Science.gov

Sample records for active ice nuclei

  1. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  2. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  3. Characterization of biological ice nuclei from a lichen.

    PubMed Central

    Kieft, T L; Ruscetti, T

    1990-01-01

    Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei. PMID:2188965

  4. Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Hill, T. C. J.

    2015-12-01

    Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.

  5. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  6. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    PubMed

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesactivity at or below water supersaturations required for wettable, insoluble particles (the Kelvin limit). TC1 soot particles, despite classification as hydrophilic, did not show CCN activity at or below the Kelvin limit. We attribute this result to the microporosity of this soot. In contrast, oxidized, non-porous, and hydrophilic TOS particles exhibited CCN activation at very near the Kelvin limit, with a small percentage of these particles CCN-active even at lower supersaturations. Due to containing a range of surface coverage of organic and inorganic hydrophilic and hygroscopic compounds, up to approximately 35% of hygroscopic AEC particles were active as CCN, with a small percentage of these particles CCN-active at lower supersaturations. In ice nucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In

  7. IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    SciTech Connect

    Argüelles, C.A.; Bustamante, M.; Gago, A.M. E-mail: mbustamante@pucp.edu.pe

    2010-12-01

    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers and Tinyakov (KT) and another by Becker and Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10{sup 5} ≤ E{sub ν}/GeV ≤ 10{sup 8}. We have used the latest estimated discovery potential of the IceCube-86 array at the 5σ level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, α, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Γ{sub ν}/Γ{sub CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, z{sub CR}{sup max}. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of α = 2.7 obtained from fits to cosmic-ray data. Lower values of α, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5σ level or more is guaranteed.

  8. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  9. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  10. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  11. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  12. Rates of assembly and degradation of bacterial ice nuclei.

    PubMed

    Watanabe, N M; Southworth, M W; Warren, G J; Wolber, P K

    1990-11-01

    The kinetics of ice-nucleus assembly from newly synthesized nucleation protein were observed following induction of nucleation gene expression in the heterologous host Escherichia coli. Assembly was significantly slower for the small proportion of ice nuclei active above -4.4 degrees C; this was consistent with the belief that these nuclei comprise the largest aggregates of nucleation protein. The kinetics of nucleus degradation were followed after inhibiting protein synthesis. Nucleation activity and protein showed a concerted decay, indicating that most of the functional ice nuclei are in equilibrium with a single cellular pool of nucleation protein. A minority of the ice nuclei decayed much more slowly than the majority; presumably their nucleation protein was distinct either by virtue of different structure or different subcellular compartmentalization, or because of its presence in a metabolically distinct subpopulation of cells.

  13. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  14. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  15. Properties of a novel extracellular cell-free ice nuclei from ice-nucleating Pseudomonas antarctica IN-74.

    PubMed

    Muryoi, Naomi; Kawahara, Hidehisa; Obata, Hitoshi

    2003-09-01

    Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the conventional cell-free ice nuclei and showed a unique characterization. Cell-free ice nuclei were purified by centrifugation, filtration (0.45 microm), ultrafiltration, and gel filtration. In an ice-nucleating medium in 1 liter of cell culture, maximum growth was obtained with the production of 1.9 mg of cell-free ice nuclei. Ice nucleation activity in these cell-free ice nuclei preparations was extremely sensitive to pH. It was demonstrated that the components of cell-free ice nuclei were protein (33%), saccharide (12%), and lipid (55%), indicating that cell-free ice nuclei were lipoglycoproteins. Also, carbohydrate and lipid stains showed that cell-free ice nuclei contained both carbohydrate and lipid moieties.

  16. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  17. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Hader, J.; Wright, T.; McMeeking, G. R.

    2013-12-01

    Primary biological aerosol particles (PBAP) contribute to the concentrations of ice nuclei (IN) in the atmosphere. Laboratory studies have shown that pollen grains, a subset of PBAP, can serve as immersion mode ice nuclei at temperatures ranging from -9 to -25 deg C. At the peak of the pollen season pollen concentrations can reach surface-level concentrations exceeding 1 per liter of air. Furthermore, previous studies have suggested that the ice nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules, which may become dispersed by the rupturing of the pollen sac during wetting and drying cycles. If true, this mechanism is expected to produce highly elevated IN concentrations at temperatures warmer than -25 deg C. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina. Raleigh is surrounded by a dense mixed hardwood forest composed primarily of oak, hickory, and pine species. Air samples were collected using a swirling aerosol collector twice per week and the solution was analyzed for ice nuclei activity using a droplet freezing assay setup. Rainwater samples were collected during rain events at the peak of the pollen season and analyzed with the drop freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Raw freezing spectra were used to probe the freezing activity of both abundant and rare IN contained in sample liquids by analysis of drops that had varying degrees of preconcentration and size (~50 to ~650 μm). Extreme value statistics is used to collapse the raw freezing data into a single ice nuclei spectrum, defined as number of ice nuclei per volume of air as a function of temperature, that spans ~6 orders of magnitude in IN concentration. For a selected number of samples, concentrations of biological and non-biological ambient aerosol and particles are

  18. Immersion freezing of clay minerals and bacterial ice nuclei

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Bingemer, Heinz; Bundke, Ulrich; Cziczo, Daniel J.; Danielczok, Anja; Ebert, Martin; Garimella, Sarvesh; Hoffmann, Nadine; Höhler, Kristina; Kanji, Zamin A.; Kiselev, Alexei; Raddatz, Michael; Stetzer, Olaf

    2013-05-01

    The immersion mode ice nucleation efficiency of clay minerals and biological aerosols has been investigated using the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Both monodisperse and polydisperse populations of (1) various clay dust samples as well as (2) Snomax® (a proxy for bacterial ice nucleators) and (3) hematite are examined in the temperature range between -4°C and -35°C. The temperature dependence of ice formation inferred by the INAS (Ice Nucleation Active Surface-Site) density is investigated and discussed as a function of cooling rate and by comparing to predicted nucleation rates (i.e., classical nucleation theory with θ-probability density function nucleation scheme). To date, we observe that maintaining constant AIDA temperature does not trigger any new ice formation during the immersion freezing experiments with clay dust samples and Snomax®, implying strong temperature dependency (and weak time dependency) within our time scales and conditions of experiments. Ice residuals collected through a newly developed PCVI (Pumped ounter-flow Virtual Impactor) with the 50% cut size diameter of 10 to 20 μm have also been examined by electron microscope analyses to seek the chemical and physical identity of ice nuclei in clay minerals. In addition to the AIDA results, complementary measurements with mobile ice nucleation counters are also presented.

  19. Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2009-12-01

    Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to

  20. Characterization of Acremonium and Isaria ice nuclei

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2014-05-01

    Until recently, the only known fungal ice nuclei (IN) were a few exponents of lichen mycobionts and Fusarium spp. [Kieft and Ruscetti 1990, Pouleur et al. 1992, Hasegawa et al. 1994, Tsumuki et al. 1995], as well as two strains of mold [Jayaweera and Flanagan 1982]. Other investigated species did not show any IN activity [Pouleur et al. 1992, Iannone et al. 2011, Pummer et al. 2013]. In the last few years, IN-activity has been discovered in some rust and smut fungi [Morris et al. 2013, Haga et al. 2013], Acremonium implicatum (Acr.) and Isaria farinosa (Isa.) [Huffman et al. 2013] and a handful of other airborne and soil fungi [unpublished data]. We started characterizing the IN of Acr. and Isa.: Like other non-bacterial biological IN, they can be easily separated from the cells in aqueous suspension, and keep their activity. The IN-active aqueous suspensions were processed by filtration (5 μm, 0.1 μm, 300 kDa, 100 kDa) and exposure to heat (60° C) or guanidinium chloride (6 M). The IN activity of the processed samples was measured by a freezing assay of droplets, as described by Pummer et al. [2013]. Via the Vali formula, we calculated the amount of IN per gram of mycelium, which is higher than 105 g-1. The initial freezing temperature was -4° C for Isaria and -8° C for Acremonium IN. Both were completely knocked out by 60° C or guanidinium chloride. The Acremonium IN are in a mass range between 100 and 300 kDa. The Isaria IN seem to be either a bit larger, or more attached to larger particles, since not all of them pass through the 300-kDa-filter. It is likely that both of these new IN are proteinaceous like the IN of Fusarium spp. and lichen mycobionts, which belong to the Ascomycota phylum. Since the Isaria IN show a high onset freezing temperature and are rather large for single molecules, they might be agglomerates. Haga D.I. et al. (2013) J. Geophys. Res.: Atm. 118, 7260-7272 Hasegawa Y. et al. (1994) Biosci. Biotech. Biochem. 58, 2273-2274 Huffman A

  1. Ice Nuclei Variability and Ice Formation in Mixed-phase Clouds

    NASA Astrophysics Data System (ADS)

    Demott, P. J.; Twohy, C. H.; Prenni, A. J.; Kreidenweis, S. M.; Brooks, S. D.; Rogers, D. C.

    2005-12-01

    While it is expected that ice nuclei impose a critical role in ice initiation in clouds, there are relatively few validations of direct relations between ice nuclei concentrations and ice crystal concentrations. Further, very little is known about the spatial and temporal distribution of ice nuclei, let alone their sources. Such knowledge is critical for understanding precipitation formation, cloud lifetimes, the existence of aircraft icing hazards, and the impacts of changing atmospheric aerosol particle concentrations and compositions on cold cloud processes. In this study, we document measurements of ice nuclei in relation to the presence and concentrations of ice crystals in modestly supercooled clouds and also consider the implications of differences in ice nuclei concentrations measured at different locations and times during several studies. In the first part of this presentation, we show results from measurements made in the Alliance Icing Research Study II, conducted in late Fall 2003 over the Northeast U.S. and Eastern Canada. A counterflow virtual impactor was used for selectively sampling cloud particles during aircraft measurements of clouds. Measurements were made on the evaporated residual aerosol particles, including re-processing at controlled temperatures and relative humidities to determine their ice nucleating behavior for conditions of direct relevance to the clouds using a continuous flow ice-thermal diffusion chamber (CFDC). Comparing to measurements of ice crystals in clouds, a clear correlation between the presence or absence of ice nuclei and ice crystals was demonstrated in some cases. However, the concentrations of the two populations did not correlate as well. Reasons for this may reflect different (or not assessed) ice formation processes, redistribution of ice in clouds, and potential artifacts of the sampling procedure. Since these results and those of Prenni et al. (this meeting), describing the vital role of ice nuclei in affecting

  2. Atmospheric particles acting as Ice Forming Nuclei in different size ranges

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Di Matteo, L.; Prodi, F.; Belosi, F.

    2010-05-01

    The work presents the results of an experimental campaign performed at a rural site (S. Pietro Capofiume, near Bologna July 2007) concerning measurements of ice nuclei in different size classes of aerosol: PM1, PM2.5, PM10 and total suspended particles (TSP). Simultaneous measurements of particle number concentrations were also performed. Aerosol in the PM1 fraction contributes about 50% of the measured ice nuclei number concentration, and in the PM10 fraction contributes about 70-90%. Consequently, the dominant fraction of aerosol that can be activated as ice nuclei involves particles with aerodynamic diameter less than 10 μm. A positive correlation is observed between higher supersaturation with respect to ice and water ( Sice and Sw, respectively) values, and ice nuclei number concentration. The variations of Sw from 2 to 10% and Sice from 20 to 32% ( Tair = - 15 °C) determine an approximately threefold increase (from 110 to 337 m - 3 ) in the ice nuclei average number concentration. There is no correlation between ice nuclei measured in the different size ranges, either with the particle number concentration measured with the counter spectrometer ( d > 0.3 μm) or with the condensation nuclei counter.

  3. Deposition ice nuclei observations over the Indian region during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Nagare, Baban; Wagh, Sandeep; Maheskumar, R. S.; Prabha, Thara V.; Pradeep Kumar, P.

    2014-11-01

    A thermal gradient diffusion chamber (TGDC) designed to process the ice nuclei (IN) sample is illustrated with unique airborne observations. IN samples collected during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) have been analyzed using the TGDC. The TGDC is able to activate the IN by deposition mode over ice supersaturation of 6-24% and at a temperature range of - 18.5 to - 13.5 C. These samples correspond to first observations at several vertical levels including the cloud layer and over several geographically distinct locations in India during the monsoon season. Vertical profile of IN concentration shows that at a given level, there is large spatial and temporal variation in IN concentration. Maximum IN concentrations are observed below 3 km at all ice supersaturation. Highest IN concentrations are noted over inland continental regions. Spatial variation in IN concentration was observed in the range 0 to 5 L- 1 with an average of 1.12 L- 1 at highest ice supersaturation (20-25%) interval. Large variation in IN concentration at a single temperature is also observed. Our observation shows that there is a significant increase in IN concentrations with supersaturation over ice. Elemental chemical analysis of the collected aerosol samples by Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectrometry (EDX) showed that copper, silica, aluminium and zinc are the most abundant elements.

  4. Evidence for a missing source of efficient ice nuclei

    NASA Astrophysics Data System (ADS)

    Du, Rui; Du, Pengrui; Lu, Zedong; Ren, Weishan; Liang, Zongmin; Qin, Saisai; Li, Ziming; Wang, Yaling; Fu, Pingqing

    2017-01-01

    It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than ‑10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7–54% and 2–89%, respectively, of the IN activity at temperatures warmer than ‑10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.

  5. Evidence for a missing source of efficient ice nuclei.

    PubMed

    Du, Rui; Du, Pengrui; Lu, Zedong; Ren, Weishan; Liang, Zongmin; Qin, Saisai; Li, Ziming; Wang, Yaling; Fu, Pingqing

    2017-01-03

    It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years' worth of unprocessed rain samples were greater than -10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7-54% and 2-89%, respectively, of the IN activity at temperatures warmer than -10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification.

  6. Evidence for a missing source of efficient ice nuclei

    PubMed Central

    Du, Rui; Du, Pengrui; Lu, Zedong; Ren, Weishan; Liang, Zongmin; Qin, Saisai; Li, Ziming; Wang, Yaling; Fu, Pingqing

    2017-01-01

    It has been known for several decades that some bioaerosols, such as ice-nucleation-active (INA) bacteria, especially Pseudomonas syringae strains, may play a critical potential role in the formation of clouds and precipitation. We investigated bacterial and fungal ice nuclei (IN) in rainwater samples collected from the Hulunber temperate grasslands in North China. The median freezing temperatures (T50) for three years’ worth of unprocessed rain samples were greater than −10 °C based on immersion freezing testing. The heat and filtration treatments inactivated 7–54% and 2–89%, respectively, of the IN activity at temperatures warmer than −10 °C. We also determined the composition of the microbial community. The majority of observed Pseudomonas strains were distantly related to the verified ice-nucleating Pseudomonas strains, as revealed by phylogenetic analysis. Here, we show that there are submicron INA particles <220 nm in rainwater that are not identifiable as the known species of high-INA bacteria and fungi and there may be a new potential type of efficient submicroscale or nanoscale ice nucleator in the regional rainwater samplers. Our results suggest the need for a reinterpretation of the source of high-INA material in the formation of precipitation and contribute to the search for new methods of weather modification. PMID:28045124

  7. Ice nuclei measurements from solid rocket motor effluents

    NASA Technical Reports Server (NTRS)

    Hindman, E. E., II

    1980-01-01

    The ice crystal forming nuclei (IN) measured in solid rocket motor (SRM) exhaust products is discussed in relation to space shuttle exhaust. Preliminary results from laboratory investigations and flight preparations for March 1978 Titan launch are discussed. The work necessary to provide adequate measurements of IN and cloud condensation nuclei (CCN) in the stabilized ground clouds from SRM's is studied.

  8. Determination of suspendable ice nuclei from various pollen species

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Pummer, Bernhard; Grothe, Hinrich

    2014-05-01

    Heterogeneous ice nucleation is an important process in cloud glaciation. On the one hand, ice clouds increase the albedo (Mishchenko et al. 1996), leading to a cooling effect, and on the other hand tend to a faster precipitation (Lohmann 2002) and therefore reduce the total cloud albedo, which has a direct influence on the climate and weather. However, many processes involved are still not entirely understood and only poorly described which makes it difficult to forecast these effects for climate modelling. Therefore detailed laboratory studies are inherently necessary. Only recently, Pummer et al. (2012) have shown that pollen emitted from trees originating from the Northern timberline carry active ice nuclei, which are suspendable macromolecules. So far little is known about the structures and functionalities of these molecules. Here we present several analytical strategies we use to separate the responsible species (via solid phase extraction with different columns like C18 and PH) and solve the structure including different forms of mass spectrometry (MS) like the intact cell MS and matrix assisted laser desorption/ionization (MALDI) MS, which give access to the molecules in question. For identification, the surface molecules are compared with those washed out from pores and from pollen that burst due to osmotic pressure. Lohmann U.; 'A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996 Pummer B., Bauer H., Bernardi J., Bleicher S., Grothe H.; Suspendable Macromolecules are Responsible for Ice Nucleation Activity of Birch and Conifer Pollen; Atmos. Chem. Phys.; 12; pp. 2541 - 2550;

  9. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.

    PubMed

    Abbatt, J P D; Benz, S; Cziczo, D J; Kanji, Z; Lohmann, U; Möhler, O

    2006-09-22

    Laboratory measurements support a cirrus cloud formation pathway involving heterogeneous ice nucleation by solid ammonium sulfate aerosols. Ice formation occurs at low ice-saturation ratios consistent with the formation of continental cirrus and an interhemispheric asymmetry observed for cloud onset. In a climate model, this mechanism provides a widespread source of ice nuclei and leads to fewer but larger ice crystals as compared with a homogeneous freezing scenario. This reduces both the cloud albedo and the longwave heating by cirrus. With the global ammonia budget dominated by agricultural practices, this pathway might further couple anthropogenic activity to the climate system.

  10. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report

    SciTech Connect

    Cziczo, D.

    2016-03-01

    The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normally at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.

  11. Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel

  12. Predicting global atmospheric ice nuclei distributions and their impacts on climate.

    PubMed

    DeMott, P J; Prenni, A J; Liu, X; Kreidenweis, S M; Petters, M D; Twohy, C H; Richardson, M S; Eidhammer, T; Rogers, D C

    2010-06-22

    Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 degrees C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 microm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from approximately 10(3) to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of approximately 1 W m(-2) for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.

  13. Predicting global atmospheric ice nuclei distributions and their impacts on climate

    PubMed Central

    DeMott, P. J.; Prenni, A. J.; Liu, X.; Kreidenweis, S. M.; Petters, M. D.; Twohy, C. H.; Richardson, M. S.; Eidhammer, T.; Rogers, D. C.

    2010-01-01

    Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 °C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from ∼103 to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of ∼1 W m-2 for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation. PMID:20534566

  14. The competition between mineral dust and soot ice nuclei in mixed-phase clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; Atkinson, J.; Umo, N.; Browse, J.; Woodhouse, M. T.; Whale, T.; Baustian, K. J.; Carslaw, K. S.; Dobbie, S.; O'Sullivan, D.; Malkin, T. L.

    2013-12-01

    The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. In this talk our recent laboratory and global aerosol modelling work on mineral dust and soot ice nuclei will be presented. We have performed immersion mode experiments to quantify ice nucleation by the individual minerals which make up desert mineral dusts and have shown that the feldspar component, rather than the clay component, is most important for ice nucleation (Atkinson et al. 2013). Experiments with well-characterised soot generated with eugenol, an intermediate in biomass burning, and n-decane show soot has a significant ice nucleation activity in mixed-phase cloud conditions. Our results for soot are in good agreement with previous results for acetylene soot (DeMott, 1990), but extend the efficiency to much higher temperatures. We then use a global aerosol model (GLOMAP) to map the distribution of soot and feldspar particles on a global basis. We show that below about -15oC that dust and soot together can explain most observed ice nuclei in the Earth's atmosphere, while at warmer temperatures other ice nuclei types are needed. We show that in some regions soot is the most important ice nuclei (below -15oC), while in others feldspar dust dominates. Our results suggest that there is a strong anthropogenic contribution to the ice nuclei population, since a large proportion of soot aerosol in the atmosphere results from human activities. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013). Demott, P. J. 1990. An Exploratory-Study of Ice Nucleation by Soot

  15. Deactivation of ice nuclei due to atmospherically relevant surface coatings

    SciTech Connect

    Cziczo, Daniel J.; Froyd, Karl D.; Gallavardin, S. J.; Moehler, Ottmar; Benz, Stefan; Saathoff, Harald; Murphy, Daniel M.

    2009-11-23

    The ice nucleation characteristics of Arizona Test Dust (ATD) and illite clay, surrogates for atmospheric ice nuclei, have been determined at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located at the Research Center Karlsruhe in Germany. The objective of this research was to determine the effect of sulphuric acid and ammonium sulphate coatings on the ability of these mineral dust surrogates to nucleate ice in an environment where particles realistically compete for water vapor. Coated ATD particles required higher saturations at all investigated temperatures, from -20 to -45º C, than did identical uncoated particles. Freezing of coated particles often required saturations approaching those for the homogeneous freezing of aqueous solutions of the coating material alone. Less pronounced effects were found for illite although the presence of a coating consistently increased the saturation or decreased the temperature required for ice formation. Analysis of ice residue at the single particle level suggests that the first coated particles to freeze had thinner or incomplete coatings when compared to particles that froze later in the expansion. This observation highlights a need to verify coating properties since an assumption of homogeneity of a group of coated aerosol may be incorrect. The increase in saturation ratio for freezing suggests that gas-phase uptake of sulphates, a large fraction of which are due to anthropogenic emissions, will reduce the ice and mixed-phase cloud formation potential of atmospheric ice nuclei.

  16. Ice Nuclei Emissions From Sea Spray Produced By Realistically Simulated Breaking Waves

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; DeMott, P. J.; Ruppel, M. J.; Franc, G.; Hill, T.; Collins, D. B.; Cuadra-Rodriguez, L. A.; Guasco, T.; Kim, M. J.; Ault, A. P.; Grassian, V. H.; Prather, K. A.

    2012-12-01

    Breaking waves were used to generate realistic sea spray aerosol in the laboratory for the first time to study the chemical and cloud nucleation properties of marine-derived particles. Ice nuclei (IN) concentrations were measured online from the large wave channel, and from a smaller wave tank, during the collaborative CAICE experiment at Scripps Institution of Oceanography. These represent the first such measurements of ice nucleation isolated to sea spray aerosol under controlled but realistic laboratory conditions. The wave channel and small wave tank were filled with coarsely filtered sea water pumped from the nearby Pacific Ocean. Various types of bacteria, phytoplankton, and/or algae were added to the tanks to simulate marine biology. In a multiday mesocosm experiment, growth media was also added to stimulate a marine bloom event. Ice nuclei concentrations were strongly dependent on the cloud processing temperature, and required a combination of both online and higher sample volume offline collection methods to successfully characterize IN concentrations at the warmest ice nucleation temperatures. A clear relation between ice nuclei concentrations at lower temperatures below -30 °C and heterotrophic bacteria concentrations in the seawater was found. The IN concentration was also impaired by increasing concentrations of total organic carbon. IN did not correlate with chlorophyll concentrations, though this is the indicator typically used to predict changes in ocean biology and chemistry and the resulting alteration of sea spray aerosol properties. Spectromicroscopic analysis of collected ice crystals was used to investigate what particle compositions were likely responsible for the observed ice nucleation activity. These measurements suggest characteristic ice nuclei activation at lower average temperatures than typically observed for Northern Hemisphere ambient aerosols. The marine bio-particles observed here displayed weaker ice nucleation ability than

  17. Ice-forming nuclei in Antarctica: New and past measurements

    NASA Astrophysics Data System (ADS)

    Belosi, F.; Santachiara, G.; Prodi, F.

    2014-08-01

    The paper provides a review of past and a few new measurements of Ice-forming Nuclei (IN) in Antarctica. The few available published data were mostly obtained adopting different devices and methods and for a limited period of time. Consequently, data are scattered and give an incomplete picture of the Antarctic situation. It should be pointed out, however, that ice nucleation is an intricate process, depending on many parameters (supersaturation relative to ice and water, aerosol physical-chemical properties, possible conditioning and preactivation of particles, different modes of nucleation). Therefore, the uncertainty does not concern the Antarctic continent alone, but all measurements performed world-wide. A comparison of the published data can be made between Saxena and Weintraub (1988) at Palmer Station, and Ardon-Dryer et al. (2011) at the South Pole, as both studies measured IN in the immersion mode, even if at different temperature. Saxena and Weintraub (1988) obtained in three filters IN concentrations of about 104 m- 3 at T = - 6 °C, - 11 °C and - 13 °C, and 103 m- 3 at T = - 17 °C, in an additional filter (February-December 1983). At the South Pole Ardon-Dryer et al. (2011) obtained a concentration of about 5 × 102 m- 3 at T = - 19 °C, and the IN concentration increased until about 40 × 103 m- 3 at the activation temperature of - 26 °C. Such values are higher than those measured by Bigg (1973) near Antarctica, using a thermal diffusion chamber (deposition or deposition-condensation modes). IN concentrations measured at Terra Nova Bay are lower than those reported above, and are comparable to values reported for the Scott Base, Byrd Station and cruises at latitude 60°-70° S.

  18. Ice nuclei measurements at a high altitude remote station in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Bingemer, Heinz; Haunold, Werner; Curtius, Joachim; Decesari, Stefano; Marinoni, Angela; Rinaldi, Matteo; Bonasoni, Paolo; Cristofanelli, Paolo

    2013-04-01

    During a field campaign of the PEGASOS (Pan-European Gas-AeroSOls-climate interactions Study, http://pegasos.iceht.forth.gr/) project in June 2012 we have made daily ice nucleus measurements on top of the Monte Cimone (44.18° N, 10.70° E, 2165 m asl) in the Northern Apennines at the "O. Vittori" Climate Observatory. Samples were taken at this GAW-WMO Global Station in a six hour rhythm (4 a.m., 10 a.m., 4 p.m. and 10 p.m.) and at increased frequency during specific events (e.g. dust transport episodes). Ice nuclei were measured by an offline technique. Aerosol particles of 40 liters of air were collected by electrostatic precipitation on a silicon substrate. Subsequently the ice nuclei were analyzed in the vacuum diffusion chamber FRIDGE [Klein et al. 2010] (FRankfurt Ice Nuclei Deposition FreezinG Experiment) by exposing the particles to supersaturation with respect to ice (106 % to 119 %) at -8 ° C, -13 ° C and -18 ° C. In our setup ice nuclei are activated in deposition and condensation freezing modes. A camera detects and counts ice crystals grown on ice nuclei. Every ice crystal counted is assumed to represent at least one ice nucleus. The mean IN concentration at Mt. Cimone was 60 IN per liter (at -18 ° C and 119% relative humility over ice), significantly higher than a longstanding mean at Mt. Kleiner Feldberg (30 IN/l), Germany for June. A mean active site density (IN per surface area of large aerosol particles) of 2.3 * 109 m-2 was calculated. The origin of the air masses sampled was established based on backward trajectories. With more than 100 IN/l on average (at -18° C and 119% relative humility over ice) the samples originating from North Africa were highest, and activated fractions were 4 to 20 times higher than for other transport sectors. An intensive event of dust transport was recorded by several instruments in the middle of June. At its peak in the morning of the 21st of June large aerosol surface and mass concentrations were observed by

  19. Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2014-07-01

    While recent laboratory experiments have thoroughly quantified the ice nucleation efficiency of different aerosol species, the resulting ice nucleation parameterizations have not yet been extensively evaluated in models on different scales. Here the implementation of an immersion freezing parameterization based on laboratory measurements of the ice nucleation active surface site density of mineral dust and ice nucleation active bacteria, accounting for nucleation scavenging of ice nuclei, into a cloud-resolving model with two-moment cloud microphysics is presented. We simulated an Arctic mixed-phase stratocumulus cloud observed during Flight 31 of the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Through different feedback cycles, the persistence of the cloud strongly depends on the ice number concentration. It is attempted to bring the observed cloud properties, assumptions on aerosol concentration, and composition and ice formation parameterized as a function of these aerosol properties into agreement. Depending on the aerosol concentration and on the ice crystal properties, the simulated clouds are classified as growing, dissipating, and quasi-stable. In comparison to the default ice nucleation scheme, the new scheme requires higher aerosol concentrations to maintain a quasi-stable cloud. The simulations suggest that in the temperature range of this specific case, mineral dust can only contribute to a minor part of the ice formation. The importance of ice nucleation active bacteria and possibly other ice formation modes than immersion freezing remains poorly constrained in the considered case, since knowledge on local variations in the emissions of ice nucleation active organic aerosols in the Arctic is scarce.

  20. Multispectral comparison of water ice deposits observed on cometary nuclei

    NASA Astrophysics Data System (ADS)

    Oklay Vincent, Nilda; Sunshine, Jessica M.; Pajola, Maurizio; Pommerol, Antoine; Vincent, Jean-Baptiste; Sierks, Holger; OSIRIS Team

    2016-10-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Each of these three missions was equipped with multispectral cameras, allowing imaging at various wavelengths from NUV to NIR. In this spectral range, water ice-rich features display bluer spectral slopes than the average surface and some have very flat spectra. Features enriched in water ice are bright in the monochromatic images and are blue in the RGB color composites generated by using images taken in NUV, visible and NIR wavelentghs. Using these properties, water ice-rich features were detected on the nuclei of comets 9P [1], 103P [2] and 67P [3] via multispectral imaging cameras. Moreover, there were visual detections of jets and outbursts associated to some of these water ice-rich features when the right observing conditions were fulfilled [4, 5].We analyzed multispectral properties of different types of water ice-rich features [3] observed via OSIRIS NAC on comet 67P in the wavelength range of 260 nm to 1000 nm and then compared with those observed on comets 9P and 103P. Our multispectral analysis shows that the water ice deposits observed on comet 9P are very similar to the large bright blue clusters observed on comet 67P, while the large water ice deposit observed on comet 103P is similar to the large isolated water ice-rich features observed on comet 67P. The ice-rich deposits on comet 103P are the bluest of any comet, which indicates that the deposits on 103P contain more water ice than the ones observed on comets 9P and 67P [6].[1] Sunshine et al 2006, Science[2] Sunshine et al 2011, LPSC[3] Pommerol et al 2015, A&A[4] Oklay et al 2016, A&A[5] Vincent et al 2016, A&A[6] Oklay et al 2016, submitted

  1. Numerical simulation of comet nuclei. I - Water-ice comets

    NASA Technical Reports Server (NTRS)

    Herman, G.; Podolak, M.

