity programs based on multisensory and motor stimulation can be a promising approach for people with advanced dementia; however, further research is needed. This study may serve as reference to the implementation of future programs aiming to increase person-centeredness of the care provided. PMID:23307794

  15. Effect of cardiopulmonary C fibre activation on the firing activity of ventral respiratory group neurones in the rat.

    PubMed Central

    Wilson, C G; Bonham, A C

    1997-01-01

    1. Cardiopulmonary C fibre receptor stimulation elicits apnoea and rapid shallow breathing, but the effects on the firing activity of central respiratory neurones are not well understood. This study examined the responses of ventral respiratory group neurones: decrementing expiratory (Edec), augmenting expiratory (Eaug), and inspiratory (I) neurones during cardiopulmonary C fibre receptor-evoked apnoea and rapid shallow breathing. 2. Extracellular neuronal activity, phrenic nerve activity and arterial pressure were recorded in urethane-anaesthetized rats. Cardiopulmonary C fibre receptors were stimulated by right atrial injections of phenylbiguanide. Neurones were tested for antidromic activation from the contra- and ipsilateral ventral respiratory group (VRG), spinal cord and cervical vagus nerve. 3. Edec neurones discharged tonically during cardiopulmonary C fibre-evoked apnoea and rapid shallow breathing, displaying increased burst durations, number of impulses per burst, and mean impulse frequencies. Edec neurones recovered either with the phrenic nerve activity (25 s) or much later (3 min). 4. By contrast, the firing activity of Eaug and most I neurones was decreased, featuring decreased burst durations and number of impulses per burst and increased interburst intervals. Eaug activity recovered in approximately 3 min and inspiratory activity in approximately 1 min. 5. The results indicate that cardiopulmonary C fibre receptor stimulation causes tonic firing of Edec neurones and decreases in Eaug and I neuronal activity coincident with apnoea or rapid shallow breathing. PMID:9365917

  16. Synthesis and structure of a new tetracopper(II) complex bridged both by oxamido and phenolato groups: Cytotoxic activity, and reactivity towards DNA and BSA

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Wen; Li, Xue-Jie; Zhan, Shu-Hui; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-05-01

    A new tetracopper(II) complex bridged both by oxamido and phenolato groups, namely [Cu4(chmpoxd)2(dabt)2](ClO4)2, where H3chmpoxd and dabt stand for N-(5-chloro-2-hydroxyl-phenyl)-N'-[3-(methylamino)propyl]oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, has been synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectra studies, and single-crystal X-ray diffraction. The crystal structure reveals a centrosymmetric circular tetranuclear cation [Cu4(chmpoxd)2(dabt)2]2+ assembled by a pair of cis-oxamido-bridged bicopper(II) units via μ2-phenolato bridges, in which one copper(II) atom is located in a slightly distorted square-planar environment, while the other is in a square-pyramidal geometry. The Cu⋯Cu separations through the oxamido and the phenolato bridges are 5.2217(12) and 3.7042(11) Å, respectively. In vitro cytotoxicity experiment shows that the tetracopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivities towards HS-DNA and protein BSA revealed that the tetracopper(II) complex can interact with HS-DNA in the mode of intercalation, and the complex binds to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism.

  17. A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol.

    PubMed

    Xin, Hongchuan; Koekkoek, Arjan; Yang, Qihua; van Santen, Rutger; Li, Can; Hensen, Emiel J M

    2009-12-28

    We report the one-step synthesis of a highly active hierarchical Fe/ZSM-5 zeolite catalyst with a strongly improved lifetime in the selective hydroxylation of benzene to phenol with nitrous oxide; compared to the best Fe/ZSM-5 catalyst, the turnover number after 24 h on stream is almost four times higher. PMID:20024289

  18. Efficient Biomimetic Hydroxylation Catalysis with a Bis(pyrazolyl)imidazolylmethane Copper Peroxide Complex.

    PubMed

    Wilfer, Claudia; Liebhäuser, Patricia; Hoffmann, Alexander; Erdmann, Hannes; Grossmann, Oleg; Runtsch, Leander; Paffenholz, Eva; Schepper, Rahel; Dick, Regina; Bauer, Matthias; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Herres-Pawlis, Sonja

    2015-12-01

    Bis(pyrazolyl)methane ligands are excellent components of model complexes used to investigate the activity of the enzyme tyrosinase. Combining the N donors 3-tert-butylpyrazole and 1-methylimidazole results in a ligand that is capable of stabilising a (μ-η(2) :η(2) )-dicopper(II) core that resembles the active centre of tyrosinase. UV/Vis spectroscopy shows blueshifted UV bands in comparison to other known peroxo complexes, due to donor competition from different ligand substituents. This effect was investigated with the help of theoretical calculations, including DFT and natural transition orbital analysis. The peroxo complex acts as a catalyst capable of hydroxylating a variety of phenols by using oxygen. Catalytic conversion with the non-biological phenolic substrate 8-hydroxyquinoline resulted in remarkable turnover numbers. In stoichiometric reactions, substrate-binding kinetics was observed and the intrinsic hydroxylation constant, kox , was determined for five phenolates. It was found to be the fastest hydroxylation model system determined so far, reaching almost biological activity. Furthermore, Hammett analysis proved the electrophilic character of the reaction. This sheds light on the subtle role of donor strength and its influence on hydroxylation activity. PMID:26458073

  19. Physical Activity and Depressive Symptoms in Four Ethnic Groups of Midlife Women

    PubMed Central

    Im, Eun-Ok; Ham, Ok Kyung; Chee, Eunice; Chee, Wonshik

    2014-01-01

    The purpose of this study was to determine the associations between physical activity and depression and the multiple contextual factors influencing these associations in four major ethnic-groups of midlife women in the U.S. This was a secondary analysis of the data from 542 midlife women. The instruments included questions on background characteristics and health and menopausal status; the Depression Index for Midlife Women; and the Kaiser Physical Activity Survey. The data were analyzed using chi-square tests, the ANOVA, twoway ANOVA, correlation analyses, and hierarchical multiple regression analyses. The women's depressive symptoms were negatively correlated with active living and sports/exercise physical activities whereas they were positively correlated with occupational physical activities (p < .01). Family income was the strongest predictor of their depressive symptoms. Increasing physical activity may improve midlife women's depressive symptoms, but the types of physical activity and multiple contextual factors need to be considered in intervention development. PMID:24879749

  20. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation.

    PubMed

    González-Pérez, Vanessa; Connolly, Elizabeth A; Bridges, Arlene S; Wienkers, Larry C; Paine, Mary F

    2012-11-01

    (S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions. PMID:22896727

  1. Using activity-based costing to track resource use in group practices.

    PubMed

    Zeller, T L; Siegel, G; Kaciuba, G; Lau, A H

    1999-09-01

    Research shows that understanding how resources are consumed can help group practices control costs. An American Academy of Orthopaedic Surgeons study used an activity-based costing (ABC) system to measure how resources are consumed in providing medical services. Teams of accounting professors observed 18 diverse orthopedic surgery practices. The researchers identified 17 resource-consuming business processes performed by nonphysician office staff. They measured resource consumption by assigning costs to each process according to how much time is spent on related work activities. When group practices understand how their resources are being consumed, they can reduce costs and optimize revenues by making adjustments in how administrative and clinical staff work. PMID:11066706

  2. Poly(hydroxyl urethane) compositions and methods of making and using the same

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2016-01-26

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  3. Poly(hydroxyl urethane) compositions and methods of making and using the same

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-16

    Methods and compositions relating to poly(hydroxyl urethane) compounds are described herein that are useful as, among other things, binders and adhesives. The cross-linked composition is achieved through the reaction of a cyclic carbonate, a compound having two or more thiol groups, and a compound having two or more amine functional groups. In addition, a method of adhesively binding two or more substrates using the cross-linked composition is provided.

  4. Finding synergies in fuels properties for the design of renewable fuels--hydroxylated biodiesel effects on butanol-diesel blends.

