Science.gov

Sample records for active integrated antennas

  1. Optimisation Of An Integrated Planar Magnetic For Active Antenna Panels

    NASA Astrophysics Data System (ADS)

    Strixner, E.; Godzik, S.; Drechsler, E., , Dr.

    2011-10-01

    The envisaged German Space Missions HRWS and TerraSAR-X follow-on have triggered the development of a new generation of low voltage DC power supplies for active antennas at Astrium GmbH. The basic approachis tointegrate all power, digital, RF electronics and RF radiators required for one antenna tile into one common unit. Due to the high number of electronic boxes needed for one antenna it is essential to optimise cost, volume, efficiency and weight. The development of an integrated planar magnetic for power conversion is one contribution to this overall optimisation process. The focus of this presentation is the development of an integrated planar magnetic used for a half-bridge forward converter with secondary side synchronous current doubler. The converter is supplied from a 100 V power bus and delivers a total average output power of 280W for the drain supply of the pulsed RF power stages.

  2. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  3. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    NASA Technical Reports Server (NTRS)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  4. Active antenna

    NASA Astrophysics Data System (ADS)

    Sutton, John F.

    1994-05-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  5. Active antenna

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1994-01-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  6. Transparent antennas for solar cell integration

    NASA Astrophysics Data System (ADS)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  7. Integrated broadband bowtie antenna on transparent substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Wang, Shiyi; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T.

    2015-03-01

    The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.

  8. Integration of microbolometers with infrared microstrip antennas

    NASA Astrophysics Data System (ADS)

    Codreanu, Iulian; Boreman, Glenn D.

    2002-12-01

    We report on various integration schemes of infrared microbolometers with microstrip antennas. The first integration design consists of two gold (Au) rectangular microstrip patches coupled along the radiating edges by a narrow niobium (Nb) strip. Devices using silicon oxide are compared to devices using amorphous silicon as antenna substrate. An extension of the twin-patch detector design is the microstrip dipole antenna-coupled microbolometer. Two ways of connecting the device to the contact pads via narrow dc leads are presented and compared. The contribution of the dc leads to the detector response is eliminated by directly connecting the dipole to the contact pads. The thermal isolation of the microbolometer from the silicon wafer is improved by incorporating air into the antenna dielectric substrate. This leads to higher detector responsivity and shifts the resonance towards longer antennas. The implementation of a bridge microstrip dipole antenna structure is also discussed.

  9. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  10. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  11. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  12. Apparatus and methods for packaging integrated circuit chips with antenna modules providing closed electromagnetic environment for integrated antennas

    NASA Technical Reports Server (NTRS)

    Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)

    2008-01-01

    Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.

  13. Substrate optimization for integrated circuit antennas

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. G.; Katehi, P. B.; Rutledge, D. B.

    1983-07-01

    The reciprocity theorem and integral equation techniques are employed to determine the properties of integrated-circuit antennas. The effect of surface waves is considered for dipole and slot elements on substrates. The radiation and bandwidth of microstrip dipoles are optimized in terms of substrate thickness and permittivity.

  14. A 1 GHz Oscillator-Type Active Antenna

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Scardelletti, Maximilian; Ponchak, George E.

    2008-01-01

    Wireless sensors are desired for monitoring aircraft engines, automotive engines, industrial machinery, and many other applications. The most important requirement of sensors is that they do not interfere with the environment that they are monitoring. Therefore, wireless sensors must be small, which demands a high level of integration. Sensors that modulate an oscillator active antenna have advantages of small size, high level of integration, and lower packaging cost. Several types of oscillator active antennas have been reported. Ip et al. demonstrated a CPW line fed patch antenna with a feedback loop [1]. No degradation in performance was noticed without a ground plane. A GaAs FET was used in an amplifier/oscillator-based active antenna [2]. An oscillator based on a Cree SiC transistor was designed and characterized in [3]. This paper reports the integration of the SiC Clapp oscillator to a slotline loop antenna.

  15. 802GHz integrated horn antennas imaging array

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-05-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  16. Development of Novel Integrated Antennas for CubeSats

    NASA Technical Reports Server (NTRS)

    Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.

  17. Recent activities in printed Antennas at LeRC

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  18. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; Thomas, Bertrand; Mehdi, Imran

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  19. An integral sunshade for optical reception antennas

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1988-01-01

    Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.

  20. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  1. A 20-dB quasi-integrated horn antenna

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    A multimode quasi-integrated dipole-fed horn antenna is presented with a performance comparable to that of waveguide-fed corrugated horn antennas. The antenna has been designed using fullwave analysis and has been fabricated and tested at 91 GHz. The horn has a gain of 20 dB with very symmetric patterns, a Gaussian coupling efficiency of 97 percent, and a cross-polarization level of -22.7 dB. The antenna provides a significant improvement in integrated antenna designs and is suitable for millimeter-wave communication and radar systems and as a Gaussian-beam launcher in quasi-optical receiver systems.

  2. Spatial frequency multiplier with active linearly tapered slot antenna array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  3. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  4. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  5. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  6. Antenna with distributed strip and integrated electronic components

    SciTech Connect

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  7. Integrated resonant tunneling diode based antenna

    SciTech Connect

    Hietala, Vincent M.; Tiggers, Chris P.; Plut, Thomas A.

    2000-01-01

    An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.

  8. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  9. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Astrophysics Data System (ADS)

    Yoo, T.-W.; Chang, K.

    1991-11-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  10. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    NASA Technical Reports Server (NTRS)

    Lewis, Dorothy; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for Cube- Sats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than 100 megabits per second (Mbps). The ISARA spacecraft is slated for launch no earlier than Dec. 1, 2015.

  11. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  12. Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.

  13. Wireless SAW Sensors Having Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Gallagher, Mark (Inventor); Malocha, Donald C. (Inventor)

    2015-01-01

    A wireless surface acoustic wave sensor includes a piezoelectric substrate, a surface acoustic wave device formed on the substrate, and an antenna formed on the substrate. In some embodiments, the antenna is formed on the surface of the substrate using one or more of photolithography, thin film processing, thick film processing, plating, and printing.

  14. Gain calibration of a horn antenna using pattern integration

    NASA Technical Reports Server (NTRS)

    Ludwig, A. C.; Hardy, J.; Norman, R.

    1972-01-01

    Gain measurement of a horn antenna using three different techniques is discussed. The methods include a two-antenna insertion loss measurement, a pattern integration method, and a near-field measurement method. The application of the pattern integration method is considered, as well as the evaluation of the near-field gain correction factors for the horn, which are determined by a method based directly on measured data. This method involves a spherical wave expansion of the experimental radiation pattern of the specific antenna being tested, rather than evaluation of an assumed analytical model. The spherical wave expansion is also compared to experimental near-field pattern data.

  15. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  16. Integrated structure electromagnetic optimization of large space antenna reflectors

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, M. C.

    1987-01-01

    The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors.

  17. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  18. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  19. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  20. Monolithic and integrated phased array antennas

    NASA Astrophysics Data System (ADS)

    Schaubert, Daniel H.; Pozar, David M.

    Some of the problems relevant to the design of monolithic and integrated arrays are examined. In particular, attention is given to electrical and mechanical design considerations, restrictions they impose on the choice of elements and architecture of integrated arrays, and elements that can alleviate one or more of these restrictions. Monolithic array designs are compared with some multiple-layer and two-sided designs using such criteria as scan range, bandwidth, substrate size and configuration, polarization, and feed line radiation. Broadside radiating elements, such as microstrip dipoles and patches, as well as end-fire radiating slots are considered.

  1. Aperture efficiency of integrated-circuit horn antennas

    NASA Technical Reports Server (NTRS)

    Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David

    1991-01-01

    The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.

  2. Circularly polarized antennas for active holographic imaging through barriers

    SciTech Connect

    McMakin, Douglas L; Severtsen, Ronald H; Lechelt, Wayne M; Prince, James M

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  3. Near millimeter wave imaging/multi-beam integrated antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.; Stephan, Karl D.; Pozar, David M.; Sollner, T. C. L. Gerhard; Parrish, Peter T.

    1986-01-01

    Some preliminary results on a mixer design which is suitable for integration with tapered slot antennas have been obtained and published. This mixer design was tested both in a 4 to 10 GHz model, and (slightly modified) at 94 GHz. The latter utilized the same Hewlett-Packard beam-lead diodes which were used as detector diodes in the linearly tapered slot antennas (LTSA) arrays. These diodes are the most rugged to be found, and generally survive well on the flexible Kapton substrates. The 4 to 10 GHz version of this mixer has less than 6 dB conversion loss over an octave bandwidth. It uses a slot ring in a balanced configuration, and requires the LO to be fed through a separate port. A different design for a mixer which may be integrated with an LTSA antenna element is discussed. This mixer was tested at 38 GHz with the same HP beam-lead diodes, and has less than 10 dB conversion loss. Further work on mixers has emphasized theoretical modeling, using a computer program, which takes into account the effect of excess noise of Schottky-barrier diodes for the first time. Calculated results agree quantitatively with measured results on millimeter wave mixers.

  4. Developmental process of musculoskeletal integration in ostracod antenna.

    PubMed

    Kaji, Tomonari

    2012-03-01

    The functional morphology of arthropod appendages shows remarkable diversity. Plausible functional integrations, particularly between muscles and the exoskeleton, must be achieved in these diverse morphologies. This study provides an insight into the evolutionary pathway of diversified appendages from a functional point of view. The musculoskeletal structure and development of antennae in five species of Cypridocopina were compared. The muscle and skeletal systems are integrated in several ways: The integration in Propontocypris attenuata occurs during various stages of the molting growth, whereas that in Fabaeformiscandona breuili occurs during the myogenesis. These two types of developmental processes have notable similarities, despite their occurrence during different developmental phases. From the overview of the molecular phylogeny presented by earlier studies, it is suggested that the integrated musculoskeletal system has reappeared repeatedly in cypridoid lineages as an atavism. This study demonstrates how arthropod appendages evolve without losing the integrity of the functional whole. PMID:22305643

  5. Cup waveguide antenna with integrated polarizer and OMT

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J. (Inventor); Kory, Carol (Inventor); Lambert, Kevin M. (Inventor)

    2011-01-01

    A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.

  6. Superconducting nanowire single-photon detectors integrated with optical nano-antennae

    SciTech Connect

    Hu, X.; Dauler, E.; Molnar, R.; Berggren, K. K.

    2010-12-20

    Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.

  7. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain

  8. Reduced-volume antennas with integrated high-impedance electromagnetic surfaces.

    SciTech Connect

    Forman, Michael A.

    2006-11-01

    Several antennas with integrated high-impedance surfaces are presented. The high-impedance surface is implemented as a composite right/left-handed (CRLH) metamaterial fabricated from a periodic structure characterized by a substrate, filled with an array of vertical vias and capped by capacitive patches. Omnidirectional antennas placed in close proximity to the high-impedance surface radiate hemispherically with an increase in boresight far-field pattern gain of up to 10 dB and a front-to-back ratio as high as 13 dB at 2.45 GHz. Several TEM rectangular horn antennas are realized by replacing conductor walls with high-impedance surfaces. The TEM horn antennas are capable of operating below the TE{sub 1,0} cutoff frequency of a standard all-metal horn antenna, enabling a reduction in antenna volume. Above the cutoff frequency the TEM horn antennas function similarly to standard rectangular horn antennas.

  9. Multi-carrier mobile TDMA system with active array antenna

    NASA Technical Reports Server (NTRS)

    Suzuki, Ryutaro; Matsumoto, Yasushi; Hamamoto, Naokazu

    1990-01-01

    A multi-carrier time division multiple access (TDMA) is proposed for the future mobile satellite communications systems that include a multi-satellite system. This TDMA system employs the active array antenna in which the digital beam forming technique is adopted to control the antenna beam direction. The antenna beam forming is carried out at the base band frequency by using the digital signal processing technique. The time division duplex technique is applied for the TDM/TDMA burst format, in order not to overlap transmit and receive timing.

  10. On the feasibility of constructing an imaging array of slot-antennas integrated with SIS mixers. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Winkler, D.; Mcgrath, W. R.; Nilsson, B.; Claeson, T.; Johansson, J.; Kollberg, E.; Yngvesson, K. S.; Rudner, S.

    1986-01-01

    A prototype 700 GHz subharmonically pumped superconductor-insulator-superconductor (SIS) mixer integrated with a tapered slot antenna on a silicon substrate is described. Imaging using integrated SIS-mixer-antenna chips is discussed.

  11. Influence of solar heating on the performance of integrated solar cell microstrip patch antennas

    SciTech Connect

    Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; Seredynski, M.; McCormack, S.J.; Norton, B.

    2010-09-15

    The integration of microstrip patch antennas with photovoltaics has been proposed for applications in autonomous wireless communication systems located on building facades. Full integration was achieved using polycrystalline silicon solar cells as both antenna ground plane and direct current power generation in the same device. An overview of the proposed photovoltaic antenna designs is provided and the variation characterised of the electromagnetic properties of the device with temperature and solar radiation. Measurements for both copper and solar antennas are reported on three different commercial laminates with contrasting values for thermal coefficient of the dielectric constant. (author)

  12. Meandered-line antenna with integrated high-impedance surface.

    SciTech Connect

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  13. Active dielectric antenna on chip for spatial light modulation

    PubMed Central

    Qiu, Ciyuan; Chen, Jianbo; Xia, Yang; Xu, Qianfan

    2012-01-01

    Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally waveguide based, many optical applications are free-space based, such as imaging, display, holographics, metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that allows the large-scale integration capability of silicon photonics to serve the free-space applications. We show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation speed is discussed. PMID:23152946

  14. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  15. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.

  16. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  17. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    NASA Technical Reports Server (NTRS)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  18. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  19. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    SciTech Connect

    Speer, Pete

    2009-04-28

    decrease the number of design iterations needed for future implementation of products requiring integration of small printed antennas. In the past, several design iterations have been needed to fine tune antenna dimensions and achieve acceptable levels of performance. This process consumes a large amount of time and material resources leading to costly development of transceiver designs. Typically, this occurs because matching components and antenna geometries are almost never correct on the first design. This work hopes to determine the limitations associated with antenna miniaturization and provide well known antenna examples that can be easily used in future work.

  20. Analysis and design of ring-resonator integrated hemi-elliptical lens antenna at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Jha, Kumud Ranjan; Singh, G.

    2012-07-01

    In this paper, a novel lens integrated ring-resonator microstrip antenna is analyzed and simulated at 600 GHz. A mathematical model to compute the directivity of this kind of the antenna has been developed and the directivity of the antenna has been computed which is 18 dBi. The proposed model has been simulated by using CST Microwave Studio a commercially available simulator based on finite integral technique and similar result has been obtained. Further, the directivity of the antenna has also been computed by using the techniques reported in the literature and in this case also we have obtained the similar result. Later, a probe-fed patch integrated lens antenna has also been investigated to validate the correctness of the numerical method. To find the potential advantages of this kind of the structure, the - 10 dB impedance bandwidth of the antenna has been compared to a lens-integrated probe-fed microstrip patch antenna and a significant enhancement in the bandwidth has been observed.

  1. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  2. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1986-01-01

    The use of finlines for microwave monolithic integrated circuit application in the 20 to 40 GHz frequency range. Other wave guiding structures, are also examined from a comparative point of view and some sonclusions are drawn on the basis of the results.

  3. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System.

    PubMed

    Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan

    2015-01-01

    In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620

  4. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System

    PubMed Central

    Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan

    2015-01-01

    In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620

  5. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.

    PubMed

    Giannini, Vincenzo; Berrier, Audrey; Maier, Stefan A; Sánchez-Gil, José Antonio; Rivas, Jaime Gómez

    2010-02-01

    Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors. PMID:20174108

  6. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems. PMID:26186795

  7. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    NASA Astrophysics Data System (ADS)

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  8. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  9. Frequency translating phase conjugation circuit for active retrodirective antenna array

    NASA Astrophysics Data System (ADS)

    Chernoff, R.

    1980-11-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  10. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  11. Design of 45-degree Linearly Polarized Substrate Integrated Waveguide-fed Slot Array Antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Qingfeng; Lu, Yilong

    2008-11-01

    This paper presents a method of designing substrate integrated waveguide-fed (SIW-fed) slot array antennas. The design theory is based on the circuit model of slot and via as well as the reflection canceling. To prove the feasibility of this method, a 10-element K-band SIW-fed 45-degree linearly polarized slot array antenna with uniform power distribution is designed. By full-wave simulation, the antenna has a good impedance bandwidth of 7.5% and uniform power distribution. Besides, a maximum gain of 15.3dBi is obtained in the broadside and the cross polarization is suppressed below -23.5dB in the boresight. This type of SIW-fed slot array antennas can be a good candidate for microwave and millimeter-wave applications, especially for auto-motive collision-avoidance radar systems.

  12. 92 GHz dual-polarized integrated horn antennas

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1991-01-01

    A dual-polarized two-dimensional imaging array was designed for millimeter-wave applications. The dual-polarized design consists of two dipoles perpendicular to each other and suspended on the same membrane inside a pyramidal cavity etched in silicon. The dual-polarized antenna is fully monolithic with room available for processing electronics. The IF or video signals are taken out through a novel bias and feeding structure. The measured polarization isolation is better than 20 dB at 92 GHz, and the orthogonal channels show identical far-field patterns. The antenna is well suited for millimeter-wave polarimetric synthetic-aperture radars (SARs) and high-efficiency balanced-mixer receivers.

  13. An Antenna-coupled bolometer with an integrated microstripbandpass filter

    SciTech Connect

    Myers, Michael J.; Holzapfel, William; Lee, Adrian T.; O'Brient,Roger; Richards, P.L.; Tran, Huan T.; Ade, Peter; Engargiola, Greg; Smith, Andy; Spieler, Helmuth

    2004-09-17

    We describe the fabrication and testing of antenna-coupled superconducting transition-edge bolometers for use at millimeter wavelengths. The design uses a double-slot dipole antenna connected to superconducting niobium microstrip. Band defining filters are implemented in the microstrip, which is then terminated with a load resistor. The power dissipated in the load resistor is measured by a superconducting transition-edge sensor TES. The load resistor and TES are thermally well connected and are supported by a silicon nitride substrate. The substrate is suspended by four narrow silicon nitride legs for thermal isolation. The bolometers have been optically characterized and the spectral response is presented. This detector is a prototype element for use in an array designed for studies of the cosmic microwave background polarization.

  14. Near millimeter wave imaging/multi-beam integrated antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.

    1985-01-01

    This report describes the most recent work on the theory of single element Linearly Tapered Slot Antennas (LTSAs) and Constant Width Slot Antennas (CWSAs). The radiation mechanism for these is presently well understood and allows quantitative calculation of beamwidths and sidelobe levels, provided that the antennas have a sufficiently wide conducting region on either side of the tapered slot. Appendices 4 to 7 represent earlier work on the grant. This work further elucidates the properties of arrays of CWSA elements, and the effects of coupling on the beam-shape. It should be noted that typical beam-efficiencies of 65% have been estimated, and that element spacings of about one Rayleigh unit are possible. Further, two-point resolution at the Rayleigh spacing has been demonstrated for a CWSA array in a 30.4 cm paraboloid at 31 GHz. These results underscore that interest in further studies of the radiation mechanism of tapered slot arrays. Appendix 7 constitutes a final, detailed report on the work leading to a 94 GHz seven element LTSA array imaging system, which has been reported previously in less detail. Experimental results are presented.

  15. Estimating movement and survival rates of a small saltwater fish using autonomous antenna receiver arrays and passive integrated transponder tags

    USGS Publications Warehouse

    Rudershausen, Paul J.; Buckel, Jeffery A.; Dubreuil, Todd; O'Donnell, Matthew J.; Hightower, Joseph E.; Poland, Steven J.; Letcher, Benjamin H.

    2014-01-01

    We evaluated the performance of small (12.5 mm long) passive integrated transponder (PIT) tags and custom detection antennas for obtaining fine-scale movement and demographic data of mummichog Fundulus heteroclitus in a salt marsh creek. Apparent survival and detection probability were estimated using a Cormack Jolly Seber (CJS) model fitted to detection data collected by an array of 3 vertical antennas from November 2010 to March 2011 and by a single horizontal antenna from April to August 2011. Movement of mummichogs was monitored during the period when the array of vertical antennas was used. Antenna performance was examined in situ using tags placed in wooden dowels (drones) and in live mummichogs. Of the 44 tagged fish, 42 were resighted over the 9 mo monitoring period. The in situ detection probabilities of the drone and live mummichogs were high (~80-100%) when the ambient water depth was less than ~0.8 m. Upstream and downstream movement of mummichogs was related to hourly water depth and direction of tidal current in a way that maximized time periods over which mummichogs utilized the intertidal vegetated marsh. Apparent survival was lower during periods of colder water temperatures in December 2010 and early January 2011 (median estimate of daily apparent survival = 0.979) than during other periods of the study (median estimate of daily apparent survival = 0.992). During late fall and winter, temperature had a positive effect on the CJS detection probability of a tagged mummichog, likely due to greater fish activity over warmer periods. During the spring and summer, this pattern reversed possibly due to mummichogs having reduced activity during the hottest periods. This study demonstrates the utility of PIT tags and continuously operating autonomous detection systems for tracking fish at fine temporal scales, and improving estimates of demographic parameters in salt marsh creeks that are difficult or impractical to sample with active fishing gear.

  16. Integrated control of thermally distorted large space antennas

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Huang, Jen-Kuang

    1991-01-01

    The objective is to develop a control system design method that (1) recognizes the time dependence of the thermal distortion due to orbital motion and (2) controls variables that are directly related to far field performance for earth pointing space antennas. The first objective is accomplished by expanding the distortion into principal components that are orthogonal in space and time. The approach for the second objective is to expand the far zone electric field in a Zernike-Bessel series. The method accommodates tapered feeds and arbitrary polarizations. Simulations are performed for a geosynchronous radiometer to determine the effectiveness of the control system under variations in solar geometry, structure materials and thermal properties.

  17. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  18. Progress in integrated-circuit horn antennas for receiver applications. Part 2: A 90 GHz quasi-integrated horn antenna receiver

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Eleftheriades, George V.; Rebeiz, Gabriel M.

    1992-01-01

    A receiver belonging to the family of integrated planar receivers has been developed at 90 GHz. It consists of a planar Schottky-diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The measured planar mixer single-sideband conversion loss at 91.2 GHz (LO) with a 200 MHz IF frequency is 8.3dB plus or minus 0.3dB. The low cost of fabrication and simplicity of this design makes it ideal for millimeter and submillimeter-wave receivers.

  19. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  20. RF MEMS devices for multifunctional integrated circuits and antennas

    NASA Astrophysics Data System (ADS)

    Peroulis, Dimitrios

    Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges

  1. Aircraft antennas/conformal antennas missile antennas

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1987-04-01

    Three major areas of airborne microwave antennas are examined. The basic system environment for missile telemetry/telecommand and fuze functions is sketched and the basic antenna design together with practical examples are discussed. The principle requirements of modern nose radar flat plate antennas are shown to result from missile/aircraft system requirements. Basic principles of slotted waveguide antenna arrays are sketched and practical antenna designs are discussed. The present early warning system designs are sketched to point out requirements and performance of practical radar warning and jamming antennas (broadband spiral antennas and horn radiators). With respect to newer developments in the ECM scenario, some demonstrated and proposed antenna systems (lens fed arrays, phased array, active array) are discussed.

  2. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  3. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  4. A general approach of the active concept of microstrip antennas and arrays based on the loaded scatterer theory

    NASA Astrophysics Data System (ADS)

    Gillard, Raphael; Legay, Herve; Floch, Jean-Marie; Citerne, Jacques

    1991-06-01

    A quantitative and general approach of the active antenna concept concretized in planar type microstrip technologies is proposed using integral equation techniques associated with the multiport representation of loaded scatterers. Two configurations based on this concept, involving an electromagnetically fed microstrip dipole combined with either passive loads simulating a monolithic switch or active loads simulating a monolithic amplifier, are computed to illustrate the extended capacities of this new approach. Theoretical results on matching characteristics are compared to measurements achieved in X band.

  5. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  6. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  7. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.; Shinohara, S.

    2015-12-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA.

  8. Active feed array compensation for reflector antenna surface distortions. Ph.D. Thesis - Akron Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1988-01-01

    The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.

  9. Integrated design and simulation for millimeter-wave antenna systems

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Katz, D. S.; Villegas, F. J.

    2000-01-01

    In this paper the development and application of MODTool (Millimeter-wave Optics Design), a design tool that efficiently integrates existing millimeter-wave optics design software with a solid body modeler and thermal/structural analysis packages, will be discussed.

  10. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    NASA Astrophysics Data System (ADS)

    D’Addario, Larry R.; Wang, Douglas

    2016-03-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlation are proportional to N2 and dominate at sufficiently large N. Here, we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope’s bandwidth (the so-called “FX” structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with two opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chip memory and the CMACs are reused as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the ICs size and power consumption. It is intended for fabrication in a 32nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76-3.3pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N=4096. The system-level energy efficiency, including board-level I/O, power supplies, and controls, is expected to be 5-7pJ per CMAC operation. Existing correlators for the JVLA (N=32) and ALMA (N=64) telescopes achieve about 5000pJ and 1000pJ, respectively using application-specific ICs (ASICs) in older technologies. To our knowledge, the largest-N existing correlator is LEDA at N=256; it

  11. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Antenna Drive Subsystem METSAT AMSU-A2 (PN:1331200-2, SN:108)

    NASA Technical Reports Server (NTRS)

    Haapala, C.