    1985-01-01

    A one-dimensional numerical model of pure water-ice cometary nuclei is presented, and the influence of the nuclear interior as a heat reservoir on the behavior of the nuclear surface is examined. It is shown that a number of effects, including the thermal inertia due to heat stored in the core and the release of latent heat, which goes entirely into heating the adjacent layers or into sublimation on passing through a phase transition from amorphous to crystalline ice, can help to explain such characteristics as the asymmetrical lightcurve of Comet Halley. Results are given for the cases of Comet Schwassmann-Wachmann 1 and Comet Encke. Consideration is also given to the insulating effect of an evolving dust mantle. The role of this mantle in determining the surface temperature of the ice core is studied as a function of the mass fraction of the dust in the ice-dust mixture and the thermal conductivity of the nucleus. The loose-lattice model of Mendis and Brin (1977) indicates that both high dust to ice ratios and high-core conductivities inhibit mantle blowoff.

  2. Recent Field Measurements of Ice Nuclei Concentration Relation to Aerosol Properties

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Sullivan, R. C.; McMeeking, G.; Prenni, A. J.; Hill, T. C.; Franc, G. D.; Sullivan, A. P.; Garcia, E.; Tobo, Y.; Prather, K. A.; Suski, K.; Cazorla, A.; Anderson, J. R.; Kreidenweis, S. M.

    2011-12-01

    It is expected that atmospheric variability of ice nuclei concentrations is governed by a variety of factors related to aerosol physical and chemical properties. Not all particles contribute equally due to the special nature of ice nuclei. The "size requirement" of ice nuclei (Pruppacher and Klett, 1997), partly related to the typical aerosol compositions known to act as ice nuclei (e.g., mineral dust particles, certain biological particles), leads to the relation of ice nuclei number concentrations to larger aerosol concentrations in some cases, but we emphasize here the additional relation to aerosol chemistry. Recent atmospheric ice nuclei measurements focused on biomass burning, mineral dust, pollution and biological particles will be discussed to highlight new assessment of their source contributions on the basis of physical, chemical and biological analysis. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation (2nd Edition), Kluwer Academic Press, Dordrecht, 954 pp.

  3. Cirrus cloud formation and the role of heterogeneous ice nuclei

    NASA Astrophysics Data System (ADS)

    Froyd, Karl D.; Cziczo, Daniel J.; Hoose, Corinna; Jensen, Eric J.; Diao, Minghui; Zondlo, Mark A.; Smith, Jessica B.; Twohy, Cynthia H.; Murphy, Daniel M.

    2013-05-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic measurements in the upper troposphere. We have analyzed the size and composition of sublimated cirrus particles sampled from a high altitude research aircraft using both in situ and offline techniques. Mineral dust and metallic particles are the most enhanced residue types relative to background aerosol. Using a combination of cirrus residue composition, relative humidity, and cirrus particle concentration measurements, we infer that heterogeneous nucleation is a dominant cirrus formation mechanism for the mid-latitude, subtropical, and tropical regions under study. Other proposed heterogeneous IN including biomass burning particles, elemental carbon, and biological material were not abundant in cirrus residuals.

  4. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  5. Ice Nuclei in Marine Air: Biogenic Particles or Dust?

    SciTech Connect

    Burrows, Susannah M.; Hoose, C.; Poschl, U.; Lawrence, M.

    2013-01-11

    Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth’s energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  6. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  7. The Efficiency of 24 Minerals as Deposition Ice Nuclei: Focus on Feldspars, Clays and Metals

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J.; Ladino Moreno, L.; Abbatt, J.

    2013-12-01

    While the ice nucleating abilities of clay minerals have been extensively studied, those of the more minor mineralogical components of mineral dust have not been as widely examined. As a result, the deposition ice nucleating abilities of 24 atmospherically-relevant mineral samples were investigated using the University of Toronto continuous flow diffusion chamber at -40.0 × 0.3oC, using the same particle size (200nm) and preparation procedure throughout. The pure minerals' ice nucleating efficiencies were compared to those of complex mixtures (Arizona Test Dust and Mojave Desert Dust) and to that of lead iodide, which in the past was a prospective cloud seeding agent. Requiring a relative humidity with respect to ice (RHi) of 122.0 × 2.0% to activate 0.1% of the particles, lead iodide was the most efficient ice nucleus (IN) considered. Mojave Desert Dust (RHi 126.3 × 3.4%) and Arizona Test Dust (RHi 129.5 × 5.1%) exhibited lower but comparable activities. Through the analysis of a series of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and other metal-containing species), and feldspar minerals (orthoclase, plagioclase) it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 × 6.3% and 136.2 × 1.3%, respectively. The presence of feldspars (most notably orthoclase) may play a large role in the deposition IN efficiencies of mineral dusts in spite of their lower percentage in composition relative to clay minerals. By contrast, most metal oxides, sulfide and sulfates were poor ice nuclei.

  8. Mineral dust as ice nuclei in the upper troposphere (Invited)

    NASA Astrophysics Data System (ADS)

    Froyd, K.; Cziczo, D. J.; Murphy, D. M.

    2013-12-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic measurements in the upper troposphere. In a recent study of several northern hemisphere regions we report the size and composition of sublimated cirrus particles sampled from a high altitude research aircraft using both in situ and offline techniques. Mineral dust was consistently the most abundant particle type in cirrus residuals, suggesting that heterogeneous nucleation was a dominant cirrus formation mechanism in these study regions. Other proposed heterogeneous IN, including biomass burning particles, elemental carbon, and biological material, were not abundant in cirrus residuals. Clear sky measurements show that mineral dust was ubiquitous in the background upper troposphere at levels from ~1 to 100's per liter and typically accounted for 5-40% of the particulate mass. Principal sources of upper tropospheric mineral dust include strong biomass burning events and deep convection, although some evidence suggests that dust aerosol is preferentially scavenged in convective systems. During transport mineral dust accumulates secondary sulfate, nitrate, and organic material that can reduce IN efficiency. Most upper tropospheric dust particles contain secondary material, and coating type and thickness depend on coemissions and the vertical transport mechanism.

  9. Modelling the impact of fungal spore ice nuclei on clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Sesartic, Ana; Lohmann, Ulrike; Storelvmo, Trude

    2013-04-01

    Fungal spores are part of the atmospheric bioaerosols such as pollen or bacteria. Interest in bioaerosols is mainly related to their health effects, impacts on agriculture, ice nucleation and cloud droplet activation, as well as atmospheric chemistry (Morris et al. 2011). Spores of some fungal species have been found to be very efficient ice nuclei, e.g. in laboratory studies by Pouleur et al. (1992). Recent field studies by Poehlker et al. (2012) found that fungal spores are important contributors to the development of mist and clouds in rainforest ecosystems. In our study we investigated the impact of fungal spores acting as ice nuclei on clouds and precipitation on a global scale. Fungal spores as a new aerosol species were introduced into the global climate model ECHAM5-HAM (Sesartic et al. 2012) using observational fungal spore data compiled by Sesartic & Dallafior (2011). The addition of fungal spores lead to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path as well as stratiform precipitation in the model were observed in the boreal regions where tundra and forests act as sources of fungal spores. This goes hand in hand with a decreased ice crystal number concentration and increased effective radius of ice crystals. An increase in stratiform precipitation and snowfall can be observed in those regions as well. Although fungal spores contribute to heterogeneous freezing, their impact in the model was reduced by their low numbers compared to other heterogeneous ice nuclei. These results for fungal spores are comparable to the ones achieved with bacteria (Sesartic et al. 2012). REFERENCES Morris, C. E. et al. 2011: Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate, Biogeosciences, 8, 17-25. Poehlker, C. et al. 2012: Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol

  10. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    DOE PAGES

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  11. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    SciTech Connect

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; Welti, Andre; Voigtlander, Jens; Kulkarni, Gourihar R.; Sagan, Frank; Kok, Gregory Lee; Dorsey, James; Nichman, Leonid; Rothenberg, Daniel Alexander; Rosch, Michael; Kirchgäßner, Amelie Catharina Ruth; Ladkin, Russell; Wex, Heike; Wilson, Theodore W.; Ladino, Luis Antonio; Abbatt, Jon P. D.; Stetzer, Olaf; Lohmann, Ulrike; Stratmann, Frank; Cziczo, Daniel James

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigate homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.

  12. The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Bjerring Kristensen, Thomas; Ignatius, Karolina; Welti, Andre; Voigtländer, Jens; Kulkarni, Gourihar R.; Sagan, Frank; Kok, Gregory Lee; Dorsey, James; Nichman, Leonid; Rothenberg, Daniel Alexander; Rösch, Michael; Kirchgäßner, Amélie Catharina Ruth; Ladkin, Russell; Wex, Heike; Wilson, Theodore W.; Ladino, Luis Antonio; Abbatt, Jon P. D.; Stetzer, Olaf; Lohmann, Ulrike; Stratmann, Frank; Cziczo, Daniel James

    2016-07-01

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigate homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Overall, we report that the SPIN is able to reproduce previous INP counter measurements.

  13. Dependence of Ice Formation in Sierra Winter Orographic Clouds on the Mixing State of Aerosols Serving as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prather, K. A.; Sullivan, R. C.; Suski, K.; Comstock, J. M.; Tomlinson, J. M.; Rosenfeld, D.; Prenni, A. J.; Cazorla, A.

    2011-12-01

    The CalWater study of February to March 2011 offered the opportunity for observations of aerosols from local, regional and long distance sources as they were integrated into clouds and precipitation in the Sierra Nevada. Single particle chemical analysis of cloud particle residual nuclei and surface precipitation, and their association with changes in cloud microphysical differences, suggest that ice initiation and precipitation formation were strongly affected by intrusions of Asian dust. This is consistent with coincident processing of aerosols present in ambient air and cloud particle residuals as ice nuclei. Elevated ice nuclei concentrations were associated with the presence of dust detected in cloud particle residuals, and dust particles dominated ice nuclei chemical compositions assessed by transmission electron microscopy x-ray analyses at these same times. Evidence of the role of Asian dust as ice nuclei during 2011 are consistent with back trajectory analyses and with recently published observational findings from CalWater Early Start data from 2009. The relative roles of aerosols from the marine boundary layer, biomass burning, and pollution as ice nuclei will also be discussed.

  14. Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Tobo, Yutaka; Prenni, Anthony J.; DeMott, Paul J.; Huffman, J. Alex; McCluskey, Christina S.; Tian, Guoxun; Pöhlker, Christopher; Pöschl, Ulrich; Kreidenweis, Sonia M.

    2013-09-01

    primary biological aerosol particles (PBAPs) are known to have very high ice nucleating ability under mixed-phase cloud conditions. However, since the abundances of ice nucleation active PBAPs in the atmosphere are generally thought to be extremely small, their importance has remained uncertain. Here we present evidence for the role of PBAPs as atmospheric ice nuclei (IN) active at temperatures ranging from about -34°C to -9°C in a midlatitude ponderosa pine forest ecosystem in summertime. Our measurements show that the number concentrations of IN active at these temperatures were positively correlated with number concentrations of ambient fluorescent biological aerosol particles (FBAPs). Notably, the number concentrations of IN active at warmer temperatures increased quite rapidly in response to increases in the number concentrations of FBAPs. Moreover, we show that a newly-proposed parameterization related to the number concentrations of FBAPs can better reproduce the number concentrations of IN active over the entire temperature range examined, as compared with parameterizations related solely to the number concentrations of total aerosol particles with diameters larger than 0.5 µm as proposed previously. These results suggest that certain PBAPs released from forest biota can indeed play a key role in determining atmospheric IN populations in this ecosystem, especially at warmer temperatures, potentially leading to ice initiation in nearby mixed-phase clouds.

  15. Cloud Susceptibilities to Ice Nuclei: Microphysical Effects and Dynamical Feedbacks

    NASA Astrophysics Data System (ADS)

    Paukert, Marco; Hoose, Corinna

    2015-04-01

    The impact of aerosols on cloud properties is currently not well established. This is largely attributed to the interdependencies of aerosols and cloud microphysical processes, among which primary ice formation contributes to considerable uncertainties. Although it is known that in a large range of thermodynamic conditions aerosol particles are required to initiate ice formation, identifying and characterizing the effect of specific ice nuclei is among current scientific efforts. Here we attempt to quantify the change of cloud properties with varying aerosol background concentrations. We adapt the concept of susceptibilities for mixed-phase and ice clouds, defining the susceptibility as the derivation of a macrophysical quantity with respect to ice nucleating aerosol concentrations. A focus of our study is the use of different model approaches in order to identify the distinct contributions of both cloud microphysics and cloud-dynamical feedbacks to the overall susceptibility. The classical method is the direct comparison of two independent model runs, where the whole range of microphysical and cloud-dynamical feedbacks contributes to different cloud properties in a perturbed simulation. Our alternative method relies on a single simulation which incorporates multiple executions of the microphysical scheme within the same time step, each "perturbed microphysics" scheme with varying aerosol concentrations and an additional set of cloud particle tracers. Since in the latter case the model dynamics are held constant and only microphysical feedbacks contribute to the properties of perturbed clouds, we can distinguish between the pure microphysical effect and the dynamical enhancement or suppression. For a persistent Arctic mixed-phase stratocumulus cloud layer which is expected to be particularly sensitive to feedback cycles, we show an enhancement of the cloud susceptibility to ice nucleating particles by dynamics of around 50%, but a decay of the enhancement with time

  16. Cloud ice caused by atmospheric mineral dust - Part 1: Parameterization of ice nuclei concentration in the NMME-DREAM model

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Rosoldi, Marco; Pejanovic, Goran; Petkovic, Slavko; Nikolic, Jugoslav

    2016-09-01

    Dust aerosols are very efficient ice nuclei, important for heterogeneous cloud glaciation even in regions distant from desert sources. A new generation of ice nucleation parameterizations, including dust as an ice nucleation agent, opens the way towards a more accurate treatment of cold cloud formation in atmospheric models. Using such parameterizations, we have developed a regional dust-atmospheric modelling system capable of predicting, in real time, dust-induced ice nucleation. We executed the model with the added ice nucleation component over the Mediterranean region, exposed to moderate Saharan dust transport, over two periods lasting 15 and 9 days, respectively. The model results were compared against satellite and ground-based cloud-ice-related measurements, provided by SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and the CNR-IMAA Atmospheric Observatory (CIAO) in Potenza, southern Italy. The predicted ice nuclei concentration showed a reasonable level of agreement when compared against the observed spatial and temporal patterns of cloud ice water. The developed methodology permits the use of ice nuclei as input into the cloud microphysics schemes of atmospheric models, assuming that this approach could improve the predictions of cloud formation and associated precipitation.

  17. Laboratory studies with cloud-derived Bacterial Cells acting as Ice Nuclei in the Immersion and Deposition Mode

    NASA Astrophysics Data System (ADS)

    Oehm, C.; Chou, C.; Amato, P.; Attard, E.; Delort, A.-M.; Morris, C.; Kiselev, A.; Stetzer, O.; Möhler, O.; Leisner, T.

    2012-04-01

    Atmospheric aerosol particles play an important role in cloud microphysics. Aerosols of biological origin are a subgroup, and some of them are able to act as heterogeneous ice nuclei and thus influence cloud life cycles and the climate. Some bacteria species have been found to act as ice nuclei at relatively high temperatures up to -2 degree Celsius and are therefore of particular importance as "high temperature" ice nuclei. Recently, ice nucleation experiments with bacterial cells from different sources were performed at the aerosol and cloud simulation chamber AIDA at the Karlsruhe Institute of Technology. At the AIDA facility, microphysical cloud processes can be simulated and investigated in laboratory at realistic atmospheric cloud conditions. Different ice nucleation active (INA) bacteria strains were isolated from cloud water, glacier melt water and phyllosphere and examined in AIDA experiments. The living cells were suspended in nanopure or artificial cloud water and injected into the cloud chamber through a dispersion nozzle. The injected droplets evaporated in the chamber and the bacterial cells were transformed into the aerosol phase. After the spraying, the cloud formation was started by expansion cooling. Experiments were performed in the temperature range from -2 down to -20 degree Celsius. Detailed measurements of the number concentration and size distribution of the aerosol particles as well as of the droplets and ice particles were carried out during the AIDA experiments. A minor fraction of the bacteria cells was observed to act as ice nuclei in the immersion nucleation mode at higher temperatures as well as in the deposition nucleation mode at lower temperatures. The ice activity started at -6 degree Celsius. The most efficient INA bacteria species were Pseudomonas syringae 32b74 and Pseudomonas fluorescens Antarctica1. The ice active number fraction with respect to the cells varied from 0,01 to 0,1, and it does not change at different

  18. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Pöhlker, C.; Prenni, A. J.; DeMott, P. J.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-01-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  19. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. Alex; Pöhlker, Christopher; Prenni, Anthony; DeMott, Paul; Mason, Ryan; Robinson, Niall; Fröhlich-Nowoisky, Janine; Tobo, Yutaka; Després, Viviane; Garcia, Elvin; Gochis, David; Sinha, Bärbel; Day, Douglas; Andreae, Meinrat; Jimenez, Jose; Gallagher, Martin; Kreidenweis, Sonia; Bertram, Allan; Pöschl, Ulrich

    2013-04-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 µm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.

  20. Is there a lower size limit for mineral dust ice nuclei in the immersion mode?

    NASA Astrophysics Data System (ADS)

    Welti, André; Lohmann, Ulrike; Kanji, Zamin A.

    2014-05-01

    There is observational evidence that atmospheric aerosol particles which are able to trigger ice nucleation are larger than approximately 100nm (e.g. Fletcher, 1959). On the other hand observations of IN active macromolecules which have been proposed to be responsible for the enhanced ice formation in the washing water of pollen indicate no such size limit (Augustin et al., 2013). We present measurements on the size dependent ability of feldspars and clay minerals to serve as ice nuclei. The size dependent frozen fraction of droplets containing monodisperse, single immersed particles is investigated with the IMCA/ZINC experimental setup (Lüönd et. al., 2010). To meet the requirement of a narrow particle size distribution, special care is taken to generate monodisperse particles in the lower size range, by using a two stage size selection setup including a differential mobility analyser and a centrifugal particle mass analyser. From the analysis of the temperature at which 50% of the particles initiate ice nucleation, we find a logarithmic dependence of the median ice nucleation temperature on the particle surface area, with no discontinuous decrease in the ice nucleation ability of 100nm particles. The medium ice nucleation temperature of clay minerals however reaches homogeneous nucleation temperatures in this size range. The logarithmic dependence of the median ice nucleation temperature on particle surface area is addressed by comparing the experimental findings to predictions using the classical nucleation theory and the active site approach. Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, 2013. Fletcher, N.H.: On Ice-Crystal Production by Aerosol Particles, J. Meteo., 16, 173-180, 1959. Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental study on the ice

  1. Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings

    NASA Astrophysics Data System (ADS)

    Wex, H.; DeMott, P. J.; Tobo, Y.; Hartmann, S.; Rösch, M.; Clauss, T.; Tomsche, L.; Niedermeier, D.; Stratmann, F.

    2014-06-01

    Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients jhet from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, jhet derived for the CMS

  2. Biological ice nuclei at tropospheric cloud heights: potential conditioning of precipitation

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Alewell, Christine; Morris, Cindy

    2014-05-01

    Different substances present in the atmosphere enhance the aggregation of water molecules into ice structures, but particularly effective seem to be aerosols of biological origin, active at temperatures up to -2°C. Yet, the relevance of biological ice nucleation for cloud processes, such as initiating precipitation, remains ambiguous. We try to understand the meteorological conditions and the environmental factors controlling the abundance of biological ice nuclei (IN) in precipitation. One full year of observations has been carried out at the High Altitude Research station of Jungfraujoch, in the Swiss Alps, 3580 m a.s.l. Fresh snow was collected each month and analysed immediately on site for the concentration of IN active at temperatures warmer than -12°C. For this purpose we had developed an innovative system automatically recording freezing events of samples in closed tubes. Additional information was gained through the recording of meteorological parameters associated with the precipitation events, and the determination of stable isotopes (2H and 18O) and of bacterial concentrations (direct epifluorescence microscope counting, live/dead staining) in precipitation. Our analysis of the data suggests that the abundance of ice nuclei in snowfall is characterized not only by seasonality, but also by the geographical origin of precipitating air masses. Further, it seems that the more water an air mass has lost through previous precipitation, the smaller is the biological IN abundance in the remaining precipitation. Moreover, the loss of biological IN with precipitation seems to be much faster than that of other suspended particles in the same air mass, pointing towards a role of biological IN in conditioning the development of precipitation at its early stages.

  3. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  4. Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions

    NASA Astrophysics Data System (ADS)

    Garcia, Elvin; Hill, Thomas C. J.; Prenni, Anthony J.; Demott, Paul J.; Franc, Gary D.; Kreidenweis, Sonia M.

    2012-09-01

    With 18% of the total U.S. landmass devoted to croplands, farmland and farming activities are potentially major sources of biogenic particles to the atmosphere. Farms harbor large populations of microbes both in the soil and on plant surfaces which, if injected into the atmosphere, may serve as nuclei for clouds. In this study, we investigated two farms as potential sources of biological ice nuclei (IN): an organic farm in Colorado and a cornfield in Nebraska. We used a continuous-flow diffusion chamber (CFDC) to obtain real-time measurements of IN at these farm sites. Total aerosol particles were also collected at the sites, and their temperature-dependent ice nucleating activity was determined using the drop freezing method. Quantitative polymerase chain reaction and DNA sequencing of 16S rDNA clone libraries were used to test aerosols and washings of local vegetation for abundance of theinagene in ice nucleation active bacteria (from the well-known group within theγ-Proteobacteria) and to identify airborne primary biological aerosol particles. The vegetation in each of these farms contained 6 × 105 to 2 × 107 ina genes per gram vegetation. In contrast to the vegetation, airborne ina gene concentrations at the organic farm were typically below detectable limits, demonstrating a disconnect between local vegetative sources and the air above them. However, for measurements made during combine harvesting at the Nebraska corn field, ina gene concentrations were 19 L-1, with maximum IN concentrations of 50 L-1 determined from the CFDC at -20°C and above water saturation. At both farms, there was also an apparent biological contribution to the IN population which did not contain the ina gene.

  5. Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

    2013-12-01

    Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential

  6. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS

    DOE PAGES

    Paukert, M.; Hoose, C.; Simmel, M.

    2017-01-31

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  7. Comparative study of water ice exposures on cometary nuclei using multispectral imaging data

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Sunshine, J. M.; Pajola, M.; Pommerol, A.; Vincent, J.-B.; Mottola, S.; Sierks, H.; Fornasier, S.; Barucci, M. A.; Preusker, F.; Scholten, F.; Lara, L. M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; De Cecco, M.; Deller, J.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Shi, X.; Thomas, N.; Tubiana, C.

    2016-11-01

    Deep Impact, EPOXI and Rosetta missions visited comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko, respectively. Each of these three missions was equipped with both multispectral imagers and infrared spectrometers. Bright blue features containing water ice were detected in each of these comet nuclei. We analysed multispectral properties of enriched water ice features observed via Optical, Spectroscopic, and Infrared Remote Imaging System narrow angle camera on comet 67P in the wavelength range of 260-1000 nm and then compared with multispectral data of water ice deposits observed on comets 9P and 103P. We characterize the UV/VIS properties of water-ice-rich features observed on the nuclei of these three comets. When compared to the average surface of each comet, our analysis shows that the water ice deposits seen on comet 9P are similar to the clustered water-ice-rich features seen on comet 67P, while the water ice deposit seen on comet 103P is more akin to two large isolated water-ice-rich features seen on comet 67P. Our results indicate that the water ice deposit observed on comet 103P contains more water ice than the water-ice-rich features observed on comets 9P and 67P, proportionally to the average surface of each nucleus.

  8. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  9. A contribution by ice nuclei to global warming

    SciTech Connect

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O'C; Li, Xiaofan

    2009-06-10

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations becomes larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO2. We found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. Finally, a general match in geographic

  10. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  11. Effects of different temperature treatments on biological ice nuclei in snow samples

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kakikawa, Makiko; Kobayashi, Fumihisa; Matsuki, Atsushi

    2016-09-01

    The heat tolerance of biological ice nucleation activity (INA) depends on their types. Different temperature treatments may cause varying degrees of inactivation on biological ice nuclei (IN) in precipitation samples. In this study, we measured IN concentration and bacterial INA in snow samples using a drop freezing assay, and compared the results for unheated snow and snow treated at 40 °C and 90 °C. At a measured temperature of -7 °C, the concentration of IN in untreated snow was 100-570 L-1, whereas the concentration in snow treated at 40 °C and 90 °C was 31-270 L-1 and 2.5-14 L-1, respectively. In the present study, heat sensitive IN inactivated by heating at 40 °C were predominant, and ranged 23-78% of IN at -7 °C compared with untreated samples. Ice nucleation active Pseudomonas strains were also isolated from the snow samples, and heating at 40 °C and 90 °C inactivated these microorganisms. Consequently, different temperature treatments induced varying degrees of inactivation on IN in snow samples. Differences in the concentration of IN across a range of treatment temperatures might reflect the abundance of different heat sensitive biological IN components.

  12. Measurements of ice nuclei concentrations and compositions in the maritime tropics

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Danielczok, A.; Bingemer, H.; Klein, H.; Hill, T. C.; Franc, G. D.; Martinez, M.; Venero, I.; Mayol-Bracero, O. L.; Ardon-Dryer, K.; Levin, Z.; Anderson, J.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.

    2011-12-01

    Tropical maritime cumulus clouds represent an important component of the global water cycle, but the relative roles of primary and secondary ice production in these clouds are poorly understood. Heterogeneous ice nuclei (IN) are responsible for ice initiation in towering tropical cumulus clouds, so information regarding their abundance, distribution, source compositions and dependence on cloud temperature is crucial to understanding the ice production processes. Here we present recent measurements of ice nuclei (IN) concentrations measured from ground-based and airborne (NSF/NCAR C-130) platforms during the Ice in Clouds-Tropical experiment, which took place in July 2011 over the Caribbean Sea near St. Croix in the US Virgin Islands. IN measurement techniques included airborne ambient and cloud particle residual measurements using a continuous flow diffusion chamber and off-line analysis of samples collected from the aircraft and two ground sites located on the island of Puerto Rico. Off-line measurements of IN concentrations included analysis by the Frankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE) system and drop freezing via two methods of particles collected from filter samples. The measurement period included some periods with a strong Saharan dust influence that resulted in higher IN concentrations compared to clean maritime conditions. First analysis of IN physical, chemical and biological composition, and investigation of relationships between IN concentrations and total aerosol concentrations, composition and size are also presented.

  13. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  14. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds

    SciTech Connect

    Spichtinger, Peter; Cziczo, Daniel J.

    2010-07-29

    The influence of initial heterogeneous nucleation on subsequent homogeneous nucleation events in cirrus clouds is investigated using a box model which includes the explicit impact of aerosols on the nucleation of ice crystals and sedimentation. Different effects are discussed, namely the impact of external mixtures of heterogeneous ice nuclei and the influence of size-dependent freezing thresholds. Several idealized experiments are carried out, which show that the treatment of external mixtures of ice nuclei can strongly change later homogeneous nucleation events (i.e., the ice crystal number densities) in different matters. The use of size-dependent freezing thresholds can also change the cloud prop erties when compared to more simple parameterizations. This size effect is most important for large IN concentrations. Based upon these findings, recommendations for future modeling and measurement efforts are presented.

  15. Estimating the Influence of Biological Ice Nuclei on Clouds with Regional Scale Simulations

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Hoose, Corinna; Schaupp, Caroline; Möhler, Ottmar

    2014-05-01

    Cloud properties are largely influenced by the atmospheric formation of ice particles. Some primary biological aerosol particles (PBAP), e.g. certain bacteria, fungal spores or pollen, have been identified as effective ice nuclei (IN). The work presented here quantifies the IN concentrations originating from PBAP in order to estimate their influences on clouds with the regional scale atmospheric model COSMO-ART in a six day case study for Western Europe. The atmospheric particle distribution is calculated for three different PBAP (bacteria, fungal spores and birch pollen). The parameterizations for heterogeneous ice nucleation of PBAP are derived from AIDA cloud chamber experiments with Pseudomonas syringae bacteria and birch pollen (Schaupp, 2013) and from published data on Cladosporium spores (Iannone et al., 2011). A constant fraction of ice-active bacteria and fungal spores relative to the total bacteria and spore concentration had to be assumed. At cloud altitude, average simulated PBAP number concentrations are ~17 L-1 for bacteria and fungal spores and ~0.03 L-1 for birch pollen, including large temporal and spatial variations of more than one order of magnitude. Thus, the average, 'diagnostic' in-cloud PBAP IN concentrations, which only depend on the PBAP concentrations and temperature, without applying dynamics and cloud microphysics, lie at the lower end of the range of typically observed atmospheric IN concentrations . Average PBAP IN concentrations are between 10-6 L-1 and 10-4 L-1. Locally but not very frequently, PBAP IN concentrations can be as high as 0.2 L-1 at -10° C. Two simulations are compared to estimate the cloud impact of PBAP IN, both including mineral dust as an additional background IN with a constant concentration of 100 L-1. One of the simulations includes additional PBAP IN which can alter the cloud properties compared to the reference simulation without PBAP IN. The difference in ice particle and cloud droplet concentration between

  16. Phenomenology of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Leahy, J. P.

    1999-04-01

    I review the observational data on AGN, focusing especially on results that may be relevant to sub-parsec discs. After emphasizing the essential unity of the different AGN, from LINERs to quasars, I review several observational tracers which have been claimed to be produced by accretion discs. In most cases the interpretation of these data is ambiguous, but the recent detections of redshifted Fe K alpha by ASCA provide convincing evidence for discs. I briefly review the phenomenology of jets in AGN, and emphasize that jets are detected in all classes of AGN, and in radio-loud AGN comprise a major component of the energy budget. Evidence that jets are relativistic is now compelling for all types of radio-loud AGN and is accumulating even for radio-quiet objects. Data on jets provide a long-term record of AGN activity which constrains aspects of disc history including start-up times, alignment stability and precession, lifetimes, and recurrent activity. Finally, I discuss the distinction between radio-quiet and radio loud AGN, which is broad enough to suggest two fundamentally different types of central engine, although it may not be as clear-cut as is sometimes claimed. At present there is no consensus on the nature of this difference. I draw attention to the broad absorption line (BAL) phenomenon, which signposts powerful but uncollimated outflows in radio-quiet AGN, which may correspond to the powerful jets in the radio-loud objects.