    PubMed

    Sukjit, E; Herreros, J M; Piaszyk, J; Dearn, K D; Tsolakis, A

    2013-04-01

    This article describes the effects of hydroxylated biodiesel (castor oil methyl ester - COME) on the properties, combustion, and emissions of butanol-diesel blends used within compression ignition engines. The study was conducted to investigate the influence of COME as a means of increasing the butanol concentration in a stable butanol-diesel blend. Tests were compared with baseline experiments using rapeseed methyl esters (RME). A clear benefit in terms of the trade-off between NOX and soot emissions with respect to ULSD and biodiesel-diesel blends with the same oxygen content was obtained from the combination of biodiesel and butanol, while there was no penalty in regulated gaseous carbonaceous emissions. From the comparison between the biodiesel fuels used in this work, COME improved some of the properties (for example lubricity, density and viscosity) of butanol-diesel blends with respect to RME. The existence of hydroxyl group in COME also reduced further soot emissions and decreased soot activation energy. PMID:23452309

  5. Origin of Coverage Dependence in Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged Coadsorbed Hydroxyls

    SciTech Connect

    Wang, Zhitao; Henderson, Michael A.; Lyubinetsky, Igor

    2015-09-30

    The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry. Though HOb’s are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.

  6. Involving postgraduate's students in undergraduate small group teaching promotes active learning in both

    PubMed Central

    Kalra, Ruchi; Modi, Jyoti Nath; Vyas, Rashmi

    2015-01-01

    Background: Lecture is a common traditional method for teaching, but it may not stimulate higher order thinking and students may also be hesitant to express and interact. The postgraduate (PG) students are less involved with undergraduate (UG) teaching. Team based small group active learning method can contribute to better learning experience. Aim: To-promote active learning skills among the UG students using small group teaching methods involving PG students as facilitators to impart hands-on supervised training in teaching and managerial skills. Methodology: After Institutional approval under faculty supervision 92 UGs and 8 PGs participated in 6 small group sessions utilizing the jigsaw technique. Feedback was collected from both. Observations: Undergraduate Feedback (Percentage of Students Agreed): Learning in small groups was a good experience as it helped in better understanding of the subject (72%), students explored multiple reading resources (79%), they were actively involved in self-learning (88%), students reported initial apprehension of performance (71%), identified their learning gaps (86%), team enhanced their learning process (71%), informal learning in place of lecture was a welcome change (86%), it improved their communication skills (82%), small group learning can be useful for future self-learning (75%). Postgraduate Feedback: Majority performed facilitation for first time, perceived their performance as good (75%), it was helpful in self-learning (100%), felt confident of managing students in small groups (100%), as facilitator they improved their teaching skills, found it more useful and better identified own learning gaps (87.5%). Conclusions: Learning in small groups adopting team based approach involving both UGs and PGs promoted active learning in both and enhanced the teaching skills of the PGs. PMID:26380201

  7. A method to quantify movement activity of groups of animals using automated image analysis

    NASA Astrophysics Data System (ADS)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  8. Barriers for recess physical activity: a gender specific qualitative focus group exploration

    PubMed Central

    2014-01-01

    Background Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender differences in children’s perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. Methods Data were collected through 17 focus groups (at 17 different schools) with in total 111 children (53 boys) from fourth grade, with a mean age of 10.4 years. The focus groups included an open group discussion, go-along group interviews, and a gender segregated post-it note activity. A content analysis of the post-it notes was used to rank the children’s perceived barriers. This was verified by a thematic analysis of transcripts from the open discussions and go-along interviews. Results The most frequently identified barriers for both boys and girls were weather, conflicts, lack of space, lack of play facilities and a newly-found barrier, use of electronic devices. While boys and girls identified the same barriers, there were both inter- and intra-gender differences in the perception of these barriers. Weather was a barrier for all children, apart from the most active boys. Conflicts were perceived as a barrier particularly by those boys who played ballgames. Girls said they would like to have more secluded areas added to the school playground, even in large schoolyards where lack of space was not a barrier. This aligned with girls’ requests for more “hanging-out” facilities, whereas boys primarily wanted activity promoting facilities. Conclusion Based on the results from this study, we recommend promoting recess physical activity through a combination of actions, addressing barriers within the natural, social, physical and

  9. Circadian activity rhythm in pre-pubertal and pubertal marmosets (Callithrix jacchus) living in family groups.

    PubMed

    Melo, Paula R; Gonçalves, Bruno S B; Menezes, Alexandre A L; Azevedo, Carolina V M

    2016-03-01

    In marmosets, a phase advance was observed in activity onset in pubertal animals living in captivity under semi-natural conditions which had stronger correlation with the times of sunrise over the course of the year than the age of the animal. In order to evaluate the effect of puberty on the circadian activity rhythm in male and female marmosets living in family groups in controlled lighting conditions, the activity of 5 dyads of twins (4 ♀/♂ and 1 ♂/♂) and their respective parents was continuously monitored by actiwatches between the 4th and 12th months of age. The families were kept under LD 12:12 h with constant humidity and temperature. The onset of puberty was identified by monitoring fecal steroids. Juveniles showed higher totals of daily activity and differences in the daily distribution of activity in relation to parents, in which the bimodal profile was characterized by higher levels in evening activity in relation to morning activity. Regarding the phase, the activity onset and offset, occurred later in relation to parents. After entering puberty, the activity onset and offset occurred later and there was an increase in total daily activity. On the other hand, when assessing the effect of sex, only females showed a delay in the activity offset and an increase in total daily activity. Therefore, the circadian activity rhythm in marmosets has peculiar characteristics in the juvenile stage in relation to the total of daily activity, the onset and offset of the active phase, and the distribution of activity during this phase. Besides, the entering puberty was associated with a phase delay and increase on total daily activity, with differences between sexes, possibly due to hormonal influences and/or social modulation on rhythm. PMID:26724713

  10. THE MERGER HISTORY, ACTIVE GALACTIC NUCLEUS, AND DWARF GALAXIES OF HICKSON COMPACT GROUP 59

    SciTech Connect

    Konstantopoulos, I. S.; Charlton, J. C.; Brandt, W. N.; Eracleous, M.; Gronwall, C.; Gallagher, S. C.; Fedotov, K.; Hill, A. R.; Durrell, P. R.; Tzanavaris, P.; Hornschemeier, A. E.; Zabludoff, A. I.; Maier, M. L.; Johnson, K. E.; Walker, L. M.; Maybhate, A.; English, J.; Mulchaey, J. S.

    2012-01-20

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (Hubble Space Telescope), infrared (Spitzer), and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 Multiplication-Sign 10{sup 13} M{sub Sun }), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other are two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic H II regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at {approx}1 Gyr to examine recent interactions. We detect a likely low-luminosity active galactic nucleus in HCG 59A by its {approx}10{sup 40} erg s{sup -1} X-ray emission; the active nucleus rather than star formation can account for the UV+IR spectral energy distribution. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  11. Soy intake is associated with increased 2-hydroxylation and decreased 16α-hydroxylation of estrogens in Asian-American women

    PubMed Central

    Fuhrman, Barbara J.; Pfeiffer, Ruth; Xu, Xia; Wu, Anna H.; Korde, Larissa; Gail, Mitchell H.; Keefer, Larry K.; Veenstra, Timothy D.; Hoover, Robert N.; Ziegler, Regina G.

    2009-01-01

    Introduction In Asian women, soy consumption is associated with reduced breast cancer risk, perhaps due to effects on estrogen production or metabolism. In a sample of Asian-American women, we investigated associations of usual adult soy intake with urinary concentrations of 15 estrogens and estrogen metabolites (EM) measured using liquid chromatography-tandem mass spectrometry. Methods Participants included 430 Chinese-, Japanese-, and Filipino-American women, aged 20–55 years, and living in San Francisco-Oakland (CA), Los Angeles (CA) or Oahu (HI). They were postmenopausal (n=167) or premenopausal in luteal phase (n=263) when they collected 12-hour urines. Robust linear regression was used to assess soy tertiles as predictors of log-transformed EM measures. Individual and grouped EM were considered as concentrations (pmol/mg creatinine) and as percentages of total EM (%EM). Results Factor analysis confirmed that EM groups defined by metabolic pathways appropriately captured covariation in EM profiles. Total EM concentrations (pmol/mg creatinine) were not significantly associated with soy in pre- or postmenopausal women. Among all women, %2-hydroxylated EM and %4-hydroxylated EM were 16.3% higher (ptrend= 0.02) and 18.6% higher (ptrend= 0.03) in highest vs. lowest soy tertiles. In contrast, %16-hydroxylated EM were 10.6% lower (ptrend< 0.01). Results were consistent across ethnic and menopausal groups and after adjustment for Westernization measured by birthplace (Asia or U.S.). Discussion Findings suggest that regular soy intake is associated with increased ratios of 2:16-pathway EM and with higher relative levels of 4-hydroxylated EM. Observed variations in estrogen metabolism may modify breast cancer risk. PMID:19789363

  12. Fall prevention with supplemental and alpha-hydroxylated vitamin D: a meta-analysis of randomized controlled trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Results from fall prevention trials with supplemental vitamin D have been mixed and a possible differential benefit of supplemental versus alpha-hydroxylated vitamin D (activeD) has not been established. We performed a meta-analysis on the efficacy of supplemental vitamin D and activeD with or witho...