    1999-01-01

    This is the Performance Verification Report, Antenna Drive Subassembly, Antenna Drive Subsystem, METSAT AMSU-A2 (P/N 1331200-2, SN: 108), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  13. An integral equation formulation for predicting radiation patterns of a space shuttle annular slot antenna

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; Richmond, J. H.

    1974-01-01

    An integral equation formulation is applied to predict pitch- and roll-plane radiation patterns of a thin VHF/UHF (very high frequency/ultra high frequency) annular slot communications antenna operating at several locations in the nose region of the space shuttle orbiter. Digital computer programs used to compute radiation patterns are given and the use of the programs is illustrated. Experimental verification of computed patterns is given from measurements made on 1/35-scale models of the orbiter.

  14. Integral equation for a strip coil antenna located on a dielectric cylinder

    NASA Astrophysics Data System (ADS)

    Dementyev, A. N.; Klyuev, D. S.; Shatrov, S. A.

    2016-01-01

    The problem about the distribution of the surface current density in a narrow circular strip antenna as an infinitely thin perfectly conducting ribbon folded in a circle and positioned on the surface of a dielectric cylinder is reduced to a one-dimensional integral equation (IE). A method for solving the obtained IE is proposed. Complex distributions of the azimuthal component of the surface current density over the circular conductor are presented for different values of the dielectric permittivity of the cylinder.

  15. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes.

    PubMed

    Natrella, Michele; Liu, Chin-Pang; Graham, Chris; van Dijk, Frederic; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2016-05-30

    We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match. PMID:27410104

  16. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  17. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  18. An improved solution for integrated array optics in quasi-optical mm and submm receivers: The hybrid antenna

    SciTech Connect

    Buettgenback, T.H. . Div. of Physics)

    1993-10-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemispherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemispherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 [+-] 6)% for a diffraction limited beam with sidelobes below [minus]17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  19. Integration of interdigital transducers, MEMS, and antennas for smart structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.; Bao, Xiao-Qi

    1996-05-01

    In this paper, the integration of interdigital transducers, MEMS and smart electronics is presented with examples including systems for (1) noise suppression in buildings, aircraft cabin, etc. using `smart wall paper', (2) drag sensing and reduction in aircraft, (3) early warning from collapsing bridges, overhead highways, etc., due to earthquakes, flooding, etc., to the approaching vehicles and automatically stopping the vehicles before the damage location, (4) automatic impedance matching for cellular phone communication thus avoiding any interference from other unwanted signals, magnetic fields from the power lines, etc., (5) diesel fuel pollution sensing and control, (6) drip irrigation and (7) deflection and strain measurement of flex beam structure in helicopters. A theoretical analysis and an experiment relating to the later is presented in detail.

  20. Mechanisms of the Rosetta high gain antenna

    NASA Astrophysics Data System (ADS)

    Pereira, Carlos

    2001-09-01

    This paper describes the antenna pointing mechanism (APM) and the hold down and release mechanism (HRM) used in the high gain antenna of the ROSETTA mission. The hold down and release mechanism consists of three units which compensate the tolerance mismatch between antenna and spacecraft through incorporation of potting rings. Given that the activation mode is pyrotechnic, release shock is a major concern and is minimised through integration of shock absorbers which allow stroking of the separation nuts. The antenna pointing mechanism is a dual drive (azimuth over elevation) unit which allows controlled rotation of the antenna. The drive units incorporate spring loaded end stops to prevent the antenna from hitting the spacecraft, and optical encoders which register the absolute position of the antenna. The pointing and the hold down mechanisms of the ROSETTA antenna are fully qualified and will withstand the high launch loads of the Ariane-5 and the environmental demands of deep space operation.

  1. TOPICA/TORIC integration for self-consistent antenna and plasma analysis

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Milanesio, Daniele; Kyrytsya, Volodymyr; Vecchi, Giuseppe; Bonoli, Paul T.; Wright, John C.

    2006-10-01

    TOPICA [1] is a numerical suite conceived for prediction and analysis of plasma-facing antennas. It can handle real-life 3D antenna geometries (with housing, Faraday screen, etc.) as well as a realistic plasma model, including measured density and temperature profiles. TORIC [2] solves the finite Larmor radius wave equations in the ICRF regime in arbitrary axisymmetric toroidal plasmas. Due to the approach followed in developing TOPICA (i.e. the formal splitting of the problem in the vacuum region around the antenna and the plasma region inside the toroidal chamber), the code lends itself to handle toroidal plasmas, provided TORIC is run independently to yield the plasma surface admittance tensorsY (m,m',n). The latter enter directly into the integral equations solved by TOPICA, thus allowing a far more accurate plasma description that accounts for curvature effects. TOPICA outputs comprise, among others, the EM fields in front of the plasma: these can in turn be input to TORIC, in order to self-consistently determine the EM field propagation in the plasma. In this work, we report on the theory underlying the TOPICA/TORIC integration and the ongoing evolution of the two codes. [1] V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476 [2] M. Brambilla, Plasma Phys. Contr. Fusion (1999) 41 1

  2. VLT/SINFONI integral field spectroscopy of the Super-antennae

    NASA Astrophysics Data System (ADS)

    Reunanen, J.; Tacconi-Garman, L. E.; Ivanov, V. D.

    2007-12-01

    We present the results of H- and K-band very large telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) integral field spectroscopy of the Ultraluminous Infrared Galaxy (ULIRG) IRAS 19254-7245 (the Super-antennae), an interacting double galaxy system containing an embedded active galactic nuclei. Deep K-band spectroscopy reveals Paα arising in a warped disc with position angle of 330° and an inclination i = 40°-55°. The kinemetric parameters derived for H2 are similar to Paα. Two high-ionization emission lines, [SiVI] and [AlIX], are detected and we identify as [NiII] the line observed at 1.94μm. Diluting non-stellar continuum, which was previously detected, has decayed, and the H-band continuum emission is consistent with pure stellar emission. Based on H2 emission-line ratios, it is likely that at the central 1-kpc region H2 is excited by ultraviolet fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low Paα to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (~2.0-2.5) close to the nucleus. E-mail: reunanen@strw.leidenuniv.nl (JR); ltacconi@eso.org (LET); vivanov@eso.org (VDI) Based on observations collected at the European Southern Observatory, Paranal, Chile [60.A-9041(A)].

  3. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and

  4. Studying integrated silicon-lens antennas for radio communication systems operated in the 60 GHz frequency band

    NASA Astrophysics Data System (ADS)

    Artemenko, A. A.; Mal'tsev, A. A.; Maslennikov, R. O.; Sevastyanov, A. G.; Ssorin, V. N.

    2013-01-01

    We consider the development of an integrated lens antenna for LAN radio communication systems operated in the 60 GHz frequency band. The antenna is an extended hemispherical silicon lens. On its flat surface, a microstrip antenna element is located. The use of silicon, which has a dielectric permittivity ɛ = 11.7, as the lens material ensures the maximum range of scanning angles for the minimum axial size of the lens. The approximate analytical formulas, which are used for initial calculations of the lens parameters, allow one to evaluate the basic parameters of the lens antenna integrated with the microstrip antenna element. For further optimizing the parameters of the lens and the antenna element, 3D simulation of the electromagnetic-field distribution was performed. Based on its results, we have developed and manufactured extended hemispherical silicon lenses, which had radii of 6 and 12 mm. The planar microstrip antenna element was manufactured by the low temperature co-fired ceramics (LTCC) technology. The results of simulation and experimental studies of the manufactured prototypes demonstrate that the developed lens antennas has directivities of 17.6 and 23.1 dBi for lenses with radii of 6 and 12 mm, respectively. In this case, the maximum beam deflection angle is achieved, which is equal to 55°, while the permissible decrease in the directivity is no more than 6 dBi compared with the case of a non-deflected beam. The obtained results show that the developed integrated lens antennas can find applications in high-speed radio communication systems operated in the millimeter-wave range.

  5. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  6. Oscillations up to 1.40 THz from Resonant-Tunneling-Diode-Based Oscillators with Integrated Patch Antennas

    NASA Astrophysics Data System (ADS)

    Koyama, Yasushi; Sekiguchi, Ryota; Ouchi, Toshihiko

    2013-06-01

    Oscillations from 1.02 to 1.40 THz were observed at room temperature from resonant-tunneling-diode (RTD)-based oscillators with integrated patch antennas by improving the mesa structure and tuning the length of the antenna and the feed point location of the RTD. A two-step post structure realized a reduction of series resistance of the RTD, and the oscillation frequency significantly increased with the feed point closer to the center of patch antenna at around 1 THz. Experimental results agreed well with the analysis.

  7. Flare-antenna unit for system in which flare is remotely activated by radio

    NASA Astrophysics Data System (ADS)

    Hiltz, Frederick F.; Wilson, Charles E.

    1995-06-01

    A flare-antenna assembly has flare material enclosed in a cylindrical antenna and forms part of a marker beacon. The flare aids in the search for the marker beacon by providing means for both visual and infrared detection. The flare is actuated in response to a specific remote radio signal being received by the antenna. The received signal is decoded by the electronic system within the marker beacon. If the received signal meets the necessary criteria the electronic system generates an electrical signal that detonates a squib embedded in the flare material. The detonation of the squib activates the flare.

  8. Efficiency of Portable Antennas for Detecting Passive Integrated Transponder Tags in Stream-Dwelling Salmonids

    PubMed Central

    Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317

  9. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-08-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self-consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given.

  10. Efficiency of Portable Antennas for Detecting Passive Integrated Transponder Tags in Stream-Dwelling Salmonids.

    PubMed

    Banish, Nolan P; Burdick, Summer M; Moyer, Katherine R

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317

  11. Efficiency of portable antennas for detecting passive integrated transponder tags in stream-dwelling salmonids

    USGS Publications Warehouse

    Banish, Nolan P.; Burdick, Summer M.; Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species.

  12. Research on the Calculated Methods of Active Control Value for Antenna Panel Deformations under Gravity

    NASA Astrophysics Data System (ADS)

    Fu, L.; Zhong, W. Y.; Qiao, H. H.; Liu, G. X.; Qian, H. L.

    2015-07-01

    The methods of ideal reflector surface, two-parameter, five-parameter, and six-parameter best-fit paraboloid are presented in this paper. Based on these methods, the adjustment values of gravity deformations are calculated for the main reflector of large-scale Cassegrain antenna. Accordingly, the positions of subreflector are corrected, and the effects of offset-focus on electric performance are also analyzed. Taking Shanghai 65 m antenna as a research object, the adjustment values of actuator and hexapod, the accuracy of the main reflector surface, and the pointing error after offsetting the focus are contrasted. As a result, the method of six-parameter best-fit paraboloid is ideal to calculate active control value for antenna panels after the effects of feed defocus have been adjusted and modified. The results offer data for the active control of antenna.

  13. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  14. The Dynein Motor is the Basis of Active Oscillations of Mosquito Antennae

    NASA Astrophysics Data System (ADS)

    Warren, B.; Lukashkin, A. N.; Russell, I. J.

    2009-02-01

    The driver responsible for spontaneous oscillations of the mosquito (Culex quinquefasciatus) antennae was investigated. The activation energy derived from the temperature dependence of the spontaneous oscillation frequency is 30 kJ/mol suggesting a dynein ATPase is responsible. Colchicine application abolished spontaneous oscillations but left transduction intact. Hence, the transduction apparatus is thought not to be responsible for the spontaneous oscillations of the antennae.

  15. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  16. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented

  17. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  18. Antenna and coil design for wireless signal detection and charging of embedded power active contact lens.

    PubMed

    Ng, Benny; Heckler, Paul; Do, Alex; Azar, Phillip; Leon, Errol; Smilkstein, Tina

    2014-01-01

    This paper presents a screen printed 2.4 GHz antenna and induction charging coil for an active contact lens with a single large pixel user display and on-board 3.8 V 5 uAh rechargeable battery. The antenna traces are printed using silver conductive paste on a 25 um polyethylene terephthalate (PET) substrate. The incoming signal from the antenna feeds into an IC that amplifies and rectifies the signal. The coil provides wireless energy transfer to inductively charge a thin film battery [1] located on the contact lens. The printed antenna achieved a S11 of -4 dB at 2.4 GHz and a gain of -13 dB. PMID:25571353

  19. Electrically small, near-field resonant parasitic (NFRP) antennas augmented with passive and active circuit elements to enhance their functionality

    NASA Astrophysics Data System (ADS)

    Zhu, Ning

    Metamaterials have drawn considerable attention because they can exhibit epsilon-negative (ENG) and/or mu-negative (MNG) properties, which in turn can lead to exotic physical effects that can enable interesting, practical applications. For instance, ENG and MNG properties can be engineered to yield double negative (DNG) properties, such as a negative index of refraction, which leads to flat lenses. Similarly, their extreme versions enable cloaking effects. Inspired by such metamaterial properties, a promising methodology has been developed to design electrically small antennas (ESAs). These ESAs use unit cells of metamaterials as their near-field resonant parasitic (NFRP) elements. This new metamaterial-inspired antenna miniaturization method is extended in this dissertation by augmenting the antenna designs with circuits. A rectifying circuit augmentation is used to achieve electrically small, high efficiency rectenna systems. Rectennas are the enabling components of power harvesting and wireless power transmission systems. Electrically small, integrated rectennas have become popular and in demand for several wireless applications including sensor networks and bio-implanted devices. Four global positioning system (GPS) L1 frequency (1.5754 GHz) rectenna systems were designed, fabricated and measured: three resistor-loaded and one supercapacitor-loaded. The simulated and measured results will be described; good agreement between them was obtained. The NFRP ESAs are also augmented with active, non-Foster elements in order to overcome the physical limits of the impedance bandwidth of passive ESA systems. Unlike conventional active external matching network approaches, the non-Foster components are incorporated directly into the NFRP element of the ESA. Three 300 MHz non-Foster circuit-augmented broadband, ESA systems were demonstrated: an Egyptian axe monopole (EAM) antenna, an Egyptian axe dipole (EAD) antenna, and a protractor antenna. The simulated and measured

  20. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas.

    PubMed

    Berrier, Audrey; Ulbricht, Ronald; Bonn, Mischa; Rivas, Jaime Gómez

    2010-10-25

    Localized surface plasmon polaritons (LSPPs) provide an efficient means of achieving extreme light concentration. In recent years, their active control has become a major aspiration of plasmonic research. Here, we demonstrate direct control of semiconductor bowtie antennas, enabling active excitation of LSPPs, at terahertz (THz) frequencies. We modify the LSPPs by ultrafast optical modulation of the free carrier density in the plasmonic structure itself, allowing for active control of the semiconductor antennas on picosecond timescales. Moreover, this control enables the manipulation of the field intensity enhancements in ranges of four orders of magnitude. PMID:21164664

  1. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  2. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.

    PubMed

    Zak, Audrey; Andersson, Michael A; Bauer, Maris; Matukas, Jonas; Lisauskas, Alvydas; Roskos, Hartmut G; Stake, Jan

    2014-10-01

    We present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz(0.5). Our results are a significant improvement over previous work on graphene direct detectors and are comparable to other established direct detector technologies. This is the first time room-temperature direct detection has been demonstrated using CVD graphene, which introduces the potential for scalable, wafer-level production of graphene detectors. PMID:25203787

  3. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  4. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  5. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  6. An Active K/K-Band Antenna Array for the NASA ACTS Mobile Terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, A.; Sukamto, L.

    1993-01-01

    An active K/K-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz.

  7. Optical antenna arrays of carbon nanotubes and their fabrication on polyimide and transparent conducting oxides for direct device integration

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Kempa, K.; Kimball, B.; Ren, Z. F.

    2005-11-01

    Vertically-aligned carbon nanotubes/nanofibers grown on various substrates by a direct-current plasma-enhanced chemical vapor deposition method have been shown experimentally to function as classical low-loss dipole antenna arrays at optical frequencies. Two fundamental antenna effects, e.g., the polarization effect and length matching effect, directly observed on large-scale CNT arrays in visible frequency range, hold them promising for industry-level fabrication of devices including linear/beam-splitting polarizers, solar energy converters, THz demodulators, etc., some of which will, however, require or prefer a flexible and/or transparent conducting substrate to be compatible for multi-level integration and low-cost manufacturing process. A low-energy dark discharge fabrication technique is therefore devised which successfully yields CNT antennas directly on polyimide films and transparent conducting oxides (ITO, ZnO) with the absence of a buffer layer.

  8. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  9. Application of Modern Aperture Integration (AI) and Geometrical Theory of Diffraction (GTD) Techniques for Analysis of Large Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Rudduck, R. C.

    1985-01-01

    The application of aperture integration (AI) and geometrical theory of diffraction (GTO) techniques to analyze large reflector antennas is outlined. The following techniques were used: computer modeling, validation of analysis and computer codes, computer aided design modifications, limitation on the conventional aperture integration (AIC) method, extended aperture integration (AIE) method, the AIE method for feed scattering calculations, near field probing predictions for 15 meter model, limitation on AIC for surface tolerance effects, aperture integration on the surface (AIS) method, and AIC and GTD calculations for compact range reflector.

  10. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  11. APS-Workshop on Characterization of MMIC (Monolithic Microwave Integrated Circuit) Devices for Array Antenna

    NASA Technical Reports Server (NTRS)

    Smetana, Jerry (Editor); Mittra, Raj (Editor); Laprade, Nick; Edward, Bryan; Zaghloul, Amir

    1987-01-01

    The IEEE AP-S ADCOM is attempting to expand its educational, tutorial and information exchange activities as a further benefit to all members. To this end, ADCOM will be forming specialized workshops on topics of interest to its members. The first such workshop on Characterization and Packaging of MMIC Devices for Array Antennas was conceived. The workshop took place on June 13, 1986 as part of the 1986 International Symposium sponsored by IEEE AP-S and URSI in Philadelphia, PA, June 9-13, 1986. The workshop was formed to foster the interchange of ideas among MMIC device users and to provide a forum to collect and focus information among engineers experienced and interested in the topic. After brief presentations by the panelists and comments from attendees on several subtopics, the group was divided into working committees. Each committee evaluated and made recommendations on one of the subtopics.

  12. Cantilever RF-MEMS for monolithic integration with phased array antennas on a PCB

    NASA Astrophysics Data System (ADS)

    Aguilar-Armenta, C. J.; Porter, S. J.

    2015-12-01

    This article presents the development and operation of a novel electrostatic metal-to-metal contact cantilever radio-frequency microelectromechanical system (RF-MEMS) switch for monolithic integration with microstrip phased array antennas (PAAs) on a printed circuit board. The switch is fabricated using simple photolithography techniques on a Rogers 4003c substrate, with a footprint of 200 µm × 100 µm, based on a 1 µm-thick copper cantilever. An alternative wet-etching technique for effectively releasing the cantilever is described. Electrostatic and electromagnetic measurements show that the RF-MEMS presents an actuation voltage of 90 V for metal-to-metal contact, an isolation of -8.7 dB, insertion loss of -2.5 dB and a return loss of -15 dB on a 50 Ω microstrip line at 12.5 GHz. For proof-of-concept, a beam-steering 2 × 2 microstrip PAA, based on two 1-bit phase shifters suitable for the monolithic integration of the RF-MEMS, has been designed and measured at 12.5 GHz. Measurements show that the beam-steering system presents effective radiation characteristics with scanning capabilities from broadside towards 29° in the H-plane.

  13. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  14. Thermomechanical stability and integrability of an embedded ceramic antenna with an integrated sensor element for wireless reading in harsh environments

    NASA Astrophysics Data System (ADS)

    Sturesson, P.; Khaji, Z.; Knaust, S.; Sundqvist, J.; Klintberg, L.; Thornell, G.

    2013-12-01

    This paper reports on the design, manufacturing and evaluation of a small, wirelessly powered and read resonating antenna circuit with an integrated pressure sensor. The work aims at developing miniature devices suitable for harsh environments, where high temperature prevents the use of conventional, silicon-based microdevices. Here, the device is made of alumina with platinum as conducting material. Ceramic green tapes were structured using high-precision milling, metallized using screen printing, and subsequently laminated to form stacks before they were sintered. The device's frequency shift as a function of temperature was studied up to 900°C. The contributions to the shift both from the thermomechanical deformation of the device at large, and from the integrated and, so far, self-pressurized sensor were sorted out. A total frequency shift of 3200 ppm was observed for the pressure sensor for heating over the whole range. Negligible levels of thermally induced radius of curvature were observed. With three-point bending, a frequency shift of 180 ppm was possible to induce with a curvature of radius of 220 m at a 10 N load. The results indicate that a robust pressure sensor node, which can register pressure changes of a few bars at 900°C and wirelessly transmit the signal, is viable.

  15. Prediction of plasma-facing ICRH antenna behavior via a Finite-Element solution of coupled Integral Equations

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2005-09-01

    The demand for a predictive tool to help designing ICRH antennas for fusion experiments has driven the development of codes like ICANT, RANT3D, and the early developments and further upgrades of TOPICA code. Currently, TOPICA handles the actual geometry of ICRH antennas (with their housing, etc.) as well as a realistic plasma model, including density and temperature profiles and FLR effects. Both goals have been attained by formally splitting the problem into two parts: the vacuum region around the antenna, and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow writing a set of coupled integral equations for the unknown equivalent (current) sources; finite elements are used on a triangular-cell mesh and a linear system is obtained on application of the weighted-residual solution scheme. In the vacuum region calculations are done in the spatial domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus allowing a description of the plasma by a surface impedance matrix. Thanks to this approach, any plasma model can be used in principle, and at present Brambilla's FELICE code has been employed. The natural outputs of TOPICA are the induced currents on the conductors and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. This paper is precisely devoted to the description of TOPICA, whereas examples of results for real-life antennas are reported in a companion paper [1] in this proceedings.

  16. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  17. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity.

    PubMed

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  18. Investigating fish hydraulic habitat preferences using a passive integrated transponder antenna network: Scope on spatial scales and individual mobility

    NASA Astrophysics Data System (ADS)

    Roy, M. L.; Roy, A. G.

    2009-12-01

    Flow velocity is a major feature of fluvial fish habitat. It affects swimming energy expenditures, resource distribution and efficiency of prey capture, thus exerting a major influence on fish distribution. Preferences of juvenile salmonids for ranges of flow velocity are well documented. Preference curves are usually generated by comparing velocities measured at the precise location of captured fish (nose velocity) with velocities measured at random locations where fish are absent. However, these preferences tend to be specific to sites and rivers and show important variability with time. Recent biotelemetry studies have revealed that juvenile salmonids are more mobile than previously assumed and use larger home ranges and multiple micro-habitats. Therefore, fish might select habitats based on the characteristics of a microhabitat, but also based on the properties of the surrounding area. Furthermore, mobile fish could present temporal variability in their habitat preferences. Recent advances in biotelemetry provide new ways to monitor fish locations and to obtain habitat preferences both at the individual and the population levels at high temporal and spatial resolutions for extended periods. In this study, we seek to identify the most relevant spatial scales defining habitat preferences of juvenile Atlantic salmon. We emphasize both the group and individual temporal variability in hydraulic habitat preferences. During a three month period, we monitored the location and movements of 61 juveniles marked with 23-mm passive integrated transponders (PIT) using a network of 186 antennas buried into the bed of a natural river reach in Saguenay, Canada. Each antenna was scanned every 33 seconds to detect and record the presence or absence of tagged fish. The reach was 70 m long and 9 m wide on average and presented a very clear morphological sequence consisting of two pools separated by a riffle. Mean flow velocity and turbulent flow properties were measured at 3500

  19. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  20. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  1. Shuttle Experimental Radar for Geological Exploration (SERGE); antenna and integration concept definition study

    NASA Technical Reports Server (NTRS)

    Kierein, J. W.

    1977-01-01

    The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.

  2. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  3. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  4. 3D-integration of a log spiral antenna onto a dual grating-gate plasmon-resonant terahertz emitter for high-directivity radiation

    NASA Astrophysics Data System (ADS)

    Kang, H.-C.; Nishimura, T.; Komori, T.; Mori, T.; Watanabe, N.; Asano, T.; Otsuji, T.

    2009-11-01

    We report a high-directivity plasmon-resonant terahertz (THz) emitter (PRE) incorporating a 3D-integrated antenna complex. The emitter structure is based on a high electron mobility transistor having unique doubly interdigitated grating gates as a broadband THz antenna that can convert non-radiative plasmons to radiative electromagnetic waves. Due to the sub-wavelength aperture of practical grating-antenna dimension, however, present structure of PRE exhibits undesirable diffraction effect, resulting in poor directivity. We developed a new device structure featuring a 3D-integration of tightly-coupled multiple-antenna complex to improve the directivity. The directivity of a new device was dramatically improved by a factor of 5.7 over the frequencies from 1.8 to 4.0 THz.

  5. A model for estimating passive integrated transponder (PIT) tag antenna efficiencies for interval-specific emigration rates

    USGS Publications Warehouse

    Horton, G.E.; Dubreuil, T.L.; Letcher, B.H.