  17. Salts as Water Ice Cloud Nuclei on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D.; Chuang, P. Y.; Iraci, L. T.

    2015-12-01

    In recent years, observations of the Martian surface have indicated the presence of chlorine-bearing minerals, including perchlorates, on the surface of Mars. These salt-bearing minerals would potentially be source material for dust lofted from the surface into the Martian atmosphere, thus providing potential nucleation sites for water ice clouds. Considering that salts play an important role in cloud formation on Earth, it is important to have a better understanding of how salt may affect nucleation processes under Mars-like conditions. We perform laboratory experiments to examine water ice nucleation onto salt substrates. We use a vacuum chamber that simulates the temperatures and pressures observed of the Martian atmosphere. Using infrared spectroscopy we measure the onset of nucleation and calculate the temperature-dependent critical saturation ratio (Scrit) for water ice nucleation onto salts, specifically sodium chloride and sodium perchlorate. Preliminary results of Scrit values for water ice nucleation on sodium chloride show a negative temperature dependence, as did other substrates from previous experiments. Values of Scrit are useful for understanding the realistic conditions under which water ice clouds may form on Mars, and can be used in climate models simulating clouds on Mars.

  18. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  19. High concentrations of biological aerosol particles and ice nuclei during and after rain

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Prenni, A. J.; DeMott, P. J.; Pöhlker, C.; Mason, R. H.; Robinson, N. H.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V. R.; Garcia, E.; Gochis, D. J.; Harris, E.; Müller-Germann, I.; Ruzene, C.; Schmer, B.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M.; Kreidenweis, S. M.; Bertram, A. K.; Pöschl, U.

    2013-07-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteriaceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed.

  20. Biological aerosol particles and ice nuclei during rain, and other insights (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Prenni, A. J.; DeMott, P. J.; Pöhlker, C.; Mason, R.; Robinson, N.; Fröhlich-Nowoisky, J.; Tobo, Y.; Després, V.; Gochis, D. J.; Harris, E. J.; Sinha, B.; Day, D. A.; Andreae, M. O.; Jimenez, J. L.; Gallagher, M. W.; Kreidenweis, S. M.; Bertram, A. K.; Poeschl, U.

    2013-12-01

    Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2-6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed.

  1. The abundance of ice nuclei during airborne measurements over Germany and the Caribbean

    NASA Astrophysics Data System (ADS)

    Danielczok, A..; Bingemer, H.; Curtius, J.; DeMott, P. J.

    2012-04-01

    The tropospheric abundance of ice nuclei (IN) acting at -8 to -18 °C in the deposition and condensation nucleation modes was investigated during series of research flights on board a Learjet over northern Germany in June 2011 and on board of the NSF/NCAR C-130 during the ICE IN CLOUDS EXPERIMENT - TROPICAL (ICE-T) over the Caribbean in July 2011. Ice nuclei were collected from the air by electrostatic precipitation of aerosol onto silicon substrates. Samples were subsequently analyzed in the laboratory by the isothermal static vapor diffusion chamber FRIDGE (FRankfurt Ice Nuclei Deposition FreezinG Experiment). IN abundance in the free and upper troposphere varied between < 1 and 50 IN L-1 in the upper troposphere over Germany, and between < 1 to 40 IN L-1 in the lower and middle troposphere in the Caribbean. A few dust layers were encountered. The results will be presented and discussed in the light of trajectory analysis and other supporting information.

  2. Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary

    SciTech Connect

    DeMott, PJ; Suski, KJ; Hill, TCJ; Levin, EJT

    2015-03-01

    The first ever ice nucleating particle (INP) measurements to be collected at the Southern Great Plains site were made during a period from late April to June 2014, as a trial for possible longer-term measurements at the site. These measurements will also be used to lay the foundation for understanding and parameterizing (for cloud resolving modeling) the sources of these climatically important aerosols as well as to augment the existing database containing this knowledge. Siting the measurements during the spring was intended to capture INP sources in or to this region from plant, soil, dust transported over long distances, biomass burning, and pollution aerosols at a time when they may influence warm-season convective clouds and precipitation. Data have been archived of real-time measurements of INP number concentrations as a function of processing conditions (temperature and relative humidity) during 18 days of sampling that spanned two distinctly different weather situations: a warm, dry and windy period with regional dust and biomass burning influences in early May, and a cooler period of frequent precipitation during early June. Precipitation delayed winter wheat harvesting, preventing intended sampling during that perturbation on atmospheric aerosols. INP concentrations were highest and most variable at all temperatures in the dry period, where we attribute the INP activity primarily to soil dust emissions. Additional offline INP analyses are underway to extend the characterization of INP to cover the entire mixed phase cloud regime from -5°C to -35°C during the full study. Initial comparisons between methods on four days show good agreement and excellent future promise. The additional offline immersion freezing data will be archived as soon as completed under separate funding. Analyses of additional specialized studies for specific attribution of INP to biological and smoke sources are continuing via the National Science Foundation and National Aeronautics

  3. Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds

    DOE PAGES

    Paukert, M.; Hoose, C.; Simmel, M.

    2017-01-31

    In model studies of aerosol-dependent immersion freezing in clouds, a common assumption is that each ice nucleating aerosol particle corresponds to exactly one cloud droplet. Conversely, the immersion freezing of larger drops—“rain”—is usually represented by a liquid volume-dependent approach, making the parameterizations of rain freezing independent of specific aerosol types and concentrations. This may lead to inconsistencies when aerosol effects on clouds and precipitation shall be investigated, since raindrops consist of the cloud droplets—and corresponding aerosol particles—that have been involved in drop-drop-collisions. We introduce an extension to a two-moment microphysical scheme in order to account explicitly for particle accumulation inmore » raindrops by tracking the rates of selfcollection, autoconversion, and accretion. This also provides a direct link between ice nuclei and the primary formation of large precipitating ice particles. A new parameterization scheme of drop freezing is presented to consider multiple ice nuclei within one drop and effective drop cooling rates. In our test cases of deep convective clouds, we find that at altitudes which are most relevant for immersion freezing, the majority of potential ice nuclei have been converted from cloud droplets into raindrops. Compared to the standard treatment of freezing in our model, the less efficient mineral dust-based freezing results in higher rainwater contents in the convective core, affecting both rain and hail precipitation. The aerosol-dependent treatment of rain freezing can reverse the signs of simulated precipitation sensitivities to ice nuclei perturbations.« less

  4. Landscape-precipitation feedback mediated by ice nuclei: an example from the Arctic

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Zimmermann, Lukas; Morris, Cindy; Alewell, Christine

    2016-04-01

    The Arctic is one of the regions on Earth which are particularly sensitive to the effects of climate change. One of the largest uncertainties in describing climate and climate change is constituted by the characterisation of the behaviour of clouds. Specifically in the Arctic region there is a low abundance of cloud condensation nuclei (CCN) resulting in low droplet concentrations in clouds. Ice nucleating particles (INPs) in the atmosphere promote the aggregation of water molecules into ice, increasing the chance for precipitation. Therefore, a change in the absolute abundance of INPs and their relative presence compared to CCN is expected to have strong impacts on climate in the Arctic in terms of the radiative budget and of precipitation. In July 2015 we sampled particles from air at Haldde Observatory, Norway (69° 55'45" N, 22° 48'30" E, 905 m a.s.l.) on PM10 filters. We determined the number of INPs active at moderate supercooling temperatures (≥ -15 ° C, INPs-15) by immersion freezing. To identify potential sources of airborne INPs we also collected samples of soil from a highland and decaying leaf litter. Air masses passing over the land were enriched in INPs-15, with concentrations twice to three times larger than those found in air masses directly coming from the Barents Sea. Ice nucleation spectra suggest that it is mainly litter which accounts for this enrichment in INPs-15. This example helps elucidating the feedback linking landscapes and atmosphere mediated by INPs in the frame of climate change. While the snow coverage is progressively reducing in the Arctic, areas with decaying leaf litter and vegetation that are exposed to wind and grazing are expected to increase, resulting into a larger abundance of INPs in the local atmosphere. This increase in airborne INPs can promote a change in the freezing of clouds, with impact on the lifetime and on the radiative properties of clouds, and ultimately on the occurrence of precipitation in the Arctic

  5. Ambient and laboratory measurements of ice nuclei and their biological faction with the Fast Ice Nuclei CHamber FINCH-HALO using the new 405nm Version of the BIO-IN Sensor

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Nillius, B.; Bingemer, H.; Curtius, J.

    2012-04-01

    We have designed the BIO-IN detector as part of the ice nucleus counter FINCH (Fast Ice Nuclei CHamber counter) to distinguish activated Ice Nuclei (IN) ice crystals from water droplets (CCN) (Bundke et al. 2008) and their fraction of biological origin (Bundke 2010). The modified BIO-IN sensor illuminates an aerosol stream with a 405 nm laser, replacing a 365nm LED of the original BIO IN design. Particles will scatter the light and those of biological origin will show intrinsic fluorescence emissions by excitation of mainly Riboflavin, also known as vitamin B2. The incident laser light is circularly polarized by introducing a quarter-wave-plate. The circular depolarization ratio (p44/p11) of the scattering matrix is measured in the backward direction by two photomultipliers at 110° scattering angle using a combination of quarter-wave-plate and a beam splitting cube to analyze the two circular polarization components. The detection limit was lowered towards particle size of about 400nm diameter (non activated particles). It is now possible to calculate the activated fraction of IN of biological origin with respect to all biological particles measured with one detector. The performance of the sensor will be demonstrated showing the circular- depolarization properties of different test aerosol, dust samples, volcanic ashes as well as different biological particles. Measurements on the mountain Puy de Dôme of IN number concentration of ambient air, as well as measurements at the AIDA facility in Karlsruhe of the IN activation curves from different bacteria are shown. Acknowledgements: This work was supported by the German Research Foundation, Grant: BU 1432/3-2 BU 1432/4-1

  6. Active Galactic Nuclei and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Giebels, Berrie; Aharonian, Felix; Sol, Hélène

    The supermassive black holes harboured in active galactic nuclei are at the origin of powerful jets which can emit copious amounts of γ-rays. The exact interplay between the infalling matter, the black hole and the relativistic outflow is still poorly known, and this parallel session of the 12th Marcel Grossman meeting intended to offer the most up to date status of observational results with the latest generation of ground and space-based instruments, as well as the theoretical developments relevant for the field.

  7. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  8. Measurements of natural ice nuclei with a continuous flow diffusion chamber

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.

    1983-01-01

    A description is given of a continuous flow diffusion chamber technique for measuring the atmospheric concentrations of natural C-F nuclei. It is noted that the same device can also measure deposition nuclei; these two modes can thus be separated and compared. The laminar flow characteristics allow the temperature and supersaturation to be calculated with a high degree of precision and confidence. The method avoids the problems of a supporting substrate and of concentrating the sample into a small volume (as for membrane filters). The present measurements of natural ice nucleus concentrations at +1 percent water supersaturation are found to be comparable to research aircraft measurements of ice crystal concentrations in winter cap clouds over Elk Mountain, Wyoming (Vali et al., 1982).

  9. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  10. Kaolinite particles as ice nuclei: learning from the use of different types of kaolinite and different coatings

    NASA Astrophysics Data System (ADS)

    Wex, H.; DeMott, P. J.; Tobo, Y.; Hartmann, S.; Rösch, M.; Clauss, T.; Tomsche, L.; Niedermeier, D.; Stratmann, F.

    2013-11-01

    Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei. This was done in the water subsaturated regime where often deposition ice nucleation is assumed to occur, and for water supersaturated conditions, i.e. in the immersion freezing mode. Measurements were done using a flow tube (LACIS) and a continuous flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometer or less, where the coating consisted of either levoglucosan, succinic acid, or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients, jhet, from both instruments agreed with each other when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles, i.e. it can be assumed that these two types of coating did not alter the ice active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles which were coated with either pure sulfuric acid or which were first coated with the acid and then exposed to additional water vapor both showed a reduced ability to nucleate ice, compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e. for the pure ones and the ones with the different types of coating. Moreover, jhet derived for the CMS kaolinite particles was comparable to jhet derived for kaolinite

  11. Measurements of Atmospheric Ice Nuclei Concentrations at Two Canadian Sites: Downtown Toronto and Whistler, British Columbia

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Leaitch, W. R.; Evans, G. J.; MacDonald, A.; Abbatt, J.

    2010-12-01

    The subset of atmospheric aerosol particles termed ice nuclei (IN) facilitate heterogeneous ice formation by lowering the energy barrier to ice formation, thus allowing ice clouds to form at temperatures above the homogeneous freezing threshold. Though ice plays a major role in initiating precipitation globally, the composition and distribution of IN in the atmosphere remains poorly understood. In order to investigate potential anthropogenic contributions to atmospheric ice nucleation, we measured IN concentrations on a major road in Toronto, ON, using the University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC). The majority of measurements were conducted close to 95% relative humidity (RH) with respect to water, but full RH scans to conditions above supersaturation with respect to liquid water were also performed. Simultaneous measurements of aerosol size (APS, SMPS) and chemical composition (Aerosol Time-of-Flight Mass Spectrometer, ATOFMS) allow us to investigate the relationship of IN to varying aerosol types. The number of IN observed was highly variable, ranging from 0-87/L. These urban data will be contrasted with similar data obtained in the coniferous forest of Whistler Mountain, BC. An intense biogenic secondary aerosol event observed at Whistler is used to estimate an upper limit for IN from organic aerosol formed from monoterpene oxidation.

  12. Ice Nuclei in Mid-Latitude Cirrus: Preliminary Results from a New Counterflow Virtual Impactor (CVI) Aircraft Inlet

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Cziczo, D. J.; Murphy, D. M.; Kulkarni, G.; Lawson, P.

    2011-12-01

    Cirrus cloud properties are strongly governed by the mechanism of ice particle formation and by the number and effectiveness of ambient ice nuclei. Airborne measurements of ice nuclei reveal new nucleation mechanisms, provide constraints on microphysical models, and guide laboratory investigations. For over two decades the Counterflow Virtual Impactor (CVI) inlet has remained the prevailing approach for sampling cloud particles to measure ice nuclei from an aircraft platform. However, traditional CVI inlets have fundamental limitations when operating on high speed aircraft, where only a small fraction of ambient cloud particles are typically sampled. A novel 'folded' CVI was constructed and deployed during the NASA MACPEX 2011 campaign. The flow design of this inlet effectively doubles the CVI length and thereby increases the size range of captured cirrus particles. Additional design elements such as an internal vortex flow, a neon carrier gas, and an infrared laser further improve the capture and evaporation of ice crystals. Preliminary results of ice nuclei composition measured by the PALMS single-particle mass spectrometer are presented from the MACPEX campaign. Examples of ice nuclei from mid-latitude cirrus are shown, including mineral dust, organic-rich aerosol with amine and diacid components, and lead-containing aerosol.

  13. Studies of ice nuclei at the Leipzig Aerosol Cloud Interaction Simulator and their implications

    NASA Astrophysics Data System (ADS)

    Wex, Heike

    2013-04-01

    Ice containing clouds permanently cover 40% of the earth's surface. Ice formation processes have a large impact on the formation of precipitation, cloud radiative properties, cloud electrification and hence influence both, weather and climate. Our understanding of the physical and chemical processes underlying ice formation is limited. However what we know is that the two main pathways of atmospheric ice formation are homogeneous and heterogeneous ice nucleation. The latter involves aerosol particles that act as ice nuclei inducing cloud droplet freezing at temperatures significantly above the homogeneous freezing threshold temperature. Particles acting as IN are e.g. dust particles, but also biological particles like bacteria, pollen and fungal spores. Different heterogeneous freezing mechanisms do exit, with their relative importance for atmospheric clouds still being debated. However, there are strong indications that immersion freezing is the most important mechanism when considering mixed phase clouds. What we are still lacking is a) the fundamental process understanding on how aerosol particles induce ice nucleation and b) means to quantify ice nucleation in atmospheric models. Concerning a) there most likely is not only one answer, considering the variety of IN found in the atmosphere. With respect to b) different approaches based on either the stochastic or singular hypotheses have been suggested. However it is still being debated which would be a suitable way to parameterize laboratory data for use in atmospheric modeling. In this presentation, both topics will be addressed. Using the Leipzig Aerosol Cloud Interaction Simulator (LACIS) (Hartmann et al., 2011), we examined different types of dust particles with and without coating, and biological particles such as bacteria and pollen, with respect to their immersion freezing behaviour. We will summarize our findings concerning the properties controlling the ice nucleation behaviour of these particles and

  14. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  15. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  16. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  17. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  18. Kaolinite particles as ice nuclei: learning from the use of different types of kaolinite and different coatings

    NASA Astrophysics Data System (ADS)

    Wex, Heike; DeMott, Paul; Tobo, Yutaka; Hartmann, Susan; Raddatz, Michael; Clauss, Tina; Niedermeier, Dennis; Stratmann, Frank

    2013-04-01

    The heterogeneous ice nucleation behaviour of particles from two different sources of kaolinite (one from Fluka, one from the Clay Mineral Society (CMS, KGa-1b)) was examined. For this, we used LACIS (Leipzig Aerosol Cloud Interaction Simulator) in its immersion freezing mode (Hartmann et al., 2011), in parallel to a CFDC (Continuous Flow Diffusion Chamber, Rogers et al., 2001; DeMott et al., 2010), which measured both, immersion freezing and deposition ice nucleation. Results reported here were collected for particles with a mobility diameter of 300nm. Pure kaolinite particles were examined, as well as kaolinite particles coated with thin coatings of either sulphuric acid, levoglucosan or succinic acid. In general, it was found that even the smallest amounts of any of the coatings strongly reduced deposition ice nucleation (Tobo et al., 2012). This was even true for coatings which did not produce a complete monolayer around the dust particles. In the immersion freezing mode, ice nucleation rates J(het) from both, LACIS and the CFDC measurements, agreed with each other. J(het) values for pure Fluka kaolinite particles were the same as those found for Fluka kaolinite particles coated with either levoglucosan or succinic acid, i.e. the coating did not have an influence on the particles ability to nucleate ice. It can be assumed that these two types of coating did not alter the ice active dust surface chemically, and that the comparably thin coatings were diluted enough in the droplets that were formed in LACIS and the CFDC prior to the immersion freezing so that freezing point depression did not play a major role. However, Fluka kaolinite particles which were coated with either pure sulphuric acid or which were first coated with the acid and then exposed to additional water vapour both showed a reduced ability to nucleate ice, compared to the pure particles in the immersion mode. Interestingly, for the CMS kaolinite particles, the ability to nucleate ice in the

  19. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  20. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.

    PubMed

    Buhariwalla, Connor R C; Bowles, Richard K; Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H

    2015-05-01

    The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

  1. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  2. The production and characteristics of ice nuclei from biomass burning in the US

    NASA Astrophysics Data System (ADS)

    McCluskey, Christina S.; DeMott, Paul J.; Prenni, Anthony J.; McMeeking, Gavin R.; Sullivan, Amy P.; Levin, Ezra; Nakao, Shunsuke; Carrico, Christian M.; Franc, Gary D.; Hill, Thomas C.; Kreidensweis, Sonia M.

    2013-04-01

    The production rates and chemical characteristics of heterogeneous ice nuclei (IN) from diverse sources remain largely unknown. Understanding these characteristics is necessary in determining the direct and indirect impacts of aerosols on clouds and the climate. IN emitted from biomass burning are of interest owing to their apparent potential contribution to the global IN reservoir and an anticipated increase in global wildfire frequency that may enhance the role of this source of IN relative to others. Here, we aim to gain insight concerning IN produced from biomass burning through laboratory studies and field measurements of two types of biomass burning: prescribed burning and wildfires. IN number concentrations at various temperatures were measured with the CSU continuous flow diffusion chamber operated in the condensation/immersion freezing nucleation regime during four large prescribed burns in southwest Georgia and two large wildfires in northern Colorado, USA. Residual IN were captured as activated ice crystals for offline analysis and categorized via transmission electron microscopy based on elemental composition and morphology. Aerosol mass concentrations, total particle number concentrations, aerosol size distribution, and aerosol bulk composition were also measured, as well as carbon monoxide concentrations, used as an indicator of in-plume sampling. Fuel burned during the prescribed burns was a mixture of wiregrass and longleaf pine underbrush, while the wildfire fuels mostly consisted of ponderosa pine underbrush and timber. Specialized measurements were also made in the laboratory incorporating a single particle soot photometer to further investigate the contribution of refractory black carbon to IN produced from combusted wiregrass. The temporal dependence of IN concentrations at various activation temperatures, relationships between IN and the number concentrations of larger-diameter particles, IN elemental categorizations, and the role of soot

  3. The impact of rain on ice nuclei populations at a forested site in Colorado

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Tobo, Y.; Garcia, E.; Demott, P. J.; Huffman, J. A.; McCluskey, C. S.; Kreidenweis, S. M.; Prenni, J. E.; PöHlker, C.; PöSchl, U.

    2013-01-01

    It has long been known that precipitation can impact atmospheric aerosol, altering number concentrations and size-dependent composition. Such effects result from competing mechanisms: precipitation can remove particles through wet deposition, or precipitation can lead to the emission of particles through mechanical ejection, biological processes, or re-suspension from associated wind gusts. These particles can feed back into the hydrologic cycle by serving as cloud nuclei. In this study, we investigated how precipitation at a forested site impacted the concentration and composition of ice nuclei (IN). We show that ground level IN concentrations were enhanced during rain events, with concentrations increasing by up to a factor of 40 during rain. We also show that a fraction of these IN were biological, with some of the IN identified using DNA sequencing. As these particles get entrained into the outflow of the storm, they may ultimately reach cloud levels, impacting precipitation of subsequent storms.

  4. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    NASA Astrophysics Data System (ADS)

    Stith, J. L.; Twohy, C. H.; Demott, P. J.; Baumgardner, D.; Campos, T.; Gao, R.; Anderson, J.

    2011-07-01

    In situ airborne sampling of refractory black carbon (rBC) particles and Ice Nuclei (IN) was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI) and the residuals were sampled by a single particle soot photometer (SP2) instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC) and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here -24 to -29 °C), IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass burning source for much

  5. Modulation of Cloud Phase, Precipitation and Radiation by Ice Nuclei Perturbations in High Resolution Model Simulations

    NASA Astrophysics Data System (ADS)

    Paukert, M.; Hoose, C.

    2015-12-01

    The distribution of cloud phase determines a multitude of cloud properties, such as albedo, precipitation and temporal evolution. The crucial role of primary ice formation has been recognized decades ago, yet only in the last years our knowledge has reached a level that allows for approximate estimations of the aerosol-dependent effect of ice nucleation in high resolution cloud simulations. However, besides primary formation of cloud particles, also their thermodynamic trajectories as well as particle-particle interactions are determinants of the cloud phase. Although the conversion of liquid to ice in the mixed-phase regime is unidirectional, a perturbation in the primary ice formation (with increased aerosol concentrations as a trigger) does not necessarily yield higher ice fractions. This can be attributed to the modified efficiencies of depositional particle growth, liquid-ice-collisions and particle sedimentation. Consequently a modified mixed-phase regime impacts both warm (T>0°C) and cold (T<-40°C) parts of the atmosphere by sedimentation and vertical advection, respectively. Our study is motivated by the question how the liquid-ice partitioning is modulated by perturbed ice nuclei concentrations. By suppressing the feedback of microphysical perturbations on the model dynamics we are able to extract the microphysical effects. We define different microphysical regimes based on liquid and ice mass changes in order to analyze the processes which have led to those regimes. We find that conversion via the vapor phase is dominant only in distinct temperature regimes, while liquid mass changes are often linked to riming-dominated regimes, and sedimentation efficiencies make an important contribution to ice mass changes which finally determine the surface precipitation via melting. For our case of deep convection, cloud albedo is highly sensitive to the amount of small droplets reaching the homogeneous freezing level. We investigated simulations of three

  6. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  7. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  8. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  9. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Müller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  10. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  11. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  12. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  13. Bimodal Active Nuclei in Bimodal Galaxies

    NASA Astrophysics Data System (ADS)

    Cavaliere, A.; Menci, N.

    2007-07-01

    By their star content, the galaxies split out into a red and a blue population; their color index peaked around u-r~2.5 or u-r~1, respectively, quantifies the ratio of the blue stars newly formed from cold galactic gas, to the redder ones left over by past generations. On the other hand, on accreting substantial gas amounts the central massive black holes energize active galactic nuclei (AGNs); here we investigate whether these show a similar, and possibly related, bimodal partition as for current accretion activity relative to the past. To this aim we use an updated semianalytic model; based on Monte Carlo simulations, this follows with a large statistics the galaxy assemblage, the star generations, and the black hole accretions in the cosmological framework over the redshift span from z=10 to z=0. We test our simulations for yielding in close detail the observed split of galaxies into a red, early and a blue, late population. We find that the black hole accretion activities likewise give rise to two source populations: early, bright quasars and later, dimmer AGNs. We predict for their Eddington parameter λE-the ratio of the current to the past black hole accretions-a bimodal distribution; the two branches sit now under λE~0.01 (mainly contributed by low-luminosity AGNs) and around λE~0.3-1. These not only mark out the two populations of AGNs, but also will turn out to correlate strongly with the red or blue color of their host galaxies.

  14. Bacterial ice nuclei impact cloud lifetime and radiative properties and reduce atmospheric heat loss in the BRAMS simulation model

    NASA Astrophysics Data System (ADS)

    Costa, Tassio S.; Gonçalves, Fábio L. T.; Yamasoe, Marcia A.; Martins, Jorge A.; Morris, Cindy E.

    2014-08-01

    This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as -2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties.

  15. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  16. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  17. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  18. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  19. How important are glassy SOA ice nuclei for the formation of cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2014-12-01

    Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).

  20. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  1. High energy neutrinos from radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Mészáros, Peter

    2004-12-01

    Most active galactic nuclei (AGN) lack prominent jets, and show modest radio emission and significant x-ray emission which arises mainly from the galactic core, very near the central black hole. We use a quantitative scenario of such core-dominated radio-quiet AGN, which attributes a substantial fraction of the x-ray emission to the presence of abortive jets involving the collision of gas blobs in the core. Here we investigate the consequences of the acceleration of protons in the shocks from such collisions. We find that protons will be accelerated up to energies above the pion photoproduction threshold on both the x rays and the UV photons from the accretion disk. The secondary charged pions decay, producing neutrinos. We predict significant fluxes of TeV-PeV neutrinos, and show that the AMANDA II detector is already constraining several important astrophysical parameters of these sources. Larger cubic kilometer detectors such as IceCube will be able to detect such neutrinos in less than one year of operation, or otherwise rule out this scenario.

  2. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  3. Active Galactic Nuclei Feedback and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  4. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  5. Estimation of desert-dust-related ice nuclei profiles from polarization lidar

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Hadjimitsis, Diofantos; Ansmann, Albert

    2015-04-01

    This paper presents a methodology based on the use of active remote sensing techniques for the estimation of ice nuclei concentrations (INC) for desert dust plumes. Although this method can be applied to other aerosol components, in this study we focus on desert dust. The method makes use of the polarization lidar technique for the separation of dust and non-dust contributions to the particle backscatter and extinction coefficients. The profile of the dust extinction coefficient is converted to APC280 (dust particles with radius larger than 280 nm) and, in a second step, APC280 is converted to INC by means of an APC-INC relationship from the literature. The observed close relationship between dust extinction at 500 nm and APC280 is the key to a successful INC retrieval. The correlation between dust extinction coefficient and APC280 is studied by means of AERONET sun/sky photometer at Morocco, Cape Verde, Barbados, and Cyprus, during situations dominated by desert dust outbreaks. In the present study, polarization lidar observations of the EARLINET (European Aerosol Research Lidar Network) lidar at the Cyprus University of Technology (CUT), Limassol (34.7o N, 33o E), Cyprus were used together with spaceborne lidar observations during CALIPSO satellite overpasses to demonstrate the potential of the new INC retrieval method. A good agreement between the CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) and our CUT lidar observations regarding the retrieval of dust extinction coefficient, APC280, and INC profiles were found and corroborate the potential of CALIOP to provide 3-D global desert-dust-related INC data sets. In the next step, efforts should be undertaken towards the establishment of a global, height-resolved INC climatology for desert dust plumes. Realistic global INC distributions are required for an improved estimation of aerosol effects on cloud formation and the better quantification of the indirect aerosol effect on climate. Acknowledgements

  6. Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Kaufmann, Lukas; Marcolli, Claudia; Luo, Beiping; Peter, Thomas

    2017-03-01

    Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. The energy reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water, Arizona test dust (ATD), and also nonadecanol coatings. For the analysis of the experimental data with CNT, we assumed the same active site to be always responsible for freezing. Three different CNT-based parameterizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD, and larger nonadecanol-coated water droplets, the experimentally determined increase in freezing rate with decreasing temperature is too shallow to be described properly by

  7. Separation and sampling of ice nucleation chamber generated ice particles by means of the counterflow virtual impactor technique for the characterization of ambient ice nuclei.