  13. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals.

    PubMed

    Koskimäki, Janne J; Kajula, Marena; Hokkanen, Juho; Ihantola, Emmi-Leena; Kim, Jong H; Hautajärvi, Heidi; Hankala, Elina; Suokas, Marko; Pohjanen, Johanna; Podolich, Olga; Kozyrovska, Natalia; Turpeinen, Ari; Pääkkönen, Mirva; Mattila, Sampo; Campbell, Bruce C; Pirttilä, Anna Maria

    2016-05-01

    Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health. PMID:26974813

  14. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  15. Physical activity and beverage consumption in preschoolers: focus groups with parents and teachers

    PubMed Central

    2013-01-01

    Background Qualitative research is a method in which new ideas and strategies can be discovered. This qualitative study aimed to investigate parents’ and teachers’ opinions on physical activity and beverage consumption of preschool children. Through separate, independent focus groups, they expressed their perceptions on children’s current physical activity and beverage consumption levels, factors that influence and enhance these behaviours, and anticipated barriers to making changes. Methods Multi-cultural and multi-geographical focus groups were carried out in six European countries (Belgium, Bulgaria, Germany, Greece, Poland and Spain). In total, twenty-four focus groups with 122 parents and eighteen focus groups with 87 teachers were conducted between October 2010 and January 2011. Based on a semi-structured interview guide, questions on preschoolers’ physical activity (opinions on preschoolers’ physical activity, how to increase physical activity, facilitators and barriers of physical activity) and beverage consumption (rules and policies, factors influencing promotion of healthy drinking, recommendations for future intervention development) were asked. The information was analyzed using qualitative data analysis software (NVivo8). Results The focus group results indicated misperceptions of caregivers on preschoolers’ physical activity and beverage consumption levels. Caregivers perceived preschoolers as sufficiently active; they argue that children need to learn to sit still in preparation for primary school. At most preschools, children can drink only water. In some preschools sugar-sweetened beverages like chocolate milk or fruit juices, are also allowed. It was mentioned that sugar-sweetened beverages can be healthy due to mineral and vitamin content, although according to parents their daily intake is limited. These opinions resulted in low perceived needs to change behaviours. Conclusions Although previous research shows need of change in

  16. Scavenging of hydroxyl radical by catecholamines.

    PubMed

    Kładna, Aleksandra; Berczyński, Paweł; Kruk, Irena; Michalska, Teresa; Aboul-Enein, Hassan Y

    2012-01-01

    The direct effects of the four catecholamines (CATs), adrenaline (A), noradrenaline (NA), dopamine (D) and isoproterenol (I), on free radicals were investigated using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and hydroxyl radial (HO(•)). The CATs examined were found to inhibit the ESR signal intensity of DPPH(•) in a dose-dependent manner over the range 0.1-2.5 mmol/L in the following order: NA > A > I > D, with IC50= 0.30 ± 0.03 for noradrenaline and IC50= 0.86 ± 0.02 for dopamine. Hydroxyl radicals were produced using a Fenton reaction in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and ESR technique was applied to detect the CATs reactivity toward the radicals. The reaction rates constant (k(r)) of CATs with HO(•) were found to be in the order of 10(9)  L/mol/s, and the k(r) value for noradrenaline was the highest (k(r)= 8.4 × 10(9)  L/mol/s). The CATs examined exhibited also a strong decrease in the light emission (62-73% at 1 mmol/L concentration and 79-89% at 2 mmol/L concentration) from a Fenton-like reaction. These reactions may be relevant to the biological action of these important polyphenolic compounds. PMID:22238226

  17. Stress and Activity Management: Group Treatment for Cancer Patients and Spouses.

    ERIC Educational Resources Information Center

    Heinrich, Richard L.; Schag, Cyndie Coscarelli

    1985-01-01

    Studied 51 ambulatory patients with commonly occurring cancers and 25 of their spouses to evaluate a group stress and activity management treatment program. Found support for unique effects of the treatment intervention, but also support for improvement in psychosocial adjustment for patients and spouses with the passage of time. (Author/MCF)

  18. Peer Groups and Substance Use: Examining the Direct and Interactive Effect of Leisure Activity

    ERIC Educational Resources Information Center

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2006-01-01

    This paper explores the relationships among adolescent leisure activities, peer behavior, and substance use. We suggest that peer group interaction can have a differential effect on adolescent deviant behavior depending on the type of leisure pattern adolescents engage in. We analyze data from a representative national sample of Icelandic…

  19. Osteoporosis Knowledge, Calcium Intake, and Weight-Bearing Physical Activity in Three Age Groups of Women.

    ERIC Educational Resources Information Center

    Terrio, Kate; Auld, Garry W.

    2002-01-01

    Determined the extent and integration of osteoporosis knowledge in three age groups of women, comparing knowledge to calcium intake and weight bearing physical activity (WBPA). Overall calcium intake was relatively high. There were no differences in knowledge, calcium intake, or WBPA by age, nor did knowledge predict calcium intake and WBPA. None…

  20. Healthful Eating and Physical Activity in the Home Environment: Results from Multifamily Focus Groups

    ERIC Educational Resources Information Center

    Berge, Jerica M.; Arikian, Aimee; Doherty, William J.; Neumark-Sztainer, Dianne

    2012-01-01

    Objective: To explore multiple family members' perceptions of risk and protective factors for healthful eating and physical activity in the home. Design: Ten multifamily focus groups were conducted with 26 families. Setting and Participants: Community setting with primarily black and white families. Family members (n = 103) were aged 8 to 61…

  1. An Investigation of the Structure of Group Activities in ELT Coursebooks.

    ERIC Educational Resources Information Center

    Jacobs, George M.; Ball, Jessica

    1996-01-01

    Reports a study examining the use of group activities in 10 randomly selected English-language teaching coursebooks published since 1990. Results are discussed in light of theory and research on cooperative learning; task-based language teaching; and the roles of learners, teachers, and coursebooks. (26 references) (Author/CK)

  2. Peer Interactions among Children with Profound Intellectual and Multiple Disabilities during Group Activities

    ERIC Educational Resources Information Center

    Nijs, Sara; Penne, Anneleen; Vlaskamp, Carla; Maes, Bea

    2016-01-01

    Background: Children with profound intellectual and multiple disabilities (PIMD) meet other children with PIMD in day care centres or schools. This study explores the peer-directed behaviours of children with PIMD, the peer interaction-influencing behaviour of the direct support workers and the children's positioning. Method: Group activities for…

  3. Children's Preferences for Group Musical Activities in Child Care Centres: A Cross-Cultural Study

    ERIC Educational Resources Information Center

    Yim, Hoi Yin Bonnie; Ebbeck, Marjory

    2009-01-01

    This paper reports on a cross-cultural research study of children's preferences for group musical activities in child care centres. A total of 228 young children aged 4-5 years in seven child care centres in Hong Kong and in the Adelaide City of South Australia participated in the study. Both qualitative and quantitative data were collected via a…

  4. 75 FR 76070 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... (Railroad Bridge Safety Assurance) regarding bridge failure. Final rule published on July 15, 2010 (75 FR... announcement of working group activities and status reports of August 20, 2010 (75 FR 51525). The 42nd full... Rulemaking (NPRM) was published on August 24, 2006 (71 FR 50275), and was open for comment until October...

  5. 77 FR 24257 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... announcement of working group activities and status reports of November 28, 2011 (76 FR 72997). The 45th full... Rulemaking (NPRM) was published on August 24, 2006 (71 FR 50275), and was open for comment until October 23... emergency communication, emergency egress, and rescue access, was published on February 1, 2008 (73 FR...

  6. Activities for Learning about Conservation of Forest Resources: A Guide for Leaders of Youth Groups.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    This guide is intended to support the leader of a youth group in increasing the awareness of members of the need for good forest conservation practices. Sections include: (1) science fundamentals; (2) making informative exhibits; (3) gaining community involvement; (4) Christmas activities; (5) games and crafts; and (6) a list of resources and…

  7. Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures.