    2007-01-01

    Our goal was to understand movement and its interaction with survival for populations of stream salmonids at long-term study sites in the northeastern United States by employing passive integrated transponder (PIT) tags and associated technology. Although our PIT tag antenna arrays spanned the stream channel (at most flows) and were continuously operated, we are aware that aspects of fish behavior, environmental characteristics, and electronic limitations influenced our ability to detect 100% of the emigration from our stream site. Therefore, we required antenna efficiency estimates to adjust observed emigration rates. We obtained such estimates by testing a full-scale physical model of our PIT tag antenna array in a laboratory setting. From the physical model, we developed a statistical model that we used to predict efficiency in the field. The factors most important for predicting efficiency were external radio frequency signal and tag type. For most sampling intervals, there was concordance between the predicted and observed efficiencies, which allowed us to estimate the true emigration rate for our field populations of tagged salmonids. One caveat is that the model's utility may depend on its ability to characterize external radio frequency signals accurately. Another important consideration is the trade-off between the volume of data necessary to model efficiency accurately and the difficulty of storing and manipulating large amounts of data.

  6. A 3.5-4.5 GHz Complementary Metal-Oxide-Semiconductor Ultrawideband Receiver Frontend Low-Noise Amplifier with On-Chip Integrated Antenna for Interchip Communication

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kimoto, Kentaro; Sasaki, Nobuo; Kikkawa, Takamaro

    2010-04-01

    Chip-to-chip ultrawideband (UWB) wireless interconnections are essential for reducing resistance capacitance (RC) delay in wired interconnections and three-dimensional (3D) highly integrated packaging. In this study, we demonstrated a wireless interchip signal transmission between two on-chip meander antennas on printed circuit board (PCB) for 1 to 20 mm transmission distances where the low power gain of each antenna due to a lossy Si substrate has been amplified by a low-noise amplifier (LNA). The measured result shows that the LNA produces 26 dB of improvement in antenna power gain at 4.5 GHz on a lossy Si substrate. Moreover, a Gaussian monocycle pulse with a center frequency of 2.75 GHz was also received by an on-chip antenna and amplified by the LNA. The LNA was integrated with an on-chip antenna on a Si substrate with a resistivity of 10 Ω·cm using 180 nm complementary metal-oxide-semiconductor (CMOS) technology. The investigated system is required for future single chip transceiver front ends, integrated with an on-chip antenna for 3D mounting on a printed circuit (PC) board.

  7. An Efficient Method for Calculating the Characteristics of the Integrated Lens Antennas on the Basis of the Geometrical and Physical Optics Approximations

    NASA Astrophysics Data System (ADS)

    Mozharovskiy, A. V.; Artemenko, A. A.; Mal'tsev, A. A.; Maslennikov, R. O.; Sevast'yanov, A. G.; Ssorin, V. N.

    2015-11-01

    We develop a combined method for calculating the characteristics of the integrated lens antennas for millimeter-wave wireless local radio-communication systems on the basis of the geometrical and physical optics approximations. The method is based on the concepts of geometrical optics for calculating the electromagnetic-field distribution on the lens surface (with allowance for multiple internal re-reflections) and physical optics for determining the antenna-radiated fields in the Fraunhofer zone. Using the developed combined method, we study various integrated lens antennas on the basis of the data on the used-lens shape and material and the primary-feed radiation model, which is specified analytically or by computer simulation. Optimal values of the cylindrical-extension length, which ensure the maximum antenna directivity equal to 19.1 and 23.8 dBi for the greater and smaller lenses, respectively, are obtained for the hemispherical quartz-glass lenses having the cylindrical extensions with radii of 7.5 and 12.5 mm. In this case, the scanning-angle range of the considered antennas is greater than ±20° for an admissible 2-dB decrease in the directivity of the deflected beam. The calculation results obtained using the developed method are confirmed by the experimental studies performed for the prototypes of the integrated quartz-glass lens antennas within the framework of this research.

  8. Integrated RF-DC converter and PCB antenna for UHF wireless powering applications

    NASA Astrophysics Data System (ADS)

    Vincetti, L.; Maini, M.; Scorcioni, S.; Larcher, L.; Bertacchini, A.; Tacchini, A.

    2014-10-01

    In this work, a broadband differential RF-DC CMOS converter realized in CMOS 130 nm technology with a customized PCB antenna with inductive coupling feeding for RF energy scavenging is presented. Experimental results show that output DC voltage higher than 1V from 800MHz to 970MHz can be obtained with a load of 1kΩ.

  9. Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz

    SciTech Connect

    Bonzon, C. Benea Chelmus, I. C.; Ohtani, K.; Geiser, M.; Beck, M.; Faist, J.

    2014-04-21

    Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.

  10. Electrical detection of surface plasmon resonance phenomena by a photoelectronic device integrated with gold nanoparticle plasmon antenna

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuya; Fukunishi, Yurie; Zheng, Bin; Uraoka, Yukiharu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2013-02-01

    We have proposed a concept of a photoelectronic hybrid device utilizing gold nanoparticles (GNPs), which are supposed to function not only as the plasmon antenna but also as the sensing part. The photocurrent in the fabricated device, consisting of a transparent Nb-doped TiO2 channel and Au electrodes, was enhanced more than eight times at a specific wavelength with GNP arrays located between the electrodes, indicating that surface plasmon resonance was electrically detected with the hybrid device. This result will open new doors for ultra-small biosensor chips integrated with multi-functional solid-state devices.

  11. Antenna gain of actively compensated free-space optical communication systems under strong turbulence conditions.

    PubMed

    Juarez, Juan C; Brown, David M; Young, David W

    2014-05-19

    Current Strehl ratio models for actively compensated free-space optical communications terminals do not accurately predict system performance under strong turbulence conditions as they are based on weak turbulence theory. For evaluation of compensated systems, we present an approach for simulating the Strehl ratio with both low-order (tip/tilt) and higher-order (adaptive optics) correction. Our simulation results are then compared to the published models and their range of turbulence validity is assessed. Finally, we propose a new Strehl ratio model and antenna gain equation that are valid for general turbulence conditions independent of the degree of compensation. PMID:24921373

  12. The Rectangular Waveguide Board Wall Slot Array Antenna Integrated with One Dimensional Subwavelength Periodic Corrugated Grooves and Artificially Soft Surface Structure

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Zhao, Zeyu; Luo, Xiangang

    2009-04-01

    In this letter, we propose a high gain rectangular waveguide board wall slot array antenna, which is integrated with one dimensional subwavelength periodic corrugated grooves and artificially soft surface structure. The corresponding far field radiation characteristics are investigated. The simulation results show that the gain of planar 2 × 8 slot array antenna with the introduction of corrugated grooves structure is increased to 26.1 dB, and half power beamwidth in the E plane is considerably reduced. Compared with the subwavelength periodic grooves slits array antenna proposed by Huang et al.[Appl. Phys. Lett. 91, 143512 (2007)], the side and back lobe level of this antenna are also significantly reduced by 6 dB and 10 dB, respectively. The physical mechanism for radiation-pattern improvement has been well explained by the modulation of surface wave, the reradiation of surface energy, and suppression of surplus surface wave at the grounded edge.

  13. Millimeter-wave integrated-horn antennas. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1991-01-01

    Full-wave analysis is employed to determine the far-field pattern and input impedance of a dipole-fed horn antenna in a ground plane, and the theoretical results are compared with mm-wave and microwave data. The theoretical work exploits the Green's function corresponding to the horn structure and the method of moments. It is determined that the horn should have 70 sections/wavelength and 50 secondary modes for optimized accuracy, and certain dipole positions can reduce the resonance to zero. The experimentally derived impedance and radiation patterns agree with the constraints developed theoretically. The 70-degree flare-angle horn with selected dipole positions and horn apertures yields good radiation patterns, cross-polarization levels, and resonant dipole impedances. The conclusions are of interest to the development of the horn antennas etched in Si/GaAs for applications to zero-visibility tracking, radio astronomy, plasma diagnostics, and remote sensing.

  14. An antenna-coupled bolometer with an integrated microstrip bandpass filter

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Holzapfel, William; Lee, Adrian T.; O'Brient, Roger; Richards, P. L.; Tran, Huan T.; Ade, Peter; Engargiola, Greg; Smith, Andy; Spieler, Helmuth

    2005-03-01

    We describe the fabrication and testing of antenna-coupled superconducting transition-edge bolometers for use at millimeter wavelengths. The design uses a double-slot dipole antenna connected to superconducting niobium microstrip. Band defining filters are implemented in the microstrip, which is then terminated with a load resistor. The power dissipated in the load resistor is measured by a superconducting transition-edge sensor (TES). The load resistor and TES are thermally well connected and are supported by a silicon nitride substrate. The substrate is suspended by four narrow silicon nitride legs for thermal isolation. The bolometers have been optically characterized and the spectral response is presented. This detector is a prototype element for use in an array designed for studies of the cosmic microwave background polarization.

  15. Phased-array antenna control by a monolithic photonic integrated circuit, COMPASS

    SciTech Connect

    Kravitz, S.H.; Hietala, V.M.; Vawter, G.A.; Meyer, W.J.

    1991-01-01

    Phased-array antenna systems are well known for rapid beam steering and their ability to bring high power to the target. Such systems are also quite complex and heavy, which have limited their usefulness. The issues of weight, size, power use, and complexity have been addressed through a system named COMPASS (Coherent Optical Monolithic Phased Array Steering System). All phased-array antenna systems need: (1) small size; (2) low power use; (3) high-speed beam steering; and (4) digitally-controlled phase shifting. COMPASS meets these basic requirements, and provides some very desirable additional features. These are: (1) phase control separate from the transmit/receive module; (2) simple expansion to large arrays; (3) fiber optic interconnect for reduced sensitivity to EMI; (4) an intrinsically radiation-hard GaAs chip; and (5) optical power provided by a commercially available continuous wave (CW) laser. 4 refs., 8 figs.

  16. Modeling the ITER ICRF Antenna with Integrated Time Domain RF Sheath and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Smithe, David; D'Ippolito, Daniel; Myra, James; CSWPI Collaboration

    2014-10-01

    We present results from computer simulations of detailed 3D models of the ICRF launcher assembly, including straps, Faraday Shields, and vessel wall. These simulations provide exquisite detail of the antenna near fields, and the sheaths between plasma and the metallic components of the launcher. Significant work has been done to create a sheath model that allows us to estimate local values of sheath potential everywhere on the 3D structure, so that we can estimate RF rectified plasma potential. Those potentials are in turn a likely source of sputtering and impurity creation, when the antennas are operating, and we discuss ongoing work to quantify these effects. Additional study of the antenna near fields also investigates slow waves which can exist in the low density scrape-off layer, and may impact power balance, and also sheath amplitudes. Movies of the 3D field and sheath oscillations will be shown. Supported by DOE Grants DE-08ER54953 and DE-FG02-09ER55006.

  17. mm-wave antenna

    NASA Astrophysics Data System (ADS)

    Muhs, H. P.

    1985-07-01

    The present low profile seeker front end's slotted waveguide antenna was primarily developed to investigate the feasibility of the application of standard manufacturing techniques to mm-wave hardware. A dual plane monopulse comparator was constructed to mate with the antenna via integrated packaging techniques. The comparator was fabricated by CAD/CAM milling operations.

  18. Turnstile slot antenna

    NASA Technical Reports Server (NTRS)

    Munson, R. E. (Inventor)

    1974-01-01

    A turnstile slot antenna is disclosed, the antenna being for and integral with a spacecraft having a substantially cylindrical body portion. The antenna comprises a circumferential slot about the periphery of the spacecraft body portion with an annular wave guide cavity defining a radial transmission line disposed within the spacecraft body portion behind and in communication with the circumferential slot. Feed stubs and associated transmission apparatus are provided to excite the annular cavity in quadrature phase such that an omnidirectional, circularly polarized, rotating radiation pattern is generated. The antenna of the instant invention has utility both as a transmitting and receiving device, and ensures continuous telemetry and command coverage with the spacecraft.

  19. Quantitative modeling of ICRF antennas with integrated time domain RF sheath and plasma physics

    NASA Astrophysics Data System (ADS)

    Smithe, David N.; D'Ippolito, Daniel A.; Myra, James R.

    2014-02-01

    Significant efforts have been made to quantitatively benchmark the sheath sub-grid model used in our time-domain simulations of plasma-immersed antenna near fields, which includes highly detailed three-dimensional geometry, the presence of the slow wave, and the non-linear evolution of the sheath potential. We present both our quantitative benchmarking strategy, and results for the ITER antenna configuration, including detailed maps of electric field, and sheath potential along the entire antenna structure. Our method is based upon a time-domain linear plasma model [1], using the finite-difference electromagnetic Vorpal/Vsim software [2]. This model has been augmented with a non-linear rf-sheath sub-grid model [3], which provides a self-consistent boundary condition for plasma current where it exists in proximity to metallic surfaces. Very early, this algorithm was designed and demonstrated to work on very complicated three-dimensional geometry, derived from CAD or other complex description of actual hardware, including ITER antennas. Initial work with the simulation model has also provided a confirmation of the existence of propagating slow waves [4] in the low density edge region, which can significantly impact the strength of the rf-sheath potential, which is thought to contribute to impurity generation. Our sheath algorithm is based upon per-point lumped-circuit parameters for which we have estimates and general understanding, but which allow for some tuning and fitting. We are now engaged in a careful benchmarking of the algorithm against known analytic models and existing computational techniques [5] to insure that the predictions of rf-sheath voltage are quantitatively consistent and believable, especially where slow waves share in the field with the fast wave. Currently in progress, an addition to the plasma force response accounting for the sheath potential, should enable the modeling of sheath plasma waves, a predicted additional root to the dispersion

  20. Quantitative modeling of ICRF antennas with integrated time domain RF sheath and plasma physics

    SciTech Connect

    Smithe, David N.; D'Ippolito, Daniel A.; Myra, James R.

    2014-02-12

    Significant efforts have been made to quantitatively benchmark the sheath sub-grid model used in our time-domain simulations of plasma-immersed antenna near fields, which includes highly detailed three-dimensional geometry, the presence of the slow wave, and the non-linear evolution of the sheath potential. We present both our quantitative benchmarking strategy, and results for the ITER antenna configuration, including detailed maps of electric field, and sheath potential along the entire antenna structure. Our method is based upon a time-domain linear plasma model, using the finite-difference electromagnetic Vorpal/Vsim software. This model has been augmented with a non-linear rf-sheath sub-grid model, which provides a self-consistent boundary condition for plasma current where it exists in proximity to metallic surfaces. Very early, this algorithm was designed and demonstrated to work on very complicated three-dimensional geometry, derived from CAD or other complex description of actual hardware, including ITER antennas. Initial work with the simulation model has also provided a confirmation of the existence of propagating slow waves in the low density edge region, which can significantly impact the strength of the rf-sheath potential, which is thought to contribute to impurity generation. Our sheath algorithm is based upon per-point lumped-circuit parameters for which we have estimates and general understanding, but which allow for some tuning and fitting. We are now engaged in a careful benchmarking of the algorithm against known analytic models and existing computational techniques to insure that the predictions of rf-sheath voltage are quantitatively consistent and believable, especially where slow waves share in the field with the fast wave. Currently in progress, an addition to the plasma force response accounting for the sheath potential, should enable the modeling of sheath plasma waves, a predicted additional root to the dispersion, existing at the

  1. Phase conjugation method and apparatus for an active retrodirective antenna array

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.; Chernoff, R. C. (Inventor)

    1979-01-01

    An active retrodirective antenna array wherein a reference array element is used to generate a phase reference which is replicated at succeeding elements of the array. Each element of the array is associated with a phase regeneration circuit and the phase conjugation circuitry of an adjacent element. In one implementation, the phase reference circuit operates on the input signal at the reference element, a voltage controlled oscillator (VCO) output signal and the input pilot signal at the next array element received from a transmission line. By proper filtering and mixing, a phase component may be produced to which the VCO may be locked to produce the phase conjugate of the pilot signal at the next array element plus a transmission line delay. In another implementation, particularly suited for large arrays in space, two different input pilot frequencies are employed.

  2. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  3. Fixed ground antenna radome (FGAR) type 1/3 OT&E integrations and OT&E operational

    NASA Astrophysics Data System (ADS)

    Baker, Leonard H.; Sedgwick, Harold G.

    1995-05-01

    This test report documents the Operational Test and Evaluation (OT&E) Integration and OT&E Operational testing performed on the Type I/Ill, Fixed Ground Antenna Radome (FGAR). The Type I/Ill FGAR is used with the Air Route Surveillance Radar (ARSR)) -1/2 and AN/FPS military radars. The testing was performed at the Federal Aviation Administration (FAA) Technical Center's Elwood En Route Beacon Test Facility (ERBTF) and the Northwest Mountain Region's Trinidad En Route Radar Facility (TAD), Colorado. The testing included: (1) characterization of the primary and secondary radar's electromagnetic performance; (2) human factors; (3) physical characteristics; and (4) physical performance. The electromagnetic performance testing showed no degradation of the primary or secondary radars; there were no human factor problems found; and only minor problems were identified during the physical characteristics and physical performance tests. The testing determined that the FGAR meets the Operational Suitability and Operational Effectiveness requirements of the FAA.

  4. Broadband integrated band-stop filter for horn antennas based on coupled SRRs

    NASA Astrophysics Data System (ADS)

    Barbuto, Mirko; Bilotti, Filiberto; Toscano, Alessandro

    2016-06-01

    In this contribution, inspired by a common phenomenon that is well-known in circuit theory, we show a simple method to increase the bandwidth of a band-stop filter based on the use of split-ring resonators (SRRs). In particular, the basic structure of the filtering module consists of a single SRR placed inside a pyramidal horn to implement a self-filtering antenna with a notched-band behavior. In order to increase the rejected band, we placed a second identical SRR in close proximity with the previous one. If the distance between the SRRs is suitably chosen, the two resonators are properly coupled leading to a widening of the notched-band of the filtering module. The effectiveness of the proposed approach is confirmed by the results of full-wave numerical simulations.

  5. Integration through a Card-Sort Activity

    ERIC Educational Resources Information Center

    Green, Kris; Ricca, Bernard P.

    2015-01-01

    Learning to compute integrals via the various techniques of integration (e.g., integration by parts, partial fractions, etc.) is difficult for many students. Here, we look at how students in a college level Calculus II course develop the ability to categorize integrals and the difficulties they encounter using a card sort-resort activity. Analysis…

  6. Antennas for diverse requirements

    NASA Astrophysics Data System (ADS)

    Boukamp, Joachim

    An account is given of a major German aerospace manufacturer's state-of-the-art methods for development, design, construction, testing and certification of a wide variety of civilian and military communications and radar antennas. Attention is given to reflector antennas for very large aperture/wavelength ratios, slotted waveguide arrays in which the radiating aperture is synthesized by guided structures, and both microstrip arrays and active arrays, for the creation of very large area antennas. Antenna tests and measurements are conducted in an anechoic chamber.

  7. Measured Radiation Patterns of the Boeing 91-Element ICAPA Antenna With Comparison to Calculations

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Burke, Thomas (Technical Monitor)

    2003-01-01

    This report presents measured antenna patterns of the Boeing 91-Element Integrated Circuit Active Phased Array (ICAPA) Antenna at 19.85 GHz. These patterns were taken in support of various communication experiments that were performed using the antenna as a testbed. The goal here is to establish a foundation of the performance of the antenna for the experiments. An independent variable used in the communication experiments was the scan angle of the antenna. Therefore, the results presented here are patterns as a function of scan angle, at the stated frequency. Only a limited number of scan angles could be measured. Therefore, a computer program was written to simulate the pattern performance of the antenna at any scan angle. This program can be used to facilitate further study of the antenna. The computed patterns from this program are compared to the measured patterns as a means of validating the model.

  8. In vitro Analysis of Antioxidant, Antimicrobial and Antiproliferative Activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata Extracts

    PubMed Central

    Narasimhan, Manoj Kumar; Pavithra, Shenoy K; Krishnan, Vishnupriya; Chandrasekaran, Muthukumaran

    2013-01-01

    Background Seaweeds are taxonomically diverse benthic algae, which are rich in bioactive compounds. These compounds have a potential application in medicine. Objectives The aim of the study was to investigate the bioactive properties of three seaweed samples, Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata were collected from the shoreline of Mahabalipuram, Tamilnadu. Materials and Methods Bioactive components were extracted by using various solvents. Antioxidant analysis methods like scavenging activity of nitric oxide, hydrogen peroxide, hydroxyl radicals, free radical scavenging (DPPH), FRAP (ferric reducing ability plasma) ability and reducing power were carried out. MTT assay was employed to study the anticancer activity against cancer cell lines Hep-G2, MCF7 and normal VERO cell lines. Results It was found that methanolic extracts elicited higher total phenolic content, higher percentage scavenging activity of nitric oxide, hydrogen peroxide, hydroxyl radicals, free radical scavenging (DPPH), FRAP (ferric reducing ability plasma) ability and reducing power. Different concentrations of crude methanolic extracts of seaweeds showed potential antimicrobial activity by well diffusion method. Crude methanolic extract of G. corticata had significant anticancer activity followed by E. antenna and E. linza on cancer cell lines Hep-G2, MCF7 and normal VERO cell lines by MTT assay. Conclusions The methanolic extracts of seaweeds Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata possess high total phenolic content and shows a good free radical scavenging activity and hence are proven to have better antioxidant activity and they might be good candidates for further investigations in order to develop potential anticancer drugs. PMID:24624206

  9. Sapphire decelerating capillary channel integrated with antenna at frequency 0.675 THz

    NASA Astrophysics Data System (ADS)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    In recent years, there has been an increasing interest in THz-radiation for application in medicine (THz tomographs), in pharmaceutics (composition analysis for medicines), in introscopy of large-scale objects (ships, trains, containers) and others. THz-radiation can be generated by relativistic electron bunches passing through the Cherenkov decelerating capillary channel (circular waveguide with dielectric filling) with horn extraction. Relativistic electron beams having ∼100 µm in diameter and pulse durations of 1 ps or less (as in photoinjectors) are capable of producing substantial power of THz-radiation. High-peak power coherent Cherenkov radiation can be produced by a properly modulated high-brightness electron beam or by a single, high-density bunch having sub-wavelength dimension. The aperture of a Cherenkov decelerating structure should be comparable with the mm or sub-mm wavelength (0.1-3 mm). Different dielectric materials for the internal surface coating of the capillary channel of mm-sub-mm cross-section can be used. As is known, a frequency of 0.675 THz corresponds to the atmospheric window with high transparency. This report presents the results of electrodynamics study of the metallized sapphire decelerating Cherenkov capillary. A horn antenna attached to the metallized sapphire capillary channel at the 0.675 THz resonant frequency will be considered.

  10. Some related aspects of platypus electroreception: temporal integration behaviour, electroreceptive thresholds and directionality of the bill acting as an antenna.

    PubMed

    Fjällbrant, T T; Manger, P R; Pettigrew, J D

    1998-07-29

    This paper focuses on how the electric field from the prey of the platypus is detected with respect to the questions of threshold determination and how the platypus might localize its prey. A new behaviour in response to electrical stimuli below the thresholds previously reported is presented. The platypus shows a voluntary exploratory behaviour that results from a temporal integration of a number of consecutive stimulus pulses. A theoretical analysis is given, which includes the threshold dependence on the number of receptors and temporal integration of consecutive stimuli pulses, the close relationships between electrical field decay across the bill, electroreceptive thresholds and directionality of the platypus bill acting as an antenna. It is shown that a lobe shape, similar to that which has been measured, can be obtained by combining responses in a specific way from receptors sensing the electric field decay across the bill. Two possible methods for such combinations are discussed and analysed with respect to measurements and observed behaviour of the platypus. A number of factors are described which need to be considered when electroreceptive thresholds are to be determined. It is shown that some information about the distance to the source is theoretically available from the pattern of field decay across the platypus's bill. The paper includes a comparative analysis of radar target tracking and platypus prey localization. PMID:9720116

  11. An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua.

    PubMed

    He, Peng; Zhang, Ya-Nan; Yang, Ke; Li, Zhao-Qun; Dong, Shuang-Lin

    2015-09-01

    Odorant-degrading enzymes (ODEs) in sensillar lymph are proposed to play important roles in the maintenance of the sensitivity of the olfactory sensilla, by timely degrading the odorants that have already fulfilled the activation of the odorant receptor (OR). Here we reported the cloning and characterization of an ODE gene (SexiCXE10) from the polyphagous insect pest Spodoptera exigua. SexiCXE10 is a carboxylesterase (CXE) gene, encoding a protein with 538 amino acid residues, and bearing typical characteristics of Carboxyl/cholinesterase (CCE, EC 3.1.1.1.) gene family. Tissue-temporal expression pattern by qPCR revealed that the SexiCXE10 mRNA was highly antenna biased, and maintained at high level throughout the adult stage. Further fluorescence in situ hybridization demonstrated that SexiCXE10 mRNA signal was detected under sensilla basiconica and short and long sensilla trichodea. Finally, enzymatic study using purified recombinant enzyme showed that SexiCXE10 had high activity specifically for ester plant volatiles with 7-10 carbon atoms, while no activity was found with S. exigua sex pheromone components and plant volatiles with more carbon atoms. In addition, SexiCXE10 displayed lower activity at acidic pH (pH 5.0), while higher activity was found at neutral and alkaline conditions (pH 6.5-9.0). Our results suggest that SexiCXE10 may play an important role in the degradation of the host plant volatiles, and thus contributes to the high sensitivity of the olfactory system in S. exigua. Meanwhile, the CXE would be a potential target for developing behavioral antagonists and pesticides against S. exigua. PMID:26267057

  12. Antenna research and development at Ericsson

    NASA Astrophysics Data System (ADS)

    Dahlsjo, Olof

    1992-04-01

    This article gives an overview of the antenna research and development activities at Ericsson Radar Electronics AB, in Molndal, Sweden. The article covers different types of microwave antennas, such as twist-Cassegrain antennas, shaped-reflector antennas, microstrip antennas, dichroic surfaces, slotted-waveguide-array antennas, omnidirectional antennas, and electronically-steered-array antennas. Measurement methods, such as near-field and diagnostic techniques, are also discussed. The applications are for radar and microwave communication systems, for use in ground, naval, airborne, and space environments.