    NASA Astrophysics Data System (ADS)

    Schenk, Ludwig; Mertes, Stephan; Kästner, Udo; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nillius, Björn; Worringen, Annette; Kandler, Konrad; Ebert, Martin; Stratmann, Frank

    2014-05-01

    In 2011, the German research foundation (DFG) research group called Ice Nuclei Research Unit (INUIT (FOR 1525, project STR 453/7-1) was established with the objective to achieve a better understanding concerning heterogeneous ice formation. The presented work is part of INUIT and aims for a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nuclei (IN). For this purpose a counterflow virtual impactor (Kulkarni et al., 2011) system (IN-PCVI) was developed and characterized in order to separate and collect ice particles generated in the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) and to release their IN for further analysis. Here the IN-PCVI was used for the inertial separation of the IN counter produced ice particles from smaller drops and interstitial particles. This is realized by a counterflow that matches the FINCH output flow inside the IN-PCVI. The choice of these flows determines the aerodynamic cut-off diameter. The collected ice particles are transferred into the IN-PCVI sample flow where they are completely evaporated in a particle-free and dry carrier air. In this way, the aerosol particles detected as IN by the IN counter can be extracted and distributed to several particle sensors. This coupled setup FINCH, IN-PCVI and aerosol instrumentation was deployed during the INUIT-JFJ joint measurement field campaign at the research station Jungfraujoch (3580m asl). Downstream of the IN-PCVI, the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA; Brands et al., 2011) was attached for the chemical analysis of the atmospheric IN. Also, number concentration and size distribution of IN were measured online (TROPOS) and IN impactor samples for electron microscopy (TU Darmstadt) were taken. Therefore the IN-PCVI was operated with different flow settings than known from literature (Kulkarni et al., 2011), which required a further characterisation of its cut

  8. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  9. Measurements of Ice Nuclei at a Remote Coastal Site in Western Canada

    NASA Astrophysics Data System (ADS)

    Si, M.; Mason, R.; Li, J.; Dickie, R.; Chou, C.; Ladino Moreno, L.; Yakobi-Hancock, J.; Schiller, C. L.; Jones, K.; Leaitch, W. R.; Desiree, T. S.; Abbatt, J.; Huffman, J. A.; Bertram, A. K.

    2014-12-01

    Aerosol particles are abundant in the atmosphere, and they can influence climate by modifying the formation of ice clouds and mixed-phase clouds. Understanding the sources of ice nuclei (IN) should lead to better predictions of climate. Many current instruments for measuring atmospheric concentrations of IN are not capable of providing size-resolved information. Such knowledge is useful in identifying the sources of IN. The recently developed micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT) provides size-resolved information by combining an established immersion freezing apparatus with a cascade impactor for sample collection. Here we show results from a field study undertaken at a remote coastal site in Western Canada in August, 2013 using this technique. The size distributions of IN will be presented. A recent study suggested that the IN population in remote marine regions might be dominated by primary biogenic particles. To address the sources of IN from this campaign, correlations between IN concentrations and biological aerosols, carbonaceous aerosols, and other possible IN sources will be discussed.

  10. Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Weingartner, E.; Jurányi, Z.; Kanji, Z. A.; Lohmann, U.

    2011-05-01

    The new portable ice nucleation chamber (PINC) developed by the Institute for Atmospheric and Climate Sciences of ETH Zurich was operated during two measurement campaigns at the high alpine research station Jungfraujoch situated at 3580 m a.s.l, in March and June 2009. During this time of the year, a high probability of Saharan dust events (SDE) at the Jungfraujoch has been observed. We used an impactor with a cutoff size of 1 μm aerodynamic diameter and operated the system at -31 °C and relative humidities of 127 % and 91 % with respect to ice and water, respectively. Investigation of the ambient number concentration of ice nuclei (IN) in the deposition nucleation mode and during a SDE in the free troposphere is reported. The results discussed in this paper are the first continuous IN measurements over a period of several days at the Jungfraujoch. The average IN concentration found during the campaign in March was 8 particles per liter whereas during the campaign in June, the average number concentration was higher up to 14 particles per liter. Two SDEs were detected on 15 and 16 June 2009. Our measurements show that the SDEs had IN number concentration up to several hundreds per liter. We found the best correlation between the number concentration of the larger particle fraction measured by an optical particle counter and the IN number concentration during a Saharan dust event. This correlation factor is higher for particles larger than 0.5 μm meaning that a higher concentration of larger particles induced higher IN number concentration. No correlation could be found between the black carbon mass concentration and the variations in IN number concentration.

  11. Ice nuclei properties within a Saharan Dust Event at the Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Weingartner, E.; Jurányi, Z.; Kanji, Z. A.; Lohmann, U.

    2010-10-01

    The new portable ice nucleation chamber (PINC) developed by the Institute for Atmospheric and Climate Sciences of ETH Zurich was operated during two campaigns PINC II and III at the high alpine research station Jungfraujoch situated at 3580 m a.s.l., in March and June 2009, respectively. During this time of the year, a high probability of Saharan Dust Events (SDE) at the Jungfraujoch has been observed. We used an impactor with a cutoff size of 1 μm aerodynamic diameter and operated the system at -31 °C and relative humidities of 127% and 91% with respect to ice and water, respectively in order to investigate the contribution of deposition freezing to mixed-phase clouds and also to look at the number concentration of ice nuclei (IN) during a SDE. The average IN concentration during PINC II was 8 particles per liter whereas during PINC III, the average number concentration was higher up to 14 particles per liter. Two SDEs were detected on 15 and 16 June 2009. Our measurements show that the SDEs had IN number concentration up to several hundreds per liter. We found the best correlation between the number concentration of the larger particle fraction measured by an optical particle counter and the IN number concentration during a Saharan Dust Event. This correlation factor is higher for particles larger than 0.5 μm meaning that a higher concentration of larger particles induced higher IN number concentration. No correlation could be found between the black carbon mass concentration and the variations in IN number concentration.

  12. Megamaser Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kartje, John F.; Königl, Arieh; Elitzur, Moshe

    1999-03-01

    Recent spectroscopic and VLBI-imaging observations of bright extragalactic H2O maser sources have revealed that the megamaser emission often originates in thin circumnuclear disks near the centers of active galactic nuclei (AGNs). Using general radiative and kinematic considerations and taking account of the observed flux variability, we argue that the maser emission regions are clumpy, a conclusion that is independent of the detailed mechanism (X-ray heating, shocks, etc.) driving the collisionally pumped masers. We examine scenarios in which the clumps represent discrete gas condensations (i.e., clouds) and do not merely correspond to velocity irregularities in the disk. We show that even two clouds that overlap within the velocity-coherence length along the line of sight could account (through self-amplification) for the entire maser flux of a high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and we suggest that cloud self-amplification likely contributes also to the flux of the background-amplifying ``systemic'' features in these objects. Analogous interpretations have previously been proposed for water maser sources in Galactic star-forming regions. We argue that this picture provides a natural explanation of the time-variability characteristics of extragalactic megamaser sources and of their apparent association with Seyfert 2-like galaxies. We also show that the requisite cloud space densities and internal densities are consistent with the typical values of nuclear (broad emission line region type) clouds. We examine two scenarios of clumpy disks in which the maser emission is excited by a central continuum source. This excitation mechanism was first considered in the context of megamaser disks by Neufeld & Maloney, but our proposed models are clearly distinct from their warped, homogeneous disk interpretation. In our first scenario we consider an annular disk (or ``ring'') whose inner edge corresponds to the innermost radius of the

  13. On the evolution and activity of cometary nuclei.

    PubMed

    Prialnik, D; Bar-Nun, A

    1987-02-15

    The thermal evolution of a spherical cometary nucleus (initial radius of 2.5 km), composed initially of very cold amorphous ice and moving in comet Halley's orbit, is simulated numerically for 280 revolutions. It is found that the phase transition from amorphous to crystalline ice constitutes a major internal heat source. The transition does not occur continuously, but in five distinct rounds, during the following revolutions: 1, 7, 40-41, 110-112, and 248-252. Due to the (slow) heating of the amorphous ice between crystallization rounds, the phase transition front advances into the nucleus to progressively greater depths: 36 m on the first round, and then 91 m, 193 m, 381 m, and 605 m respectively. Each round of crystallization starts when when the boundary between amorphous and crystalline ice is brought to approximately 15 m below the surface, as the nucleus radius decreases due to sublimation. At the time of crystallization, the temperature of the transformed ice rises to 180 K. According to experimental studies of gas-laden amorphous ice, a large fraction of the gas trapped in the ice at low temperatures is released. Whereas some of the released gas may find its way out through cracks in the crystalline ice layer, the rest is expected to accumulate in gas pockets that may eventually explode, forming "volcanic calderas." The gas-laden amorphous ice thus exposed may be a major source of gas and dust jets into the coma, such as those observed on comet Halley by the Giotto spacecraft. The activity of new comets and, possibly, cometary outbursts and splits may also be explained in terms of explosive gas release following the transition from amorphous to crystalline ice.

  14. Ice-active characteristics of soil bacteria selected by ice-affinity.

    PubMed

    Wilson, Sandra L; Kelley, Deborah L; Walker, Virginia K

    2006-10-01

    As an initial screen for microorganisms that produce ice-active macromolecules, ice-affinity was used to select microorganisms from soil consortia originating from three temperate regions. Once selected and subsequently purified to single colonies, these microbes were putatively identified by 16S ribosomal RNA sequencing and assayed for various ice-active properties. Ice-affinity selection appeared to select for bacteria with ice-associating activities: inhibition of ice recrystallization; ice nucleation; ice shaping. Although none of these activities were observed in Paenibacillus amyloliticus C8, others such as Chryseobacterium sp. GL8, demonstrated both ice recrystallization inhibition and ice-shaping activities. Pseudomonas borealis DL7 was classified as a type I ice nucleator, Flavobacterium sp. GL7, was identified as a type III ice nucleator and Acinetobacter radioresistens DL5 demonstrated ice recrystallization inhibition. In all, 19 different culturable bacteria were selected from the thousands of microbes in late-summer collected soil samples. Many of the selected microbes have been previously reported in glacial ice cores or polar sea ice, and of five isolates that were further characterized, four showed ice-associating activities. These results indicate the significant potential of ice-affinity selection even with temperate climate soils, suggesting that sampling in more extreme and remote areas is not required for the isolation of ice-active bacteria.

  15. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  16. The role of marine organic ice nuclei in a global climate model

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Egill Kristjansson, Jon

    2016-04-01

    Ice particle concentrations are a key parameter for cold clouds, exerting a strong influence on cloud lifetime, precipitation release, and the cloud radiative effect. The availability of ice-nucleating particles (INPs) and the temperature range in which they become activated determine the rate of ice formation in clouds (Hoose und Möhler, 2012). Particles from marine sources may contribute to ice formation in clouds, as they are abundant in the atmosphere and some of them have been found to be ice-nucleating active, but the extent of their influence on clouds is not known (Wilson et al., 2015). Wilson et al. (2015) collected marine INPs from the sea surface microlayer and analyzed their ice nucleation efficiency with a cold stage. Even in cirrus clouds, marine INPs may play a role, as their ice nucleation surface site density as a function of RHice at -40° C has been shown to be larger than for mineral dusts (ATD, kaolinite, and feldspar). In this study, we test the influence of marine organic aerosols on clouds via immersion freezing with the earth system model NorESM2 (Version 2 of the Norwegian Earth System Model; Bentsen et al., 2013). The model is based on the Community Earth System Model (CESM1.2) and its atmospheric part (CAM5 Oslo) is based on the Community Atmosphere Model (CAM5.3). The parameterization of ice nucleation of marine INPs is expressed as an exponential function of temperature multiplied by the total organic content. Marine organic aerosols are part of the sea spray aerosol and are ejected during bubble bursting. INPs are associated with exudates or other macromolecules mainly from diatoms. Hence, their concentration is related to the sea salt aerosols in the model simulation. Our first results indicate that the high marine INP concentrations at around 850 hPa occur at high latitudes. These regions have low mineral dust concentrations, which might increase the influence of marine INP on clouds. However, they do not coincide with regions of

  17. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  18. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Fridlind, A. M.; Pérez García-Pando, C.; Miller, R. L.; Knopf, D. A.

    2015-12-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range <2 μm. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range >2 μm as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  19. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  20. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  1. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds" (DOE/SC00002354)

    SciTech Connect

    Anthony Prenni; Kreidenweis, Sonia M.

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional

  2. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  3. The Physics and Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai

    2013-11-01

    Preface; 1. Observations of active galactic nuclei; 2. Nonthermal radiation processes; 3. Black holes; 4. Accretion disks; 5. Physical processes in AGN gas and dust; 6. The AGN family; 7. Main components of AGN; 8. Host galaxies of AGN; 9. Formation and evolution of AGN; 10. Outstanding questions; References; Index.

  4. New High-Performance Droplet Freezing Assay (HP-DFA) for the Analysis of Ice Nuclei with Complex Composition

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.

  5. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    NASA Technical Reports Server (NTRS)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  6. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    SciTech Connect

    Liu, Xiaohong; Shi, Xiangjun; Zhang, Kai; Jensen, Eric; Gettelman, A.; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-12-19

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m-2 (1σ uncertainty) and 2.4 ± 0.1 W m-2, respectively due to the presence of dust IN, with the net cloud forcing change of -0.40 ± 0.20 W m-2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L-1) and underestimate the frequency of low ice crystal number concentration (< 30 L-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  7. New southern galaxies with active nuclei

    SciTech Connect

    Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

    1987-03-01

    A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

  8. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  9. Marine Ice Nuclei Collections – MAGIC (MAGIC-IN) Final Campaign Summary

    SciTech Connect

    DeMott, Paul J.; Hill, Thomas C. J.

    2016-02-01

    This campaign augmented measurements obtained via deployment of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Mobile Facility (AMF) in the Marine ARM GPCI1 Investigation of Clouds (MAGIC) field campaign. The measurements, comprised of shipboard aerosol collections obtained during the five legs of the summer 2013 cruises, were sent for offline processing to measure ice nucleating particle (INP) number concentrations. The forty-three sample periods each represented, nominally, 24-hour segments during outbound and inbound transits of the Horizon Spirit. The samples were collected at locations between Los Angeles and Hawaii. Eight samples have been analyzed for immersion freezing temperature spectra thus far, using funding from other grants. Remaining samples are being frozen until support for further processing is obtained. Future analyses will investigate the inorganic/organic proportions of ice nuclei, in addition to determining the genetic composition of the overall biological community associated with INPs. Resulting correlations will be compared with other archived aerosol quantities, meteorological and ocean data (e.g., temperature, wind speed, sea surface temperature, etc…) and satellite ocean color products. These findings will ultimately aid in parameterizing oceanic (e.g., sea spray) INP emissions in regional and global scale models, when illustrating aerosol connections to cloud phases and properties. Independent future analyses of frozen filter samples, as proposed by collaborating investigators at the time of this report, will include single particle analyses of marine boundary layer aerosol compositions and morphology. The MAGIC-IN data are considered representative of the oligotrophic, low Chlorophyll-a (with the exception of near-shore) ocean regions, which exist along the MAGIC transect. Current analyses suggest that INP numbers in the marine boundary layer over this region are typically low, compared to existing

  10. Active galactic nuclei and their panchromatic beauty.

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta

    2016-08-01

    The rapid development of new observational capabilities provides the ability to detect both the obscured (Type 2) and the unobscured (Type 1) flavours of active galaxies. In particular, the combination of sensitive observations from mid-IR to X-rays allows us to pierce through large columns of gas and dust hiding the Type 2 obscured AGN nuclear region. The study of the relative AGN/host-galaxy contribution over different portions of the broad-band Spectral Energy Distribution (SED) is fundamental to constrain the physical evolution of AGN and how to place them into the context of galaxy evolution.I will discuss a study of the multi-wavelength properties of an X-ray selected sample of both obscured and unobscured AGN using the XMM-Newton wide field survey in the COSMOS field. I will focus on their SEDs, the morphology of the host-galaxies, the stellar masses, the bolometric luminosities and bolometric corrections. Finally, I will briefly discuss what are the perspectives of AGN in the context of observational cosmology.

  11. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  12. On the Anisotropy of Nuclei Mid-Infrared Radiation in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Wang, JunXian; Liu, Teng

    2015-01-01

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  13. Nuclear pore ion channel activity in live syncytial nuclei.

    PubMed

    Bustamante, Jose Omar

    2002-05-01

    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  14. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    SciTech Connect

    Wang, J.; Martin, S. T.; Kleinman, L.; Thalman, R. M.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical and microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.

  15. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kiselev, Alexei; Möhler, Ottmar; Saathoff, Harald; Steinke, Isabelle

    2016-02-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  16. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  17. Infrared-ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Malkan, M. A.; These corrected SEDs are shown.

    1987-01-01

    Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown.

  18. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1985-01-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of August 1, 1984...active and passive microwave remote sensing , (2) used the strong fluctuation theory and the fluctuation-dissipation theorem to calculate the brightness

  19. The ice nucleation activity of extremophilic algae.

    PubMed

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.

  20. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-01-01

    In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground.

  1. Spider silk has an ice nucleation activity.

    PubMed

    Murase, N; Ruike, M; Matsunaga, N; Hayakawa, M; Kaneko, Y; Ono, Y

    2001-03-01

    Several ice nucleating substances have been identified, which exist in vivo or can be extracted from biological materials. Spider silk, which has a strong ability for water condensation, has also been found to possess an ice nucleation activity. The freezing temperature of water droplets was higher in the presence than in the absence of spider silk. Moreover, by means of environmental scanning electron microscopy, it was observed that the activity is not due to foreign matter attached to the silk but to the silk fibroin itself.

  2. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  3. Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms.

    PubMed

    Raymond, James A; Knight, Charles A

    2003-04-01

    Extracellular macromolecules associated with Antarctic sea ice diatoms were previously shown to have ice-binding activities. The function of these ice-active substances (IASs) has not been identified. Here we show that two of the IASs have a strong ability to inhibit the recrystallization of ice, possibly signifying a cryoprotectant function. To test this possibility, two species of marine diatom (one Antarctic and one temperate) were subjected to a single freeze-thaw cycle (approximately 20h at -4 or -5 degrees C) in the presence or absence of IAS. Viability, based on a double staining technique, was 15-29% higher in the presence of IAS. Etching of single crystal ice hemispheres grown from dilute IAS solutions indicated that the IASs bind to specific faces of ice and are incorporated into the ice lattice. Together, these results suggest that the IASs acts as a cryoprotectant, probably through some ice-binding mechanism.

  4. A catalogue of quasars and active nuclei (8th edition).

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    1998-03-01

    Because of the fast increase in the number of known quasars, the authors have prepared an updated version of their catalogue of quasars and active nuclei (Véron-Cetty & Véron, 1984, 1985, 1987, 1989, 1991, 1993, 1996) which now contains 11358 quasars, 357 BL Lac objects and 3334 active galaxies (of which 1111 are Seyfert 1), compared with 8609 quasars, 220 BL Lac objects and 2833 Seyfert and related galaxies in the seventh edition. Like the seventh edition, it includes positions and redshift as well as photometry (U,B,V) and 6 and 11 cm flux densities when available.

  5. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause

    NASA Astrophysics Data System (ADS)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2015-03-01

    Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would

  6. Active and Passive Remote Sensing of Ice.

    DTIC Science & Technology

    1984-09-01

    This is a report on the progress that has been made in the study of active and passive remote sensing of ice during the period of February 1, 1984...the emissivities as functions of viewing angles and polarizations. They are used to interpret the passive microwave remote sensing data from

  7. Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region

    PubMed Central

    Tolbert, Margaret A.

    2010-01-01

    Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth’s climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucleation mechanism of the ice particles. Although it is often assumed that ice nucleates via a homogeneous mechanism, recent work points to the possibility that heterogeneous ice nucleation is important in the tropical tropopause region. However, there are very few studies of depositional ice nucleation on the complex types of particles likely to be found in this region of the atmosphere. Here, we use a unique method to probe depositional ice nucleation on internally mixed ammonium sulfate/palmitic acid particles, namely optical microscopy coupled with Raman microscopy. The deliquescence and efflorescence phase transitions of the mixed particles were first studied to gain insight into whether the particles are likely to be liquid or solid in the tropical tropopause region. The ice nucleating ability of the particles was then measured under typical upper tropospheric conditions. It was found that coating the particles with insoluble palmitic acid had little effect on the deliquescence, efflorescence, or ice nucleating ability of ammonium sulfate. Additional experiments involving Raman mapping provide new insights into how the composition and morphology of mixed particles impact their ability to nucleate ice. PMID:20388912

  8. Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region.

    PubMed

    Wise, Matthew E; Baustian, Kelly J; Tolbert, Margaret A

    2010-04-13

    Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth's climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucleation mechanism of the ice particles. Although it is often assumed that ice nucleates via a homogeneous mechanism, recent work points to the possibility that heterogeneous ice nucleation is important in the tropical tropopause region. However, there are very few studies of depositional ice nucleation on the complex types of particles likely to be found in this region of the atmosphere. Here, we use a unique method to probe depositional ice nucleation on internally mixed ammonium sulfate/palmitic acid particles, namely optical microscopy coupled with Raman microscopy. The deliquescence and efflorescence phase transitions of the mixed particles were first studied to gain insight into whether the particles are likely to be liquid or solid in the tropical tropopause region. The ice nucleating ability of the particles was then measured under typical upper tropospheric conditions. It was found that coating the particles with insoluble palmitic acid had little effect on the deliquescence, efflorescence, or ice nucleating ability of ammonium sulfate. Additional experiments involving Raman mapping provide new insights into how the composition and morphology of mixed particles impact their ability to nucleate ice.

  9. Application of Ice Nucleation - Active Bacteria to Food

    NASA Astrophysics Data System (ADS)

    Arai, Soichi; Watanabe, Michiko

    Ice nucleation-active bacteria act as nuclei and are able to freeze water without supercooling to a great degree. They are known as a major cause of the frost damage to crops. We have been trying with success to positively apply these bacteria to freeze texturing of food materials, freeze concentration of fresh liquid foods, formation of new physical properties of foods by freezing, and so forth. The most useful species for these applications is Xanthomonas campestris which has recently been designated as a food additive by the Japan Ministry of Health and Welfare and produced on an industrial scale. This paper reviews these topics, with some practical examples quoted primarily from our studies.

  10. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  11. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  12. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  13. Physics and structure of photoionised outflows in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kaastra, Jelle

    2012-07-01

    I discuss the recent progress in the study of outflows from active galactic nuclei. Using long and deep monitoring observations, it is now possible to get a detailed view on the structure and location of the outflow, as well as its impact on the environment of the AGN. Focus will be on the nature of the outflow components in terms of number of components, and on time-dependent photoionisation modeling as a tool to constrain the location of these components. I will illustrate this using the results of a large monitoring campaign on Mrk 509 with XMM-Newton, Integral, Chandra, HST, Swift and ground-based observatories.

  14. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  15. Pre-activation of ice nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Kiselev, A.; Möhler, O.; Saathoff, H.; Steinke, I.

    2015-10-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Already fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice subsaturated conditions. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  16. Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Madeleine, J.-B.; Head, J. W.; Forget, F.; Navarro, T.; Millour, E.; Spiga, A.; Colaïtis, A.; Määttänen, A.; Montmessin, F.; Dickson, J. L.

    2014-07-01

    Global climate models (GCMs) have been successfully employed to explain the origin of many glacial deposits on Mars. However, the latitude-dependent mantle (LDM), a dust-ice mantling deposit that is thought to represent a recent "Ice Age," remains poorly explained by GCMs. We reexamine this question by considering the effect of radiatively active water-ice clouds (RACs) and cloud microphysics. We find that when obliquity is set to 35°, as often occurred in the past 2 million years, warming of the atmosphere and polar caps by clouds modifies the water cycle and leads to the formation of a several centimeter-thick ice mantle poleward of 30° in each hemisphere during winter. This mantle can be preserved over the summer if increased atmospheric dust content obscures the surface and provides dust nuclei to low-altitude clouds. We outline a scenario for its deposition and preservation that compares favorably with the characteristics of the LDM.

  17. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  18. Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms.

    PubMed

    Raymond, J A; Fritsen, C H

    2001-08-01

    Ice-active substances (IASs), i.e., macromolecular substances that modify the shape of growing ice crystals, were previously found to be associated with various terrestrial and aquatic photosynthetic organisms from Antarctica, but their chemical nature and function are unknown. In this study, we used the ice-binding properties of the IASs to semipurify IASs from a cyanobacterial mat, a eukaryotic green alga (Prasiola sp.), and a moss (Bryum sp.) and examined the ice recrystallization inhibition (RI) activities of the semipure materials. The semipure materials contain both protein and carbohydrate in which the carbohydrate accounted for 73, 52, and 37%, respectively, of the total carbohydrate + protein. The IASs had RI activity at concentrations of 1.4, 0.05, and 0.01 microg ml-1, respectively. RI activity was greatly reduced by heat treatment, suggesting that the IASs inhibit recrystallization through a specific interaction with ice. These results raise the possibility that the IASs increase freezing tolerance of their respective organisms by preventing the recrystallization of ice.

  19. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  20. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  1. ACAPEX – Ship-Based Ice Nuclei Collections Field Campaign Report

    SciTech Connect

    DeMott, Paul J; Hill, Thomas CJ

    2016-04-01

    Measurements were sought to evaluate a hypotheses that sea-spray-sourced ice-nucleating particles (INPs) are of biological origin and represent a distinctly different INP population in comparison to long-range-transported desert or urban and regional land-sourced INP, and that the layering of marine within other aerosol layers feeding orographic storms over the mountains of California and the Western United States thereby leads to common and quantifiable scenarios that influence precipitation over the region. Aerosol collections on the National Oceanic and Atmospheric Administration (NOAA) research vessel (RV) Ronald H. Brown, for subsequent processing of INP immersion freezing activation temperature spectra and composition analyses, added a valuable measurement component to the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) and related CalWater2 (NOAA) studies for use in parameterizing and modeling the impacts of marine boundary layer and other aerosols on climate and radiation via aerosol indirect effects on mixed-phase clouds. Twenty-five nominally 24-hour collections were made and have been processed for immersion freezing INP number concentrations versus temperature in the mixed-phase cloud temperature regime from -10 to -27°C. The similarity of INP number concentrations compared to typical marine boundary layer values attributed to sea-spray aerosols was noted. Nevertheless, variability of INP concentrations of up to 50 times was noted at individual temperatures over the course of the study. A particular analysis possible with this data set is to examine INP budgets over oceans inside versus outside of atmospheric river conditions. These INP measurements supplemented multiple airborne INP measurements on the ARM Aerial Facility (AAF), and others on the ground during ACAPEX and CalWater2, to provide extensive spatial and temporal analyses of INP immersion freezing spectra during winter storm periods. Future analyses will use thermal sensitivity to

  2. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  3. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  4. Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy)

    NASA Astrophysics Data System (ADS)

    Belosi, F.; Rinaldi, M.; Decesari, S.; Tarozzi, L.; Nicosia, A.; Santachiara, G.

    2017-04-01

    Filter-collected aerosol samples in the PM1 and PM10 fractions and particle number concentration were measured during experimental campaigns in a rural area near Bologna (Italy) in the periods 10-21 February 2014 and 19-30 May 2014. Ice nuclei particle (INP) concentrations measured off-line showed prevalently higher average values in the morning with respect to the afternoon, in the PM1 fraction with respect to PM1-10 (with the exception of the first campaign, at Sw = 1.01), and at water saturation ratio Sw = 1.01 with respect to Sw = 0.96. The aerosol in the coarse size range (1-10 μm) contributed significantly to the total INP concentration. In the first campaign, the average INP concentration in the coarse fraction was 80% of the total in the morning and 74% in the afternoon, at Sw = 1.01. In the second campaign, the contribution of the coarse size fraction to the INP number concentration was lower. On the whole, the results showed that the freezing activity of aerosol diameters larger than 1 μm needs to be measured to obtain the entire INP population. Sahara dust events (SDEs) took place during both campaigns, in the periods 17-20 February and 21-23 May 2014. Results show that the averaged particle number concentration was higher during SDE than during no-Saharan dust events. A low correlation between INP and total aerosol number concentration was generally measured, except for SDEs observed in February, in which the correlation coefficient between aerosol concentration in the coarse fraction and INP in the same range, at water supersaturation, was about 0.8. Precipitation events influenced the aerosol concentration. In the February campaign, lower values of INP and particle concentrations were measured in case of heavy rain events. During the May campaign, an average number concentration of the aerosol in the range 0.5-10 μm was slightly higher than on days when no precipitation was measured, the rainfall intensity being low. Only in a few cases did we note

  5. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues

  6. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  7. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-11-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific subclass of AGN for which an increased neutrino production is expected. This subclass contains AGN for which their high-energy jet is pointing toward Earth. Furthermore, we impose the condition that the jet is obscured by gas or dust surrounding the AGN. A method is presented to determine the total column density of the obscuring medium, which is probed by determining the relative x-ray attenuation with respect to the radio flux as obtained from the AGN spectrum. The total column density allows us to probe the interaction of the jet with the surrounding matter, which leads to additional neutrino production. Finally, starting from two different source catalogs, this method is applied to specify a sample of low redshift radio galaxies for which an increased neutrino production is expected.

  8. Variability Analysis and the Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    This five-year Long-Term Space Astrophysics grant provided the support for several major steps in advancing our knowledge of the internal structure of active galactic nuclei. The single largest portion of this program had to do with the development and application of techniques for "reverberation mapping", the use of spectral monitoring of several different bands related by radiation reprocessing to infer the internal geometry of sources. Major steps were taken in this regard, particularly in establishing the distribution in radius of emission line material, and in relating the apparent reprocessing of continuum bands to the underlying structure of the accretion disk. Another major effort built directly upon these results. Once the case for continuum reprocessing was made by the monitoring, it next behooved us to understand the spectral output of AGN as a result of this reprocessing. As a result, our view of continuum production in AGN is now much better focussed on the key problems. A third focus of effort had to do with the nature of X-ray variability in AGN, and what it can tell us about the dynamics of extremely hot material in the immediate outskirts of the supermassive black holes that form the central engines of active galactic nuclei. In addition to these primary efforts, this grant also supported many other, smaller projects. Several of these were demonstrations of how the material spewed out of AGN in relativistic.ets generate the radiation by which we observe them. J Finally, the portion of this study that had to do with continuum production by accretion disks in AGN led naturally to several papers in which new developments were presented having to do with "advection-dominated accretion disks", those disks in which accretion appears to proceed at a substantial rate, but in which radiation processes are weak.