    PubMed

    Bruno, V; Copani, A; Bonanno, L; Knoepfel, T; Kuhn, R; Roberts, P J; Nicoletti, F

    1996-08-22

    (RS)-alpha-Methyl-4-phosphonophenylglycine (MPPG) and (S)-alpha-methyl-3-carboxyphenylalanine (M3CPA), two novel preferential antagonists of group III metabotropic glutamate (mGlu) receptors, antagonized the neuroprotective activity of L-2-amino-4-phosphono-butanoate (L-AP4) or L-serine-O-phosphate in mice cultured cortical cells exposed to a toxic pulse of N-methyl-D-aspartate. In contrast, MPPG did not influence the neuroprotective activity of the selective group II mGlu receptor agonist, (2S,1'R,2'R,3'R)-2-(2,3-dicarboxy-cyclopropyl) glycine (DCG-IV). These results indicate that activation of group III mGu receptors exerts neuroprotective activity against excitotoxic neuronal death. At least one of the two major group III mGlu receptor subtypes, i.e. mGlu4 receptor, is expressed by cultured cortical neurons, as shown by immunocytochemical analysis with specific polyclonal antibodies. PMID:8880068

  8. Information Activities and Appropriation in Teacher Trainees' Digital, Group-Based Learning

    ERIC Educational Resources Information Center

    Hanell, Fredrik

    2016-01-01

    Introduction: This paper reports results from an ethnographic study of teacher trainees' information activities in digital, group-based learning and their relation to the interplay between use and appropriation of digital tools and the learning environment. Method: The participants in the present study are 249 pre-school teacher trainees in…

  9. 75 FR 51525 - Railroad Safety Advisory Committee (RSAC); Working Group Activity Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... announcement of working group activities and status reports of January 29, 2010 (75 FR 4904). The 41st full... October 11, 2005. The Notice of Proposed Rulemaking (NPRM) was published on August 24, 2006 (71 FR 50275... published on February 1, 2008 (73 FR 6370). The Task Force met on October 17-18, 2007, and reached...

  10. Collaborative Activities Enabled by GroupScribbles (GS): An Exploratory Study of Learning Effectiveness

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Chen, Wenli; Ng, Foo-Keong

    2010-01-01

    This paper describes the findings of an exploratory cycle of a design-based research project and examines the learning effectiveness of collaborative activities that are supported by the GroupScribbles (GS) software technology in two Singapore primary science classrooms. The students had ten weeks of GS-based lessons in science, which were…

  11. Use of a Wiki-Based Software to Manage Research Group Activities

    ERIC Educational Resources Information Center

    Wang, Ting; Vezenov, Dmitri V.; Simboli, Brian

    2014-01-01

    This paper discusses use of the wiki software Confluence to organize research group activities and lab resources. Confluence can serve as an electronic lab notebook (ELN), as well as an information management and collaboration tool. The article provides a case study in how researchers can use wiki software in "home-grown" fashion to…

  12. When Talking Won't Work: Implementing Experiential Group Activities with Addicted Clients

    ERIC Educational Resources Information Center

    Hagedorn, W. Bryce; Hirshhorn, Meredith A.

    2009-01-01

    Traditional talk therapy, particularly cognitive behavioral techniques, are often ineffective when working with addicted clients for many reasons. By tapping into the power of the group modality, experiential activities can serve as a powerful facilitator of insight and behavior change. The authors provide a brief review of the literature followed…

  13. Singing as Language Learning Activity in Multilingual Toddler Groups in Preschool

    ERIC Educational Resources Information Center

    Kultti, Anne

    2013-01-01

    This research focused on learning conditions in preschool that support multilingual children's linguistic development. The aim of this paper was to study singing activities through the experiences of ten multilingual children in toddler groups (one to three years of age) in eight Swedish preschools. A sociocultural theoretical approach is…

  14. 78 FR 75905 - Credit for Increasing Research Activities: Intra-Group Gross Receipts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... similar provisions of the Code. See, e.g., Prop. Reg. Sec. 1.199-1, 70 FR 67220, 67236 (November 4, 2005...; ] DEPARTMENT OF TREASURY Internal Revenue Service 26 CFR Part 1 RIN 1545-BE14 Credit for Increasing Research Activities: Intra-Group Gross Receipts AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice...

  15. Bill Gates' Great-Great-Granddaughter's Honeymoon: An Astronomy Activity for Several Different Age Groups

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    2009-01-01

    When students finish a unit or course on the planets these days, they are often overwhelmed with facts, comparisons, and images. A good culminating activity, to help them organize their thinking (and review), is to have them divide into small groups (travel agencies) and come up with their top ten solar system "tourist sights" for future space…

  16. Activities of the US-Japan Safety Monitor Joint Working Group

    SciTech Connect

    Richard L. Savercool; Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries, and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed.

  17. Hydroxyl-proton hydrogen bonding in the heparin oligosaccharide Arixtra in aqueous solution.

    PubMed

    Beecher, Consuelo N; Young, Robert P; Langeslay, Derek J; Mueller, Leonard J; Larive, Cynthia K

    2014-01-16

    Heparin is best known for its anticoagulant activity, which is mediated by the binding of a specific pentasaccharide sequence to the protease inhibitor antithrombin-III (AT-III). Although heparin oligosaccharides are thought to be flexible in aqueous solution, the recent discovery of a hydrogen bond between the sulfamate (NHSO3(-)) proton and the adjacent 3-O-sulfo group of the 3,6-O-sulfated N-sulfoglucosamine residue of the Arixtra (fondaparinux sodium) pentasaccharide demonstrates that definable elements of local structure are accessed. Molecular dynamics simulations of Arixtra suggest the presence of additional hydrogen bonds involving the C3-OH groups of the glucuronic acid and 2-O-sulfo-iduronic acid residues. NMR measurements of temperature coefficients, chemical shift differences, and solvent exchange rate constants provide experimental confirmation of these hydrogen bonds. We note that the extraction of rate constants from cross-peak buildup curves in 2D exchange spectroscopy is complicated by the presence of radiation damping in aqueous solution. A straightforward model is presented that explicitly takes into account the effects of radiation damping on the water proton relaxation and is sufficiently robust to provide an accurate measure of the proton exchange rate between the analyte hydroxyl protons and water. PMID:24354321

  18. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  19. “Convivência” Groups: Building Active and Healthy Communities of Older Adults in Brazil

    PubMed Central

    Benedetti, Tânia R. Bertoldo; d'Orsi, Eleonora; Schwingel, Andiara; Chodzko-Zajko, Wojtek J.

    2012-01-01

    In old age, social groups can be a crucial component for health and well-being. In 2009-2010, a follow-up survey was carried out in Florianópolis, Brazil to understand the impact of a variety of programs established since 2002 that were designed to enhance social activities among the older adult population. This study employed two surveys within the population of older adults in Florianópolis. The first survey interviewed a total of 875 older adults in 2002, and the second survey involved 1,705 older adults between 2009 and 2010. By 2010, many new programs were offered in the community and the enrollment of older adults in social programs followed similar trends. “Convivência” groups stood out as extremely popular social groups among this population. This paper discusses some of the potential outcomes associated with participation in “convivência” groups. PMID:22830022

  20. Townes Group Activities from 1983-2000: Personal Recollections of William Danchi

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2015-01-01

    I arrived in Berkeley in October 1983 as a post-doc, and my appointment was at the Space Sciences Laboratory (SSL). During that time the group was very large, with multiple activities led by Charlie himself and also by Senior Fellows such as John Lacy, Dan Jaffe, and Al Betz at the top of the hill at Space Sciences. Another significant contingent of the Townes group was housed in Birge Hall on campus, led by Reinhard Genzel when he was an Assistant Professor in the Physics Department. Although the group encompassed two separate locations, it functioned as one large group. Either we rode with Charlie up and down the hill, or (if we were concerned about our safety!) we took the bus.

  1. A Small-Group Activity Introducing the Use and Interpretation of BLAST †

    PubMed Central

    Newell, Peter D.; Fricker, Ashwana D.; Roco, Constance Armanda; Chandrangsu, Pete; Merkel, Susan M.