  13. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  14. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  15. Imaging Antenna Structure For Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Rebeiz, G.; Rutledge, D.

    1990-01-01

    Integrated-circuit antenna structure contains two-dimensional array of antennas and antenna reflectors. In receiving mode, each antenna acts as part of detector for one picture element in millimeter- or submillimeter-wavelength imaging radar system. Millimeter-wave imaging system used to view objects through fog, smoke, or smog with resolution intermediate between microwave and visible-light imaging systems. Antenna elements, supports, and reflectors made by integrated-circuit techniques. Structures fabricated on front and back substrates separately. Substrates then joined. Inexpensive way to provide large number of small antenna elements required for imaging, all mounted rigidly in way that does not degrade operation.

  16. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.

    PubMed

    Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2016-08-01

    This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology. PMID:27214914

  17. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  18. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    PubMed

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits. PMID:26783033

  19. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas

    NASA Astrophysics Data System (ADS)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  20. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas

    PubMed Central

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits. PMID:26783033

  1. Novel Vertical Interconnects With 180 Degree Phase Shift for Amplifiers, Filters, and Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).

  2. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  3. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  4. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  5. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  6. Integration of Planetary Protection Activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    2000-01-01

    Research and activities under this grant have focused on a systematic examination and analysis of critical questions likely to impact planetary protection (PP) controls and implementation for Mars sample return missions (MSR). Four areas in the non-scientific and social realms were selected for special attention because of their importance to future mission planning and concern about critical timing or possible economic impacts on MSR mission implementation. These include: (1) questions of legal uncertainty and the decision making process, (2) public perception of risks associated with sample return, (3) risk communication and Education/Public Outreach , and (4) planetary protection implications of alternative mission architectures, for both robotic and human sample return missions. In its entirety, NAG 2-986 has encompassed three categories of activity: (1) research and analysis (Race), (2) subcontracted research (MacGregor/Decision Research), and (3) consulting services.

  7. New Antenna Deployment, Pointing and Supporting Mechanism

    NASA Technical Reports Server (NTRS)

    Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.

    1996-01-01

    On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.

  8. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  9. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  10. A hybrid finite element-boundary integral for the analysis of cavity-backed antennas of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.

    1993-08-01

    This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between

  11. A hybrid finite element-boundary integral for the analysis of cavity-backed antennas of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.

    1993-01-01

    This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between

  12. Hybridization of the Vector Finite Element Method with the Boundary Integral Method for the Solution of Finite Arrays of Cavity-Backed Slot Antennas

    NASA Astrophysics Data System (ADS)

    Polycarpou, A. C.

    2009-10-01

    The vector finite element method (FEM) is hybridized with the boundary integral (BI) method to solve for the radiation characteristics of a cavity-backed slot (CBS) antenna. The hybridization of the two methods is made possible at the aperture of the antenna separating the cavity interior and the half-space exterior region above an infinite conducting ground plane. Having to solve for a finite array of CBS antennas requires an excessive amount of memory, in order to store the system matrix, and considerable CPU time for the solution of the resulting linear system of equations. Increasing the number of array elements results in a non-linear increase in the number of unknowns, thus making the solution of the linear system impossible. In this paper, we adopt array domain decomposition (ADD) and by taking advantage of the repetitive features of the array, we can reduce the memory requirements to a minimum. In addition, we introduce stationary and non-stationary iteration techniques, with or without preconditioning, to solve the system of linear equations in an efficient manner. Singular value decomposition (SVD) is also used in order to further reduce memory requirements and speed-up matrix-vector multiplications that are inherent in either type of iterative techniques. Computational statistics and comparisons between stationary and non-stationary techniques are presented and discussed.

  13. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  14. Vertical integration of thermally activated heat pumps

    SciTech Connect

    Chen, F.C.

    1985-01-01

    Many thermally activated heat pump systems are being developed along technology lines, such as, engine-driven and absorption heat pumps. Their thermal performances are temperature dependent. Based on the temperature-dependent behavior of heat pump cycle performance and the energy cascading idea, the concept of vertically integrating various thermally activated heat pump technologies to maximize resources utilization is explored. Based on a preliminary analysis, it is found that integrating a desiccant dehumidification subsystem to an engine-driven heat pump could improve its cooling performance by 36% and integrating an ejector to it could improve its cooling performance by 20%. The added advantage of an ejector-coupled engine-driven heat pump is its system simplicity which should result in equipment cost savings.

  15. Antenna system for MSAT mission

    NASA Technical Reports Server (NTRS)

    Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora

    1988-01-01

    Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.

  16. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  17. Imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  18. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  19. Study of Electrical Activity in Martian Dust Storms with the Deep Space Network antennas

    NASA Astrophysics Data System (ADS)

    Martinez, S.; Kuiper, T. B. H.; Majid, W. A.; Garcia-Miro, C.; Tamppari, L. K.; Renno, N. O.; Ruf, C.; Trinh, J. T.

    2012-09-01

    Evidence for non-thermal emission produced by electrostatic discharges in a deep Martian dust storm has been reported by Ruf et al. 2009 [1]. Such discharges had been detected with an innovative kurtosis detector installed in a 34m radio telescope of the Deep Space Network (DSN) in June of 2006. The kurtosis (the fourth central moment of the signal normalized by the square of the second central moment) is extremely sensitive to the presence of non-thermal radiation, but is insensitive to variations in the intensity of the thermal radiation and instrument gain. The non-thermal radiation was detected while a 35 Km deep Martian dust storm was within the field of view of the radio telescope and presented signatures of modulation by the Martian Schumann Resonance. Encouraged by this discovery, several attempts have been made within the DSN to confirm the detection using the R&D antenna (DSS-13) and other antennas in the Madrid and Goldstone complexes, but using a very limited receiver, in terms of recorded data rates, the Very Long Baseline Interferometry (VLBI) Science Receiver (VSR). We are planning to initiate an extensive monitoring of Mars emission in a noninterfering basis while our antennas are tracking various Mars probes, using the Wideband Very Long Baseline Interferometry (VLBI) Science Receiver (WVSR). The WVSR is a very flexible open-loop digital backend that is used for radio science and spacecraft navigation support in the DSN. This instrument allows us to sample a larger bandwidth than with previously used detectors. The processing to look for the kurtosis signature will be performed in software, limited only by the computer capacity. Additionally there are plans to develop an even more powerful custom-built detector based in CASPER technology and Graphic Processing Units for enhance computational power. This contribution will describe how we plan to select the target Mars tracking passes from the DSN schedule. An automated process will generate

  20. Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna

    NASA Astrophysics Data System (ADS)

    Park, J.-K.; Goldston, R. J.; Crocker, N. A.; Fredrickson, E. D.; Bell, M. G.; Maingi, R.; Tritz, K.; Jaworski, M. A.; Kubota, S.; Kelly, F.; Gerhardt, S. P.; Kaye, S. M.; Menard, J. E.; Ono, M.

    2014-04-01

    Two important topics for tokamak edge-localized modes (ELM) control, based on non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: experimental observations of the edge harmonic oscillation (EHO) in NSTX (with lower frequency than EHOs in DIII-D and elsewhere), and theoretical study of its external drive using the high-harmonic fast wave (HHFW) antenna as a 3D field coil. EHOs were observed particularly clearly in NSTX ELM-free operation with very low n core modes. A number of diagnostics have confirmed n = 4-6 edge-localized and coherent oscillations in the 2-8 kHz frequency range. These oscillations seem to have a favoured operational window in rotational shear, similar to EHOs in DIII-D quiescent H modes. However, in NSTX, they are not observed to provide significant particle or impurity transport, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4-6 while minimizing n = 1-3. Also, ideal perturbed equilibrium code calculations show that the optimized configuration with only 1 kAt current can produce comparable or larger displacements than the observed internal modes. Thus it may be possible to use externally driven EHOs to relax the edge pressure gradient and control ELMs in NSTX-U and future devices. Fine and external control over the edge pressure gradient would be a very valuable tool for tokamak control.

  1. Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna

    SciTech Connect

    J.-K. Park, et. al.

    2013-01-14

    Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range. These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.

  2. Endfire tapered slot antennas on dielectric substrates

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  3. Endfire tapered slot antennas on dielectric substrates

    NASA Astrophysics Data System (ADS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-12-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  4. Antenna theory and design

    NASA Astrophysics Data System (ADS)

    Stutzman, W. L.; Thiele, G. A.

    Antenna fundamentals and definitions are examined, taking into account electromagnetic fundamentals, the solution of Maxwell's equations for radiation problems, the ideal dipole, the radiation pattern, directivity and gain, reciprocity and antenna pattern measurements, antenna impedance and radiation efficiency, antenna polarization, antennas in communication links and radar, and the receiving properties of antennas. Some simple radiating systems are considered along with arrays, line sources, wire antennas, broadband antennas, moment methods, and aperture antennas. High-frequency methods and aspects of antenna synthesis are discussed, giving attention to geometrical optics, physical optics, wedge diffraction theory, the ray-fixed coordinate system, the cylindrical parabolic antenna, and linear array methods.

  5. 47 CFR 95.647 - FRS unit and R/C transmitter antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as...

  6. 47 CFR 95.647 - FRS unit and R/C transmitter antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as...

  7. 47 CFR 95.647 - FRS unit and R/C transmitter antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as...

  8. 47 CFR 95.647 - FRS unit and R/C transmitter antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as...

  9. 47 CFR 95.647 - FRS unit and R/C transmitter antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false FRS unit and R/C transmitter antennas. 95.647... transmitter antennas. The antenna of each FRS unit, and the antenna of each R/C station transmitting in the 72-76 MHz band, must be an integral part of the transmitter. The antenna must have no gain (as...

  10. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  11. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: AMSU-A1 Antenna Drive Subsystem, PN 1331720-2, S/N 106

    NASA Technical Reports Server (NTRS)

    Luu, D.

    1999-01-01

    This is the Performance Verification Report, AMSU-A1 Antenna Drive Subsystem, P/N 1331720-2, S/N 106, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The antenna drive subsystem of the METSAT AMSU-A1, S/N 106, P/N 1331720-2, completed acceptance testing per A-ES Test Procedure AE-26002/lD. The test included: Scan Motion and Jitter, Pulse Load Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/ Phase Margin, and Operational Gain Margin. The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356941-1) test.

  12. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.

    2014-01-01

    A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (< 8 h) and had low energy, which suggests that the refilling time was not sufficient for large accumulation of gas. A tremor episode followed 75% of the explosions, which coincided with pulses of ash emission. The durations of the tremors following the explosions were longer for the two highest energy explosions. To better understand the physical processes associated with these eruptive events, we localized the sources of explosions using two seismic antennas that were composed of three-component 10 and 12 sensors. We used the high-resolution MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these

  13. Integrated Extravehicular Activity Human Research Plan: 2016

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott; Rajulu, Sudhakar; Norcross, Jason R.; Chappell, Steven P.

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Report is will also continue at a frequency determined by HRP management. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of

  14. Collapsible high gain antenna

    NASA Technical Reports Server (NTRS)

    Cribb, H. E. (Inventor)

    1973-01-01

    A lightweight small high gain antenna which is capable of being packaged in a collapsed form and automatically expanded when in use is described. The antenna includes a cylindrical housing having a rod with a piston adjacent to one end extending through it. Attached to the outer end of the rod in a normally collapsed state is a helical wire coil. When the gas producing means is activated the piston and rod are shifted outwardly to expand the wire coil. A latch is provided for holding the helical coil in the expanded position.

  15. Male moths bearing transplanted female antennae express characteristically female behaviour and central neural activity.

    PubMed

    Kalberer, N M; Reisenman, C E; Hildebrand, J G

    2010-04-01

    The primary olfactory centres of the sphinx moth Manduca sexta, the antennal lobes, contain a small number of sexually dimorphic glomeruli: the male-specific macroglomerular complex and the large female glomeruli. These glomeruli play important roles in sex-specific behaviours, such as the location of conspecific females and the selection of appropriate host plants for oviposition. The development of sexually dimorphic glomeruli depends strictly on the ingrowth of sex-specific olfactory receptor cell afferents. In the present study we tested the role of female-specific olfactory receptor cells (ORCs) in mediating female-specific host plant approach behaviour and in determining the response of downstream antennal lobe neurons. We generated male gynandromorphs by excising one imaginal disc from a male larva and replacing it with the antennal imaginal disc from a female donor. Most male gynandromorphs had an apparently normal female antenna and a feminised antennal lobe. These gynandromorphs were tested for flight responses in a wind tunnel towards tomato plants, a preferred host plant for oviposition in M. sexta. Male gynandromorphs landed on host plants as often as normal females, demonstrating that the presence of the induced female-specific glomeruli was necessary and sufficient to produce female-like, odour-oriented behaviour, i.e. orientation towards host plants. We also characterised the physiological and morphological properties of antennal lobe neurons of male gynandromorphs. We found that projection neurons with arborisations in the induced female-specific glomeruli showed physiological responses akin to those of female-specific projection neurons in normal females. These results therefore indicate that ORCs confer specific odour tuning to their glomerular targets and, furthermore, instruct odour-specific behaviour. PMID:20348339

  16. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  17. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna.

    PubMed

    Cazier, N; Buret, M; Uskov, A V; Markey, L; Arocas, J; Colas Des Francs, G; Bouhelier, A

    2016-02-22

    We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically-activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics. PMID:26907040

  18. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  19. Distortion of conformal antennas on aircraft structures

    NASA Astrophysics Data System (ADS)

    Schippers, Harmen; van Tongeren, Hans; Verpoorte, Jaco; Vos, Guus

    2001-08-01

    Conformal antennas on aircraft allow the use of non-conventional antenna locations such as the skin of the aircraft. However, when antennas are installed at these locations they are subject to steady and unsteady aerodynamic loads. The inertial forces and these aerodynamic loads will cause deformations and vibrations of the total antenna surface. The effect of these distortions on antenna performance will be most significant on highly directional antennas. The aim of the present paper is to describe technology development for estimating the effects of surface distortion on antenna performance. The technology is applied to a Side-Looking Airborne Radar (SLAR) antenna on a reconnaissance pod mounted on a fighter type aircraft. This generic SLAR antenna is a phased array antenna covering two faces of the pod: one part on the vertical side face and one part on the lower face of the pod. Radiation patterns are computed for distorted antenna surfaces. The computational model for the determination of the disturbed radiation pattern is based on geometrical parameterisation of the Stratton-Chu integral equations.

  20. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Nordquist, Christopher Daniel; Christodoulou, Christos George; Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  1. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Christodoulou, Christos George; Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  2. Active X based standards for healthcare integration.

    PubMed

    Greenberg, D S; Welcker, B

    1998-02-01

    With cost pressures brought to the forefront by the growth of managed care, the integration of healthcare information systems is more important than ever. Providers of healthcare information are under increasing pressure to provide timely information to end users in a cost effective manner. Organizations have had to decide between the strong functionality that a multi-vendor 'best of breed' architecture provides and the strong integration provided by a single-vendor solution. As connectivity between systems increased, these interfaces were migrated to work across serial and eventually, network, connections. In addition, the content of the information became standardized through efforts like HL7 and ANSI X12 and Edifact. Although content-based standards go a long way towards facilitating interoperability, there is also quite a bit of work required to connect two systems even when they both adhere to the standard. A key to accomplishing this goal is increasing the connectivity between disparate systems in the healthcare environment. Microsoft is working with healthcare organizations and independent software vendors to bring Microsoft's powerful enterprise object technology, ActiveX, to the healthcare industry. Whilst object orientation has been heralded as the 'next big thing' in computer applications development, Microsoft believe that, in fact, component software is the technology which will provide the greatest benefit to end users. PMID:9600418

  3. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H2 production

    NASA Astrophysics Data System (ADS)

    Zhang, Dieqing; Liu, Peijue; Xiao, Shuning; Qian, Xufang; Zhang, Hui; Wen, Meicheng; Kuwahara, Yasutaka; Mori, Kohsuke; Li, Hexing; Yamashita, Hiromi

    2016-03-01

    A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface ``super hot'' dots. The high temperature of ``super hot'' dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H-/H+ ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy.A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface ``super hot'' dots. The high temperature of ``super hot'' dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H-/H+ ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07505j

  4. Astigmatism in reflector antennas.

    NASA Technical Reports Server (NTRS)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  5. Novel low profile antenna candidates for EHF portable terminals

    NASA Technical Reports Server (NTRS)

    Roscoe, D.; Shafai, L.; Ittipiboon, A.; Cuhaci, M.; Moheb, H.

    1995-01-01

    This paper presents three low profile antenna candidates for EHF portable communication terminals. The first structure is a planar, multilayer microstrip antenna utilizing electromagnetic coupling to minimize the complexity and losses associated with the feed network. The second candidate is a medium gain (15 dB) radiating cavity antenna utilizing a thick metallic ground plane. This element is amenable to device integration because a heat sink is incorporated and an area is available for fastening modular RF components. Thirdly, as an alternative to microstrip antennas, dielectric resonator antennas (DRA's) are presented. A broadband (28 percent) DRA is discussed. Experimental measurements are presented for all three antenna candidates.

  6. Microsecond switchable thermal antenna

    SciTech Connect

    Ben-Abdallah, Philippe Benisty, Henri; Besbes, Mondher

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  7. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  8. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H2 production.

    PubMed

    Zhang, Dieqing; Liu, Peijue; Xiao, Shuning; Qian, Xufang; Zhang, Hui; Wen, Meicheng; Kuwahara, Yasutaka; Mori, Kohsuke; Li, Hexing; Yamashita, Hiromi

    2016-04-14

    A microwave-antenna strategy was developed for the in situ synthesis of Cu nanowire (CuNW) threaded ZIF-8. The CuNWs acted as microwave-antennas to generate surface "super hot" dots. The high temperature of "super hot" dots induced adsorption and coordination of metal ions and organic ligands, followed by in situ assembly and crystal-growth along the CuNWs. This catalyst exhibited high activity and stability in H2 production via NH3BH3 hydrolysis owing to the synergetic effect. The CuNWs supplied a rapid electron transfer channel while ZIF-8 assembled on the CuNWs offered a large capacity for adsorbing reactants and channels for rapidly transferring H(-)/H(+) ions toward Cu active sites. Other one-dimensional threaded MOFs, including CuNW threaded MOF-5 and UIO-66, or carbon nanotube threaded ZIF-8 and ZIF-67 could also be prepared using the microwave-antenna strategy. PMID:27001205

  9. Antenna coupled photonic wire lasers.

    PubMed

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  10. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    PubMed Central

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-01-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation. PMID:27561789

  11. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.

    PubMed

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F Javier

    2016-01-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1-5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation. PMID:27561789

  12. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  13. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  14. Transverse current on strip dipole antenna

    NASA Astrophysics Data System (ADS)

    Wunsch, A. D.

    1982-07-01

    Analyses of the current of thin wire dipole antennas presuppose that the current is parallel to the antenna axis. It is pointed out that a component of current transverse to the antenna axis can exist for antennas having a noncircular cross section, such as the strip dipole. The present investigation is concerned with a perfectly conducting strip antenna which is center driven by a delta function generator, taking into account the surface current-density components Kx(x,z) and Kz(x,z). In the solution of the resulting integral equations, it is assumed that Kz is considerably stronger than the transverse surface current density Kx. After obtaining an approximation to Kz, the second integral equation is solved for Kx. Results for the normalized transverse surface current density are presented in graphs.

  15. Detail, external parabolic antenna (later addition). Note how waveguide was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, external parabolic antenna (later addition). Note how waveguide was cut to remove active portion of antenna. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  16. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  17. Curved spiral antennas for underwater biological applications

    NASA Astrophysics Data System (ADS)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  18. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  19. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.

    2006-01-01

    constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic

  20. ARISE antenna

    NASA Astrophysics Data System (ADS)

    Chmielewski, Arthur B.; Noca, Muriel; Ulvestad, James

    2000-03-01

    Supermassive black holes are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. Understanding the physics of massive black holes and related phenomena is a primary goal of the ARISE mission. The scientific goals of the mission are described in detail on the ARISE web site http://arise.ipl.nasa.gov and in the ARISE Science Goals document. The following paper, as the title suggests, is not intended to be a comprehensive description of ARISE, but deals only with one aspect of the ARISE mission-the inflatable antenna which is the key element of the ARISE spacecraft. This spacecraft,due to the extensive reliance on inflatables, may be considered as the first generation Gossamer spacecraft

  1. Integrated Curriculum Activities. Integration of Vocational and Academic Learning through Tech Prep.

    ERIC Educational Resources Information Center

    Valencia Community Coll., Orlando, FL.

    The integrated learning activities in this guide were developed by a committee of educators from Osceola District Schools, Orange County Public Schools, and Valencia Community College (Florida) for a tech prep curriculum. Included are 32 communications-related activities, 30 mathematics activities, and 10 science activities. Each activity includes…

  2. Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.

    1998-01-01

    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.

  3. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  4. A reconfigurable plasma antenna

    SciTech Connect

    Kumar, Rajneesh; Bora, Dhiraj

    2010-03-15

    An experiment aimed at investigating the antenna properties of different plasma structures of a plasma column as a reconfigurable plasma antenna, is reported. A 30 cm long plasma column is excited by surface wave, which acts as a plasma antenna. By changing the operating parameters, e.g., working pressure, drive frequency, input power, radius of glass tube, length of plasma column, and argon gas, single plasma antenna (plasma column) can be transformed to multiple small antenna elements (plasma blobs). It is also reported that number, length, and separation between two antenna elements can be controlled by operating parameters. Moreover, experiments are also carried out to study current profile, potential profile, conductivity profile, phase relations, radiation power patterns, etc. of the antenna elements. The effect on directivity with the number of antenna elements is also studied. Findings of the study indicate that entire structure of antenna elements can be treated as a phased array broadside vertical plasma antenna, which produces more directive radiation pattern than the single plasma antenna as well as physical properties and directivity of such antenna can be controlled by operating parameters. The study reveals the advantages of a plasma antenna over the conventional antenna in the sense that different antennas can be formed by tuning the operating parameters.

  5. Design and analysis of coupled-resonator reconfigurable antenna

    NASA Astrophysics Data System (ADS)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2016-01-01

    In this paper, a coupled resonator with the microstrip patch antenna is proposed as a frequency reconfigurable antenna. The ground plane of the proposed microstrip patch antenna is modified with the proposed resonator structure to obtain reconfigurable characteristics. The resonator structure consists of two square split rings. The incorporation of proposed resonator structure with antenna makes it single-band antenna. The characteristics of proposed resonator structure can effectively deactivate by closing the splits of rings using switches, and hence, the dual-band characteristics of the antenna are recovered. The finite integration technique of computer simulation technology microwave studio is used throughout the investigation. The measurement of antenna performances is taken in an anechoic chamber. The measured and simulated performances of proposed reconfigurable antenna show very good agreement.

  6. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  7. Social Cohesion and Integration: Learning Active Citizenship

    ERIC Educational Resources Information Center

    Jansen, Th.; Chioncel, N.; Dekkers, H.

    2006-01-01

    This article starts from a conceptual clarification of the notions social integration and social cohesion as a prerequisite for the reorientation of citizenship education. Turning away from uncritically reproduced assumptions represented in mainstream "deficiency discourse," the article first focuses on sociological conditions for the rise of…

  8. Architecture. Intermediate ThemeWorks. An Integrated Activity Bank.

    ERIC Educational Resources Information Center

    Stewart, Kelly

    This resource book offers an activity bank of learning experiences related to the theme of architecture. The activities, which are designed for use with students in grades 4-6, require active engagement of the students and integrate language arts, mathematics, science, social studies, and art experiences. Activities exploring the architectural…

  9. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  10. Modified Reference SPS with Solid State Transmitting Antenna

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Sperber, B. R.

    1980-01-01

    The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.

  11. Mobile antenna development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, J.; Jamnejad, V.; Densmore, A.; Tulintseff, A.; Thomas, R.; Woo, K.

    1993-01-01

    The Jet Propulsion Laboratory (JPL), under the sponsorship of NASA, has pioneered the development of land vehicle antennas for commercial mobile satellite communications. Several novel antennas have been developed at L-band frequencies for the Mobile Satellite (MSAT) program initiated about a decade ago. Currently, two types of antennas are being developed at K- and Ka-band frequencies for the ACTS (Advanced Communications Technology Satellite) Mobile Terminal (AMT) project. For the future, several hand-held antenna concepts are proposed for the small terminals of the Ka-band Personal Access Satellite System (PASS). For the L-band MSAT program, a number of omni-directional low-gain antennas, such as the crossed drooping-dipoles, the higher-order-mode circular microstrip patch, the quadrifilar helix, and the wrapped-around microstrip 'mast' array, have been developed for lower data rate communications. Several medium-gain satellite tracking antennas, such as the electronically scanned low-profile phased array, the mechanically steered tilted microstrip array, the mechanically steered low-profile microstrip Yagi array, and the hybrid electronically/mechanically steered low-profile array, have been developed for the MSAT's higher data rate and voice communications. To date, for the L-band vehicle application, JPL has developed the world's lowest-profile phased array (1.8 cm height), as well as the lowest-profile mechanically steered antenna (3.7 cm height). For the 20/30 GHz AMT project, a small mechanically steered elliptical reflector antenna with a gain of 23 dBi has recently been developed to transmit horizontal polarization at 30 GHz and receive vertical polarization at 20 GHz. Its hemispherical radome has a height of 10 cm and a base diameter of 23 cm. In addition to the reflector, a mechanically steered printed MMIC active array is currently being developed to achieve the same electrical requirements with a low profile capability. These AMT antenna developments

  12. Transmit versus receive gains for microwave dish antennas

    NASA Astrophysics Data System (ADS)

    Richter, J. L.

    1983-06-01

    For the microwave dish antennas, the antenna gain when transmitting can be different, and is usually less, than that of the same antenna when receiving. The theory of the far field transmit and receive antenna gains is developed for the classical dish as well as for the general case. Aperture functions are derived for use in the integral form of the Fraunhofer diffraction equation. Both the aberration effects of the dish and the angular distribution of the feed are taken into account. Calculations of transmit and receive antenna patterns and gains are compared for the f/1 classical dish for various amounts of feed spillover.

  13. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  14. Integrated-Circuit Active Digital Filter

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1986-01-01

    Pipeline architecture with parallel multipliers and adders speeds calculation of weighted sums. Picture-element values and partial sums flow through delay-adder modules. After each cycle or time unit of calculation, each value in filter moves one position right. Digital integrated-circuit chips with pipeline architecture rapidly move 35 X 35 two-dimensional convolutions. Need for such circuits in image enhancement, data filtering, correlation, pattern extraction, and synthetic-aperture-radar image processing: all require repeated calculations of weighted sums of values from images or two-dimensional arrays of data.

  15. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  16. Integration of Active Video Games in Extracurricular Activity at Schools

    ERIC Educational Resources Information Center

    Lee, Jung Eun; Huang, Charles; Pope, Zachary; Gao, Zan

    2015-01-01

    Active video games require players to be physically active. Dance Dance Revolution (DDR) is an interactive dancing game that requires fast-foot movement coordinated with energetic music and visuals. The Wii and Xbox Kinect games have also become good active video games for the promotion of physical activity participation. These games are much more…

  17. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  18. A dual frequency microstrip antenna for Ka band

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1985-01-01

    For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.

  19. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface

    NASA Astrophysics Data System (ADS)

    Lee, Hyoban; Jeong, Kwang-Yong; Kang, Taejoon; Seo, Min-Kyo; Kim, Bongsoo

    2013-12-01

    Surface plasmons based on metallic nanostructures enable light manipulation beyond the optical diffraction limit. We have epitaxially synthesized twin-free single-crystal Ag nanoplates on SrTiO3 substrates. Unlike the nanoplates synthesized in a solution phase, these nanoplates have perfectly clean surfaces as well as a quite large size of tens of micrometers. As-synthesized defect-free single-crystal Ag nanoplates have an atomically flat surface and sides with well-defined angles, allowing long distance propagation of surface plasmons and highly reliable plasmonic integration. By spatially separating receiving and transmitting antennas and plasmonically interfacing them, the signal quality of transmission/reception can be largely improved. Furthermore, by combining sub-dimensional nanostructures onto the two-dimensional space effective hierarchical plasmonic nano-complexes can be built up. Theoretical simulations well reproduced unique experimental results of coupling between SPPs and free-space radiation by the nanoplate antenna sides, low-loss long-range SPP propagation, and tunneling or scattering of SPPs at a nano-gap as well as a nano-structure introduced on the nanoplate. The single-crystal Ag nanoplate will find superb applications in plasmonic nano-circuitry and lab-on-a-chip for biochemical sensing.Surface plasmons based on metallic nanostructures enable light manipulation beyond the optical diffraction limit. We have epitaxially synthesized twin-free single-crystal Ag nanoplates on SrTiO3 substrates. Unlike the nanoplates synthesized in a solution phase, these nanoplates have perfectly clean surfaces as well as a quite large size of tens of micrometers. As-synthesized defect-free single-crystal Ag nanoplates have an atomically flat surface and sides with well-defined angles, allowing long distance propagation of surface plasmons and highly reliable plasmonic integration. By spatially separating receiving and transmitting antennas and plasmonically

  20. Printed antennas: from theory to praxis, challenges and applications

    NASA Astrophysics Data System (ADS)

    Zichner, R.; Baumann, R. R.

    2013-07-01

    Miniaturized, highly integrated wireless communication systems are used in many fields like logistics and mobile communications. Often multiple antenna structures are integrated in a single product. To achieve such a high level of integration the antenna structures are manufactured e.g. from flexible boards or via LDS (laser direct structuring) which allows the production of complex monopole or dipole antennas with three-dimensionally curved shapes. Main drawbacks are the sophisticated production process steps and their costs. The additive deposition of metallic inks or pastes by a printing process is an alternative manufacturing method with reduced cost. To implement such printed antennas we investigated in the fields of antenna design, simulation, printing technology and characterization. The chosen example of use was a customized dipole antenna for a Radio Frequency Identification application. The results prove the intended functionality of the printed dipole in regard to a highly cost efficient printing manufacturing.

  1. JPL antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.

    1982-01-01

    Systems-level technology for evolving cost-effective, STS compatible antennas that will be automatically deployed in orbit to perform a variety of missions in the 1985 to 2000 time period is discussed. For large space-based antenna systems, the LSST program has selected deployable antennas for development. The maturity of this class of antenna, demonstrated by the success of smaller size apertures, provides a potential capability for satisfying a significant number of near-term, space-based applications. The offset wrap-rib concept development is the basis of the JPL LSST antenna technology development program. Supporting technology to the antenna concept development include analytical performance prediction, the capability for measuring and evaluating mechanical antenna performance in the intended service environment, and the development of candidate system-level configurations for potential applications utilizing the offset wrap-rib antenna concept.

  2. Integrating Physical Activity into Academic Pursuits

    ERIC Educational Resources Information Center

    Gaus, Mark D.; Simpson, Cynthia G.

    2009-01-01

    Children of today may be the first generation in the United States in more than 200 years to have a life expectancy shorter than their parents. Low levels of fitness caused by physical inactivity and poor nutritional habits of many of today's youth may be a contributing factor. Combating low fitness levels with physical activity is of utmost…

  3. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  4. Measurement of uterine activity in vitro by integrating muscle tension

    PubMed Central

    Styles, P. R.; Sullivan, T. J.

    1962-01-01

    Spontaneous or electrically stimulated activity of the uterus is measured isometrically in vitro by integrating tension against time. Uterine contractions move the operating rod of a potentiometer transducer, the output voltage from which is coupled to an electrical integrator motor and a servo recorder. Several parameters of uterine activity can be expressed in a single measurement, and a record of isometric contractions is obtained simultaneously. Oxytocin can be assayed accurately and the effect of drugs on uterine motility can be measured. PMID:13918066

  5. AuScope VLBI Project and Hobart 26-m Antenna

    NASA Technical Reports Server (NTRS)

    Lovell, Jim; Dickey, John; Reid, Brett; McCallum, Jamie; Shabala, Stas; Watson, Christopher; Ellingsen, Simon; Memin, Anthony

    2013-01-01

    This is a report on the activities carried out at the three AuScope VLBI observatories and the Hobart 26-m antenna. In 2012 the three AuScope 12-m antennas at Hobart (Hb), Katherine (Ke), and Yarragadee (Yg) completed their first full year of operations as an array. The Hobart 26-m antenna (Ho) continued to make a contribution to IVS, providing overlap with the Hb time series. In total the AuScope antennas and the Hobart 26 m observed for 146 antenna days in 2012. In this report we also briefly highlight our research activities during 2012 and our plans for 2013.

  6. Antenna development at DARPA

    NASA Astrophysics Data System (ADS)

    Corey, Larry; Jaska, Esko

    2004-09-01

    This paper reviews recent and ongoing antenna technology and systems development in the Special Projects Office of the Defense Advanced Research Projects Agency (DARPA/SPO). These programs fall into two categories: development and application of antenna component technologies and development of transportable phased-array radar antennas. These development programs are presented in a chronological order.

  7. Space-communications antennas

    NASA Astrophysics Data System (ADS)

    Kozyrev, Nikolai D.

    This textbook examines the design principles, requirements, and technical characteristics of earth-station and space-station antennas. Methods for realizing high gain and low noise temperature are examined along with ways to enhance antenna performance. Particular attention is given to the antenna-feed sections of earth stations.

  8. Coherently combining antennas

    NASA Technical Reports Server (NTRS)

    Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)

    2009-01-01

    An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.

  9. Adjusting Surfaces Of Large Antenna Reflectors

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, Marion C.; Hoftka, Raphael T.

    1989-01-01

    New approach more effective than traditional rms-surface-distortion approach. Optimization procedure for control of shape of reflector of large space antenna (LSA). Main feature is shape-controlling mathematical mechanism driven by need to satisfy explicit EM design requirements. Uses standard finite-element structural analysis, aperture-integration EM analysis, and constrained optimization techniques to predict set of actuator inputs that improves performance of antenna while minimizing applied control effort. Procedure applicable to wide variety of LSA concepts.

  10. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  11. Compact concentric ring shaped antenna for ultra wide band applications

    NASA Astrophysics Data System (ADS)

    Singha, Rahul; Vakula, D.; Sarma, N. V. S. N.

    2014-10-01

    A novel antenna for compact size, simple structure suitable for low cost fabrication is proposed for UWB application. A compact ring shaped monopole antenna is designed to cover the entire ultra wide bandwidth which has straight forward printed circuit board integration. The dimensions of the antenna are 16mm × 12mm × 0.787mm. More specifically, the impedance matching of the antenna is improved by employment of the tapered microstrip feed line. The measurement and simulation results show that the proposed antenna achieves good impedance bandwidth from 6.5 GHz to 25 GHz which covers the entire UWB. The antenna also has a gain approximately 2.5dBi from 6 GHz to 22 GHz. Compared to the existing UWB antennas, the presented modified structure has the smallest size, the widest bandwidth and better return loss characteristics.

  12. Smart electronics with interdigital electrodes, antennas, and MEMS for aerospace structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    A remote local and global sensing and control of aerospace structures using advanced polymeric smart materials, MEMS, and built-in antennas is presented. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer. They in turn are mounted onto an ultrathin Penn State novel RF antenna (patent filed). The sensors are designed to measure both pressure and shear of the fluid flow on aerospace structures. The wave form measurements may be monitored at a remote location either at the cockpit or elsewhere via the antennas in the sensors and an outside antenna. The integrated MEMS actuators, which are comprised of cantilever-, diaphragm-, and microbridge-based MEMS with suitable smart electronics etched onto the structure, are controlled by the built-in antennas through feedback and feedforward control architecture. The integration of such materials and smart electronics into the skin of airfoil is ideal for sensing and controlling drag. The basic idea of this concept involves detection of the point of transition from laminar to turbulent flow and transmitting acoustical energy into the boundary layer so that the low-energy fluid particles accelerate in the transverse direction and mix with the high energy flow outside of the boundary layer. The use of the present smart materials and electronics for active noise control and EMI suppression in aircraft and helicopters is also outlines.

  13. Antenna analysis using properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra

    2010-04-01

    As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].

  14. Movement and Learning: Integrating Physical Activity into the Classroom

    ERIC Educational Resources Information Center

    Reeves, Emily; Miller, Stacia; Chavez, Crystal

    2016-01-01

    We know the benefits of physical activity, and yet recess and physical education classes are being cut or scaled back to make room for meeting academic standards. Is cutting recess and physical education really benefiting academics? A look at some recent studies suggests that it is not. Integrating physical activity into the classroom may increase…

  15. Usage Of New Activation Function In Neuro-Symbolic Integration

    SciTech Connect

    Sathasivam, Saratha

    2010-12-23

    New activation function is examined for its ability to accelerate the performance of doing logic programming in Hopfield network. This method has a higher capacity and upgrades the neuro symbolic integration. Computer simulations are carried out to validate the effectiveness of the new activation function. Empirical results obtained support our theory.

  16. JPL antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.

    1981-01-01

    Plans for evaluating, designing, fabricating, transporting and deploying cost effective and STS compatible offset wrap rib antennas up to 300 meters in diameter for mobile communications, Earth resources observation, and for the orbiting VLBI are reviewed. The JPL surface measurement system, intended for large mesh deployable antenna applications will be demonstrated and validated as part of the antenna ground based demonstration program. Results of the offset wrap rib deployable antenna technology development will include: (1) high confidence structural designs for antennas up to 100 meters in diameter; (2) high confidence estimates of functional performance and fabrication cost for a wide range of antenna sizes (up to 300 meters in diameter); (3) risk assessment for fabricating the large size antennas; and (4) 55 meter diameter flight quality hardware that can be cost effectively completed toto accommodate a flight experiment and/or application.

  17. Simplified horn antenna parameter estimation using selective criteria

    SciTech Connect

    Ewing, P.D.

    1991-01-01

    An approximation can be used to avoid the complex mathematics and computation methods typically required for calculating the gain and radiation pattern of electromagnetic horn antenna. Because of the curvature of the antenna wave front, calculations using conventional techniques involve solving the Fresnel integrals and using computer-aided numerical integration. With this model, linear approximations give a reasonable estimate of the gain and radiation pattern using simple trigonometric functions, thereby allowing a hand calculator to replace the computer. Applying selected criteria, the case of the E-plane horn antenna was used to evaluate this technique. Results showed that the gain approximation holds for an antenna flare angle of less than 10{degree} for typical antenna dimensions, and the E field radiation pattern approximation holds until the antenna's phase error approaches 60{degree}, both within typical design parameters. This technique is a useful engineering tool. 4 refs., 11 figs.

  18. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; Wert, Michael; Leung, Patrick

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  19. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  20. A coplanar wideband antenna based on metamaterial refractive surface

    NASA Astrophysics Data System (ADS)

    Salhi, Ridha; Labidi, Mondher; Choubani, Fethi

    2016-01-01

    In this paper, we proceed by presenting a wideband coplanar antenna which can be used in various applications because of its performances such as broad band, small size and low-cost design. Then, we carried out many metamaterial refractive surface (MRS) simulations in order to optimize the antenna performances. Finally, a comparative study between different configurations of the proposed antenna integrated with MRS is presented. The proposed prototype covers the frequency band from 1.6 to 1.8 GHz.

  1. Antenna complexes protect Photosystem I from Photoinhibition

    PubMed Central

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  2. Multimode Broad-Band Patch Antennas

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2003-01-01

    Microstrip patch antennas of a proposed type would be tunable over broad wavelength ranges. These antennas would be attractive for use in a variety of microwave communication systems in which there are requirements for transmission and/or reception at multiple, widely separated frequencies. Prior efforts to construct tunable microstrip patch antennas have involved integration of microstrip circuitry with, variously, ferrite films with magneticfield tuning, solid-state electronic tuning devices, or piezoelectric tuning actuators. Those efforts have been somewhat successful, but have yielded tuning ranges of 20 percent and smaller much smaller than needed in typical practical cases. Like prior microstrip patch antennas (both tunable and non-tunable), the proposed antennas would have instantaneous bandwidths of about 1 percent of their nominal or resonance frequencies. However, these would be tunable over much broader frequency ranges as much as several octaves, depending on specific designs. They could be fabricated relatively simply and inexpensively by use of conventional photolithography, and without need for integration with solid-state electronic or piezoelectric control devices. An antenna as proposed (see figure) would include a microstrip patch radiating element on a thin ferroelectric film on a semiconductor substrate with a ground-plane conductor on the underside of the substrate. The ferroelectric film could be, for example, SrTiO3 with a thickness of the order of 1 or 2 micrometers.

  3. The Antenna Bride and Bridegroom

    NASA Astrophysics Data System (ADS)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  4. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  5. A True Metasurface Antenna

    PubMed Central

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately. PMID:26759177

  6. A True Metasurface Antenna.

    PubMed

    El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately. PMID:26759177

  7. A True Metasurface Antenna

    NASA Astrophysics Data System (ADS)

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.

  8. Basic parameters of antennas for aircraft, satellites and missiles

    NASA Astrophysics Data System (ADS)

    Mailloux, Robert J.

    1987-04-01

    System requirements for airborne, satellite and missile antennas continue to place increasingly severe demands upon antenna technology. In general these requirements push toward the increased capability to control and modify antenna patterns, and away from the use of small antennas with broad radiation patterns. Increased control can imply several levels of added sophistication. At the lowest level it implies mechanical or electronic scanning of an antenna directive pattern, at the next level there are needs to produce precise low sidelobe radiation patterns, and at the highest level of complexity there is the need to actively suppress jammer interference through the use of adaptive control of a full array or an antenna with sidelobe cancellers. In addition to increased control, there is also a trend toward higher frequencies, even to EHF frequencies where arrays of several thousand elements are necessary for some applications. These needs and applications of antenna technology are examined.

  9. Assessment of a field-aligned ICRF antenna

    SciTech Connect

    Wukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.

    2014-02-12

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma

  10. Phased array antenna control

    NASA Technical Reports Server (NTRS)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  11. Tunable circular patch antennas

    NASA Astrophysics Data System (ADS)

    Lan, G.-L.; Sengupta, D. L.

    1985-10-01

    A method to control the resonant or operating frequencies of circular patch antennas has been investigated experimentally and theoretically. It consists of the placement of passive metallic or tuning posts at approximate locations within the input region of the antenna. Comparison of measured and analytical results seems to establish the validity of a theoretical model proposed to determine the input performance of such circular patch antennas.

  12. The single antenna interferometer

    SciTech Connect

    Fitch, J.P.

    1990-01-15

    Air and space borne platforms using synthetic aperture radars (SAR) have made interferometric measurements by using either two physical antennas mounted on one air-frame or two passes of one antenna over a scene. In this paper, a new interferometric technique using one pass of a single-antenna SAR system is proposed and demonstrated on data collected by the NASA-JPL AirSAR. Remotely sensed L-band microwave data are used to show the sensitivity of this technique to ocean surface features as well as a baseline for comparison with work by others using two-antenna systems. 7 refs., 3 figs.

  13. MASTER TELEVISION ANTENNA SYSTEM.

    ERIC Educational Resources Information Center

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  14. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  15. MSU Antenna Pattern Data

    NASA Technical Reports Server (NTRS)

    Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip

    2000-01-01

    The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.

  16. Hands-On Activities for Integrating Geography across the Curriculum.

    ERIC Educational Resources Information Center

    Handley, Leslie Mills, Ed.

    1990-01-01

    Describes ways to integrate geography into the curriculum of primary and intermediate grades. Suggests hands-on activities for teaching abstract concepts through concrete experiences. Includes two units: creating a global map of the earth and incorporating social studies into language arts and mathematics by using magnet cars on maps. (NL)

  17. Integrating Multicultural Education: Activities to Celebrate the Chinese New Year

    ERIC Educational Resources Information Center

    Bian, Wei; Wang, Jianyu; McKinley, Betsy

    2009-01-01

    Holiday and festival celebrations are a unique form of cultural expression. Physical activities associated with cultural traditions offer the perfect opportunity for physical educators to integrate interdisciplinary teaching in their programs. This article focuses on the application of a multicultural perspective by introducing 12 station tasks…

  18. Integrating Physical Activity Data Technologies into Elementary School Classrooms

    ERIC Educational Resources Information Center

    Lee, Victor R.; Thomas, Jonathan M.

    2011-01-01

    This paper describes an iteration of a design-based research project that involved integrating commercial physical activity data (PAD) sensors, such as heart rate monitors and pedometers, as technologies that could be used in two fifth grade classrooms. By working in partnership with two participating teachers and seeking out immediate resources…

  19. Feed Structure For Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor)

    2005-01-01

    A novel feed structure, for an antenna having a resonant electric field structure, comprising a patch element, an integrated circuit attached to the patch element, at least one inner conductor electrically connected to and terminating at the integrated circuit on a first end of the at least one inner conductor, wherein the at least one inner conductor extends through and is not electrically connected to the patch element, and wherein the at least one inner conductor is available for electrical connectivity on a second end of the at least one inner conductor, and an outer conductor electrically connected to and terminating at the patch element on a first end of the outer conductor, wherein the outer conductor is available for electrical connectivity on a second end of the outer conductor, and wherein the outer conductor concentrically surrounds the at least one inner conductor from the second end of the at least one inner conductor available for electrical connectivity to the first end of the outer conductor terminating at the patch element.

  20. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  1. Dual-Band Microstrip Antenna With Reactive Loading

    NASA Technical Reports Server (NTRS)

    Davidson, Shayla E.

    1988-01-01

    Effective but bulky coaxial stub replaced. Short-circuited microstrip transmission line serves as reactive loading element for microstrip antenna. Constructed integrally with stripline radiating element, shorted line preserves low microstrip profile and enables tuning of antenna for two-band operation.

  2. Recent results for plasma antennas

    SciTech Connect

    Alexeff, Igor; Anderson, Ted; Farshi, Esmaeil; Karnam, Naresh; Pulasani, Nanditha Reddy

    2008-05-15

    Plasma antennas are just as effective as metal antennas. They can transmit, receive, and reflect radio waves just as well as metal antennas. In addition, plasma generated noise does not appear to be a problem.

  3. Realistic antenna modeling for MIMO systems in microcell scenarios

    NASA Astrophysics Data System (ADS)

    Waldschmidt, C.; Kuhnert, C.; F¨ Ugen, T.; Wiesbeck, W.

    2004-05-01

    This paper shows the potential of MIMO in cellular systems, where small handheld devices are used for the terminals. A complete model of a MIMO communication link is used to integrate accurate antenna modelling into MIMO system simulations. All different effects of mutual coupling between closely spaced antennas are considered. The efficiency or power budget respectively of the antenna arrays in the terminals, which are influenced by mutual coupling effects, is taken into account. Capacity simulation results based on a channel obtained from ray-tracing simulations are shown with cellular phones with up to three Inverted-F antennas.

  4. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  5. [Microstrip antenna design and system research of radio frequency identification temperature sensor].

    PubMed

    Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min

    2008-12-01

    Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled. PMID:19166222

  6. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  7. Design considerations for MST radar antennas

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    The design of antenna systems for radar capable of probing the mesosphere are discussed. The spatial wavelength dependency of turbulent advected ionization are cut off rapidly below wavelengths of about 3 m, imply frequencies of 100 MHz and below. The frequency and aperture requirements point to an array antenna of some kind as the most economical solution. Such an array could consist of dipoles or more directive elements; these elements can be either active or passive.

  8. Microstrip patch antennas - Basic properties and some recent advances

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Fong

    1989-10-01

    For high-speed moving vehicles, it is desirable for the antenna to be 'low profile'. One of the early low profile antennas is the slot antenna, the theory of which was developed by Professor Henry G. Booker in a classic paper published in 1946. During the last decade and a half, a relatively new class of radiators known as microstrip patch antennas has received much attention. In addition to being low profile and conformable to a shaped surface, these antennas offer the potential advantages of light weight, low cost, ruggedness, and compatibility with integrated circuit technology. The main disadvantages are narrow bandwidth and the problems associated with copper loss and spurious radiation when the elements form an array. This paper begins with a description of the basic features of microstrip patch antennas, followed by a presentation of some of the research aimed at improving the frequency response and gain, particularly those to which the author and his collaborators have made contributions.

  9. A frequency reconfigurable antenna based on digital microfluidics.

    PubMed

    Damgaci, Yasin; Cetiner, Bedri A

    2013-08-01

    We present a novel antenna reconfiguration mechanism relying on electrowetting based digital microfluidics to implement a frequency reconfigurable antenna operating in the X-band. The antenna built on a quartz substrate (εr = 3.9, tan δ = 0.0002) is a coplanar waveguide fed annular slot antenna, which is monolithically integrated with a microfluidic chip. This chip establishes an electrowetting on dielectric platform with a mercury droplet placed in it. The base contact area of the mercury droplet can be spread out by electrostatic actuation resulting in a change of loading capacitance. This in turn changes the resonant frequency of the antenna enabling a reversible reconfigurable impedance property. This reconfigurable antenna has been designed, fabricated and measured. The frequency of operation is tuned from around 11 GHz to 13 GHz as demonstrated by simulations and measurements. The design methodology, fabrication processes and the experimental results are given and discussed. PMID:23752978

  10. Infrared dipole antenna enhanced by surface phonon polaritons.

    PubMed

    Kim, Hyun Chul; Cheng, Xing

    2010-11-15

    In this Letter, we propose a gold dipole antenna formed on a SiC substrate to achieve a strong concentration of mid-IR radiation based on a synergistic integration of the IR dipole antenna and the resonance excitation of a surface phonon polariton. Numerical simulation based on the finite-difference time-domain technique shows that the intensity enhancement can be greater than 10(7) times at the mid-IR spectral region. The influence of the geometric parameters (i.e., antenna length, gap dimension, antenna thickness, and antenna width) on the antenna field enhancement is also studied. The strong intensity enhancement can find important applications in highly sensitive mid-IR photodetectors and in molecular detection and identification by surface-enhanced IR absorption spectroscopy techniques. PMID:21081984

  11. Low SAR planar antenna for multi standard cellular phones

    NASA Astrophysics Data System (ADS)

    Ben Ahmed, M.; Bouhorma, M.; Elouaai, F.; Mamouni, A.

    2011-03-01

    In this paper the design of a multiband compact antenna for the integration into the new multi function mobile phones is presented. The antenna is matched to operate at GSM 920 MHz, WI-Fi 2.4 GHz and HiperLan 5.1 GHz standards with low SAR levels. Return loss coefficient and radiation pattern of this antenna are computed in free space as well as in the presence of head. The specific absorption rate (SAR) of the planar antenna is calculated and compared with that of the monopole antenna. To examine the performance of this antenna, a prototype was designed, fabricated and measured; the simulation analysis was performed using the HFSS software, good agreement with the simulation providing validation of the design procedure.

  12. A new planar feed for slot spiral antennas

    NASA Technical Reports Server (NTRS)

    Nurnberger, M. W.; Volakis, J. L.

    1995-01-01

    This report presents a new planar, wideband feed network for a slot spiral antenna, and the subsequent design and performance of a VHF antenna utilizing this feed design. Both input impedance and radiation pattern measurements are presented to demonstrate the performance and usefulness of this feed. Almost all previous designs have utilized wire spirals, requiring bulky, non-planar feeds with separate baluns, and large absorbing cavities. The presented slot spiral antenna feed integrates the balun into the structure of the slot spiral antenna, making the antenna and feed planar. This greatly simplifies the design and construction of the antenna, in addition to providing repeatable accuracy. It also allows the use of a very shallow reflecting cavity for conformal applications. Finally, this feeding approach now makes many of the known miniaturization techniques viable options.

  13. Low Cost Large Space Antennas

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur B.; Freeland, Robert

    1997-01-01

    The mobile communication community could significantly benefit from the availability of low-cost, large space-deployable antennas. A new class of space structures, called inflatable deployable structures, will become an option for this industry in the near future. This new technology recently made significant progress with respect to reducing the risk of flying large inflatable structures in space. This progress can be attributed to the successful space flight of the Inflatable Antenna Experiment in May of 1996, which prompted the initiation of the NASA portion of the joint NASA/DOD coordinated Space Inflatables Program, which will develop the technology to be used in future mobile communications antennas along with other users. The NASA/DOD coordinated Space Inflatables Program was initiated in 1997 as a direct result of the Inflatable Antenna Experiment. The program adds a new NASA initiative to a substantial DOD program that involves developing a series of ground test hardware, starting with 3 meter diameter units and advancing the manufacturing techniques to fabricate a 25 meter ground demonstrator unit with surface accuracy exceeding the requirements for mobile communication applications. Simultaneously, the program will be advancing the state of the art in several important inflatable technology areas, such as developing rigidizable materials for struts and tori and investigating thin film technology issues, such as application of coatings, property measurement and materials processing and assembly techniques. A very important technology area being addressed by the program is deployment control techniques. The program will sponsor activities that will lead to understanding the effects of material strain energy release, residual air in the stowed structure, and the design of the launch restraint and release system needed to control deployment dynamics. Other technology areas directly applicable to developing inflatable mobile communication antennas in the near

  14. Scanning means for Cassegrainian antenna

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.; Rusch, W. V. T.

    1967-01-01

    Mechanical antenna beam switching device detects weak signals over atmospheric and equipment noise sources in microwave antennas. It periodically nutates the paraboloidal subdish in a Cassegrainian reflector system.

  15. Nanometre-scale germanium photodetector enhanced by optical antennas

    NASA Astrophysics Data System (ADS)

    Tang, Liang

    2008-10-01

    The use of optics to make connections within and between electronic chips has been the subject of research for over 20 years because it could solve many of the problems experienced in electrical systems. A critical challenge for the convergence of optics and electronics is that the micrometre scale of optics is significantly larger than the nanometre scale of modern electronic devices. In the conversion from photons to electrons by photodetectors, this size incompatibility often leads to substantial penalties in power dissipation, area, latency and noise. A photodetector can be made smaller by using a subwavelength active region which, however, could result in very low responsivity because of the diffraction limit of the light. In our first approach to tackle this problem, we use a C-shaped nano-aperture antenna in a thin metal layer to enhance the photocurrent response of a subwavelength photodetector. The single C-shaped aperture, without any other supporting surface structures, can collect light from a large area and concentrate it into a tiny volume of semiconductor. We demonstrated the first antenna-enhanced photodetector at near-infrared wavelengths. In our second approach, we exploit the idea of a dipole antenna from radio waves, but at near infrared wavelengths (˜ 1.3 mum), to concentrate radiation into a nanometre-scale Ge photodetector. Despite the small antenna size (˜ 380 nm long) and the different properties of metals at such high frequencies (˜ 230 THz), the antenna has qualitatively similar behavior to the common radio-frequency half-wave (i.e., half wavelength long) Hertz dipole. It gives a relative enhancement of 20 times in the resulting photocurrent in the subwavelength Ge detector element, which has an active volume of 0.00072 mum 3, two orders of magnitude smaller than previously demonstrated detectors at such wavelengths. Photodetectors are one of the most critical components in optoelectronic integration, and decreasing their size may

  16. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  17. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Bagherian, A. B.; Mielke, R. R.

    1983-01-01

    Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.

  18. Experiments with Dipole Antennas

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  19. Milestones in Broadcasting: Antennas.

    ERIC Educational Resources Information Center

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  20. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  1. Parabolic torus transreflector antenna

    NASA Astrophysics Data System (ADS)

    Diaz, L. M.; Smith, M. S.

    1984-12-01

    The possible scan rate of conventional radar antennas using parabolic dishes is limited to about 60 rev/min. This limitation is related to mechanical rotation requirements. Many radar applications require high data renewal rates, including short-range defense systems and systems for reduction of sea clutter. Faster scan rates can be obtained by using phased arrays and electronic scanning. However, the use of the required equipment introduces considerable complexity and cost. The present investigation is concerned with a novel form of antenna permitting high scan rates, taking into account a parabolic torus transreflector antenna. The feed horn illuminates one side of the radome with polarization parallel to the wires, which therefore reflect the radiation like a dish antenna. In the antenna considered, rotation of the beam is effected by mechanical rotation of the horn feed only, and this provides the potential for high scanning rates.

  2. GPS antenna designs

    NASA Technical Reports Server (NTRS)

    Laube, Samuel J. P.

    1987-01-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  3. GPS antenna designs

    NASA Astrophysics Data System (ADS)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  4. Characteristics of microstrip dipole antennas in a periodic structure with dielectric layers

    NASA Astrophysics Data System (ADS)

    Grinev, A. Iu.; Kotov, Iu. V.

    Microstrip dipole antennas in a periodic antenna array with dielectric layers are analyzed on the basis of a rigorous solution of an integral equation of the first kind with respect to the electric-field distribution on the dipole. Numerical results are presented on the partial radiation pattern of the antenna, the total input impedance, and the amplitude-phase distribution of the electric current on the dipole. The optimization of the antenna is considered.

  5. Active substrate integrated terahertz waveguide using periodic graphene stack

    NASA Astrophysics Data System (ADS)

    Dong, Yanfei; Liu, Peiguo; Yu, Dingwang; Yi, Bo; Li, Gaosheng

    2015-11-01

    The transmission properties of a substrate integrated waveguide (SIW) based on periodic graphene stacks have been theoretically investigated in the terahertz (THz) region. The effects of the dielectric-graphene-dielectric structure of the stack on the propagation properties are shown to be significant and different from the conventional active SIW based on active components. By varying the graphene chemical potential, the cut-off frequency of the proposed waveguide can be dynamically tuned from 3 to 3.7 THz. Moreover, the tunable waveguide displays low leakage loss and single-mode propagation with -120 dB stop-band attenuation. These primary results are very promising for THz integration devices and SIW-based systems.

  6. ALMA observatory equipped with its first antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    this project, because it allows us to look at the Universe in a way that has never been possible before. It really marks the start of a new era in astronomy," said Wolfgang Wild, the European ALMA Project Manager. This antenna handover is a major milestone, as the observatory team can now proceed with integrating the rest of the components, including the sensitive receivers that will collect the faint cosmic signals from space. The antennas are tested at the Operations Support Facility, at an altitude of 2900 m, before being moved to the plateau of Chajnantor at 5000 m. The Operations Support Facility will also be the observatory's control centre. ALMA is being built on the Chajnantor plateau, high in the Chilean Andes, because the site's extreme dryness and altitude offer excellent conditions for observing the submillimetre-wavelength signals for which the telescope is designed. In addition, the wide plateau at Chajnantor offers ample space for the construction of the antenna array, which is spread out and linked together over distances of more than 16 kilometres. "The ALMA antennas must withstand the harsh conditions at Chajnantor with strong winds, cold temperatures and a thin atmosphere with half as much oxygen as at sea level. This forbidding environment also poses challenges for the workers building ALMA," said de Graauw. The antennas, which each weigh about 100 tons, can be moved to different positions in order to reconfigure the ALMA telescope. This will be carried out by two custom-designed transporters, each of which is 10 metres wide, 20 metres long, and has 28 wheels (ESO 32/07). The ALMA Project is a partnership between the scientific communities of East Asia, Europe and North America with Chile.

  7. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  8. Interleaved arrays antenna technology development

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Phase one and two of a program to further develop and investigate advanced graphite epoxy waveguides, radiators, and components with application to space antennas are discussed. The objective of the two phases were to demonstrate mechanical integrity of a small panel of radiators and parts procured under a previous contract and to develop alternate designs and applications of the technology. Most of the emphasis was on the assembly and test of a 5 x 5 element module. This effort was supported by evaluation of adhesives and waveguide joint configurations. The evaluation and final assembly considered not only mechanical performance but also producibility in large scale.

  9. A generalized method for determining radiation patterns of aperture antennas and its application to reflector antennas. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Paknys, J. R.

    1982-01-01

    The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.

  10. Large Space Systems Technology, 1979. [antenna and space platform systems conference

    NASA Technical Reports Server (NTRS)

    Ward, J. C., Jr. (Compiler)

    1980-01-01

    Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.

  11. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    DOEpatents

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  12. Polarization Reconfigurable Patch Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2002-01-01

    The paper demonstrates a nearly square patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the polarization. Experimental results demonstrate that at a fixed frequency, the polarization can be reconfigured, from circular to linear.

  13. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  14. Autonomous omnidirectional spacecraft antenna system

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.

    1983-01-01

    The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.

  15. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  16. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  17. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix

    2007-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  18. Investigation of high temperature antennas for space shuttle

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    The design and development of high temperature antennas for the space shuttle orbiter are discussed. The antenna designs were based on three antenna types, an annular slot (L-Band), a linear slot (C-Band), and a horn (C-Band). The design approach was based on combining an RF window, which provides thermal protection, with an off-the-shelf antenna. Available antenna window materials were reviewed and compared, and the materials most compatible with the design requirements were selected. Two antenna window design approaches were considered: one employed a high temperature dielectric material and a low density insulation material, and the other an insulation material usable for the orbiter thermal protection system. Preliminary designs were formulated and integrated into the orbiter structure. Simple electrical models, with a series of window configurations, were constructed and tested. The results of tests and analyses for the final antenna system designs are given and show that high temperature antenna systems consisting of off-the-shelf antennas thermally protected by RF windows can be designed for the Space Shuttle Orbiter.

  19. Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.

    1993-01-01

    The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is

  20. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  1. Satellite Antenna Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.

  2. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  3. Deep space antennas

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Three 26-m tracking antennas operated by the NASA Deep Space Network at Goldstone, Calif.; Madrid, Spain; and near Canberra, Australia, will cease operations on Dec. 1, 1981. The stations will continue to operate 64-m and 34-m deep space tracking antennas. Ending operation of the 26-m antennas will cause a reduction of about 30%; of the Deep Space Network tracking and data acquisition capability. This means less support for NASA planetary spacecraft. Currently, the Deep Space Network is supporting Voyagers 1 and 2, Helios 1, the Mars Viking 1 Lander and Pioneers 6 through 12.

  4. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  5. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  6. Mobile antennas for COMETS advanced mobile Satcom experiment

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Tanaka, Masato; Saito, Haruo

    1995-01-01

    Advanced mobile satellite communication experiments in the Ka-band and the mm-wave will be carried out using the COMETS satellite, which is scheduled for launch in 1997. Mobile antennas will play a much more key role in high frequency systems such as COMETS than in conventional L-band mobile systems. This paper describes three types of antennas which are now being developed by the Communications Research Laboratory (CRL) for the COMETS mobile experiments. One is a mechanically steered waveguide slot array antenna, another is an electronically steered active phased array antenna, and the third is a mechanically steered torus reflector antenna. The first two antennas will be used in the Ka-band, while the latter will be used in the mm-wave.

  7. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1980-01-01

    Some leading concepts for deployable antennas are described and an assessment of the state of the art in deployable antennas is presented. The advanced sunflower precision antenna, the radial rib antenna and the maypole (hoop/column) antenna, the wrap rib antenna and the parabolic erectable truss antenna are covered. In addition, a discussion on the technology development program for two deployable antenna concepts that are responsive to the antenna mission requirements as defined in the NASA mission model is presented.

  8. The DESDynI Synthetic Aperture Radar Array-Fed Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Ghaemi, Hirad; Giersch, Louis; Harcke, Leif; Hodges, Richard; Hoffman, James; Johnson, William; Jordan, Rolando; Khayatian, Behrouz; Rosen, Paul; Sadowy, Gregory; Shaffer, Scott; Shen, Yuhsyen; Veilleux, Louise; Wu, Patrick

    2010-01-01

    DESDynI is a mission being developed by NASA with radar and lidar instruments for Earth-orbit remote sensing. This paper focuses on the design of a largeaperture antenna for the radar instrument. The antenna comprises a deployable reflector antenna and an active switched array of patch elements fed by transmit/ receive modules. The antenna and radar architecture facilitates a new mode of synthetic aperture radar imaging called 'SweepSAR'. A system-level description of the antenna is provided, along with predictions of antenna performance.

  9. Antenna pattern study

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1988-01-01

    Prediction of antenna radiation patterns has long been an important function in the design of command, communication, and tracking systems for rocket vehicles and spacecraft. An acceptable degree of assurance that a radio link will provide the required quality of data or certainty of correct command execution must be acquired by some means if the system is to be certified as reliable. Two methods have been used to perform this function: (1) Theoretical analysis, based on the known properties of basic antenna element types and their behavior in the presence of conductive structures of simple shape, and (2) Measurement of the patterns on scale models of the spacecraft or rocket vehicle on which the antenna is located. Both of these methods are ordinarily employed in the antenna design process.

  10. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  11. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  12. Coaxial phased array antenna

    NASA Astrophysics Data System (ADS)

    Ellis, H., Jr.

    1980-08-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  13. Coaxial phased array antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr. (Inventor)

    1980-01-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  14. Microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  15. Large antenna measurement and compensation techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1989-01-01

    Antennas in the range of 20 meters or larger will be an integral part of future satellite communication and scientific payloads. In order to commercially use these large, low sidelobe and multiple-beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. It is also desirable to compensate for slowly varying surface distortions which could results from thermal effects. An overview of recent advances in performing rf measurements on large antennas is presented with emphasis given to the application of a space-based far-field range utilizing the Space Shuttle. The concept of surface distortion compensation is discussed by providing numerical and measurement results.

  16. Potential Of VIRAC* RT-32 And RT-16 Antennas To Serve As Satellite Ground Station

    NASA Astrophysics Data System (ADS)

    Bleiders, M.; Trokss, J.; Elerts, M.

    2015-02-01

    The basic application of RT-32 and RT-16 parabolic antennas is radio astronomy observations, both the radio-telescopes have been upgraded with state-of-the art cryogenic receivers, and now a large-scale modernization of the infrastructure is underway. Since the radio-astronomical observations are not full-time activities, a research work has been done to clear up whether these antennas, besides the mentioned activities, can be used as a satellite ground station. The main goal of this added functionality is to make possible the use of the extremely high reception systems' figure-of-merit thus raising the satellite downlink data rates without increasing the on-board power consumption, which would be particularly important for developers of small satellites. In this paper, the progress in the research project is reported, which includes successful S-band satellite signal reception experiments and possible options as to integration of the related equipment into the system so that both functionalities could successfully coexist. Performance of the existing and the upgraded antenna positioning systems is estimated to determine if the latter are usable even for servicing low-Earth orbiting satellites. In addition, possible options are considered as to upgrading the system with automatic beam tracking capability, which would increase the antenna pointing accuracy even further.

  17. Polarized Antenna Splitting Functions

    SciTech Connect

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2009-10-17

    We consider parton showers based on radiation from QCD dipoles or 'antennae'. These showers are built from 2 {yields} 3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.

  18. Intelsat VI antenna system

    NASA Astrophysics Data System (ADS)

    Caulfield, M. F.; Lane, S. O.; Taormina, F. A.

    The antenna system design of a series of five new communications satellites known as Intelsat VI is described in detail. Each satellite will utilize 50 transponders operating in the C and K band portions of the frequency spectrum. The transponders are interconnectible using either static switch matrices or a network which provides satellite switched time division multiple access capability. The antenna coverages, characteristics, and special design features are shown and discussed.

  19. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  20. Large Deployable Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Huang, John; Lou, Michael

    2006-01-01

    A report discusses a 7-meter-diameter reflectarray antenna that has been conceived in a continuing effort to develop large reflectarray antennas to be deployed in outer space. Major underlying concepts were reported in three prior NASA Tech Briefs articles: "Inflatable Reflectarray Antennas" (NPO-20433), Vol. 23, No. 10 (October 1999), page 50; "Tape-Spring Reinforcements for Inflatable Structural Tubes" (NPO-20615), Vol. 24, No. 7 (July 2000), page 58; and "Self-Inflatable/Self-Rigidizable Reflectarray Antenna" (NPO-30662), Vol. 28, No. 1 (January 2004), page 61. Like previous antennas in the series, the antenna now proposed would include a reflectarray membrane stretched flat on a frame of multiple inflatable booms. The membrane and booms would be rolled up and folded for compact stowage during transport. Deployment in outer space would be effected by inflating the booms to unroll and then to unfold the membrane, thereby stretching the membrane out flat to its full size. The membrane would achieve the flatness for a Ka-band application. The report gives considerable emphasis to designing the booms to rigidify themselves upon deployment: for this purpose, the booms could be made as spring-tape-reinforced aluminum laminate tubes like those described in two of the cited prior articles.

  1. Antenna engineering handbook /2nd edition/

    NASA Astrophysics Data System (ADS)

    Johnson, R. C.; Jasik, H.

    Essential principles, methods, and data for solving a wide range of problems in antenna design and application are presented. The basic concepts and fundamentals of antennas are reviewed, followed by a discussion of arrays of discrete elements. Then all primary types of antennas currently in use are considered, providing concise descriptions of operating principles, design methods, and performance data. Small antennas, microstrip antennas, frequency-scan antennas, conformal and low-profile arrays, adaptive antennas, and phased arrays are covered. The major applications of antennas and the design methods peculiar to those applications are discussed in detail. The employment of antennas to meet the requirements of today's complex electronic systems is emphasized, including earth station antennas, satellite antennas, seeker antennas, microwave-relay antennas, tracking antennas, radiometer antennas, and ECM and ESM antennas. Finally, significant topics related to antenna engineering, such as transmission lines and waveguides, radomes, microwave propagation, and impedance matching and broadbanding, are addressed.

  2. Using an active primary surface to correct for low-order manufacturing errors in secondary mirrors of large reflector antennas

    NASA Astrophysics Data System (ADS)

    Cortes-Medellin, German; Lovell, Amy J.; Enriquez, Rogerio; Smith, David R.

    2004-09-01

    In the fabrication of high-performance, low-cost secondary reflectors for radio telescopes, it is a significant challenge to avoid introduction of low-order surface errors such as astigmatism or coma. This arises primarily because low-order surface errors are easily induced by support structure placement or simple thermal variations in the manufacturing process. It is, of course, possible to bring these errors to within the required tolerance, but if an active primary reflector is present, it may be possible to relax the requirements on the secondary and perhaps lower its cost. In this paper, we take the Large Millimeter-wave Telescope (LMT/GTM) as an example system. We model the effects of correcting a deformed sub-reflector by using the existing segmented active primary. The sub-reflector deformation patterns employed are low-order (e.g., astigmatism or coma), but are allowed significant excursions from the nominal surface figure. For each case, we demonstrate the best theoretical performance, using the active primary to correct for the errors. Additionally, to determine whether such an approach would be practical, we also demonstrate the likely performance improvement that could be achieved using brief measurements on an astronomical source. In this approach, we introduce varying amounts of known low-order deformation patterns into the active primary and seek the combination that results in the maximum signal. Finally, we compare this result to the theoretical maximum and make recommendations on the practical utility of the approach.

  3. Using Antenna Arrays to Motivate the Study of Sinusoids

    ERIC Educational Resources Information Center

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  4. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  5. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  6. VLF/LF transmitting antennas

    NASA Astrophysics Data System (ADS)

    Belrose, John S.

    1993-05-01

    Very Low Frequency (VLF) transmitting antenna design is a specialized field of engineering that requires the combined skill of radio, civil, and mechanical engineers. The antenna systems used for this band (15-30 kHz) are enormous structures. Vertical radiators with very extensive top-loading (non-radiating top-hats) are necessary because the electrical height of practical towers is small. For tower heights of 300-450 meters (1000-1500 feet) the electrical heights are only fifteen to forty-five one thousandths of a wavelength. This presentation discusses the following topics: antenna design concepts, antenna fundamentals, tools for antenna modeling, a mini-study of conventional antennas, multiple tuned antenna systems, and a comparison between performance (measured and predicted) for multiple tuned antennas vs. single tuned antennas.

  7. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring.

    PubMed

    Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji

    2014-01-01

    Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4-2.5-GHz ISM band with realized sensitivity of 1.27 [Formula: see text] for transdermal drug delivery monitoring and 2.76-[Formula: see text] sensitivity for implanted drug delivery monitoring. PMID:27170865

  8. Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna.

    PubMed

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2011-12-01

    In this Letter, we study the emission properties of an electric dipole emitter coupled to a plasmonic spiral structure. The plasmonic spiral structure functions as an optical antenna, coupling the electric dipole emission into circularly polarized unidirectional emission in the far field. Increasing number of turns of the spiral leads to narrower angular width of the emission pattern in the far field. For a spiral antenna with six turns, antenna directivity of 23.5 dB with a directional emission into a narrow angular cone of 4.3° can be achieved. The emitted photons carry spin that is essentially determined by the handedness of the spiral antenna. By reversing the spiral, one can switch the polarization of the emission field between left-hand and right-hand circular polarizations. The spiral antenna may be used as a nanoscale circular polarization source in single molecule sensing, single-photo sources, and integrated photonic circuits. PMID:22139233

  9. Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC

    SciTech Connect

    Fischer, J

    2002-04-17

    This report summarizes a research and development program that produced a stand-alone active desiccant module (ADM) that can be easily integrated with new or existing packaged cooling equipment. The program also produced a fully integrated hybrid system, combining the active desiccant section with a conventional direct expansion air-conditioning unit, that resulted in a compact, low-cost, energy-efficient end product. Based upon the results of this investigation, both systems were determined to be highly viable products for commercialization. Major challenges--including wheel development, compact packaging, regeneration burner development, control optimization, and low-cost design--were all successfully addressed by the final prototypes produced and tested as part of this program. Extensive laboratory testing was completed in the SEMCO laboratory for each of the two ADM system approaches. This testing confirmed the performance of the ADM systems to be attractive compared with that of alternate approaches currently used to precondition outdoor air, where a return air path is not readily available for passive desiccant recovery or where first cost is the primary design criterion. Photographs, schematics, and performance maps are provided for the ADM systems that were developed; and many of the control advantages are discussed. Based upon the positive results of this research and development program, field tests are under way for fully instrumented pilot installations of ADM systems in both a hotel/motel and a restaurant.

  10. AHEAD: Integrated Activities in the High Energy Astrophysics Domain

    NASA Astrophysics Data System (ADS)

    Piro, Luigi; Natalucci, Lorenzo; Ahead Consortium

    2015-09-01

    AHEAD (Integrated Activities in the High Energy Astrophysics Domain) is a forthcoming project approved in the framework of the European Horizon 2020 program (Research Infrastructures for High Energy Astrophysics). The overall objective of AHEAD is to integrate national efforts in high-energy Astrophysics and to promote the domain at the European level, to keep its community at the cutting edge of science and technology and ensure that space observatories for high-energy astrophysics, with particular regard to Athena, are at the state of the art. AHEAD will integrate key research infrastructures for on-ground test and calibration of space-based sensors and electronics and promote their coordinated use. In parallel, the best facilities for data analysis of high-energy astrophysical observatories will be made available to the European community. The technological development will focus on the improvement of selected critical technologies, background modeling, cross calibration, and feasibility studies of space-based instrumentation for the benefit of future high energy missions like Athena, and the best exploitation of existing observatories. AHEAD will support the community via grants for collaborative studies, dissemination of results, and promotion of workshops. A strong public outreach package will ensure that the domain is well publicized at national, European and International level. Networking, joint research activities and access to infrastructures as devised in AHEAD, will serve to establish strong connections between institutes and industry to create the basis for a more rapid advancement of high-energy astrophysical science, space oriented instrumentation and cutting-edge sensor technology in Europe. This enables the development of new technologies and the associated growth of the European technology market with a dedicated technology innovation package, as well as the creation of a new generation of researchers.

  11. Field-aligned ICRF antenna design for EAST

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Lin, Y.; Qin, C.; Zhang, X.; Beck, W.; Koert, P.; Zhou, L.

    2015-12-01

    For ion cyclotron range of frequency (ICRF), a number of physics and technological challenges remain for steady state, toroidal devices. Among the most critical is maintaining good coupling and maximizing the coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. As pulse length increases, enhanced localized heat loads associated with antenna operation can challenge antenna integrity. In addition, ICRF impurity sources and contamination need to be minimized to enable effective plasma heating. Here, we report on a four strap field aligned (FA) antenna design for the EAST tokamak. A FA antenna is an antenna where the current straps and antenna side enclosure are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In C-Mod, a FA antenna has been shown to be inherently load tolerant which allows for robust power delivery to the plasma. Furthermore, the RF enhanced heat flux and antenna impurity source were nearly eliminated. For both L and H-mode discharges, the core impurity contamination is 20-30% lower but not eliminated. The emerging physics understanding is that the local RF impurity sources and RF enhanced heat flux is reduced due to the geometric alignment of the FA antenna while impurity contamination is a result of far field sheaths. An important aspect of antenna design is to identify a core absorption scenario that is characterized by strong single pass absorption for a broad range of target discharges. To maximize power coupling, the antenna spectrum needs to balance the k|| needed for strong single pass absorption and high coupling efficiency through evanescent layer. The latest design for a FA four strap adapted to EAST device is balance between geometrical constraints and physics requirements.

  12. Material Technologies for Smart Antenna in the Space Wireless System

    NASA Astrophysics Data System (ADS)

    Sun, Rong

    In the space communication system, the smart antenna techniques are expected to have a significant impact on the efficient use of the spectrum, the minimization of the cost and adaption to the space environment. The features of smart antenna need to be considered early in the design phase of wireless systems, and realistic performance evaluation of smart antenna technique needs to be performed according to the critical parameters associated with systems requirements. In this article, an overview of the benefits of and advances of material technology in smart antenna is given, such as the reconfigurability in varying conditions of space environment. Mechanically reconfigurable materials have the potential to provide a large range of antenna reconfiguration with lower cost. Some smart material technologies, namely electro-active polymers and shape memory alloy actuators, are presented as potential candidates to implement mechanically reconfigurable antennas. And a approach is investigated by using PZT materials that switch into contact using voltage signals to reconfigure the structure and hence produce a tunable antenna. Meanwhile, the design of suitable simulation methodology and some proof-of-concept reconfigurable antenna prototypes using the above material technologies are presented. At last, the prospect for the applications of smart antenna materials is described.

  13. Modeling of compact loop antennas

    SciTech Connect

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  14. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  15. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  16. Multibeam antenna study, phase 1

    NASA Technical Reports Server (NTRS)

    Bellamy, J. L.

    1972-01-01

    A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.

  17. Signal integration by Ca2+ regulates intestinal stem cell activity

    PubMed Central

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  18. A comparative study of radiofrequency antennas for Helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Lancellotti, V.

    2015-04-01

    Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.

  19. Adaptive antenna design considerations for satellite communication antennas

    NASA Astrophysics Data System (ADS)

    Mayhan, J. T.

    1983-02-01

    The present investigation is concerned with some general considerations inherent in designing an adaptive antenna system for use on a geosynchronous satellite illuminating the earth field of view. The problem has been addressed from the viewpoint of the system designer who has to determine the required antenna characteristics and the antenna aperture size. Concerning the choice of the antenna type, it usually has to be decided whether to use a phased array (PA) or a multiple-beam antenna (MBA). Attention is given to nulling resolution and MBA/PA configuration, taking into account the phased array and multiple-beam antennas. The choice of which antenna type to use depends on the nulling bandwidth, the number of weighted channels in the adaptive processor, and the overall coverage area to be served by the antenna system.

  20. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking southeast. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  1. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking west. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  2. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  3. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  4. Satellite dual antenna pointing system

    NASA Technical Reports Server (NTRS)

    Keigler, John E. (Inventor); Hartshorne, Frank A. (Inventor)

    1986-01-01

    A satellite antenna pointing system for separately pointing separated transmit and receive high gain antenna systems includes means for separately and sequentially applying a beacon signal to the transmit and receive antenna systems and a broad beam width antenna which has a coverage area greater than the overall coverage region of the spot beam antenna systems. The system includes ground stations located at or near the periphery of the overall coverage region adapted to receive these beacon signals. At a central control station these beacon signals are compared to provide first signals proportional to the ratio of said beacon signals received from said transmit antenna system and said broad beam width antenna and second signals proportional to the ratio of said beacon signals received from said satellite receive antenna system and said broad beam width antenna. The central station generates from said first signals transmit antenna control signals which are sent to the satellite to control the orientation of said transmit antenna system. Likewise, the central control station generates from the second signals receiver antenna control signals which are applied to the satellite to control the orientation of the satellite receive antenna system.

  5. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Nordquist, Christopher D.; Cich, Michael J.

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  6. Industrial Plasma Antennas

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor

    2007-11-01

    This presentation summarizes an extensive program on plasma antennas. Plasma antennas are just as effective as metal antennas. In addition, they can transmit, receive and reflect lower frequency signals while being transparent to higher frequency signals. When de-energized, they electrically disappear. Plasma noise does not appear to be a problem. New technology that has been developed include a method of operating at high plasma density at minimal power consumption, a novel technique of noise reduction, and a method of opening a plasma window in a plasma microwave barrier on a time scale of microseconds rather than the usual time scale of milliseconds due to plasma decay. We are at present testing an intelligent plasma antenna in which a plasma ``window'' in a circular plasma barrier surrounding an antenna rotates azimuthally, seeking a radio transmitter. When located, a computer locks onto the transmitter. When the transmitter is de-energized, the plasma window recommences scanning. Commercial interest is strong, with invited papers being presented for 4 years in succession at the SMi Stealth Conference in London, UK, an operating model on permanent exhibition at the Booze-Allen headquarters in Alexandria, VA, and strong interest from Lockheed-Martin. In collaboration with Ted Anderson, Haleakala R&D Corp.; Esmaeil Farshi, Fred Dyer, Jeffrey Peck, Eric Pradeep, Nanditha Pulasani, and Naresh Karnam, University of Tennessee.

  7. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  8. Electrochemically Programmable Plasmonic Antennas.

    PubMed

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications. PMID:27328022

  9. View north of the antenna array, note the communications antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  10. View of antenna tunnel end. Right to Antenna Silo #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  11. Reduction of RF sheaths potentials by compensation or suppression of parallel RF currents on ICRF antennae

    NASA Astrophysics Data System (ADS)

    Mendes, A.; Colas, L.; Vulliez, K.; Argouarch, A.; Milanesio, D.

    2009-11-01

    Radio Frequency (RF) sheaths are suspected to limit the performance of present-day Ion Cyclotron Range of Frequencies (ICRF) antennae over long pulses and should be minimized in future Fusion devices. Within the simplest models, RF sheath effects are quantified by the integral VRF = ∫E//ṡdl where the parallel RF field E// is linked with the slow wave. On "long open field lines" with large toroidal extension on both sides of the antenna it was shown that VRF is excited by parallel RF currents j// flowing on the antenna structure. We thus propose two ways to reduce |VRF| by acting on j// on the antenna front face. The first method, more adapted for protruding antennae, consists in avoiding the j// circulation on the antenna structure, by slotting the antenna frame on its horizontal edges and by cutting partially the Faraday screen rods. The second method, well suited for recessed antennae, consists in compensating j// of opposite signs along long flux tubes, with parallelepiped antennae aligned with tilted flux tubes. The different concepts are assessed numerically on a 2-strap Tore Supra antenna phased [0, π] using near RF fields from the antenna code TOPICA. Simulations stress the need to suppress all current paths for j// to reduce substantially |VRF| over the whole antenna height.

  12. Knowledge Integration While Interacting with an Online Troubleshooting Activity

    NASA Astrophysics Data System (ADS)

    Yerushalmi, Edit; Puterkovsky, Menashe; Bagno, Esther

    2013-08-01

    A troubleshooting activity was carried out by an e-tutor in two steps. First, students diagnosed a mistaken statement and then compared their diagnosis to a teacher's diagnosis provided by the e-tutor. The mistaken statement involved a widespread tendency to over-generalize Ohm's law. We studied the discourse between pairs of students working with the e-tutor to examine whether and how the activity attained its objective of engaging students in knowledge integration processes; namely to elicit students' ideas, add scientifically acceptable or non-acceptable ideas and support them in developing criteria to sort out their ideas. We focus here on two case studies involving a pair of students with high prior knowledge and a pair with poor prior knowledge. The micro-analysis of these two pairs shows how the activity triggered students to explicate multiple alternative interpretations of the principles and concepts involved and attempts to align conflicting conceptions. We discuss how successive emendations gradually culminated in the elaboration of the students' understanding of these concepts.

  13. Hemispheric ultra-wideband antenna.

    SciTech Connect

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  14. Dual polarization flat plate antenna

    NASA Astrophysics Data System (ADS)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  15. Active assembly for large-scale manufacturing of integrated nanostructures.

    SciTech Connect

    Spoerke, Erik David; Bunker, Bruce Conrad; Orendorff, Christopher J.; Bachand, George David; Hendricks, Judy K.; Matzke, Carolyn M.

    2007-01-01

    Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.

  16. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  17. Comparison of electromagnetic solvers for antennas mounted on vehicles

    NASA Astrophysics Data System (ADS)

    Mocker, M. S. L.; Hipp, S.; Spinnler, F.; Tazi, H.; Eibert, T. F.

    2015-11-01

    An electromagnetic solver comparison for various use cases of antennas mounted on vehicles is presented. For this purpose, several modeling approaches, called transient, frequency and integral solver, including the features fast resonant method and autoregressive filter, offered by CST MWS, are investigated. The solvers and methods are compared for a roof antenna itself, a simplified vehicle, a roof including a panorama window and a combination of antenna and vehicle. With these examples, the influence of different materials, data formats and parameters such as size and complexity are investigated. Also, the necessary configurations for the mesh and the solvers are described.

  18. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  19. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  20. Antenna-coupled arrays of voltage-biased superconducting bolometers

    SciTech Connect

    Myers, Michael J.; Lee, Adrian T.; Richards, P.L.; Schwan, D.; Skidmore, J.T.; Smith, A.D.; Spieler, H.; Yoon, Jongsoo

    2001-07-23

    We report on the development of antenna-coupled Voltage-biased Superconducting Bolometers (VSBs) which use Transition-edge Sensors (TES). Antenna coupling can greatly simplify the fabrication of large multi-frequency bolometer arrays compared to horn-coupled techniques. This simplification can make it practical to implement 1000+ element arrays that fill the focal plane of mm/sub-mm wave telescopes. We have designed a prototype device with a double-slot dipole antenna, integrated band-defining filters, and a membrane-suspended bolometer. A test chip has been constructed and will be tested shortly.

  1. Antenna design for the Inmarsat second generation communication satellites

    NASA Astrophysics Data System (ADS)

    Huang, C. C.; McDonach, C. A.

    1990-02-01

    The Inmarsat satellite system provides international marine communications. This paper presents the RF design of a family of three antennas giving global coverage for the second generation of Inmarsat spacecraft. The antennas are direct radiating arrays operating at L-band and C-band with circular polarization. A very stringent low profile requirement is achieved by the use of cup-dipole radiators and integrated feed technology. The design of the cup-dipole is presented in detail together with the trade-offs leading to its selection as the radiating element. The measured antenna performance for all three arrays is presented showing good agreement with theoretical predictions.

  2. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  3. Microstrip antenna technology

    NASA Astrophysics Data System (ADS)

    Carver, K. R.; Mink, J. W.

    1981-01-01

    A survey of microstrip antenna elements is presented, with emphasis on theoretical and practical design techniques. Available substrate materials are reviewed along with the relation between dielectric constant tolerance and resonant frequency of microstrip patches. Several theoretical analysis techniques are summarized, including transmission-line and modal-expansion (cavity) techniques as well as numerical methods such as the method of moments and finite-element techniques. Practical procedures are given for both standard rectangular and circular patches, as well as variations on those designs including circularly polarized microstrip patches. The quality, bandwidth, and efficiency factors of typical patch designs are discussed. Microstrip dipole and conformal antennas are summarized. Finally, critical needs for further research and development for this antenna are identified.

  4. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  5. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  6. Launching large antennas

    NASA Astrophysics Data System (ADS)

    Brandli, H. W.

    1983-09-01

    Large antennas will provide communication to rural and remote areas in times of need. This is seen as facilitating the work of law enforcement agencies. All mobile radio communications will enjoy advantages in distances covered and information relayed owing to the large number of beams possible from super radio transmitters in space. If the antennas are placed in low-earth orbit, advantages will be realized in the remote sensing of the earth's resources. It is pointed out that with umbrella or bicyclelike antennas turned outward toward space, the universe could be scouted for signals from intelligent life. Various concepts that have been put forward by U.S. companies are described. These include the radial rib, wrap rib, and parabolic erectable truss designs. Others are the mesh hoop column collapsable umbrella made of gold and molybdenum and the maypole design.

  7. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  8. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  9. Using EIGER for Antenna Design and Analysis

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.

    2007-01-01

    EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.

  10. Antenna-coupled microcavities for terahertz emission

    SciTech Connect

    Madéo, J. Todorov, Y.; Sirtori, C.

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  11. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  12. Furlable spacecraft antenna development

    NASA Technical Reports Server (NTRS)

    Oliver, R. E.; Wilson, A. H.

    1972-01-01

    The development of large furlable spacecraft antennas using conical main reflectors is described. Two basic antenna configurations which utilize conical main reflectors have been conceived and are under development. In the conical-Gregorian configuration each ray experiences two reflections in traveling from the feed center to the aperture plane. In the Quadreflex (four reflection) configuration, each ray experiences four reflections, one at each of two subreflector surfaces and two at the main conical reflector surface. The RF gain measurements obtained from 6-ft and 30-in. models of the conical-Gregorian and Quadreflex concepts respectively were sufficiently encouraging to warrant further development of the concepts.

  13. Spaced antenna drift

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1983-01-01

    It has been suggested that the spaced antenna drift (SAD) technique could be successfully used by VHF radars and that it would be superior to a Doppler-beam-swinging (DBS) technique because it would take advantage of the aspect sensitivity of the scattered signal, and might also benefit from returns from single meteors. It appears, however, that the technique suffers from several limitations. On the basis of one SAD experiment performed at the very large Jicamarca radar, it is concluded that the SAD technique can be compared in accuracy to the DBS technique only if small antenna dimensions are used.

  14. DSN Microwave Antenna Holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  15. A century of antenna development

    NASA Astrophysics Data System (ADS)

    Olver, A. D.

    The paper describes a century of antenna development as part of a century of radio communications. This historical review examines, chronologically, the pre-Hertz period, Hertz antennas, the microwave optics period, the Marconi era, short waves, theoretical design before and after computers, and radar. Consideration is also given to mobile antennas, microwave comunications, radio astronomy, and satellite comunications.

  16. The JPL mechanically steered antenna

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Bell, David J.

    1988-01-01

    The Jet Propulsion Laboratory has designed and developed a mechanically steered antenna for tracking satellites in a mobile environment. This antenna was used to track an L-band beacon on the MARISAT satellite. A description of the antenna and the results of the satellite experiment are given.

  17. Wimpy Radar Antenna! Grades 6-8.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    In this activity, students reinforce an antenna tower made from foam insulation so that it can withstand a 480 N-cm bending moment (torque) and a 280 N-cm twisting moment (torque) with minimal deflection. One class period is used to discuss the problem, run the initial bending and torsion tests, and graph the results. The second class is used for…

  18. Method for calculating longitudinal microstrip antennas in planar phased arrays

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.

    The characteristics of longitudinal microstrip antennas in a planar phased array are examined on the basis of the application of the finite element method to an integral equation for the 'charge' on the microstrip line. Microstrip dipoles, and Yagi and log-periodic antennas are examples of such radiators. The analysis takes into account the complex configuration of the conductors, both current components, and the presence of dielectric substrates and a protective coating.

  19. Analysis of reflector antenna system including frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. L.; Lee, S. W.; Fujikawa, G.

    1992-10-01

    Frequency selective surfaces (FSS's) are often used in spaceborne applications of reflector antennas due to their ability to allow multiple feeds to utilize the same reflector dish. The problems inherent in evaluating the FSS separately from the reflector system are discussed. A method of integrating the FSS effects into the reflector system analysis is presented. An example is given for the proposed Advanced Tracking and Delay Relay Satellite System (ATDRSS) single-access triband reflector antenna.

  20. Design of a 60 GHz beam waveguide antenna positioner

    NASA Technical Reports Server (NTRS)

    Emerick, Kenneth S.

    1989-01-01

    A development model antenna positioner mechanism with an integral 60 GHz radio frequency beam waveguide is discussed. The system features a 2-ft diameter carbon-fiber reinforced epoxy antenna reflector and support structure, and a 2-degree-of-freedom elevation over azimuth mechanism providing hemispherical field of view. Emphasis is placed on the constraints imposed on the mechanism by the radio frequency subsystems and how they impacted the mechanical configuration.

  1. Antenna-coupled bolometer arrays using transition-edgesensors

    SciTech Connect

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O'Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  2. Analysis of reflector antenna system including frequency selective surfaces

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Fujikawa, G.

    1992-01-01

    Frequency selective surfaces (FSS's) are often used in spaceborne applications of reflector antennas due to their ability to allow multiple feeds to utilize the same reflector dish. The problems inherent in evaluating the FSS separately from the reflector system are discussed. A method of integrating the FSS effects into the reflector system analysis is presented. An example is given for the proposed Advanced Tracking and Delay Relay Satellite System (ATDRSS) single-access triband reflector antenna.

  3. Investigating antennas as ignition aid for automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, A.; Engelhardt, M.; Bienholz, S.; Ruhrmann, C.; Hoebing, T.; Groeger, S.; Mentel, J.; Awakowicz, P.

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case.

  4. Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence.

    PubMed

    Taminiau, Tim H; Moerland, Robert J; Segerink, Frans B; Kuipers, Laurens; van Hulst, Niek F

    2007-01-01

    We present a resonant optical nanoantenna positioned at the end of a metal-coated glass fiber near-field probe. Antenna resonances, excitation conditions, and field localization are directly probed in the near field by single fluorescent molecules and compared to finite integration technique simulations. It is shown that the antenna is equivalent to its radio frequency analogue, the monopole antenna. For the right antenna length and local excitation conditions, antenna resonances occur that lead to an enhanced localized field near the antenna apex. Direct mapping of this field with single fluorescent molecules reveals a spatial localization of 25 nm, demonstrating the importance of such antennas for nanometer resolution optical microscopy. PMID:17212435

  5. Structural Test and Analysis of a Hybrid Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Sreekantamurthy, Tham; Behun, Vaughn

    2007-01-01

    NASA is developing ultra-lightweight structures technology for communication antennas for space missions. One of the research goals is to evaluate the structural characteristics of inflatable and rigidizable antennas through test and analysis. Being able to test and analyze the structural characteristics of a full scale antenna is important to enable the simulation of various mission scenarios to determine system performance in space. Recent work completed to evaluate a Hybrid Inflatable Antenna concept will be discussed. Tests were completed on a 2-m prototype to optimize its static shape and identify its modal dynamics that are important for analytical model validation. These test results were used to evaluate a preliminary finite element model of the antenna, and this model development and correlation activity is also described in the paper.

  6. Probe Station and Near-Field Scanner for Testing Antennas

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Lee, Richard Q.; Darby, William G.; Barr, Philip J.; Miranda, Felix A.; Lambert, Kevin

    2006-01-01

    A facility that includes a probe station and a scanning open-ended waveguide probe for measuring near electromagnetic fields has been added to Glenn Research Center's suite of antenna-testing facilities, at a small fraction of the cost of the other facilities. This facility is designed specifically for nondestructive characterization of the radiation patterns of miniaturized microwave antennas fabricated on semiconductor and dielectric wafer substrates, including active antennas that are difficult to test in traditional antenna-testing ranges because of fragility, smallness, or severity of DC-bias or test-fixture requirements. By virtue of the simple fact that a greater fraction of radiated power can be captured in a near-field measurement than in a conventional far-field measurement, this near-field facility is convenient for testing miniaturized antennas with low gains.

  7. Integrated Vehicle Health Management (IVHM) Activities at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Fox, Jack

    2000-01-01

    Integrated Vehicle Health Management (IVHM) goals are to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce the costs of operations.

  8. Schwann cell myelination requires integration of laminin activities.

    PubMed

    McKee, Karen K; Yang, Dong-Hua; Patel, Rajesh; Chen, Zu-Lin; Strickland, Sidney; Takagi, Junichi; Sekiguchi, Kiyotoshi; Yurchenco, Peter D

    2012-10-01

    Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination. PMID:22767514

  9. Antenna subtraction at NNLO with hadronic initial states : double real radiation for initial-initial configurations with two quark flavours.

    SciTech Connect

    Boughezal, R.; Gehrmann-De Ridder, A.; Ritzmann, M.

    2011-02-01

    The antenna subtraction formalism allows to calculate QCD corrections to jet observables. Within this formalism, the subtraction terms are constructed using antenna functions describing all unresolved radiation between a pair of hard radiator partons. In this paper, we focus on the subtraction terms for double real radiation contributions to jet observables in hadron-hadron collisions evaluated at NNLO. An essential ingredient to these subtraction terms are the four-parton antenna functions with both radiators in the initial state. We outline the construction of the double real subtraction terms, classify all relevant antenna functions and describe their integration over the relevant antenna phase space. For the initial-initial antenna functions with two quark flavours, we derive the phase space master integrals and obtain the integrated antennae.

  10. Electromagnetic characterization of conformal antennas

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  11. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  12. Antenna array research

    NASA Technical Reports Server (NTRS)

    Tai, C.

    1973-01-01

    Antenna array research on electromagnetic field problems in inhomogeneous media is presented along with characteristics of the Eaton lens. Comparisons are given of the radiation pattern and directivity of small Luneburg lens with a homogeneous lens. References and figure captions on radiation patterns are included.

  13. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  14. Community Antenna Television (CATV).

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  15. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  16. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    antenna handover enables the observatory team to proceed with integrating the rest of the components, including the sensitive receivers that will collect the faint cosmic signals from space. "It marks the start of the next phase of the ALMA project. We have the front-end electronics and back-end electronics inside that antenna and now we can start the push to the high site, to get three antennas joined together interferometrically and start the process of science commissioning," said Russell. The antennas are tested at the Operations Support Facility, at an altitude of 9,500 feet, before being moved to the plateau of Chajnantor at 16,500 feet, a location where extreme dryness and altitude offer excellent conditions for observing the submillimeter-wavelength light for which the telescope is designed. ALMA's Operations Support Facility will also be the observatory’s control center. The wide plateau at Chajnantor also offers ample space for the construction of the antenna array, which is spread out and linked together over distances of more than 10 miles. “The ALMA antennas must withstand the harsh conditions at Chajnantor with strong winds, cold temperatures and a thin atmosphere with half as much oxygen as at sea level. This forbidding environment also poses challenges for the workers building ALMA,” said de Graauw. The antennas, which each weigh about 100 tons, can be moved to different positions in order to reconfigure the ALMA telescope. This will be carried out by two custom-designed transporters, each of which is some 33 feet wide, 66 feet long, and has 28 wheels. The ALMA Project is a partnership between the scientific communities of East Asia, Europe and North America with Chile. ALMA is funded in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada and the National Science Council of Taiwan. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy

  17. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    PubMed

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-01-01

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407

  18. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    PubMed Central

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-01-01

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407

  19. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  20. Mobile terminal antennas for helicopters

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Farazian, K.; Golshan, N.; Divsalar, D.; Hinedi, S.; Woo, K.

    1993-01-01

    In this paper, the feasibility of using an L-band low gain antenna (LGA) as a mobile terminal antenna for helicopters is described. The objective is to select the lowest cost antenna system which can be easily mounted on a helicopter and capable of communicating with a geosynchronous satellite. To ensure that all the antenna options are being considered, the steerable high gain reflector and medium gain array antennas as well as LGA are studied and compared in an exhaustive survey. The high gain reflector antenna in L-band is usually very large in size and heavy in weight. In addition, a bulky and expensive tracking system is needed to steer the antenna beam to the satellite direction. The medium gain antennas (including mechanically and electronically steered arrays) are also more expensive and less reliable than an LGA due to the addition of a beam steering system to track the satellite. The omni-directional LGA is simple, reliable, and inexpensive. It is typically ten times smaller than the medium gain antenna. This makes the position, selection, and mounting on the helicopter relatively easier. Therefore, the LGA is selected as a mobile terminal antenna for helicopters. Among the many LGA's (cross-dipole, helix, spiral, and slot antennas), the helix antenna is the most inexpensive. One can also change the size, shape, or pitch angle of the helix to optimize the gain in the desired direction. Therefore, the helix antenna is selected for further study. Both 2-arm and 4-arm helices are studied theoretically and experimentally to determine the antenna's performance and the scattering effects from the helicopter body and the blades. The multipath, Doppler, and Doppler rate issues as well as the periodic fading effects caused by the helicopter rotor blades will be briefly discussed in the paper.

  1. Final tests and performances verification of the European ALMA antennas

    NASA Astrophysics Data System (ADS)

    Marchiori, Gianpietro; Rampini, Francesco

    2012-09-01

    The Atacama Large Millimeter Array (ALMA) is under erection in Northern Chile. The array consists of a large number (up to 64) of 12 m diameter antennas and a number of smaller antennas, to be operated on the Chajnantor plateau at 5000 m altitude. The antennas will operate up to 950 GHz so that their mechanical performances, in terms of surface accuracy, pointing precision and dimensional stability, are very tight. The AEM consortium constituted by Thales Alenia Space France, Thales Alenia Space Italy, European Industrial Engineering (EIE GROUP), and MT Mechatronics is assembling and testing the 25 antennas. As of today, the first set of antennas have been delivered to ALMA for science. During the test phase with ESO and ALMA, the European antennas have shown excellent performances ensuring the specification requirements widely. The purpose of this paper is to present the different results obtained during the test campaign: surface accuracy, pointing error, fast motion capability and residual delay. Very important was also the test phases that led to the validation of the FE model showing that the antenna is working with a good margin than predicted at design level thanks also to the assembly and integration techniques.

  2. A radio altimeter antenna for a planetary probe

    NASA Technical Reports Server (NTRS)

    Beyer, J. B.; Afanasjevs, J.; Levanon, N.

    1976-01-01

    The design of a 400 MHz directional radio altimeter antenna for use in a freely falling probe in a planetary atmosphere is described. It is required that the antenna be physically large to exploit the dependence of the return power on the square of the wavelength. The antenna must be deployable so that it can be stowed behind the heat shield during the phase of atmospheric penetration. The electrical requirement, imposed by the power available and the system noise, is that the gain in the direction of the probe be at least 3 dB over a dipole. The altimeter application imposes the requirement of linear polarization. Dipole elements are impractical because of the proximity of the heat shield, hence monopole elements using the heat shield as an integral part (the ground plane) of the antenna are used. A parasitic element is placed behind the driven element to increase both the front-to-back ratio and the directive gain. The antenna which has been selected has a gain of 4 dB over a dipole, a front-to-back ratio of 8 dB, and a -6 dB beam angle of 34 degrees. Experiments for evaluating the effects of element spacing, length, and tilt angle with respect to the probe axis were conducted on a 1/25 scale model of the antenna at 10 GHz, and impedance measurements were performed on a full scale antenna at 400 MHz.

  3. SOFIA Telescope Functional Integration and Performance Test Activities

    NASA Astrophysics Data System (ADS)

    Waddell, P.; Haas, M. R.; Dunham, E. W.; Bremers, E.; Harms, F.; Keas, P. J.; Lattner, K.; Lillienthal, D.; Meyer, A. W.; Wolf, J.

    2004-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.7-m telescope installed in a Boeing 747SP. Collaborators developing the SOFIA telescope and observatory completed an intense period of activation between mid-June and mid-August, 2004. The integration activities included a preliminary modal survey; alignment of the Wide Field, Fine Field, and Focal Plane Imagers; installation of the secondary and tertiary mirrors; and their alignment relative to the primary mirror. Once these preliminaries were completed, SOFIA was rolled out of its hangar for a series of ground-based, on-sky tests using HIPO, the first science instrument to be installed on the telescope. First light was achieved observing Polaris on August 18, 2004. The on-sky test period encompassed 12 nights in late August and early September and included telescope step function response and first-order pointing control, image quality and optical tracking stability measurements, evaluation of the tracking imagers, gravity deformation studies, gyro alignment and bias rate measurement and correction, and performance tests of the secondary mirror Focus Centering Mechanism and Tilt Chopping Mechanism. It also included tests of the complete telescope command set, including Image Quality Compensation (IQC), quasi-static Flexible Body Compensation (FBC), reference frame transformations and trajectory estimation algorithms. This poster summarizes the results and describes the expected performance of SOFIA at the start of science observations. SOFIA is jointly funded by NASA and DLR and is managed by USRA and DSI. The successful, on-schedule completion of these tests involved close coordination by these three parties, CSA Engineering, CSEM, Kayser-Threde, L-3 Communications, Lowell Observatory, MAN-Technologies, Orbital Sciences, and others.

  4. Early T cell activation: integrating biochemical, structural, and biophysical cues.

    PubMed

    Malissen, Bernard; Bongrand, Pierre

    2015-01-01

    T cells carry out the formidable task of identifying small numbers of foreign antigenic peptides rapidly and specifically against a very noisy environmental background of endogenous self-peptides. Early steps in T cell activation have thus fascinated biologists and are among the best-studied models of cell stimulation. This remarkable process, critical in adaptive immune responses, approaches and even seems to exceed the limitations set by the physical laws ruling molecular behavior. Despite the enormous amount of information concerning the nature of molecules involved in the T cell antigen receptor (TCR) signal transduction network, and the description of the nanoscale organization and real-time analysis of T cell responses, the general principles of information gathering and processing remain incompletely understood. Here we review currently accepted key data on TCR function, discuss the limitations of current research strategies, and suggest a novel model of TCR triggering and a few promising ways of going further into the integration of available data. PMID:25861978

  5. An integrated active sensing system for damage identifcation and prognosis

    SciTech Connect

    Wait, J. R.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    This paper illustrates an integrated approach for identifying structural damage. Two damage identification techniques, Lamb wave propagation and impedance-based methods, are investigated utilizing piezoelectric (PZT) actuators/sensors. The Lamb wave propagation and the impedance methods operate in high frequency ranges (typically > 30 kHz) at which there are measurable changes in structural responses even for incipient damage such as small cracks, debonding, delamination, and loose connections. In Lamb wave propagation, one PZT is used to launch an elastic wave through the structure, and responses are measured by an array of sensors. The technique used for the Lamb wave propagation method looks for the possibility of damage by tracking changes in transmission velocity and wave attenuation/reflections. Experimental results show that this method works well for surface anomalies. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Through monitoring the measured electrical impedance and comparing it to a baseline measurement, a decision can be made about whether or not structural damage has occurred or is imminent. In addition, significant advances have been made recently by incorporating advanced statistic-based signal processing techniques into the impedance methods. To date, several sets of experiments have been conducted on a cantilevered aluminum plate and composite plate to demonstrate the feasibility of this combined active sensing technology.

  6. Analysis of signal degradation in an integrated active crossbar switch

    NASA Astrophysics Data System (ADS)

    Probst, David K.; Sodergren, Clifford C.; Krainak, Michael A.

    1996-01-01

    One of the most desirable features for a modern systems architecture is reconfigurability. It facilitates the sharing of various processing and memory resources among many different subsystems, thereby reducing the need for each subsystem to duplicate these resources. Reducing duplication also reduces size, weight, power consumption, and cost; all important considerations, especially in modern military systems. Sensor data requires very-wide- bandwidth, point-to-point connections, which are easily provided by fiber optics with good noise immunity, but the switching of such wide-bandwidth signals is problematic because electrical switches have both limited bandwidth and limited switching times. A wide- bandwidth, reconfigurable optical switch is required that overcomes coupling and splitting losses experienced by the optical signal passing through the switch so that sufficient signal- fidelity is maintained. In this paper, we investigate an integrated, active (i.e. amplifying) photonic crossbar switch to determine the signal degradation incurred for intensity modulation and direct detection using an NRZ data format and an ideal, matched-filter receiver. Various device configurations are analyzed in order to determine which produces the smallest degradation of the signal-to-noise ratio.

  7. HIV-1 integration landscape during latent and active infection

    PubMed Central

    Cohn, Lillian; Silva, Israel T.; Oliveira, Thiago Y.; Rosales, Rafael A.; Parrish, Erica H.; Learn, Gerald H.; Hahn, Beatrice H.; Czartoski, Julie L.; McElrath, M. Juliana; Lehmann, Clara; Klein, Florian; Caskey, Marina; Walker, Bruce D.; Siliciano, Janet D.; Siliciano, Robert F.; Jankovic, Mila; Nussenzweig, Michel C.

    2015-01-01

    SUMMARY The barrier to curing HIV-1 is thought to reside primarily in CD4+ T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses, and that the replication competent reservoir is primarily found in CD4+ T cells that remain relatively quiescent. PMID:25635456

  8. Finite width coplanar waveguide patch antenna with vertical fed through interconnect

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Shalkhauser, Kurt A.; Owens, Jonathan; Demarco, James; Leen, Joan; Sturzebecher, Dana

    1996-01-01

    The paper presents the design, fabrication and characterization of a finite width Coplanar waveguide (FCPW) patch antenna and a FCPW-to-FCPW vertical interconnect. The experimental results demonstrate the antenna and interconnect performance. A scheme to integrate an eight element FCPW patch array with MMIC phase shifters and amplifiers using vertical interconnects is described. The antenna module has potential applications in an advanced satellite to ground transmit phased array at K-Band.

  9. The Teacher as Re-Designer of Technology Integrated Activities for an Early Literacy Curriculum

    ERIC Educational Resources Information Center

    Cviko, Amina; McKenney, Susan; Voogt, Joke

    2013-01-01

    Though popular among children outside of school, Dutch teachers often struggle to offer technology integrated activities in the kindergarten classroom. Because involving teachers in development of technology integrated activities can support their implementation, this study examines teachers in the role of re-designing such activities. Two case…

  10. The Tore Supra ITER like ICRF antenna prototype

    SciTech Connect

    Vulliez, K.; Agarici, G.; Argouarch, A.; Beaumont, B.; Becoulet, A.; Berger-by, G.; Bosia, G.; Bremond, S.; Colas, L.; Lombard, G.; Millon, L.; Mollard, P.; Hoang, G. T.; Volpe, D.

    2007-09-28

    In the framework of the ICRH development led at CEA Cadarache, a project of a prototype antenna based on the electrical layout foreseen for the ITER IC launcher has been initiated. First experiments have been performed on Tore Supra in 2004. Pulses of 500 kW lasting up to 6s have been achieved. The importance of the coupling effect between straps has been revealed during these experiments, and thus the need for an active control system of the current phasing between them. Despite the short experimental campaign terminated by the failure of the matching components due to undetected arcs, the load tolerant properties of such a circuit have been observed.Since, the prototype antenna has been repaired, reassembled and enhanced accordingly to the fruitful lessons harvested. The RF circuit was improved, corona rings were added on the capacitor poles and localized 'sharp' edges were rounded to increase the voltage standoff capability. To reduce the toroidal coupling between adjacent straps, a thick poloidal septum was added on the Faraday screen, thus easing the tuning of the launcher. Another major improvement was the development and the integration of current probes on each of the four straps. This paper reports on: the launcher mechanical enhancements, the recent results obtained in 2007 and the experimental program planned on Tore Supra.

  11. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.

    2006-01-01

    NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  12. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

    2007-01-01

    NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  13. THz radiation properties of silver V-cone antenna arrays

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Huang, Mengya; Hu, Mingzhe

    2012-12-01

    In the present article, silver cone antenna and its arrays are designed according to the requirement of wide bandwidth terahertz irradiation property. Coordinate transformation method is employed to analyze the solution process of the integrate equation of the irradiated electromagnetic field. And CST microwave studio software is employed to simulate the terahertz irradiation properties of Ag cone antenna arrays. Theoretical analysis and simulation results both manifest that the single Ag cone antenna with micrometer scale size can irradiate a wide bandwidth THz wave with the gain of 22.7dBi, while its corresponding antenna arrays with proper configuration can further improve the radiation pattern and enhance the gain to 42.5dBi. The theoretical analysis and CST simulation results will be useful for the guidance of experimental investigation of terahertz irradiation sources.

  14. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  15. Reducing Antenna Mechanical Noise in Precision Doppler Tracking

    NASA Astrophysics Data System (ADS)

    Armstrong, J. W.; Estabrook, F. B.; Asmar, S. W.; Iess, L.; Tortora, P.

    2006-05-01

    Precision Doppler tracking of deep-space probes is central to spacecraft navigation and many radio science investigations. The most sensitive Doppler observations to date have been taken using the NASA/JPL Deep Space Network (DSN) antenna DSS 25, a 34-m-diameter beam-waveguide station especially instrumented with simultaneous X-band (approximately 8.4-GHz) and Ka-band (approximately 32-GHz) links and tropospheric scintillation calibration equipment, tracking the Cassini spacecraft. These Cassini observations achieved Doppler fractional frequency stability (Doppler frequency fluctuation divided by center frequency, Delta f / f_o ) of approximately 3 x 10^-15 at tau = 1000 s integration. In those very-high-sensitivity tracks, the leading disturbance was antenna mechanical noise: time-dependent unmodeled physical motion of the ground antenna's phase center caused by antenna sag as the elevation angle changed, unmodeled subreflector motion, wind loading, bulk motion of the antenna as it rolled over irregularities in the supporting azimuth ring, differential thermal expansion of the structure, etc. This noise has seemed irreducible at reasonable cost, since it is unclear how to build a practical, large, moving, steel structure having mechanical stability significantly better than that of current tracking stations. Here we show how the mechanical noise of a large tracking antenna can effectively be removed when two-way Doppler tracking data from an existing DSN antenna are suitably combined with simultaneous tracking data using an ancillary (smaller and stiffer) antenna. Using our method, the mechanical noise in the final Doppler observable can be reduced, substantially, to that of the stiffer antenna.

  16. JPL Large Advanced Antenna Station Array Study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In accordance with study requirements, two antennas are described: a 30 meter standard antenna and a 34 meter modified antenna, along with a candidate array configuration for each. Modified antenna trade analyses are summarized, risks analyzed, costs presented, and a final antenna array configuration recommendation made.

  17. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  18. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  19. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  20. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  1. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  2. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  3. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  4. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  5. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  6. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  7. Rim loaded reflector antennas

    NASA Astrophysics Data System (ADS)

    Bucci, O. M.; Franceschetti, G.

    1980-05-01

    A general theory of reflector antennas loaded by surface impedances is presented. Spatial variation of primary illumination is taken into account using a generalized slope diffraction coefficient. The theory is experimentally checked on surface loaded square plate scatterers and then used for computing the radiation diagram of parabolic and hyperbolic dishes. Computer programs and computed diagrams refer to the case of focal illumination and negligible tapering of primary illumination.

  8. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  9. Position determination systems. [using orbital antenna scan of celestial bodies

    NASA Technical Reports Server (NTRS)

    Shores, P. W. (Inventor)

    1976-01-01

    A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations.

  10. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-04-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  11. SPS antenna element evaluation

    NASA Technical Reports Server (NTRS)

    Lunden, C. D.; Lund, W. W.; Nalos, E. J.

    1980-01-01

    The SPS transmitting array requires an architecture which will provide a low weight, high efficiency and high structural rigidity. Waveguide slot arrays constitute the most desirable option. Consequently, such an array was chosen for the SPS. Waveguide slot arrays offer high efficiency, uniform illumination, and are fairly lightweight. Bandwidths of such arrays are narrow, typically 1/2-2%. Although this does not directly impact the SPS, which transmits power at a single frequency of 2.45 GHz, the narrow bandwidth does constrain the thermal and mechanical tolerances of the antenna. The purpose of this program is to better define the electronic aspects of an SPS specific waveguide slot array. The specific aims of the program are as follows: (1) To build a full-scale half-module, 10 stick, array, the design parameters for which are to be determined analytical considerations tempered by experimental data on a single slotted radiating stick, (2) To experimentally evaluate the completed array with respect to antenna pattern, impedance and return loss; and (3) To measure swept transmission amplitude and phase to provide a data base for design of a receiving antenna.

  12. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  13. Helicopter Rotor Antenna

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.; Cable, Vaughn P.

    2001-01-01

    This effort was directed toward demonstration of the efficacy of a concept for mitigation of the rotor blade modulation problem in helicopter communications. An antenna is envisioned with radiating elements mounted on the rotor and rotating with it. The rf signals are coupled to the radio stationary with respect to the airframe via a coupler of unique design. The coupler has an rf cavity within which a mode is established and the field distribution of this mode is sampled by probes rotating with the radiating elements. In this manner the radiated pattern is "despun" with respect to the rotor. Theoretical analysis has indicated that this arrangement will be less susceptible to rotor blade modulation that would be a conventional fixed mounted antenna. A small coupler operating at S-band was designed, fabricated, and mounted on a mockup representative of a helicopter body. A small electric motor was installed to rotate the rotor portion of the coupler along with a set of radiating elements during testing. This test article was be evaluated using the JPL Mesa Antenna Measurement Facility to establish its ability to mitigate rotor blade modulation. It was found that indeed such a coupler will result in a despun pattern and that such a pattern can be effective in mitigation of rotor blade modulation.

  14. Large furlable antenna study

    NASA Technical Reports Server (NTRS)

    Campbell, G. K. C.

    1975-01-01

    The parametric study of the performance of large furlable antennas is described and the availability of various size antennas is discussed. Three types of unfurlable reflector designs are considered: the wrapped rib, the polyconic, and the maypole. On the basis of these approaches, a space shuttle launch capability, and state-of-the-art materials, it is possible to design unfurlable reflectors as large as 130 feet (40 meters) in diameter to operate at 10 GHz and 600 feet (183 meters) in diameter at 0.5 GHz. These figures can be increased if very low thermal coefficient of expansion materials can be developed over the next 2-5 years. It is recommended that a special effort be made to develop light weight materials that would provide nearly zero thermal coefficient of expansion and good thermal conductivity within the next 10 years. A conservative prediction of the kinds of unfurlable spacecraft antennas that will be available by 1985 with orbital performance predicted on the basis of test data and with developed manufacturing processes is summarized.

  15. HIV integration site distributions in resting and activated CD4+ T cells infected in culture

    PubMed Central

    Brady, Troy; Agosto, Luis M.; Malani, Nirav; Berry, Charles C.; O'Doherty, Una; Bushman, Frederic

    2010-01-01

    Objective The goal of this study was to investigate whether the location of HIV integration differs in resting versus activated T cells, a feature that could contribute to the formation of latent viral reservoirs via effects on integration targeting. Design Primary resting or activated CD4+ T cells were infected with purified X4-tropic HIV in the presence and absence of nucleoside triphosphates and genomic locations of integrated provirus determined. Methods We sequenced and analyzed a total of 2661 HIV integration sites using linker-mediated PCR and 454 sequencing. Integration site data sets were then compared to each other and to computationally generated random distributions. Results HIV integration was favored in active transcription units in both cell types, but integration sites from activated cells were found more often in genomic regions that were dense in genes, dense in CpG islands, and enriched in G/C bases. Integration sites from activated cells were also more strongly correlated with histone methylation patterns associated with active genes. Conclusion These data indicate that integration site distributions show modest but significant differences between resting and activated CD4+ T cells, and that integration in resting cells occurs more often in regions that may be suboptimal for proviral gene expression. PMID:19550285

  16. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  17. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  18. Antenna structure with distributed strip

    SciTech Connect

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  19. Antenna structure with distributed strip

    SciTech Connect

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  20. Microstrip antenna theory and design

    NASA Astrophysics Data System (ADS)

    James, J. R.; Hall, P. S.; Wood, C.

    Microstrip is the name given to a type of open waveguiding structure which is now commonly used in present-day electronics, not only as a transmission line but for circuit components such as filters, couplers, and resonators. The idea of using microstrip to construct antennas is a much more recent development. The purpose of this monograph is to present the reader with an appreciation of useful antenna design approaches and the overall state-of-the art situation. Flat-plate antenna techniques and constraints on performance are considered along with microstrip design equations and data, the radiation mechanism of an open-circuit microstrip termination and the resulting design implications, the basic methods of calculation and design of patch antennas, and linear array techniques. Attention is also given to techniques and design limitations in two-dimensional arrays, circular polarization techniques, manufacturing and operational problems of microstrip antennas, recent advances in microstrip antenna analysis, and possible future developments.

  1. Efficient Placement of Directional Antennas

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  2. ANTENNA-COUPLED LIGHT-MATTER INTERACTIONS

    SciTech Connect

    NOVOTNY, LUKAS

    2014-01-10

    This project is focused on antenna-coupled photon emission from single quantum emitters. The properties of optical antennas are tailored to control different photophysical parameters, such as the excited state lifetime, the saturation intensity, and the quantum yield [3]. Using a single molecule coupled to an optical antenna whose position and properties can be controllably adjusted we established a detailed and quantitative understanding of light-matter interactions in nanoscale environments. We have studied various quantum emitters: single molecules [11], quantum dots [7], rareearth ions [2], and NV centers in diamond [19]. We have systematically studied the interaction of these emitters with optical antennas. The overall objective was to establish a high-level of control over the light-matter interaction. In order to eliminate the coupling to the environment, we have taken a step further and explored the possibility of levitating the quantum emitter in high vacuum. What started as a side-project soon became a main activity in our research program and led us to the demonstration of vacuum trapping and cooling of a nanoscale particle [14].

  3. Phased array-fed antenna configuration study

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.

  4. Techniques for Characterizing Microwave Printed Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee; Lee, Richard Q.

    2003-01-01

    The combination of a de-embedding technique and a direct on-substrate measurement technique has been devised to enable measurement of the electrical characteristics (impedances, scattering parameters, and gains) of microwave printed antennas that may be formed integrally with feed networks that include slot lines, coplanar striplines, and/or coplanar waveguides. The combination of techniques eliminates the need for custom test fixtures, including transitions between (1) coaxial or waveguide feed lines in typical test equipment and (2) the planar waveguide structures of the printed circuits under test. The combination of techniques can be expected to be especially useful for rapid, inexpensive, and accurate characterization of antennas for miniature wireless communication units that operate at frequencies from a few to tens of gigahertz.

  5. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  6. Analysis of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1984-01-01

    The problem of microstrip antennas covered by a dielectric substrate is formulated in terms of coupled integro-differential equations with the current distribution on the conducting patch as an unknown quantity. The Galerkin method is used to solve for the unknown patch current. Using the present formulation, the radiation pattern, the resonant frequency, and the bandwidth of a rectangular microstrip antenna are computed. Design data for a rectangular microstrip antenna are also presented.

  7. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  8. Spiral Microstrip Antenna with Resistance

    NASA Technical Reports Server (NTRS)

    Shively, David G. (Inventor)

    1998-01-01

    A spiral microstrip antenna having resistor elements embedded in each of the spiral arms is provided. The antenna is constructed using a conductive back plane as a base. The back plane supports a dielectric slab having a thickness between one-sixteenth and one-quarter of an inch. A square spiral, having either two or four arms, is attached to the dielectric slab. Each arm of the spiral has resistor elements thereby dissipating an excess energy not already emitted through radiation. The entire configuration provides a thin, flat, high gain, wide bandwidth antenna which requires no underlying cavity. The configuration allows the antenna to be mounted conformably on an aircraft surface.

  9. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  10. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.

    1992-01-01

    Virginia Tech has several articles which support the NASA Langley effort in the area of large aperture radiometric antenna systems. This semi-annual report reports on the following activities: a feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas and the design of array feeds for large reflector antennas.

  11. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  12. Field demonstration of X-band photonic antenna remoting in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.; Logan, R. T., Jr.; Maleki, L.

    1994-01-01

    We designed a photonic link for antenna remoting based on our integrated system analysis. With this 12-km link, we successfully demonstrated photonic antenna-remoting capability at X-band (8.4 GHz) at one of NASA's Deep Space Stations while tracking the Magellan spacecraft.

  13. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  14. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  15. Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.

  16. An efficient, low profile, electrically small, three-dimensional, very high frequency magnetic EZ antenna

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Ziolkowski, Richard W.; Nielsen, Jean A.; Tanielian, Minas H.; Holloway, Christopher L.

    2010-03-01

    A very high frequency version of the electrically small, coax-fed, three-dimensional magnetic EZ antenna was designed and tested. The fabricated antenna was formed by integrating a capacitively loaded loop element with a coaxially-fed, electrically small, semicircular loop antenna. This low profile antenna (height ˜λ/25) had an electrical size that was ka ˜0.46 at 105.2 MHz (where a is the radius of the minimum enclosing hemisphere). Nearly complete matching to the 50 Ω source and a high overall efficiency (nearly 95%) were achieved. The numerically predicted and the measured results were in good agreement.

  17. Novel metamaterial based antennas for flexible wireless systems

    NASA Astrophysics Data System (ADS)

    Khaleel, Haider Raad

    Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.

  18. Integrating Laboratory Activity into a Junior High School Classroom

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2010-01-01

    This paper presents a wind power system laboratory activity and an outline for evaluating student performance in this activity. The work described here was to design and implement the laboratory to assist teachers in achieving the teaching objective of this activity. The laboratory teaching activities introduce energy sources, wind energy…

  19. Integrated Activities for a Who-Dun-It Unit.

    ERIC Educational Resources Information Center

    Teaching PreK-8, 1996

    1996-01-01

    Describes how the Rogers Elementary School initiates student-created activities. Includes 33 activities chosen from a total of 60 suggestions from these students. These activities are grouped under two major themes, "Fingerprints" and "Detectives." Explains strategies of which these activities can help students in learning math, science, social…

  20. Topica: a Virtual Prototyping Suite for Plasma Facing Antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, Vito; Maggiora, Riccardo; Vecchi, Giuseppe; Kyrytsya, Volodymyr

    2002-11-01

    An innovative tool has been realized for the simulation of 3-dimensional Ion Cyclotron Radio Frequency (ICRF) antennas in a realistic geometry and with an accurate plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on antennas facing a plasma in a slab geometry. The plasma enters the formalism via a surface impedance matrix; for this reason any plasma model can be used (presently the FELICE code has been adopted). A vacuum-term extraction and an analytical evaluation of some integrals are employed that permit to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using sub-domain basis functions on each conductor of the antenna system. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be referred to as a "Virtual Prototyping Laboratory" (VPL). The VPL has been tested against assessed codes and against measurements of mock-up and prototype antennas.