  9. Testing Unification Models in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Muller-Sanchez, Francisco

    Dual active galactic nuclei (AGNs), which are kpc-scale separation AGN pairs in galaxy mergers, are ideal targets for testing unification models and models of galaxy evolution. By definition, the AGN nature of the two nuclei suggests that they must be consistent with standard unification models (i.e, a dusty torus obscures the central engine in type 2 AGN). At the same time, they are the result of merger-induced nuclear activity. Galaxy evolution models suggest that merger-induced AGNs are heavily obscured for long periods by the high gas densities powering them. Eventually, feedback drives away material, creating a brief window in time in which the AGN is not obscured. Therefore, in these models, there is no need for a small-scale torus. We are constructing for the first time the spectral energy distributions (SEDs) of the two AGNs in dual AGN systems using data from Hubble and Chandra telescopes, in combination with VLA, Keck and VLT data. However, a critical missing component is dust emission at 30-40 microns, which can only be achieved by SOFIA. We propose FORCAST 31.5 and 37.1 microns observations of the complete sample of 5 confirmed dual AGNs with angular separations >3.5". As suggested by current models, the best wavelength to detect thermal emission from a torus would be between 30-40 microns, where both the non-thermal core and the stellar emission sharply decline, and the torus emission peaks. Thus, FORCAST provides 1) the best angular resolution between 30-40 microns of the current suite of instruments, crucial to separate the emission from the two AGNs, and 2) the largest constraining power for torus models, crucial to characterize the properties of the torus in AGNs.

  10. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  11. On the Radio Dichotomy of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2016-12-01

    It is still a mystery why only a small fraction of active galactic nuclei (AGNs) contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation, however, the advection of the external field in a geometrically thin disk is inefficient. Gas with a small angular velocity may fall from the Bondi radius {R}{{B}} nearly freely to the circularization radius {R}{{c}}, and a thin accretion disk is formed within {R}{{c}}. We suggest that the external magnetic field is substantially enhanced in this region, and the magnetic field at {R}{{c}} can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at {R}{{B}}. The magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. We suggest that the radio dichotomy of AGNs predominantly originates from the angular velocity of the circumnuclear gas. An AGN will appear as a radio-loud (RL) one if the angular velocity of the circumnuclear gas is lower than a critical value at the Bondi radius, otherwise, it will appear as a radio-quiet (RQ) AGN. This is supported by the observations that RL nuclei are invariably hosted by core galaxies. Our model suggests that the mass growth of the black holes in RL quasars is much faster than that in RQ quasars with the same luminosity, which is consistent with the fact that the massive black holes in RL quasars are systematically a few times heavier than those in their RQ counterparts.

  12. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  13. A catalogue of quasars and active nuclei: 11th edition

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    2003-12-01

    The recent release of the final installement of the 2dF quasar catalogue and of the first part of the Sloan catalogue, almost doubling the number of known QSOs, led us to prepare an updated version of our Catalogue of quasars and active nuclei which now contains 48 921 quasars, 876 BL Lac objects and 15 069 active galaxies (including 11 777 Seyfert 1s). Like the tenth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. We also give a list of all known lensed and double quasars. The catalogue (Table_QSO, Table_BL, Table_AGN and Table_reject) and the list of references are only available in electronic form at the CDS via anomymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/399 or at the Observatoire de Haute Provence (http://www.obs-hp.fr/).

  14. A catalogue of quasars and active nuclei: 10th edition

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    2001-07-01

    The recent publication of the first release of the 2dF quasar catalogue (Croom et al. \\cite{croom}) containing nearly 10 000 new QSOs, almost doubling the number of known such objects, led us to prepare an updated version of our catalogue of quasars and active nuclei which now contains 23 760 quasars, 608 BL Lac objects and 5751 active galaxies (of which 2765 are Seyfert 1s). Like the ninth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. We also give a list of all known lensed and double quasars. The catalogue (Tables I to V) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/92 or at the Observatoire de Haute Provence http://www.obs-hp.fr).

  15. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called ;blazars;. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future ;Cherenkov Telescope Array;, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  16. A study of warm absorbers in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ashton, Ceri Ellen

    This thesis explores the 'warm absorber' phenomenon observed in Active Galactic Nuclei (AGN). Warm absorbers are clouds of ionised gas within AGN, that cause absorption at soft X-ray wavelengths. They are observed in half of all Type 1 AGN, hence they play an important part in the framework of our under standing of Active Galactic Nuclei. Observations with the satellite XMM-Newton have given us the highest signal-to-noise data yet. XMM-Newton observations of the quasars PG 1114+445 and PG 1309+355 are studied. Both quasars exhibit evidence for absorption by warm material in the line-of-sight. We define a 'phase' of absorption to have a single ionisation param eter and column density. From fits to the data, the absorption in PG 1114+445 is found to be in two phases, a 'hot' phase with a log ionisation parameter f of 2.57 and a column of 1022 cm-2, and a 'cooler' one with log f of 0.83 and a column of 1021 cm-2. The absorption in PG 1309+355 consists of a single phase, with log f of 1.87 and a column of 1021 cm-2. The absorbing gas lies at distances of 1019 - 1022 cm from the continuum radiation sources in these AGN, suggesting origins in a wind emanating from a molecular torus, according to the 'Standard Model' of AGN. The kinetic luminosities of the outflowing absorbers represent insignificant fractions (< 10 3) of the energy budgets of the AGN. Using data for the Seyfert 1 H 0557 385, the warm absorption is characterised by two phases, a phase with log £ of 0.48 and a column of 1021 cm-2, and a phase with log f of 1.63 and a column of 1022 cm-2. Neutral absorption is also present in the source, and possible origins for this are discussed. For a large sample, observations of warm absorbers are collated and compared with models.

  17. 76 FR 52241 - Activation of Ice Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ..., the FAA is charged with prescribing regulations promoting safe flight of civil aircraft in air... for flight in icing conditions. For certain airplanes certificated for flight in icing, the new standards require either installation of ice detection equipment or changes to the airplane flight manual...

  18. In-situ single particle composition analysis of free tropospheric ice nuclei and ice residues in mixed-phase clouds during INUIT-JFJ 2013

    NASA Astrophysics Data System (ADS)

    Schmidt, Susan; Schneider, Johannes; Thomas, Klimach; Stephan, Mertes; Ludwig, Schenk; Udo, Kästner; Frank, Stratmann; Joachim, Curtius; Piotr, Kupiszewski; Ernest, Weingartner; Emanuel, Hammer; Paul, Vochezer; Martin, Schnaiter; Stephan, Borrmann

    2014-05-01

    In the framework of the DFG (deutsche Forschungsgemeinschaft)-funded research unit INUIT (Ice Nuclei research UnIT) a field campaign at the High Alpine Research Station Jungfraujoch (JFJ, Swiss Alps, Sphinx Laboratory, 3580 m asl; 7°59'2''E, 46°32'53''N) took place in January/February 2013 (INUIT-JFJ 2013). The goal of the measurements was to investigate the chemical composition of ice particle residues (IPR) in ambient air as well as the background aerosol particles. Previous investigations conducted at the JFJ showed that particles consisting of mineral components dominate the ice particle residue number (Kamphus et al., 2008) but also particles consisting of black carbon were found to be enriched in IPR (Mertes et al., 2007; Cozic et al., 2008). Cziczo et al. find out that lead as well is a good ice nucleus and was measured in IPR at previous measurements at the JFJ. During INUIT-JFJ 2013, the IPR were sampled out of mixed-phase clouds by an Ice-CVI (Ice Counterflow Virtual Impactor, Mertes et al., 2007) and an ISI (Ice Selective Inlet, Kupiszewski et al., 2013) and analyzed by the single particle mass spectrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer; Brands et al., 2011). Additionally, the ALABAMA was connected to a total aerosol-inlet to investigate the chemical composition of background aerosol particles. During 217 hours of background aerosol measurements we analyzed more than 27000 aerosol particles, which consisted mainly of pure organic components or organics mixed with ammonium, metals or mineral components. During six cloud events with approximately 63 h measurement time we detected 162 IPR sampled by the Ice-CVI. The main part of these IPR were also composed of organic material mixed with other chemical compounds. Additionally, we found particles which consisted of mineral components (approximately 23 %). Sampling mixed-phase cloud through the ISI we measured during four cloud events 34 ice residues in approximately 30 h

  19. Active galactic nuclei activity: self-regulation from backflow

    NASA Astrophysics Data System (ADS)

    Antonuccio-Delogu, V.; Silk, Joseph

    2010-06-01

    We study the internal circulation within the cocoon carved out by the relativistic jet emanating from an active galactic nucleus (AGN) within the interstellar medium (ISM) of its host galaxy. First, we develop a model for the origin of the internal flow, noticing that a significant increase of large-scale velocity circulation within the cocoon arises as significant gradients in the density and entropy are created near the hotspot (a consequence of Crocco's vorticity generation theorem). We find simple and accurate approximate solutions for the large-scale flow, showing that a backflow towards the few inner parsec region develops. We solve the appropriate fluid dynamic equations, and we use these solutions to predict the mass inflow rates towards the central regions. We then perform a series of 2D simulations of the propagation of jets using FLASH 2.5, in order to validate the predictions of our model. In these simulations, we vary the mechanical input power between 1043 and 1045 ergs-1, and assume a Navarro-Frenk-White (NFW) density profile for the dark matter halo, within which an isothermal diffuse ISM is embedded. The backflows which arise supply the central AGN region with very low angular-momentum gas, at average rates of the order of , the exact value seen to be strongly dependent on the central ISM density (for fixed input jet power). The time-scales of these inflows are apparently weakly dependent on the jet/ISM parameters, and are of the order of . We then argue that these backflows could (at least partially) feed the AGN, and provide a self-regulatory mechanism of AGN activity, that is not directly controlled by, but instead controls, the star formation rate within the central circumnuclear disc.

  20. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  1. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  2. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  3. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-07

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  4. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  5. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  6. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  7. High-energy spectra of active nuclei. 1: The catalog

    NASA Technical Reports Server (NTRS)

    Malaguti, G.; Bassani, L.; Caroli, E.

    1994-01-01

    This paper presents a catalog of high-energy spectra (E is greater than or equal to 0.01 keV) of active galactic nuclei (AGNs). The catalog contains 209 objects (140 Seyfert galaxies, 65 quasars, and 4 objects otherwise classified), for a total of 1030 spectra. Most of the data have been collected from the literature over a period spanning more than 20 yr starting from the early 1970s up to the end of 1992. For a numbner of objects (17), EXOSAT/ME data have been extracted and analyzed, and the 27 spectra obtained have been added to the database. For each object we report individual observation spectral fit parameters using a power-law model corrected for cold gas absorption along the line of sight (photon index, 1 keV intensity and hydrogen column density), plus other relevant data. It is hoped that this database can become a useful tool for the study of the AGN phenomenon in its various aspects.

  8. Relativistic Jets in Active Galactic Nuclei and Microquasars

    NASA Astrophysics Data System (ADS)

    Romero, Gustavo E.; Boettcher, M.; Markoff, S.; Tavecchio, F.

    2017-01-01

    Collimated outflows (jets) appear to be a ubiquitous phenomenon associated with the accretion of material onto a compact object. Despite this ubiquity, many fundamental physics aspects of jets are still poorly understood and constrained. These include the mechanism of launching and accelerating jets, the connection between these processes and the nature of the accretion flow, and the role of magnetic fields; the physics responsible for the collimation of jets over tens of thousands to even millions of gravitational radii of the central accreting object; the matter content of jets; the location of the region(s) accelerating particles to TeV (possibly even PeV and EeV) energies (as evidenced by γ-ray emission observed from many jet sources) and the physical processes responsible for this particle acceleration; the radiative processes giving rise to the observed multi-wavelength emission; and the topology of magnetic fields and their role in the jet collimation and particle acceleration processes. This chapter reviews the main knowns and unknowns in our current understanding of relativistic jets, in the context of the main model ingredients for Galactic and extragalactic jet sources. It discusses aspects specific to active Galactic nuclei (especially blazars) and microquasars, and then presents a comparative discussion of similarities and differences between them.

  9. Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.; Kishimoto, Makoto

    2017-04-01

    This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3–5 μm bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3–5 μm near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.

  10. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  11. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  12. VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS

    SciTech Connect

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-20

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  13. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  14. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  15. Icing Branch Current Research Activities in Icing Physics

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2009-01-01

    Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.

  16. Characterization of the ice nucleation activity of an airborne Penicillium species

    NASA Astrophysics Data System (ADS)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from -4°C to -15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  17. Impacts of alternative fuels in aviation on microphysical aerosol properties and predicted ice nuclei concentration at aircraft cruise altitude

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; D'Ascoli, E.; Sauer, D. N.; Kim, J.; Scheibe, M.; Schlager, H.; Moore, R.; Anderson, B. E.; Ullrich, R.; Mohler, O.; Hoose, C.

    2015-12-01

    In the past decades air traffic has been substantially growing affecting air quality and climate. According to the International Civil Aviation Authority (ICAO), in the next few years world passenger and freight traffic is expected to increase annually by 6-7% and 4-5%, respectively. One possibility to reduce aviation impacts on the atmosphere and climate might be the replacement of fossil fuels by alternative fuels. However, so far the effects of alternative fuels on particle emissions from aircraft engines and their ability to form contrails remain uncertain. To study the effects of alternative fuels on particle emissions and the formation of contrails, the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) field experiment was conducted in California. In May 2014, the DLR Falcon 20 and the NASA HU-25 jet aircraft were instrumented with an extended aerosol and trace gas payload probing different types of fuels including JP-8 and JP-8 blended with HEFA (Hydroprocessed Esters and Fatty Acids) while the NASA DC8 aircraft acted as the source aircraft for ACCESS-2. Emission measurements were taken in the DC8 exhaust plumes at aircraft cruise level between 9-12 km altitude and at distances between 50 m and 20 km behind the DC8 engines. Here, we will present results from the ACCESS-2 aerosol measurements which show a 30-60% reduction of the non-volatile (mainly black carbon) particle number concentration in the aircraft exhaust for the HEFA-blend compared to conventional JP-8 fuel. Size-resolved particle emission indices show the largest reductions for larger particle sizes suggesting that the HEFA blend contains fewer and smaller black carbon particles. We will combine the airborne measurements with a parameterization of deposition nucleation developed during a number of ice nucleation experiments at the AIDA chamber in Karlsruhe and discuss the impact of alternative fuels on the abundance of potential ice nuclei at cruise conditions.

  18. Spatially Offset Active Galactic Nuclei. I. Selection and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2016-09-01

    We present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3″ diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.″6 (0.8 kpc) to 17.″4 (19.4 kpc), with a median value of 2.″7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to {89}-16+7% incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.

  19. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  20. Galaxy interactions and active galactic nuclei in the local universe

    NASA Astrophysics Data System (ADS)

    Ryan, Christopher J.

    2009-06-01

    It has been suggested that galaxy interactions may be the principal mechanism responsible for triggering non-thermal activity in galactic nuclei. This thesis investigates the possible role of interactions in the local Universe by searching for evidence of a causal relationship between major interactions and the initiation of activity in Seyfert galaxies using high-quality, multiwavelength imaging data. The connection between interacting galaxies and Seyferts is explored by comparing the clustering properties of their environments, as quantified by the spatial cross-correlation function amplitude. If a direct evolutionary relationship exists, the objects should be located in environments that are statistically similar. It was previously demonstrated that Seyferts are found in fields comparable to isolated galaxies. The analysis presented in this work reveals that interacting galaxies are preferentially situated in regions consistent with Abell Richness Classes of 0 to 1. The apparent dissimilarity of their environments provides a strong argument against a link between major interactions and Seyfert galaxies. An examination of the photometric and morphological properties of the interacting systems does not uncover any trends that could be associated with the initiation of nuclear activity. The role of major interactions in triggering low-redshift AGNs is then assessed using near-infrared imagery of a sample of Narrow-Line Seyfert 1 galaxies. It has been postulated that these objects are evolutionarily young AGNs, powered by accretion onto supermassive black holes that are considerably lower in mass than those found in typical broad-line Seyferts. By employing the correlation between black hole mass and host galaxy bulge luminosity, the mean black hole mass, [Special characters omitted.] BH , in solar units for the sample is found to be [left angle bracket]log [Special characters omitted.] ( BH )[right angle bracket] = 7.7 ± 0.1, consistent with typical broad

  1. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  2. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  3. IUEAGN: A database of ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.

    1993-01-01

    In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.

  4. The Evolution of Active Galactic Nuclei and their Spins

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Sikora, M.; Lasota, J.-P.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ~ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  5. Surface Photometry of Reverberation-Mapped Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bower, Gary A.

    2015-01-01

    I present a statistical analysis of the surface photometry obtained for a sample of Hubble Space Telescope (HST) archival images of the host galaxies containing active galactic nuclei (AGN), whose time-delay between continuum and broad emission line variations have been analyzed (i.e., reverberation mapping). For quiescent galaxies, strong correlations exist between central black hole mass and host galaxy structure. If there are similar correlations for AGN between central black hole masses derived from reverberation mapping and the host galaxy structure that I have derived from archival HST images, this would imply some validation of the assumptions underlying reverberation mapping concerning the structure, kinematics, and orientation of the broad line regions in AGN.The correlations for quiescent galaxies bewteen central black hole mass and host galaxy structure imply that there might be a strong causal connection between the formation and evolution of the black hole and the galaxy bulge. A current hypothesis is that bulges, black holes, and quasars formed, grew, or turned on as parts of the same process, in part because the collapse or merger of bulges might provide a rich fuel supply to a central black hole. One way of testing this hypothesis would be to plot AGN as a function of redshift on these correlations. However, two severe obstacles limit the ability to measure black hole masses in AGN using HST to analyze the central stellar and/or gas dynamics: (1) since spatial resolution becomes more limited at larger distances, only two reverberation-mapped AGN are close enough to Earth to render the analysis feasible, and (2) it isdifficult to obtain useful spectra of the stars and/or gas in the presence of the bright nonstellar nucleus. The most useful alternative is to exploit reverberation mapping, which uses the time delay in a given AGN between variations in the continuum emission and broad emission lines.

  6. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS

    SciTech Connect

    Volonteri, M.; Lasota, J.-P.; Sikora, M.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ∼ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  7. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  8. Sea ice trends and cyclone activity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Coggins, Jack; McDonald, Adrian; Rack, Wolfgang; Dale, Ethan

    2015-04-01

    Significant trends in the extent of Southern Hemisphere sea ice have been noted over the course of the satellite record, with highly variable trends between different seasons and regions. In this presentation, we describe efforts to assess the impact of cyclones on these trends. Employing a maximum cross-correlation method, we derive Southern Ocean ice-motion vectors from daily gridded SSMI 85.5 GHz brightness temperatures. We then derive a sea ice budget from the NASA-Team 25 km square daily sea ice concentrations. The budget quantifies the total daily change in sea ice area, and includes terms representing the effects of ice advection and divergence. A residual term represents the processes of rafting, ridging, freezing and thawing. We employ a cyclone tracking algorithm developed at the University of Canterbury to determine the timing, location, size and strength of Southern Hemisphere cyclones from mean sea-level pressure fields of the ERA-Interim reanalysis. We then form composites of the of sea ice budget below the location of cyclones. Unsurprisingly, we find that clockwise atmospheric flow around Southern Hemisphere cyclones exerts a strong influence on the movement of sea ice, an effect which is visible in the advection and divergence terms. Further, we assess the climatological importance of cyclones by comparing seasons of sea ice advance for periods with varying numbers of cyclones. This analysis is performed independently for each sea ice concentration pixel, thus affording us insight into the geographical importance of storm systems. We find that Southern Hemisphere sea ice extent is highly sensitive to the presence of cyclones in the periphery of the pack in the advance season. Notably, the sensitivity is particularly high in the northern Ross Sea, an area with a marked positive trend in sea ice extent. We discuss whether trends in cyclone activity in the Southern Ocean may have contributed to sea ice extent trends in this region.

  9. Identification of Mars gully activity types associated with ice composition

    NASA Astrophysics Data System (ADS)

    Vincendon, Mathieu

    2015-11-01

    The detection of geologically recent channels at the end of the twentieth century rapidly suggested that liquid water could have been present on Mars up to recent times. A mechanism involving melting of water ice during ice ages in the last several million years progressively emerged during years following the first observations of these gullies. However, the recent discovery of current activity within gullies now suggests a paradigm shift where a contemporary CO2 ice-based and liquid water-free mechanism may form all gullies. Here we perform a survey of near-infrared observations and construct time sequences of water and CO2 ice formation and sublimation at active gully sites. We observe that all major new erosive features such as channel development or lengthening systematically occur where and, if applicable, when CO2 ice is observed or probable. CO2 ice layers are, however, estimated to be only 1 mm to 1 cm thick for low-latitude sites, which may have implication for potential formation mechanisms. We also observe that part of current gully activity, notably the formation of some new deposits, is poorly compatible with the presence of CO2 ice. In particular, all new bright deposits reported in the literature have a low CO2 ice probability while water ice should be present at most sites. Our results confirm that CO2 ice is a key factor controlling present-day channel development on Mars and show that other mechanisms, potentially involving sublimation or melting of water ice, are also contributing to current gully activity.

  10. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  11. Characterizing the population of active galactic nuclei in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  12. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  13. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  14. Bacterial ice nucleation: significance and molecular basis.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  15. LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei

    NASA Astrophysics Data System (ADS)

    Vié, B.; Pinty, J.-P.; Berthet, S.; Leriche, M.

    2016-02-01

    The paper describes the LIMA (Liquid Ice Multiple Aerosols) quasi two-moment microphysical scheme, which relies on the prognostic evolution of an aerosol population, and the careful description of the nucleating properties that enable cloud droplets and pristine ice crystals to form from aerosols. Several modes of cloud condensation nuclei (CCN) and ice freezing nuclei (IFN) are considered individually. A special class of partially soluble IFN is also introduced. These "aged" IFN act first as CCN and then as IFN by immersion nucleation at low temperatures. All the CCN modes are in competition with each other, as expressed by the single equation of maximum supersaturation. The IFN are insoluble aerosols that nucleate ice in several ways (condensation, deposition and immersion freezing) assuming the singular hypothesis. The scheme also includes the homogeneous freezing of cloud droplets, the Hallett-Mossop ice multiplication process and the freezing of haze at very low temperatures. LIMA assumes that water vapour is in thermodynamic equilibrium with the population of cloud droplets (adjustment to saturation in warm clouds). In ice clouds, the prediction of the number concentration of the pristine ice crystals is used to compute explicit deposition and sublimation rates (leading to free under/supersaturation over ice). The autoconversion, accretion and self-collection processes shape the raindrop spectra. The initiation of the large crystals and aggregates category is the result of the depositional growth of large crystals beyond a critical size. Aggregation and riming are computed explicitly. Heavily rimed crystals (graupel) can experience a dry or wet growth mode. An advanced version of the scheme includes a separate hail category of particles forming and growing exclusively in the wet growth mode. The sedimentation of all particle types is included. The LIMA scheme is inserted into the Meso-NH cloud-resolving mesoscale model. The flexibility of LIMA is illustrated

  16. Outflow and Accretion Physics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGraw, Sean Michael

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  17. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general

  18. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content.

    PubMed

    Schoft, Vera K; Chumak, Nina; Bindics, János; Slusarz, Lucyna; Twell, David; Köhler, Claudia; Tamaru, Hisashi

    2015-03-01

    Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.

  19. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  20. Ice crystallization by Pseudomonas syringae.

    PubMed

    Cochet, N; Widehem, P

    2000-08-01

    Several bacterial species can serve as biological ice nuclei. The best characterized of these is Pseudomonas syringae, a widely distributed bacterial epiphyte of plants. These biological ice nuclei find various applications in different fields, but an optimized production method was required in order to obtain the highly active cells which may be exploited as ice nucleators. The results presented here show that P. syringae cells reduce supercooling of liquid or solid media and enhance ice crystal formation at sub-zero temperatures, thus leading to a remarkable control of the crystallization phenomenon and a potential for energy savings. Our discussion focuses on recent and future applications of these ice nucleators in freezing operations, spray-ice technology and biotechnological processes.

  1. [Typical Patterns of Neuronal Activity in Relay and Nonspecific Thalamic Nuclei in Patients with Spasmodic Torticollis].

    PubMed

    Devetiarov, D A; Semenova, U N; Butiaeva, L I; Sedov, A S

    2015-01-01

    Neuronal activity of 50 neurons in nonspecific (Rt, MD) and relay (Voi, Voa) thalamic nuclei was analyzed. Data were obtained by microelectrode technique during 14 stereotactic operations in patients with spasmodic torticollis. Application of Poincare maps and Gap-statistics allowed to reveal 3 main patterns of neuronal activity: irregular single spikes, low-threshold Ca(2+)-dependent rhythmic (3-5 Hz) bursts and combination of bursts and single spikes. In some cases, grouping (in Voi and Rt nuclei) and long burst (in Voa nucleus) patterns were observed. Grouping pattern consist of low-density groups of spikes with tendency to periodicity in range 1-1.5 Hz. Long burst pattern consist of long dense groups of spikes with random length and invariant interburst intervals. Main numerical estimations of 3 most spread patterns of neuronal activity were obtained by parametric analysis. In results, investigated thalamic nuclei significantly distinguished from each other by characteristics of burst activity but average firing rate of these nuclei hadn't significant differences. These data may be useful for functional identification of thalamic nuclei during stereotactic neurosurgery operation in patients with movement disorders.

  2. Atmospheric Chemistry Special Feature: Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region

    NASA Astrophysics Data System (ADS)

    Wise, Matthew E.; Baustian, Kelly J.; Tolbert, Margaret A.

    2010-04-01

    Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth's climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucleation mechanism of the ice particles. Although it is often assumed that ice nucleates via a homogeneous mechanism, recent work points to the possibility that heterogeneous ice nucleation is important in the tropical tropopause region. However, there are very few studies of depositional ice nucleation on the complex types of particles likely to be found in this region of the atmosphere. Here, we use a unique method to probe depositional ice nucleation on internally mixed ammonium sulfate/palmitic acid particles, namely optical microscopy coupled with Raman microscopy. The deliquescence and efflorescence phase transitions of the mixed particles were first studied to gain insight into whether the particles are likely to be liquid or solid in the tropical tropopause region. The ice nucleating ability of the particles was then measured under typical upper tropospheric conditions. It was found that coating the particles with insoluble palmitic acid had little effect on the deliquescence, efflorescence, or ice nucleating ability of ammonium sulfate. Additional experiments involving Raman mapping provide new insights into how the composition and morphology of mixed particles impact their ability to nucleate ice.

  3. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  4. Spectral components at visual and infrared wavelengths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Tokunaga, A. T.; Rudy, R. J.

    1984-01-01

    Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed.

  5. Significant alterations in anisotropic ice growth rate induced by the ice nucleation-active bacteria Xanthomonas campestris

    NASA Astrophysics Data System (ADS)

    Nada, Hiroki; Zepeda, Salvador; Miura, Hitoshi; Furukawa, Yoshinori

    2010-09-01

    In the present study, we found that the ice nucleation-active bacteria Xanthomonas campestris significantly altered anisotropic ice growth rate. Results of ice growth experiments in the presence of X. campestris showed that this bacterium decreased the ice crystal growth rate in the c-axis, whereas it increased growth rates in directions normal to the c-axis. These results indicate that these alterations in anisotropic growth rate are the result of selective binding of bacterial ice-nucleating proteins along the {0 0 0 1} basal plane.

  6. Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa

    2012-12-01

    Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the

  7. Light-Absorbing Carbon in Cloud Residual Nuclei During ICE-L: Combining the Single Particle Soot Photometer and the Counterflow Virtual Impactor

    NASA Astrophysics Data System (ADS)

    Subramanian, R.; Kok, G. L.; Baumgardner, D.; Twohy, C.

    2008-12-01

    The single particle soot photometer (SP2) measures strongly-light absorbing (black) carbon (LAC) using laser incandescence. During the Ice in Clouds Experiment (ICE-L) conducted over Colorado and Wyoming in November/December 2007, the SP2 was operated downstream of a counterflow virtual impactor (CVI) onboard the NCAR C-130 aircraft, when the plane passed through a cloud. The CVI collects cloud droplets and ice crystals larger than 8 μm and evaporates the water content, so that residual nuclei are sampled. The CVI also concentrates the incoming air-stream by as much as a factor of 30 or more. The combination enables measurements of LAC much lower than 1 ng/m3. Results indicate that compared to aerosol in the surrounding air mass, LAC concentrations (per unit volume air) were generally lower in cloud. On November 16, two wave clouds were sampled near Riverton and Wheatland, WY at altitudes between 6-8 km above sea level. LAC mass concentrations upwind of the clouds averaged 5.6 and 4 ng/m3, while in- cloud averages were 0.6 and 0.3 ng/m3 respectively. Average number scavenging ratios of LAC- containing particles measured by the SP2 were 17% and 14% for the two mixed liquid/ice cloud events. In- cloud LAC mass normalized to cloud water content (CWC) was 19 ng/g-CWC in the Riverton cloud, and lower over Wheaton. Multiple passes at different altitudes through the cloud nearer Wheaton did not show a dependence of LAC/CWC on altitude. In a wave cloud over the Wind River Range on November 29, ice-only portions showed LAC/CWC about a factor-of-4 lower than smaller mixed-phase regions of the cloud. Data on LAC measurements in upslope conditions will also be presented.