    2013-01-01

    As biological sequence data are generated at an ever increasing rate, the role of bioinformatics in biological research also grows. Students must be trained to complete and interpret bioinformatic searches to enable them to effectively utilize the trove of sequence data available. A key bioinformatic tool for sequence comparison and genome database searching is BLAST (Basic Local Alignment Search Tool). BLAST identifies sequences in a database that are similar to the entered query sequence, and ranks them based on the length and quality of the alignment. Our goal was to introduce sophomore and junior level undergraduate students to the basic functions and uses of BLAST with a small group activity lasting a single class period. The activity provides students an opportunity to perform a BLAST search, interpret the data output, and use the data to make inferences about bacterial cell envelope structure. The activity consists of two parts. Part 1 is a handout to be completed prior to class, complete with video tutorial, that reviews cell envelope structure, introduces key terms, and allows students to familiarize themselves with the mechanics of a BLAST search. Part 2 consists of a hands-on, web-based small group activity to be completed during the class period. Evaluation of the activity through student performance assessments suggests that students who complete the activity can better interpret the BLAST output parameters % query coverage and % max identity. While the topic of the activity is bacterial cell wall structure, it could be adapted to address other biological concepts. PMID:24358388

  2. Activities of the OECD/NEA Expert Group on Assay Data for Spent Nuclear Fuel

    SciTech Connect

    Gauld, Ian C; Rugama, Yolanda

    2009-01-01

    Management of spent nuclear fuel is a key issue for many NEA member countries. In nuclear criticality safety, the decision of many countries to advance burnup credit as part of their licensing strategy has heightened recent interest in experimental data needed to validate computer codes used in burnup credit calculations. This paper discusses recent activities of an Expert Group on assay data, formed under the OECD/NEA/NSC/WPNCS (Working Party on Nuclear Criticality Safety) to help coordinate isotopic assay data activities and facilitate international collaboration between NEA member countries developing or implementing burnup credit methodologies. Recent activities of the Expert Group are described, focusing on the planned expansion of the Spent Fuel Isotopic Composition Database (SFCOMPO), and preparation of a state-of-the-art report on assay data that includes sections on recommended radiochemical analysis methods, techniques, and lessons learned from previous experiments.

  3. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity.

    PubMed

    Liang, Wanai; Mao, Xuan; Peng, Xiaohui; Tang, Shunqing

    2014-01-30

    In this paper, the structural effects of two main red seaweed polysaccharides (agarose and carrageenan) and their sulfated derivatives on the anticoagulant activity and cytotoxicity were investigated. The substitution position rather than the substitution degree of sulfate groups shows the biggest impact on both the anticoagulant activity and the cell proliferation. Among them, C-2 of 3,6-anhydro-α-d-Galp is the most favorable position for substitution, whereas C-6 of β-d-Galp is the most disadvantageous. Moreover, the secondary structures of glycans also play a key role in biological activities. These demonstrations warrant that the red seaweed polysaccharides should be seriously considered in biomedical applications after carefully tailoring the sulfate groups. PMID:24299838

  4. Enhanced Surfactant Adsorption on Activated Carbon through Manipulation of Surface Oxygen Groups

    NASA Astrophysics Data System (ADS)

    Collins, John; Qu, Deyang; Foster, Michelle

    2012-02-01

    Passive energy storage is a necessary component for balancing the lifecycle budget with new forms of green energy. The work presented describes how surface oxygen groups (SOG) on granulated activated carbon have been manipulated using Nitric Acid in a controlled, stepwise fashion. The structure and surface functionality of the activated carbon samples were characterized using DRIFTS, Raman Spectroscopy and Porosimetry. Total surface area was found to increase proportionally with the removal of heteroatom material, exposing previously insulated active sites responsible for SOG attachment. Broad oxide peaks were deconvoluted and analyzed, allowing for absolute identification of evolving functionality at each oxidation stage. SOGs were maximized on the third oxidation cycle with the presence of conjugated aromatic, phenol, lactone, and carboxylic acid groups. FSN Zonyl nonionic was applied to all oxidized samples at various concentrations. Total adsorbed surfactant was quantified for each concentration / oxidation scheme using attenuated total reflection. The relative quantity and polarity of chemisorbed surfactant were qualitatively assessed for each equilibrium concentration.

  5. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    SciTech Connect

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L. E-mail: ewilcots@astro.wisc.edu

    2012-08-15

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L{sub 1.4GHz} > 10{sup 23} W Hz{sup -1}) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  6. Effect of group activities on health promotion for the community-dwelling elderly

    PubMed Central

    Fukasawa, Masako; Yamaguchi, Haruyasu

    2016-01-01

    Objective: In Japan, the Integrated Community Care System aims to support residents to live as independently as possible at home. Koreisya-Kyoshitsu and Fureaiikiiki salons are two types of group activities for community-dwelling elderly. We investigated effective ways of conducting such activities. Methods: We analyzed 96 subjects from 8 salons and 354 subjects from 10 Koreisya-Kyoshitsu. Self-completed questionnaires included the following: attributes, the Motor Fitness Scale (MFS), revised Philadelphia Geriatric Center Morale Scale (PGCMS), Measurement of Psychological Independence (MPI), instrumental activities of daily living (IADL), and self-rated health status (SRH). Follow-up assessment was conducted 6 months later. Representatives from 8 salons and staff members from 10 Koreisya-Kyoshitsu answered an additional questionnaire on management. Results: In Koreisya-Kyoshitsu, physical performance (MFS) (p = 0.007) and subjective well-being (PGCMS) (p = 0.001) improved significantly, whereas psychological independence (MPI) deteriorated significantly (p = 0.015). The MFS scores significantly improved in the sub-group with a high number of sessions (7 or more) (p = 0.043), as well as in the non-volunteer sub-group (p = 0.004). The PGCMS scores significantly improved in the sub-group with a high number of sessions (p < 0.001). The MPI scores significantly deteriorated in the sub-group with a low frequency of sessions (6 or less) and in the non-volunteer sub-group (p = 0.013 and p = 0.010, respectively). In salons, the frequency of going out decreased significantly (p = 0.049). Functional status (IADL) significantly improved in the “twice or more a month” sub-group (p = 0.046), whereas it significantly deteriorated in the “once a month” sub-group (p = 0.004). The proportion of volunteers/organizers in Koreisya-Kyoshitsu (23.4%) was significantly lower than that in salons (39.6%). Conclusion: The frequency (number) of sessions, but not the volunteer

  7. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.

    PubMed

    Zimmer, G; Mainka, L; Krüger, E

    1991-08-01

    Investigations with dihydrolipoic acid in rat heart mitochondria and mitoplasts reveal an activation of ATP-synthase up to 45%, whereas ATPase activities decrease by 36%. In parallel with an increase in ATP synthesis oligomycin-sensitive mitochondrial -SH groups are activated at 2-4 nmol dihydrolipoic acid/mg protein. ATPase activation by the uncouplers carbonylcyanide-p-trifluoromethoxyphenylhydrazone and oleate is diminished by dihydrolipoic acid, and ATP synthesis depressed by oleate is partially restored. No such efficiency of dihydrolipoic acid is seen with palmitate-induced ATPase activation or decrease of ATP synthesis. This indicates different interference of oleate and palmitate with mitochondria. In addition to its known coenzymatic properties dihydrolipoic acid may act as a substitute for coenzyme A, thereby diminishing the uncoupling efficiency of oleate. Furthermore, dihydrolipoic acid is a very potent antioxidant, shifting the -SH-S-S- equilibrium in mitochondria to the reduced state and improving the energetic state of cells. PMID:1832845

  8. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  9. Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO(001).

    PubMed

    Brown, Matthew A; Fujimori, Yuichi; Ringleb, Franziska; Shao, Xiang; Stavale, Fernando; Nilius, Niklas; Sterrer, Martin; Freund, Hans-Joachim

    2011-07-13

    The nucleation and electronic structure of vapor-deposited Au on hydroxylated MgO(001) surfaces has been investigated under ultrahigh vacuum conditions. Hydroxylated MgO(001) surfaces with two different hydroxyl coverages, 0.4 and 1 monolayer, respectively, were prepared by exposure to water (D(2)O) at room temperature. Scanning tunneling microscopy experiments show significantly higher gold particle densities and smaller particle sizes on the hydroxylated MgO surface as compared to gold deposited on clean MgO(001). Infrared spectroscopy and X-ray photoelectron spectroscopy experiments were performed to reveal details about the initial nucleation of gold. Gold atoms are found to chemically interact with a specific type of hydroxyl groups on the MgO surface, leading to the formation of oxidized gold particles. The enhanced adhesion of Au particles, which is due to the formation of strong Au-O interfacial bonds, is responsible for the observed higher stability of small Au clusters toward thermal sintering on hydroxylated MgO surfaces. The results are compared to similar studies on Au/TiO(2)(110) model systems and powder samples prepared by the deposition-precipitation route. PMID:21634792

  10. Malaria crisis activity in sera from individuals of different ethnic groups of Colombia.

    PubMed

    Herrera, S; Perlaza, B L; Sanchez, C A; Herrera, M A

    1990-08-01

    Sera of negroes of African origin and of indians, living in a malaria endemic village on the Pacific Coast of Colombia, were analyzed to see if they could block intraerythrocytic Plasmodium falciparum growth in vitro. A group of mestizos from a malaria-free city in Colombia was used as a negative control. Blood of each individual was studied for the presence of circulating parasites by thick and thin smears and their sera for antimalarial antibodies by IFAT and IRMA techniques. The inhibition of the intraerythrocytic growth induced by these sera was assessed by [3H]Hypoxanthine incorporation. All groups showed inhibitory activity independent of their exposure to malaria. Negro sera had the highest inhibitory activity even following the removal of antibody, and also the highest antimalarial antibody titers. The group of indians had reduced inhibitory activity and lower antibody titers compared to the negro sera. In the group of mestizos, who reported no malaria exposure, 14% had antibodies to asexual blood forms of P. falciparum and 60% induced significant inhibition. PMID:2283155

  11. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology

    PubMed Central

    Siegford, Janice M.; Berezowski, John; Biswas, Subir K.; Daigle, Courtney L.; Gebhardt-Henrich, Sabine G.; Hernandez, Carlos E.; Thurner, Stefan; Toscano, Michael J.

    2016-01-01

    Simple Summary Tracking of individual animals within large groups is increasingly possible offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors and track their activities across time and space with minimal intervention and disturbance. We describe several tracking systems that are currently in use for laying hens and review each, highlighting their strengths and weaknesses, as well as environments or conditions for which they may be most suited, and relevant issues to fit the best technology for the intended purpose. Abstract Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns

  12. Detection of enzyme activities and their relation to serotypes of bovine and human group B streptococci.

    PubMed

    Ekin, Ismail Hakki; Gurturk, Kemal; Ilhan, Ziya; Arabaci, Cigdem; Gulaydin, Ozgul

    2015-09-01

    Enzymatic properties of group B streptococci (GBS) serotypes from bovine milk and human routine vaginal specimens were investigated. Out of the 56 human and 66 bovine GBS, 35 and 30 could be classified serologically by a co-agglutination test with type-specific antisera, respectively. Hyaluronidase (HYAL), streptokinase (SK) and protease activities were detected using culture media. HYAL activity was observed mostly in typable human GBS, and serotypes Ia, Ic and II comprised 77.3% of the typable strains producing HYAL. Bovine GBS serotypes II, III and VII comprised 87.5% of typable bovine strains exhibiting HYAL activity. SK activity was detected only in three human GBS. Human GBS serotypes Ia, Ic, II, III, VII and almost all typable bovine GBS strains showed protease activity. β-D-glucosidase activity was frequently observed in human GBS, whereas N-acetyl-β-D-glucosaminidase activity was mostly detected in non-typable GBS from humans. These results indicate that different GBS serotypes could vary in their virulence properties, and bovine and human GBS isolates could not be differentiated by their enzyme activities. Use of the culture media appeared to be a simple-to-apply and useful method for the detection of extracellular enzyme activity such as HYAL, protease and SK. PMID:26297151

  13. Development, Evaluation and Implementation of Chief Complaint Groupings to Activate Data Collection

    PubMed Central

    Bajaj, L.; Hoffman, J.; Alessandrini, E.; Ballard, D. W.; Norris, R.; Tzimenatos, L.; Swietlik, M.; Tham, E.; Grundmeier, R. W.; Kuppermann, N.; Dayan, P. S.

    2015-01-01

    Summary Background Overuse of cranial computed tomography scans in children with blunt head trauma unnecessarily exposes them to radiation. The Pediatric Emergency Care Applied Research Network (PECARN) blunt head trauma prediction rules identify children who do not require a computed tomography scan. Electronic health record (EHR) based clinical decision support (CDS) may effectively implement these rules but must only be provided for appropriate patients in order to minimize excessive alerts. Objectives To develop, implement and evaluate site-specific groupings of chief complaints (CC) that accurately identify children with head trauma, in order to activate data collection in an EHR. Methods As part of a 13 site clinical trial comparing cranial computed tomography use before and after implementation of CDS, four PECARN sites centrally developed and locally implemented CC groupings to trigger a clinical trial alert (CTA) to facilitate the completion of an emergency department head trauma data collection template. We tested and chose CC groupings to attain high sensitivity while maintaining at least moderate specificity. Results Due to variability in CCs available, identical groupings across sites were not possible. We noted substantial variability in the sensitivity and specificity of seemingly similar CC groupings between sites. The implemented CC groupings had sensitivities greater than 90% with specificities between 75–89%. During the trial, formal testing and provider feedback led to tailoring of the CC groupings at some sites. Conclusions CC groupings can be successfully developed and implemented across multiple sites to accurately identify patients who should have a CTA triggered to facilitate EHR data collection. However, CC groupings will necessarily vary in order to attain high sensitivity and moderate-to-high specificity. In future trials, the balance between sensitivity and specificity should be considered based on the nature of the clinical condition

  14. DFT studies on the directing group dependent arene-alkene cross-couplings: arene activation vs. alkene activation.

    PubMed

    Zhang, Lei; Fang, De-Cai

    2015-08-01

    Due to its green-chemistry advantages, the dehydrogenative Heck reaction (DHR) has experienced enormous growth over the past few decades. In this work, two competing reaction channels were comparatively studied for the Pd(OAc)2-catalyzed DHRs of arenes with alkenes, referred to herein as the arene activation mechanism and the alkene activation mechanism, respectively, which mainly differ in the involvement of the reactants in the C-H activation step. Our calculations reveal that the commonly accepted arene activation mechanism is plausible for the desired arene-alkene cross-coupling; in contrast, the alternative alkene activation mechanism is kinetically inaccessible for the desired cross-coupling, but it is feasible for the homo-coupling of alkenes. The nature of directing groups on reactants could mainly determine the dominance of the two competing reaction routes, and therefore, influence the experimental yields. A wide range of directing groups experimentally used are examined by the density functional theory (DFT) method in this work, providing theoretical guidance for screening compatible reactants. PMID:26108375

  15. Synthesis of monomethylated dioscin derivatives and their antitumor activities.

    PubMed

    Li, Ming; Han, Xiuwen; Yu, Biao

    2003-01-20

    All possible eight monomethylated dioscin derivatives (1-8) were synthesized. Their inhibitory activities against P388 and A-549 cells were determined, and the results indicate that six of the eight hydroxyls of dioscin are the 'key polar groupings' for tumor inhibitory activities. PMID:12526835

  16. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases*

    PubMed Central

    Markolovic, Suzana; Wilkins, Sarah E.; Schofield, Christopher J.

    2015-01-01

    The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of Nϵ-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries. PMID:26152730

  17. Radiation-induced destruction of hydroxyl-containing amino acids and dipeptides

    NASA Astrophysics Data System (ADS)

    Sladkova, А. А.; Sosnovskaya, А. А.; Edimecheva, I. P.; Shadyro, О. I.

    2012-12-01

    The yields of molecular products resulting from radiolysis of hydroxyl-containing amino acids and dipeptides under various conditions were determined. The possibility of a new radiation-induced destruction pathway has been shown for serine and threonine, as well as for the dipeptides having residues of these amino acids at the N-terminal part of the respective molecule. This process includes formation of N-centered radicals from the starting molecules followed by their decomposition with elimination of side substituents. On radiolysis, serine and threonine were also shown to undergo free-radical destruction to form acetaldehyde and acetone, respectively. A mechanism has been proposed including consecutive stages of fragmentation of α-hydroxyl-containing carbon-centered radicals with elimination of ammonia and decomposition of the secondary radicals with elimination of CO2. The yields of CO2 obtained on radiolysis of serine and threonine were significantly higher (except for solutions at pH 12) than those for alanine and valine, which have no hydroxyl groups in their structures. The obtained data indicate that the hydroxyl-containing amino acids occupy a special place among other amino acids as regards the variety of radiation-induced reactions which they may undergo due to their structural features.