  8. Active Microwave Remote Sensing Observations of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1997-01-01

    Since July 1991, the European Space Agency's ERS-1 and ERS-2 satellites have acquired radar data of the Weddell Sea, Antarctica. The Active Microwave Instrument on board ERS has two modes; SAR and Scatterometer. Two receiving stations enable direct downlink and recording of high bit-rate, high resolution SAR image data of this region. When not in an imaging mode, when direct SAR downlink is not possible, or when a receiving station is inoperable, the latter mode allows normalized radar cross-section data to be acquired. These low bit-rate ERS scatterometer data are tape recorded, downlinked and processed off-line. Recent advances in image generation from Scatterometer backscatter measurements enable complementary medium-scale resolution images to be made during periods when SAR images cannot be acquired. Together, these combined C-band microwave image data have for the first time enabled uninterrupted night and day coverage of the Weddell Sea region at both high (25 m) and medium-scale (-20 km) resolutions. C-band ERS-1 radar data are analyzed in conjunction with field data from two simultaneous field experiments in 1992. Satellite radar signature data are compared with shipborne radar data to extract a regional and seasonal signature database for recognition of ice types in the images. Performance of automated sea-ice tracking algorithms is tested on Antarctic data to evaluate their success. Examples demonstrate that both winter and summer ice can be effectively tracked. The kinematics of the main ice zones within the Weddell Sea are illustrated, together with the complementary time-dependencies in their radar signatures. Time-series of satellite images are used to illustrate the development of the Weddell Sea ice cover from its austral summer minimum (February) to its winter maximum (September). The combination of time-dependent microwave signatures and ice dynamics tracking enable various drift regimes to be defined which relate closely to the circulation of the

  9. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpc< z <3.0 Mpc. We find a very mild evolution in the clustering amplitude, which show the same evolution trend found in optically selected quasars in the 2dF survey. We estimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject headings: cosmology: observations - large-scale structure of the universe - x-rays: diffuse background - galaxies: nuclei

  10. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  11. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  12. Late Holocene fire activity recorded in a Greenland ice core

    NASA Astrophysics Data System (ADS)

    Zennaro, P.; Barbante, C.; Kehrwald, N.; Zangrando, R.; Gambaro, A.; Gabrieli, J.

    2012-04-01

    The pyrolysis compounds from the thermal decomposition of cellulose during burning events are the dominant smoke tracers in continental airsheds. Important compounds from biomass burning include monosaccharide anhydrides (MAs). Levoglucosan is a MA produced by combusing cellulose at a temperatures of 300°C or greater. Ice cores contain these specific molecular markers and other pyrochemical evidence that provides much-needed information on the role of fire in regions with no existing data of past fire activity. Here, we use atmospheric and snow levoglucosan concentrations to trace fire emissions from a boreal forest fire source in the Canadian Shield through transport and deposition at Summit, Greenland (72°35'N 38°25' W, 3048 masl). Atmospheric and surface samples suggest that levoglucosan in snow can record biomass burning events up to 1000s of kilometers away. Levoglucosan does degrade by interacting with hydroxyl radicals in the atmosphere, but it is emitted in large quantities, allowing the use as a biomass burning tracer. These quantified atmospheric biomass burning emissions and associated parallel oxalate and levoglucosan peaks in snow pit samples validates levoglucosan as a proxy for past biomass burning in snow records and by extension in ice cores. The temporal and spatial resolution of chemical markers in ice cores matches the core in which they are measured. The spatial resolution of chemical markers in ice cores depends on the core location where low-latitude ice cores primarily reflect regional climate parameters, and polar ice cores integrate hemispheric signals. We present levoglucosan flux, and hence past fire activity, measured during the late Holocene in the NEEM, Greenland (77°27' N; 51°3'W, 2454 masl) ice core. We compare the NEEM results with multiple major Northern Hemisphere climate and cultural parameters.

  13. Reversible, activity-dependent targeting of profilin to neuronal nuclei

    SciTech Connect

    Birbach, Andreas . E-mail: andreas.birbach@lbicr.lbg.ac.at; Verkuyl, J. Martin; Matus, Andrew . E-mail: aim@fmi.ch

    2006-07-15

    The actin cytoskeleton in pyramidal neurons plays a major role in activity-dependent processes underlying neuronal plasticity. The small actin-binding protein profilin shows NMDA receptor-dependent accumulation in dendritic spines, which is correlated with suppression of actin dynamics and long-term stabilization of synaptic morphology. Here we show that following NMDA receptor activation profilin also accumulates in the nucleus of hippocampal neurons via a process involving rearrangement of the actin cytoskeleton. This simultaneous targeting to dendritic spines and the cell nucleus suggests a novel mechanism of neuronal plasticity in which profilin both tags activated synapses and influences nuclear events.

  14. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    SciTech Connect

    Teng, Stacy H.; Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J.; Oh, Kyuseok; Cardamone, Carolin N.; Keel, William C.; Simmons, Brooke D.; Treister, Ezequiel

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  15. Anticorrelation of Variability Amplitude with X-Ray Luminosity for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Abramowicz, Marek A.

    1996-07-01

    The bright-spot model for the short-term X-ray variability of active galactic nuclei predicts that, statistically, sources with larger luminosities should have smaller variability amplitudes. This quantitatively agrees with the analysis of the observational data from 12 high-quality EXOSAT long looks performed by Lawrence & Papadakis.

  16. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.

    PubMed Central

    Spiker, S; Murray, M G; Thompson, W F

    1983-01-01

    We have investigated the DNase I sensitivity of transcriptionally active DNA sequences in intact nuclei and isolated chromatin from embryos of wheat (Triticum aestivum L.). Nuclei or isolated chromatin was incubated with DNase I, and the extent of DNA digestion was monitored as percentage acid solubility. The resistant DNA and DNA from sham-digested controls were used to drive reassociation reactions with cDNA populations corresponding to either total poly(A)+RNA from unimbibed wheat embryos or polysomal poly(A)+RNA from embryos that had imbibed for 3 hr. Sequences complementary to either probe were depleted in DNase I-resistant DNA from nuclei and from chromatin isolated under low-ionic-strength conditions. This indicates that transcriptionally active sequences are preferentially DNase I sensitive in plants. In chromatin isolated at higher ionic strength, cDNA complementary sequences were not preferentially depleted by DNase I treatment. Therefore, the chromatin structure that confers preferential DNase I sensitivity to transcriptionally active genes appears to be lost when the higher-ionic-strength method of preparation is used. Treatment of wheat nuclei with DNase I causes the release of four prominent nonhistone chromosomal proteins that comigrate with wheat high mobility group proteins on NaDodSO4 gels. Images PMID:6219388

  17. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  18. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  19. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  20. The Nitrate Content of Greenland Ice and Solar Activity

    NASA Astrophysics Data System (ADS)

    Kocharov, G. E.; Kudryavtsev, I. V.; Ogurtsov, M. G.; Sonninen, E.; Jungner, H.

    2000-12-01

    Past solar activity is studied based on analysis of data on the nitrate content of Greenland ice in the period from 1576 1991. Hundred-year (over the entire period) and quasi-five-year (in the middle of the 18th century) variations in the nitrate content are detected. These reflect the secular solar-activity cycle and cyclicity in the flare activity of the Sun.

  1. The OPTX Project. V. Identifying Distant Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.; Tremonti, C.

    2011-11-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/Hβ versus [N II]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]λ3869, and [O II]λλ3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (langΓeffrang = 1.0+0.4 -0.4) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  2. Fluorescence-activated sorting of fixed nuclei: a general method for studying nuclei from specific cell populations that preserves post-translational modifications.

    PubMed

    Marion-Poll, Lucile; Montalban, Enrica; Munier, Annie; Hervé, Denis; Girault, Jean-Antoine

    2014-04-01

    Long-lasting brain alterations that underlie learning and memory are triggered by synaptic activity. How activity can exert long-lasting effects on neurons is a major question in neuroscience. Signalling pathways from cytoplasm to nucleus and the resulting changes in transcription and epigenetic modifications are particularly relevant in this context. However, a major difficulty in their study comes from the cellular heterogeneity of brain tissue. A promising approach is to directly purify identified nuclei. Using mouse striatum we have developed a rapid and efficient method for isolating cell type-specific nuclei from fixed adult brain (fluorescence-activated sorting of fixed nuclei; FAST-FIN). Animals are quickly perfused with a formaldehyde fixative that stops enzymatic reactions and maintains the tissue in the state it was at the time of death, including nuclear localisation of soluble proteins such as GFP and differences in nuclear size between cell types. Tissue is subsequently dissociated with a Dounce homogeniser and nuclei prepared by centrifugation in an iodixanol density gradient. The purified fixed nuclei can then be immunostained with specific antibodies and analysed or sorted by flow cytometry. Simple criteria allow distinction of neurons and non-neuronal cells. Immunolabelling and transgenic mice that express fluorescent proteins can be used to identify specific cell populations, and the nuclei from these populations can be efficiently isolated, even rare cell types such as parvalbumin-expressing interneurons. FAST-FIN allows the preservation and study of dynamic and labile post-translational protein modifications. It should be applicable to other tissues and species, and allow study of DNA and its modifications.

  3. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed

    Miller, J S

    1995-12-05

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution.

  4. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  5. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    SciTech Connect

    Schwartz, W.J.

    1987-02-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the /sup 14/C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia.

  6. Astrophysical bags - A new paradigm for active galactic nuclei?

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1992-01-01

    Active galaxies are believed to consist of a compact nucleus, the standard model for which is a massive black hole or a cluster of black holes. A different paradigm is considered here, deriving from quark confinement theory in QCD. It is an 'astrophysical bag', modelled after the 'hadron bags' of particle physics which have already been studied in astrophysics as quark stars. Another interpretation of the cosmological constant in general relativity, and possibly a new quasar redshift formula, are introduced. As a highly-energetic object, this model may resolve the baryonic matter problem for fuelling AGN accretion processes which black hole paradigms cannot account for. Here, baryons, cosmic rays, and neutrinos are free.

  7. Cellulose and Their Characteristic Ice Nucleation Activity- Freezing on a Chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Felgitsch, Laura; Grothe, Hinrich

    2016-04-01

    The influence of clouds on the Earth's climate system is well known (IPCC, 2013). Cloud microphysics determines for example cloud lifetime and precipitation properties. Clouds are cooling the climate system by reflecting incoming solar radiation and warm its surface by trapping outgoing infrared radiation (Baker and Peter, 2008). In all these processes, aerosol particles play a crucial role by acting as cloud condensation nuclei (CCN) for liquid droplets and as an ice nucleation particle (INP) for the formation of ice particles. Freezing processes at higher temperatures than -38°C occur heterogeneously (Pruppacher and Klett 1997). Therefore aerosol particles act like a catalyst, which reduces the energy barrier for nucleation. The nucleation mechanisms, especially the theory of functional sites are not entirely understood. It remains unclear which class of compound nucleates ice. Here we present a unique technique to perform drop- freezing experiments in a more efficient way. A self-made freezing- chip will be presented. Measurements done to proof the efficiency of our setup as well as advantages compared with other setups will be discussed. Furthermore we present a proxy for biological INPs, microcrystalline cellulose. Cellulose is the main component of herbal cell walls (about 50 wt%). It is a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose can contribute to the diverse spectrum of ice nucleation particles. We present results of the nucleation activity measurements of MCCs as well as the influence of concentration, preparation or chemical modification.

  8. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  9. Gamma-Ray Observations of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  10. SPECTROSCOPICALLY SELECTED SPITZER 24 {mu}m ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Choi, P. I.; Yan Lin; Helou, G.; Storrie-Lombardi, L. J.; Shim, H.; Fadda, D.; Im, M.

    2011-05-01

    We investigate the active galactic nucleus (AGN) sub-population of a 24 {mu}m flux-limited galaxy sample in the Spitzer Extragalactic First Look Survey. Using deep Keck optical spectroscopy and a series of emission-line diagnostics, we identify AGN-dominated systems over broad redshift 0 < z < 3.5 and luminosity 9 < log (L{sub TIR}) < 14 ranges, with sample means of (z) = 0.85 and (log (L{sub TIR})) = 11.5. We find that down to the flux limits of our Spitzer MIPS sample (f{sub 24} > 200 {mu}Jy), 15%-20% of sources exhibit strong AGN signatures in their optical spectra. At this flux limit, the AGN population accounts for as much as 25%-30% of the integrated 24 {mu}m flux. This corresponds to an MIR AGN contribution {approx}2-3 x greater than that found in ISOCAM 15 {mu}m studies that used X-ray AGN identifications. Based on our spectroscopically selected AGN sample, we also investigate the merits of Infrared Array Camera (IRAC) color selection for AGN identification. Our comparison reveals that although there is considerable overlap, a significant fraction of spectroscopic AGNs are not identifiable based on their MIR colors alone. Both the measured completeness and reliability of the IRAC color selections are found to be strongly dependent on the MIR flux limit. Finally, our spectroscopic AGN sample implies as much as a 3 x higher AGN surface density at high redshift (z > 1.2) than that of recent optical surveys at comparable optical flux limits, suggestive of a population of heavily obscured, optical/UV reddened AGNs.

  11. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of

  12. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  13. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons

    PubMed Central

    Zhang, Fan; Pomerantz, Jason H.; Sen, George; Palermo, Adam T.; Blau, Helen M.

    2007-01-01

    DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types. PMID:17360535

  14. SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION

    SciTech Connect

    De Sanctis, M. C.; Capria, M. T.; Lasue, J.

    2010-07-15

    Rotational properties can strongly influence a comet's evolution in terms of activity, dust mantling, and internal structure. In this paper, we investigate the effects of various rotation axis directions on the activity, internal structure, and dust mantling of cometary nuclei. The numerical code developed is able to reproduce different shapes and spin axis inclinations, taking into account both the latitudinal and the longitudinal variations of illumination, using a quasi-three-dimensional approach. The results obtained show that local variations in the dust and gas fluxes can be induced by the different spin axis directions and completely different behaviors of the comet evolution can result in the same cometary shape by using different obliquities of the models. The internal structures of cometary nuclei are also influenced by comet obliquity, as well as dust mantling. Gas and dust production rates show diversities related to the comet seasons.

  15. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  16. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  17. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    DOE PAGES

    Knopf, Daniel A.; Alpert, Peter A.

    2013-04-24

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(Jhet) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be

  18. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  19. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  20. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  1. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola.

    PubMed Central

    Kozloff, L M; Schofield, M A; Lute, M

    1983-01-01

    Chemical and biological properties of the ice nucleating sites of Pseudomonas syringae, strain C-9, and Erwinia herbicola have been characterized. The ice nucleating activity (INA) for both bacteria was unchanged in buffers ranging from pH 5.0 to 9.2, suggesting that there were no essential groups for which a change in charge in this range was critical. The INA of both bacteria was also unaffected by the addition of metal chelating compounds. Borate compounds and certain lectins markedly inhibited the INA of both types of bacterial cells. Butyl borate was not an inhibitor, but borate, phenyl borate, and m-nitrophenyl borate were, in order, increasingly potent inhibitors. These compounds have a similar order of affinity for cis hydroxyls, particularly for those found on sugars. Lentil lectin and fava bean lectin, which have binding sites for mannose or glucose, inhibited the INA of both bacteria. All other lectins examined had no effect. The inhibition of INA by these two types of reagents indicate that sugar-like groups are at or near the ice nucleating site. Sulfhydryl reagents were potent inhibitors of the INA of both bacteria. When treated with N-ethylmaleimide, p-hydroxymercuribenzoate, or iodoacetamide, the INA was irreversibly inhibited by 99%. The kinetics of inactivation with N-ethylmaleimide suggested that E. herbicola cells have at least two separate ice nucleating sites, whereas P. syringae cells have possibly four or more separate sites. The effect of infection with a virulent phage (Erh 1) on the INA of E. herbicola was examined. After multiple infection of a bacterial culture the INA was unchanged until 40 to 45 min, which was midway through the 95-min latent period. At that time, the INA activity began falling and 99% of the INA was lost by 55 min after infection, well before any cells had lysed. This decrease in INA before lysis is attributed to phage-induced changes in the cell wall. PMID:6848483

  2. Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-01

    We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.

  3. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Yordanova, Petya; Franc, Gary D.; Pöschl, Ulrich

    2015-04-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nucleators (IN). However, the sources and characteristics of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA, i.e., inducing ice formation in the probed range of temperature and concentration) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. For example, in harvested and ploughed sugar beet and potato fields, and in the organic horizon beneath Lodgepole pine forest, their relative abundances and concentrations among the cultivable fungi were 25% (8 x 103 CFU g-1), 17% (4.8 x 103 CFU g-1) and 17% (4 x 103 CFU g-1), respectively. Across all investigated soils, 8% (2.9 x 103 CFU g-1) of fungal isolates were INA. All INA isolates initiated freezing at -5° C to -6° C and all belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. Mortierella alpina is known to be saprobic (utilizing non-living organic matter), widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be extracellular proteins of 100-300 kDa in size which are not anchored in the fungal cell wall. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, these small cell-free IN might contribute to the as yet uncharacterized pool of atmospheric IN released by soils as dusts.

  4. Freezing activities of flavonoids in solutions containing different ice nucleators.

    PubMed

    Kuwabara, Chikako; Wang, Donghui; Kasuga, Jun; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2012-06-01

    In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many

  5. Molecular evidence for an active endogenous microbiome beneath glacial ice.

    PubMed

    Hamilton, Trinity L; Peters, John W; Skidmore, Mark L; Boyd, Eric S

    2013-07-01

    Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth's land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth's past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0-1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.

  6. Molecular evidence for an active endogenous microbiome beneath glacial ice

    PubMed Central

    Hamilton, Trinity L; Peters, John W; Skidmore, Mark L; Boyd, Eric S

    2013-01-01

    Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth's land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth's past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time. PMID:23486249

  7. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  8. Ensemble X-ray variability of active galactic nuclei at intermediate and long time lags

    NASA Astrophysics Data System (ADS)

    Vagnetti, Fausto; Middei, Riccardo

    2016-08-01

    We present a variability analysis for a sample of 2700 active galactic nuclei extracted from the latest release of the XMM-Newton serendipitous source catalogue. The structure function of this sample increases up to rest-frame time lags of about 5 years. Moreover, comparing observations performed by the XMM-Newton and ROSAT satellites, we are able to extend the X-ray structure function to 20 years rest-frame, showing a further increase of variability without any evidence of a plateau. Our results are compared with similar analyses in the optical band, and discussed in relation to the physical sizes of the emitting regions.

  9. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  10. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  11. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  12. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 {times} 10{sup {minus}14} cm{sup {minus}2}s{sup {minus}1}.

  13. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    Not Available

    1993-01-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 [times] 10[sup [minus]14] cm[sup [minus]2]s[sup [minus]1].

  14. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna

    PubMed Central

    Burkart, J.; Steiner, G.; Reischl, G.; Hitzenberger, R.

    2011-01-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm−3 to 3600 cm−3 with a campaign average of 820 cm−3. Activation ratios were quite low (0.02–0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69–370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations. PMID:21977003

  15. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H-beta in luminosity. We show how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of Ne v emission in particular will distinguish shrouded AGNs from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  16. Ice nucleation of bioaerosols - a resumee

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Atanasova, Lea; Bauer, Heidi; Bernardi, Johannes; Chazallon, Bertrand; Druzhinina, Irina S.; Grothe, Hinrich

    2013-04-01

    The role of biological particles for ice nucleation (IN) is still debated. Here, we present a summary of investigation and comparison of different ice nuclei. Apart from the bacterial ice nucleation proteins in Snomax, we further investigated a broad spectrum of pollen and fungal spores in the search for ice nucleation activity. Apart from Snomax, only few samples showed vital IN activity, like Fusarium avenaceum spores and Betula pendula pollen. Chemical characterization accentuated the differences between bacterial and pollen ice nuclei. Exposure to natural stresses, like UV and NOx, led to a significant decrease in IN activity. Furthermore, the releasable fraction of the pollen material, which includes the ice nuclei, was extracted with water and dried up. These residues were investigated with Raman spectroscopy and compared with the spectra of whole pollen grains. Measurements clearly demonstrated that the aqueous fraction contained mainly saccharides, lipids and proteins, but no sporopollenin, which is the bulk material of the outer pollen wall. Fungal spores of ecologically, economically or otherwise relevant species were also investigated. Most species showed no significant IN activity at all. A few species showed a slight increase in freezing temperature, but still significantly below the activity of the most active pollen or mineral dusts. Only Fusarium avenaceum showed strong IN activity. Cultivation of Fusarium and Trichoderma (close relatives of Fusarium) at different temperatures showed changes in total protein expression, but no impact on the IN activity.

  17. Differential Activation of Pontomedullary Nuclei by Acid Perfusion of Different Regions of the Esophagus

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    The objective of this study was to determine the brain stem nuclei and physiological responses activated by esophageal acidification. The effects of perfusion of the cervical (ESOc), or thoracic (ESOt) esophagus with PBS or HCl on c-fos immunoreactivity of the brain stem or on physiological variables, and the effects of vagotomy were examined in anesthetized cats. We found that acidification of the ESOc increased the number of c-fos positive neurons in the area postrema (AP), vestibular nucleus (VN), parabrachial nucleus (PBN), nucleus ambiguus (NA), dorsal motor nucleus (DMN), and all subnuclei of the nucleus tractus solitarius (NTS), but one. Acidification of the ESOt activated neurons in the central (CE), caudal (CD), dorsomedial (DM), dorsolateral (DL), ventromedial (VM) subnuclei of NTS, and the DMN. Vagotomy blocked all c-fos responses to acid perfusion of the whole esophagus (ESOw). Perfusion of the ESOc or ESOt with PBS activated secondary peristalsis (2P), but had no effect on blood pressure, heart rate, or respiratory rate. Perfusion of the ESOc, but not ESOt, with HCL activated pharyngeal swallowing (PS), profuse salivation, or physiological correlates of emesis. Vagotomy blocked all physiological effects of ESOw perfusion. We conclude that acidification of the ESOc and ESOt activate different sets of pontomedullary nuclei and different physiological responses. The NTSce, NTScom, NTSdm, and DMN are associated with activation of 2P, the NTSim and NTSis, are associated with activation of PS, and the AP, VN, and PBN are associated with activation of emesis and perhaps nausea. All responses to esophageal fluid perfusion or acidification are mediated by the vagus nerves. PMID:20655885

  18. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae

    PubMed Central

    Ali, Farman; Wharton, David A.

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization. PMID:27227961

  19. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae.

    PubMed

    Ali, Farman; Wharton, David A

    2016-01-01

    Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracellular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and optical recrystallometry indicate the presence of ice active substances that inhibit recrystallization in the nematode extract. The substance is relatively heat stable and largely retains the recrystallization inhibition activity after heating. No thermal hysteresis activity was detected but the extract had a typical hexagonal crystal shape when grown from a single seed crystal and weak ice nucleation activity. An ice active substance is present in a low concentration, which may be involved in the freezing survival of this species by inhibiting ice recrystallization.

  20. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  1. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  2. The evolution of radio-loud active galactic nuclei as a function of black hole spin

    NASA Astrophysics Data System (ADS)

    Garofalo, D.; Evans, D. A.; Sambruna, R. M.

    2010-08-01

    Recent work on the engines of active galactic nuclei jets suggests that their power depends strongly and perhaps counter-intuitively on black hole spin. We explore the consequences of this on the radio-loud population of active galactic nuclei and find that the time evolution of the most powerful radio galaxies and radio-loud quasars fits into a picture in which black hole spin varies from retrograde to prograde with respect to the accreting material. Unlike the current view, according to which jet powers decrease in tandem with a global downsizing effect, we argue for a drop in jet power resulting directly from the paucity of retrograde accretion systems at lower redshift z caused by a continuous history of accretion dating back to higher z. In addition, the model provides simple interpretations for the basic spectral features differentiating radio-loud and radio-quiet objects, such as the presence or absence of disc reflection, broadened iron lines and signatures of disc winds. We also briefly describe our models' interpretation of microquasar state transitions. We highlight our result that the most radio-loud and most radio-quiet objects both harbour highly spinning black holes but in retrograde and prograde configurations, respectively.

  3. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  4. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  5. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  6. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response.

    PubMed

    Galvão, Milene de Oliveira Lara; Sinigaglia-Coimbra, Rita; Kawakami, Suzi Emiko; Tufik, Sergio; Suchecki, Deborah

    2009-09-01

    A large body of evidence has shown that prolonged paradoxical sleep deprivation (PSD) results in hypothalamic-pituitary-adrenal (HPA) axis activation, and in loss of body weight despite an apparent increase of food intake, reflecting increased energy expenditure. The flowerpot technique for PSD is an efficient paradigm for investigating the relationships among metabolic regulation and stress response. The purpose of the present study was to examine the mechanisms involved in the effects of 96 h of PSD on metabolism regulation, feeding behaviour and stress response by studying corticotrophin-releasing hormone (CRH) and orexin (ORX) immunoreactivity in specific hypothalamic nuclei. Once-daily assessments of body weight, twice-daily measurements of (spillage-corrected) food intake, and once-daily determinations of plasma adrenocorticotropic hormone (ACTH) and corticosterone were made throughout PSD or at corresponding times in control rats (CTL). Immunoreactivity for CRH in the paraventricular nucleus of the hypothalamus and for ORX in the hypothalamic lateral area was evaluated at the end of the experimental period. PSD resulted in increased diurnal, but not nocturnal, food intake, producing no significant changes in global food intake. PSD augmented the immunoreactivity for CRH and plasma ACTH and corticosterone levels, characterizing activation of the HPA axis. PSD also markedly increased the ORX immunoreactivity. The average plasma level of corticosterone correlated negatively with body weight gain throughout PSD. These results indicate that augmented ORX and CRH immunoreactivity in specific hypothalamic nuclei may underlie some of the metabolic changes consistently described in PSD.

  7. Ice nucleation active particles are efficiently removed by precipitating clouds.

    PubMed

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-11-10

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.

  8. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  9. Modulation of neuronal activity in dorsal column nuclei by upper cervical spinal cord stimulation in rats

    PubMed Central

    Qin, Chao; Yang, Xiaoli; Wu, Mingyuan; Farber, Jay P.; Linderoth, Bengt; Foreman, Robert D.

    2009-01-01

    Clinical human and animal studies show that upper cervical spinal cord stimulation (cSCS) has beneficial effects in treatment of some cerebral disorders, including those due to deficient cerebral circulation. However, the underlying mechanisms and neural pathways activated by cSCS using clinical parameters remain unclear. We have shown that a cSCS-induced increase in cerebral blood flow is mediated via rostral spinal dorsal column fibers implying that the dorsal column nuclei (DCNs) are involved. The aim of this study was to examine how cSCS modulated neuronal activity of DCNs.. A spring-loaded unipolar ball electrode was placed on the left dorsal column at cervical (C2) spinal cord in pentobarbital anesthetized, ventilated and paralyzed male rats. Stimulation with frequencies of 1, 10, 20, 50 Hz (0.2 ms, 10 s) and an intensity of 90% of motor threshold was applied. Extracellular potentials of single neurons in DCNs were recorded and examined for effects of cSCS. In total, 109 neurons in DCNs were isolated and tested for effects of cSCS. Out of these, 56 neurons were recorded from the cuneate nucleus and 53 from the gracile nucleus. Mechanical somatic stimuli altered activity of 87/109 (83.2%) examined neurons. Of the neurons receiving somatic input, 62 were classified as low-threshold and 25 as wide dynamic range. The cSCS at 1 Hz changed the activity of 96/109 (88.1%) of the neurons. Neuronal responses to cSCS exhibited multiple patterns of excitation and/or inhibition: excitation (E, n=21), inhibition (I, n=19), E-I (n=37), I-E (n=8) and E-I-E (n=11). Furthermore, cSCS with high-frequency (50 Hz) altered the activity of 92.7% (51/55) of tested neurons, including 30 E, 24 I, and 2 I-E responses to cSCS. These data suggested that cSCS significantly modulates neuronal activity in dorsal column nuclei. These nuclei might serve as a neural relay for cSCS-induced effects on cerebral dysfunction and diseases. PMID:19665525

  10. Comparison of parameterizations for homogeneous and heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Koop, T.; Zobrist, B.

    2009-04-01

    The formation of ice particles from liquid aqueous aerosols is of central importance for the physics and chemistry of high altitude clouds. In this paper, we present new laboratory data on ice nucleation and compare them with two different parameterizations for homogeneous as well as heterogeneous ice nucleation. In particular, we discuss and evaluate the effect of solutes and ice nuclei. One parameterization is the λ-approach which correlates the depression of the freezing temperature of aqueous droplets in comparison to pure water droplets, Tf, with the corresponding depression, Tm, of the equilibrium ice melting point: Tf = λ × Tm. Here, λ is independent of concentration and a constant that is specific for a particular solute or solute/ice nucleus combination. The other approach is water-activity-based ice nucleation theory which describes the effects of solutes on the freezing temperature Tf via their effect on water activity: aw(Tf) = awi(Tf) + aw. Here, awi is the water activity of ice and aw is a constant that depends on the ice nucleus but is independent of the type of solute. We present new data on both homogeneous and heterogeneous ice nucleation with varying types of solutes and ice nuclei. We evaluate and discuss the advantages and limitations of the two approaches for the prediction of ice nucleation in laboratory experiments and atmospheric cloud models.

  11. Pre-activation of aerosol particles by ice preserved in pores

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia

    2017-02-01

    Pre-activation denotes the capability of particles or materials to nucleate ice at lower relative humidities or higher temperatures compared to their intrinsic ice nucleation efficiency after having experienced an ice nucleation event or low temperature before. This review presumes that ice preserved in pores is responsible for pre-activation and analyses pre-activation under this presumption. Idealized trajectories of air parcels are used to discuss the pore characteristics needed for ice to persist in pores and to induce macroscopic ice growth out of the pores. The pore width needed to keep pores filled with water decreases with decreasing relative humidity as described by the inverse Kelvin equation. Thus, narrow pores remain filled with ice well below ice saturation. However, the smaller the pore width, the larger the melting and freezing point depressions within the pores. Therefore, pre-activation due to pore ice is constrained by the melting of ice in narrow pores and the sublimation of ice from wide pores imposing restrictions on the temperature and relative humidity range of pre-activation for cylindrical pores. Ice is better protected in ink-bottle-shaped pores with a narrow opening leading to a large cavity. However, whether pre-activation is efficient also depends on the capability of ice to grow macroscopically, i.e. out of the pore. A strong effect of pre-activation is expected for swelling pores, because at low relative humidity (RH) their openings narrow and protect the ice within them against sublimation. At high relative humidities, they open up and the ice can grow to macroscopic size and form an ice crystal. Similarly, ice protected in pockets is perfectly sheltered against sublimation but needs the dissolution of the surrounding matrix to be effective. Pores partially filled with condensable material may also show pre-activation. In this case, complete filling occurs at lower RH than for empty pores and freezing shifts to lower temperatures.Pre-activation

  12. VizieR Online Data Catalog: Quasars and Active Galactic Nuclei (11th Ed.) (Veron+, 2003)

    NASA Astrophysics Data System (ADS)

    Veron-Cetty, M. P.; Veron, P.