  18. High physisorption affinity of water molecules to the hydroxylated aluminum oxide (001) surface.

    PubMed

    Kittaka, Shigeharu; Yamaguchi, Keisuke; Takahara, Shuichi

    2012-02-15

    The adsorption mechanism of water on the hydroxylated (001) plane of α-Al(2)O(3) was studied by measuring adsorption isotherms and GCMC simulations. The experimental adsorption isotherms for three α-Al(2)O(3) samples from different sources are typical type II, in which adsorption starts sharply at low pressures, suggesting a high affinity of water to the Al(2)O(3) surface. Water molecules are adsorbed in two registered forms (bilayer structure). In the first form, water is registered at the center of three surface hydroxyl groups by directing a proton of the water. In the second form, a water molecule is adsorbed by bridging two of the first-layer water molecules through hydrogen bonding, by which a hexagonal ring network is constructed over the hydroxylated surface. The network domains are spread over the surface, and their size decreases as the temperature increases. The simulated adsorption isotherms present a characteristic two-dimensional (2D) phase diagram including a 2D critical point at 365K, which is higher than that on the hydroxylated Cr(2)O(3) surface (319 K). This fact substantiates the high affinity of water molecules to the α-Al(2)O(3) surfaces, which enhances the adsorbability originating from higher heat of adsorption. The higher affinity of water molecules to the α-Al(2)O(3) (001) plane is ascribed to the high compatibility of the crystal plane to form a hexagonal ring network of (001) plane of ice Ih. PMID:22178567

  19. The effect of hydroxylation on CNT to form Chitosan-CNT composites: A DFT study

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Ran, Maofei; Wen, Jie; Sun, Wenjing; Chu, Wei; Jiang, Chengfa; He, Zhiwei

    2015-12-01

    The effect of types of CNTs (pristine and hydroxylated) on the synthesis of Chitosan-CNT (CS-CNT) composites was investigated theoretically. The adsorption energy (Eads) of CS on the pristine CNT and hydroxylated CNTs (CNT-OHn, n = 1-6) as well as the structural and electronic properties of said composites have been investigated. Results show that the adsorption of CS on CNT and CNT-OHn is thermodynamically favored. The Eads of CS on CNTs was calculated to be -20.387 kcal/mol from electrostatic interactions. For CS adsorbed into CNT-OHn, Eads ranges from -20.612 to -37.567 kcal/mol. Hydroxyl groups on CNT are the main adsorption sites for CS loading onto CNT-OHn via hydrogen-bond interactions. The CS-CNT-OH3 is the most sable composite among tested complexes. The energy gap (ΔEgap) of CS-CNT-OH3 was calculated less than pristine CNT and CNT-OH3, indicative of the composites being more reactive than that of pristine CNTs and CNT-OH3. It was proved that CS can transfer electron to the hydroxylated CNTs, thus overcoming the drawbacks of CNTs being chemically inert.

  20. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  1. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups. PMID:25504913

  2. The Element Effect Revisited: Factors Determining Leaving Group Ability in Activated Nucleophilic Aromatic Substitution Reactions

    PubMed Central

    Senger, Nicholas A.; Bo, Bo; Cheng, Qian; Keeffe, James R.; Gronert, Scott; Wu, Weiming

    2012-01-01

    The “element effect” in nucleophilic aromatic substitution reactions (SNAr) is characterized by the leaving group order, F > NO2 > Cl ≈ Br > I, in activated aryl halides. Multiple causes for this result have been proposed. Experimental evidence shows that the element effect order in the reaction of piperidine with 2,4-dinitrophenyl halides in methanol is governed by the differences in enthalpies of activation. Computational studies of the reaction of piperidine and dimethylamine with the same aryl halides using the polarizable continuum model (PCM) for solvation indicate that polar, polarizability, solvation, and negative hyperconjugative effects are all of some importance in producing the element effect in methanol. In addition, a reversal of polarity of the C–X bond from reactant to transition state in the case of ArCl and ArBr compared to ArF also contributes to their difference in reactivity. The polarity reversal, and hyperconjugative influences have received little or no attention in the past. Nor has differential solvation of the different transition states been strongly emphasized. An anionic nucleophile, thiolate, gives very early transition states and negative activation enthalpies with activated aryl halides. The element effect is not established for these reactions. We suggest that the leaving group order in the gas phase will be dependent on the exact combination of nucleophile, leaving group, and substrate framework. The geometry of the SNAr transition state permits useful, qualitative conceptual distinctions to be made between this reaction and other modes of nucleophilic attack. PMID:23057717

  3. Rh D blood group conversion using transcription activator-like effector nucleases.

    PubMed

    Kim, Young-Hoon; Kim, Hyun O; Baek, Eun J; Kurita, Ryo; Cha, Hyuk-Jin; Nakamura, Yukio; Kim, Hyongbum

    2015-01-01

    Group O D-negative blood cells are universal donors in transfusion medicine and methods for converting other blood groups into this universal donor group have been researched. However, conversion of D-positive cells into D-negative is yet to be achieved, although conversion of group A or B cells into O cells has been reported. The Rh D blood group is determined by the RHD gene, which encodes a 12-transmembrane domain protein. Here we convert Rh D-positive erythroid progenitor cells into D-negative cells using RHD-targeting transcription activator-like effector nucleases (TALENs). After transfection of TALEN-encoding plasmids, RHD-knockout clones are obtained. Erythroid-lineage cells differentiated from these knockout erythroid progenitor cells do not agglutinate in the presence of anti-D reagents and do not express D antigen, as assessed using flow cytometry. Our programmable nuclease-induced blood group conversion opens new avenues for compatible donor cell generation in transfusion medicine. PMID:26078220

  4. Towards a common framework for assessing the activity and associations of groups who sexually abuse children

    PubMed Central

    Cockbain, Ella; Brayley, Helen; Sullivan, Joe

    2013-01-01

    Extensive social psychological research emphasises the importance of groups in shaping individuals’ thoughts and actions. Within the child sexual abuse (CSA) literature criminal organisation has been largely overlooked, with some key exceptions. This research was a novel collaboration between academia and the UK's Child Exploitation and Online Protection Centre (CEOP). Starting from the premise that the group is, in itself, a form of social situation affecting abuse, it offers the first systematic situational analysis of CSA groups. In-depth behavioural data from a small sample of convicted CSA group-offenders (n = 3) were analysed qualitatively to identify factors and processes underpinning CSA groups’ activities and associations: group formation, evolution, identity and resources. The results emphasise CSA groups’ variability, fluidity and dynamism. The foundations of a general framework are proposed for researching and assessing CSA groups and designing effective interventions. It is hoped that this work will stimulate discussion and development in this long-neglected area of CSA, helping to build a coherent knowledge-base. PMID:26494978

  5. Searching for a One-Step Bioprocess for the Production of Hydroxyl Fatty Acids and Hydroxyl Oils from Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  6. Physical Activity and Sedentary Behavior in an Ethnically Diverse Group of South African School Children

    PubMed Central

    McVeigh, Joanne; Meiring, Rebecca

    2014-01-01

    Few studies have examined physical activity and inactivity levels in an urban South African setting across 12 years of formal schooling. This information is important for implementing strategies to curb increasing trends of physical inactivity and related negative consequences, especially in low to middle income countries facing multiple challenges on overburdened health care systems. We examined levels of physical activity and sedentary behaviour cross-sectionally over 12 school years from childhood to adolescence in Black, White and Indian boys and girls. The aim of our study was to describe gender and race related patterns of physical and sedentary activity levels in a sample of South African children and to determine whether there were associations between these variables and body mass status. Physical activity questionnaires, previously validated in a South African setting, were used to gather information about activity and sedentary behaviours among 767 Black, White and Indian children (5-18 years of age) across the 12 grades of formal schooling. Body mass and height were also measured. Time spent in moderate-vigorous physical activity declined over the school years for all race groups and was consistently lower for girls than boys (p = 0.03), while time spent in sedentary activity increased with increasing grade (p < 0.001) for boys and girls and across all race groups. Associations between physical activity and body mass were observed for White children (r = -0.22, p < 0.001), but not for Black and Indian children (p > 0.05) whereas time spent in sedentary activities was significantly and positively correlated with body mass across all race groups: Indian (r = 0.25, p < 0.001), White (r = 0.22, p < 0.001) and Black (r = 0.37, p = 0.001). The strength of the associations was similar for boys and girls. Black and Indian children were less physically active than their white peers (p < 0.05), and Black children also spent more time in sedentary activity (p < 0

  7. [Synthesis and properties of nuclear hydroxylated derivatives of flufenamic acid and etofenamate (author's transl)].

    PubMed

    Boltze, K H; Bäcker, U; Kreisfeld, H

    1982-01-01

    Synthesis of six nuclear hydroxylated derivatives of flufenamic acid and etofenamate (5-OH-, 4'-OH and 5,4'-(OH2) on a preparative scale is described. All compounds show low toxicity, but only weak anti-inflammatory activity in the rat paw kaolin edema test as compared to 2-(2-hydroxyethoxy)ethyl-N-(a,a,a-trifluoro-m-tolyl)-anthranilate (etofenamate, active substance of Rheumon Gel). PMID:7200776

  8. Antimalarial and Antileishmanial Activities of Histone Deacetylase Inhibitors with Triazole-Linked Cap Group

    PubMed Central

    Patil, Vishal; Guerrant, William; Chen, Po C.; Gryder, Berkley; Benicewicz, Derek B.; Khan, Shabana I.; Tekwani, Babu L.; Oyelere, Adegboyega K.