    2003-08-01

    This catalogue is an update of the previous versions. The recent release of the final release of the 2dF quasar catalogue and of the first part of the SLOAN catalogue, almost doubling the number of known QSOs, led us to prepare an updated version of our Catalogue of quasars and active nuclei, which now contains 48921 quasars, 876 BL Lac objects and 15069 active galaxies (including 11777 Seyfert 1). Like the tenth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. The present edition this catalogue contains the quasars with measured redshift known prior to August 1st, 2003. (5 data files).

  13. Outflow and Metallicity in the Broad-Line Region of Low-Redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Jaejin; nagao, Tohru; Woo, Jong-Hak

    2017-01-01

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE, we investigate outflows in the broad-line region (BLR) in low-redshift AGNs (z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which is consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.

  14. Nearby active galactic nuclei seen via adaptive optics at the Keck Telescope

    NASA Astrophysics Data System (ADS)

    Max, Claire

    2004-02-01

    In recent years it has become increasingly clear that mergers between galaxies play a critical role in galaxy evolution, in the formation of central black holes, and in the phenomena of active galactic nuclei (AGNs) and quasar activity. The advent of adaptive optics on the new generation of 6-10 m telescopes is making it possible to study nearby AGNs and merging galaxies with spatial resolutions of10 - 100 pc. In this talk I will describe and discuss observations of NGC 6240 and Cygnus A, archetypes of merging disk galaxies and of powerful radiogalaxies respectively. I will make use of infrared observations using the adaptive optics system on the 10-m Keck Telescope, as well as visible-light observations from the Hubble Space Telescope.

  15. Penrose photoproduction processes - A high efficiency energy mechanism for active galactic nuclei and quasars

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Kafatos, M.

    1979-01-01

    Recent observations of NGC 4151 and 3C273 suggest that the nuclei of active galaxies have very high gamma ray efficiencies. In addition, optical studies of M87 have indicated the possibility of a massive black hole in its central region. The above facts have led to study of a new physical mechanism, Penrose Photoproduction Processes, in the ergospheres of massive Kerr black holes, as a way to account for the fluctuating, high efficiency, energy production associated with active galaxies and quasars. Observational signatures, associated with this mechanism, occur in the form of approximately 2 MeV and approximately 2 GeV gamma ray cutoffs which might be corroborated by the observed spectra of NGC 4151 and 3C273, respectively.

  16. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs

    2017-02-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (∼ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ∼20 such gas-induced binary mergers per year.

  17. Transcription is Associated with Z-DNA Formation in Metabolically Active Permeabilized Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Wittig, Burghardt; Dorbic, Tomislav; Rich, Alexander

    1991-03-01

    Mammalian cells have been encapsulated in agarose microbeads, and from these cells metabolically active permeabilized nuclei were prepared. Previously, we showed that biotin-labeled monoclonal antibodies against Z-DNA can be diffused into the nuclei and, over a specific concentration range, they will bind to Z-DNA within the nucleus in a concentration-independent manner. By using radiolabeled streptavidin, we showed that the amount of Z-DNA antibody bound is related to the torsional strain of the DNA in the nucleus. Relaxation of the DNA results in a decrease of Z-DNA formation, whereas increasing torsional strain through inhibiting topoisomerase I results in increased Z-DNA formation. Here we measure the influence of RNA transcription and DNA replication. Transcription is associated with a substantial increase in the binding of anti-Z-DNA antibodies, paralleling the increased level of RNA synthesized as the level of ribonucleoside triphosphate in the medium is increased. DNA replication yields smaller increases in the binding of Z-DNA antibodies. Stopping RNA transcription with inhibitors results in a large loss of Z-DNA antibody binding, whereas only a small decrease is associated with inhibition of DNA replication.

  18. Striatum and globus pallidus control the electrical activity of reticular thalamic nuclei.

    PubMed

    Villalobos, Nelson; Oviedo-Chávez, Aldo; Alatorre, Alberto; Ríos, Alain; Barrientos, Rafael; Delgado, Alfonso; Querejeta, Enrique

    2016-08-01

    Through GABAergic fibers, globus pallidus (GP) coordinates basal ganglia global function. Electrical activity of GP neurons depends on their membrane properties and afferent fibers, including GABAergic fibers from striatum. In pathological conditions, abnormal electrical activity of GP neurons is associated with motor deficits. There is a GABAergic pathway from the GP to the reticular thalamic nucleus (RTn) whose contribution to RTn neurons electrical activity has received little attention. This fact called our attention because the RTn controls the overall information flow of thalamic nuclei to cerebral cortex. Here, we study the spontaneous electrical activity of RTn neurons recorded in vivo in anesthetized rats and under pharmacological activation or inhibition of the GP. We found that activation of GP predominantly diminishes the spontaneous RTn neurons firing rate and its inhibition increases their firing rate; however, both activation and inhibition of GP did not modified the burst index (BI) or the coefficient of variation (CV) of RTn neurons. Moreover, stimulation of striatum predominantly diminishes the spiking rate of GP cells and increases the spiking rate in RTn neurons without modifying the BI or CV in reticular neurons. Our data suggest a GP tight control over RTn spiking activity.

  19. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    SciTech Connect

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A.; Maciejewski, W.; Hicks, E. K. S.; Emsellem, E.; Dumas, G.; Malkan, M. A.; Müller-Sánchez, F.; Tran, A.

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  20. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  1. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-04-01

    The formation of ice in atmospheric clouds has a substantial influence on the radiative properties of clouds as well as on the formation of precipitation. Therefore much effort has been made to understand and quantify the major ice formation processes in clouds. Immersion freezing has been suggested to be a dominant primary ice formation process in low and mid-level clouds (mixed-phase cloud conditions). It also has been shown that mineral dust particles are the most abundant ice nucleating particles in the atmosphere and thus may play an important role for atmospheric ice nucleation (Murray et al., 2012). Additionally, biological particles like bacteria and pollen are suggested to be potentially involved in atmospheric ice formation, at least on a regional scale (Murray et al., 2012). In recent studies for biological particles (SNOMAX and birch pollen), it has been demonstrated that freezing is induced by ice nucleating macromolecules and that an asymptotic value for the mass density of these ice nucleating macromolecules can be determined (Hartmann et al., 2013; Augustin et al., 2013, Wex et al., 2014). The question arises whether such an asymptotic value can also be determined for the ice active surface site density ns, a parameter which is commonly used to describe the ice nucleation activity of e.g., mineral dust. Such an asymptotic value for ns could be an important input parameter for atmospheric modeling applications. In the presented study, we therefore investigated the immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). For all particle sizes considered in the experiments, we observed a leveling off of the frozen droplet fraction reaching a plateau within the heterogeneous freezing temperature regime (T > -38°C) which was proportional to the particle surface area. Based on these findings, we could determine an asymptotic value for the ice

  2. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  3. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    DOE PAGES

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; ...

    2017-01-23

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than −20 °C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm−3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm−3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces

  4. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    SciTech Connect

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; DeMott, Paul J.

    2017-01-01

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm-3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm-3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces

  5. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; DeMott, Paul J.

    2017-01-01

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20 °C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm-3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm-3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and

  6. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. III. EXPANDED SAMPLE AND COMPARISON WITH OPTICAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Krumpe, Mirko; Coil, Alison L.; Miyaji, Takamitsu; Aceves, Hector

    2012-02-10

    This is the third paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07 < z < 0.50 and measure the clustering amplitudes of both X-ray-selected and optically selected SDSS broad-line AGNs with and without radio detections as well as for X-ray-selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray-selected and optically selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low-redshift optically selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio detection. The typical dark matter halo masses of our broad-line AGNs are log (M{sub DMH}/[h{sup -1} M{sub Sun }]) {approx} 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray-selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a {approx}2{sigma} level. Finally, we summarize the current picture of AGN clustering to z {approx} 1.5 based on three-dimensional clustering measurements.

  7. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-12-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  8. The Role of Amygdala Nuclei in the Expression of Auditory Signaled Two-Way Active Avoidance in Rats

    ERIC Educational Resources Information Center

    Choi, June-Seek; Cain, Christopher K.; LeDoux, Joseph E.

    2010-01-01

    Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs).…

  9. Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.

    2016-11-01

    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.

  10. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  11. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  12. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  13. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  14. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  15. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  16. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    NASA Astrophysics Data System (ADS)

    Marin, F.; Grosset, L.; Goosmann, R.; Gratadour, D.; Rouan, D.; Clénet, Y.; Pelat, D.; Rojas Lobos, P. A.

    2016-12-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 μm) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. tet{Gratadour2015} found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  17. THE EVOLUTION AND EDDINGTON RATIO DISTRIBUTION OF COMPTON THICK ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2010-06-01

    Previous studies of the active galactic nuclei (AGNs) contribution to the cosmic X-ray background (CXB) consider only observable parameters such as luminosity and absorbing column. Here, for the first time, we extend the study of the CXB to physical parameters including the Eddington ratio of the sources and the black hole mass. In order to calculate the contribution to the CXB of AGN accreting at various Eddington ratios, an evolving Eddington ratio space density model is calculated. In particular, Compton thick (CT) AGNs are modeled as accreting at specific, physically motivated Eddington ratios instead of as a simple extension of the Compton thin type 2 AGN population. Comparing against the observed CT AGN space densities and log N-log S relation indicates that CT AGNs are likely a composite population of AGNs made up of sources accreting either at >90% or <1% of their Eddington rate.

  18. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  19. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  20. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    SciTech Connect

    Wagner, Robert

    2008-12-24

    Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.

  1. RELATIVISTIC BROADENING OF IRON EMISSION LINES IN A SAMPLE OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brenneman, Laura W.; Reynolds, Christopher S.

    2009-09-10

    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K{alpha} feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.

  2. Correlation Analysis of Optical and Radio Light Curves for a Large Sample of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Smith, A. G.; Aller, H. D.; Aller, M. F.

    1995-08-01

    The Rosemary Hill Observatory has accumulated internally consistent light curves extending over as much as 26 years for a large sample of active galactic nuclei. Forty-six of these optical records have been compared with similar radio records from the University of Michigan Radio Astronomy Observatory and the Algonquin Radio Observatory. For 18 objects, pairs of records were sufficiently long and unconfused to allow reliable application of the Discrete Correlation Function analysis; this group included 8 BL Lacertids, 8 quasars, and 2 Seyfert galaxies. Nine of the 18 sources showed positive radio-optical correlations, with the radio events lagging the optical by intervals ranging from 0 to 14 months. Consistent with the relativistic beaming model of the BL Lacertids, the group displaying correlations was dominated by this type of object.

  3. The prospects of X-ray polarimetry for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, René W.

    2016-08-01

    Polarimetry at optical and other wavelength continues to play an important role in our struggle to develop (super-)unification schemes for active galactic nuclei (AGN). Therefore, radio-loud and radio-quiet AGN are important targets for the future small and medium-size X-ray polarimetry missions that are currently under phase A study at NASA and ESA. After briefly pointing out the detection principle of polarization imaging in the soft X-ray band, I am going to review the prospects of X-ray polarimetry for our understanding of AGN ejection (winds and blazar jets) and accretion flows (accretion disk and corona). The X-ray polarimetry signal between 2 and 8 keV is going to give us important new constraints on the geometry of the central engine as well as on the acceleration effects in AGN jets, in particular when combined with spectral and/or polarization information at other wavelengths.

  4. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  5. Difficulties in Estimating the Physical Parameters of Compact Radio Sources in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.

    2016-12-01

    The various factors influencing estimates of the physical parameters of compact radio sources in active galactic nuclei (AGN) using a methods based on uniform models of synchrotron radiation sources are analyzed. It is found that the form of the relativistic electron energy density distribution as a function of magnetic energy density (Ee-EH) in the radio sources is determined by the shape of the electron energy spectrum. It is shown that the very large observed deviations of the estimated energies of the field and relativistic particles from equipartition are mainly caused by nonuniformity of the radio sources. In order to obtain correct estimates of the physical parameters of nonuniform radio sources, it is necessary to know their angular sizes at low frequencies (in the opaque region) and their Doppler factors.

  6. Very-High-Energy Gamma-Ray Observations of Active Galactic Nuclei with VERITAS

    NASA Astrophysics Data System (ADS)

    Quinn, John

    2016-08-01

    VERITAS is an array of four imaging atmospheric Cherenkov telescopes for very-high-energy (VHE, E>100 GeV) gamma-ray astronomy that has been in full scientific operation since 2007. The VERITAS collaboration is conducting several key science projects, one of which is the study of active galactic nuclei (AGN). So far, VERITAS has invested more than 3000 hours in observations of AGN, with approximately 150 objects observed. The program has resulted in the successful detection of 34 AGN as VHE gamma-ray sources, with the majority belonging to the blazar AGN subclass. Significant effort is made to acquire multiwavelength data coincident with the VERITAS observations. An overview of the VERITAS AGN program and its key results will be presented.

  7. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  8. Cloud Condensation Nuclei Activity Associated with Chemical Composition and Precipitation Events

    NASA Astrophysics Data System (ADS)

    Corrigan, C.; Roberts, G. C.; Zauscher, M.; Suski, K.; Noblitts, S.; Sullivan, A. P.; Collett, J. L.

    2010-12-01

    Measurements of ambient cloud condensation nuclei (CCN) concentrations can be improved by simultaneously collecting information on the activation size of the CCN along with chemical composition of the ambient aerosol. A size scanning CCN instrument developed at Scripps Institution of Oceanography was deployed as part of the Calwater project in the Sierra Nevada foothills of California during February and March of 2010. The instrument was capable of determining the critical diameter of activation for the ambient aerosol during a 20 minute scan. During the study period, the CCN activation size increased after each rain event and the activity slowly returned over the next few days. The critical diameter of the overall aerosol was largest (least active) immediately following precipitation events. The average critical diameter would typically decrease by 20% in the time between major precipitation events. This regeneration of the CCN activity can be partially attributed to the transport of sulfate and nitrate pollution to replace the particles that were washed out by the rain, but it may also be due to chemical changes via aging and oxidation mechanisms. Since CCN activity is determined by the particles size and chemical composition, the changes in critical diameter indicate a change in the chemical composition of the available CCN particles. By comparing the critical diameters with aerosol chemical data from a semi-real time aerosol ion chromatograph, the CCN activity was generally correlated with the mass loading of sulfate and nitrate. Deviations from the expected activity of sulfate and nitrate indicate the existence of other compounds that contribute to activity through additional dissolution and by reducing the surface tension. The contribution to CCN activity from additional compounds, including organic surfactants, can be estimated by observing the deviation of the measured critical diameters from values calculated using only the measured nitrate+sulfate mass

  9. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  10. NEAR-INFRARED REVERBERATION BY DUSTY CLUMPY TORI IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kawaguchi, Toshihiro; Mori, Masao

    2011-08-20

    According to recent models, the accretion disk and black hole in active galactic nuclei (AGNs) are surrounded by a clumpy torus. We investigate the NIR flux variation of the torus in response to a UV flash for various geometries. Anisotropic illumination by the disk and the torus self-occultation contrast our study with earlier works. Both the waning effect of each clump and the torus self-occultation selectively reduce the emission from the region with a short delay. Therefore, the NIR delay depends on the viewing angle (where a more inclined angle leads to a longer delay), and the time response shows an asymmetric profile with negative skewness, opposing the results for optically thin tori. The range of the computed delay coincides with the observed one, suggesting that the viewing angle is primarily responsible for the scatter of the observed delay. We also propose that the red NIR-to-optical color of type 1.8/1.9 objects is caused not only by the dust extinction but also the intrinsically red color. Compared with the modest torus thickness, both a thick and a thin tori display weaker NIR emission. A selection bias is thus expected such that NIR-selected AGNs tend to possess moderately thick tori. A thicker torus shows a narrower and more heavily skewed time profile, while a thin torus produces a rapid response. A super-Eddington accretion rate leads to much weaker NIR emission due to the disk self-occultation and the disk truncation by self-gravity. A long delay is expected from an optically thin and/or a largely misaligned torus. Very weak NIR emission, such as in hot-dust-poor active nuclei, can arise from a geometrically thin torus, a super-Eddington accretion rate, or a slightly misaligned torus.

  11. An Investigation into Cloud Condensation Nuclei (CCN) Activation in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Crosbie, E. C.; Youn, J.; Wonaschuetz, A.; Sorooshian, A.

    2013-12-01

    Cloud condensation nuclei (CCN) comprise a key component of the total aerosol with critical influences on weather and climate. The importance of CCN concentration is often linked to radiative feedbacks associated with cloud albedo, which has important consequences for climate sensitivity, however the importance of CCN may also extend to cloud dynamics in convective environments and atmospheric electricity. We present data from fifteen months of field measurements taken in an urban environment on a rooftop of a building at the University of Arizona campus in Tucson, Arizona. CCN were measured at high temporal resolution concurrently with measurements of particle size distributions, meteorological parameters, and the composition of the organic fraction of the aerosol. We investigate monthly, weekly, and diurnal patterns in the data along with activation ratio and apparent activation diameter, which provide important insight into the micro-scale dependencies of cloud activation. Furthermore, we examine the relationship between CCN and local and regional meteorology, with particular focus on the North American Monsoon season, to investigate feedback and response mechanisms relating to dynamics, microphysics, and chemistry. Monsoon aerosol are shown to have favorable composition to allow for higher CCN activity and thus lower apparent activation diameters. This finding coincides with enhanced aqueous-phase chemistry to produce more hygroscopic aerosol constituents such as sulfate and water-soluble organic compounds.

  12. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  13. Observational Evidence for Active Galactic Nuclei Feedback at the Parsec Scale

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Li, Miao

    2011-08-01

    In a hot accretion flow, the radiation from the innermost region of the flow propagates outward and heats the electrons at large radii via Compton scattering. It has been shown in previous works that if the radiation is strong enough, L >~ 2%L Edd, the electrons at the Bondi radius (rB ~ 105 rs ) will be heated to above the virial temperature; thus, the accretion will be stopped. The accretion will recover after the gas cools down. This results in the oscillation of the black hole activity. In this paper, we show that this mechanism is the origin of the intermittent activity of some compact young radio sources. Such intermittency is required to explain the population of these sources. We calculate the timescales of the black hole oscillation and find that the durations of active and inactive phases are 3 × 104(0.1/α)(M/108 M sun)(L/2%L Edd)-1/2 yr and 105(α/0.1)(M/108 M sun) yr, respectively, consistent with those required to explain observations. Such feedback occurring at the parsec scale should be common in low-luminosity active galactic nuclei and should be considered when we consider their matter and energy output.

  14. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  15. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  16. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  17. Obscuring Fraction of Active Galactic Nuclei: Implications from Radiation-driven Fountain Models

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi

    2015-10-01

    Active galactic nuclei (AGNs) are believed to be obscured by an optical thick “torus” that covers a large fraction of solid angles for the nuclei. However, the physical origin of the tori and the differences in the tori among AGNs are not clear. In a previous paper based on three-dimensional radiation-hydorodynamic calculations, we proposed a physics-based mechanism for the obscuration, called “radiation-driven fountains,” in which the circulation of the gas driven by central radiation naturally forms a thick disk that partially obscures the nuclear emission. Here, we expand this mechanism and conduct a series of simulations to explore how obscuration depends on the properties of AGNs. We found that the obscuring fraction fobs for a given column density toward the AGNs changes depending on both the AGN luminosity and the black hole mass. In particular, fobs for NH ≥ 1022 cm-2 increases from ˜0.2 to ˜0.6 as a function of the X-ray luminosity LX in the LX = 1042-44 erg s-1 range, but fobs becomes small (˜0.4) above a luminosity (˜1045 erg s-1). The behaviors of fobs can be understood by a simple analytic model and provide insight into the redshift evolution of the obscuration. The simulations also show that for a given LAGN, fobs is always smaller (˜0.2-0.3) for a larger column density (NH ≥ 1023 cm-2). We also found cases that more than 70% of the solid angles can be covered by the fountain flows.

  18. Ice-active proteins from New Zealand snow tussocks, Chionochloa macra AND C. rigida.

    PubMed

    Wharton, D A; Selvanesan, L; Marshall, C J

    2010-01-01

    The ice active protein profile of New Zealand snow tussocks Chionochloa macra and C. rigida consisted of ice nucleation activity but no antifreeze or recrystallization inhibition activity. The ice nucleation activity was similar in the two species, despite them being collected at different altitudes and at different times. The activity is intrinsic to the plant and is associated with the surface of the leaves. Snow tussocks collect water from fog. Nucleation sites on the surface of their leaves may aid the efficiency of this process.

  19. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  20. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets

    SciTech Connect

    Knopf, Daniel A.; Alpert, Peter A.

    2013-04-24

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(Jhet) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of

  1. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  2. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  3. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-04-14

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  4. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  5. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  6. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Greenland, we have identified 14 distinct basal ice packages over a wide region. The accumulation rate (~17 cm/yr) and ice velocity (~5-200m/yr) are higher than East Antarctica. These accretion bodies are 10-50 km wide, up to 940m thick and can be traced up to 140 km. The volume of the ice enclosed by the accretion ice reflector units is ~70-300 km3. We estimate that the freeze-on process in Petermann has been active for at least 6,000yr. Water has been mapped beneath much of the Greenland ice sheet and adjacent to the inland freeze-on site flat bright reflectors are interpreted as basal water. The onset of fast flow in Petermann Glacier is associated with the development of the thickest unit of freeze-on ice. Other areas of Greenland also have basal freeze-on ice. North of Jakobshavn Isbrae where the ice sheet is ~1000 m thick, evidence exists for a nearly 10 km wide, 200 m thick unit of basal ice in airborne radar. Located close to the site where basal freeze-on outcrops at the ice sheet margin at Pakitsoq, this unit may be the result of freeze-on of water draining from a supraglacial lake. Basal freeze-on is a critical component of subglacial hydrology. The evidence for large scale freeze-on East Antarctica and many areas of Greenland indicates widespread modification of the base of the ice sheet by basal hydrology.

  7. Virus activity on the surface of glaciers and ice sheets

    NASA Astrophysics Data System (ADS)

    Bellas, C. M.; Anesio, A. M.; Telling, J.; Stibal, M.; Barker, G.; Tranter, M.; Yallop, M.; Cook, J.

    2012-12-01

    Viruses are found wherever there is life. They are major components of aquatic ecosystems and through interactions with their hosts they significantly alter global biogeochemical cycles and drive evolutionary processes. Here we focus on the interactions between bacteriophages and their hosts inhabiting the microbially dominated supraglacial ecosystems known as cryoconite holes. The diversity of phages present in the sediments of cryoconites was examined for the first time by using a molecular based approach to target the T4-type bacteriophage. Through phylogenetic analysis it was determined that the phage community was diverse, consisting of strains that grouped with those from other global habitats and those that formed several completely new T4-type phage clusters. The activity of the viral community present on glaciers from Svalbard and the Greenland Ice Sheet was also addressed through a series of incubation experiments. Here new virus production was found to be capable of turning over the viral population approximately twice a day, a rate comparable to marine and freshwater sediments around the globe. This large scale viral production was found to be theoretically capable of accounting for all heterotrophic bacterial mortality in cryoconite holes. The mode of infection that viruses employ in cryoconite holes was also addressed to show that a variety of viral life strategies are likely responsible for the continued dominance of viruses in these unique habitats. The implications of viral activity are discussed in terms of carbon cycling in supraglacial ecosystems.

  8. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.

    PubMed

    Yu, Sally O; Brown, Alan; Middleton, Adam J; Tomczak, Melanie M; Walker, Virginia K; Davies, Peter L

    2010-12-01

    Antifreeze proteins (AFPs) share two related properties: the ability to depress the freezing temperature below the melting point of ice (thermal hysteresis; TH); and the ability to inhibit the restructuring of ice into larger crystals. Since the 'hyperactive' AFPs, which have been more recently discovered, show an order of magnitude more TH than previously characterized AFPs, we have now determined their activities in ice restructuring inhibition (IrI) assays. IrI activities of three TH-hyperactive AFPs and three less TH-active AFPs varied over an 8-fold range. There was no obvious correlation between high TH activity and high IrI activity. However, the use of mutant AFPs demonstrated that severe disruption of ice-binding residues diminished both TH and IrI similarly, revealing that that the same ice-binding residues are crucial for both activities. In addition, bicarbonate ions, which are known to enhance the TH activity of AFPs, also enhanced their IrI activity. We suggest that these seemingly contradictory observations can be partially explained by differences in the coverage of ice by TH-hyperactive and non-hyperactive AFPs, and by differences in the stability of AFP-bound ice under supercooled and recrystallization conditions.

  9. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  10. Why are hyperactive ice-binding-proteins so active?

    NASA Astrophysics Data System (ADS)

    Braslavsky, Ido; Celik, Yeliz; Pertaya, Natalya; Eun Choi, Young; Bar, Maya; Davies, Peter L.

    2008-03-01

    Ice binding proteins (IBPs), also called `antifreeze proteins' or `ice structuring proteins', are a class of proteins that protect organisms from freezing injury. These proteins have many applications in medicine and agriculture, and as a platform for future biotechnology applications. One of the interesting questions in this field focuses on the hyperactivity of some IBPs. Ice binding proteins can be classified in two groups: moderate ones that can depress the freezing point up to ˜1.0 ^oC and hyperactive ones that can depress the freezing point several-fold further even at lower concentrations. It has been suggested that the hyperactivity of IBPs stem from the fact that they block growth out of specific ice surfaces, more specifically the basal planes of ice. Here we show experimental results based on fluorescence microscopy, highlighting the differences between moderate IBPs and hyperactive IBPs. These include direct evidence for basal plane affinity of hyperactive IBPs, the effects of IBPs on growth-melt behavior of ice and the dynamics of their interaction with ice.

  11. Active microwave measurements of Arctic sea ice under summer conditions

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Gogineni, S. P.

    1985-01-01

    Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.

  12. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  13. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  14. Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies

    NASA Astrophysics Data System (ADS)

    Gordon, Yjan A.; Owers, Matt S.; Pimbblet, Kevin A.; Croom, Scott M.; Alpaslan, Mehmet; Baldry, Ivan K.; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Conselice, Christopher J.; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M.; Gunawardhana, Madusha L. P.; Loveday, Jonathan; Taylor, Edward N.; Wang, Lingyu

    2017-03-01

    There exist conflicting observations on whether or not the environment of broad- and narrow-line active galatic nuclei (AGN) differ and this consequently questions the validity of the AGN unification model. The high spectroscopic completeness of the Galaxy and Mass Assembly (GAMA) survey makes it ideal for a comprehensive analysis of the close environment of galaxies. To exploit this, and conduct a comparative analysis of the environment of broad- and narrow-line AGN within GAMA, we use a double-Gaussian emission line fitting method to model the more complex line profiles associated with broad-line AGN. We select 209 type 1 (i.e. unobscured), 464 type 1.5-1.9 (partially obscured), and 281 type 2 (obscured) AGN within the GAMA II data base. Comparing the fractions of these with neighbouring galaxies out to a pair separation of 350 kpc h-1 and Δz < 0.012 shows no difference between AGN of different type, except at separations less than 20 kpc h-1 where our observations suggest an excess of type 2 AGN in close pairs. We analyse the properties of the galaxies neighbouring our AGN and find no significant differences in colour or the star formation activity of these galaxies. Further to this, we find that Σ5 is also consistent between broad- and narrow-line AGN. We conclude that the observations presented here are consistent with AGN unification.

  15. CAN WE REPRODUCE THE X-RAY BACKGROUND SPECTRAL SHAPE USING LOCAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Gandhi, Poshak

    2013-06-20

    The X-ray background (XRB) is due to the aggregate of active galactic nuclei (AGNs), which peak in activity at z {approx} 1 and is often modeled as the sum of different proportions of unabsorbed, moderately, and heavily absorbed AGN. We present the summed spectrum of a complete sample of local AGN (the Northern Galactic Cap of the 58 month Swift/BAT catalog, z < 0.2) using 0.4-200 keV data and directly determine the different proportions of unabsorbed, moderately and heavily absorbed AGN that make up the summed spectrum. This stacked low redshift AGN spectrum is remarkably similar in shape to the XRB spectrum (when shifted to z {approx} 1), but the observed proportions of different absorption populations differ from most XRB synthesis models. AGN with Compton-thick absorption account for only {approx}12% of the sample, but produce a significant contribution to the overall spectrum. We confirm that Compton reflection is more prominent in moderately absorbed AGN and that the photon index differs intrinsically between unabsorbed and absorbed AGN. The AGN in our sample account for only {approx}1% of the XRB intensity. The reproduction of the XRB spectral shape suggests that strong evolution in individual AGN properties is not required between z {approx} 0 and 1.

  16. NGC 5252: a pair of radio-emitting active galactic nuclei?

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong; Yang, Jun; Paragi, Zsolt; Liu, Xiang; An, Tao; Bianchi, Stefano; Ho, Luis C.; Cui, Lang; Zhao, Wei; Wu, Xiaocong

    2017-01-01

    The X-ray source CXO J133815.6+043255 has counterparts in the UV, optical, and radio bands. Based on the multiband investigations, it has been recently proposed by Kim et al. as a rarely seen off-nucleus ultraluminous X-ray (ULX) source with a black hole mass of ≥104 M⊙ in the nearby Seyfert galaxy NGC 5252. To explore its radio properties at very high angular resolution, we performed very long-baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.7 GHz. We find that the radio counterpart is remarkably compact among the known ULXs. It does not show a resolved structure with a resolution of a few milliarcsecond (mas), and the total recovered flux density is comparable to that measured in earlier sub-arcsecond-resolution images. The compact radio structure, the relatively flat spectrum, and the high radio luminosity are consistent with a weakly accreting supermassive black hole in a low-luminosity active galactic nucleus. The nucleus of NGC 5252 itself has similar radio properties. We argue that the system represents a relatively rare pair of active galactic nuclei, where both components emit in the radio.