    2009-01-01

    Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure–activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids. PMID:19914074

  9. Surveillance and maintenance activities of waste area groupings at Oak Ridge National Laboratory

    SciTech Connect

    Ford, M.K.; Holder, L. Jr.; Jones, R.G.

    1991-12-01

    Surveillance and maintenance (S M) of 75 sites were conductd by the Remedial Action Section for the Environmental Restoration Program for surplus facilities and sites contaminated with radioactive materials and/or hazardous chemicals. S M activities on these sites were conducted from the end of their operating life until final facility disposal or site stabilization. The objectives of the Waste Area Grouping S M Program are met by maintaining a program of routine S M as well as by implementing interim corrective maintenance when deemed necessary as a result of site surveillance. This report briefly presents this program's activities and includes tables indicating tank levels and dry well data for FY 1991.

  10. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

    PubMed Central

    Xu, Kehan; Huang, Lei; Xu, Zheng; Wang, Yanwei; Bai, Guojing; Wu, Qiuye; Wang, Xiaoyan; Yu, Shichong; Jiang, Yuanying

    2015-01-01

    In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted-2-propanols (1a–r), which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. PMID:25792806

  11. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group.

    PubMed

    Xu, Kehan; Huang, Lei; Xu, Zheng; Wang, Yanwei; Bai, Guojing; Wu, Qiuye; Wang, Xiaoyan; Yu, Shichong; Jiang, Yuanying

    2015-01-01

    In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted-2-propanols (1a-r), which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. PMID:25792806

  12. Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors.

    PubMed

    Crawford, James J; Lee, Wendy; Aliagas, Ignacio; Mathieu, Simon; Hoeflich, Klaus P; Zhou, Wei; Wang, Weiru; Rouge, Lionel; Murray, Lesley; La, Hank; Liu, Ning; Fan, Peter W; Cheong, Jonathan; Heise, Christopher E; Ramaswamy, Sreemathy; Mintzer, Robert; Liu, Yanzhou; Chao, Qi; Rudolph, Joachim

    2015-06-25

    The p21-activated kinases (PAKs) play important roles in cytoskeletal organization, cellular morphogenesis, and survival and have generated significant attention as potential therapeutic targets for cancer. Following a high-throughput screen, we identified an aminopyrazole scaffold-based series that was optimized to yield group I selective PAK inhibitors. A structure-based design effort aimed at targeting the ribose pocket for both potency and selectivity led to much-improved group I vs II selectivity. Early lead compounds contained a basic primary amine, which was found to be a major metabolic soft spot with in vivo clearance proceeding predominantly via N-acetylation. We succeeded in identifying replacements with improved metabolic stability, leading to compounds with lower in vivo rodent clearance and excellent group I PAK selectivity. PMID:26030457

  13. Palladium-Catalyzed Trimethylenemethane Cycloaddition of Olefins Activated by the σ-Electron-Withdrawing Trifluoromethyl Group.

    PubMed

    Trost, Barry M; Debien, Laurent

    2015-09-16

    α-Trifluoromethyl-styrenes, trifluoromethyl-enynes, and dienes undergo palladium-catalyzed trimethylenemethane cycloadditions under mild reaction conditions. The trifluoromethyl group serves as a unique σ-electron-withdrawing group for the activation of the olefin toward the cycloaddition. This method allows for the formation of exomethylene cyclopentanes bearing a quaternary center substituted by the trifluoromethyl group, compounds of interest for the pharmaceutical, agrochemical, and materials industries. In the diene series, the cycloaddition operates in a [3 + 4] and/or [3 + 2] manner to give rise to seven- and/or five-membered rings. This transformation greatly improves the scope of the TMM cycloaddition technology and provides invaluable insights into the reaction mechanism. PMID:26291872

  14. Group behavioral activation for patients with severe obesity and binge eating disorder: a randomized controlled trial.

    PubMed

    Alfonsson, Sven; Parling, Thomas; Ghaderi, Ata

    2015-03-01

    The aim of the present study was to assess whether behavioral activation (BA) is an efficacious treatment for decreasing eating disorder symptoms in patients with obesity and binge eating disorder (BED). Ninety-six patients with severe obesity and BED were randomized to either 10 sessions of group BA or wait-list control. The study was conducted at an obesity clinic in a regular hospital setting. The treatment improved some aspects of disordered eating and had a positive effect on depressive symptoms but there was no significant difference between the groups regarding binge eating and most other symptoms. Improved mood but lack of effect on binge eating suggests that dysfunctional eating (including BED) is maintained by other mechanisms than low activation and negative mood. However, future studies need to investigate whether effects of BA on binge eating might emerge later than at post-assessment, as in interpersonal psychotherapy for bulimia nervosa. PMID:25268019

  15. Default-Mode Network Activity Identified by Group Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Conghui; Zhuang, Jie; Peng, Danling; Yu, Guoliang; Yang, Yanhui

    Default-mode network activity refers to some regional increase in blood oxygenation level-dependent (BOLD) signal during baseline than cognitive tasks. Recent functional imaging studies have found co-activation in a distributed network of cortical regions, including ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PPC) that characterize the default mode of human brain. In this study, general linear model and group independent component analysis (ICA) were utilized to analyze the fMRI data obtained from two language tasks. Both methods yielded similar, but not identical results and detected a resting deactivation network at some midline regions including anterior and posterior cingulate cortex and precuneus. Particularly, the group ICA method segregated functional elements into two separate maps and identified ventral cingulate component and fronto-parietal component. These results suggest that these two components might be linked to different mental function during "resting" baseline.

  16. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    SciTech Connect

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  17. Assessing Activity and Location of Individual Laying Hens in Large Groups Using Modern Technology.

    PubMed

    Siegford, Janice M; Berezowski, John; Biswas, Subir K; Daigle, Courtney L; Gebhardt-Henrich, Sabine G; Hernandez, Carlos E; Thurner, Stefan; Toscano, Michael J

    2016-01-01

    Tracking individual animals within large groups is increasingly possible, offering an exciting opportunity to researchers. Whereas previously only relatively indistinguishable groups of individual animals could be observed and combined into pen level data, we can now focus on individual actors within these large groups and track their activities across time and space with minimal intervention and disturbance. The development is particularly relevant to the poultry industry as, due to a shift away from battery cages, flock sizes are increasingly becoming larger and environments more complex. Many efforts have been made to track individual bird behavior and activity in large groups using a variety of methodologies with variable success. Of the technologies in use, each has associated benefits and detriments, which can make the approach more or less suitable for certain environments and experiments. Within this article, we have divided several tracking systems that are currently available into two major categories (radio frequency identification and radio signal strength) and review the strengths and weaknesses of each, as well as environments or conditions for which they may be most suitable. We also describe related topics including types of analysis for the data and concerns with selecting focal birds. PMID:26848693

  18. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors

    PubMed Central

    Lee, Charles C.

    2016-01-01

    The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system. PMID:27390777

  19. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach. PMID:23257881

  20. Vertical Distribution of Vibrationally Excited Hydroxyl

    NASA Astrophysics Data System (ADS)

    Grygalashvyly, Mykhaylo; Becker, Erich; Sonnemann, Gerd

    2016-04-01

    Knowledge about the vertical distribution of the vibrationally excited states of hydroxyl (OH*) is important for the interpretation of airglow measurements with respect to dynamical processes in the mesopause region. We derive an approximate analytical expression for the distribution of OH* that highlights the dependence on atomic oxygen and temperature. In addition, we use an advanced numerical model for the formation and relaxation of OH* and investigate the distributions of the different vibrationally exited states of OH*. For the production of OH*, the model includes the reaction of atomic hydrogen with ozone, as well as the reaction of atomic oxygen with hydroperoxy radicals. As loss processes we include 1) deactivation by atomic oxygen, molecular oxygen, and molecular nitrogen, 2) spontaneous emission, and 3) loss due to chemical reaction with atomic oxygen. All these processes take the dependence on the vibrational number into account. The quenching by molecular and atomic oxygen is parameterized by a multi-quantum relaxation scheme. This diagnostic model for OH* has been implemented as part of a chemistry-transport model that is driven by the dynamics simulated with the KMCM (Kühlungsborn Mechanistic general Circulation Model). Numerical results confirm that emission from excited states with higher vibrational number is weaker and emanates from higher altitudes. In addition we find that the OH*-peak altitudes depend significantly on season and latitude. This behavior is mainly controlled by the corresponding variations of atomic oxygen and temperature, as is also confirmed by the aforementioned approximate theory.