  17. Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Wong, J. P. S.; Lee, A. K. Y.; Slowik, J. G.; Cziczo, D. J.; Leaitch, W. R.; Macdonald, A.; Abbatt, J. P. D.

    2011-11-01

    Changes in the hygroscopicity of ambient biogenic secondary organic aerosols (SOA) due to controlled OH oxidation were investigated at a remote forested site at Whistler Mountain, British Columbia during July of 2010. Coupled photo-oxidation and cloud condensation nuclei (CCN) experiments were conducted on: i) ambient particles exposed to high levels of gas-phase OH, and ii) the water-soluble fraction of ambient particles oxidized by aqueous-phase OH. An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition and degree of oxidation (O:C ratio) of the organic component of ambient aerosol due to OH oxidation. The CCN activity of size-selected particles was measured to determine the hygroscopicity parameter ($\\kappa$org,CCN) for particles of various degrees of oxygenation. In both cases, the CCN activity of the oxidized material was higher than that of the ambient particles. In general, $\\kappa$org,CCN of the aerosol increases with its O:C ratio, in agreement with previous laboratory measurements.

  18. The Complete Infrared View of Active Galactic Nuclei from the 70 Month Swift/BAT Catalog

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kohei; Ricci, Claudio; Ueda, Yoshihiro; Matsuoka, Kenta; Toba, Yoshiki; Kawamuro, Taiki; Trakhtenbrot, Benny; Koss, Michael J.

    2017-01-01

    We systematically investigate the near- to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra-hard X-ray (14–195 keV) survey. Out of 606 non-blazar AGNs in the Swift/BAT 70 month catalog at high galactic latitudes of | b| > 10^\\circ , we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR luminosities over five orders of magnitude (41< {log}{L}14{--195}< 46). Informed by previous measurements of the intrinsic spectral energy distribution of AGNs, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low star-formation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent unified scheme. We also show that the completeness of the WISE color–color cut in selecting Swift/BAT AGNs increases strongly with 14–195 keV luminosity.

  19. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  20. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Nakagawa, Takao; Matsuta, Keiko

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  1. The different neighbours around Type-1 and Type-2 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Korn, Andreas J.

    2014-06-01

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super massive black hole. To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles. This model--called AGN unification--has been successful in predicting, for example, the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged and it is debatable whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS; ref. ) Data Release 7 (DR7; ref. ) and Galaxy Zoo. We find strong differences in the colour and AGN activity of the neighbours to Type-1 and Type-2 AGN and in how the fraction of AGN residing in spiral hosts changes depending on the presence or not of a neighbour. These findings suggest that an evolutionary link between the two major AGN types might exist.

  2. Tracing the Physical Conditions in Active Galactic Nuclei with Time-Dependent Chemistry

    NASA Astrophysics Data System (ADS)

    Meijerink, Rowin; Spaans, Marco; Kamp, Inga; Aresu, Giambattista; Thi, Wing-Fai; Woitke, Peter

    2013-10-01

    We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+, and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+, and H3O+; and HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in the active galactic nucleus (AGN). The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 104 years. Through Atacama large millimeter array observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the supermassive black hole accretion rate. Strong evolutionary trends, on time scales of 104-108 years are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time-dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.

  3. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  4. Active Galactic Nuclei In Cosmological Simulations - I. Formation of black holes and spheroids through mergers

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J.; Guiderdoni, B.

    2005-12-01

    This is the first paper of a series on the methods and results of the Active Galactic Nuclei In Cosmological Simulations (AGNICS) project, which incorporates the physics of active galactic nuclei (AGNs) into Galaxies In Cosmological Simulations (GalICS), a galaxy formation model that combines large cosmological N-body simulations of dark matter hierarchical clustering and a semi-analytic approach to the physics of the baryons. The project explores the quasar-galaxy link in a cosmological perspective, in response to growing observational evidence for a close relation between supermassive black holes (SMBHs) and spheroids. The key problems are the quasar fuelling mechanism, the origin of the black hole (BH)-to-bulge mass relation, the causal and chronological link between BH growth and galaxy formation, the properties of quasar hosts and the role of AGN feedback in galaxy formation. This first paper has two goals. The first is to describe the general structure and assumptions that provide the framework for the AGNICS series. The second is to apply AGNICS to studying the joint formation of SMBHs and spheroids in galaxy mergers. We investigate under what conditions this scenario can reproduce the local distribution of SMBHs in nearby galaxies and the evolution of the quasar population. AGNICS contains two star formation modes: a quiescent mode in discs and a starburst mode in proto-spheroids, the latter triggered by mergers and disc instabilities. Here we assume that BH growth is linked to the starburst mode. The simplest version of this scenario, in which the BH accretion rate and the star formation rate in the starburst component are simply related by a constant of proportionality, does not to reproduce the cosmic evolution of the quasar population. A model in which , where ρburst is the density of the gas in the starburst and ζ~= 0.5, can explain the evolution of the quasar luminosity function in B band and X-rays (taking into account the presence of obscured AGNs

  5. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  6. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  7. Sea-ice hazards, associated risks and implications for human activities in the Arctic

    NASA Astrophysics Data System (ADS)

    Eicken, Hajo; Mahoney, Andrew; Jones, Joshua

    2014-05-01

    Polar sea ice serves important functions in the Earth system, including as climate regulator, habitat for diverse biological communities, or substrate and platform for a range of human activities. Subsumed under the concept of sea-ice services, polar ice covers are associated with benefits and risks of harm to ecosystems and people. Recent changes in Arctic ice extent, thickness and mobility have transformed services derived from sea ice. We summarize how these changes have diminished some benefits derived from the ice cover, while increasing others. More important, growing maritime activities in the North and a changing ice cover drive a need for better understanding of sea-ice hazards and the risk they represent in the context of human activities in the Arctic. Three major aspects of this problem are: (1) Broader risks associated with a rapid reduction in summer ice extent, such as geographic shifts in marine ecosystems and warming of submarine permafrost and adjacent land; (2) hazards resulting from changes in sea ice extent and dynamics such as increased coastal erosion and threats to infrastructure; and (3) risks derived from the combination of sea-ice hazards and human activities such as shipping or offshore resource development. Problem (1) is typically seen as a slow-onset hazard that requires a response in the form of mitigation and adaptation. At the same time, the importance of linkages between summer sea-ice reduction to processes outside of the Arctic has only recently emerged (such as atmospheric circulation patterns and extreme weather events) and remains difficult to quantify. Hazards and risks subsumed under (2) and (3) are more localized but with potentially major ecological and socio-economic consequences beyond the Arctic. Drawing on examples from our research in Alaska, we review and illustrate key aspects of sea-ice hazards in terms of risks to ecosystems, people and infrastructure in the coastal zone and Arctic shelf seas. In the Pacific

  8. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  9. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  10. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  11. Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

    NASA Astrophysics Data System (ADS)

    Leng, C.; Zhang, Q.; Zhang, D.; Zhang, H.; Xu, C.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C.

    2014-07-01

    New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.

  12. Anti-ice nucleating activity of polyphenol compounds against silver iodide.

    PubMed

    Koyama, Toshie; Inada, Takaaki; Kuwabara, Chikako; Arakawa, Keita; Fujikawa, Seizo

    2014-10-01

    Freeze-avoiding organisms survive sub-zero temperatures without freezing in several ways, such as removal of ice nucleating agents (INAs), production of polyols, and dehydration. Another way is production of anti-ice nucleating agents (anti-INAs), such as has been reported for several antifreeze proteins (AFPs) and polyphenols, that inhibit ice nucleation by inactivating INAs. In this study, the anti-ice nucleating activity of five polyphenol compounds, including flavonoid and tannin compounds of both biological and synthetic origin, against silver iodide (AgI) was examined by measuring the ice nucleation temperature in emulsified polyphenol solutions containing AgI particles. The emulsified solutions eliminated the influence of contamination by unidentified INAs, thus enabling examination of the anti-ice nucleating activity of the polyphenols against AgI alone. Results showed that all five polyphenol compounds used here have anti-ice nucleating activities that are unique compared with other known anti-INAs, such as fish AFPs (type I and III) and synthetic polymers (poly(vinyl alcohol), poly(vinylpyrrolidone) and poly(ethylene glycol)). All five polyphenols completely inactivated the ice nucleating activity of AgI even at relatively low temperatures, and the first ice nucleation event was observed at temperatures between -14.1 and -19.4°C, compared with between -8.6 and -11.8°C for the fish AFPs and three synthetic polymers. These anti-ice nucleating activities of the polyphenols at such low temperatures are promising properties for practical applications where freezing should be prevented.

  13. The C shell, an active detector of UH nuclei. [in cosmic radiation

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Clinton, Robert R.

    1990-01-01

    This paper gives a brief description of the current status of the present program to develop a modular array of large electronic particle detectors. These modules were designed to study the UH nuclei in the cosmic radiation with eventual deployment on the Space Station or at a lunar base. This array would determine the abundances of elements from iron to the actinides and directly measure the energies of the lower energy nuclei. If the array was deployed on the Space Station, it would use the geomagnetic threshold to place limits on the higher energy nuclei, thus studying the energy spectrum up to about 10 GeV/n. Deployed at a lunar base, it would detect nuclei with energies down to the instrumental limit. Smaller versions could be flown on balloons to test and refine the modules.

  14. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement.

    PubMed

    Soechting, J F; Burton, J E; Onoda, N

    1978-08-18

    The relationship between unit activity in interpositus (8 units) and red nuclei (11 units) and the EMG activity of the biceps during intentional elbow flexion movements was investigated by means of cross-correlation analysis. This analysis showed that there were long-lasting (200 msec) changes in the probability of EMG activity both before and after a single spike in neurons which covaried with the motor output. The dependence of the activity of these units on sensory inputs was investigated by (1) calculating the quantitative relationship between angular displacement and unit activity and (2) recording unit activity after the sensory input from peripheral afferents had been eliminated by dorsal rhizotomy.

  15. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  16. Piecing together the X-ray background: bolometric corrections for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.

    2007-11-01

    The X-ray background can be used to constrain the accretion history of supermassive black holes (SMBHs) in active galactic nuclei (AGN), with the SMBH mass density related to the energy density due to accretion. A knowledge of the hard X-ray bolometric correction, κ2-10keV, is a vital input into these studies, as it allows us to constrain the parameters of the accretion responsible for SMBH growth. Earlier studies assumed a constant bolometric correction for all AGN, and more recent work has suggested accounting for a dependence on AGN luminosity. Until recently, the variations in the disc emission in the ultraviolet (UV) have not been taken into account in this calculation; we show that such variations are important by construction of optical-to-X-ray spectral energy distributions for 54 AGN. In particular, we use Far Ultraviolet Spectroscopic Explorer (FUSE) UV and X-ray data from the literature to constrain the disc emission as well as possible. We find evidence for very significant spread in the bolometric corrections, with no simple dependence on luminosity being evident. Populations of AGN such as narrow-line Seyfert 1 nuclei, radio-loud and X-ray-weak AGN may have bolometric corrections which differ systematically from the rest of the AGN population. We identify other sources of uncertainty including intrinsic extinction in the optical-UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between the bolometric correction and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15-25, and above which it is typically 40-70. We consider the potential-implied parallels with the low/hard and high/soft states in Galactic black hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multistate description of AGN

  17. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  18. Signatures of large-scale magnetic fields in active galactic nuclei jets: transverse asymmetries

    NASA Astrophysics Data System (ADS)

    Clausen-Brown, E.; Lyutikov, M.; Kharb, P.

    2011-08-01

    We investigate the emission properties that a large-scale helical magnetic field imprints on active galactic nuclei (AGN) jet synchrotron radiation. A cylindrically symmetric relativistic jet and large-scale helical magnetic field produce significant asymmetrical features in transverse profiles of fractional linear polarization, intensity, the Faraday rotation and spectral index. The asymmetrical features of these transverse profiles correlate with one another in ways specified by the handedness of the helical field, the jet viewing angle (θob) and the bulk Lorentz factor of the flow (Γ). Thus, these correlations may be used to determine the structure of the magnetic field in the jet. In the case of radio galaxies (θob˜ 1 rad) and a subclass of blazars with particularly small viewing angles (θob≪ 1/Γ), we find an edge-brightened intensity profile that is similar to that observed in the radio galaxy M87. We present observations of the AGNs 3C 78 and NRAO 140 that display the type of transverse asymmetries that may be produced by large-scale helical magnetic fields.

  19. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  20. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  1. A multizone model for composite disk-corona structure and spectral formation in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shimura, Toshiya; Mineshige, Shin; Takahara, Fumio

    1995-01-01

    We study a composite disk-corona structure in active galactic nuclei (AGN) by solving for radiative transfer, hydrostatic balance, and energy balance at each layer with a different vertical height. A key assumption is that a fraction f of total energy is dissipated in a corona with a Thomson optical depth of tauC, and a remaining fraction, 1-f, within a main body of the disk. As f increases, a two-phased structure grows with an abrupt temperature jump at the interface. As a result, the emergent spectrum varies from a blackbody-like spectrum to a power-law spectrum with a high-energy cutoff. The power-law index is insensitive to a mass of a central black hole, accretion rate, and tauC, and decreases with an increase of f, reaching approximately 0.9 for f approximately = 1. The cutoff energy (Ecutoff) is, on the other hand, related to tauC as tauC Ecutoff approximately = 90 keV. The radiative field is a blackbody at the midplane of the disk, but has a power-law energy distribution near the surface due to a reflection of high-energy photons emanating from the corona. The resultant spectra thus produce litle UV bumps. To account for the observed AGN spectra, therefore, we should consider more complicated situations such as a partial coverage of hot corona and an effect of absorption by heavy elements.

  2. First direct comparison of high and low ionization line kinematics in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.

    1995-01-01

    We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.

  3. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  4. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  5. Long-term variability of active galactic nuclei from the "Planck" catalog

    NASA Astrophysics Data System (ADS)

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-07-01

    A complete sample of 104 bright active galactic nuclei (AGNs) from the "Planck" catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.

  6. Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Lott, B.; Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.

    2015-03-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.

  7. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  8. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  9. Obscured active galactic nuclei triggered in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; Le Floc'h, Emeric; Juneau, Stéphanie; da Cunha, Elisabete; Salvato, Mara; Civano, Francesca; Marchesi, Stefano; Gabor, J. M.; Ilbert, Olivier; Laigle, Clotilde; McCracken, H. J.; Hsieh, Bau-Ching; Capak, Peter

    2017-03-01

    We present a structural study of 182 obscured active galactic nuclei (AGNs) at z ≤ 1.5, selected in the Cosmic Evolution Survey field from their extreme infrared to X-ray luminosity ratio and their negligible emission at optical wavelengths. We fit optical to far-infrared spectral energy distributions and analyse deep Hubble Space Telescope imaging to derive the physical and morphological properties of their host galaxies. We find that such galaxies are more compact than normal star-forming sources at similar redshift and stellar mass, and we show that it is not an observational bias related to the emission of the AGN. Based on the distribution of their UVJ colours, we also argue that this increased compactness is not due to the additional contribution of a passive bulge. We thus postulate that a vast majority of obscured AGNs reside in galaxies undergoing dynamical compaction, similar to processes recently invoked to explain the formation of compact star-forming sources at high redshift.

  10. The effects of irradiation on cloud evolution in active galactic nuclei

    SciTech Connect

    Proga, Daniel; Smith, Daniel; Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-01-01

    We report on the first phase of a study of cloud irradiation. We study irradiation by means of numerical, two-dimensional, time-dependent radiation hydrodynamic simulations of a strongly irradiated cloud. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and focus instead on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole; instead, they undergo very rapid and major evolution in shape, size, and physical properties. In particular, the cloud and its remnants become optically thin in less than 1 sound-crossing time and before they can travel a significant distance (a few initial-cloud radii). We also find that a cloud can be accelerated as a whole under quite extreme conditions, i.e., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small, and unless the cloud is optically thin, it quickly undergoes changes in size and shape. We discuss implications for the modeling and interpretation of the broad-line regions of active galactic nuclei.

  11. Upper Limits to the Diffuse Neutrino Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bolesta, Jeffery W.

    1997-07-01

    In November of 1987 a muon detector dubbed the Short Prototype String (SPS) was successfully operated for about 30 hours in the deep ocean approximately 35 km west of the big island of Hawaii. The original purpose of the experiment was to demonstrate the technical feasibility of conducting neutrino astronomy in the deep ocean, and to serve as the prototype to the DUMAND experiment. Hence, the data were originally analyzed to measure the deep ocean flux of atmospheric muons as a proof of concept. The more recent theoretical investigations of neutrino production in Active Galactic Nuclei (AGN) has motivated a search of the data for the unique signature of neutrino-induced particle cascades. The optical properties of the deep ocean allows for surprisingly large detection volumes that grow with incident neutrino energy. It is found through Monte Carlo simulation that the fiducial mass for this type of search is ~7 × 106 tons of water at incident neutrino energies of 1 PeV (1015eV). This results in an exposure of 19.2 kton-years (kty) at this energy for 24 hours of operation. No evidence for neutrino-induced cascades was found in ~20 hours of detector livetime. This leads to the most stringent limits of AGN neutrino fluxes above the PeV scale yet published.

  12. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    SciTech Connect

    Dong, X. Y.; De Robertis, M. M.

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  13. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  14. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.-Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L.

    2016-12-01

    We provide a novel, unifying physical interpretation on the origin, average shape, scatter, and cosmic evolution for the main sequences of star-forming galaxies and active galactic nuclei (AGNs) at high redshift z≳ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent star formation rate functions based on the latest UV/far-IR data from HST/Herschel, and related statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time-coordinated processes.

  15. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  16. Ultraviolet and X-ray variability of active galactic nuclei with Swift

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Fabian, A. C.

    2017-01-01

    We analyse a sample of 21 active galactic nuclei using data from the Swift satellite to study the variability properties of the population in the X-ray, UV and optical band. We find that the variable part of the UV-optical emission has a spectrum consistent with a power law, with an average index of -2.21 ± 0.13, as would be expected from central illumination of a thin disc (index of -7/3). We also calculate the slope of a power law from UV to X-ray variable emission, αOX, Var; the average for this sample is αOX, Var = -1.06 ± 0.04. The anticorrelation of αOX with the UV luminosity, LUV, previously found in the average emission is also present in the variable part: αOX, Var = ( - 0.177 ± 0.083)log (Lν, Var(2500 Å)) + (3.88 ± 2.33). Correlated variability between the emission in X-rays and UV is detected significantly for 9 of the 21 sources. All these cases are consistent with the UV lagging the X-rays, as would be seen if the correlated UV variations were produced by the reprocessing of X-ray emission. The observed UV lags are tentatively longer than expected for a standard thin disc.

  17. A SEARCH FOR FAST X-RAY VARIABILITY FROM ACTIVE GALACTIC NUCLEI USING SWIFT

    SciTech Connect

    Pryal, Matthew; Falcone, Abe; Stroh, Michael

    2015-03-20

    Blazars are a class of active galactic nuclei (AGNs) known for their very rapid variabilty in the high energy regions of the electromagnetic spectrum. Despite this known fast variability, X-ray observations have generally not revealed variability in blazars with rate doubling or halving timescales less than approximately 15 minutes. Since its launch, the Swift X-ray Telescope has obtained 0.2–10 keV X-ray data on 143 AGNs, including blazars, through intense target of opportunity observations that can be analyzed in a multiwavelength context and used to model jet parameters, particularly during flare states. We have analyzed this broad Swift data set in a search for short timescale variability in blazars that could limit the size of the emission region in the blazar jet. While we do find several low-significance possible flares with potential indications of rapid variability, we find no strong evidence for rapid (<15 minutes) doubling or halving times in flares in the soft X-ray energy band for the AGNs analyzed.

  18. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  19. The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Celotti, A.; Charles, E.; Chekhtman, A.; Chen, A. W.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cotter, G.; Cutini, S.; D'Elia, V.; Dermer, C. D.; de Angelis, A.; de Palma, F.; De Rosa, A.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Healey, S. E.; Hill, A. B.; Horan, D.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lavalley, C.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Malaguti, G.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piranomonte, S.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, Ł.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Taylor, G. B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Ubertini, P.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-05-01

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>10°) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties—such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities—and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  20. FINE STRUCTURAL ALTERATIONS OF INTERPHASE NUCLEI OF LYMPHOCYTES STIMULATED TO GROWTH ACTIVITY IN VITRO

    PubMed Central

    Tokuyasu, K.; Madden, S. C.; Zeldis, L. J.

    1968-01-01

    This report describes fine structural changes of interphase nuclei of human peripheral blood lymphocytes stimulated to growth by short-term culture with phytohemagglutinin. Chromatin is found highly labile, its changes accompanying the sequential increases of RNA and DNA synthesis which are known to occur in lymphocyte cultures. In "resting" lymphocytes, abundant condensed chromatin appears as a network of large and small aggregates. Early in the response to phytohemagglutinin, small aggregates disappear during increase of diffuse chromatin regions. Small aggregates soon reappear, probably resulting from disaggregation of large masses of condensed chromatin. Loosened and highly dispersed forms then appear prior to the formation of prophase chromosomes. The loosened state is found by radioautography to be most active in DNA synthesis. Small nucleoli of resting lymphocytes have concentric agranular, fibrillar, and granular zones with small amounts of intranucleolar chromatin. Enlarging interphase nucleoli change chiefly (1) by increase in amount of intranucleolar chromatin and alteration of its state of aggregation and (2) by increase in granular components in close association with fibrillar components. PMID:5699935

  1. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  2. Black hole mass estimation from X-ray variability measurements in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nikolajuk, M.; Papadakis, I. E.; Czerny, B.

    2004-05-01

    We propose a new method of estimation of the black hole masses in active galactic nuclei (AGN) based on the normalized excess variance, σ2nxs. We derive a relation between σ2nxs, the length of the observation, T, the light-curve bin size, Δt, and the black hole mass, assuming that (i) the power spectrum above the high-frequency break, νbf, has a slope of -2, (ii) the high-frequency break scales with black hole mass, (iii) the power-spectrum amplitude (in frequency-power space) is universal and (iv) σ2nxs is calculated from observations of length T < 1/νbf. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the MBH-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass, but the use of σ2nxs has the big advantage of being applicable to relatively low-quality data.

  3. Precise Masses of Black Holes in the Nuclei of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Braatz, James A., III; Kuo, C.; Greene, J.; Condon, J.; Schenker, M.; Reid, M.; Impellizzeri, V.; Henkel, C.; Zaw, I.; Lo, K. Y.

    2010-01-01

    Most elliptical and bulged spiral galaxies contain a nuclear black hole having a mass that correlates with the bulge velocity dispersion (σ). This M-σ relation suggests there is a strong link between the formation of the nuclear black hole and the formation of its host galaxy. The relationship, however, is poorly constrained for low-mass (< 107.5 solar mass) black holes, where there are few measurements. In addition, optically measured BH masses can be uncertain by a factor of a few. Water vapor masers in the nuclei of AGN can trace the rotation curve of gas directly in the black hole's sphere of influence, and provide precise black hole masses (uncertainty < 20%). We are mapping circumnuclear masers in nearby active galaxies with the goal of assembling a statistically meaningful set of maser-determined black hole masses. In addition to constraining the M-σ relation at low mass, our observations will also help calibrate optical measurements of black hole masses. Here we present recent VLBI maser maps and black hole masses measured as part of this program.

  4. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  5. Measurements of M-Shell Dielectronic Recombination for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D.; Schnell, M.; Savin, D. W.; Mueller, A.; Schippers, S.; Schmidt, E. W.; Brandau, C.; Lestinsky, M.; Sprenger, F.; Wolf, A.

    2005-05-01

    XMM-Newton and Chandra spectroscopy of active galactic nuclei (AGNs) shows a rich spectrum of X-ray absorption lines. These AGN observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner shell photoexcitation of M-shell iron. Modeling these UTA features is currently limited by uncertainties in the low temperature DR data for M-shell iron. In order to resolve this issue and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Other commonly used laboratory methods for studying DR (e.g., electron beam ion traps [EBITs]) are unable to measure the relevant low energy DR resonances. Storage rings are currently the only laboratory method capable of studying low temperature DR. We are also providing our data to atomic theorist to benchmark their modern DR calculations. Our initial results indicate that state-of-the-art theory cannot reliably predict the needed low temperature M-shell DR rate coefficients. Here we will report our recent results for DR of Fe XIV and Fe XIII and plans for future work. This work is supported part by NASA, the German Federal Ministry for Education and Research, and the German Research Council.

  6. Changing-Look Active Galactic Nuclei With The Time Domain Spectroscopic Survey (TDSS)

    NASA Astrophysics Data System (ADS)

    Runnoe, J.

    2015-09-01

    Changing-look active galactic nuclei (CL-AGNs) present a unique opportunity to study AGN unification and physics. They are observed to transformation between the Type 1 and 2 classifications, supporting a picture in which both orientation to the observer and intrinsic spectral and luminosity evolution can play important roles in unification. In the same spirit, CL-AGNs also offer a way to study behavior brought about by abrupt changes in the accretion rate and may represent a previously unappreciated mode of quasar variability: prolonged "on-" and "off-states". CL-AGNs are uncommon, with only a handful identified to date, but several have been discovered in the Time Domain Spectroscopic Survey (TDSS), and these are likely just the tip of the iceberg. The TDSS offers a promising way of discovering substantial numbers of CL-AGN because it will revisit several thousand objects with previous spectra from the SDSS, many of which are selected based on substantial photometric variability. A statistical sample of these objects will allow us to move beyond the detailed case studies and start to understand the underlying physical mechanisms responsible for these dramatic spectral changes. I will describe our systematic search for CL-AGN in the TDSS and discuss what we have learned from a growing sample of these objects.

  7. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  8. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  9. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  10. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  11. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  12. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  13. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  14. LOW-MASS ACTIVE GALACTIC NUCLEI WITH RAPID X-RAY VARIABILITY

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2016-04-10

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median M{sub BH} = 1.2 × 10{sup 6} M{sub ⊙} and median L{sub bol}/L{sub Edd} = 0.44. The sample follows the M{sub BH}–σ{sub *} relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  15. Study of torus structure of low-luminosity active galactic nuclei with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, T.

    2015-09-01

    We investigate the nature of the torus structure of eight low-luminosity active galactic nuclei (LLAGNs; NGC 1566, NGC 2655, NGC 3718, NGC 3998, NGC 4138, NGC 4941, NGC 5273 and NGC 5643) based on the broad band X-ray spectra (0.5-200 keV) obtained with Suzaku and Swift/BAT. Their X-ray luminosities are smaller than 1e 42 erg/s, while the Eddington ratios span a range from 1e-4 to 1e-2. No significant iron- Kalpha line is detected in the spectra of two LLAGNs with the lowest Eddington ratios (<3e-4) in our sample (NGC 3718 and NGC 3998), suggesting that their tori are little developed. The others show the iron-Kalpha equivalent widths larger than 100 eV. For these six LLAGNs, we utilize the Monte-Carlo based simulation code by Ikeda 09 to constrain the torus parameters by assuming a nearly spherical geometry. The torus solid- angles in three sources (NGC 2655, NGC 4138, and NGC 4941) are constrained to be Omega/2pi > 0.34, and the rest are found to have torus column-densities of logNrmH > 22.7. These results suggest that there are two types of LLAGNs, (1) those where the torus is very small and little mass accretion takes place, and (2) those where the torus is moderately developed and a sufficient amount of gas is supplied to the black hole.

  16. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  17. The SAMI Galaxy Survey: unveiling the nature of kinematically offset active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Schaefer, A. L.; Scott, N.; Fogarty, L. M. R.; Ho, I.-T.; Medling, A. M.; Leslie, S. K.; Bland-Hawthorn, J.; Bryant, J. J.; Croom, S. M.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Owers, M. S.; Richards, S. N.; Sharp, R.

    2015-08-01

    We have observed two kinematically offset active galactic nuclei (AGN), whose ionized gas is at a different line-of-sight velocity to their host galaxies, with the Sydney-AAO Multi-object Integral field spectrograph (SAMI). One of the galaxies shows gas kinematics very different from the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionized gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but integral field spectroscopy or other data are required to determine their true nature.

  18. Jet signatures of black holes: From Sgr A* to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Eckart, A.; Lämmerzahl, C.; Roland, J.; Brockamp, M.; Hackmann, E.; Kunz, J.; Macias, A.; Malchow, R.; Sabha, N.; Shahzamanian, B.

    2015-06-01

    Detailed and long-term VLBI (Very Long Baseline Interferometry) studies of the variable jets of supermassive black holes helps us to understand the emission processes of these fascinating phenomena. When observed and traced precisely, jet component kinematics reveals details about the potential motion of the jet base. Following this motion over decades with VLBI monitoring reveals - in some cases - the signatures of precession. While several processes can cause precession, the most likely cause seems to be a supermassive binary black hole in the central region of the AGN. We present examples of the analysis of high-resolution VLBI observations which provides us with insight into the physics of these objects and reveals evidence for the presence of double black hole cores. EHT (Event Horizon Telescope) observations will probably soon tell us more about the jet origin and launching mechanism at the very centers of nearby active galactic nuclei. An important question to be addressed by the EHT and related observations will be whether Sgr A\\star, the supermassive black hole in the Galactic Center, has a jet as well.

  19. Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Algaba, J. C.; Nakamura, M.; Asada, K.; Lee, S. S.

    2017-01-01

    In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.

  20. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    SciTech Connect

    Scoville, N.; Murchikova, L.

    2013-12-10

    We examine the use of submillimeter (submm) recombination lines of H, He, and He{sup +} to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He{sup +} are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM{sub ION} = n{sub e} × n {sub ion} × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  1. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  2. The optical polarization signatures of fragmented equatorial dusty structures in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Stalevski, M.

    2015-12-01

    If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal structure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 -- 8000 Å polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (˜ 10 % at best) together with highly variable polarization position angles.

  3. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    SciTech Connect

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed o