Science.gov

Sample records for active internal rotation

  1. Solar Internal Rotation

    NASA Astrophysics Data System (ADS)

    Schou, J.; SOE Internal Rotation Team

    With the flood of high quality helioseismic data from the instruments on the SOHO spacecraft (MDI/VIRGO/GOLF) and ground based instruments (eg. GONG and LOWL) we have been able to get increasingly detailed information on the rotation and other large scale flows in the solar interior. In this talk I will discuss some of the highlights of what we have learned so far and what we may expect to learn in the near future. Among the recent advances have been tighter constraints on the tachocline at the bottom of the convection zone, detection of details in the surface rotation rate similar to the torsional oscillations found in the surface Doppler shift and helioseismic evidence for meridional flows. The MDI project is supported by NASA contract NAG5-3077 at Stanford University.

  2. Spatiotemporal differences of brain activation between internal and external strategies in mental rotation: A behavioral and ERD/ERS study.

    PubMed

    Wang, Zhuo; Guo, Xiaoli; Lyu, Yuanyuan; Chen, Hongzhou; Tong, Shanbao

    2016-06-01

    Subjects may voluntarily implement an internal or external strategy during mental rotation (MR) task. However, few studies have reported the spatiotemporal differences of brain activation between the two MR strategies. This study aims to compare the two strategies from the perspective of behavioral performance and spatiotemporal brain activations in each cognitive sub-stage using EEG measurements. Both the internal (IN) and external (EX) groups showed a significant 'angle effect' on reaction time (RT) and accuracy (ACC). However, a smaller increase of RT with rotation angle was observed in the EX group. Event-related (de)synchronization in the beta band revealed similar temporal patterns of brain activation in the two groups, but with a stronger activation in the MR sub-stage in the EX group. We speculate that MR of 3D abstract objects is easier when an external strategy is used, and would be promoted by an additional visual-spatial process involving the parietal-occipital areas. Our results suggested that the differences between the two strategies were mainly induced by main MR rather than other cognitive processes. PMID:27132083

  3. Rotational spectrum and internal dynamics of methylpyruvate.

    PubMed

    Velino, Biagio; Favero, Laura B; Ottaviani, Paolo; Maris, Assimo; Caminati, Walther

    2013-01-24

    The rotational spectra of five isotopologues (normal and all monosubstituted (13)C species) of methylpyruvate have been measured with the pulsed jet Fourier transform microwave technique. Rotational transitions are split into quintets due to the internal rotations of the two methyl groups. The corresponding barriers to internal rotation have been determined to be V(3)(H(3)C-O) = 4.883(8) kJ mol(-1) and V(3)(H(3)C-C) = 4.657(8) kJ mol(-1), respectively. Information on the skeletal heavy atom structure has been obtained from the 15 available rotational constants.

  4. Multicylinder internal combustion engine with rotation sensor

    SciTech Connect

    Shimada, S.; Otsuka, K.

    1988-01-12

    In a rotation sensor for an internal combustion engine having a crankshaft, a camshaft, a drive pulley on the crankshaft, a driven pulley on the camshaft, and an endless belt trained around the driver and driven pulleys, an improvement is described comprising, rotation sensing means on the driven pulley and engine for sensing the rotational position of the driven pulley relative to the engine during rotation of the driven pulley.

  5. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  6. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    SciTech Connect

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-06-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  7. Floppy Molecules with Internal Rotation and Inversion

    NASA Astrophysics Data System (ADS)

    Kreglewski, Marek

    2016-06-01

    There are different ways to analyze rovibrational structure of molecules having several large amplitude motions of different type, like internal rotation and inversion or ring-puckering. In my research group we have developed and used methods starting from potential surfaces for large amplitude motions but also applied purely effective Hamiltonians, where tunneling splittings were key parameters. Whatever is the method the following problems must be solved when addressing a rovibrational problem with large amplitude vibrations: 1) a definition of the permutation-inversion molecular symmetry group, 2) a choice of the internal coordinates and their transformation in the symmetry group, 3) derivation of the Hamiltonian in chosen coordinates, 4) calculation of the Hamiltonian matrix elements in a symmetrized basis set. These points will be discussed. The advantage of methods which start from the geometry and potential surface for large amplitude vibrations give much clearer picture of internal dynamics of molecules but generally the fit to experimental data is much poorer. The fitting procedure is strongly non-linear and the iteration procedure much longer. The effective Hamiltonians the fit is generally much better since almost all optimized parameters are linear but the parameters have no clear physical meaning. This method is very useful in the assignment of experimental spectra. Results of the application of both method to methylamine and hydrazine will be presented.

  8. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  9. Ideal internal kink modes in a differentially rotating cylindrical plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Galvao, R. M. O.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.; Smolyakov, A. I.; Tsypin, V. S.

    2008-07-15

    The Velikhov effect leading to magnetorotational instability (MRI) is incorporated into the theory of ideal internal kink modes in a differentially rotating cylindrical plasma column. It is shown that this effect can play a stabilizing role for suitably organized plasma rotation profiles, leading to suppression of MHD (magnetohydrodynamic) instabilities in magnetic confinement systems. The role of this effect in the problem of the Suydam and the m = 1 internal kink modes is elucidated, where m is the poloidal mode number.

  10. Glenohumeral internal rotation deficit: pathogenesis and response to acute throwing.

    PubMed

    Kibler, W Ben; Sciascia, Aaron; Thomas, Stephen J

    2012-03-01

    Overhand throwing places high loads and stresses on the joints and tissues of the shoulder and arm. As a result, throwing athletes regularly demonstrate altered shoulder internal and external ranges of motion where internal rotation (IR) is decreased and external rotation is increased in the dominant arm when compared with the nondominant arm. This alteration can exist as a result of alterations to the bones (humeral retroversion), capsule (posterior thickening), or muscle (passive stiffness known as thixotropy). When the amount of IR or total arc of motion difference reaches a certain threshold (typically 20 or more degrees of IR or 8 degrees total arc difference), it is known as glenohumeral internal rotation deficit or total arc of motion deficit. Glenohumeral internal rotation deficit and total arc of motion deficit can cause alterations in biomechanics such as scapular "wind-up" or alteration of glenohumeral joint kinematics, which can in turn lead to clinical findings of impingement and labral pathology. This study will review the causes of motion alteration, effects of altered motion on the throwing motion, provide definitions for the various types of rotation deficits, and how to evaluate and treat rotational deficits.

  11. Modulational instability of co-propagating internal wavetrains under rotation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-02-01

    Weakly-nonlinear unidirectional long internal waves in a non-rotating frame are well described by the Korteweg-de Vries equation (KdV). Within the KdV framework, all isolated monochromatic wavetrains are stable to modulational instability. However, analysis of a coupled nonlinear Schrödinger equation system (CNLS) has shown that all systems of two co-propagating monochromatic wavetrains in the KdV are modulationally unstable. To take into account the effect of the background rotation of the Earth on long internal waves, this analysis is extended here to derive the CNLS for the rotation-modified KdV, or Ostrovsky, equation. Rotation stabilises wavetrain pairs when the wavelengths of both waves comprising the wavetrains are longer than the linear wave with maximum group velocity. The particular case when the wavetrains have different wavenumbers but the same linear group speed is emphasised.

  12. Modulational instability of co-propagating internal wavetrains under rotation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-02-01

    Weakly-nonlinear unidirectional long internal waves in a non-rotating frame are well described by the Korteweg-de Vries equation (KdV). Within the KdV framework, all isolated monochromatic wavetrains are stable to modulational instability. However, analysis of a coupled nonlinear Schrödinger equation system (CNLS) has shown that all systems of two co-propagating monochromatic wavetrains in the KdV are modulationally unstable. To take into account the effect of the background rotation of the Earth on long internal waves, this analysis is extended here to derive the CNLS for the rotation-modified KdV, or Ostrovsky, equation. Rotation stabilises wavetrain pairs when the wavelengths of both waves comprising the wavetrains are longer than the linear wave with maximum group velocity. The particular case when the wavetrains have different wavenumbers but the same linear group speed is emphasised. PMID:25725645

  13. Titan's rotation reveals an internal ocean and changing zonal winds

    USGS Publications Warehouse

    Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.

    2008-01-01

    Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.

  14. International rotations during residency: spine deformity surgery in Ghana.

    PubMed

    Daniels, Alan H

    2013-05-01

    International elective rotations are becoming increasingly common in residency training programs. These experiences offer a tremendous opportunity to help patients in medically underserved nations, and can enhance training by exposing participants to pathology not often encountered in developed countries. Additionally, there is emerging evidence that international training exposure develops a broader appreciation of cultural diversity in patient care, offers personal and professional development, and teaches residents to use limited resources more efficiently, giving them a unique perspective on the ordering of tests and delivery of care when they return. This paper highlights the author's experience on a volunteer trip to Ghana that was focused on treating pediatric spinal deformity, and reviews notable international medical volunteers, and highlights the evidence supporting the benefits of international residency rotations.

  15. International rotations during residency: spine deformity surgery in Ghana.

    PubMed

    Daniels, Alan H

    2013-05-01

    International elective rotations are becoming increasingly common in residency training programs. These experiences offer a tremendous opportunity to help patients in medically underserved nations, and can enhance training by exposing participants to pathology not often encountered in developed countries. Additionally, there is emerging evidence that international training exposure develops a broader appreciation of cultural diversity in patient care, offers personal and professional development, and teaches residents to use limited resources more efficiently, giving them a unique perspective on the ordering of tests and delivery of care when they return. This paper highlights the author's experience on a volunteer trip to Ghana that was focused on treating pediatric spinal deformity, and reviews notable international medical volunteers, and highlights the evidence supporting the benefits of international residency rotations. PMID:23641456

  16. Methyl Group Internal Rotation in the Pure Rotational Spectrum of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, II; Cooke, S. A.; Groner, P.

    2011-06-01

    We have used chirped pulse Fourier transform microwave spectroscopy to record the pure rotational spectrum of the title molecule. The spectrum was doubled owing to the internal rotation of the methyl group. The spectrum has been assigned and two approaches to the spectral analysis have been performed. In the first case, the A and E components were fit separately using a principal axis method with the SPFIT code of Pickett. In the second case, the A and E states were fit simultaneously using the ERHAM code. For a satisfactory analysis of the spectral data it has been found that the choice of Hamiltonian reduction, i.e. Watson A or S, is very important. The barrier to the internal rotation has been determined to be 261.1(8) Cm-1 and it will be compared to that of acetone and other halogenated acetone species recently studied in our laboratory.

  17. Compensation to whole body active rotation perturbation.

    PubMed

    Rossi, S; Gazzellini, S; Petrarca, M; Patanè, F; Salfa, I; Castelli, E; Cappa, P

    2014-01-01

    The aim of the present study is the exploration of the compensation mechanisms in healthy adults elicited by superimposing a horizontal perturbation, through a rotation of the support base, during a whole body active rotation around the participant's own vertical body axis. Eight healthy participants stood on a rotating platform while executing 90° whole body rotations under three conditions: no concurrent platform rotation (NP), support surface rotation of ± 45° in the same (45-S) and opposite (45-O) directions. Participants' kinematics and CoP displacements were analyzed with an optoelectronic system and a force platform. In both 45-S and 45-O conditions, there was a tendency for the head to be affected by the external perturbation and to be the last and least perturbed segment while the pelvis was the most perturbed. The observed reduced head perturbation in 45-S and 45-O trials is consistent with a goal-oriented strategy mediated by vision and vestibular information, whereas the tuning of lumbar rotation is consistent with control mechanisms mediated by somato-sensory information.

  18. Rotation and internal structure of Population III protostars

    NASA Astrophysics Data System (ADS)

    Stacy, Athena; Greif, Thomas H.; Klessen, Ralf S.; Bromm, Volker; Loeb, Abraham

    2013-05-01

    We analyse the cosmological simulations performed in the recent work of Greif et al., which followed the early growth and merger history of Population III (Pop III) stars while resolving scales as small as 0.05 R⊙. This is the first set of cosmological simulations to self-consistently resolve the rotation and internal structure of Pop III protostars. We find that Pop III stars form under significant rotational support which is maintained for the duration of the simulations. The protostellar surfaces spin from ˜50 per cent to nearly 100 per cent of Keplerian rotational velocity. These rotation rates persist after experiencing multiple stellar merger events. In the brief time period simulated (˜10 yr), the protostars show little indication of convective instability, and their properties furthermore show little correlation with the properties of their host minihaloes. If Pop III protostars within this range of environments generally form with high degrees of rotational support, and if this rotational support is maintained for a sufficient amount of time, this has a number of crucial implications for Pop III evolution and nucleosynthesis, as well as the possibility for Pop III pair-instability supernovae, and the question of whether the first stars produced gamma-ray bursts.

  19. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  20. 1993 IERS (International Earth Rotation Service) annual report.

    NASA Astrophysics Data System (ADS)

    1994-07-01

    Contents: I. General information. 1. Organization of the International Earth Rotation Service. 2. The rotation of the Earth and related space-time references. II. Central Bureau results. 1. Global analysis up to 1993. 2. Implementation of the IERS Celestial Reference Frame. 3. Implementation of the IERS Terrestrial Reference Frame. 4. Evaluation of the Earth Orientation Parameters. III. Sub-bureaux reports. 1. Sub-Bureau for Rapid Service and Predictions. 2. Sub-Bureau for Atmospheric Angular Momentum. IV. Coordinating centres reports. 1. Very Long Baseline Interferometry (VLBI). 2. Global Positioning System (GPS). 3. Satellite Laser Ranging (SLR). V. IERS Earth Rotation and Reference Frames Data Bank. 1. Central Bureau. 2. Sub-Bureau for Rapid Service and Predictions.

  1. 1992 IERS (International Earth Rotation Service) annual report.

    NASA Astrophysics Data System (ADS)

    1993-07-01

    Contents: I. General information. 1. Organization of the International Earth Rotation Service. 2. The rotation of the Earth and related space-time references. II. Central Bureau results. 1. Global analysis up to 1992. 2. Implementation of the IERS Celestial Reference Frame. 3. Implementation of the IERS Terrestrial Reference Frame. 4. Evaluation of the Earth Orientation Parameters. III. Sub-bureaux reports. 1. Sub-Bureau for Rapid Service and Predictions. 2. Sub-Bureau for Atmospheric Angular Momentum. IV. Coordinating centres reports. 1. Very Long Baseline Interferometry (VLBI). 2. Lunar Laser Ranging (LLR). 3. Global Positioning System (GPS). 4. Satellite Laser Ranging (SLR). V. IERS Earth Rotation and Reference Frames Data Bank. 1. Central Bureau. 2. Sub-Bureau for Rapid Service and Predictions.

  2. International Earth Rotation Service (IERS). Annual report for 1991.

    NASA Astrophysics Data System (ADS)

    1992-07-01

    Contents: I. General information. 1. Organization of the International Earth Rotation Service. 2. The rotation of the Earth and related space-time references. II. Central Bureau results. 1. Global analysis up to 1991. 2. Implementation of the IERS Celestial Reference Frame. 3. Implementation of the IERS Terrestrial Reference Frame. 4. Evaluation of the Earth Orientation Parameters. III. Sub-bureaux reports. 1. Sub-Bureau for Rapid Service and Predictions. 2. Sub-Bureau for Atmospheric Angular Momentum. IV. Coordinating centres reports. 1. Very Long Baseline Interferometry (VLBI). 2. Lunar Laser Ranging (LLR). 3. Global Positioning System (GPS). 4. Satellite Laser Ranging (SLR). V. IERS Earth Rotation and Reference Frames Data Bank. 1. Central Bureau. 2. Sub-Bureau for Rapid Service and Predictions.

  3. Unusual internal rotation coupling in the microwave spectrum of pinacolone

    NASA Astrophysics Data System (ADS)

    Zhao, Yueyue; Nguyen, Ha Vinh Lam; Stahl, Wolfgang; Hougen, Jon T.

    2015-12-01

    The molecular beam Fourier-transform microwave spectrum of pinacolone (methyl tert-butyl ketone) has been measured in several regions between 2 and 40 GHz. Fits of the assigned spectrum using several computer programs based on different models for treating torsion-rotation interaction lead to the conclusion that no existing program correctly captures the internal dynamics of this molecule. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory indicate that this molecule does not have a plane of symmetry at equilibrium, and that internal rotation of the light methyl group induces a large oscillatory motion of the heavy tert-butyl group from one side of the Cs configuration to the other. This effect has been modeled for J = 0 levels by a relatively simple two-top torsional Hamiltonian, where the magnitudes of the strong coupling terms between the tops are determined directly from the ab initio two-dimensional potential surface. A plot of the resultant 0A, 0E, 1E, 1A torsional levels on the same scale as a one-dimensional potential curve along the zig-zag path connecting the six (unequally spaced) minima bears a striking resemblance to the 1:2:1 splitting pattern of the A, E, E, B levels of an internal rotation problem with a sixfold barrier. It seems likely that rotational transitions within the 1E and 1A torsional levels are the cause of the roughly 50% of the spectrum that remains unassigned after all predicted transitions within the 0A and 0E torsional levels are removed. However, a much more complete measurement campaign and some new torsion-rotation theory will be needed to verify this hypothesis.

  4. Internal length scales in rotating and stratified Boussinesq flows

    NASA Astrophysics Data System (ADS)

    Kurien, Susan; Zhai, X. M.; Yeung, P. K.

    2015-11-01

    We study the characteristic length scales of the propagating (wave) and non-propagating (vortical) modes, in a suite of simulations of forced, rotating, stably stratified Boussinesq flows. We employ a pseudo-spectral code, periodic boundary conditions and grid resolutions ranging from 5123 to 20483 on Blue Gene/Q (Argonne) under DOE's INCITE program. The relative strength of rotation to stratification frequencies is given by the Burger number Bu . Integral length scales in the vertical and horizontal directions are chosen as the characteristic scales and their ratio defines an internal aspect ratio. Nominally quasi-geostrophic (QG) scaling of Bu?1 is recovered for the vortical scale aspect ratio in the stratification-dominated regime Bu >> 4 . Much weaker scaling in Bu emerges for the vortical mode in the rotation-dominated regime Bu << 1 / 4 . The aspect ratio of the wave modes in both regimes are only weakly dependent on Bu . Turbulence affects the wave modes in the strongly rotating case by increasing the aspect ratio systematically but has no impact on the weak Bu dependence. It appears that for unit aspect ratio domains, QG scaling of the vortical mode holds only for stratification-dominated flows irrespective of the strength of rotation.

  5. Isolated rotational vertigo due to internal capsular infarction.

    PubMed

    Park, Kang Min; Shin, Kyong Jin; Ha, Sam Yeol; Park, Jinse; Kim, Sung Eun

    2014-03-01

    Isolated rotational vertigo is most often associated with disorders of the semicircular canals, vestibular nerve, brainstem, or cerebellum but rarely observed following a supratentorial stroke. A 64-year-old man developed sudden onset of vertigo and horizontal right-beating nystagmus with a torsional component in primary and eccentric gazes, unsteady gait, and axial lateropulsion to the right side. Magnetic resonance imaging demonstrated an infarction in the posterior limb of left internal capsule, an unusual cause of the patient's signs and symptoms.

  6. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    PubMed

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports.

  7. On the stellar rotation-activity connection

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.

  8. Rotating bacteria aggregate into active crystals

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander; Wu, Xiao-Lun; Libchaber, Albert

    2014-11-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate the collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arises from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  9. Rotating Bacteria Aggregate into Active Crystals

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Wu, X. L.; Libchaber, A.

    2014-12-01

    The dynamics of many microbial ecosystems are determined not only by the response of individual bacteria to their chemical and physical environments but also the dynamics that emerge from interactions between cells. Here we investigate collective dynamics displayed by communities of Thiovulum majus, one of the fastest known bacteria. We observe that when these bacteria swim close to a microscope cover slip, the cells spontaneously aggregate into a visually-striking, two-dimensional hexagonal lattice of rotating cells. Each cell in an aggregate rotates its flagella, exerting a force that pushes the cell into the cover slip and a torque that causes the cell to rotate. As cells rotate against their neighbors, they exert forces and torques on the aggregate that cause the crystal to move and cells to hop to new positions in the lattice. We show how these dynamics arise from hydrodynamic and surface forces between cells. We derive the equations of motion for an aggregate, show that this model reproduces many aspects of the observed dynamics, and discuss the stability of these and similar active crystals. Finally, we discuss the ecological significance of this behavior to understand how the ability to aggregate into these communities may have evolved.

  10. Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Nguyen, Ha Vinh Lam; Stahl, Wolfgang; Hougen, Jon T.

    2015-06-01

    The molecular-beam Fourier-transform microwave spectrum of pinacolone (methyl tert-butyl ketone) has been measured in several regions between 2 and 40 GHz. Assignments of a large number of A and E transitions were confirmed by combination differences, but fits of the assigned spectrum using several torsion-rotation computer programs based on different models led to the unexpected conclusion that no existing program correctly captures the internal dynamics of this molecule. A second puzzle arose when it became clear that roughly half of the spectrum remained unassigned even after all predicted transitions were added to the assignment list. Quantum chemical calculations carried out at the MP2/6-311++G(d,p) level indicate that this molecule does not have a plane of symmetry at equilibrium, and that internal rotation of the light methyl group induces a large oscillatory motion of the heavy tert-butyl group from one side of the C_s saddle point to the other. The effect of this non-C_s equilibrium structure was modeled for J = 0 levels by a simple two-top torsional Hamiltonian, where magnitudes of the strong top-top coupling terms were determined directly from the ab initio two-dimensional potential surface. A plot of the resultant torsional levels on the same scale as a one-dimensional potential curve along the zig-zag path connecting the six (unequally spaced) minima bears a striking resemblance to the 1:2:1 splitting pattern of levels in an internal rotation problem with a six-fold barrier. A plot of the six minima closely resembles the potential surface for methylamine. This talk will focus on implications of these resemblances for future work.

  11. Proxima Centauri: Rotation, Chromosperic Activity, and Flares

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.; Morgan, N. D.

    1996-05-01

    At a distance of 4.3 LY, Proxima Centauri (= Alpha Cen C; V645 Cen) is the nearest known star to the Sun. This M5 V flare star is the faintest member of the Alpha Cen triple star system (or moving group) and lies about 1400 AU nearer to the Earth than its brighter G2 V and K2 V companions. Because of its proximity and its membership in the triple system, Proxima has well determined physical properties that includes an age of 5-6 Gyr. In spite of its old age, Proxima is a chromospherically active star with strong Mg II h+k (280nm) emission as well as being a flare star. This star is of great importance to magnetic dynamo theory because it is expected to have a fully convective envelope. One quantity, not well determined yet vital to understanding Proxima's magnetic behavior, is its rotation period. During May-August 1995, Proxima was observed about twice a week with the IUE Satellite. Low resolution LWP (200-320nm) spectra were obtained chiefly to observe the chromospheric Mg II emission and use it to measure Proxima's rotation period as active plage regions on the star's surface rotate in and out of view. The IUE data have been analyzed and the Mg II emission shows 20-25% variations with a period of 31.5+/-1.5 days. This period is assumed to be the star's rotation period. In addition, several flare events were observed and evidence was found for rather fast changes (on a time-scale of weeks) in the plage activity and distribution. Also, comparison of the 1995 data with earlier IUE archival data shows that Proxima probably has an activity cycle and that during 1995 it was near a minimum of activity. Nonetheless, 4 flares were detected. We will present the results of the IUE study and also compare the rotation determination with previous attempts such as that of Benedict et al. (1994). This study is supported from NASA grant NAG 5-2160 and NSF grant AST-9315365, which we gratefully acknowledge.

  12. Optimal rotation sequences for active perception

    NASA Astrophysics Data System (ADS)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin

    2016-05-01

    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  13. Risk of Anterior Cruciate Ligament Fatigue Failure Is Increased by Limited Internal Femoral Rotation During In Vitro Repeated Pivot Landings

    PubMed Central

    Beaulieu, Mélanie L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    Background A reduced range of hip internal rotation is associated with increased peak anterior cruciate ligament (ACL) strain and risk for injury. It is unknown, however, whether limiting the available range of internal femoral rotation increases the susceptibility of the ACL to fatigue failure. Hypothesis Risk of ACL failure is significantly greater in female knee specimens with a limited range of internal femoral rotation, smaller femoral-ACL attachment angle, and smaller tibial eminence volume during repeated in vitro simulated single-leg pivot landings. Study Design Controlled laboratory study. Methods A custom-built testing apparatus was used to simulate repeated single-leg pivot landings with a 4×-body weight impulsive load that induces knee compression, knee flexion, and internal tibial torque in 32 paired human knee specimens from 8 male and 8 female donors. These test loads were applied to each pair of specimens, in one knee with limited internal femoral rotation and in the contralateral knee with femoral rotation resisted by 2 springs to simulate the active hip rotator muscles’ resistance to stretch. The landings were repeated until ACL failure occurred or until a minimum of 100 trials were executed. The angle at which the ACL originates from the femur and the tibial eminence volume were measured on magnetic resonance images. Results The final Cox regression model (P = .024) revealed that range of internal femoral rotation and sex of donor were significant factors in determining risk of ACL fatigue failure. The specimens with limited range of internal femoral rotation had a failure risk 17.1 times higher than did the specimens with free rotation (P = .016). The female knee specimens had a risk of ACL failure 26.9 times higher than the male specimens (P = .055). Conclusion Limiting the range of internal femoral rotation during repetitive pivot landings increases the risk of an ACL fatigue failure in comparison with free rotation in a cadaveric model

  14. Rotational signal detecting apparatus for internal combustion engine

    SciTech Connect

    Koshida, R.

    1988-09-27

    This patent describes a rotational signal detecting apparatus comprising: a housing; a rotor shaft attached to the housing so as to be freely rotatable, the rotor shaft rotating in synchronism with a crankshaft or a cam shaft of an engine; a photoelectric pickup comprising a first rotating portion fixed to the rotor shaft so as to rotate with the rotor shaft as one body, a first fixed portion attached to the housing, the fixed portion having photoelectronic conversion means for outputting a signal varying according to the quantity of incident light varied in synchronism with the rotation of the rotating portion, the first rotating portion and the photoelectric conversion means comprising a first reference signal detecting means for generating a first reference signal each time the crankshaft rotates by a first predetermined angle and a position signal detecting means for generating q position signal each time the crankshaft rotates by a second predetermined angle which is smaller than the first predetermined angle; and an electromagnetic pickup comprising a second rotating portion fixed to the rotor shaft so as to rotate with the rotor shaft as one body and a second fixed portion integrally attached to the housing.

  15. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  16. Centrifugally activated bearing for high-speed rotating machinery

    DOEpatents

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  17. International Activities of ASE

    ERIC Educational Resources Information Center

    Symonds, Lynne; Jackson, Graham

    2013-01-01

    The Association for Science Education (ASE) has been involved in exchanges with various countries in a number of ways. Teachers from all over the world visit the Annual Conference and their own associations have often used ASE methods in developing their own programmes. The responsibilities of the International Committee of ASE range from…

  18. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  19. Internal Rotation of Methane Molecules in Large Clusters.

    PubMed

    Slipchenko, Mikhail N; Hoshina, Hiromichi; Stolyarov, Daniil; Sartakov, Boris G; Vilesov, Andrey F

    2016-01-01

    Methane is one of the very few substances that show rotation of individual molecules in the crystalline phase. Here we explore the evolution of the rotation spectrum of methane from single molecules to clusters containing up to about 4 × 10(3) molecules. The clusters were assembled in He droplets at T = 0.38 K and studied via infrared laser spectroscopy in the ν3 region of the methane molecules. Well-resolved rotational structure in the spectra was observed in clusters containing up to about 50 molecules. We have concluded that in distinction to the crystals molecular rotation in methane clusters is confined to the surface and is enabled by low coordination of the molecules. On the contrary the molecules in the cluster's interior are in amorphous state wherein the rotation is quenched. These results demonstrate that even at very low temperature the surface of the methane clusters remains fluxional due to quantum effects.

  20. Internal Rotation of Methane Molecules in Large Clusters.

    PubMed

    Slipchenko, Mikhail N; Hoshina, Hiromichi; Stolyarov, Daniil; Sartakov, Boris G; Vilesov, Andrey F

    2016-01-01

    Methane is one of the very few substances that show rotation of individual molecules in the crystalline phase. Here we explore the evolution of the rotation spectrum of methane from single molecules to clusters containing up to about 4 × 10(3) molecules. The clusters were assembled in He droplets at T = 0.38 K and studied via infrared laser spectroscopy in the ν3 region of the methane molecules. Well-resolved rotational structure in the spectra was observed in clusters containing up to about 50 molecules. We have concluded that in distinction to the crystals molecular rotation in methane clusters is confined to the surface and is enabled by low coordination of the molecules. On the contrary the molecules in the cluster's interior are in amorphous state wherein the rotation is quenched. These results demonstrate that even at very low temperature the surface of the methane clusters remains fluxional due to quantum effects. PMID:26653992

  1. Reliability of a New Clinical Instrument for Measuring Internal and External Glenohumeral Rotation

    PubMed Central

    Lindenfeld, Thomas N.; Fleckenstein, Cassie M.; Levy, Martin S.; Grood, Edward S.; Frush, Todd J.; Parameswaran, A. Dushi

    2015-01-01

    Background: The shoulder plays a critical role in many overhead athletic activities. Several studies have shown alterations in shoulder range of motion (ROM) in the dominant shoulder of overhead athletes and correlation with significantly increased risk of injury to the shoulder and elbow. The purpose of this study was to measure isolated glenohumeral joint internal/external rotation (IR/ER) to determine inter- and intraobserver reliability of a new clinical device. Hypothesis: (1) Inter- and intraobserver reliability would exceed 90% for measures of glenohumeral joint IR, ER, and total arc of motion; (2) the dominant arm would exhibit significantly increased ER, significantly decreased IR, and no difference in total arc of motion compared with the nondominant shoulder; and (3) a significant difference exists in total arc between male and female patients. Study Design: Case series. Level of Evidence: Level 4. Methods: Thirty-seven subjects (mean age, 23 years; range, 13-54 years) were tested by 2 orthopaedic surgeons. A single test consisted of 1 arc of motion from neutral to external rotation to internal rotation and back to neutral within preset torque limits. Each examiner performed 3 tests on the dominant and nondominant shoulders. Each examiner completed 2 installations. Results: Testing reliability demonstrated that neither trial, installation, nor observer were significant sources of variation. The maximum standard deviation was 1.3° for total arc of motion and less than 2° for most other measurements. Dominant arm ER was significantly greater than nondominant arm ER (P = 0.02), and dominant arm IR was significantly less than nondominant arm IR (P = 0.00). Mean total rotation was 162°, with no significant differences in total rotation between dominant and nondominant arms (P = 0.34). Mean total arc of motion was 45° greater in female subjects. Differences in total arc of motion between male and female subjects was statistically significant (P < 0

  2. Video- Demonstrations of Stable and Unstable Solid Body Rotation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates stable and unstable modes for solid body rotation on the ISS. Using a hard cover textbook, he demonstrates that it will rotate stably about the longest and shortest axis, which represent the maximum and minimum movements of Inertia. Trying to rotate the book around an intermediate axis results in an unstable rotation in which the book appears to flip-flop while it rotates.

  3. Coarsening dynamics of binary liquids with active rotation.

    PubMed

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation. PMID:26345231

  4. Roles of Shape and Internal Structure in Rotational Disruption of Asteroids

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel Jay

    2015-08-01

    An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through

  5. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  6. University of Washington orthopedic resident experience and interest in developing an international humanitarian rotation.

    PubMed

    Jense, Ryan J; Howe, Christopher R; Bransford, Richard J; Wagner, Theodore A; Dunbar, Peter J

    2009-01-01

    An academic orthopedic residency program can have a significant impact on the burden of musculoskeletal disease in low- and middle-income countries. Such an exposure may also enhance the education of a resident. A 17-question electronic survey was developed to quantify the interest of orthopedic residents in pursuing an elective international rotation. The survey, which gathered resident demographic data and interest in pursuing an elective international orthopedic rotation, was sent to (and completed by) all 38 University of Washington orthopedic residents during academic year 2007-2008. More than 60% (23/38) of residents indicated they would be willing to commit to an international rotation; an additional 24% (9/38) indicated they would be very interested. Almost 40% of residents had participated in international medical volunteerism before entering residency. Among residents, there is a clear interest in pursuing an international rotation to complement their education in the United States. PMID:19238270

  7. Rotational spectrum and internal dynamics of tetrahydrofuran-krypton.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Maris, Assimo; Marchini, Marianna; Velino, Biagio; Caminati, Walther

    2012-01-16

    The rotational spectrum of the tetrahydrofuran-krypton van der Waals complex has been investigated by pulsed-jet Fourier transform microwave spectroscopy. The spectra of the (84)Kr and (86)Kr isotopologues have been assigned and the krypton atom is located nearly over the oxygen atom, almost perpendicular to the COC plane. Each rotational transition is split into two component lines due to, according to the observed Coriolis coupling term between the tunneling states, the residual pseudorotational effects of the ring in the complex. The splitting between the two vibrational sublevels is 87.462(2) and 87.062(2) MHz for the (84)Kr and (86)Kr isotopologues, respectively. These splittings have been used to determine the barrier to inversion, B(2) = 67 cm(-1). The dissociation energy has been estimated to be 3.7 kJ  mol(-1) from centrifugal distortion effects.

  8. Internal Rotation of Methylcyclopropane and Related Molecules: Comparison of Experiment and Theory.

    PubMed

    Ocola, Esther J; Laane, Jaan

    2016-09-22

    The internal rotation about the single bond connecting a cyclopropyl ring to a CH3, SiH3, GeH3, NH2, SH, or OH group was investigated. Both CCSD/cc-pVTZ and MP2/cc-pVTZ ab initio calculations were performed to predict the structures of these molecules and their internal rotation potential energy functions in terms of angles of rotation. The barriers to internal rotation for the CH3, SiH3, and GeH3 molecules from the calculations agree well with the experimental ones, within -11% to +1% for CCSD/cc-pVTZ and -4% to +9% for MP2/cc-pVTZ. Comparisons between theory and experiment were also performed for propylene oxide and propylene sulfide, and the agreements were very good. Theoretical calculations were performed to compute the internal rotation potential energy function for cyclopropanol, and these were used to guide the determination of a potential function based on experimental data. This molecule has two equivalent synclinal (gauche) conformers with an estimated barrier of 759 cm(-1) (9.1 kJ/mol) between them. The minima are at internal rotation angles of the OH group of 109° and 251°. The theoretical potential functions for cyclopropanethiol and cyclopropylamine were also calculated, and these agree reasonably well with previous experimental studies. PMID:27571027

  9. Glenohumeral internal rotation deficit in the asymptomatic professional pitcher and its relationship to humeral retroversion.

    PubMed

    Tokish, John M; Curtin, Michael S; Kim, Young-Kyu; Hawkins, Richard J; Torry, Michael R

    2008-01-01

    The purpose of this study was to determine if glenohumeral internal rotation deficits (GIRD) exist in an asymptomatic population of professional pitchers, and to assess whether these changes are primarily a bony or soft tissue adaptation. Twenty three, active, asymptomatic professional (Major League Baseball) pitchers volunteered for the study. Clinical measures of glenohumeral ranges of motion, laxity, GIRD, as well as radiographic measures of humeral retroversion were taken by two independent orthopaedic surgeons. Data comparing side to side differences in range of motion, laxity, and humeral retroversion were analyzed for statistical significance using a paired t-test for continuous data and a Chi-squared test for ordinal data, with a significance set at 0.05. Evaluations of statistical correlations between different measurement parameters were accomplished using a Pearson product moment correlation. We hypothesized GIRD will be positively correlated with humeral retroversion (HR) in the pitching arm. All clinical and radiographic measures were made in the field, at spring training, by physicians of both private and institutional based sports medicine practices. For the entire group, significant differences were exhibited for HR, external rotation at 90° and internal rotation at 90°, for dominant vs. non-dominant arms. GIRD of greater than 25° was noted in 10/23 of pitchers. In this group, HR was significantly increased and correlated to GIRD. No such increase or correlation was noted for the non-GIRD group. GIRD is a common finding in asymptomatic professional pitchers, and is related to humeral retroversion. Thus internal rotation deficits should not be used as the sole screening tool to diagnose the disabled throwing shoulder. Key pointsGIRD is relatively common in asymptomatic baseball pitchers (35-43%).Large ranges (-45 to 5°) and a large standard deviation (±16°) were noted suggesting that GIRD is quite variable in this population.GIRD is a variable

  10. Rotational spectroscopy of antipyretics: conformation, structure, and internal dynamics of phenazone.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Fernández, José A; Caminati, Walther; Castaño, Fernando

    2013-03-21

    The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two (14)N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol(-1)). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol(-1). The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H···N and C-H···O weak hydrogen bonds.

  11. Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone

    NASA Astrophysics Data System (ADS)

    Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando

    2013-03-01

    The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.

  12. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    NASA Astrophysics Data System (ADS)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  13. The effects of isokinetic vs. plyometric training on the shoulder internal rotators.

    PubMed

    Heiderscheit, B C; McLean, K P; Davies, G J

    1996-02-01

    Plyometric training has become a popular training and rehabilitation tool. The purpose of this study was to compare the effects of plyometric and isokinetic concentric/eccentric training of the shoulder internal rotators. Female subjects (N = 78) were randomly assigned to three groups: control, isokinetic training, and plyometric training. Pre-/posttesting measurements included: 1) concentric/eccentric isokinetic power measurements of the shoulder internal rotators at 60 degrees/sec, 180 degrees/sec, and 240 degrees/sec; 2) kinesthetic measurements of shoulder internal rotation, external rotation < 45 degrees, and external rotation > 45 degrees; and 3) a softball distance test. Both groups trained twice a week for 8 weeks. Power and kinesthetic data were analyzed using multiple analyses of variance with repeated measures. A one-way analysis of variance was performed on the softball throw data. No significant (p < .05) pre-/posttest differences were found with kinesthetic testing or the softball throw. Pre-/postpower differences were significantly greater for the isokinetic group at 60 degrees/sec eccentric, 120 degrees/sec concentric and eccentric, and 240 degrees/sec concentric and eccentric. Isokinetic training of the shoulder internal rotators increases isokinetic power, but neither isokinetic nor plyometric training resulted in a functional improvement with the softball throw.

  14. EM international activities. February 1997 highlights

    SciTech Connect

    1997-02-01

    EM International Highlights is a brief summary of on-going international projects within the Department of Energy`s Office of Environmental Management (EM). This document contains sections on: Global Issues, activities in Western Europe, activities in central and Eastern Europe, activities in Russia, activities in Asia and the Pacific Rim, activities in South America, activities in North America, and International Organizations.

  15. Activity and Rotation in the Young Cluster h Per

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Moraux, E.; Bouvier, J.

    2014-08-01

    We study the rotation-activity relationship for low-mass members of the young cluster h Persei, a ~13 Myr old cluster. h Per, thanks to its age, allows us to link the rotation-activity relation observed for main-sequence stars to the still unexplained activity levels of very young clusters. We constrained the activity levels of h Per members by analyzing a deep Chandra/ACIS-I observation pointed to the central field of h Per. We combined this X-ray catalog with the catalog of h Per members with measured rotational period, presented by Moraux et al. (2013). We obtained a final catalog of 202 h Per members with measured X-ray luminosity and rotational period. We investigate the rotation-activity relation of h Per members considering different mass ranges. We find that stars with 1.3 M⊙ > M 1.4 M⊙ show significant evidence of supersaturation for short periods. This phenomenon is instead not observed for lower mass stars.

  16. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  17. Polarization rotator-splitters in standard active silicon photonics platforms.

    PubMed

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk < -13 dB over a bandwidth of 50 nm. Then, we improve the crosstalk to < -22 dB over a bandwidth of 80 nm by integrating the polarization rotator-splitter with directional coupler polarization filters. Finally, we demonstrate a polarization controller by integrating the polarization rotator-splitters with directional couplers, thermal tuners, and PIN diode phase shifters. PMID:24663698

  18. Development of a neurology rotation for internal medicine residents in Haiti.

    PubMed

    Berkowitz, Aaron L; Martineau, Louine; Morse, Michelle E; Israel, Kerling

    2016-01-15

    In many low-income countries where there are few or no neurologists, patients with neurologic diseases are cared for by primary care physicians who receive no formal training in neurology. Here, we report our experience creating a neurology rotation for internal medicine residents in rural Haiti through a collaboration between a public academic medical center in Haiti and a visiting neurologist. We describe the structure of the rotation and the factors that led to its development.

  19. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  20. Influence of gravity waves on the internal rotation and Li abundance of solar-type stars.

    PubMed

    Charbonnel, Corinne; Talon, Suzanne

    2005-09-30

    The Sun's rotation profile and lithium content have been difficult to understand in the context of conventional models of stellar evolution. Classical hydrodynamic models predict that the solar interior must rotate highly differentially, in disagreement with observations. It has recently been shown that internal waves produced by convection in solar-type stars produce an asymmetric, shear layer oscillation, similar to Earth's quasi-biennial oscillation, that leads to efficient angular momentum redistribution from the core to the envelope. We present results of a model that successfully reproduces both the rotation profile and the surface abundance of lithium in solar-type stars of various ages.

  1. Internal Rotation and Scapular Position Differences: A Comparison of Collegiate and High School Baseball Players

    PubMed Central

    Thomas, Stephen J.; Swanik, Kathleen A.; Swanik, Charles B.; Kelly, John D.

    2010-01-01

    Abstract Context: Conditions such as labral and rotator cuff injuries have been linked with decreases in glenohumeral internal-rotation and increases in external-rotation motion. Also, decreased glenohumeral internal rotation is strongly associated with scapular dyskinesis. Objective: To compare healthy collegiate and high school baseball players' glenohumeral joint range of motion and scapular position. Design: Cross-sectional study. Setting: Institutional research laboratory. Patients or Other Participants: Thirty-one male National Collegiate Athletic Association Division I collegiate (age  =  20.23 ± 1.17 years, height  =  186.24 ± 5.73 cm, mass  =  92.01 ± 7.68 kg) and 21 male high school baseball players (age  =  16.57 ± 0.76 years, height  =  180.58 ± 6.01 cm, mass  =  79.09 ± 11.51 kg). Main Outcome Measure(s): Glenohumeral internal and external rotation and scapular upward rotation were measured with a digital inclinometer. Scapular protraction was measured with a vernier caliper. All variables except scapular upward rotation were calculated as the difference between the dominant and nondominant sides. Results: Collegiate baseball players had more glenohumeral internal-rotation deficit (4.80°, P  =  .028) and total motion deficit (5.73°, P  =  .009) and less glenohumeral external-rotation gain (3.00°, P  =  .028) than high school players. Collegiate baseball players had less scapular upward rotation than high school players at the 90° (4.12°, P  =  .015, versus 3.00°, P  =  .025) and 120° (4.00°, P  =  .007, versus 3.40°, P  =  .005) positions. The scapular protraction difference was greater in collegiate baseball players than in high school players in the hands-on-hips and 90° positions (0.77 cm, P  =  .021, and 1.4 cm, P  =  .001). Conclusions: When comparing high school with collegiate baseball players, these data suggest that glenohumeral internal-rotation deficit and scapular

  2. Is the Coupling of C3V Internal Rotation and Normal Vibrations a Tractable Problem?

    NASA Astrophysics Data System (ADS)

    Pearson, John; Groner, Peter; Daly, Adam M.

    2016-06-01

    The solution of a C3V internal rotation problem for the torsional manifold of an isolated vibrational state such as the ground state is well established. However, once an interacting small amplitude vibrational state is involved the path to a solution becomes far less clear and there is little guidance in the literature on how to proceed. The fundamental challenge is that the torsional problem and the internal axis system are unique to each torsional manifold of a specific vibrational state. In an asymmetric top molecule vibrational angular momentum can be rotated away, but this sort of rotation changes the angle between the internal rotation axis and the principle axis when there is an internal rotor. This means that there is an angle between the internal axis systems of each torsional manifold of a vibrational state. The net result is that the coupling between the two states must account for the difference in internal axis angle and will have some significant consequences to the selection rules and interactions. Two cases will be discussed, methanol and ethyl cyanide.

  3. Generalized investigation of the rotation-activity relation: favoring rotation period instead of Rossby number

    SciTech Connect

    Reiners, A.; Passegger, V. M.; Schüssler, M.

    2014-10-20

    Magnetic activity in Sun-like and low-mass stars causes X-ray coronal emission which is stronger for more rapidly rotating stars. This relation is often interpreted in terms of the Rossby number, i.e., the ratio of rotation period to convective overturn time. We reconsider this interpretation on the basis of the observed X-ray emission and rotation periods of 821 stars with masses below 1.4 M {sub ☉}. A generalized analysis of the relation between X-ray luminosity normalized by bolometric luminosity, L {sub X}/L {sub bol}, and combinations of rotational period, P, and stellar radius, R, shows that the Rossby formulation does not provide the solution with minimal scatter. Instead, we find that the relation L {sub X}/L {sub bol}∝P {sup –2} R {sup –4} optimally describes the non-saturated fraction of the stars. This relation is equivalent to L {sub X}∝P {sup –2}, indicating that the rotation period alone determines the total X-ray emission. Since L {sub X} is directly related to the magnetic flux at the stellar surface, this means that the surface flux is determined solely by the star's rotation and is independent of other stellar parameters. While a formulation in terms of a Rossby number would be consistent with these results if the convective overturn time scales exactly as L{sub bol}{sup −1/2}, our generalized approach emphasizes the need to test a broader range of mechanisms for dynamo action in cool stars.

  4. Concentric isokinetic shoulder internal and external rotation strength in professional baseball pitchers.

    PubMed

    Ellenbecker, T S; Mattalino, A J

    1997-05-01

    Objective measurement of shoulder internal and external rotation strength is an important part in the comprehensive evaluation and rehabilitation of athletes who perform predominantly unilateral upper extremity movement patterns. Apparatus- and population-specific descriptive data are needed to enhance the interpretation of results from isokinetic dynamometers. The primary purpose of this study was to measure isokinetically glenohumeral joint internal and external rotator peak torque and work in professional baseball pitchers and determine whether significant differences exist between the dominant (throwing) extremity and nondominant extremity. One hundred twenty-five healthy professional baseball pitchers were tested bilaterally on a Cybex 300 series isokinetic dynamometer at 210 and 300 degrees/sec for concentric internal and external rotation of the glenohumeral joint with the arm in 90 degrees of abduction. A standardized protocol and testing guidelines were strictly followed. A dependent t test was used to test for differences between extremities for peak torque and single repetition work isokinetic parameters. No significant difference between the dominant and nondominant shoulder was found for external rotation peak torque or single repetition work at either testing speed. Significantly greater (p < .001) dominant arm shoulder internal rotation was measured for both peak torque and single repetition work at 210 and 300 degrees/sec compared with the nondominant extremity. The results of this study are important for the application and interpretation of isokinetic data on unilaterally dominant upper extremity athletes. The use of a population-specific, descriptive isokinetic data profile is important in both rehabilitation and prevention of shoulder injuries.

  5. Isokinetic profile of shoulder internal and external rotators of high school aged baseball pitchers.

    PubMed

    Mulligan, Ivan J; Biddington, William B; Barnhart, Bruce D; Ellenbecker, Todd S

    2004-11-01

    The purpose of this descriptive study was to determine whether bilateral differences exist in concentric and eccentric shoulder internal and external rotation strength in high school aged baseball pitchers. Thirty-nine high school aged baseball pitchers were bilaterally tested for concentric and eccentric internal and external rotation muscle performance on a Kin-Com 500-H isokinetic dynamometer at 90 degrees .s(-1) and 180 degrees .s(-1). Paired t-tests were used to test for differences among extremities, speed, and ratio of external rotation to internal rotation (ER/IR ratios). Concentric peak torque internal rotation at 90 degrees .s(-1) was significantly greater (p < 0.05) in the dominant arm compared with the nondominant arm. Statistically significant differences (p < 0.001) were found between the nondominant and dominant in concentric 90 degrees .s(-1). The nondominant arm demonstrated significantly greater eccentric strength (p < 0.05) compared with the dominant arm in ER/IR ratios at 90 degrees .s(-1) and 180 degrees .s(-1). The nondominant arm demonstrated significantly greater eccentric strength (p < 0.05) than the dominant arm in ER/IR ratio at 180 degrees .s(-1). Data demonstrated that muscular adaptations are consistent with previous research in this area. Also, muscular adaptations occur in the shoulder in the high school aged population. These data can serve as a guideline to be used by clinicians who rehabilitate shoulders in patients in this population.

  6. Motion transition of active filaments: rotation without hydrodynamic interactions.

    PubMed

    Jiang, Huijun; Hou, Zhonghuai

    2014-02-21

    We investigate the dynamics of an active semiflexible filament in a bead–rod model involving dynamically the hydrodynamic interaction (HI), active force, filament flexibility and viscous drag. We find that the filament can show three distinct types of motion, namely, translation, snaking and rotation, with the variation of the rigidity or active force. The transition from translation to snaking is continuous and mainly due to transverse instability, while the snaking–rotation transition is first-order like and shown to result from a type of symmetry breaking associated with the shape kinematics. Of particular interest, we find that HI is not necessary for the rotation or snaking motion, but can enlarge remarkably the parameter regions in which they can occur. Combining with local collisions, we show that, for the parameter region where HI is essential for the maintenance of rotation curvature of a single filament, HI is also essential for the emergence of collective vortexes. Thus, our findings provide new insights into the subtle role of HI in the formation of collective structures in active systems PMID:24983114

  7. Loss of glenohumeral internal rotation in little league pitchers: a biomechanical study.

    PubMed

    Nakamizo, Hiroyuki; Nakamura, Yasuo; Nobuhara, Katsuya; Yamamoto, Tetsuji

    2008-01-01

    Glenohumeral internal rotation deficit (GIRD) is a significant shoulder problem for throwing athletes. GIRD, however, has not been reported in little league pitchers. The purpose of this study was to investigate GIRD in little leaguers. The range of motion of both shoulders was measured in 25 male little league pitchers. All pitchers underwent motion analyses of their pitching to evaluate shoulder kinematics. GIRD was found in 10 of the 25 pitchers. External rotation in the dominant arm in the GIRD group was not significantly different compared to the contralateral or dominant arm in the non-GIRD group. This biomechanical study showed that the GIRD group had increased external rotation while throwing compared to the non-GIRD group. These findings indicate that GIRD can occur prior to development of the increased external rotation in the dominant arm seen in adult throwers.

  8. Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    SciTech Connect

    Fu, Guoyong

    2013-07-16

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.

  9. THE EFFECTS OF A DAILY STRETCHING PROTOCOL ON PASSIVE GLENOHUMERAL INTERNAL ROTATION IN OVERHEAD THROWING COLLEGIATE ATHLETES

    PubMed Central

    Stephen Guffey, J.; Whitehead, Malcolm T.; Head, Penny

    2012-01-01

    Introduction/Purpose: Shoulder dysfunction and injury are common in throwing athletes. Loss of internal rotation has been correlated to shoulder pathologies. The purpose of this study was to assess the effects of a stretching protocol on passive internal rotation. The purpose of this study was assess the effects of a stretching protocol on passive internal rotation motion in the throwing shoulders of collegiate baseball players. Study Design: Pre-Post, intervention, using a within subjects comparison of a convenience sample. Methods: Glenohumeral internal rotation and external rotation of the throwing and non-throwing shoulders of NCAA Division I baseball players were measured using a universal goniometer. Determinations were made as to the degree of Glenohumeral Internal Rotation Deficit (GIRD) in the throwing shoulder. A daily (5 days per week), 12-week posterior capsule stretching program was administered. Post-stretching internal rotation and external rotation measures were again obtained. The coaches and athletic trainers of the included team monitored the players for shoulder injuries and innings of training/competition lost due to shoulder injuries during the 12 week intervention. Results: A significant increase in range of motion was found for dominant arm internal rotation (IR) and total range of motion (TOT) following the stretching program. No statistically significant improvement in range of motion was found for external rotation (ER), non-throwing arm internal rotation (NDIR), non-throwing arm external rotation (NDER), and non-throwing arm total motion (NDTOT). Conclusions: Implementation of a posterior capsule stretching program may be helpful to facilitate increased passive internal rotation range of motion at the glenohumeral joint. Further research should be performed using a control group not receiving the stretching program in order to more completely establish the impact of stretching on measures of passive glenohumeral range of motion. Level of

  10. Rotation, activity, and lithium abundance in cool binary stars

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  11. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  12. Deriving Stellar Inclination of Slow Rotators Using Stellar Activity

    NASA Astrophysics Data System (ADS)

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ~2-2.5 km s-1. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84+6-20 deg, which implies a star-planet obliquity of \\psi =4+18-4 considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45+9-19, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s-1. Based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  13. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  14. Simulation of Non-resonant Internal kink mode with Toroidal Rotation in NSTX

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, Guoyong; Breslau, Josh

    2012-03-01

    Plasmas in spherical tokamak with a safety factor above unity and weakly reversed magnetic shear may be unstable to an ideal, non-resonant internal kink mode. This mode, termed the ''long-lived mode'' (LLM) in MAST [1], will saturate and persist, exhibiting a strong m/n=2/1 component in NSTX. The resulting magnetic islands are capable of seeding neoclassical tearing modes (NTMs) [2]. Experimental results show that coupled 1/1 and 2/1 kink/tearing modes can also limit the sustained plasma beta. In this work, we perform nonlinear MHD simulations of the behavior of the non-resonant internal kink using M3D code initialized with measured NSTX equilibrium profiles. In particular, the effects of toroidal rotation are investigated systematically. The results show that when the rotation velocity is near the experimental level, its effect of equilibrium and linear stability is small. The nonlinear saturation level of the 1/1 mode is also weakly affected. However, the rotation is observed to have significant effects on the 2/1 island even at small value. With finite rotation, the 2/1 island width exhibits oscillations in the initial evolution before final steady state saturation. The width of the saturated island is reduced greatly as compared to that of non-rotating case. [1] I. Chapman et al Nuclear Fusion 50 (2010) 045007 [2] J. Breslau et al Nuclear Fusion 51 (2011) 063027

  15. Internal dynamics in halogen-bonded adducts: a rotational study of chlorotrifluoromethane-formaldehyde.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Vallejo-López, Montserrat; Spada, Lorenzo; Lesarri, Alberto; Cocinero, Emilio J; Caminati, Walther

    2015-03-01

    The rotational spectra of two isotopologues of the 1:1 complex between chlorotrifluoromethane and formaldehyde have been recorded and analyzed by using Fourier-transform microwave spectroscopy. Only one rotamer was detected, with the two constituent molecules held together through a Cl⋅⋅⋅O halogen bond (R(Cl⋅⋅⋅O) = 3.048 Å). The dimer displays two simultaneous large-amplitude intramolecular motions. The internal rotation of formaldehyde around its symmetry axis (V2 = 28(5) cm(-1)) splits all the rotational transitions into two component lines with a relative intensity ratio of 1:3. On the other hand, the almost free internal rotation (V3 ≈ 2.5 cm(-1)) of the CF3 symmetric top increases the "rigid" value of the rotational constant A by almost one order of magnitude. In addition, all the transitions display a hyperfine structure due to the (35)Cl (or (37)Cl) nucleus quadrupole effects. PMID:25630577

  16. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    SciTech Connect

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  17. Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars

    NASA Astrophysics Data System (ADS)

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-01

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ("Otto") and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  18. Learning Activities for International Business.

    ERIC Educational Resources Information Center

    Haynes, Thomas

    1998-01-01

    The National Standards for Business Education include nine areas relating to international business: awareness, communication, environmental factors, ethics, finance, management, marketing, import/export, and organizational structure of international business. (SK)

  19. Internal wave breather propagation under the influence of the Earth rotation

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Rouvinskaya, Ekaterina; Kurkina, Oxana

    2015-04-01

    The internal wave breather propagation under the influence of the Earth rotation is studied in the frames of the asymptotic model based on the Gardner equation as well as the fully nonlinear Euler equations. It is obtained that the amplitude and shape of short breathers depend on the Earth rotation very weakly but the wide breathers change the amplitude and shape sufficiently. This effect is studied in the model situation adapted to the Baltic Sea hydrological conditions. The rate of the breather amplitude damping upon the even bottom is shown.

  20. The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.

  1. The strength characteristics of internal and external rotator muscles in professional baseball pitchers.

    PubMed

    Wilk, K E; Andrews, J R; Arrigo, C A; Keirns, M A; Erber, D J

    1993-01-01

    The purpose of this study was to establish a data base regarding the isokinetic muscular performance characteristics of the external/internal rotator muscles of professional baseball pitchers. One hundred fifty healthy professional baseball pitchers were evaluated by use of a Biodex isokinetic dynamometer. The subjects tested had a mean age of 23.4 years and a mean body weight of 199 pounds. Isokinetic tests were performed concentrically at 180 and 300 deg/sec for both the throwing and nonthrowing shoulders. Testing procedures regarding positioning and stabilization followed established guidelines. The testing protocol and actual test repetitions were standardized for each subject. Statistical analysis was performed using the Pearson Product Moment Correlation and paired t-tests. Determination of the correlation coefficient was made at the P < 0.05 level of significance. Test results for bilateral comparison of mean peak torque for the throwing and nonthrowing shoulders indicated no statistically significant difference between the internal rotators at both test speeds, or for the external rotators at 300 deg/sec. There was a significant statistical difference at the 180 deg/sec test speed for the external rotators. The external/internal rotator strength ratio indicated a 65% ratio at 180 deg/sec and a 61% ratio at 300 deg/sec. Data were also collected for mean peak torque/body weight ratios of the throwing shoulder to establish a data base in professional throwers. This study offers clinical relevance in establishing a muscle performance profile for the professional thrower. This data base can therefore be used as criteria that should be met before an injured pitcher can be returned to throwing at the professional baseball level.

  2. Restriction in Hip Internal Rotation is Associated with an Increased Risk of ACL Injury in NFL Combine Athletes: A Clinical and Biomechanical Study

    PubMed Central

    Bedi, Asheesh; Warren, Russell F.; Oh, Youkeun K.; Wojtys, Edward M.; Oltean, Hanna N.; Ashton-Miller, James A.; Kelly, Bryan T.

    2013-01-01

    Objectives: A deficiency in hip internal rotation secondary to femoroacetabular impingement (FAI) may result in compensatory increases in rotational stresses applied to the ACL with cutting and pivoting activities, thereby increasing the risk of ACL failure in athletes. The purpose of this study was to correlate ACL injury with hip range of motion in a consecutive series of elite, contact athletes and to test the hypothesis that a restriction in the available hip axial rotation in a dynamic in silico model of a simulated pivot landing would increase ACL strain and the risk of ACL rupture. Methods: We examined 324 football athletes attending the 2012 NFL National Invitational Camp. Hip range of internal rotation was measured by three orthopaedic surgeons and correlated with a history of ACL injury and surgical repair using generalized estimating equation logistic regression analysis. An in silico biomechanical model was used to study the effect of FAI on the peak relative ACL strain developed during a simulated pivot landing. Results: The in vivo results demonstrated that a reduction in internal rotation of the left hip was associated with a statistically significant increased odds of ACL injury in the ipsilateral or contralateral knee (OR = 0.95, P =.0001 and P < .0001, respectively). A post-estimation calculation of odds ratio for ACL injury based on deficiency in hip internal rotation demonstrated that a 30-degree reduction in left hip internal rotation was associated with 4.06 and 5.29 times greater odds of ACL injury in the ipsilateral and contralateral limbs, respectively (Figure 1A). The in silico model demonstrated that FAI systematically increased the peak ACL strain predicted during the pivot landing (Figure 1B). The peak AM-ACL strain for 5-degrees of internal rotation was 22.5% greater than the corresponding value for 10-degrees of internal rotation (i.e., a peak AM-ACL strain of 5.77% vs. 4.71%, respectively). Conclusion: FAI may significantly increase

  3. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    SciTech Connect

    Hougen, J.T.

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  4. Coupled nuclear spin relaxation and internal rotations in magnesium fluosilicate hexahydrate.

    NASA Technical Reports Server (NTRS)

    Utton, D. B.; Tsang, T.

    1972-01-01

    Both proton and fluorine nuclear spin-lattice relaxations have been studied by the 180- to 90-deg pulse method in magnesium fluosilicate hexahydrate at 25 and 13 MHz over the temperature range from 170 to 350 K. Observed nonexponential behavior of the nuclear magnetic relaxation is explained by internal rotations of the doubly charged negative fluosilicate ions and doubly charged positive magnesium hexahydrate ions.

  5. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    SciTech Connect

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Scheeres, Daniel J.

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  6. Challenging the wall of fast rotating asteroids - constraining internal cohesive strength for MBAs and NEAs

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas; Binzel, Richard P.; DeMeo, Francesca E.; Aharonson, Oded; Thomas, Cristina; Lockhart, Matthew; Thirouin, Audrey; Mommert, Michael; Trilling, David; Burt, Brian

    2015-11-01

    We report an observation of a 2 km size main belt asteroid (MBA), (60716) 2000 GD65, with a lightcurve indicating a rotation period of 1.9529±0.0002 hours, i.e. challenging the ‘rubble pile spin barrier’. This adds to a handful of MBAs, recently observed by the Palomar Transient Factory (PTF) survey (Chang et al. 2014, 2015), with diameters between 0.5-1.5 km and lightcurves indicating rotation periods of 1.2-1.9 hours. These asteroids are relatively large compared to the population of small near-Earth asteroids (NEAs; D<300 m) that can reach rotation periods as fast as 15.797 seconds as is the case of NEA 2014 RC (Moskovitz and MANOS team).We apply the Holsapple (2007) model to these two distinct populations in order to constrain the cohesion within these objects and to search for monolithic asteroids. We use the lightcurve’s amplitude as indication of the triaxial shape ratio a/b, and assume b/c=1 (i.e. a>b=c). While the density is a free parameter, the given cohesion is the average of values for density ranges between 1.5 to 2.5 gr cm^-3, which are measured density values for asteroids (Carry 2012).We find that the fast rotating MBAs must have internal cohesive strength of at least ~25 to ~250 Pa in order to prevent disruption against centrifugal acceleration. Similar cohesion values have been found within lunar soils (100-1000 Pa; Mitchell et al. 1974). However, since only a few MBAs rotate so quickly, such internal cohesive strength might be rare within the population of km-size MBAs. Among NEAs, about 25% have minimal constrained cohesion values similar to those found for the fast rotating MBAs. Approximately 65% have no need for substantial cohesion values >25 Pa. Only ~10% of NEAs must have substantial internal cohesion of over 1000 Pa to prevent disruption, however none of them are rotating fast enough to require a fully monolithic body, i.e. cohesion >10 kPa.

  7. Making Global Health Rotations a Two-Way Street: A Model for Hosting International Residents.

    PubMed

    Pitt, Michael B; Gladding, Sophia P; Majinge, Charles R; Butteris, Sabrina M

    2016-01-01

    As US residency programs are increasingly offering global health electives for their trainees, there is a growing call for these opportunities to include bidirectional exchanges-where residents from both the US and international partner institutions rotate at the other's site. Curricular, logistical, and funding challenges of hosting residents from an international site may be barriers to developing these programs. In this report, the authors describe an 8-year experience of a US institution hosting residents from a resource-limited international partner and provide a framework for others institutions to develop bidirectional exchanges. They also report the visiting international residents' perceptions of the impact of the exchange on their clinical practice, teaching, career paths, and their home institution.

  8. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  9. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  10. A Thickened Coracohumeral Ligament and Superomedial Capsule Limit Internal Rotation of the Shoulder Joint: Report of Three Cases

    PubMed Central

    Koide, Masashi; Hamada, Junichiro; Hagiwara, Yoshihiro; Kanazawa, Kenji; Suzuki, Kazuaki

    2016-01-01

    Adhesive capsulitis of the shoulder (also known as frozen shoulder) is a painful and disabling disorder with an estimated prevalence ranging from 2% to 5% in the general population. Although the precise pathogenesis of frozen shoulder is unclear, thickened capsule and coracohumeral ligament (CHL) have been documented to be one of the most specific manifestations. The thickened CHL has been understood to limit external rotation of the shoulder, and restriction of internal rotation of the shoulder has been believed to be related to posterior capsular tightness. In this paper, three cases of refractory frozen shoulder treated through arthroscopic release of a contracted capsule including CHL were reported. Two cases in which there is recalcitrant severe restriction of internal rotation after manipulation under anesthesia (MUA) were finally treated with arthroscopic surgery. Although MUA could release the posterior capsule, internal rotation did not improve in our cases. After release of the thickened CHL, range of motion of internal rotation was significantly improved. This report demonstrates the role of the thickened CHL in limiting the internal rotation of the shoulder. We highlight the importance of release of thickened CHL in addition to the pancapsular release, in case of severe limitation of internal rotation of shoulder. PMID:27123353

  11. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  12. Computer calculation of the Van Vleck second moment for materials with internal rotation of spin groups

    NASA Astrophysics Data System (ADS)

    Goc, Roman

    2004-09-01

    This paper describes m2rc3, a program that calculates Van Vleck second moments for solids with internal rotation of molecules, ions or their structural parts. Only rotations about C 3 axes of symmetry are allowed, but up to 15 axes of rotation per crystallographic unit cell are permitted. The program is very useful in interpreting NMR measurements in solids. Program summaryTitle of the program: m2rc3 Catalogue number: ADUC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computers: Cray SV1, Cray T3E-900, PCs Installation: Poznań Supercomputing and Networking Center ( http://www.man.poznan.pl/pcss/public/main/index.html) and Faculty of Physics, A. Mickiewicz University, Poznań, Poland ( http://www.amu.edu.pl/welcome.html.en) Operating system under which program has been tested: UNICOS ver. 10.0.0.6 on Cray SV1; UNICOS/mk on Cray T3E-900; Windows98 and Windows XP on PCs. Programming language: FORTRAN 90 No. of lines in distributed program, including test data, etc.: 757 No. of bytes in distributed program, including test data, etc.: 9730 Distribution format: tar.gz Nature of physical problem: The NMR second moment reflects the strength of the nuclear magnetic dipole-dipole interaction in solids. This value can be extracted from the appropriate experiment and can be calculated on the basis of Van Vleck formula. The internal rotation of molecules or their parts averages this interaction decreasing the measured value of the NMR second moment. The analysis of the internal dynamics based on the NMR second moment measurements is as follows. The second moment is measured at different temperatures. On the other hand it is also calculated for different models and frequencies of this motion. Comparison of experimental and calculated values permits the building of the most probable model of internal dynamics in the studied material. The program described

  13. Internal and external components of the bacterial flagellar motor rotate as a unit.

    PubMed

    Hosu, Basarab G; Nathan, Vedavalli S J; Berg, Howard C

    2016-04-26

    Most bacteria that swim, including Escherichia coli, are propelled by helical filaments, each driven at its base by a rotary motor powered by a proton or a sodium ion electrochemical gradient. Each motor contains a number of stator complexes, comprising 4MotA 2MotB or 4PomA 2PomB, proteins anchored to the rigid peptidoglycan layer of the cell wall. These proteins exert torque on a rotor that spans the inner membrane. A shaft connected to the rotor passes through the peptidoglycan and the outer membrane through bushings, the P and L rings, connecting to the filament by a flexible coupling known as the hook. Although the external components, the hook and the filament, are known to rotate, having been tethered to glass or marked by latex beads, the rotation of the internal components has remained only a reasonable assumption. Here, by using polarized light to bleach and probe an internal YFP-FliN fusion, we show that the innermost components of the cytoplasmic ring rotate at a rate similar to that of the hook.

  14. Microwave Study of a Hydrogen-Transfer Methyl-Group Internal Rotation in 5-METHYLTROPOLONE

    NASA Astrophysics Data System (ADS)

    Ilyushin, Vadim V.; Cloessner, Emily A.; Chou, Yung-Ching; Picraux, Laura B.; Hougen, Jon T.; Lavrich, Richard

    2010-06-01

    We present here the first experimental and theoretical study of the microwave spectrum of 5-methyltropolone, which can be visualized as a 7-membered "aromatic" carbon ring with a five-membered hydrogen-bonded cyclic structure at the top and a methyl group at the bottom. The molecule exhibits two large-amplitude motions, an intramolecular hydrogen transfer and a methyl torsion. The former motion is particularly interesting because transfer of the hydrogen atom from the hydroxyl to the carbonyl group induces a tautomerization in the molecule, which then triggers a 60° internal rotation of the methyl group. Measurements were carried out by Fourier-transform microwave spectroscopy in the 8 to 24 GHz frequency range. Theoretical analysis was carried out using a tunneling-rotational Hamiltonian based on a G12^m extended-group-theory formalism. Our global fit of 1015 transitions to 20 molecular parameters gave a root-mean-square deviation of 1.5 kHz. The tunneling splitting of the two J = 0 levels arising from a hypothetical pure hydrogen transfer motion is calculated to be 1310 MHz. The tunneling splitting of the two J = 0 levels arising from a hypothetical pure methyl-top internal rotation motion is calculated to be 885 MHz. Some theoretical difficulties in interpreting the low-order tunneling parameters in this and the related molecule 2-methylmalonaldehyde will be discussed.

  15. Internal and external components of the bacterial flagellar motor rotate as a unit

    PubMed Central

    Hosu, Basarab G.; Nathan, Vedavalli S. J.; Berg, Howard C.

    2016-01-01

    Most bacteria that swim, including Escherichia coli, are propelled by helical filaments, each driven at its base by a rotary motor powered by a proton or a sodium ion electrochemical gradient. Each motor contains a number of stator complexes, comprising 4MotA 2MotB or 4PomA 2PomB, proteins anchored to the rigid peptidoglycan layer of the cell wall. These proteins exert torque on a rotor that spans the inner membrane. A shaft connected to the rotor passes through the peptidoglycan and the outer membrane through bushings, the P and L rings, connecting to the filament by a flexible coupling known as the hook. Although the external components, the hook and the filament, are known to rotate, having been tethered to glass or marked by latex beads, the rotation of the internal components has remained only a reasonable assumption. Here, by using polarized light to bleach and probe an internal YFP-FliN fusion, we show that the innermost components of the cytoplasmic ring rotate at a rate similar to that of the hook. PMID:27071081

  16. Various shrug exercises can change scapular kinematics and scapular rotator muscle activities in subjects with scapular downward rotation syndrome.

    PubMed

    Lee, Ji-Hyun; Cynn, Heon-Seock; Choi, Woo-Jeong; Jeong, Hyo-Jung; Yoon, Tae-Lim

    2016-02-01

    Scapular dyskinesis, characterized by scapular downward rotation syndrome (SDRS) affects scapula-humeral rhythm and results in shoulder dysfunction. Previous study has led to the recommendation of standard shrug exercise to contend with SDRS and strengthen the upper trapezius (UT) muscle. However, few researchers have examined which shrug exercise is most effective. The aim of this research was to compare scapular kinematic changes and scapular rotator muscles activity across three different shrug exercises in SDRS. The amounts of scapular downward rotation were measured by a caliper and the scapular upward rotation angle was measured using two digital inclinometers. Surface electromyography was used to measure EMG amplitude from the UT, lower trapezius (LT), serratus anterior (SA), and levator scapula (LS). Seventeen subjects with SDRS were recruited for this study. The subjects performed three shrug exercises with 30° shoulder abduction (preferred shrug, frontal shrug, and stabilization shrug). The stabilization shrug showed a significantly greater scapular upward rotation angle compared with the preferred shrug (P=0.004) and frontal shrug (P=0.006). The UT activity was significantly greater in the frontal shrug than in the preferred shrug (P=0.002). The UT/LS muscle activity ratio was also significantly greater in the frontal shrug than in the preferred shrug (P=0.004). The stabilization shrug should be preferred to enhance the upward rotation angle. In addition, the frontal shrug can be used as an effective method to increase UT activity and to decrease LS activity in SDRS. PMID:26625348

  17. Rotation and the internal structures of the major planets and their inner satellites

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Measurements of the rotational periods coupled with those of the masses, the mean radii, and the shapes or the gravitational moments (J2 and J4) enable important constraints to be placed on the internal structures of some remote bodies. Values of J2 for Uranus and Neptune have been calculated from the observed precession rates of the narrow eccentric and inclined Uranian rings and of the orbit of Triton, Neptune's massive satellite. Recent observations of the motions of spots have yielded reliable rotational periods for these planets. These observations are used to show that Uranus and Neptune may have quite different internal structures. The shapes of satellites that are close to their primaries may yield information on the degree of internal differentiation of these bodies. Io, Mimas, Enceladus, and Miranda are of interest in this respect. Residuals in the observed precession rates of the Uranian rings, about 0.005 deg/day, that cannot be accounted for by the best-fit model of J2 and J4 may be related directly to observed irregular variations in ring width of magnitude over 2 km and may indicate the existence of shepherding satellites with mass ratios of over 10 to the -10th. If this is the case, then the effects of these satellites on the precession rates of the rings will result in an appreciable uncertainty in the value of J4 for Uranus.

  18. EM international activities: May 1998 highlights

    SciTech Connect

    1998-05-01

    This publication is produced twice a year by the International Technology Systems Application staff. This issue is divided into the following sections: (1) Global Issues Facing Environmental Management; (2) Activities in Western Europe; (3) Activities in Central and Eastern Europe; (4) Activities in Russia; (5) Activities in Asia and the Pacific Rim; (6) Activities in South America; (7) Activities in North America; (8) Country studies; and (9) International Organizations. Some topics discussed are nuclear materials management, radioactive waste and hazardous waste management, and remedial action programs.

  19. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  20. DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS

    SciTech Connect

    Selwa, M.; Poedts, S.; DeVore, C. R. E-mail: stefaan.poedts@wis.kuleuven.be

    2012-03-10

    Recent STEREO observations enabled the study of the properties of EUV waves in more detail. They were found to have a three-dimensional (3D) dome-shaped structure. We investigate, by means of 3D MHD simulations, the formation of EUV waves as the result of the interaction of twisted coronal magnetic loops. The numerical simulation is initialized with an idealized dipolar active region and is performed under coronal (low {beta}) conditions. A sheared rotational motion is applied to the central parts of both the positive and negative flux regions at the photosphere so that the flux tubes in between them become twisted. We find that the twisting motion results in a dome-shaped structure followed in space by a dimming and in time by an energy release (flare). The rotation of the sunspots is the trigger of the wave which initially consists of two fronts that later merge together. The resulting EUV wave propagates nearly isotropically on the disk and {approx}2 times faster in the upward direction. The initial stage of the evolution is determined by the driver, while later the wave propagates freely with a nearly Alfvenic speed.

  1. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station.

    PubMed

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid; Grivel, Jean-Charles

    2009-12-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.

  2. A Simple Molecular Orbital Treatment of the Barrier to Internal Rotation in the Ethane Molecule

    NASA Astrophysics Data System (ADS)

    Smith, Derek W.

    1998-07-01

    The origin of the barrier to internal rotation in the ethane molecule is explored in terms of elementary molecular orbital (MO) considerations. Emphasis is placed on the antibonding effect, i.e. the result that an antibonding MO is more destabilized than its bonding counterpart is stabilized, relative to the parent atomic orbitals (AOs). It is shown that, in the case of two equivalent AOs, this effect is approximately proportional to the square of the overlap integral. By constructing the ethane Mos from those of two methyl fragments, it is shown that the most important orbital energy changes consequent upon rotation about the C-C bond can be expressed in terms of the antibonding effect arising from the filled twofold-degenerate p-bonding and -antibonding MOs. This can be reduced to the dependence on the rotation angle of the vicinal H-H overlap integrals, which are calculated explicitly, showing that the antibonding effect is minimised in the staggered conformation. A letter from Lawrence J. Sacks in our April 2000 issue addresses the above.

  3. Wave generation by fracture initiation and propagation in geomaterials with internal rotations

    NASA Astrophysics Data System (ADS)

    Esin, Maxim; Pasternak, Elena; Dyskin, Arcady; Xu, Yuan

    2016-04-01

    Crack or fracture initiation and propagation in geomaterials are sources of waves and is important in both stability and fracture (e.g. hydraulic fracture) monitoring. Many geomaterials consist of particles or other constituents capable of rotating with respect to each other, either due to the absence of the binder phase (fragmented materials) or due to extensive damage of the cement between the constituents inflicted by previous loading. In investigating the wave generated in fracturing it is important to distinguish between the cases when the fracture is instantaneously initiated to its full length or propagates from a smaller initial crack. We show by direct physical experiments and discrete element modelling of 2D arrangements of unbonded disks that under compressive load fractures are initiated instantaneously as a result of the material instability and localisation. Such fractures generate waves as a single impulse impact. When the fractures propagate, they produce a sequence of impulses associated with the propagation steps. This manifests itself as acoustic (microseismic) emission whose temporal pattern contains the information of the fracture geometry, such as fractal dimension of the fracture. The description of this process requires formulating criteria of crack growth capable of taking into account the internal rotations. We developed an analytical solution based on the Cosserat continuum where each point of body has three translational and three rotational degrees of freedom. When the Cosserat characteristic lengths are comparable with the grain sizes, the simplified equations of small-scale Cosserat continuum can be used. We established that the order of singularity of the main asymptotic term for moment stress is higher than the order of singularity for conventional stress. Therefore, the mutual rotation of particles and related bending and/or twisting of the bonds between the particles represent an unconventional mechanism of crack propagation.

  4. Spots, activity cycles, and differential rotation on cool stars

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.

    2005-01-01

    The first results are reported from a search for activity cycles in stars similar to the sun based on modelling their spotting with an algorithm developed at the Crimean Astrophysical Observatory. Of the more than thirty program stars, 10 manifested a cyclical variation in their central latitudes and total starspot area. The observed cycles have durations of 4-15 years, i.e., analogous to the 11 year Schwabe sunspot cycle. Most of the stars have a rough analog of the solar butterfly pattern, with a reduction in the average latitude of the spots as their area increases. A flip-flop effect during the epoch of the maximum average latitude is noted in a number of these objects (e.g., the analog LQ Hya of the young sun or the RS CVn-type variable V711 Tau), as well as a reduction in the photometric rotation period of a star as the spots drift toward the equator, an analog of the differential rotation effect in the sun. Unlike in the sun, the observed spot formation cycles do not correlate uniquely with other indicators of activity— chromospheric emission in the CaII HK lines (Be Cet, EK Dra, Dx Leo), H line emission (LQ Hya, VY Ari, EV Lac), or cyclical flare activity (EV Lac). In V833 Tau, BY Dra, EK Dra, and VY Ari short Schwabe cycles coexist with long cycles that are analogous to the Gleissberg solar cycle, in which the spotted area can approach half the entire area of the star.

  5. A rigorous description of the energy spectrum of the isopropanol molecule taking into account the internal rotation of hydroxyl

    NASA Astrophysics Data System (ADS)

    Burenin, A. V.

    2016-06-01

    Using the methods of a group chain, a rigorous algebraic model is constructed to describe the energy spectrum of the isopropanol molecule (CH3)2CHOH with an allowance for the internal rotation of hydroxyl. The model is rigorous in the sense that its correctness is limited only by the correctness of a chosen symmetry of internal dynamics of the molecule.

  6. Early rehabilitation affects functional outcomes and activities of daily living after arthroscopic rotator cuff repair: a case report

    PubMed Central

    Shimo, Satoshi; Sakamoto, Yuta; Tokiyoshi, Akinari; Yamamoto, Yasuhiro

    2016-01-01

    [Purpose] The effect of early rehabilitation protocols after arthroscopic rotator cuff repair is currently unknown. We examined short-term effects of early rehabilitation on functional outcomes and activities of daily living after arthroscopic rotator cuff repair. [Subject and Methods] An 82-year-old male fell during a walk, resulting in a supraspinatus tear. Arthroscopic rotator cuff repair was performed using a single-row technique. He wore an abduction brace for 6 weeks after surgery. [Results] From day 1 after surgery, passive range of motion exercises, including forward flexion and internal and external rotation were performed twice per day. Starting at 6 weeks after surgery, active range of motion exercises and muscle strengthening exercises were introduced gradually. At 6 weeks after surgery, his active forward flexion was 150°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 36 points. At 20 weeks after surgery, his active forward flexion was 120°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 0 points. [Conclusion] These protocols are recommended to physical therapists during rehabilitation for arthroscopic rotator cuff repair to support rapid reintegration into activities of daily living. PMID:27064886

  7. Early rehabilitation affects functional outcomes and activities of daily living after arthroscopic rotator cuff repair: a case report.

    PubMed

    Shimo, Satoshi; Sakamoto, Yuta; Tokiyoshi, Akinari; Yamamoto, Yasuhiro

    2016-01-01

    [Purpose] The effect of early rehabilitation protocols after arthroscopic rotator cuff repair is currently unknown. We examined short-term effects of early rehabilitation on functional outcomes and activities of daily living after arthroscopic rotator cuff repair. [Subject and Methods] An 82-year-old male fell during a walk, resulting in a supraspinatus tear. Arthroscopic rotator cuff repair was performed using a single-row technique. He wore an abduction brace for 6 weeks after surgery. [Results] From day 1 after surgery, passive range of motion exercises, including forward flexion and internal and external rotation were performed twice per day. Starting at 6 weeks after surgery, active range of motion exercises and muscle strengthening exercises were introduced gradually. At 6 weeks after surgery, his active forward flexion was 150°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 36 points. At 20 weeks after surgery, his active forward flexion was 120°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 0 points. [Conclusion] These protocols are recommended to physical therapists during rehabilitation for arthroscopic rotator cuff repair to support rapid reintegration into activities of daily living. PMID:27064886

  8. Defining Adapted Physical Activity: International Perspectives

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu; Sherrill, Claudine

    2007-01-01

    The purpose of this study was to describe international perspectives concerning terms, definitions, and meanings of adapted physical activity (APA) as (a) activities or service delivery, (b) a profession, and (c) an academic field of study. Gergen's social constructionism, our theory, guided analysis of multiple sources of data via qualitative…

  9. Internal rapid rotation and its implications for stellar structure and pulsations

    NASA Astrophysics Data System (ADS)

    Reese, Daniel R.

    2015-09-01

    Massive and intermediate mass stars play a crucial role in astrophysics. Indeed, massive stars are the main producers of heavy elements, explode in supernovae at the end of their short lifetimes, and may be the progenitors of gamma ray bursts. Intermediate mass stars, although not destined to explode in supernovae, display similar phenomena, are much more numerous, and have some of the richest pulsation spectra. A key to understanding these stars is understanding the effects of rapid rotation on their structure and evolution. These effects include centrifugal deformation and gravity darkening which can be observed immediately, and long terms effects such as rotational mixing due to shear turbulence, which prolong stellar lifetime, modify chemical yields, and impact the stellar remnant at the end of their lifetime. In order to understand these effects, a number of models have been and are being developed over the past few years. These models lead to increasingly sophisticated predictions which need to be tested through observations. A particularly promising source of constraints is seismic observations as these may potentially lead to detailed information on their internal structure. However, before extracting such information, a number of theoretical and observational hurdles need to be overcome, not least of which is mode identification. The present proceedings describe recent progress in modelling these stars and show how an improved understanding of their pulsations, namely frequency patterns, mode visibilities, line profile variations, and mode excitation, may help with deciphering seismic observations.

  10. Infrared spectra, methyl group structure and internal rotation in some methy - metal compounds

    NASA Astrophysics Data System (ADS)

    McKean, D. C.; McQuillan, G. P.; Torto, I.; Morrisson, A. R.

    1986-03-01

    Recent and current work on spectra in the CH and CD stretching regions of methyl-metal compounds is reviewed. Free internal rotation with CH force constant variation is found in MMe 3 (M  Ga, Tl) and MMe(CO) 5 (M  Mn, Re) compounds, studied in the gas phase. From solution measurements, no such rotation occurs in CpMMe(CO) 3 (M  Cr,Mo,W) and Cp 2MMe 2 (M  Ti,Zr,Hf), in most of which each methyl group contains two types of CH bond. In each d-subgroup, ν isCH decreases with increasing atomic number, while δ sCH 3 increases. The reverse occurs from Ga to Tl. r oCH values are predicted. There is evidence for the breakdown of the ν isCH/∠HCH correlation, especially in MeTiCl 3 where several features point to an unusual structure of the methyl group.

  11. Two Equivalent Methyl Internal Rotations in 2,5-DIMETHYLTHIOPHENE Investigated by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Van, Vinh; Stahl, Wolfgang; Nguyen, Ha Vinh Lam

    2016-06-01

    The microwave spectrum of 2,5-dimethylthiophene, a sulfur-containing five-membered heterocyclic molecule with two conjugated double bonds, was recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Highly accurate molecular parameters were determined. The rotational constants obtained by geometry optimizations at different levels of theory are in good agreement with the experimental values. A C2v equilibrium structure was calculated, where one hydrogen atom of each methyl group is antiperiplanar to the sulfur atom, and the two methyl groups are thus equivalent. Transition states were optimized at different levels of theory using the Berny algorithm to calculate the barrier height of the two equivalent methyl rotors. The fitted experimental torsional barrier of 247.95594(30) wn is in reasonable agreement with the calculated barriers. Similar barriers to internal rotation were found for the monomethyl derivatives 2-methylthiophene (194.1 wn) and 3-methylthiophene (258.8 wn). A labeling scheme for the group G36 written as the semi-direct product (C3I x C3I) (x C2v was introduced.

  12. On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations.

    PubMed

    Alias, A; Grimshaw, R H J; Khusnutdinova, K R

    2013-06-01

    In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation. PMID:23822486

  13. Internal rotation for predicting conformational population of 1,2-difluorethane and 1,2-dichloroethane

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Dos Santos, Hélio F.; De Almeida, Wagner B.

    2016-06-01

    The contribution of internal rotation to the thermal correction of Gibbs free energy (ΔG) is estimated using the quantum pendulum model (QPM) to solve the characteristic Schrödinger equation. The procedure is applied to theoretical prediction of conformational population of 1,2-difluorethane (1,2-DFE) and 1,2-dichloroethane (1,2-DCE) molecules. The predicted population for the anti form was 37% and 75%, for 1,2-DFE and 1,2-DCE respectively, in excellent agreement with experimental gas phase data available, 37 ± 5% and 78 ± 5%. These results provide great support to the use of the QPM model to account for the low vibrational frequency modes effect on the calculation of thermodynamic properties.

  14. On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations.

    PubMed

    Alias, A; Grimshaw, R H J; Khusnutdinova, K R

    2013-06-01

    In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation.

  15. Solar wind and coronal rotation during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, Rui; Brun, Allan Sacha

    The properties of the solar wind flow are strongly affected by the time-varying strength and geometry of the global background magnetic field. The wind velocity and mass flux depend directly on the size and position of the wind sources at the surface, and on the geometry of the magnetic flux-tubes along which the wind flows. We address these problems by performing numerical simulations coupling a kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal MHD code (DIP) covering an 11 yr activity cycle. The latitudinal distribution of the calculated wind velocities agrees with in-situ (ULYSSES, HELIO) and radio measurements (IPS). The transition from fast to slow wind flows can be explained in terms of the high overall flux-tube superradial expansion factors in the vicinities of coronal streamer boundaries. We found that the Alfvén radii and the global Sun's mass loss rate vary considerably throughout the cycle (by a factor 4.5 and 1.6, respectively), leading to strong temporal modulations of the global angular momentum flux and magnetic braking torque. The slowly varying magnetic topology introduces strong non-uniformities in the coronal rotation rate in the first few solar radii. Finally, we point out directions to assess the effects of surface transient phenomena on the global properties of the solar wind.

  16. Defining adapted physical activity: international perspectives.

    PubMed

    Hutzler, Yeshayahu; Sherrill, Claudine

    2007-01-01

    The purpose of this study was to describe international perspectives concerning terms, definitions, and meanings of adapted physical activity (APA) as (a) activities or service delivery, (b) a profession, and (c) an academic field of study. Gergen's social constructionism, our theory, guided analysis of multiple sources of data via qualitative methodology. Data sources were online surveys, APA literature, and expertise of researchers. Findings, with the identification of further considerations, were provided for each APA component to stimulate reflection and further inquiry among international professionals with diverse backgrounds.

  17. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  18. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A. E-mail: ambastha@prl.res.in

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  19. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  20. Upper extremity range of motion and isokinetic strength of the internal and external shoulder rotators in major league baseball players.

    PubMed

    Brown, L P; Niehues, S L; Harrah, A; Yavorsky, P; Hirshman, H P

    1988-01-01

    Forty-one professional baseball players volunteered for upper extremity range of motion measurements and isokinetic testing for internal and external shoulder rotation. Pitchers demonstrated 9 degrees more external shoulder rotation with the arm abducted, 5 degrees more forearm pronation, and 9 degrees less shoulder extension on the dominant side compared with the dominant side of position players. Pitchers also demonstrated 9 degrees more external rotation in abduction, 5 degrees less shoulder flexion, 11 degrees less horizontal extension, 15 degrees less internal rotation in abduction, 6 degrees less elbow extension, 4 degrees less elbow flexion, and 5 degrees less forearm supination on the dominant side compared with their nondominant side. Position players demonstrated 8 degrees more external rotation in abduction, 14 degrees less horizontal extension, and 8 degrees less elbow extension on the dominant side compared with their nondominant side. Greater torque was produced by pitchers compared with position players for the dominant and nondominant arm at all test speeds for both mean peak and mean average torque. Greater torque was produced by the dominant arm compared with the nondominant arm also at all test speeds for both of these measurements. No difference was found between the rotation ratios for either arm, for either group, for all speeds.

  1. Rotating machinery - Dynamics; Proceedings of the 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3), Honolulu, HI, Apr. 1-4, 1990

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yang, W.-J.

    Topics addressed include rotordynamic software, blade loss dynamics of a magnetically supported rotor, flow visualization in a single simulated brush seal, an analytical investigation of a cryogenic journal bearing, vibration protection of aeration turbine gear motor, a simple procedure for assessing rotor stability, and stability of rotating cylindrical shells including nonlinear stiffening. Attention is also given to aeroelastic analysis of vertical axis wind turbines, an active chamber system for vibration control of rotating machinery, a computer system for multibearing rotor design, equations of motion of a flexible rotor with axially loose disc, and simulation research on the dynamic characteristics of a steam-injected gas turbine.

  2. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Doğan, G.; Goupil, M. J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T. L.; Casagrande, L.; Ceillier, T.; Davies, G. R.; De Cat, P.; Fu, J. N.; García, R. A.; Lobel, A.; Mosser, B.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Thygesen, A. O.; Yang, X. H.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Eggenberger, P.; Gizon, L.; Mathis, S.; Molenda-Żakowicz, J.; Pinsonneault, M.

    2014-04-01

    Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims: Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results: We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions: We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the

  3. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Alujević, N.; Depraetere, B.; Pinte, G.; Swevers, J.; Sas, P.

    2015-07-01

    In this paper, two Piezo-Based Rotating Inertial Actuators (PBRIAs) are considered for the suppression of the structure-borne noise radiated from rotating machinery. As add-on devices, they can be directly mounted on a rotational shaft, in order to intervene as early as possible in the transfer path between disturbance and the noise radiating surfaces. A MIMO (Multi-Input-Multi-Output) form of the FxLMS control algorithm is employed to generate the appropriate actuation signals, relying on a linear interpolation scheme to approximate time varying secondary plants. The proposed active vibration control approach is tested on an experimental test bed comprising a rotating shaft mounted in a frame to which a noise-radiating plate is attached. The disturbance force is introduced by an electro-dynamic shaker. The experimental results show that when the shaft spins below 180 rpm, more than a 7 dB reduction can be achieved in terms of plate vibrations, along with a reduction in the same order of magnitude in terms of noise radiation.

  4. Analysis of DOE international environmental management activities

    SciTech Connect

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  5. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in

  6. A study of internal rotations and vibrational spectra of oxiranemethanol (glycidol).

    PubMed

    Badawi, Hassan M; Ali, Shaikh A

    2009-10-01

    The conformational stability and the C-O and O-H internal rotations in oxiranemethanol were investigated at the DFT-B3LYP/6-311 G**, MP2/6-311 G** and MP4(SDQ)/6-311 G** levels of theory. Three minima were predicted in the CCOH potential energy scans of the molecule to have relative energies of about 2 kcal/mol or less and all were calculated to have real frequencies upon full optimization of structural parameters at the DFT and the MP2 levels of calculations. The Cg1 (H bond inner) conformation was predicted to be the lowest energy conformation for oxiranemethanol in excellent agreement with an earlier microwave study. The equilibrium mixture was calculated from Gibb's free-energy changes to be about 79% Cg1, 17% G1g and 3% Gg1 at the B3LYP/6-311G** level and about 87% Cg1, 11% G1g and 2% Gg1 at the MP2/6-311 G** level for oxiranemethanol at 298.15 K. No conclusive evidence was obtained for the presence of high-energy form in the liquid phase of oxiranemethanol. The vibrational frequencies of oxiranemethanol in its three stable forms were computed at the B3LYP level and complete vibrational assignments were made for the lowest energy Cg1 form on basis of calculated and experimental data of the molecule.

  7. A study of internal rotations and vibrational spectra of oxiranemethanol ( glycidol)

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Ali, Shaikh A.

    2009-10-01

    The conformational stability and the C-O and O-H internal rotations in oxiranemethanol were investigated at the DFT-B3LYP/6-311G**, MP2/6-311G** and MP4(SDQ)/6-311G** levels of theory. Three minima were predicted in the CCOH potential energy scans of the molecule to have relative energies of about 2 kcal/mol or less and all were calculated to have real frequencies upon full optimization of structural parameters at the DFT and the MP2 levels of calculations. The Cg1 ( H bond inner) conformation was predicted to be the lowest energy conformation for oxiranemethanol in excellent agreement with an earlier microwave study. The equilibrium mixture was calculated from Gibb's free-energy changes to be about 79% Cg1, 17 % G1g and 3% Gg1 at the B3LYP/6-311G** level and about 87% Cg1, 11 % G1g and 2% Gg1 at the MP2/6-311G** level for oxiranemethanol at 298.15 K. No conclusive evidence was obtained for the presence of high-energy form in the liquid phase of oxiranemethanol. The vibrational frequencies of oxiranemethanol in its three stable forms were computed at the B3LYP level and complete vibrational assignments were made for the lowest energy Cg1 form on basis of calculated and experimental data of the molecule.

  8. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  9. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  10. Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    In two experiments the neuronal mechanisms of sex differences in mental rotation were investigated. In Experiment 1 cortical activation was studied in women and men with similar levels of mental rotation ability (high, and average to low), who were equalized with respect to general intelligence. Sex difference in neuroelectric patterns of brain…

  11. An eccentric- and concentric-strength profile of shoulder external and internal rotator muscles in professional baseball pitchers.

    PubMed

    Sirota, S C; Malanga, G A; Eischen, J J; Laskowski, E R

    1997-01-01

    The purpose of this study was to establish a data base on the isokinetic eccentric muscular performance characteristics of external and internal rotator muscles in the shoulders of professional baseball pitchers. Concentric data are also included and compared with previously published concentric studies. Twenty-five professional baseball pitchers were evaluated with a Kin-Com isokinetic dynamometer. The subjects tested had a mean age of 23.5 years and a mean body weight of 199 pounds. Eccentric and concentric isokinetic tests were performed at 60 and 120 deg/sec. The testing protocol was standardized for each subject. Test results indicated no statistically significant difference in mean torque between throwing and nonthrowing shoulders for either external or internal rotator muscle groups. Eccentric strength was significantly greater than concentric strength for all muscle groups tested. The external-to-internal rotator muscle strength ratios were well above those previously published for high school through professional pitchers. Mean torque-to-lean body weight ratios were also included to establish a data base. This study establishes one of the first data bases for eccentric isokinetic muscle strength of shoulder rotator muscles in professional baseball pitchers. The data may help clinicians prevent and rehabilitate shoulder injuries in professional throwing athletes.

  12. Titan’s internal structure inferred from its gravity field, shape, and rotation state

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Tobie, Gabriel; Lefèvre, Axel; Van Hoolst, Tim

    2014-07-01

    Several quantities measured by the Cassini-Huygens mission provide insight into the interior of Titan: the second-degree gravity field coefficients, the shape, the tidal Love number, the electric field, and the orientation of its rotation axis. The measured obliquity and tides, as well as the electric field, are evidence for the presence of an internal global ocean beneath the icy shell of Titan. Here we use these different observations together to constrain the density profile assuming a four-layer interior model (ice I shell, liquid water ocean, high pressure ice mantle, and rock core). Even though the observed second degree gravity field is consistent with the hydrostatic relation J2=10C22/3, which is a necessary but not sufficient condition for a synchronous satellite to be in hydrostatic equilibrium, the observed shape of the surface as well as the non-zero degree-three gravity signal indicate some departure from hydrostaticity. Therefore, we do not restrain our range of assumed density profiles to those corresponding to the hydrostatic value of the moment of inertia (0.34). From a range of density profiles consistent with the radius and mass of the satellite, we compute the obliquity of the Cassini state and the tidal Love number k2. The obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field. The observed (nearly hydrostatic) gravity field is obtained by an additional deflection of the ocean-ice I shell interface, assuming that the layers have uniform densities. We show that the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg m-3) above a differentiated interior with a full separation of rock and ice. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). Evolutionary mechanisms leading to a

  13. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part II: Strength

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: A database describing the range of normal rotator cuff strength values in uninjured high school pitchers has not been established. Chronologic factors that contribute to adaptations in strength also have not been established. Objectives: To establish a normative profile of rotator cuff strength in uninjured high school baseball pitchers and to determine whether bilateral differences in rotator cuff strength are normal findings in this age group. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 165 uninjured male high school baseball pitchers (age = 16 ± 1 years, height = 1.8 ± 0.1 m, mass = 76.8 ± 10.1 kg, pitching experience = 7 ± 2 years). Main Outcome Measure(s): Isometric rotator cuff strength was measured bilaterally with a handheld dynamometer. We calculated side-to-side differences in strength (external rotation [ER], internal rotation [IR], and the ratio of ER:IR at 90° of abduction), differences in strength by age, and the influence of chronologic factors (participant age, years of pitching experience) on limb strength. Results: Side-to-side differences in strength were found for ER, IR, and ER:IR ratio at 90° of abduction. Age at the time of testing was a significant but weak predictor of both ER strength (R2 = 0.032, P = .02) and the ER:IR ratio (R2 = 0.051, P = .004) at 90° of abduction. Conclusions: We established a normative profile of rotator cuff strength for the uninjured high school baseball pitcher that might be used to assist clinicians and researchers in the interpretation of muscle strength performance in this population. These data further suggested that dominant-limb adaptations in rotator cuff strength are a normal finding in this age group and did not demonstrate that these adaptations were a consequence of the age at the time of testing or the number of years of pitching experience. PMID:21669099

  14. The effects of age and sex on mental rotation performance, verbal performance, and brain electrical activity.

    PubMed

    Roberts, Jonathan E; Bell, Martha Ann

    2002-05-01

    This study examined the effects of age and sex on mental rotation performance, verbal performance, and brain-wave activity. Thirty-two 8-year-olds (16 boys) and 32 college students (16 men) had EEG recorded at baseline and while performing four computerized tasks: a two-dimensional (2D) gingerbread man mental rotation, a 2D alphanumeric mental rotation, of three-dimensional (3D) basketball player mental rotation, and lexical decision making. Additionally, participants completed a paper- and pencil water level task and an oral verbal fluency task. On the 2D alphanumeric and 3D basketball player mental rotation tasks, men performed better than boys, but the performance of women and girls did not differ. On the water level task, men performed better than women whereas there was no difference between boys and girls. No sex differences were found on the 2D gingerbread man mental rotation, lexical decision-making, and verbal fluency tasks. EEG analyses indicated that men exhibited left posterior temporal activation during the 2D alphanumeric task and that men and boys both exhibited greater left parietal activation than women and girls during the 2D gingerbread man task. On the 3D basketball player mental rotation task, all participants exhibited greater activation of the right parietal area than the left parietal area. These data give insight into the brain activity and cognitive development changes that occur between childhood and adulthood.

  15. SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION

    SciTech Connect

    De Sanctis, M. C.; Capria, M. T.; Lasue, J.

    2010-07-15

    Rotational properties can strongly influence a comet's evolution in terms of activity, dust mantling, and internal structure. In this paper, we investigate the effects of various rotation axis directions on the activity, internal structure, and dust mantling of cometary nuclei. The numerical code developed is able to reproduce different shapes and spin axis inclinations, taking into account both the latitudinal and the longitudinal variations of illumination, using a quasi-three-dimensional approach. The results obtained show that local variations in the dust and gas fluxes can be induced by the different spin axis directions and completely different behaviors of the comet evolution can result in the same cometary shape by using different obliquities of the models. The internal structures of cometary nuclei are also influenced by comet obliquity, as well as dust mantling. Gas and dust production rates show diversities related to the comet seasons.

  16. Astronomy education activities for the international community

    NASA Astrophysics Data System (ADS)

    Laatsch, S.

    In today s world technology allows students from around the globe to interact and share learning experiences in a variety of subjects Astronomy by its nature as a science and cultural phenomena lends itself to a variety of educational activities that can be shared across borders and cultures While teaching astronomy at East Carolina University and working with the International Planetarium Society a program is being piloted to link students in grades 3 and 6 from the United States and India to study phases of the Moon This project is in its early stages but will enhance students understanding of a basic astronomical concept while sharing cultural ideas regarding our nearest neighbor in space The International Planetarium Society has a number of educational programs and opportunities for astronomy and space science educators around the globe A variety of programs and opportunities will be discussed

  17. International aspects of commercial space activities

    NASA Technical Reports Server (NTRS)

    Pedersen, K. S.

    1983-01-01

    Attention is given to problems in international cooperation that will arise if NASA proceeds with a Space Station. The rise in space budgets in many countries is cited as an indication of the growing importance being placed on space activities. It is also pointed out that these nations are emphasizing areas which hold promise for eventual commercial payoff. Developing countries are also paying greater attention to space. As part of the European Space Agency's development program, it is underwriting the development of up to six multiuser facilities dedicated to microgravity research; these include furnaces and thermostats for processing metallurgical samples and for crystal growth and botanical investigations. Competition from Europe is seen as a spur to efficiency. Attention is also given to the question whether international cooperation will interfere with research carried out by the US for military purposes.

  18. Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes

    NASA Astrophysics Data System (ADS)

    Bataev, Vadim A.; Pupyshev, Vladimir I.; Godunov, Igor A.

    2016-05-01

    The features of nuclear motion corresponding to the rotation of the formyl group (CHO) are studied for the molecules of furfural and some other five-member heterocyclic aromatic aldehydes by the use of MP2/6-311G** quantum chemical approximation. It is demonstrated that the traditional one-dimensional models of internal rotation for the molecules studied have only limited applicability. The reason is the strong kinematic interaction of the rotation of the CHO group and out-of-plane CHO deformation that is realized for the molecules under consideration. The computational procedure based on the two-dimensional approximation is considered for low lying vibrational states as more adequate to the problem.

  19. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  20. PREFACE: 13th International Conference on Muon Spin Rotation, Relaxation and Resonance

    NASA Astrophysics Data System (ADS)

    2014-12-01

    The 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2014) organized by the Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute in collaboration with the University of Zurich and the University of Fribourg, was held in Grindelwald, Switzerland from 1st to 6th June 2014. The conference provided a forum for researchers from around the world with interests in the applications of μSR to study a wide range of topics including condensed matter physics, materials and molecular sciences, chemistry and biology. Polarized muons provide a unique and versatile probe of matter, enabling studies at the atomic level of electronic structure and dynamics in a wide range of systems. The conference was the thirteenth in a series, which began in Rorschach in 1978 and it took place for the third time in Switzerland. The previous conferences were held in Cancun, Mexico (2011), Tsukuba, Japan (2008), Oxford, UK (2005), Williamsburg, USA (2002), Les Diablerets, Switzerland (1999), Nikko, Japan (1996), Maui, USA (1993), Oxford, UK (1990), Uppsala, Sweden (1986), Shimoda, Japan (1983), Vancouver, Canada (1980), and Rorschach, Switzerland (1978). These conference proceedings contain 67 refereed publications from presentations covering magnetism, superconductivity, chemistry, semiconductors, biophysics and techniques. The conference logo, displayed in the front pages of these proceedings, represents both the location of μSR2014 in the Alps and the muon-spin rotation technique. The silhouette represents the famous local mountains Eiger, Mönch and Jungfrau as drawn by the Swiss painter Ferdinand Hodler and the apple with arrow is at the same time a citation of the Wilhelm Tell legend and a remembrance of the key role played by the muon spin and the asymmetric muon decay (which for the highest positron energy has an apple like shape). More than 160 participants (including 32 registered as students and 13 as accompanying persons) from 19 countries

  1. Activity of Lipase and Chitinase Immobilized on Superparamagnetic Particles in a Rotational Magnetic Field

    PubMed Central

    Mizuki, Toru; Sawai, Miyuki; Nagaoka, Yutaka; Morimoto, Hisao; Maekawa, Toru

    2013-01-01

    We immobilize hydrolases such as lipase and chitinase on superparamagnetic particles, which are subjected to a rotational magnetic field, and measure the activities of the enzymes. We find that the activities of lipase and chitinase increase in the rotational magnetic field compared to those in the absence of a magnetic field and reach maximum at certain frequencies. The present methodology may well be utilized for the design and development of efficient micro reactors and micro total analysis systems (μ-TASs). PMID:23799111

  2. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  3. Single Molecule Behavior of Inhibited and Active States of Escherichia coli ATP Synthase F1 Rotation*

    PubMed Central

    Sekiya, Mizuki; Hosokawa, Hiroyuki; Nakanishi-Matsui, Mayumi; Al-Shawi, Marwan K.; Nakamoto, Robert K.; Futai, Masamitsu

    2010-01-01

    ATP hydrolysis-dependent rotation of the F1 sector of the ATP synthase is a successive cycle of catalytic dwells (∼0.2 ms at 24 °C) and 120° rotation steps (∼0.6 ms) when observed under Vmax conditions using a low viscous drag 60-nm bead attached to the γ subunit (Sekiya, M., Nakamoto, R. K., Al-Shawi, M. K., Nakanishi-Matsui, M., and Futai, M. (2009) J. Biol. Chem. 284, 22401–22410). During the normal course of observation, the γ subunit pauses in a stochastic manner to a catalytically inhibited state that averages ∼1 s in duration. The rotation behavior with adenosine 5′-O-(3-thiotriphosphate) as the substrate or at a low ATP concentration (4 μm) indicates that the rotation is inhibited at the catalytic dwell when the bound ATP undergoes reversible hydrolysis/synthesis. The temperature dependence of rotation shows that F1 requires ∼2-fold higher activation energy for the transition from the active to the inhibited state compared with that for normal steady-state rotation during the active state. Addition of superstoichiometric ϵ subunit, the inhibitor of F1-ATPase, decreases the rotation rate and at the same time increases the duration time of the inhibited state. Arrhenius analysis shows that the ϵ subunit has little effect on the transition between active and inhibited states. Rather, the ϵ subunit confers lower activation energy of steady-state rotation. These results suggest that the ϵ subunit plays a role in guiding the enzyme through the proper and efficient catalytic and transport rotational pathway but does not influence the transition to the inhibited state. PMID:20974856

  4. Internal rotation potential and relaxation of structure in nitrobenzene studied by microwave spectroscopy supported by quantum chemistry

    NASA Astrophysics Data System (ADS)

    Larsen, Niels Wessel

    2010-01-01

    Rotational constants for the vibrational ground state and three torsionally excited states of nine nitrobenzene isotopologues were used to investigate the internal rotation potential and the structure of nitrobenzene. Relaxation parameters were calculated by the B3LYP and MP2(full) methods with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The four sets of relaxation parameters all led to a clear improvement in the fit to rotational constants as compared with fits without relaxation of structure. The improvement was different from set to set, with B3LYP/aug-cc-PVDZ as a surprising winner. However, letting three of the relaxation parameters vary freely, gave virtually identical results for the molecular structure and potential function in all cases. Assuming higher order potential coefficient to vanish, the resultant potential parameters were, with 1 σ uncertainties, V2 = 1678 ± 19 cm -1 and V4 = -207 ± 6 cm -1. The barrier to internal rotation was estimated to 1575 ± 150 cm -1. A small change in structure upon ortho deuteration was found.

  5. Probing the flexibility of internal rotation in silylated phenols with the NMR scalar spin-spin coupling constants.

    PubMed

    Sychrovský, Vladimír; Benda, Ladislav; Prokop, Alexandr; Blechta, Vratislav; Schraml, Jan; Spirko, Vladimír

    2008-06-12

    The rotation of a trimethylsiloxy (TMSO) group in three silylated phenols (with three different ortho substituents -H, -CH3, and -C(CH3)3) was studied with the NMR (n)J(Si,C), n = 2, 3, 4, 5, scalar spin-spin coupling between the (29)Si nucleus of the TMSO group and the (13)C nuclei of the phenyl ring. The internal rotation potential calculated with the B3LYP and MP2 calculation methods including the effect of a solvent environment (gas phase, chloroform, and water) was used for the calculation of the dynamical averages of the scalar coupling constants in the framework of the rigid-bender formalism. Solvent effects, the quality of the rotational potential, and the applicability of the classical molecular dynamic to the problem is discussed. Quantum effects have a sizable impact on scalar couplings, particularly for the internal rotational states well localized within the wells of the potential surfaces for the TMSO group. The overall difference between the experimental and theoretical scalar couplings calculated for the global energy-minima structures (static model) decreases substantially for both model potentials (B3LYP, MP2) when the molecular motion of the TMSO group is taken into account. The calculated data indicate that the inclusion of molecular motion is necessary for the accurate calculation of the scalar coupling constants and their reliable structural interpretation for any system which possesses a large-amplitude motion. PMID:18491850

  6. Determination of detector rotation angle in the experiment based on the total internal reflection using an equilateral right angle prism

    NASA Astrophysics Data System (ADS)

    Hendro, Viridi, S.; Pratama, Y.

    2015-04-01

    We present a relation between incident angle and rotation angle detector in the Total Internal Reflection (TIR) experiments when using a right angle prism. In the TIR method, the light coming toward the prism will experience reflection and out of the prism at a certain angle direction. Results of analysis of the geometry and Snell's law shows that the angular position of the detector is not only determined by the angle of incidence of light alone but also by the size of the prism and the detector position from the rotation axis of goniometer. The experimental results show relation between the angle of detector and angle of goniometer. When the prism rotated 45 °, position of goniometer detector is 2×45 °. However, when the prism rotated at an angle instead of 45 °, detector position µ is not always equal to twice the rotation angle goniometer ψ, so that this relationship needs to be corrected. This correction is also determined by the value of the refractive index of the prism is used. By knowing the relationship between detector position and the incident angle of light, this formulation can be used to control the position of the sample and the detector in the experiments based on ATR.

  7. Reflections on the Medical Library Association's international activities.

    PubMed Central

    Poland, U H

    1982-01-01

    An overview of the Medical Library Association's past international activities is given with emphasis on the international fellowship program, international exchange of materials, participation in the International Federation of Library Associations, and international congresses on medical librarianship. Problems presented by cultural and educational differences, as well as governmental, political, and economic influences affecting international activities are enumerated. Lastly, continuation of the association's current international activities is endorsed, especially the extension of bilateral agreements with health sciences library associations of other countries, and increased activity in comparative medical librarianship. PMID:7150824

  8. Potential function of the internal rotation of a methacrolein molecule in the ground ( S 0) electronic state

    NASA Astrophysics Data System (ADS)

    Koroleva, L. A.; Krasnoshchekov, S. V.; Matveev, V. K.; Pentin, Yu. A.

    2016-08-01

    The structural parameters of s- trans- and s- cis-isomers of a methacrolein molecule in the ground ( S 0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (Δ H) of the isomers. It is shown that the V n parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s- trans- and s- cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.

  9. PEA chloroplasts under clino-rotation: lipid peroxidation and superoxide dismutase activity

    NASA Astrophysics Data System (ADS)

    Baranenko, V. V.

    The lipid peroxidation (LP) intensity and the activity of the antioxidant enzyme superoxide dismutase (SOD) were studied in chloroplasts of pea (Pisum sativum L.) plants grown for 7 and 14 days under clino-rotation. An increase in LP levels in chloroplasts during both terms of clinorotation in comparison with stationary controls was documented. SOD activity increased in chloroplasts of plants that were clino-rotated for seven days. SOD has a significant protective effect by diminishing the availability of O2-. However, under more prolonged clino-rotation (14 days), SOD activity decreased but was still higher than in the control samples. In accordance with Selye's oxidative stress theory (Selye, 1956; modified by Leshem et al., 1998), plants that were clino-rotated for seven days are presumed to be in a stage of resistance while 14-day plants reached a stage of exhaustion.

  10. VLBI observation program for the International Earth Rotation Service and necessity for a domestic committee in Japan.

    NASA Astrophysics Data System (ADS)

    Yoshino, T.; Takahashi, F.; Yokoyama, K.

    VLBI observation plan for the International Earth Rotation Service (IERS) is described which aims more efficient program in Pacific area. To improve and to maintain the technical level of VLBI observation, Communications Research Laboratory (Japan) and Haystack Observatory (USA) were nominated as VLBI technical development centers in 1990 by the IERS directing board. Plan of functions and its organization are described. Finally, it is pointed out that a domestic IERS committee is necessary in Japan.

  11. Prior Clues of Internal Activity on Pluto

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    New Horizons scientists Kelsi Singer and Alan Stern predicted that Pluto may have subsurface activity, in this study published even before New Horizon's recent observations of Pluto's strangely uncratered surface areas. Where Does the Nitrogen Come From? Pluto's surface and atmosphere contain a significant amount of nitrogen, but the gas leaks out of Pluto's atmosphere at an tremendous rate -- estimated at about 1.5 × 1012-13 grams per year (roughly 200-2000 tons/hr!). But if the nitrogen has been escaping at this rate since the solar system was formed, the entire atmospheric reservoir of would have been lost long before now. So what is resupplying Pluto's nitrogen? Singer and Stern explore several possible sources: Delivery by comet impact: The authors calculate that over the 4-billion-year span since Pluto's formation, it has been impacted by a total of 600 million comets of varying sizes, all likely containing nitrogen. But their estimates show that the amount of nitrogen this would supply falls several orders of magnitude shy of explaining the escape rate. Excavation by cratering: Could comet impacts simply expose nitrogen buried in reservoirs just beneath Pluto's surface? That method, too, falls short of resupplying atmospheric nitrogen escape by at least an order of magnitude, even using the most generous estimates. Internal activity: Unless the believed atmospheric loss rate of Pluto is overestimated, the authors conclude that Pluto must experience some sort of internal activity such as cryovolcanism that brings nitrogen from below its surface up and into the atmosphere. The Study in Context of Current Events. Singer and Stern wrote and submitted this paper before the New Horizons spacecraft's recent flyby of Pluto. Data from this mission has recently provided surprise after surprise -- from images of smooth, crater-free regions on Pluto's surface to evidence of sheets of carbon monoxide, methane, and nitrogen ices flowing like glaciers. These clues support

  12. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  13. Periods of the Earth's seismicity activation and their relationship to variations in the Earth's rotation velocity

    NASA Astrophysics Data System (ADS)

    Sasorova, Elena; Levin, Boris

    2015-04-01

    It is known that Earth's seismic activity (SA) demonstrates distinct roughness (nonuniformity) in time. Periods of intensification of the SA followed by periods of its decaying. For strong earthquakes these periods are continued several decades. It was also noted that there is a pronounced periodic amplification and attenuation of the SA with a period of about 30 years, which is manifested mainly in two latitudinal belts 50°N-30°N and 0°-30°S [Levin, Sasorova, 2014, 2015]. This work deals with the hypothesis that it is the properties of rotating non-uniform rate of the planet may be the cause of the periodicity of manifestations SA. The objective of this work is the searching of the spatial-temporal interconnection between the Earth rotation irregularity and the observed cyclic increasing and decreasing of the Earth's SA. This requires preparation a long series of observations of seismic events with representative data sets (EQ selected from 1895 up to date with a magnitude M> = 7.5, based on the catalog NEIC). Two sources of data on the angular velocity of the Earth's rotation of (length of day, LOD) were adapted: the world-known database IERS (Annual Report, International Earth Rotation Service) and the data, which were presented in the work (McCarthy, D.D., and Babcock A.K., 1986). The first one contains daily observations from 1962 to 2013, the second one was identified semi-annual observations from 1720 to 1984. It was prepared concatenated data set (CLOD) for the period from 1720 to 2013. Characteristic periods in the time series CLOD: 62, 32, and 23 years have been isolated by the use of spectral analysis. Next, it were used a band-pass filters for the four frequency bands from 124 to 45 years, from 37 do 25 years, from 25 to 19 years, and in the range of less than 19 years. In the frequency bands 37-25 years and 25-19 years marked clear periodic oscillations close to a sine wave. The amplitude of the oscillations with the 1720 to 1790 gradually

  14. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  15. A multiwavelength campaign of active stars with intermediate rotation rates

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Neff, James E.; ONeal, Douglas; Olah, Katalin

    1995-01-01

    Near-to-simultaneous ultraviolet and visual spectroscopy of two moderate nu(sin i) RS CVn systems, V815 Herculis (nu(sin i) = 27 km s(exp -1)) and LM Pegasi (nu(sin i) = 24 km s(exp -1)), are presented along with contemporaneous UBV (RI)(sub c) - band photometry. These data were used to probe inhomogeneities in the chromospheres and photospheres, and the possible relationship between them. Both systems show evidence for rotationally modulated chromospheric emission, generally varying in antiphase to the photospheric brightness. A weak flare was observed at Mg II for V815 Her. In the case of IM Peg, we use photometry and spectra to estimate temperatures, sizes, and locations of photospheric spots. Further constraints on the spot temperature is provided by TiO observations. For IM Peg, the anticorrelation between chromospheric emission and brightness is discussed in the context of a possible solar-like spot cycle.

  16. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  17. Rehabilitation of the Overhead Throwing Athlete: There Is More to It Than Just External Rotation/Internal Rotation Strengthening.

    PubMed

    Wilk, Kevin E; Arrigo, Christopher A; Hooks, Todd R; Andrews, James R

    2016-03-01

    The repetitive nature of throwing manifests characteristic adaptive changes to the shoulder, scapulothoracic, and hip/pelvis complexes that result in a set of unique physical traits in the overhead throwing athlete. An effective rehabilitation program is dependent upon an accurate evaluation and differential diagnosis to determine the causative factors for the athlete's pathologic features. The treatment program should be individualized with specific strengthening and flexibility exercises to achieve the dynamic stability that is required for overhead function. In this article we describe the characteristics of the throwing shoulder, along with a multiphased rehabilitation program that allows for the restoration of strength, mobility, endurance, and power and is aimed toward a return to unrestricted sporting activity. We also describe exercises that link the upper and lower extremities because of the importance of core control and leg strength in the development of power during the act of throwing. Additionally, proper throwing mechanics, utilization of pitch counts, appropriate rest, and proper off-season conditioning will help decrease overall injury risk in the overhead throwing athlete.

  18. Rehabilitation of the Overhead Throwing Athlete: There Is More to It Than Just External Rotation/Internal Rotation Strengthening.

    PubMed

    Wilk, Kevin E; Arrigo, Christopher A; Hooks, Todd R; Andrews, James R

    2016-03-01

    The repetitive nature of throwing manifests characteristic adaptive changes to the shoulder, scapulothoracic, and hip/pelvis complexes that result in a set of unique physical traits in the overhead throwing athlete. An effective rehabilitation program is dependent upon an accurate evaluation and differential diagnosis to determine the causative factors for the athlete's pathologic features. The treatment program should be individualized with specific strengthening and flexibility exercises to achieve the dynamic stability that is required for overhead function. In this article we describe the characteristics of the throwing shoulder, along with a multiphased rehabilitation program that allows for the restoration of strength, mobility, endurance, and power and is aimed toward a return to unrestricted sporting activity. We also describe exercises that link the upper and lower extremities because of the importance of core control and leg strength in the development of power during the act of throwing. Additionally, proper throwing mechanics, utilization of pitch counts, appropriate rest, and proper off-season conditioning will help decrease overall injury risk in the overhead throwing athlete. PMID:26972270

  19. Microwave spectrum, r(0) structure, dipole moment, barrier to internal rotation, and Ab initio calculations for fluoromethylsilane.

    PubMed

    Durig, James R; Panikar, Savitha S; Groner, Peter; Nanaie, Hossein; Bürger, Hans; Moritz, Peter

    2010-04-01

    The microwave spectra of seven isotopomers of fluoromethylsilane, CH(2)FSiH(3), in the ground vibrational state were measured and analyzed in the frequency range 18-40 GHz. The rotational and centrifugal distortion constants were evaluated by the least-squares treatment of the observed frequencies of a- and b-type R- and b-type Q-transitions. The values for the components of the dipole moment were obtained from the measurements of Stark effects from both a- and b-type transitions and the determined values are: |mu(a)| = 1.041(5), |mu(b)| = 1.311(6), and |mu(t)| = 1.674(4) D. Structural parameters have been determined and the heavy atom distances (r(0)) in Angstroms are: Si-C = 1.8942(57) and C-F = 1.4035(55) and the angle in degree, angleSiCF = 109.58(14). A semi-experimental r(e) structure was also determined from experimental ground state rotational constants and vibration-rotation constants derived from ab initio force fields. The internal torsional fundamental, SiH(3), was observed at 149.2 cm(-1) with two accompanying hot bands at 138.8 and 127.5 cm(-1). The barrier to internal rotation was obtained as 717.3(16) cm(-1) (2.051(46) kcal mol(-1)) by combining the analysis of the microwave A and E splittings and the torsional fundamental and hot band frequencies. Ab initio calculations have been carried out with full electron correlation by the second-order perturbation method with several different basis sets up to MP2/6-311+G(d,p) to obtain geometrical parameters, barriers to internal rotation, and centrifugal distortion constants. Adjusted r(0) structural parameters have been obtained by combining the ab initio MP2/6-311+G(d,p) predicted values with the determined rotational constants for the fluoride as well as with the previously reported microwave data for the chloro- and bromo- compounds. These experimental results are compared to the corresponding parameters for the carbon analogues.

  20. Internal performance of a nonaxisymmetric nozzle with a rotating upper flap and a center-pivoted lower flap

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Leavitt, Laurence D.; Re, Richard J.

    1993-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a single expansion-ramp nozzle with thrust-vectoring capability to 105 degrees. Thrust vectoring was accomplished by the downward rotation of an upper flap with adaptive capability for internal contouring and a corresponding rotation of a center-pivoted lower flap. The static internal performance of configurations with pitch thrust-vector angles of 0 degrees, 60 degrees, and 105 degrees each with two throat areas, was investigated. The nozzle pressure ratio was varied from 1.5 to approximately 8.0 (5.0 for the maximum throat area configurations). Results of this study indicated that the nozzle configuration of the present investigation, when vectored, provided excellent flow-turning capability with relatively high levels of internal performance. In all cases, the thrust vector angle was a function of the nozzle pressure ratio. This result is expected because the flow is bounded by a single expansion surface on both vectored- and unvectored-nozzle geometries.

  1. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part I: Motion

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: The magnitude of motion that is normal for the throwing shoulder in uninjured baseball pitchers has not been established. Chronologic factors contributing to adaptations in motion present in the thrower's shoulder also have not been established. Objectives: To develop a normative profile of glenohumeral rotation motion in uninjured high school baseball pitchers and to evaluate the effect of chronologic characteristics on the development of adaptations in shoulder rotation motion. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 210 uninjured male high school baseball pitchers (age = 16±1.1 years, height = 1.8 + 0.1 m, mass = 77.5±11.2 kg, pitching experience = 6±2.3 years). Intervention(s): Using standard goniometric techniques, we measured passive rotational glenohumeral range of motion bilaterally with participants in the supine position. Main Outcome Measure(s): Paired t tests were performed to identify differences in motion between limbs for the group. Analysis of variance and post hoc Tukey tests were conducted to identify differences in motion by age. Linear regressions were performed to determine the influence of chronologic factors on limb motion. Results: Rotation motion characteristics for the population were established. We found no difference between sides for external rotation (ER) at 0° of abduction (t209 = 0.658, P = .51), but we found side-to-side differences in ER (t209 = −13.012, P<.001) and internal rotation (t209 = 15.304, P<.001) at 90° of abduction. Age at the time of testing was a significant negative predictor of ER motion for the dominant shoulder (R2 = 0.019, P = .049) because less ER motion occurred at the dominant shoulder with advancing age. We found no differences in rotation motion in the dominant shoulder across ages (F4,205 range, 0.451–1.730, P>.05). Conclusions: This range-of-motion profile might be used to assist with the interpretation of normal and atypical

  2. FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)

    SciTech Connect

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-20

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.

  3. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    SciTech Connect

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka; Fukushima, Tadamasa; Morimoto, Hisao; Usami, Ron; Maekawa, Toru

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  4. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Kascak, Albert F.

    1988-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  5. Exploring the Realities of Curriculum-by-Random-Opportunity: The Case of Geriatrics on the Internal Medicine Clerkship Rotation

    PubMed Central

    Diachun, Laura; Charise, Andrea; Goldszmidt, Mark; Hui, Yin; Lingard, Lorelei

    2014-01-01

    Background While major clerkship blocks may have objectives related to specialized areas such as geriatrics, gay and lesbian bisexual transgender health, and palliative care, there is concern that teaching activities may not attend sufficiently to these objectives. Rather, these objectives are assumed to be met “by random opportunity”.(1) This study explored the case of geriatric learning opportunities on internal medicine clinical teaching units, to better understand the affordances and limitations of curriculum by random opportunity. Methods Using audio-recordings of morning case review discussions of 13 patients > 65 years old and the Canadian geriatric core competencies for medical students, we conducted a content analysis of each case for potential geriatric and non-geriatric learning opportunities. These learning opportunities were compared with attendings’ case review teaching discussions. The 13 cases contained 40 geriatric-related and 110 non-geriatric-related issues. While many of the geriatric issues (e.g., delirium, falls) were directly relevant to the presenting illness, attendings’ teaching discussions focused almost exclusively on non-geriatric medical issues, such as management of diabetes and anemia, many of which were less directly relevant to the reason for presenting to hospital. Results The authors found that the general medicine rotation provides opportunities to acquire geriatric competencies. However, the rare uptake of opportunities in this study suggests that, in curriculum-by-random-opportunity, presence of an opportunity does not justify the assumption that learning objectives will be met. Conclusions More studies are required to investigate whether these findings are transferrable to other vulnerable populations about which undergraduate students are expected to learn through curriculum by random opportunity. PMID:25452825

  6. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.

    PubMed

    Breidenbach, Björn; Blaser, Martin B; Klose, Melanie; Conrad, Ralf

    2016-09-01

    Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice

  7. Spatial Rotation and Recognizing Emotions: Gender Related Differences in Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2008-01-01

    In three experiments, gender and ability (performance and emotional intelligence) related differences in brain activity--assessed with EEG methodology--while respondents were solving a spatial rotation tasks and identifying emotions in faces were investigated. The most robust gender related difference in brain activity was observed in the lower-2…

  8. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  9. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion.

  10. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion. PMID:26737049

  11. Fast-Moving Bacteria Self-Organize into Active Two-Dimensional Crystals of Rotating Cells

    NASA Astrophysics Data System (ADS)

    Petroff, Alexander P.; Wu, Xiao-Lun; Libchaber, Albert

    2015-04-01

    We investigate a new form of collective dynamics displayed by Thiovulum majus, one of the fastest-swimming bacteria known. Cells spontaneously organize on a surface into a visually striking two-dimensional hexagonal lattice of rotating cells. As each constituent cell rotates its flagella, it creates a tornadolike flow that pulls neighboring cells towards and around it. As cells rotate against their neighbors, they exert forces on one another, causing the crystal to rotate and cells to reorganize. We show how these dynamics arise from hydrodynamic and steric interactions between cells. We derive the equations of motion for a crystal, show that this model explains several aspects of the observed dynamics, and discuss the stability of these active crystals.

  12. Effect of Resistance Training Maintaining the Joint Angle-torque Profile Using a Haptic-based Machine on Shoulder Internal and External Rotation.

    PubMed

    Kim, Yeonghun; Lee, Kunwoo; Moon, Jeheon; Koo, Dohoon; Park, Jaewoo; Kim, Kyengnam; Hong, Daehie; Shin, Inshik

    2014-04-01

    [Purpose] The aim of this study was to present an individualized resistance training method to enable exercise while maintaining an exercise load that is set according to an individual's joint angle-torque using a haptic-based resistance training machine. [Methods] Five participants (machine group) performed individualized shoulder internal and external rotation training with a haptic resistance training machine, while another five participants performed general dumbbell-based shoulder internal and external rotation training for eight weeks. Internal and external rotation powers of subjects were measured using an isokinetic machine before and after training. [Results] The average powers of both shoulder internal and external rotation has been improved after training (25.72%, 13.62%). The improvement in power of external rotation in the machine group was significantly higher than that in the control group. [Conclusion] This study proposes a haptic-based individualized rotator cuff muscle training method. The training protocol maintaining the joint angle-torque profile showed better improvement of shoulder internal/external rotation than dumbbell training.

  13. Effect of Resistance Training Maintaining the Joint Angle-torque Profile Using a Haptic-based Machine on Shoulder Internal and External Rotation

    PubMed Central

    Kim, Yeonghun; Lee, Kunwoo; Moon, Jeheon; Koo, Dohoon; Park, Jaewoo; Kim, Kyengnam; Hong, Daehie; Shin, Inshik

    2014-01-01

    [Purpose] The aim of this study was to present an individualized resistance training method to enable exercise while maintaining an exercise load that is set according to an individual’s joint angle-torque using a haptic-based resistance training machine. [Methods] Five participants (machine group) performed individualized shoulder internal and external rotation training with a haptic resistance training machine, while another five participants performed general dumbbell-based shoulder internal and external rotation training for eight weeks. Internal and external rotation powers of subjects were measured using an isokinetic machine before and after training. [Results] The average powers of both shoulder internal and external rotation has been improved after training (25.72%, 13.62%). The improvement in power of external rotation in the machine group was significantly higher than that in the control group. [Conclusion] This study proposes a haptic-based individualized rotator cuff muscle training method. The training protocol maintaining the joint angle-torque profile showed better improvement of shoulder internal/external rotation than dumbbell training. PMID:24764626

  14. Tectonic rotations and internal structure of Eocene plutons in Chuquicamata, northern Chile

    NASA Astrophysics Data System (ADS)

    Somoza, R.; Tomlinson, A. J.; Zaffarana, C. B.; Singer, S. E.; Puigdomenech Negre, C. G.; Raposo, M. I. B.; Dilles, J. H.

    2015-07-01

    A paleomagnetic and AMS study on Eocene plutonic complexes in the Calama area, northern Chile, reveals high-temperature, high-coercivity magnetizations of dominantly thermoremanent origin and magnetic fabrics controlled by magnetite. The paleomagnetic results indicate that ~ 43 Ma plutons underwent clockwise tectonic rotation, whereas adjacent ~ 39 Ma plutons did not undergo discernible rotation. This points to a middle Eocene age for the younger tectonic rotations associated with the Central Andean Rotation Pattern in the Chuquicamata-Calama area. The petrofabric in these rocks formed under conditions ranging from purely magmatic (i.e. before full crystallization) to low-temperature solid-state deformation. AMS and paleomagnetism suggest that the plutonic bodies were formed by progressive amalgamation of subvertical magma sheets spanning multiple magnetic polarity chrons. The parallelism between magmatic and tectonic foliations suggests that regional tectonic stress controlled ascent, emplacement and rock deformation during cooling. In this context, we suggest that magma ascent and emplacement in the upper crust likely exploited Mesozoic structures which were locally reactivated in the Eocene.

  15. Translational, rotational and internal dynamics of amyloid β-peptides (Aβ40 and Aβ42) from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bora, Ram Prasad; Prabhakar, Rajeev

    2009-10-01

    In this study, diffusion constants [translational (DT) and rotational (DR)], correlation times [rotational (τrot) and internal (τint)], and the intramolecular order parameters (S2) of the Alzheimer amyloid-β peptides Aβ40 and Aβ42 have been calculated from 150 ns molecular dynamics simulations in aqueous solution. The computed parameters have been compared with the experimentally measured values. The calculated DT of 1.61×10-6 cm2/s and 1.43×10-6 cm2/s for Aβ40 and Aβ42, respectively, at 300 K was found to follow the correct trend defined by the Debye-Stokes-Einstein relation that its value should decrease with the increase in the molecular weight. The estimated DR for Aβ40 and Aβ42 at 300 K are 0.085 and 0.071 ns-1, respectively. The rotational (Crot(t)) and internal (Cint(t)) correlation functions of Aβ40 and Aβ42 were observed to decay at nano- and picosecond time scales, respectively. The significantly different time decays of these functions validate the factorization of the total correlation function (Ctot(t)) of Aβ peptides into Crot(t) and Cint(t). At both short and long time scales, the Clore-Szabo model that was used as Cint(t) provided the best behavior of Ctot(t) for both Aβ40 and Aβ42. In addition, an effective rotational correlation time of Aβ40 is also computed at 18 °C and the computed value (2.30 ns) is in close agreement with the experimental value of 2.45 ns. The computed S2 parameters for the central hydrophobic core, the loop region, and C-terminal domains of Aβ40 and Aβ42 are in accord with the previous studies.

  16. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  17. Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)

    NASA Astrophysics Data System (ADS)

    Waniak, Waclaw; Drahus, Michal

    2016-10-01

    One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21–22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is

  18. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Fujino, Takeo; Inaba, Toshiro; Maki, Hisataka; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Kyo, Shunei; Ono, Minoru

    2015-03-01

    Although the suppression of sympathetic activity is an essential mission for the current heart failure treatment strategy, little is known about the relationship between the rotation speed setting and autonomic nervous activity during continuous-flow left ventricular assist device (LVAD) treatment. We evaluated 23 adult patients with sinus rhythm (36 ± 13 years) who had received continuous-flow LVAD and been followed at our institute between March 2013 and August 2014. Heart rate variability measurement was executed along with hemodynamic study at 3 rotation speeds (low, middle, and high) at 5 weeks after LVAD implantation. Lower rotation speed was associated with higher ratio of low-frequency over high-frequency spectral level (LF/HF), representing enhanced sympathetic activation (p < 0.05 by repeated analyses of variance). Among hemodynamic parameters, cardiac index was exclusively associated with LFNU = LF/(LF + HF), representing relative sympathetic activity over parasympathetic one (p < 0.05). After 6 months LVAD support at middle rotation speed, 19 patients with higher LFNU eventually had higher plasma levels of B-type natriuretic peptide and achieved less LV reverse remodeling. A logistic regression analysis demonstrated that lower LFNU was significantly associated with improvement of LV reverse remodeling (p = 0.021, odds ratio 0.903) with a cut-off level of 55 % calculated by the ROC analysis (AUC 0.869). In conclusion, autonomic activity can vary in various rotation speeds. Patients with higher LFNU may better be controlled at higher rotation speed with the view point to suppress sympathetic activity and achieve LV reverse remodeling.

  19. Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system

    NASA Astrophysics Data System (ADS)

    Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno

    2012-06-01

    The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the

  20. Paleomagnetism of Jurassic carbonate rocks from Sardinia: No indication of post-Jurassic internal block rotations

    NASA Astrophysics Data System (ADS)

    Kirscher, U.; Aubele, K.; Muttoni, G.; Ronchi, A.; Bachtadse, V.

    2011-12-01

    Several paleomagnetic studies on Carboniferous and Permian sedimentary and volcanic rocks from Sardinia and Corsica have recently demonstrated (1) the tectonic coherence between southern Corsica and northern Sardinia and (2) significant rotations between individual crustal blocks within Sardinia itself. The geodynamic significance of these rotations, however, is not clearly understood mainly because of uncertainties in defining their timing and causes. In order to contribute to these issues, a pioneering paleomagnetic study on Jurassic carbonates from the Baronie-Supramonte region of eastern-central Sardinia has been extended regionally and stratigraphically. A total of 280 oriented drill cores were taken from 44 sites of Middle and Late Jurassic age in the Nurra, Baronie-Supramonte, Barbagia-Sarcidano, and Sulcis regions. Despite generally weak remanent magnetization intensities, on the order of less than 1 mA/m, thermal and alternating field demagnetizations were successfully applied to define a characteristic remanent magnetization component in about 60% of the samples. Site mean directions show rather good agreement after correction for bedding tilt and yield Middle and Late Jurassic overall mean directions of D = 269.7° and I = 45.0° (α95 = 8.0°, k = 14, and n = 25 sites) and D = 275.5° and I = 50.7° (α95 = 7.2°, k = 45.3, and n = 10 sites). Positive regional and local fold and reversal tests demonstrate the primary character of the natural magnetic remanence, which is carried by magnetite. These results indicate only insignificant amounts (±10°) of post-Jurassic rotations within the island of Sardinia. The resulting Middle and Late Jurassic paleopoles (latitude (Lat) = 16.5°, longitude (Long) = 299.1°, dp = 6.4°, and dm = 10.1° and Lat = 23.4°, Long = 301.2°, dp = 6.5°, and dm = 9.7°), corrected for the opening of (1) the Liguro-Provençal Basin and (2) the Bay of Biscay using rotation parameters from the literature, fall near the coeval

  1. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  2. International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Fodroci, Michael

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the ISS requirements and initial design were intended to provide the best practicable levels of safety, it is always possible to reduce risk -- given the determination and commitment to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS. While decades of work went into developing the ISS requirements, there are many things in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: (1) Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) (2) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Level 4 materials, emergency hardware and procedures) (3) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of nearly a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery.

  3. Broad-line active galactic nuclei rotate faster than narrow-line ones.

    PubMed

    Kollatschny, Wolfram; Zetzl, Matthias

    2011-02-17

    The super-massive black holes of 10(6)M(⊙) to 10(9)M(⊙) that reside in the nuclei of active galaxies (AGN) are surrounded by a region emitting broad lines, probably associated with an accretion disk. The diameters of the broad-line regions range from a few light-days to more than a hundred light-days, and cannot be resolved spatially. The relative significance of inflow, outflow, rotational or turbulent motions in the broad-line regions as well as their structure (spherical, thin or thick accretion disk) are unknown despite intensive studies over more than thirty years. Here we report a fundamental relation between the observed emission linewidth full-width at half-maximum (FWHM) and the emission line shape FWHM/σ(line) in AGN spectra. From this relation we infer that the predominant motion in the broad-line regions is Keplerian rotation in combination with turbulence. The geometry of the inner region varies systematically with the rotation velocity: it is flattest for the fast-rotating broad-line objects, whereas slow-rotating narrow-line AGN have a more spherical structure. Superimposed is the trend that the line-emitting region becomes geometrically thicker towards the centre within individual galaxies. Knowing the rotational velocities, we can derive the central black-hole masses more accurately; they are two to ten times smaller than has been estimated previously.

  4. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  5. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    SciTech Connect

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  6. The changing rotation period of comet 67P/Churyumov-Gerasimenko controlled by its activity

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Mottola, S.; Skorov, Y.; Jorda, L.

    2015-07-01

    Context. The ESA Rosetta spacecraft has been orbiting the nucleus of comet 67P/Churyumov-Gerasimenko since August 2014. The rotation axis of the irregularly shaped nucleus has a large obliquity (52°) and is oriented such that the southern hemisphere is insolated during perihelion. Aims: We calculate the change in the rotation period as a function of the cometary orbital position due to forces exerted by cometary activity. Methods: We used a detailed shape model of 67P with >105 facets. We calculated the efficiency of the facets to exert a torque based on their radial distance from the center of mass and their orientation. We applied our thermal model to calculate the diurnal water-ice sublimation rate from each facet. The reaction force per facet combined with its torque efficiency creates a torque and changes the angular momentum. The component of the torque parallel to the spin axis changes the rotation period. Results: Our model shows that the rotation period increases slightly during the approach of the comet to the Sun. It reaches a maximum shortly before equinox and drops rapidly during perihelion passage. The magnitude of the change depends on the actual sublimation rates. The change in sign mainly depends on the shape of the nucleus and not much on the sublimation variation. The roughness of the nucleus has little influence. Conclusions: For the given geometry of the rotation axis, the change in the rotation period is mainly influenced by the sublimation activity of the irregular shape of the nucleus. The rotation period increases until shortly before equinox in early May 2015, in good agreement with observations, and will then become shorter rapidly.

  7. Nonaxisymmetric instabilities in rotating shear flows - Internal gravity modes in stratified media and analogies with plane flows

    NASA Technical Reports Server (NTRS)

    Ghosh, P.; Abramowicz, M. A.

    1991-01-01

    The role of the internal gravity modes in mediating the growth of nonaxisymmetric instabilities is investigated by studying the instability of stratified incompressible differentially rotating fluid cylinders to global nonaxisymmetric modes. The results indicate that, in addition to a modified version of the well-known principal branch mediated by surface modes of the system (analogous to f-modes of stars), there exist unstable branches of the dispersion relation mediated by internal gravity modes of the system (similar to the g-modes of stars). These branches arise due to the interaction between the g-modes. It is shown that the maximum growth rate on one of the new branches can sometimes equal or exceed that on the principal branch, thus modifying the principal branch.

  8. Effect of port corner geometry on the internal performance of a rotating-vane-type thrust reverser

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Capone, F. J.

    1986-01-01

    An investigation has been conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the effects of reverser port geometry on the internal performance of a nonaxisymmetric rotating-vane-type thrust reverser. Thrust reverser vane positions representing a spoiled-trust (partially deployed) position and a full-reverse-thrust (fully deployed) position were tested with each port geometry variable. The effects of upstream port corner radius and wall angle on internal performance were determined. In addition, the effect of the length of a simulated cooling liner (blunt-base step) near the reverser port entrance was investigated; five different lengths were tested. All tests were conducted with no external flows, and nozzle pressure ratio was varied from 1.2 to 5.0.

  9. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  10. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  11. Effect of physiotherapy on the strength of tibial internal rotator muscles in males after anterior cruciate ligament reconstruction (ACLR)

    PubMed Central

    Czamara, Andrzej; Szuba, Łukasz; Krzemińska, Aleksandra; Tomaszewski, Wiesław; Wilk-Frańczuk, Magdalena

    2011-01-01

    Summary Background The goal of this study was to evaluate the effect of physiotherapy on the strength of muscles responsible for tibial internal rotation (IR) in male patients after anterior cruciate ligament reconstruction (ACLR) using autografts of the semitendinosus and gracilis muscles (STGR). Material/Methods Fifty-nine males were examined. The first group consisted of 19 patients subjected to 4-stage physiotherapy following ACLR. The second group consisted of 20 males without knee injuries. The third group consisted of 20 males who had not undergone systematic physiotherapy within the last 12 months following lower limb injuries. Moments of maximal strength (MMS), isometric torque (IT), and peak torque (PT) were measured under static and isokinetic conditions using the Humac Norm System. In the first group, IT measurements were performed during the 13th and 21st week of physiotherapy, while PT measurements were performed during the 16th and 21st weeks of physiotherapy following ACLR. In the control groups (II and III) the measurements were performed once. Results In the first group, the IT (13 weeks) and PT (16 weeks) values of internal tibial rotator muscles, obtained from the operated extremities were significantly lower than the values obtained from the uninvolved knees and the control group results. During the 21st week of physiotherapy, the results obtained for IT and PT in patients after ACLR were similar to the values obtained from the uninvolved knees and the results of the second group subjects. Conclusions The 21-week physiotherapy in ACLR patients favorably affected the PT values of tibial rotator muscles of the operated knees. In the third group, the IT values did not indicate a complete improvement after 12 months without systematic physiotherapy. PMID:21873950

  12. MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS

    SciTech Connect

    Hovatta, Talvikki; Lister, Matthew L.; Aller, Margo F.; Aller, Hugh D.; Homan, Daniel C.; Kovalev, Yuri Y.

    2012-10-01

    We report observations of Faraday rotation measures for a sample of 191 extragalactic radio jets observed within the MOJAVE program. Multifrequency Very Long Baseline Array observations were carried out over 12 epochs in 2006 at four frequencies between 8 and 15 GHz. We detect parsec-scale Faraday rotation measures in 149 sources and find the quasars to have larger rotation measures on average than BL Lac objects. The median core rotation measures are significantly higher than in the jet components. This is especially true for quasars where we detect a significant negative correlation between the magnitude of the rotation measure and the de-projected distance from the core. We perform detailed simulations of the observational errors of total intensity, polarization, and Faraday rotation, and concentrate on the errors of transverse Faraday rotation measure gradients in unresolved jets. Our simulations show that the finite image restoring beam size has a significant effect on the observed rotation measure gradients, and spurious gradients can occur due to noise in the data if the jet is less than two beams wide in polarization. We detect significant transverse rotation measure gradients in four sources (0923+392, 1226+023, 2230+114, and 2251+158). In 1226+023 the rotation measure is for the first time seen to change sign from positive to negative over the transverse cuts, which supports the presence of a helical magnetic field in the jet. In this source we also detect variations in the jet rotation measure over a timescale of three months, which are difficult to explain with external Faraday screens and suggest internal Faraday rotation. By comparing fractional polarization changes in jet components between the four frequency bands to depolarization models, we find that an external purely random Faraday screen viewed through only a few lines of sight can explain most of our polarization observations, but in some sources, such as 1226+023 and 2251+158, internal

  13. Task Rotation: Strategies for Differentiating Activities and Assessments by Learning Style. A Strategic Teacher PLC Guide

    ERIC Educational Resources Information Center

    Silver, Harvey; Moirao, Daniel; Jackson, Joyce

    2011-01-01

    One of the hardest jobs in teaching is to differentiate learning activities and assessments to your students' learning styles. But you and your colleagues can learn how to do this together when each of you has this guide to the Task Rotation strategy from our ultimate guide to teaching strategies, "The Strategic Teacher". Use the guide in your…

  14. Minor uses: national and international activities.

    PubMed

    Meijer, A C

    2003-01-01

    Through the national and international approaches we hope to achieve proper solutions for minor use problems. At the national level, the following foundations/parties give support to organizations/individuals who need support in finding solutions: [table: see text] At the international level the Minor Use Helpdesk, but especially the Technical Group within the Expert Group on Minor Uses initiated by the EU Commission, will play an important role in solving minor use problems.

  15. THE IMPACT OF SAGITTAL PLANE HIP POSITION ON ISOMETRIC FORCE OF HIP EXTERNAL ROTATOR AND INTERNAL ROTATOR MUSCLES IN HEALTHY YOUNG ADULTS

    PubMed Central

    Wong, Anson L. K.; Rickards, Cory

    2014-01-01

    Purpose/Background: Hip external rotator (ER) and internal rotator (IR) muscle weakness is theorized to be associated with lower extremity injury in athletes including knee ligament tears and patellofemoral pain. Previous studies investigating hip musculature strength have utilized various sagittal plane hip positions for testing. The relationship between results at these different positions is unknown. Methods: Eighty healthy, pain‐free young adults participated in the study: 40 female, mean age 22.90 (± 2.32) years, and 40 male, mean age 23.50 (± 2.15) years. Peak isometric torque of bilateral hip ER and IR were tested at 90° and 0° of hip flexion with an instrumented dynamometer. Peak muscle forces were calculated. Peak forces were normalized by body mass. Mean normalized force was calculated for dominant and non‐dominant limbs for ER and IR in both positions. Male and female data were analyzed separately with paired t‐tests (2‐tailed). Reference values for average muscle force and torque were calculated for dominant and non‐dominant limbs for both hip positions. Results: Hip IR normalized peak force was greater at 90° compared to 0° flexion position bilaterally in both genders (p < .01). Hip ER normalized peak force was greater at 90° compared to 0° flexion in dominant limbs of both genders and in non‐dominant limbs of males (p < .01). Non‐dominant hip ER normalized force in females was greater at 90° versus 0° flexion; however, it was not significant (p = .092). Post hoc analysis of normalized average force (average over 5‐second contraction) yielded similar results. Conclusion: Clinicians and researchers should use consistent positioning for testing of hip ER and IR strength. This will improve certainty of determining if a patient’s strength has changed or if differences between groups are present. Reference values reported will be useful in order to determine if weakness is present and to set goals, particularly in cases of

  16. Gas Phase Conformations and Methyl Internal Rotation for 2-PHENYLETHYL Methyl Ether and its Argon Van Der Waals Complex from Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurusinghe, Ranil M.; Tubergen, Michael

    2015-06-01

    A mini-cavity microwave spectrometer was used to record the rotational spectra arising from 2-phenylethyl methyl ether and its weakly bonded argon complex in the frequency range of 10.5 - 22 GHz. Rotational spectra were found for two stable conformations of the monomer: anti-anti and gauche-anti, which are 1.4 kJ mol-1 apart in energy at wB97XD/6-311++G(d,p) level. Doubled rotational transitions, arising from internal motion of the methyl group, were observed for both conformers. The program XIAM was used to fit the rotational constants, centrifugal distortion constants, and barrier to internal rotation to the measured transition frequencies of the A and E internal rotation states. The best global fit values of the rotational constants for the anti-anti conformer are A= 3799.066(3) MHz, B= 577.95180(17) MHz, C= 544.7325(3) MHz and the A state rotational constants of the gauche-anti conformer are A= 2676.1202(7) MHz, B= 760.77250(2) MHz, C= 684.78901(2) MHz. The rotational spectrum of 2-phenylethyl methyl ether - argon complex is consistent with the geometry where argon atom lies above the plane of the benzene moiety of gauche-anti conformer. Tunneling splittings were too small to resolve within experimental accuracy, likely due to an increase in three fold potential barrier when the argon complex is formed. Fitted rotational constants are A= 1061.23373(16) MHz, B= 699.81754(7) MHz, C= 518.33553(7) MHz. The lowest energy solvated ether - water complex with strong intermolecular hydrogen bonding has been identified theoretically. Progress on the assignment of the water complex will also be presented.

  17. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation.

    PubMed

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-11-23

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371-375 holding catalytic residues and in loop 376-401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme.

  18. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation

    PubMed Central

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W.; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-01-01

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PMID:26592566

  19. Strength and muscle activity of shoulder external rotation of subjects with and without scapular dyskinesis

    PubMed Central

    Uga, Daisuke; Nakazawa, Rie; Sakamoto, Masaaki

    2016-01-01

    [Purpose] This study aimed to clarify the relationship between scapular dyskinesis and shoulder external rotation strength and muscle activity. [Subjects and Methods] Both shoulders of 20 healthy males were evaluated. They were classified into 19 normal, 8 subtly abnormal, and 13 obviously abnormal shoulders using the scapular dyskinesis test. Subtly abnormal shoulders were subsequently excluded from the analysis. Shoulder external rotation strength and muscle activity (infraspinatus, serratus anterior, upper, middle, and lower trapezius) were measured in 2 positions using a handheld dynamometer and surface electromyography while sitting in a chair with shoulder 0° abduction and flexion (1st position), and while lying prone on the elbows with the shoulders elevated in the zero position (zero position). The strength ratio was calculated to quantify the change in strength between the positions (zero position / 1st position). [Results] In the obviously abnormal shoulder group, the strength in the 1st position was significantly stronger, the strength ratio was significantly smaller, and the serratus anterior in the zero position showed significantly lower activity than the normal shoulder group. [Conclusion] In shoulder external rotation in the zero position, in obviously abnormal shoulders, the serratus anterior is poorly recruited, weakening the shoulder external rotation strength. PMID:27190434

  20. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van de Ven, Glenn; Watkins, Laura L.; Posti, Lorenzo

    2016-11-01

    We present a new discrete chemo-dynamical axisymmetric modelling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ = 0.5 ± 0.3. The metal-rich population is nearly isotropic (with β _r^{red} = 0.0± 0.1), while the metal-poor population is tangentially anisotropic (with β _r^{blue} = -0.2± 0.1) around the half-light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0 = 0.15 ± 0.15. We run tests using mock data to show that a discrete data set with ˜6000 stars is required to distinguish between a core (γ = 0) and cusp (γ = 1), and to constrain the possible internal rotation to better than 1σ confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.

  1. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van de Ven, Glenn; Watkins, Laura L.; Posti, Lorenzo

    2016-08-01

    We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ = 0.5 ± 0.3. The metal-rich population is nearly isotropic (with β _r^{red} = 0.0± 0.1) while the metal-poor population is tangentially anisotropic (with β _r^{blue} = -0.2± 0.1) around the half light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0 = 0.15 ± 0.15. We run tests using mock data to show that a discrete dataset with ˜6000 stars is required to distinguish between a core (γ = 0) and cusp (γ = 1), and to constrain the possible internal rotation to better than 1 σ confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.

  2. Rotational Spectrum of Dichloromethane-Ne: Internal Dynamics and Cl Quadrupolar Hyperfine Effects.

    PubMed

    Favero, Laura B; Maris, Assimo; Paltrinieri, Laura; Caminati, Walther

    2015-12-10

    The rotational spectra of three isotopologues, CH2(35)Cl2···(20)Ne, CH2(35)Cl(37)Cl···(20)Ne, and CH2(35)Cl2···(22)Ne, of the complex dichloromethane-neon have been assigned and measured by molecular beam Fourier transform microwave spectroscopy. The corresponding tunnelling splittings-due to the motion of Ne from above to below the ClCCl plane-have been determined as ΔE0+0- = 6.8900(5), 6.6630(4), and 6.3724(7) MHz, respectively. From these data the barrier to planarity has been obtained, B2 = 68.7 cm(-1). In addition, the structure and the (35)Cl (or (37)Cl) quadrupole coupling constants have been determined.

  3. Rotational Spectrum of Dichloromethane-Ne: Internal Dynamics and Cl Quadrupolar Hyperfine Effects.

    PubMed

    Favero, Laura B; Maris, Assimo; Paltrinieri, Laura; Caminati, Walther

    2015-12-10

    The rotational spectra of three isotopologues, CH2(35)Cl2···(20)Ne, CH2(35)Cl(37)Cl···(20)Ne, and CH2(35)Cl2···(22)Ne, of the complex dichloromethane-neon have been assigned and measured by molecular beam Fourier transform microwave spectroscopy. The corresponding tunnelling splittings-due to the motion of Ne from above to below the ClCCl plane-have been determined as ΔE0+0- = 6.8900(5), 6.6630(4), and 6.3724(7) MHz, respectively. From these data the barrier to planarity has been obtained, B2 = 68.7 cm(-1). In addition, the structure and the (35)Cl (or (37)Cl) quadrupole coupling constants have been determined. PMID:26566085

  4. A Typology of Learning Activities for International Business Education.

    ERIC Educational Resources Information Center

    Schertzer, Clinton B.; And Others

    A typology of learning activities for business education was developed at Xavier University (Cincinnati, Ohio) based on three primary goals for internationalization of business education: awareness, understanding, and competency. Fifteen types of internationalization pedagogical activities are identified: international examples, international…

  5. Nonexponential decay of internal rotational correlation functions of native proteins and self-similar structural fluctuations.

    PubMed

    Cote, Yoann; Senet, Patrick; Delarue, Patrice; Maisuradze, Gia G; Scheraga, Harold A

    2010-11-16

    Structural fluctuations of a protein are essential for the function of native proteins and for protein folding. To understand how the main chain in the native state of a protein fluctuates on different time scales, we examined the rotational correlation functions (RCFs), C(t), of the backbone N-H bonds and of the dihedral angles γ built on four consecutive C(α) atoms. Using molecular dynamics simulations of a model α/β protein (VA3) in its native state, we demonstrate that these RCFs decay as stretched exponentials, ln[C(t)] ≈ D(α)t(α) with a constant D(α) and an exponent α (0 < α < 0.35) varying with the free-energy profiles (FEPs) along the amino acid sequence. The probability distributions of the fluctuations of the main chain computed at short time scale (1 ps) were identical to those computed at large time scale (1 ns) if the time is rescaled by a factor depending on α < 1. This self-similar property and the nonexponential decays (α ≠ 1) of the RCFs are described by a rotational diffusion equation with a time-dependent diffusion coefficient D(t) = αD(α)t(α-1). The present findings agree with observations of subdiffusion (α < 1) of fluorescent probes within a protein molecule. The subdiffusion of (15)N-H bonds did not affect the value of the order parameter S(2) extracted from the NMR relaxation data by assuming normal diffusion (α = 1) of (15)N-H bonds on a nanosecond time scale. However, we found that the RCF does not converge to S(2) on the nanosecond time scale for residues with multiple-minima FEPs.

  6. Effect of nuclear spin on chemical reactions and internal molecular rotation

    SciTech Connect

    Sterna, L.L.

    1980-12-01

    Part I of this dissertation is a study of the magnetic isotope effect, and results are presented for the separation of /sup 13/C and /sup 12/C isotopes. Two models are included in the theoretical treatment of the effect. In the first model the spin states evolve quantum mechanically, and geminate recombination is calculated by numerically integrating the collision probability times the probability the radical pair is in a singlet state. In the second model the intersystem crossing is treated via first-order rate constants which are average values of the hyperfine couplings. Using these rate constants and hydrodynamic diffusion equations, an analytical solution, which accounts for all collisions, is obtained for the geminate recombination. The two reactions studied are photolysis of benzophenone and toluene and the photolytic decomposition of dibenzylketone (1,3-diphenyl-2-propanone). No magnetic isotope effect was observed in the benzophenone reaction. /sup 13/C enrichment was observed for the dibenzylketone reaction, and this enrichment was substantially enhanced at intermediate viscosities and low temperatures. Part II of this dissertation is a presentation of theory and results for the use of Zeeman spin-lattice relaxation as a probe of methyl group rotation in the solid state. Experimental results are presented for the time and angular dependences of rotational polarization, the methyl group magnetic moment, and methyl-methyl steric interactions. The compounds studied are 2,6-dimethylphenol, methyl iodide, 1,4,5,8-tetramethylanthracene, 1,4,5,8-tetramethylnaphthalene, 1,2,4,5-tetramethylbenzene, and 2,3-dimethylmaleicanhydride.

  7. Association between rotation-related impairments and activity type in people with and without low back pain

    PubMed Central

    Weyrauch, Stephanie A.; Bohall, Sara C.; Sorensen, Christopher J.; Van Dillen, Linda R.

    2015-01-01

    Objective To determine if people with low back pain (LBP) who regularly participated in a rotation-related activity displayed more rotation-related impairments than people without LBP who did and did not participate in the activity. Design Secondary analysis of data from a case-control study. Setting Musculoskeletal analysis laboratory at an academic medical center. Participants A convenience sample of 55 participants with LBP who participated in a rotation-related sport, 26 back healthy controls who participated in a rotation-related sport (BHC+RRS) and 42 back healthy controls who did not participate in a rotation-related sport (BHC-RRS). Participants were matched based on age, gender, and activity level. Interventions Not applicable. Main Outcome Measures The total number of rotation-related impairments and asymmetric rotation-related impairments identified during a standardized clinical examination. Results Compared to the BHC-RRS group, both the LBP and BHC+RRS groups displayed significantly more (1) rotation-related impairments (LBP: p<.001; BHC+RRS: p=.015) (2) asymmetric rotation-related impairments (LBP: p=.006; BHC+RRS: p=.020) and (3) rotation-related impairments with trunk movement tests (LBP: p=.002; BHC+RRS: p<.001). The LBP group had significantly more rotation-related impairments with extremity movement tests than both of the back healthy groups (BHC+RRS: p=.011; BHC-RRS: p<.001). Conclusions LBP and BHC+RRS groups demonstrated a similar number of total rotation-related impairments and asymmetric rotation-related impairments, and these numbers were greater than those of the BHC-RRS group. Compared to people without LBP, people with LBP displayed more rotation-related impairments when moving an extremity. These findings suggest that impairments associated with extremity movements may be associated with having a LBP condition. PMID:25933914

  8. 14 CFR 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false News releases concerning international... RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international activities. (a) Releases of information involving NASA activities, views, programs, or projects...

  9. 14 CFR 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true News releases concerning international... RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international activities. (a) Releases of information involving NASA activities, views, programs, or projects...

  10. 14 CFR 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false News releases concerning international... RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international activities. (a) Releases of information involving NASA activities, views, programs, or projects...

  11. Motivating the Study of International Trade: A Classroom Activity

    ERIC Educational Resources Information Center

    Jensen, Sherry

    2016-01-01

    In this article, the author describes a classroom activity for use in introductory economics courses to motivate the study of international trade. The learning activity highlights the importance of international trade in students' everyday lives by having students inventory their on-hand belongings and identify where the items were manufactured.…

  12. Crystalline and Crystalline International Disposal Activities

    SciTech Connect

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  13. A Computational Model of Dynein Activation Patterns that Can Explain Nodal Cilia Rotation

    PubMed Central

    Chen, Duanduan; Zhong, Yi

    2015-01-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity. PMID:26153700

  14. A computational model of dynein activation patterns that can explain nodal cilia rotation.

    PubMed

    Chen, Duanduan; Zhong, Yi

    2015-07-01

    Normal left-right patterning in vertebrates depends on the rotational movement of nodal cilia. In order to produce this ciliary motion, the activity of axonemal dyneins must be tightly regulated in a temporal and spatial manner; the specific activation pattern of the dynein motors in the nodal cilia has not been reported. Contemporary imaging techniques cannot directly assess dynein activity in a living cilium. In this study, we establish a three-dimensional model to mimic the ciliary ultrastructure and assume that the activation of dynein proteins is related to the interdoublet distance. By employing finite-element analysis and grid deformation techniques, we simulate the mechanical function of dyneins by pairs of point loads, investigate the time-variant interdoublet distance, and simulate the dynein-triggered ciliary motion. The computational results indicate that, to produce the rotational movement of nodal cilia, the dynein activity is transferred clockwise (looking from the tip) between the nine doublet microtubules, and along each microtubule, the dynein activation should occur faster at the basal region and slower when it is close to the ciliary tip. Moreover, the time cost by all the dyneins along one microtubule to be activated can be used to deduce the dynein activation pattern; it implies that, as an alternative method, measuring this time can indirectly reveal the dynein activity. The proposed protein-structure model can simulate the ciliary motion triggered by various dynein activation patterns explicitly and may contribute to furthering the studies on axonemal dynein activity.

  15. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    PubMed

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  16. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  17. A common model for cytokine receptor activation: combined scissor-like rotation and self-rotation of receptor dimer induced by class I cytokine.

    PubMed

    Pang, Xiaodong; Zhou, Huan-Xiang

    2012-01-01

    The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin) were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors.

  18. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  19. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  20. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists.

    PubMed

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10 degrees rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-pi interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via pi-cation-pi interactions of its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  1. Video-A Bottle of Water And Bubbles Rotate on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit performs a demonstration in which he shook up a bottle that was half full of water, half full of air, so that bubbles formed, then spun it real fast to see what would happen to the bubbles. Watch the video to see the outcome.

  2. In vivo kinematics of the talocrural and subtalar joints with functional ankle instability during weight-bearing ankle internal rotation: a pilot study.

    PubMed

    Kobayashi, Takumi; No, Yumi; Yoneta, Kei; Sadakiyo, Masashi; Gamada, Kazuyoshi

    2013-06-01

    Functional ankle instability (FAI) may involve abnormal kinematics. However, reliable quantitative data for kinematics of FAI have not been reported. The objective of this study was to determine if the abnormal kinematics exist in the talocrural and subtalar joints in patients with FAI. Five male subjects with unilateral FAI (a mean age of 33.4 ± 13.2 years) were enrolled. All subjects were examined with stress radiography and found to have no mechanical ankle instability (MAI). Lateral radiography at weight-bearing ankle internal rotation of 0° and 20° was taken with the ankle at 30° dorsiflexion and 30° plantar flexion. Patients underwent computed tomography scan at 1.0 mm slice pitch spanning distal one third of the lower leg and the distal end of the calcaneus. Three-dimensional (3D) kinematics of the talocrural and subtalar joints as well as the ankle joint complex (AJC) were determined using a 3D-to-2D registration technique using a 3D-to-2D registration technique with 3D bone models and plain radiography. FAI joints in ankle dorsiflexion demonstrated significantly greater subtalar internal rotation from 0° to 20° internal rotation. No statistical differences in plantar flexion were detected in talocrural, subtalar or ankle joint complex kinematics between the FAI and contralateral healthy joints. During ankle internal rotation in dorsiflexion, FAI joints demonstrated greater subtalar internal rotation. The FAI joints without mechanical instability presented abnormal kinematics. This suggests that abnormal kinematics of the FAI joints may contribute to chronic instability. FAI joints may involve unrecognized abnormal subtalar kinematics during internal rotation in ankle dorsiflexion which may contribute to chronic instability and frequent feelings of instability.

  3. International Project Management Committee: Overview and Activities

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward

    2010-01-01

    This slide presentation discusses the purpose and composition of the International Project Management Committee (IMPC). The IMPC was established by members of 15 space agencies, companies and professional organizations. The goal of the committee is to establish a means to share experiences and best practices with space project/program management practitioners at the global level. The space agencies that are involved are: AEB, DLR, ESA, ISRO, JAXA, KARI, and NASA. The industrial and professional organizational members are Comau, COSPAR, PMI, and Thales Alenia Space.

  4. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  5. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable. PMID:26631020

  6. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  7. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  8. Internal models for interpreting neural population activity during sensorimotor control.

    PubMed

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  9. The Effect of Excessive Glenhumeral Internal Rotation Deficit on Subacromial Joint Space and Forward Scapular Posture among Baseball Pitchers

    PubMed Central

    Laudner, Kevin G.; Wong, Regan; Latal, Jim; Meister, Keith

    2016-01-01

    Objectives: Baseball pitchers frequently present with varying levels of glenohumeral internal rotation deficits (GIRD) in their throwing arms when compared to their non-throwing arms. However, excessive bilateral differences in internal rotation motion have been associated with several shoulder pathologies including both subacromial and internal impingement. Additionally, patients diagnosed with subacromial impingement commonly present with decreased subacromial joint space and increased forward scapular posture. These characteristics have not been, as of yet, evaluated and associated to those pitchers who present with excessive GIRD. The purpose of this study was to determine if a group of baseball pitchers with excessive GIRD have differences in subacromial joint space and forward scapular posture when compared to a control group. Methods: Twenty-five asymptomatic professional baseball pitchers with excessive GIRD were matched with 25 pitchers with acceptable levels of GIRD. Excessive GIRD was classified as an amount greater than 10% of the total arc of motion (i.e. dominant shoulder total arc=160°; 0.10x160°=16°; excessive GIRD=>16°). A digital inclinometer was used to measure glenohumeral internal and external rotation range of motion with participants in a supine position and their scapula stabilized. Diagnostic ultrasound was used to measure the distance of the subacromial joint space with the throwing arm resting at the side of the participant’s body (0° abduction). Bilateral forward scapular posture was assessed with each participant standing against a wall and then the distance between the wall and their anterior acromion was measured using the double square technique. The bilateral difference between these measurements was used to determine the amount of forward scapular posture for the throwing arm. Separate t-tests were run to determine significant differences between groups (p<0.05). Results: Results are summarized in Figure 1. The total arc of

  10. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World...

  11. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World...

  12. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World...

  13. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World...

  14. 36 CFR 73.15 - International World Heritage activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false International World Heritage... INTERIOR WORLD HERITAGE CONVENTION § 73.15 International World Heritage activities. (a) The Assistant Secretary, and other officials as appropriate, may represent the U.S. at meetings of the World...

  15. International Cooperation and Competition in Civilian Space Activities.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    This report assesses the state of international competition in civilian space activities, explores United States civilian objectives in space, and suggests alternative options for enhancing the overall U.S. position in space technologies. It also investigated past, present, and projected international cooperative arrangements for space activities…

  16. Report of the International Bureau of Education on Its Activities.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.

    This second report by the Council of the International Bureau of Education covers the period since the close of the sixteenth session of the General Conference to 31 July 1972. It deals with the activities of the Council itself, the steps taken to develop the programme of the International Bureau of Education during the period under review, and…

  17. Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution

    NASA Astrophysics Data System (ADS)

    Dehant, Veronique; Banerdt, Bruce; Lognonné, Philippe; Grott, Matthias; Asmar, Sami; Biele, Jens; Breuer, Doris; Forget, François; Jaumann, Ralf; Johnson, Catherine; Knapmeyer, Martin; Langlais, Benoit; Le Feuvre, Mathieu; Mimoun, David; Mocquet, Antoine; Read, Peter; Rivoldini, Attilio; Romberg, Oliver; Schubert, Gerald; Smrekar, Sue; Spohn, Tilman; Tortora, Paolo; Ulamec, Stephan; Vennerstrøm, Susanne

    2012-08-01

    Our fundamental understanding of the interior of the Earth comes from seismology, geodesy, geochemistry, geomagnetism, geothermal studies, and petrology. For the Earth, measurements in those disciplines of geophysics have revealed the basic internal layering of the Earth, its dynamical regime, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. Planetary interiors not only record evidence of conditions of planetary accretion and differentiation, they exert significant control on surface environments. We present recent advances in possible in-situ investigations of the interior of Mars, experiments and strategies that can provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. Such investigations applied on Mars have been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years. New seismological methods and approaches based on the cross-correlation of seismic noise by two seismic stations/landers on the surface of Mars and on joint seismic/orbiter detection of meteorite impacts, as well as the improvement of the performance of Very Broad-Band (VBB) seismometers have made it possible to secure a rich scientific return with only two simultaneously recording stations. In parallel, use of interferometric methods based on two Earth-Mars radio links simultaneously from landers tracked from Earth has increased the precision of radio science experiments by one order of magnitude. Magnetometer and heat flow measurements will complement seismic and geodetic data in order to obtain the best information on the interior of Mars. In addition to studying the present structure and dynamics of Mars, these measurements will provide important constraints for the astrobiology of Mars by helping to understand why Mars failed to sustain a magnetic field, by

  18. Rotating machinery - Transport phenomena; Proceedings of the 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3), Honolulu, HI, Apr. 1-4, 1990

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yang, W.-J.

    Topics discussed in these proceedings include turbine cooling heat transfer, rotating surfaces, curved ducts and rotating channels, flow in pumps, analytical and numerical methods, design and design methods, and multiphase flow and cavitation. Papers are presented on transient heat analysis of stator in air-cooled turbine generators, numerical evaluation of single central jet for turbine disk cooling, film condensation on a rotating cone, flows of a gas in an abruptly rotating cylinder, developing turbulent flow in a curved duct with strong secondary motion, effects of turn region treatments on pressure loss through sharp 180-deg bends, and examination of inlet surging in centrifugal pumps. Particular attention is given to the prediction of viscous flows in rotating machinery using Navier-Stokes techniques, two-dimensional transonic flow around VKI turbine cascade, the dynamic transfer matrix of a pump and its use in pumping system design, a fast CAE/CAD procedure for the optimum design of arbitrary impellers, particle dynamics and erosion in radial turbine guide vanes, sustained oscillations of pumped two-phase flow in a closed loop, and rotor/stator flow coupling in turbomachines.

  19. Analysis of the Rotationally-Resolved Spectra of the Vibronically-Active Molecules

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.; Miller, Terry A.

    2013-06-01

    Rotational structure of the vibronically coupled, and specifically, Jahn-Teller active molecules in isolated vibronic states has been studied for the decades, and the corresponding Hamiltonian and relationship of its parameters to the molecular properties are well-established, at least for the e vibronic states. However, in many cases an isolated state approach, both for the ground and vibronically excited levels, does not produce satisfactory results either because the experimentally obtained parameters of such model are not physically transparent, or the model fails to predict the observed spectrum to the experimental accuracy. To circumvent these problems, we develop, from the molecular symmetry standpoint, an effective coupled state rotational Hamiltonian directly accounting for the interactions within the appropriate subset of the interacting vibronic states. This approach is expected to be useful for the analysis of the rotational level structure of the closely-spaced vibronic levels such as those occurring in the vibrationally excited manifolds of the open-shell molecules. The application of this approach to the spectra of the nitrate radical, NO_3, in the Jahn-Teller active ˜{A}^2E'' state, will be discussed. D. G. Melnik, T. A. Miller and J. Liu, TI15, 67^th Molecular Spectroscopy Symposium, Columbus, 2012 M. Roudjane, T. J. Codd and T. A. Miller, TI03, 67^th Molecular Spectroscopy Symposium, Columbus, 2012

  20. The rotation of sunspots in the solar active region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Gopasyuk, O. S.

    2014-06-01

    The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.

  1. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    NASA Technical Reports Server (NTRS)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  2. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2016-10-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳ 104 - 5 M⊙), created by the rapid accumulation (≳ 0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole, or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a "quasi-star"). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitative matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M⊙ × black hole mass/100 M⊙)0.82 have highly sub-keplerian gas motion in their core, preventing gas circularisation outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲ 104 years before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  3. The factory and the beehive. II. Activity and rotation in Praesepe and the Hyades

    SciTech Connect

    Douglas, S. T.; Agüeros, M. A.; Bowsher, E. C.; Lemonias, J. J.; Fierroz, D. F.; Covey, K. R.; Bochanski, J. J.; Cargile, P. A.; Kraus, A.; Law, N. M.; Arce, H. G.; Kundert, A.

    2014-11-10

    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at ≈600 Myr. We have compiled a sample of 720 spectra—more than half of which are new observations—for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have also collected rotation periods (P {sub rot}) for 135 Praesepe members and 87 Hyads. To compare Hα emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number R{sub o} , we first calculate an expanded set of χ values, with which we can obtain the Hα to bolometric luminosity ratio, L {sub Hα}/L {sub bol}, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. Unlike previous authors, we find no difference between the two clusters in their Hα equivalent width or L {sub Hα}/L {sub bol} distributions, and therefore take the merged Hα and P {sub rot} data to be representative of 600 Myr old stars. Our analysis shows that Hα activity in these stars is saturated for R{sub o}≤0.11{sub −0.03}{sup +0.02}. Above that value activity declines as a power-law with slope β=−0.73{sub −0.12}{sup +0.16}, before dropping off rapidly at R{sub o} ≈ 0.4. These data provide a useful anchor for calibrating the age-activity-rotation relation

  4. Solar-like oscillations and magnetic activity of the slow rotator EK Eridani

    NASA Astrophysics Data System (ADS)

    Dall, T. H.; Bruntt, H.; Stello, D.; Strassmeier, K. G.

    2010-05-01

    Aims: We aim to understand the interplay between non-radial oscillations and stellar magnetic activity and test the feasibility of doing asteroseismology of magnetically active stars. We investigate the active slow rotator EK Eri which is the likely descendant of an Ap star. Methods: We analyze 30 years of photometric time-series data, 3 years of HARPS radial velocity monitoring, and 3 nights of high-cadence HARPS asteroseismic data. We construct a high-S/N HARPS spectrum that we use to determine atmospheric parameters and chemical composition. Spectra observed at different rotation phases are analyzed to search for signs of temperature or abundance variations. An upper limit on the projected rotational velocity is derived from very high-resolution CES spectra. Results: We detect oscillations in EK Eri with a frequency of the maximum power of ν_max = 320 ± 32 μHz, and we derive a peak amplitude per radial mode of ≈0.15 m s-1, which is a factor of ≈3 lower than expected. We suggest that the magnetic field may act to suppress low-degree modes. Individual frequencies can not be extracted from the available data. We derive accurate atmospheric parameters, refining our previous analysis, finding T_eff = 5135 ± 80 K, log g = 3.39 ± 0.12, and metallicity [M/H] = + 0.02 ± 0.04. Mass and radius estimates from the seismic analysis are not accurate enough to constrain the position in the HR diagram and the evolutionary state. We confirm that the main light variation is due to cool spots, but that other contributions may need to be taken into account. We tentatively suggest that the rotation period is twice the photometric period, i.e., P_rot = 2P_phot = 617.6 d, and that the star is a dipole-dominated oblique rotator viewed close to equator-on. We conclude from our derived parameters that v sin i < 0.40 km s-1 and we show that the value is too low to be reliably measured. We also link the time series of direct magnetic field measurements available in the literature

  5. Red Dwarf Stars: Ages, Rotation, Magnetic Dynamo Activity and the Habitability of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Engle, S. G.; Guinan, E. F.

    2011-12-01

    We report on our continued efforts to understand and delineate the magnetic dynamo-induced behavior/variability of red dwarf (K5 V - M6 V) stars over their long lifetimes. These properties include: rotation, light variations (from star spots), coronal-chromospheric XUV activity and flares. This study is being carried out as part of the NSF-sponsored Living with a Red Dwarf program. The Living with a Red Dwarf program's database of dM stars with photometrically determined rotation rates (from starspot modulations) continues to expand, as does the inventory of archival XUV observations. Recently, the photometric properties of several hundred dM stars from the Kepler database are being analyzed to determine the rotation rates, starspot areal coverage/distributions and stellar flare rates. When all data setsare combined with ages from cluster/population memberships and kinematics, the determination of Age-Rotation-Activity relationships is possible. Such relationships have broad impacts not only on the studies of magnetic dynamo theory and angular momentum loss of low-mass stars with deep convective zones, but also on the suitability of planets hosted by red dwarfs to support life. With intrinsically low luminosities (L< 0.02L⊙), the liquid water habitable zones (HZs) for hosted planets are very close to their host stars - typically at ˜0.1 AU < HZ < 0.4 AU. Planets located close to their host stars risk damage and atmospheric loss from coronal & chromospheric XUV radiation, flares and plasma blasts via strong winds and coronal mass ejections. In addition, our relationships permit the stellar ages to be determined through measures of either the stars' rotation periods (best way) or XUV activity levels. This also permits a determination of the ages of their hosted planets. We illustrate this with examples of age determinations of the exoplanet systems: GJ 581 and HD 85512 (both with large Earth-size planets within the host star's HZ), GJ 1214 (hot, close

  6. Anti-solar differential rotation on the active sub-giant HU Virginis

    NASA Astrophysics Data System (ADS)

    Harutyunyan, G.; Strassmeier, K. G.; Künstler, A.; Carroll, T. A.; Weber, M.

    2016-08-01

    Context. Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. Aims: We aim to investigate the differential surface rotation on the primary star of the RS CVn binary, HU Vir, by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Methods: Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins V and I data for approximately 20 yrs. This data was used to determine the stellar rotation period and the active longitudes. Results: We confirm anti-solar DR with a surface shear parameter α of -0.029 ± 0.005 and -0.026 ± 0.009, using single-term and double-term differential rotation laws, respectively. These values are in good agreement with previously claimed results. The best fit is achieved assuming a solar-like double-term law with a lap time of ≈400 d. Our orbital solutions result in a period of 10.387678 ± 0.000003 days for the close orbit and 2726 ± 7 d (≈7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened V-band data reveals a strong single peak providing a rotation period of 10.391 ± 0.008 d, well synchronized to the short orbit. Based on

  7. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    PubMed

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  8. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    PubMed

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport. PMID:25148470

  9. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes.

    PubMed

    Beard, Brian C; Wilson, Samuel H; Smerdon, Michael J

    2003-06-24

    The majority of DNA in eukaryotic cells exists in the highly condensed structural hierarchy of chromatin, which presents a challenge to DNA repair enzymes in that recognition, incision, and restoration of the original sequence at most sites must take place within these structural constraints. To test base excision repair (BER) activities on chromatin substrates, an in vitro system was developed that uses human uracil DNA glycosylase (UDG), apyrimidinic/apurinic endonuclease (APE), and DNA polymerase beta (pol beta) on homogeneously damaged, rotationally positioned DNA in nucleosomes. We find that UDG and APE carry out their combined catalytic activities with reduced efficiency on nucleosome substrates ( approximately 10% of that on naked DNA). Furthermore, these enzymes distinguish between two different rotational settings of the lesion on the histone surface, showing a 2- to 3-fold difference in activity between uracil facing "toward" and "away from" the histones. However, UDG and APE will digest such substrates to completion in a concentration-dependent manner. Conversely, the synthesis activity of pol beta is inhibited completely by nucleosome substrates and is independent of enzyme concentration. These results suggest that the first two steps of BER, UDG and APE, may occur "unassisted" in chromatin, whereas downstream factors in this pathway (i.e., pol beta) may require nucleosome remodeling for efficient DNA BER in at least some regions of chromatin in eukaryotic cells.

  10. Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.

    2004-02-01

    We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.

  11. Low-mass ultra-cool dwarfs: Atmospheres, rotation and magnetic activity

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy

    Low-mass stars and substellar brown dwarfs are the most numerous luminous components of our Galaxy. In order to motivate my research, I begin in Chapter 1 with a review of the M and L spectral types. These spectral classes are the focus of my thesis, since they define the transition from stellar to substellar regimes. In Chapter 2, I attempt to determine the effective temperature of a sample of late M and L dwarfs, by profile fitting the atomic resonance absorption lines of Cesium and Rubidium. An effective temperature scale is devised, assuming constant surface gravity and solar metallicity. In order to investigate more carefully the interplay between effective temperature, gravity and dust formation, I embark in Chapter 3 on a multi-feature spectral analysis of cool M dwarfs. We find that individual spectral features may be degenerate in their response to variations in gravity, temperature and dust. However, the latter parameters can be uniquely determined by a simultaneous examination of multiple lines, such as those of TiO, Na, Cs and FeI. Keeping the above results in mind, I examine, in Chapter 4, the trends in rotation and activity in cool dwarfs. Rotation and chromospheric activity observations are presented for nearly one hundred mid-M to mid-L dwarfs. We find that rotation rates continue to increase with later type. Using a Reynolds number calculation, we show that a decrease in ionization fraction can indeed lead to the observed falloff in activity levels, in the late M and L dwarfs. Acoustic heating effects are also examined. We suggest some possibilities to explain the recently discovered coronal radio emission in these objects. Finally, we propose a mechanism to explain the intermittent flaring that is also observed at these spectral types. (Abstract shortened by UMI.)

  12. A model potential for the internal rotation of nitrosyl hyperfluorite. A comparative analysis of different theoretical methods

    NASA Astrophysics Data System (ADS)

    Cárdenas-Jirón, Gloria I.; Toro-Labbé, Alejandro

    1994-05-01

    We present a comparative analysis of the internal rotation energy curves of nitrosyl hyperfluorite (FONO). Two model potentials, derived from a Fourier series expansion, have been used to rationalize the trans⇌cis isomerization process for different theoretical methods going from traditional molecular orbital calculations to density functional theory. It is shown that Hartree—Fock (HF) and post Hartree—Fock (pHF) calculations, using a sufficiently large basis set, lead to results that are qualitatively similar. However, local density functional (LDF) calculations produce results that are not compatible. The resulting barrier heights vary from 2.36 (LDF) to 12.76 kcal/mol (MP4SDTQ/6-31G*) passing through a value of 8.33 kcal/mol from a HF/6-31G calculations. It is concluded that the LDF results, within the approximations used in that calculation, appear to be anomalous when compared to the HF and pHF results.

  13. Investigation of the Unsteady Total Pressure Profile Corresponding to Counter-Rotating Vortices in an Internal Flow Application

    NASA Astrophysics Data System (ADS)

    Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua

    2013-11-01

    The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.

  14. Influence of an inhomogeneous internal magnetic field on the flow dynamics of a ferrofluid between differentially rotating cylinders.

    PubMed

    Altmeyer, S; Do, Younghae; Lopez, J M

    2012-06-01

    The influence of a magnetic field on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders is investigated numerically. The Navier-Stokes equations are solved using a hybrid finite difference and Galerkin method. We show that the frequently used assumption that the internal magnetic field within a ferrofluid is equal to the external applied field is only a leading-order approximation. By accounting for the ferrofluid's magnetic susceptibility, we show that a uniform externally imposed magnetic field is modified by the presence of the ferrofluid within the annulus. The modification to the magnetic field has an r(-2) radial dependence and a magnitude that scales with the susceptibility. For ferrofluids typically used in laboratory experiments of the type simulated in this paper, the modification to the imposed magnetic field can be substantial. This has significant consequences on the structure and stability of the basic states, as well as on the bifurcating solutions. PMID:23005213

  15. Gas Phase Raman Spectra of Butadiene and BUTADIENE-d_{6} and the Internal Rotation Potential Energy Function

    NASA Astrophysics Data System (ADS)

    Boopalachandran, Praveenkumar; Laane, Jaan; Craig, Norman C.

    2009-06-01

    The Raman spectrum of butadiene has been previously reported by Carreira and by Engeln and co-workers. Both studies reported a series of bands corresponding to double quantum jumps of ν_{13}, the internal rotation vibration, of the trans rotamer. Both studies also reported weaker bands assigned to the higher energy conformer. Carriera assigned these to the cis form while Engeln assigned them to the gauche form. Recent high level calculations by Feller and Craig also assign the higher energy form as gauche. In the present study we report the gas phase Raman spectrum of butadiene and its d_{6} isotopomer at both 25^°C and 260^°C. Several new spectral features in the 330 to 210 cm^{-1} region were observed and the effect of heating on the band intensities was studied. In addition, combination bands were observed in the 630 to 690 cm^{-1} (ν_{12} + ν_{13}) and 1130 to 1180 cm^{-1} (ν_{10} + ν_{13}) regions. A periodic potential energy function with V_{1}, V_{2}, V_{3}, V_{4}, and V_{6} terms was utilized to fit the data. This function was compared to the results from previous work and to the theoretical calculation. L. Carreira, J. Phys. Chem. 62, 3851 (1975). R. Engeln, D. Consalvo, and J. Reuss, J. Chem. Phys. 160, 427 (1992). D. Feller and N. C. Craig, J. Phys. Chem. 113, 1601 (2009).

  16. Navigated Active Learning in an International Academic Virtual Enterprise

    ERIC Educational Resources Information Center

    Horvath, Imre; Wiersma, Meindert; Duhovnik, Joze; Stroud, Ian

    2004-01-01

    Active learning is an educational paradigm that has been reinvented and methodologically underpinned many times in order to intensify learning in various forms. This paper presents a complex approach to active learning in a design-centred academic course with international participation. Research and design were considered as vehicles of active…

  17. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  18. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  19. A Three-dimensional Non-spherical Calculation Of The Rotationally Distorted Shape And Internal Structure Of A Model Of Jupiter With A Polytropic Index Of Unity

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.

    2012-10-01

    An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390

  20. The effects of a rotator cuff tear on activities of daily living in older adults: A kinematic analysis.

    PubMed

    Vidt, Meghan E; Santago, Anthony C; Marsh, Anthony P; Hegedus, Eric J; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Miller, Michael E; Saul, Katherine R

    2016-02-29

    Rotator cuff tears (RCT) in older individuals may compound age-associated physiological changes and impact their ability to perform daily functional tasks. Our objective was to quantify thoracohumeral kinematics for functional tasks in 18 older adults (mean age=63.3±2.2), and compare findings from nine with a RCT to nine matched controls. Motion capture was used to record kinematics for 7 tasks (axilla wash, forward reach, functional pull, hair comb, perineal care, upward reach to 90°, upward reach to 105°) spanning the upper limb workspace. Maximum and minimum joint angles and motion excursion for the three thoracohumeral degrees of freedom (elevation plane, elevation, axial rotation) were identified for each task and compared between groups. The RCT group used greater minimum elevation angles for axilla wash and functional pull (p≤0.0124) and a smaller motion excursion for functional pull (p=0.0032) compared to the control group. The RCT group also used a more internally rotated maximum axial rotation angle than controls for functional reach, functional pull, hair comb, and upward reach to 105° (p≤0.0494). The most differences between groups were observed for axial rotation, with the RCT group using greater internal rotation to complete functional tasks, and significant differences between groups were identified for all three thoracohumeral degrees of freedom for functional pull. We conclude that older adults with RCT used more internal rotation to perform functional tasks than controls. The kinematic differences identified in this study may have consequences for progression of shoulder damage and further functional impairment in older adults with RCT. PMID:26879327

  1. Improving active seismic isolation in aLIGO using a ground rotation sensor

    NASA Astrophysics Data System (ADS)

    Venkateswara, Krishna; Hagedorn, Charles; Ross, Michael; Gundlach, Jens

    2016-03-01

    The active seismic isolation in Advanced LIGO achieves a factor of 10 -104 isolation from ground displacement in the frequency range from 0.1-10 Hz enabling stable low noise interferometer operation. It uses seismometers on the ground and the optics platform in feedback loops to reduce the transmission of ground motion to the platform. However, due to the inability of a seismometer to distinguish between horizontal acceleration and rotation (coupling through gravity), wind-induced tilt limits the performance of the active isolation in the 10-500 mHz frequency range, thereby reducing the duty-cycle of the detectors. We describe a ground rotation sensor, consisting of a low frequency beam-balance and an autocollimator readout with better than 0.4 nrad/rt(Hz) sensitivity above 10 mHz, which can be used to subtract tilt-noise from a horizontal seismometer, thus improving the active seismic isolation system. This work was supported by NSF Grant: 1306613.

  2. Internal desynchronization in a model of night-work by forced activity in rats.

    PubMed

    Salgado-Delgado, R; Angeles-Castellanos, M; Buijs, M R; Escobar, C

    2008-06-26

    Individuals engaged in shift- or night-work show disturbed diurnal rhythms, out of phase with temporal signals associated to the light/dark (LD) cycle, resulting in internal desynchronization. The mechanisms underlying internal desynchrony have been mainly investigated in experimental animals with protocols that induce phase shifts of the LD cycle and thus modify the activity of the suprachiasmatic nucleus (SCN). In this study we developed an animal model of night-work in which the light-day cycle remained stable and rats were required to be active in a rotating wheel for 8 h daily during their sleeping phase (W-SP). This group was compared with rats that were working in the wheel during their activity phase (W-AP) and with undisturbed rats (C). We provide evidence that forced activity during the sleeping phase (W-SP group) alters not only activity, but also the temporal pattern of food intake. In consequence W-SP rats showed a loss of glucose rhythmicity and a reversed rhythm of triacylglycerols. In contrast W-AP rats did not show such changes and exhibited metabolic rhythms similar to those of the controls. The three groups exhibited the nocturnal corticosterone increase, in addition the W-SP and W-AP groups showed increase of plasma corticosterone associated with the start of the working session. Forced activity during the sleep phase did not modify SCN activity characterized by the temporal patterns of PER1 and PER2 proteins, which remained in phase with the LD cycle. These observations indicate that a working regimen during the sleeping period elicits internal desynchronization in which activity combined with feeding uncouples metabolic functions from the biological clock which remains fixed to the LD cycle. The present data suggest that in the night worker the combination of work and eating during working hours may be the cause of internal desynchronization.

  3. Activation of transmembrane cell‐surface receptors via a common mechanism? The “rotation model”

    PubMed Central

    2015-01-01

    It has long been thought that transmembrane cell‐surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand‐induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell‐surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding. PMID:26241732

  4. RELATING CHANGES IN COMETARY ROTATION TO ACTIVITY: CURRENT STATUS AND APPLICATIONS TO COMET C/2012 S1 (ISON)

    SciTech Connect

    Samarasinha, Nalin H.; Mueller, Béatrice E. A.

    2013-09-20

    We introduce a parameter, X, to predict the changes in the rotational period of a comet in terms of the rotational period itself, the nuclear radius, and the orbital characteristics. We show that X should be a constant if the bulk densities and shapes of nuclei are nearly identical and the activity patterns are similar for all comets. For four nuclei for which rotational changes are well documented, despite the nearly factor 30 variation observed among the effective active fractions of these comets, X is constant to within a factor two. We present an analysis for the sungrazing comet C/2012 S1 (ISON) to explore what rotational changes it could undergo during the upcoming perihelion passage where its perihelion distance will be ∼2.7 solar radii. When close to the Sun, barring a catastrophic disruption of the nucleus, the activity of ISON will be sufficiently strong to put the nucleus into a non-principal-axis rotational state and observable changes to the rotational period should also occur. Additional causes for rotational state changes near perihelion for ISON are tidal torques caused by the Sun and the significant mass loss due to a number of mechanisms resulting in alterations to the moments of inertia of the nucleus.

  5. Shoulder External Rotation Fatigue and Scapular Muscle Activation and Kinematics in Overhead Athletes

    PubMed Central

    Joshi, Mithun; Thigpen, Charles A.; Bunn, Kevin; Karas, Spero G.; Padua, Darin A.

    2011-01-01

    Context: Glenohumeral external rotation (GH ER) muscle fatigue might contribute to shoulder injuries in overhead athletes. Few researchers have examined the effect of such fatigue on scapular kinematics and muscle activation during a functional movement pattern. Objective: To examine the effects of GH ER muscle fatigue on upper trapezius, lower trapezius, serratus anterior, and infraspinatus muscle activation and to examine scapular kinematics during a diagonal movement task in overhead athletes. Setting: Human performance research laboratory. Design: Descriptive laboratory study. Patients or Other Participants: Our study included 25 overhead athletes (15 men, 10 women; age = 20 ± 2 years, height = 180 ± 11 cm, mass = 80 ± 11 kg) without a history of shoulder pain on the dominant side. Interventions: We tested the healthy, dominant shoulder through a diagonal movement task before and after a fatiguing exercise involving low-resistance, high-repetition, prone GH ER from 0° to 75° with the shoulder in 90° of abduction. Main Outcome Measure(s): Surface electromyography was used to measure muscle activity for the upper trapezius, lower trapezius, serratus anterior, and infraspinatus. An electromyographic motion analysis system was used to assess 3-dimensional scapular kinematics. Repeated-measures analyses of variance (phase × condition) were used to test for differences. Results: We found a decrease in ascending-phase and descending-phase lower trapezius activity (F1,25 = 5.098, P = .03) and an increase in descending-phase infraspinatus activity (F1,25 = 5.534, P = .03) after the fatigue protocol. We also found an increase in scapular upward rotation (F1,24 = 3.7, P = .04) postfatigue. Conclusions: The GH ER muscle fatigue protocol used in this study caused decreased lower trapezius and increased infraspinatus activation concurrent with increased scapular upward rotation range of motion during the functional task. This highlights the interdependence of scapular

  6. International exchange activities with East Asian countries through mammography.

    PubMed

    Endo, Tokiko; Morimoto, Tadaoki; Horita, Katsuhei; Kimura, Chiaki; Okazaki, Masatoshi; Fukuda, Mamoru

    2009-01-01

    The Japanese NPO Central Committee on Quality Control of Mammographic Screening has initiated international exchange activities regarding quality control of mammographic screening with the concerned organizations in East Asian countries with the objective of contributing to reducing breast cancer mortality in the region. This paper describes the status of the international exchanges that are being carried out in various East Asian countries in relation to mammography and also discusses future aspects. PMID:19034615

  7. Low frequency vibrational spectra, barrier to internal rotation, and RHF/STO-3G * ab initio calculations of 3-bromopropene

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Tang, Qun; Little, T. S.

    1992-06-01

    The far-infrared spectrum of gaseous 3-bromopropene, CH 2CHCH 2Br, has been recorded from 350 to 35 cm -1 at a resolution of 0.1 cm -1. The fundamental asymmetric torsional frequencies of the more stable gauche (dihedral angle ∢ CCCBr = 118.0 ± 0.2°) and higher energy cis (bromine atom eclipsing the double bond and dihedral angle ∢ CCCBr = 0°) conformers have been observed at about 93 and 113.3 cm -1 in the low frequency Raman and far-infrared spectra of the gas respectively. Three excited state torsional transitions falling to lower frequency have also been observed for the cis conformer. From studies of the Raman spectrum of the gas at variable temperatures, a value of 257 ± 50 cm -1 (735 ± 143 cal mol -1) has been determined for the enthalpy difference between the conformers. From these data the asymmetric torsional potential governing internal rotation about the CC has been determined and the potential coefficients are: V1 = -293 ± 18; V2 = -106 ± 26; V3 = 825 ± 12; V4 = 85 ± 13; V6 = -53 ± 6 cm -1. This potential function gives cis to gauche, gauche to gauche and gauche to cis barriers of 749, 770 and 986 cm -1 respectively, and an enthalpy difference between the conformers of 237 ± 56 cm -1 (672 ± 160 cal mol -1). The r0 structural parameters for the heavy atom skeleton of the gauche conformer have been determined from previously reported microwave rotational constants along with a fixed CBr distance taken from the electron diffraction study. The determined parameters (distances in »ngströms, angles in degrees) are: r(C 1 = C 2) = 1.335 ± 0.003; r(C 2C 3) = 1.492 ± 0.002; ∢ C 1C 2C 3 = 122.6 ± 0.1; ∢ BrC 3C 2 = 110.1 ± 0.1; ∢ C 1C 2C 3Br = 118.0 ± 0.2. The asymmetric torsional potential surface, complete equilibrium geometries and vibrational frequencies have been calculated using restricted Hartree-Fock calculations with the STO-3G * basis set. All of these results are discussed and compared with the corresponding

  8. The Rotational Spectra, Structure, Internal Dynamics, and Electric Dipole Moment of the Argon-Ketene van der Waals Complex.

    PubMed

    Gillies, C. W.; Gillies, J. Z.; Amadon, S. J.; Suenram, R. D.; Lovas, F. J.; Warner, H.; Malloy, R.

    2001-06-01

    Pulsed-beam Fourier transform microwave spectroscopy was used to observe and assign the rotational spectra of the argon-ketene van der Waals complex. Tunneling of the hydrogen or deuterium atoms splits the a- and b-type rotational transitions of H(2)CCO-Ar, H(2)(13)CCO-Ar, H(2)C(13)CO-Ar, and D(2)CCO-Ar into two states. This internal motion appears to be quenched for HDCCO-Ar where only one state is observed. The spectra of all isotopomers were satisfactorily fit to a Watson asymmetric top Hamiltonian which gave A=10 447.9248(10) MHz, B=1918.0138(16) MHz, C=1606.7642(15) MHz, Delta(J)=16.0856(70) kHz, Delta(JK)=274.779(64) kHz, Delta(K)=-152.24(23) kHz, delta(J)=2.5313(18) kHz, delta(K)=209.85(82) kHz, and h(K)=1.562(64) kHz for the A(1) state of H(2)CCO-Ar. Electric dipole moment measurements determined &mgr;(a)=0.417(10)x10(-30) C m [0.125(3) D] and &mgr;(b)=4.566(7)x10(-30) C m [1.369(2) D] along the a and b principal axes of the A(1) state of the normal isotopomer. A least squares fit of principal moments of inertia, I(a) and I(c), of H(2)CCO-Ar, H(2)(13)CCO-Ar, and H(2)C(13)CO-Ar for the A(1) states give the argon-ketene center of mass separation, R(cm)=3.5868(3) Å, and the angle between the line connecting argon with the center of mass of ketene and the C=C=O axis, θ(cm)=96.4 degrees (2). The spectral data are consistent with a planar geometry with the argon atom tilted toward the carbonyl carbon of ketene by 6.4 degrees from a T-shaped configuration. Copyright 2001 Academic Press.

  9. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  10. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    SciTech Connect

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garces, Ane; Catalan, Silvia; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  11. The Light-Curve and Rotation Rate of 'Active Asteroid' 313P/Gibbs

    NASA Astrophysics Data System (ADS)

    Milewski, Dave Gerald

    2016-10-01

    The 'Active Asteroids' are a strange, yet newly discovered class of small bodies in the Solar System that have the orbital and dynamical properties of asteroids, but also the physical properties of comets (ejection of dust and volatile materials). Of the known ~25 Active Asteroids discovered thus far (Jewitt, Hseih, Argwal, 2015), only 4 have been known to be active on subsequent multiple occasions 238P/Read, 133P/Elst-Pizarro, 324P/La Sagra, (Jewitt et al. 2016) and 313P/Gibbs. In this work, we have determined the rotation rate and light-curve for Active Asteroid 313P/Gibbs using the Keck 10-m telescope to better understand the mechanisms and drivers of subsequent activity in this Solar System Small Body so that we may form a more complete picture of this population, better characterize them, and add to our inventory of Solar System small bodies to form a more complete model of the formation of the Solar System as well as what this may imply for future detection of activity in the Active Asteroid population.

  12. Evaluation of Hip Internal and External Rotation Range of Motion as an Injury Risk Factor for Hip, Abdominal and Groin Injuries in Professional Baseball Players

    PubMed Central

    Ma, Richard; Zhou, Hanbing; Thompson, Matthew; Dawson, Courtney; Nguyen, Joseph; Coleman, Struan

    2015-01-01

    Normal hip range of motion (ROM) is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc) and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201) in one professional organization (major and minor league) during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011). Data was analyzed according to position and injuries during the season. Total number of players (N=201) with an average age of 24±3.6 (range=17-37). Both pitchers (N=93) and catchers (N=22) had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86). Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries. PMID:26793294

  13. Evaluation of Hip Internal and External Rotation Range of Motion as an Injury Risk Factor for Hip, Abdominal and Groin Injuries in Professional Baseball Players.

    PubMed

    Li, Xinning; Ma, Richard; Zhou, Hanbing; Thompson, Matthew; Dawson, Courtney; Nguyen, Joseph; Coleman, Struan

    2015-12-28

    Normal hip range of motion (ROM) is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc) and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201) in one professional organization (major and minor league) during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011). Data was analyzed according to position and injuries during the season. Total number of players (N=201) with an average age of 24±3.6 (range=17-37). Both pitchers (N=93) and catchers (N=22) had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86). Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries.

  14. Evaluation of Hip Internal and External Rotation Range of Motion as an Injury Risk Factor for Hip, Abdominal and Groin Injuries in Professional Baseball Players.

    PubMed

    Li, Xinning; Ma, Richard; Zhou, Hanbing; Thompson, Matthew; Dawson, Courtney; Nguyen, Joseph; Coleman, Struan

    2015-12-28

    Normal hip range of motion (ROM) is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc) and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201) in one professional organization (major and minor league) during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011). Data was analyzed according to position and injuries during the season. Total number of players (N=201) with an average age of 24±3.6 (range=17-37). Both pitchers (N=93) and catchers (N=22) had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86). Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries. PMID:26793294

  15. Intrinsic rotation due to MHD activity in a tokamak with a resistive wall

    NASA Astrophysics Data System (ADS)

    Haines, M. G.; Gimblett, C. G.; Hastie, R. J.

    2013-05-01

    MHD activity in a tokamak, in the form of waves and instabilities, generally has a preferred direction for propagation in a two-fluid plasma. When the radial component of magnetic field associated with this activity interacts with a resistive wall, momentum or angular momentum will be given to the wall. The equal and opposite reaction will be on the plasma, in particular, for ideal and resistive modes, at the singular or resonant surfaces for the various modes. In this case the torque exerted is electromagnetic. This is in contrast to other mechanisms for intrinsic or spontaneous rotation which may arise at the plasma boundary. The resistive wall is considered generally, and the thin and thick wall limits found, the latter being relevant to ITER parameters. Remarkably small radial perturbing fields of order 0.1 G could produce a torque comparable in effect to the apparent anomalous toroidal viscosity.

  16. Dynamics of an active magnetic particle in a rotating magnetic field.

    PubMed

    Cēbers, A; Ozols, M

    2006-02-01

    The motion of an active (self-propelling) particle with a permanent magnetic moment under the action of a rotating magnetic field is considered. We show that below a critical frequency of the external field the trajectory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approximately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle trajectory depends on the commensurability of the field period and the period of the orientational motion of the particle. We also show how our results can be used to study the properties of naturally occurring active magnetic particles, so-called magnetotactic bacteria. PMID:16605340

  17. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  18. The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service - A meteorological data center with geodetic applications

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.

    1993-01-01

    By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.

  19. PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS

    SciTech Connect

    Broderick, Avery E.; McKinney, Jonathan C. E-mail: jmckinne@stanford.ed

    2010-12-10

    It is now possible to compare global three-dimensional general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to multi-wavelength polarized VLBI observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the nonthermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a direct way to confront simulations with observations. We compute RM distributions of a three-dimensional global GRMHD jet formation simulation, extrapolated in a self-consistent manner to {approx}10 pc scales, and explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations, the RMs are generated in the circum-jet material, hydrodynamically a smooth extension of the jet itself, containing ordered toroidally dominated magnetic fields. This results in a particular bilateral morphology that is unlikely to arise due to Faraday rotation in distant foreground clouds. However, critical to efforts to probe the Faraday screen will be resolving the transverse jet structure. Therefore, the RMs of radio cores may not be reliable indicators of the properties of the rotating medium. Finally, we are able to constrain the particle content of the jet, finding that at pc scales AGN jets are electromagnetically dominated, with roughly 2% of the comoving energy in nonthermal leptons and much less in baryons.

  20. A larger critical shoulder angle requires more rotator cuff activity to preserve joint stability.

    PubMed

    Viehöfer, Arnd F; Gerber, Christian; Favre, Philippe; Bachmann, Elias; Snedeker, Jess G

    2016-06-01

    Shoulders with rotator cuff tears (RCT) tears are associated with significantly larger critical shoulder angles (CSA) (RCT CSA = 38.2°) than shoulders without RCT (CSA = 32.9°). We hypothesized that larger CSAs increase the ratio of glenohumeral joint shear to joint compression forces, requiring substantially increased compensatory supraspinatus loads to stabilize the arm in abduction. A previously established three dimensional (3D) finite element (FE) model was used. Two acromion shapes mimicked the mean CSA of 38.2° found in patients with RCT and that of a normal CSA (32.9°). In a first step, the moment arms for each muscle segment were obtained for 21 different thoracohumeral abduction angles to simulate a quasi-static abduction in the scapular plane. In a second step, the muscle forces were calculated by minimizing the range of muscle stresses able to compensate an external joint moment caused by the arm weight. If the joint became unstable, additional force was applied by the rotator cuff muscles to restore joint stability. The model showed a higher joint shear to joint compressive force for the RCT CSA (38.2°) for thoracohumeral abduction angles between 40° and 90° with a peak difference of 23% at 50° of abduction. To achieve stability in this case additional rotator cuff forces exceeding physiological values were required. Our results document that a higher CSA tends to destabilize the glenohumeral joint such that higher than normal supraspinatus forces are required to maintain modeled stability during active abduction. This lends strong support to the concept that a high CSA can induce supraspinatus (SSP) overload. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:961-968, 2016. PMID:26572231

  1. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  2. Internal models for interpreting neural population activity during sensorimotor control

    PubMed Central

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183

  3. Rotational modulation of the chromospheric activity in the young solar-type star, X-1 Orionis

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Simon, T.

    1982-01-01

    The IUE satellite was used to observe one of the youngest G stars (GO V) for which Duncan (1981) derives an age of 6 x 10 to the 8th power years from the Li abundance. Rotational modulation was looked for in the emission flux in the chromospheric and transition region lines of this star. Variations in the Ca 11 K-lines profile were studied with the CHF telescope at Mauna Kea. Results show that the same modulation of the emission flux of Ca 11 due to stellar rotation is present in the transition region feature of C IV and probably of He II. For other UV lines the modulation is not apparent, due to a more complex surface distribution of the active areas or supergranulation network, or a shorter lifetime of the conditions which give rise to these features, or to the uncertainities in the measured line strengths. The Mg II emission flux is constant to within + or - 3.4% implying a rather uniform distribution of Mg II emission areas. The Ca II emission not only shows a measurable variation in intensity but also variations in detailed line profile shape when observed at high resolution.

  4. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2016-04-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.

  5. Posterior capsular fibrosis in professional baseball pitchers: case series of MR arthrographic findings in six patients with glenohumeral internal rotational deficit.

    PubMed

    Tehranzadeh, Arash D; Fronek, Jan; Resnick, Donald

    2007-01-01

    In the high-performance athlete, acquired thickening of the posterior joint capsule is a proposed etiology for glenohumeral internal rotational deficit (GIRD). The purpose of this study was to present our MR arthrographic imaging observations of posterior capsular thickening in professional baseball players who present with reduced throwing velocity related to pain and clinical findings of internal rotational deficit of the glenohumeral joint. Our observations of MR imaging features in patients with clinical and arthroscopic manifestations of GIRD lesions include articular surface partial thickness tears of the supraspinatus and infraspinatus tendons, superoposterior subluxation of the humeral head and SLAP tears of the labrum. Although no empiric standard currently exists for the axial dimension thickness of the shoulder capsule, we have observed a thickened appearance of the posterior band of the inferior glenohumeral ligament in these patients.

  6. Effect of mechanical force, rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium with two theories

    NASA Astrophysics Data System (ADS)

    Said, Samia M.; Othman, Mohamed I. A.

    2016-09-01

    In the present paper, the three-phase-lag model and Green-Naghdi theory without energy dissipation are used to study the effect of a mechanical force and a rotation on the wave propagation in a two-temperature fiber-reinforced thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The methodology applied here is the use of the normal mode analysis to solve the problem of a thermal shock problem to obtain the exact expressions of the displacement components, force stresses, thermal temperature, and conductivity temperature. Numerical results for the considered variables are given and illustrated graphically in the absence and presence of a rotation as well as a mechanical force. A comparison is made with the results in the context of the two theories in the absence and presence of a moving internal heat source.

  7. Launching Youth Activism with Award-Winning International Literature

    ERIC Educational Resources Information Center

    Forest, Danielle E.; Kimmel, Sue C.; Garrison, Kasey L.

    2013-01-01

    Using qualitative content analysis, the authors explored depictions of activism in 35 international, translated titles receiving Mildred L. Batchelder Award and Honor commendations. Findings included identification of three social justice issues appearing in the texts: characters were challenged by poor living conditions or homelessness, labor…

  8. Arylsulphatase activity and sulphate content in relation to crop rotation and fertilization of soil

    NASA Astrophysics Data System (ADS)

    Siwik-Ziomek, Anetta; Lemanowicz, Joanna; Koper, Jan

    2016-07-01

    The aim of the study was to investigate the effect of varying rates of FYM (0, 20, 40, 60 Mg ha-1) and nitrogen N0, N1, N2, and N3 on the content of sulphate sulphur (VI) and the activity of arylsulphatase, which participates in the transformations of this element in Haplic Luvisol. The study report is based on a long-term field experiment with two different crop rotations: A - recognized as exhausting the humus from soil and B - recognized as enriching the soil with humus. During the cultivation of the plants, the soil was sampled four times from corn and a red clover cultivar and grass. The FYM fertilization rate for which the highest arylsulphatase activity and the content of sulphates were identified was 60 Mg ha-1. An inhibitory effect of high rates (90 and 135 kg N ha-1) of ammonium nitrate on the arylsulphatase activity was also observed. A significant correlation between the content of carbon, nitrogen, and sulphates and the arylsulphatase activity was recorded. The investigation on the effect of combined application of farmyard manure and mineral nitrogen fertilization on the activity of arylsulphatase participating in the sulphur cycling was launched to examine the problem in detail.

  9. The association between loss of ankle dorsiflexion range of movement, and hip adduction and internal rotation during a step down test.

    PubMed

    Bell-Jenje, T; Olivier, B; Wood, W; Rogers, S; Green, A; McKinon, W

    2016-02-01

    A pattern of excessive hip adduction and internal rotation with medial deviation of the knee has been associated with numerous musculo-skeletal dysfunctions. Research into the role that ankle dorsiflexion (DF) range of motion (ROM) play in lower limb kinematics is lacking. The objective of this cross-sectional, observational study was to investigate the relationship between ankle DF ROM, and hip adduction and hip internal rotation during a step-down test with and without heel elevation in a healthy female population. Hip and ankle ROM was measured kinematically using a ten-camera Optitrack motion analysis system. Thirty healthy female participants (mean age = 20.4 years; SD = 0.9 years) first performed a step-down test with the heel of the weight bearing foot flat on the step and then with the heel elevated on a platform. Ankle DF, hip adduction and hip internal rotation were measured kinematically for the supporting leg. Participants who had 17° or less of ankle DF ROM displayed significantly more hip adduction ROM (p = 0.001; Cohen's d effect size = 1.2) than the participants with more than 17° of DF during the step-down test. Participants with limited DF ROM showed a significant reduction in hip adduction ROM during the elevated-heel step-down test (p = 0.008). Hip internal rotation increased in both groups during the EHSD compared to the step-down test (p > 0.05) Reduced ankle DF ROM is associated with increased hip adduction utilised during the step-down test. Ankle DF should be taken into account when assessing patients with aberrant frontal plane lower limb alignment.

  10. The association between loss of ankle dorsiflexion range of movement, and hip adduction and internal rotation during a step down test.

    PubMed

    Bell-Jenje, T; Olivier, B; Wood, W; Rogers, S; Green, A; McKinon, W

    2016-02-01

    A pattern of excessive hip adduction and internal rotation with medial deviation of the knee has been associated with numerous musculo-skeletal dysfunctions. Research into the role that ankle dorsiflexion (DF) range of motion (ROM) play in lower limb kinematics is lacking. The objective of this cross-sectional, observational study was to investigate the relationship between ankle DF ROM, and hip adduction and hip internal rotation during a step-down test with and without heel elevation in a healthy female population. Hip and ankle ROM was measured kinematically using a ten-camera Optitrack motion analysis system. Thirty healthy female participants (mean age = 20.4 years; SD = 0.9 years) first performed a step-down test with the heel of the weight bearing foot flat on the step and then with the heel elevated on a platform. Ankle DF, hip adduction and hip internal rotation were measured kinematically for the supporting leg. Participants who had 17° or less of ankle DF ROM displayed significantly more hip adduction ROM (p = 0.001; Cohen's d effect size = 1.2) than the participants with more than 17° of DF during the step-down test. Participants with limited DF ROM showed a significant reduction in hip adduction ROM during the elevated-heel step-down test (p = 0.008). Hip internal rotation increased in both groups during the EHSD compared to the step-down test (p > 0.05) Reduced ankle DF ROM is associated with increased hip adduction utilised during the step-down test. Ankle DF should be taken into account when assessing patients with aberrant frontal plane lower limb alignment. PMID:26432547

  11. Patch-Augmented Latissimus Dorsi Transfer and Open Reduction–Internal Fixation of Unstable Os Acromiale for Irreparable Massive Posterosuperior Rotator Cuff Tear

    PubMed Central

    Petri, Maximilian; Greenspoon, Joshua A.; Bhatia, Sanjeev; Millett, Peter J.

    2015-01-01

    Latissimus dorsi transfer is a reasonable treatment option for massive posterosuperior rotator cuff tears that can substantially improve chronically painful and dysfunctional shoulders. This report and accompanying video describe the treatment of an active 43-year-old man with severe pain and weakness in the right shoulder after 3 failed rotator cuff repairs. Preoperative imaging showed a massive posterosuperior rotator cuff tear retracted to the glenoid as well as a hypermobile os acromiale likely causing dynamic impingement and recurrent rotator cuff tears. After diagnostic arthroscopy, the latissimus tendon is harvested and augmented with a 3-mm human acellular dermal patch (ArthroFlex; Arthrex, Naples, FL). The native rotator cuff tissue is repaired as much as possible, and the latissimus tendon is passed underneath the deltoid and posterior to the teres minor. The patch-augmented tendon is then integrated into a double-row SpeedBridge repair of eight 4.75-mm BioComposite SwiveLock anchors (Arthrex). The bony surface of the os acromiale is prepared and then fixed to the acromion with 2 cannulated partially threaded screws and additional tension-band wiring. Postoperative rehabilitation initially focuses on early passive range of motion, followed by active and active-assisted motion and a biofeedback program starting at 6 weeks postoperatively. PMID:26697309

  12. International Year of Planet Earth - Activities and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  13. The effects of methyl internal rotation and {sup 14}N quadrupole coupling in the microwave spectra of two conformers of N,N-diethylacetamide

    SciTech Connect

    Kannengießer, Raphaela; Klahm, Sebastian; Vinh Lam Nguyen, Ha Lüchow, Arne; Stahl, Wolfgang

    2014-11-28

    The gas phase structures and internal dynamics of N,N-diethylacetamide were determined with very high accuracy using a combination of molecular beam Fourier-transform microwave spectroscopy and quantum chemical calculations at high levels. Conformational studies yielded five stable conformers with C{sub 1} symmetry. The two most energetically favorable conformers, conformer I and II, could be found in the experimental spectrum. For both conformers, quadrupole hyperfine splittings of the {sup 14}N nucleus and torsional fine splittings due to the internal rotation of the acetyl methyl group occurred in the same order of magnitude and were fully assigned. The rotational constants, centrifugal distortion constants as well as the quadrupole coupling constants of the {sup 14}N nucleus were determined and fitted to experimental accuracy. The V{sub 3} potentials were found to be 517.04(13) cm{sup −1} and 619.48(91) cm{sup −1} for conformer I and II, respectively, and compared to the V{sub 3} potentials found in other acetamides. Highly accurate CCSD(T) and DMC calculations were carried out for calculating the barriers to internal rotation in comparison with the experimentally deduced V{sub 3} values.

  14. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  15. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Carroll, T. A.; Künstler, A.; Strassmeier, K. G.; Evren, S.; Weber, M.; Granzer, T.

    2016-10-01

    Context. HD 208472 is among the most active RS CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Aims: Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. Methods: We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code iMap. Differential rotation was investigated by cross-correlating successive Doppler images in each observing season. Results: Spots on HD 208472 are distributed preferably at high latitudes and less frequently around mid-to-low latitudes. No polar-cap like structure is seen at any epoch. We observed a flip-flop event between 2009 and 2010, manifested as a flip of the spot activity from phase 0.0 to phase 0.5, while the overall brightness of the star continued to increase and reached an all-time maximum in 2014. Cross-correlation of successive Doppler images suggests a solar-like differential rotation that is ≈15 times weaker than that of the Sun. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.Radial velocity measurements are only available at the

  16. Sub-soil microbial activity under rotational cotton crops in Australia

    NASA Astrophysics Data System (ADS)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  17. 78 FR 72746 - Activities of the International Telecommunication Advisory Committee and Preparations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... Activities of the International Telecommunication Advisory Committee and Preparations for Upcoming International Telecommunications Meetings This notice announces a meeting of the Department of State's International Telecommunication Advisory Committee (ITAC) to review the activities of the committee over...

  18. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  19. Mental arithmetic activates analogic representations of internally generated sums.

    PubMed

    Kallai, Arava Y; Schunn, Christian D; Fiez, Julie A

    2012-08-01

    The internal representation of numbers generated during calculation has received little attention. Much of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we critically test the hypothesis that internally generated numbers are represented analogically, using an approximate number system. In an fMRI study, the spontaneous processing of arithmetical expressions was tested. Participants passively viewed a sequence of double-digit addition expressions that summed to the same number. Adaptation was found in number-related regions in a fronto-parietal network. Following adaptation, arrays of dots were introduced, differing in their numerical distance from the sum of the addition expressions. Activation in voxels that showed adaptation to a repeated sum was also sensitive to the distance of the dot quantity from the sum. We conclude that participants exhibited adaptation to an internally generated number, that adapted representations were analogic in nature, and that these analogic representations may undergird arithmetic calculation. PMID:22732492

  20. On the coronae of rapidly rotating stars. I - The relation between rotation and coronal activity in RS CVn systems

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Bowyer, S.

    1981-01-01

    Soft X-ray observations are presented of a nearly complete sample of RS Canum Venaticorum systems taken with the Einstein X-ray Observatory. It is shown that the quiescent coronal activity, as measured by the ratio of the X-ray to bolometric flux, is directly proportional to the angular velocity of the star with the active chromosphere in these systems. This relation is found to hold over two decades in angular velocity. It is also found that the stellar surface gravity has no obvious influence on the ratio of the X-ray luminosity to the bolometric luminosity over two decades in surface gravity. It is pointed out that the linear relation between the ratio of the X-ray luminosity to the bolometric luminosity on the one hand, and the angular velocity, on the other, holds important implications for dynamo theories of the generation of stellar magnetic fields.

  1. Self-consistent internal structure of a rotating gaseous planet and its comparison with an approximation by oblate spheroidal equidensity surfaces

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2015-12-01

    In an important paper, Roberts (1963b) studied the hydrostatic equilibrium of an isolated, self-gravitating, rapidly rotating polytropic gaseous body based on a controversial assumption/approximation that all (outer and internal) equidensity surfaces are in the shape of oblate spheroids whose eccentricities are a function of the equatorial radius and whose axes of symmetry are parallel to the rotation axis. We compute the three-dimensional, finite-element, fully self-consistent, continuous solution for a rapidly rotating polytropic gaseous body with Jupiter-like parameters without making any prior assumptions about its outer shape and internal structure. Upon partially relaxing the Roberts' approximation by assuming that only the outer equidensity surface is in the shape of an oblate spheroid, we also compute a finite-element solution with the same parameters without making any prior assumptions about its internal structure. It is found that all equidensity surfaces of the fully self-consistent solution differ only slightly from the oblate spheroidal shape. It is also found that the characteristic difference between the fully self-consistent solution and the outer-spheroidal-shape solution is insignificantly small. Our results suggest that the Roberts' assumption of spheroidal equidensity surfaces represents a reasonably accurate approximation for rotating polytropic gaseous bodies with Jupiter-like parameters. The numerical accuracy of our finite-element solution is checked by an exact analytic solution based on the Green's function using the spheroidal wave function. The three different solutions in non-spherical geometries - the fully self-consistent numerical solution, the numerical solution with the outer spheroidal shape and the exact analytical solution - can also serve as a useful benchmark for other solutions based on different numerical methods.

  2. EERE-Supported International Activities in Latin America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) is involved in a variety of international initiatives, partnerships, and events that promote greater understanding and use of renewable energy (RE) and energy efficiency (EE) worldwide. In support of the Energy and Climate Partnership of the Americas (ECPA), EERE is working with several Latin American countries to advance EE and RE deployment for economic growth, energy security, poverty relief, and disaster recovery goals. This fact sheet highlights those activities.

  3. Gamma dose from activation of internal shields in IRIS reactor.

    PubMed

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  4. Potential and matrix elements of the hamiltonian of internal rotation in molecules in the basis set of Mathieu functions

    NASA Astrophysics Data System (ADS)

    Turovtsev, V. V.; Orlov, Yu. D.; Tsirulev, A. N.

    2015-08-01

    The advantages of the orthonormal basis set of 2π-periodic Mathieu functions compared to the trigonometric basis set in calculations of torsional states of molecules are substantiated. Explicit expressions are derived for calculating the Hamiltonian matrix elements of a one-dimensional torsional Schrödinger equation with a periodic potential of the general form in the basis set of Mathieu functions. It is shown that variation of a parameter of Mathieu functions allows the rotation potential and the structural function to be approximated with a good accuracy by a small number of series terms. The conditions for the best choice of this parameter are specified, and approximations are obtained for torsional potentials of n-butane upon rotation about the central C-C bond and of its univalent radical n-butyl C2H5C·H2 upon rotation of the C·H2 group. All algorithms are implemented in the Maple package.

  5. The posterior impingement sign: diagnosis of rotator cuff and posterior labral tears secondary to internal impingement in overhand athletes.

    PubMed

    Meister, Keith; Buckley, Bernadette; Batts, Joel

    2004-08-01

    We conducted this study to determine whether a test, the posterior impingement maneuver, could be used to prospectively identify articular side tears of the rotator cuff and/or posterior labrum. Sixty-nine athletes presented with posterior shoulder pain that developed during overhand athletics. Injured shoulders were placed into 90 degrees to 110 degrees of abduction, slight extension, and maximum external rotation, and an effort was made to elicit pain deep within the posterior aspect. Overall sensitivity of the test was 75.5%, and specificity was 85%. When only athletes with noncontact injuries (gradual onset of pain) were considered, sensitivity was 95% and specificity was 100%. A positive posterior impingement sign correlated highly with undersurface tearing of the rotator cuff and/or tearing of the posterior labrum in athletes with gradual onset of posterior shoulder pain during overhand athletics. PMID:15379239

  6. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion.

    PubMed

    Schmitt, M; Stark, H

    2016-08-01

    A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle. PMID:27562831

  7. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion.

    PubMed

    Schmitt, M; Stark, H

    2016-08-01

    A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle.

  8. International Association for Promoting Geoethics (IAPG): an update on activities

    NASA Astrophysics Data System (ADS)

    Di Capua, Giuseppe; Bobrowsky, Peter; Kieffer, Susan; Peppoloni, Silvia; Tinti, Stefano

    2016-04-01

    The International Association for Promoting Geoethics (IAPG: http://www.geoethics.org) was founded on August 2012 to unite global geoscientists to raise the awareness of the scientific community regarding the importance of the ethical, social and cultural implications of geoscience research, education, and practice. IAPG is an international, multidisciplinary and scientific platform for discussion on ethical problems and dilemmas in Earth Sciences, promoting geoethical themes through scientific publications and conferences, strengthening the research base on geoethics, and focusing on case-studies as models for the development of effective and operative strategies. IAPG is legally recognized as a not-for-profit organization. It is a non-governmental, non-political, non-party institution, at all times free from racial, gender, religious or national prejudices. Its network continues to grow with more than 900 members in 103 countries, including 20 national sections. IAPG operates exclusively through donations and personal funds of its members. The results achieved since inception have been recognized by numerous international organizations. In particular, IAPG has obtained the status of affiliated organization by the International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), and the Geological Society of London (GSL). IAPG has enlarged its official relationships also through agreements on collaboration with other organizations, such as the American Geophysical Union (AGU), EuroGeoSurveys (EGS), European Federation of Geologists (EFG), Association of Environmental & Engineering Geologists (AEG), International Geoscience Education Organisation (IGEO), African Association of Women in Geosciences (AAWG), and others. IAPG considers publications as an indispensable activity to strengthen geoethics from a scientific point of view, so members are active in the publication of articles and editing of books on

  9. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  10. Integrating Structured Learning and Scholarly Activities into Clerkship Rotations: A Win–Win for Students and Preceptors

    PubMed Central

    Miller, Stephannie; Fulton, Judith; Mostow, Eliot

    2014-01-01

    Objective: To merge scholarly activity into the curriculum developed for medical students electing a rotation in wound care and/or dermatology. Approach: The authors adapted the unique wound care curriculum developed for medical student rotators and residents to incorporate structured scholarly projects, opportunities for mentorship, and feedback for continued improvement. Results: Benefits have been observed to both students and to the clinic, as reflected by online survey results, increased productivity in the form of posters and manuscripts, and opportunities for professional networking. Discussion: Rotations and clerkships can be transformed from haphazard, bystander observational experiences to active participation that enhances comprehension and retention, while also providing benefits to preceptors. Innovation: Integration between research, education, and clinical activities in a structured way can provide opportunity for enhanced learning experiences and promote the concept of evidence-based practice. Conclusion: With observed benefits to students, researchers, and staff in this clinical setting, other clerkship rotation settings should consider an integrated and structured approach to learning, which includes scholarly activities. Further rigorous program evaluation is necessary to further quantify preliminary positive feedback regarding this approach. PMID:24804160

  11. Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Küker, M.; Reegen, P.; Rice, J. B.; Matthews, J. M.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2010-09-01

    Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity. Aims: Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status. Methods: We carried out high-precision, white-light photometry with the MOST satellite, ground-based Strömgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility. Results: The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 ± 0.06 days. Radial-velocity variations with a full amplitude of 270 m s-1 and a period of 6.76 ± 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 ± 0.33 km s-1 confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives Teff = 5660 ± 42 K, log g = 3.51 ± 0.09, and [Fe/H] = -0.15 ± 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 ± 0.1 M_⊙ and an age of ≈540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He i absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by ≈1600 K, and several small low-to-mid latitude features that are warmer by ≈300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth

  12. NanoSPD activity in Ufa and International Cooperation

    NASA Astrophysics Data System (ADS)

    Reshetnikova, N.; Salakhova, M.

    2014-08-01

    This report presents main achievements of R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (IPAM USATU, Ufa, Russia) with a special attention to innovative potential of nanostructured metals and alloys produced by the severe plastic deformation (SPD) techniques. Several examples of the first promising applications of bulk nanostructured materials (BNM) as well as potential competing technologies are considered and discussed. The authors would like to focus special emphasis on international cooperation in view of numerous emerging projects as well as different conferences and seminars that pave the way to close and fruitful cooperation, working visits and exchange of young scientists. The possibilities of international cooperation through various foundations and programs are considered.

  13. Definitions of Internal Medicine activities outside of the im department.

    PubMed

    Montero Ruiz, E; Monte Secades, R

    2015-04-01

    The inpatient profile is changing towards patients with multiple diseases, the elderly and those with high comorbidity. The growing complexity of their care, the progressive medical superspecialization and the organizational problems that often hinder daily patient follow-up by the same physician have contributed to a progressive increase in the participation of medical departments, especially Internal Medicine, in the care of patients hospitalized in other medical and surgical specialties. The hospital activities that the departments of internal medicine perform outside of their own department do not have well-established definitions and criteria at the organizational level; their assessment and accountability are different in each hospital. In this document, we establish the definitions for shared care, advisory medicine, perioperative medicine and interconsultation, as well as their types in terms of priority, formality, care setting, timeliness, relationship with surgery and other circumstances.

  14. Activation of p38 Mitogen-Activated Protein Kinase Promotes Epidermal Growth Factor Receptor Internalization

    PubMed Central

    Vergarajauregui, Silvia; Miguel, Anitza San; Puertollano, Rosa

    2006-01-01

    Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions. PMID:16683917

  15. Long-range active retroreflector to measure the rotational orientation in conjunction with a laser tracker

    NASA Astrophysics Data System (ADS)

    Hofherr, O.; Wachten, Christian; Müller, C.; Reinecke, H.

    2014-11-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) accurately determine x-y-z coordinates of passive retroreflectors. Next-generation systems answer the need to measure an object`s rotational orientation (pitch, yaw, roll). So far, these devices are based either on photogrammetry or on enhanced retroreflectors. Here we present a new method to measure all six degrees of freedom in conjunction with a LT. The basic principle is to analyze the orientation to the LT's beam path by coupling-out laser radiation. The optical design is inspired by a cat's eye retroreflector equipped with an integrated beam splitter layer. The optical spherical aberration is compensated, which reduces the divergence angle for the reflected beam by one order of magnitude compared to an uncompensated standard system of the same size. The wave front distortion is reduced to less than 0.1 λ @ 633 nm for beam diameters up to 8 mm. Our active retroreflector is suitable for long-range measurements for a distance > 10 m.

  16. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  17. International oil and gas exploration and development activities

    SciTech Connect

    Not Available

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  18. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: dark matter fraction, internal rotation and velocity anisotropy out to six effective radii

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline

    2016-08-01

    We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored DM halo which contributes ˜10% of the total mass within 1 Re, and 67% ± 10% within 6 Re, although a cusped DM halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.

  19. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: dark matter fraction, internal rotation, and velocity anisotropy out to six effective radii

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline

    2016-11-01

    We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored dark matter halo which contributes ˜10 per cent of the total mass within 1 Re, and 67 per cent ± 10 per cent within 6 Re, although a cusped dark matter halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.

  20. 20 MHz Forward-imaging Single-element Beam Steering with an Internal Rotating Variable-Angle Reflecting Surface: Wire phantom and Ex vivo pilot study

    PubMed Central

    Raphael, David T.; Li, Xiang; Park, Jinhyoung; Chen, Ruimin; Chabok, Hamid; Barukh, Arthur; Zhou, Qifa; Elgazery, Mahmoud; Shung, K. Kirk

    2012-01-01

    Feasibility is demonstrated for a forward-imaging beam steering system involving a single-element 20 MHz angled-face acoustic transducer combined with an internal rotating variable-angle reflecting surface (VARS). Rotation of the VARS structure, for a fixed position of the transducer, generates a 2-D angular sector scan. If these VARS revolutions were to be accompanied by successive rotations of the single-element transducer, 3-D imaging would be achieved. In the design of this device, a single-element 20 MHz PMN-PT press-focused angled-face transducer is focused on the circle of midpoints of a micro-machined VARS within the distal end of an endoscope. The 2-D imaging system was tested in water bath experiments with phantom wire structures at a depth of 10 mm, and exhibited an axial resolution of 66 μm and a lateral resolution of 520 μm. Chirp coded excitation was used to enhance the signal-to-noise ratio, and to increase the depth of penetration. Images of an ex vivo cow eye were obtained. This VARS-based approach offers a novel forward-looking beam-steering method, which could be useful in intra-cavity imaging. PMID:23122968

  1. 20 MHz forward-imaging single-element beam steering with an internal rotating variable-angle reflecting surface: Wire phantom and ex vivo pilot study.

    PubMed

    Raphael, David T; Li, Xiang; Park, Jinhyoung; Chen, Ruimin; Chabok, Hamid; Barukh, Arthur; Zhou, Qifa; Elgazery, Mahmoud; Shung, K Kirk

    2013-02-01

    Feasibility is demonstrated for a forward-imaging beam steering system involving a single-element 20MHz angled-face acoustic transducer combined with an internal rotating variable-angle reflecting surface (VARS). Rotation of the VARS structure, for a fixed position of the transducer, generates a 2-D angular sector scan. If these VARS revolutions were to be accompanied by successive rotations of the single-element transducer, 3-D imaging would be achieved. In the design of this device, a single-element 20MHz PMN-PT press-focused angled-face transducer is focused on the circle of midpoints of a micro-machined VARS within the distal end of an endoscope. The 2-D imaging system was tested in water bath experiments with phantom wire structures at a depth of 10mm, and exhibited an axial resolution of 66μm and a lateral resolution of 520μm. Chirp coded excitation was used to enhance the signal-to-noise ratio, and to increase the depth of penetration. Images of an ex vivo cow eye were obtained. This VARS-based approach offers a novel forward-looking beam-steering method, which could be useful in intra-cavity imaging. PMID:23122968

  2. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect

    Nutt, W. M.

    2011-06-29

    countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted

  3. Rigorous description of an energy spectrum of the isopropanol molecule taking into account the internal rotation of methyl tops

    NASA Astrophysics Data System (ADS)

    Burenin, A. V.

    2016-06-01

    By using the group chain methods, a rigorous algebraic model is constructed to describe the energy spectrum of the isopropanol molecule (CH3)2CHOH with an allowance for the internal motion of hydroxil and two identical methyl tops. The model is rigorous in the sense that its correctness is limited only by the correctness of a symmetry chosen to describe internal dynamics of the molecule.

  4. Internal motions prime cIAP1 for rapid activation.

    PubMed

    Phillips, Aaron H; Schoeffler, Allyn J; Matsui, Tsutomu; Weiss, Thomas M; Blankenship, John W; Zobel, Kerry; Giannetti, Anthony M; Dueber, Erin C; Fairbrother, Wayne J

    2014-12-01

    Cellular inhibitor of apoptosis 1 (cIAP1) is a ubiquitin ligase with critical roles in the control of programmed cell death and NF-κB signaling. Under normal conditions, the protein exists as an autoinhibited monomer, but proapoptotic signals lead to its dimerization, activation and proteasomal degradation. This view of cIAP1 as a binary switch has been informed by static structural studies that cannot access the protein's dynamics. Here, we use NMR spectroscopy to study micro- and millisecond motions of specific domain interfaces in human cIAP1 and use time-resolved small-angle X-ray scattering to observe the global conformational changes necessary for activation. Although motions within each interface of the 'closed' monomer are insufficient to activate cIAP1, they enable associations with catalytic partners and activation factors. We propose that these internal motions facilitate rapid peptide-induced opening and dimerization of cIAP1, which undergoes a dramatic spring-loaded structural transition. PMID:25383668

  5. Microbiological Characterization and Concerns of the International Space Station Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Wieland, Paul O.

    2005-01-01

    Since January 1999, the chemical the International Space Station Thermal Control System (IATCS) and microbial state of (ISS) Internal Active fluid has been monitored by analysis of samples returned to Earth. Key chemical parameters have changed over time, including a drop in pH from the specified 9.5 +/- 0.5 ta = 58.4, an increase in the level of total inorganic carbon (TIC), total organic carbon (TOC) and dissolved nickel (Ni) in the fluid, and a decrease in the phosphate (PO,) level. In addition, silver (AS) ion levels in the fluid decreased rapidly as Ag deposited on internal metallic surfaces of the system. The lack of available Ag ions coupled with changes in the fluid chemistry has resulted in a favorable environment for microbial growth. Counts of heterotrophic bacteria have increased from less than 10 colony-forming units (CFUs)/l00 mL to l0(exp 6) to l0(exp 7) CFUs/100 mL. The increase of the microbial population is of concern because uncontrolled microbiological growth in the IATCS can contribute to deterioration in the performance of critical components within the system and potentially impact human health if opportunistic pathogens become established and escape into the cabin atmosphere. Micro-organisms can potentially degrade the coolant chemistry; attach to surfaces and form biofilms; lead to biofouling of filters, tubing, and pumps; decrease flow rates; reduce heat transfer; initiate and accelerate corrosion; and enhance mineral scale formation. The micro- biological data from the ISS IATCS fluid, and approaches to addressing the concerns, are summarized in this paper.

  6. Active correction of the tilt angle of the surface plane with respect to the rotation axis during azimuthal scan

    NASA Astrophysics Data System (ADS)

    Sereno, M.; Lupone, S.; Debiossac, M.; Kalashnyk, N.; Roncin, P.

    2016-09-01

    A procedure to measure the residual tilt angle τ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle θ and readout of the azimuthal angle ϕ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only a small residual oscillation of the scattering plane remains.

  7. National and international astronomical activities in Chile 1849--2002

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.

    2003-03-01

    At all times and in many ways, Chilean astronomy has been influenced externally, either by astronomical expeditions from other parts of the world, or by astronomers that immigrated from other countries. We outline the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere, over its directors Moesta, Vergara, Obrecht, Ristenpart to the middle of the 20th century, as well as the astronomical development at the Universidad Católica. In addition, various international expeditions, which aimed at observations of solar eclipses, the Venus transit of 1882, and the Mars opposition of 1907, were carried out. While a major photometric project of Harvard Observatory was active for only six weeks in the north of Chile, the spectroscopic Mills expedition of Lick Observatory in Santiago lasted several decades, and the solar observatory of the Smithsonian Astrophysical Observatory near Calama even longer. Finally we give a brief overview of the evolution and the actual state of the international observatories Cerro Tololo, La Silla, Paranal, and Las Campanas.

  8. Microwave and ab initio studies of the internal rotation of ethylene in the Ar-ethylene and Ne-ethylene van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yaqian; Jäger, Wolfgang

    2003-10-01

    Rotational spectra of the weakly bound complexes Ar-ethylene and Ne-ethylene were measured with a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 26 GHz. Spectra of five isotopomers of Ar-ethylene, namely Ar-C2H4, Ar-13C2H4, Ar-C2D4, Ar-trans-1,2-C2D2H2, and Ar-cis-1,2-C2D2H2, and of eight isotopomers of Ne-ethylene, namely 20Ne-C2H4, 20Ne-C2D4, 20Ne-trans-1,2-C2D2H2, 20Ne-cis-1,2-C2D2H2, 22Ne-C2H4, 22Ne-C2D4, 22Ne-trans-1,2-C2D2H2, and 22Ne-cis-1,2-C2D2H2, were assigned and analyzed. The spectra are in accord with T-shaped, planar structures, where the rage gas atoms are located on the b-principal inertial axis of the ethylene monomer. For isotopomers containing C2H4, 13C2H4, C2D4, and trans-1,2-C2D2H2, all observed transitions are doubled due to an internal rotation motion of the ethylene subunit within the complexes. The observed transition intensities are in agreement with nuclear spin statistical weights obtained from molecular symmetry group analyses under the assumption of an internal rotation of the ethylene unit about the C=C bond, i.e., the out-of-plane motion. The observation of Ka=1, m=0 transitions in Ne-trans-1,2-C2D2H2 provides further proof that the out-of-plane motion is responsible for the observed tunneling splittings. Information about the energy level ordering of the Ka=1, m=0 and Ka=0, m=1 states was obtained from the rotational spectra of the Ne-trans-1,2-C2D2H2 isotopomers. Electronic structure calculations of Ne-C2H4 were done at the CCSD(T) level of theory with the aug-cc-pVTZ basis set for all atoms, supplemented with bond functions. The global minimum is at the T-shaped, planar configuration, with a distance of R=3.55 Å between the Ne atom and the center-of-mass of ethylene and a well depth of -81.5 cm-1. One-dimensional minimum potential energy paths for possible internal rotation motions were determined. The results confirm that the out-of-plane motion is the preferred internal motion. The out

  9. Activated Scavenger Receptor A Promotes Glial Internalization of Aβ

    PubMed Central

    Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer’s disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A. PMID:24718459

  10. Active Radiation Monitoring on the International Space Station

    NASA Astrophysics Data System (ADS)

    Shelfer, T.; Semones, E.; Johnson, S.; Zapp, N.; Weyland, M.; Riman, F.; Flanders, J.; Golightly, M.; Smith, G.

    The space radiation environment in and around the International Space Station (ISS) is currently being monitored by a variety of active and passive radiation measurement systems. There are currently three permanent NASA active radiation monitoring systems onboard the ISS. The first instrument is the ISS Tissue Equivalent Proportional Counter (ISS TEPC) that was activated November 9, 2000. The next instrument brought online was the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) that was activated April 21, 2001. The last instrument to be activated was the Extra-Vehicular Charged Particle Directional Spectrometer (EV-CPDS) that was turned on April 26, 2002. These three instruments provide the Space Radiation Analysis Group at NASA/Johnson Space Center with real-time radiation environment data, as well as detailed science data that is downloaded on a regular basis. The real-time data is used primarily for flight operations support in the Mission Control Center - Houston. The detailed science data is currently used in support of crew radiation dosemetry efforts, to validate the radiation environment model at the ISS orbit, and to validate shield distribution and interaction models for the ISS. We plan to present data collected by the ISS TEPC, IV-CPDS, and EV-CPDS for the Expedition 3 (August 10, 2001 - December 17, 2001) and Expedition 4 (December 5, 2001 - June 11, 2002)) time periods. Our preliminary measurement results will be presented in terms of environment variables such as orbital altitude and space weather, and shielding variables such as location inside the ISS and orientation of the ISS complex. In addition, the measured radiation dose will be divided into contributions from Galactic Cosmic Rays (GCR) and trapped particles.

  11. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure.

  12. A Low Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Stewart, M. F.; Blakeslee, R. J.; Podgorny, s. J.; Christian, H. J.; Mach, D. M.; Bailey, J. C.; Daskar, D.

    2006-01-01

    This paper reports on a new generation of aircraft-based rotating-vane style electric field mills designed and built at NASA's Marshall Spaceflight Center. The mills have individual microprocessors that digitize the electric field signal at the mill and respond to commands from the data system computer. The mills are very sensitive (1 V/m per bit), have a wide dynamic range (115 dB), and are very low noise (+/-1 LSB). Mounted on an aircraft, these mills can measure fields from +/-1 V/m to +/-500 kV/m. Once-per-second commanding from the data collection computer to each mill allows for precise timing and synchronization. The mills can also be commanded to execute a self-calibration in flight, which is done periodically to monitor the status and health of each mill.

  13. Coarse-grained modeling of vesicle responses to active rotational nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyang; Wang, Xianqiao

    2015-08-01

    In recent years, magnetically-driven-rotating superparamagnetic nanoparticles have been emerging as a valuable component in designing targeted drug delivery carriers and cellular killers via membranes' physical rupture. The lack of an in-depth understanding of how to control the interaction of rotational nanoparticles (RNPs) with vesicles has hindered progress in the development of their relevant biomedical applications. Here we perform dissipative particle dynamics simulations to analyze the rotation frequencies, size, and coating patterns of the RNPs as they interact with the vesicle so as to provide novel designs of drug delivery applications. Results have revealed that the RNPs are capable of triggering local disturbance around the vesicle and therefore promoting the vesicle translocation toward the RNPs. By investigating the translocation time and driving forces required for RNPs to enter inside the vesicle at various rotation frequencies as well as the interaction energy between coated RNPs and the vesicle, we have tuned the coating pattern of the ligands on the surface of RNPs to open a specified channel in the vesicle for promoting drug delivery. Our findings can provide useful guidelines for the molecular design of patterned RNPs for controllable bio/inorganic interfaces and help establish qualitative rules for the organization and optimization of ligands on the surface of the desired drug delivery carriers.

  14. Usefulness of a Hanging Position With Internal Rotation of Shoulder in Ultrasonography-Guided Intra-articular Steroid Injection for Adhesive Capsulitis

    PubMed Central

    2016-01-01

    Objective To evaluate the feasibility of a new position (internal rotation in hanging) in ultrasonography, we compared the length of the glenohumeral joint space and the effectiveness of steroid injection with the hanging position and with the commonly used abdomen or cross position. Methods A prospective, randomized controlled trial was performed in 42 patients with adhesive capsulitis of shoulder. We used three arm positions for the posterior approach as follows: the patient's palm on thigh, other hand on abdomen (abdomen position); hand on patient's opposite shoulder (cross position); arm in hanging position with internal rotation of shoulder (hanging position). The order of shoulder position was randomized and blinded. Real-time ultrasonography-guided intra-articular steroid injection was performed by posterior approach at the first position in each patient. The Brief Pain Inventory (BPI), the Shoulder Pain and Disability Index (SPADI), and range of motion (ROM) were measured before steroid injection and 2 weeks after injection. Results The lengths of the joint space were 2.88±0.75, 2.93±0.89, and 2.82±0.79 mm in abdomen, cross, and hanging position respectively, with no significant difference among the three positions (p=0.429). Treatment efficacy was significantly improved in ROM, total BPI, and SPADI in all three positions (p<0.001). The changes in ROM for shoulder abduction were 23.6°±19.7°, 22.2°±20.9°, and 10.0°±7.8° in abdomen, cross, and hanging position, respectively. Changes in total BPI scores were 25.1±15.7, 23.6.±18.0, 11.6±6.1, and changes in total SPADI score were 35.0±14.2, 30.9±28.9, and 16.5±10.3 in abdomen, cross, and hanging position, respectively. There were no significant difference among the three positions for all parameters (p=0.194, p=0.121, and p=0.108, respectively. Conclusion For patients with adhesive capsulitis who cannot achieve or maintain abdomen or cross position, scanning and injection with the shoulder in

  15. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Rector, Tony; Steele, John; Varsik, Jerry

    2010-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  16. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  17. Rotational spectroscopy of methyl benzoylformate and methyl mandelate: structure and internal dynamics of a model reactant and product of enantioselective reduction.

    PubMed

    Schnitzler, Elijah G; Poopari, Mohammad Reza; Xu, Yunjie; Jäger, Wolfgang

    2015-09-14

    Pure rotational spectra of a prototypical prochiral ester, methyl benzoylformate (MBF), and the product of its enantioselective reduction, (R)-(-)-methyl mandelate (MM), were measured in the range of 5-16 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. Potential conformers were located using density functional theory calculations, and one conformer of each species was identified experimentally. The minimum energy conformer of MBF, in which the ester group is in a Z orientation, was observed for the first time. Based on an atoms-in-molecules analysis, MBF contains a weak CH···O=C hydrogen bond between the carbonyl oxygen atom of the ester group and the nearest hydrogen atom of the aromatic ring. In the minimum energy conformer of MM, the ester group is oriented to accommodate a hydrogen bond between the hydrogen atom of the hydroxyl group and the carbonyl oxygen atom (OH···O=C), rather than the sp(3) oxygen atom (OH···O-C). For both species, splittings of the rotational transitions were observed, which are attributed to methyl internal rotation, and the orientations and barrier heights of the methyl tops were determined precisely. The barrier heights for MBF and MM are 4.60(2) and 4.54(3) kJ mol(-1), respectively, which are consistent with values predicted by high-level wavefunction-based calculations. On the basis of an atoms-in-molecules analysis, we propose that destabilization of the sp(3) oxygen atom of the ester group most directly dictates the barrier height.

  18. Vibrational structures of predissociating methylamines (CH3NH2 and CH3ND2) in à states: Free internal rotation of CH3 with respect to NH2

    NASA Astrophysics Data System (ADS)

    Baek, Sun Jong; Choi, Kyo-Won; Choi, Young S.; Kim, Sang Kyu

    2002-12-01

    Resonantly-enhanced one-color two-photon (1+1) ionization spectra of jet-cooled methylamines (CH3NH2 and CH3ND2) reveal the vibrational structures of these molecules in predissociative à states. Rotational fine structure is clearly resolved for CH3ND2 at the origin and first wagging vibrational level in the excited state. The spectral linewidth becomes homogeneously broadened to give only vibrationally resolved spectral features for the higher vibrational energy levels of CH3ND2 (Ã). From the spectral analysis of the ÖX transition of CH3ND2, it is found that the methyl moiety rotates nearly freely about the C-N axis with respect to the amino group in the à state, indicating that the removal of an electron from the nonbonding orbital of N is responsible for the free internal rotation. Vibrational levels are only barely resolved in the ÖX excitation spectrum of CH3NH2 due to severe homogeneous line-broadening, indicating ultrashort lifetimes of ˜0.4 ps for predissociating CH3NH2 molecules in the à state. Spectral interpretation of the ÖX excitation spectrum of CH3NH2 is carried out by the comparison with that of CH3ND2, giving the confirmative vibrational assignment of methylamines in à states for the first time. The dramatic difference of CH3NH2 and CH3ND2 in their lifetimes in à states suggests that the major dissociation channel of the excited methylamine may be the N-H (or D) bond dissociation.

  19. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.

    PubMed

    Yachmenev, Andrey; Yurchenko, Sergei N

    2015-07-01

    We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.

  20. The Therapeutic Effect of Tibia Counter Rotator With Toe-Out Gait Plate in the Treatment of Tibial Internal Torsion in Children

    PubMed Central

    Son, Su Min; Ahn, Sang Ho; Jung, Gil Su; Seo, Sang Wan; Park, In Sik; Song, Jun Chan; Jang, Sung Ho

    2014-01-01

    Objective To evaluate the therapeutic effect of a Tibia Counter Rotator (TCR) with toe-out gait plate (GP) upon tibial internal torsion by a comparative analysis of transmalleolar angle (TMA) and gait analysis with GP alone. Methods Twenty participants with tibial internal torsion were recruited for this study. Each 10 participants were included in group A with TCR and GP application and in group B with GP application only. The TMA and the kinematic results were used for the evaluation of the therapeutic effects of orthoses. Results Within each group, TMA showed a significant increase after treatment. Group A showed a continuous improvement up to six months, however, group B showed an improvement up to five months only. Group A showed a significantly higher correction effect than group B after treatment. Regarding kinematic data, both groups showed a significantly decreased mean ankle adduction angle after treatment. However, group A showed a significantly lower mean ankle adduction angle than group B after six months. Conclusion The group with TCR and GP showed a significantly better outcome and continued correction force compared to the group with GP only. Our results suggest that TCR with GP may be useful therapeutic orthoses for children with tibial internal torsion. PMID:24855616

  1. International Reference Ionosphere (IRI): Task Force Activity 2000

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2000-01-01

    The annual IRI Task Force Activity was held at the Abdus Salam International Center for Theoretical Physics in Trieste, Italy from July 10 to July 14. The participants included J. Adeniyi (University of Ilorin, Nigeria), D. Bilitza (NSSDC/RITSS, USA), D. Buresova (Institute of Atmospheric Physics, Czech Republic), B. Forte (ICTP, Italy), R. Leitinger (University of Graz, Austria), B. Nava (ICTP, Italy), M. Mosert (University National Tucuman, Argentina), S. Pulinets (IZMIRAN, Russia), S. Radicella (ICTP, Italy), and B. Reinisch (University of Mass. Lowell, USA). The main topic of this Task Force Activity was the modeling of the topside ionosphere and the development of strategies for modeling of ionospheric variability. Each day during the workshop week the team debated a specific modeling problem in the morning during informal presentations and round table discussions of all participants. Ways of resolving the specific modeling problem were devised and tested in the afternoon in front of the computers of the ICTP Aeronomy and Radiopropagation Laboratory using ICTP s computer networks and internet access.

  2. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Rotating Spacecraft Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  3. Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.

    1995-08-01

    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.

  4. Achievement of Broad Acceleration Profile for Launching Active Transient Internal Probes

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Jarboe, Thomas; Mattick, Arthur; Smith, Roger

    2003-10-01

    The Transient Internal Probe (TIP) is a diagnostic for the direct measurement of internal local magnetic or electric fields with high spatial and temporal resolution (1 cm, 1 MHz). A two-stage light-gas gun launches an optic probe at high velocity (1.5 km/s ˜ 1.8 km/s) so that the probe can transit the plasma before severe ablation occurs. The polarization change of a light, retroreflected after double-pass through the probe, provides one component of the field measurements along a chord of a plasma. A Faraday rotator glass or a Pockels cell has been used for the present passive optic probes. Active probes, currently in development, utilizing on-board sensor and electronics will allow measurements of multi-parameters including 3-D magnetic- and electric fields, plasma temperature, and density. The frequency-modulated sensor information will be transmitted to the remote detector using a LED or a laser diode. At issue is whether the on-board microelectronic components will survive the high acceleration during launch. A recent study emonstrated the survivability of a standard size electronic circuitry on ˜ 25 mm diameter circuit board, launched in a rail-gun at ˜ 1 × 10^6 m/s^2 (0.1 Mg¡¯s). [1] Considering the size of the TIP probes, ( ˜ 5 mm in diameter) it is believed the TIP active probes with surface-mount electronic components will survive much higher accelerations, up to 2 × 10^6 m/s^2 or more. Experimental and numerical studies of the TIP light gas gun have been performed to achieve a launch condition that lowers the peak acceleration and broadens the acceleration profile of the probe. [1] K. A. Schroder et al, IEEE Transactions on Magnetics, 35(1), Jan. 1999

  5. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  6. Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt

    SciTech Connect

    Sheppard, Scott S.; Trujillo, Chadwick

    2015-02-01

    We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected during our survey for objects beyond the Kuiper Belt using the Dark Energy Camera on the CTIO 4 m telescope. We obtained broadband colors of 62412 at the Magellan Telescope, which, along with 62412's low albedo, suggests it is a C-type asteroid. 62412's orbital dynamics and color strongly correlate with the Hygiea family in the outer main belt, making it the first active asteroid known in this heavily populated family. We also find 62412 to have a very short rotation period of 3.33 ± 0.01 hours from a double-peaked light curve with a maximum peak-to-peak amplitude of 0.45 ± 0.01 mag. We identify 62412 as the fastest known rotator of the Hygiea family and the nearby Themis family of similar composition, which contains several known main belt comets. The activity on 62412 was seen over one year after perihelion passage in its 5.6 year orbit. 62412 has the highest perihelion and one of the most circular orbits known for any active asteroid. The observed activity is probably linked to 62412's rapid rotation, which is near the critical period for break-up. The fast spin rate may also change the shape and shift material around 62412's surface, possibly exposing buried ice. Assuming 62412 is a strengthless rubble pile, we find the density of 62412 to be around 1500 kg m{sup −3}.

  7. Discovery and Characteristics of the Rapidly Rotating Active Asteroid (62412) 2000 SY178 in the Main Belt

    NASA Astrophysics Data System (ADS)

    Sheppard, Scott S.; Trujillo, Chadwick

    2015-02-01

    We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected during our survey for objects beyond the Kuiper Belt using the Dark Energy Camera on the CTIO 4 m telescope. We obtained broadband colors of 62412 at the Magellan Telescope, which, along with 62412's low albedo, suggests it is a C-type asteroid. 62412's orbital dynamics and color strongly correlate with the Hygiea family in the outer main belt, making it the first active asteroid known in this heavily populated family. We also find 62412 to have a very short rotation period of 3.33 ± 0.01 hours from a double-peaked light curve with a maximum peak-to-peak amplitude of 0.45 ± 0.01 mag. We identify 62412 as the fastest known rotator of the Hygiea family and the nearby Themis family of similar composition, which contains several known main belt comets. The activity on 62412 was seen over one year after perihelion passage in its 5.6 year orbit. 62412 has the highest perihelion and one of the most circular orbits known for any active asteroid. The observed activity is probably linked to 62412's rapid rotation, which is near the critical period for break-up. The fast spin rate may also change the shape and shift material around 62412's surface, possibly exposing buried ice. Assuming 62412 is a strengthless rubble pile, we find the density of 62412 to be around 1500 kg m-3.

  8. Moments applied in the rotation of massive objects in Shuttle extravehicular activity

    NASA Technical Reports Server (NTRS)

    Cousins, D.; Akin, D. L.

    1989-01-01

    Experimentally derived applied moments are presented for Space Shuttle crew EVA mission rotations of objects more massive than the human body. These levels appear to be small fractions of physiological limits; horizontal and vertical shoulder strength limits greater than 50 Nm have been established for foot-restrained, pressure-suited subjects in simulated weightlessness. The reduced level in operational EVA may be due to unfamiliarity with manual control in true weightlessness.

  9. A path towards understanding the rotation-activity relation of M dwarfs with K2 mission, X-ray and UV data

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Damasso, M.; Scholz, A.; Matt, S. P.

    2016-08-01

    We study the relation between stellar rotation and magnetic activity for a sample of 134 bright, nearby M dwarfs observed in the Kepler Two-Wheel (K2) mission during campaigns C0 to C4. The K2 lightcurves yield photometrically derived rotation periods for 97 stars (79 of which without previous period measurement), as well as various measures for activity related to cool spots and flares. We find a clear difference between fast and slow rotators with a dividing line at a period of ˜10 d at which the activity level changes abruptly. All photometric diagnostics of activity (spot cycle amplitude, flare peak amplitude and residual variability after subtraction of spot and flare variations) display the same dichotomy, pointing to a quick transition between a high-activity mode for fast rotators and a low-activity mode for slow rotators. This unexplained behavior is reminiscent of a dynamo mode-change seen in numerical simulations that separates a dipolar from a multipolar regime. A substantial number of the fast rotators are visual binaries. A tentative explanation is accelerated disk evolution in binaries leading to higher initial rotation rates on the main-sequence and associated longer spin-down and activity lifetimes. We combine the K2 rotation periods with archival X-ray and UV data. X-ray, FUV and NUV detections are found for 26, 41, and 11 stars from our sample, respectively. Separating the fast from the slow rotators, we determine for the first time the X-ray saturation level separately for early- and for mid-M stars.

  10. Large scale displacements and internal deformations of the Outer Western Carpathians during the Cenozoic as manifested in paleomagnetic rotations and in the magnetic fabrics

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Tokarski, Antek K.

    2016-04-01

    The paleomagnetic and magnetic anisotropy results interpreted in this presentation in terms of tectonics were obtained on the fine grained members, mostly mudstones/claystones, of the flysch from the Magura, the Silesian and the Dukla rootless nappes. The results are the best from the Upper Oligocene Krosno beds, which were affected by compression soon after deposition. These beds were available for sampling in the Silesian and Dukla nappes, but absent in the Magura nappe. Thus, in the latter older Paleogene strata were tested. A common feature of all sampled sediments is the low susceptibility (in the range of 10-4 SI or lower), weak remanence and the presence of pyrite. AMS measurements point to quite strong and probably repeated deformation in the Magura nappe, and the remanence is of-post-folding age. The AMS of the Silesian and Dukla nappes indicate weaker deformation, the orientations of the AMS lineations reflect compression. The remanence is of pre-folding age in the western and central segments of the Silesian nappe and is a mixture of pre and post-folding magnetization in the eastern segment. All the so far mentioned areas must have been affected by about 60° CCW rotation which followed the internal deformation. The Dukla nappe also rotated in the CCW sense, but the angle is far from well-defined. This can be attributed to the complicated internal structure of the nappe (e.g. presence of olistoliths) and non-removable overprint magnetizations. The relationship between local tectonic strikes and AMS lineations seems to imply that the ductile deformation responsible for the AMS lineations were acquired first, and the map-scale structures came into being during the CCW rotation of the studied segment of the nappe. AARM measurements documented that the fabrics of the ferrimagnetic minerals are often different from the orientation of the AMS fabrics. In such cases, they either fail to define an ellipsoid or the general orientations of the maxima are different

  11. X-RAY, FUV, AND UV OBSERVATIONS OF {alpha} CENTAURI B: DETERMINATION OF LONG-TERM MAGNETIC ACTIVITY CYCLE AND ROTATION PERIOD

    SciTech Connect

    DeWarf, L. E.; Guinan, E. F.; Datin, K. M.

    2010-10-10

    Over the last couple of decades we have been carrying out a study of stellar magnetic activity, dynamos, atmospheric physics, and spectral irradiances from a sample of solar-type G0-5 V stars with different ages. One of the major goals of this program is to study the evolution of the Sun's X-ray through NUV spectral irradiances with age. Of particular interest is the determination of the young Sun's elevated levels of high-energy fluxes because of the critical roles that X-ray (coronal) through FUV (transition region (TR), chromospheric) emissions play on the photochemical and photoionization evolution (and possible erosion) of early, young planetary atmospheres and ionospheres. Motivated by the current exoplanetary search missions (such as Kepler and CoRoT, along with the planned Space Interferometry Mission and Darwin/Terrestrial Planet Finder missions) that are hunting for Earth-size planets in the habitable zones (liquid water) of nearby main-sequence G-M stars, we are expanding our program to cooler, less luminous, but very importantly, much more numerous main-sequence K-type stars, such as {alpha} Centauri B. The long life (2-3x longer than the Sun) and slow evolution of K stars provide nearly constant energy sources for possible hosted planets. This program parallels our 'Sun in Time' program, but extends the study to stars with deeper convective zone depths. Presented here are X-ray (coronal; ROSAT, Chandra, XMM-Newton), UV (TR; International Ultraviolet Explorer (IUE)), NUV (chromospheric; IUE), and recently acquired FUV (TR/chromospheric; FUSE Cycles 7/8) observations of the K1 V star {alpha} Cen B (HD 128621; V = 1.33; (B - V) = +0.88; {tau} = 5.6 {+-} 0.6 Gyr). These combined high-energy measures provide a more complete look into the nature of {alpha} Cen B's magnetic activity and X-ray-UV radiances. We find that {alpha} Cen B has exhibited significant long-term variability in X-ray through NUV emission fluxes, indicating a solar-like long-term activity

  12. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  13. Long-Term International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Forroci, Michael P.; Gafka, George K.; Lutomski, Michael G.; Maher, Jacilyn S.

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity hazard level-4 materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards). Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years to come.

  14. Chromospheric activity and rotational modulation of the RS Canum Venaticorum binary V711 Tauri during 1998-2004

    NASA Astrophysics Data System (ADS)

    Cao, Dongtao; Gu, Shenghong

    2015-05-01

    We present long-term high-resolution spectroscopic observations of the very active RS Canum Venaticorum-type star V711 Tau, obtained during several observing runs from 1998 to 2004, and study its chromospheric activity. Using the spectral subtraction technique, several optical chromospheric activity indicators [including the He I D3, Na I D1, D2, Hα and Ca II infrared triplet (IRT) lines] formed at different atmospheric heights are analysed. Strong chromospheric emission supports earlier results that indicate that V711 Tau is a very active system. Two large optical flares were detected during our observations. The results suggest that the main part of chromospheric emission is attributed to the primary star of the system. The secondary also presents weak emission but is less active. The ratios of EW8542/EW8498 indicate that Ca II IRT emission arises predominantly from plage-like regions. We have found rotational modulation of chromospheric activity in the Hα and Ca II IRT lines, which suggests the presence of the chromospheric active longitudes over the surface of V711 Tau. Two active longitudes separated by about 180° were observed to dominate the activity, and the so-called flip-flop phenomenon was seen during our observations. Moreover, the chromospheric activity level shows a long-term variation that gradually increases from a deep minimum near the year 2002. A close spatial connection of photospheric spots and chromospheric active regions in both short and long timescales was found for V711 Tau.

  15. Excitation of the surface flute waves in electron cyclotron frequency range by internal rotating electron beam in a coaxial waveguide

    NASA Astrophysics Data System (ADS)

    Blednov, O.; Girka, I.; Girka, V.; Pavlenko, I.; Sydora, R.

    2014-12-01

    The initial stage of interaction between a gyrating beam of electrons, which move along Larmor orbits in a narrow gap between a cylindrical plasma layer and an internal screen of a metal coaxial waveguide and electromagnetic eigen waves, is studied theoretically. These waves are extraordinary polarized ones; they propagate along the azimuthal angle across an axial external steady magnetic field in the electron cyclotron frequency range. The numerical analysis shows that the excitation process is stable enough in respect to changing plasma waveguide parameters. The wider the plasma layer, the broader the range of plasma waveguide parameters within which effective wave excitation takes place. The main influence on the excitation of these modes is performed by the applied axial magnetic field, namely: its increase leads to an increase of growth rate and a broadening of the range of the waveguide parameters within which wave excitation is effective.

  16. Intercostal muscles are used during rotation of the thorax in humans.

    PubMed

    Whitelaw, W A; Ford, G T; Rimmer, K P; De Troyer, A

    1992-05-01

    To test the idea that the lateral intercostal muscles may be more suited to aid in rotational than respiratory movements of the thorax, we inserted bipolar fine-wire electrodes in external and internal intercostal muscles in the right midaxillary line in nine sitting subjects and examined the pattern of contraction of these muscles during voluntary axial rotations of the thorax (30-35 degrees), resting breathing, and CO2-induced hyperpnea. The right external intercostal muscles were strongly recruited in rotations to the left but were not active in rotations to the right. In contrast, the right internal intercostal muscles were active in rotations to the right but not in rotations to the left. Rotations completed in 1 or 2 s were associated with an early burst of electromyographic activity, followed by a low plateau that persisted while the rotation was held. Rotations made very gradually over 5-10 s were associated with gradually rising electromyographic activity. The amplitude of activity recorded during 30-35 degrees rotations was equivalent to that measured when minute ventilation was increased by CO2 to 50 l/min. We conclude that the lateral intercostal muscles have a major role in producing axial rotations of the thorax. PMID:1601803

  17. Mental Arithmetic Activates Analogic Representations of Internally Generated Sums

    ERIC Educational Resources Information Center

    Kallai, Arava Y.; Schunn, Christian D.; Fiez, Julie A.

    2012-01-01

    The internal representation of numbers generated during calculation has received little attention. Much of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we critically test the hypothesis that internally generated numbers are represented analogically, using an approximate number system. In an fMRI…

  18. Influence of hip external rotation on hip adductor and rectus femoris myoelectric activity during a dynamic parallel squat.

    PubMed

    Pereira, Glauber Ribeiro; Leporace, Gustavo; Chagas, Daniel das Virgens; Furtado, Luis F L; Praxedes, Jomilto; Batista, Luiz A

    2010-10-01

    This study sought to compare the myoelectric activity of the hip adductors (HAs) and rectus femoris (RF) when the hip was in a neutral position or externally rotated by 30° or 50° (H0, H30, and H50, respectively) during a parallel squat. Ten healthy subjects performed 10 repetitions of squats in each of the 3 hip positions and the myoelectric activities of the HAs and RF were recorded. The signal was then divided into categories representing concentric (C) and eccentric (E) contractions in the following ranges of motion: 0-30° (C1 and E1), 30-60° (C2 and E2), and 60-90° (C3 and E3) of knee flexion. From those signals, an root mean square (RMS) value for each range of motion in each hip position was obtained. All values were normalized to those obtained during maximum voluntary isometric contraction. We found that HAs showed a significant increase in myoelectric activity during C3 and E3 in the H30 and H50 positions, as compared with H0. Meanwhile, RF activity did not significantly differ between hip positions. Both muscles showed higher activation during 60-90° (C3 and E3) of knee flexion, as compared with 0-30° (C1 and E1) and 30-60° (C2 and E2). The results suggest that if the aim is to increase HA activity despite the low percentage of muscle activation, squats should be performed with 30° of external rotation and at least 90° of knee flexion. PMID:20651607

  19. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation.

    PubMed

    Martín-Sómer, Ana; Yáñez, Manuel; Hase, William L; Gaigeot, Marie-Pierre; Spezia, Riccardo

    2016-03-01

    Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

  20. School Counseling Intern Roles: Exploration of Activities and Comparison to the ASCA National Model

    ERIC Educational Resources Information Center

    Leuwerke, Wade C.; Bruinekool, R. Matthew; Lane, Amy

    2008-01-01

    Examination of 6,556 hours of school counselor interns' activity logs provided a detailed description of roles and activities. Comparison of counselor intern activities to the ASCA (2005) National Model found consistency between responsive services at the elementary level and both responsive services and guidance curriculum at the middle school…

  1. 21 CFR 357.810 - Active ingredients for deodorant drug products for internal use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Active ingredients for deodorant drug products for... HUMAN USE Deodorant Drug Products for Internal Use § 357.810 Active ingredients for deodorant drug products for internal use. The active ingredient of the product consists of either of the following...

  2. 21 CFR 357.810 - Active ingredients for deodorant drug products for internal use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Active ingredients for deodorant drug products for... HUMAN USE Deodorant Drug Products for Internal Use § 357.810 Active ingredients for deodorant drug products for internal use. The active ingredient of the product consists of either of the following...

  3. 21 CFR 357.810 - Active ingredients for deodorant drug products for internal use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Active ingredients for deodorant drug products for... HUMAN USE Deodorant Drug Products for Internal Use § 357.810 Active ingredients for deodorant drug products for internal use. The active ingredient of the product consists of either of the following...

  4. Forestry Canada: Strategic plan for international science and technology activities, 1990-95

    SciTech Connect

    Not Available

    1990-01-01

    This document summarizes the international science and technology activities of Forestry Canada and sets out a plan for strategic development and coordination of these activities over 5 years. The plan describes the major project elements of technology inflow and outflow, scientific excellence, international agreements, aid to less-developed countries, and international intelligence. It also provides a description of current and potential activities related to areas of concentration and objectives.

  5. Fluorescence properties of (E,E,E)-1,6-di(n-naphthyl)-1,3,5-hexatriene (n = 1, 2): effects of internal rotation.

    PubMed

    Sonoda, Yoriko; Shimoi, Yukihiro; Goto, Midori; Tohnai, Norimitsu; Kanesato, Masatoshi

    2013-01-24

    The fluorescence spectroscopic properties of (E,E,E)-1,6-di(n-naphthyl)-1,3,5-hexatrienes (1, n = 1; 2, n = 2) have been investigated in solution and in the solid state. In solution, the absorption maxima (λ(a)) of the lowest-energy band (1, 374 nm; 2, 376 nm in methylcyclohexane) were similar for 1 and 2, whereas the fluorescence maxima (λ(f)) (1, 545 nm; 2, 453 nm) and quantum yields (φ(f)) (1, 0.046; 2, 0.68) were very different regardless of the solvent polarity. The fluorescence spectrum of 1 was independent of the excitation wavelength (λ(ex)), whereas the spectrum of 2 was weakly λ(ex)-dependent. In the solid state, the spectroscopic properties of 1 and 2 were similar (λ(a) = 437-438 nm, λ(f) = 496-505 nm, φ(f) = 0.04-0.07). The origins of emission are both considered to be mainly monomeric. With the help of single-crystal X-ray structure analysis and ab initio quantum chemical calculation, we conclude that the red-shifted and weak emission of 1 in solution originates from a planar excited state having small charge transfer character, reached from a twisted Franck-Condon state by the excited-state geometrical relaxation accompanied by the internal rotation around the naphthalene (Ar)-CH single bond. The similar fluorescence properties of 1 and 2 in the solid state can be attributed to the restriction of the geometrical relaxation. The effects of the Ar-CH rotational isomerism on the fluorescence properties in solution, for 2 in particular, are also discussed.

  6. Phoenix Student Interns Program: Active Research on Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D. D.; Camacho, J.; Dorsch, W.; Hurd, D.; Meyer, J.; Overton, J.; Stocco, K.; Young, N.

    2008-03-01

    In the Phoenix Student Interns Program, high school students and teachers from around the U.S. work with Phoenix Mars Mission scientists and engineers to do the work associated with exploration and discovery on Mars in summer 2008.

  7. Internationalization as Mergers and Acquisitions: Senior International Officers' Entrepreneurial Strategies and Activities in Public Universities

    ERIC Educational Resources Information Center

    Deschamps, Eric; Lee, Jenny J.

    2015-01-01

    This study investigated the various emerging forms of internationalization and how senior international affairs officers describe their motivations and rationales for implementing these activities. Based on interviews with senior international officers at 30 international offices in U.S. public universities, this study identified and classified…

  8. Trends in ultracool dwarf magnetism. II. The inverse correlation between X-ray activity and rotation as evidence for a bimodal dynamo

    SciTech Connect

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-10

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a 'saturation' level and a moderate decrease in activity in the very fastest rotators ('supersaturation'). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type ≳M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a 'supersaturation'-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ∼3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  9. Trends in Ultracool Dwarf Magnetism. II. The Inverse Correlation Between X-Ray Activity and Rotation as Evidence for a Bimodal Dynamo

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-01

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a "saturation" level and a moderate decrease in activity in the very fastest rotators ("supersaturation"). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type gsimM7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a "supersaturation"-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ~3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  10. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer.

    PubMed

    Wei, Lin; Zhao, Xin; Chen, Bo; Li, Hongchang; Xiao, Lehui; Yeung, Edward S

    2013-05-21

    With time-resolved high-precision single-particle tracking methodologies, we explored the adsorption and thermal motion of transacting activator of transcription (TAT) peptide-modified nanocargo on a model lipid bilayer in the nonelectrostatic domain. We found that the lateral and rotational motion of TAT peptide-modified nanocargo could be effectively suppressed on the surface of neutral lipid membrane, a feature that cannot be explained by existing hypotheses. A semiquantitative association activation energy analysis revealed that multiple weak bonds were required for the initial adsorption process. As a result, the localized multiple TAT peptides on the surface of the nanocargo can provide a pathway for the creation of a net of peptide-lipid complexes (e.g., lipid domain). The dragging forces caused by these complexes effectively confined the thermal motion of the nanocargo on the fluid membrane that cannot be achieved by individual peptides with random spatial and conformational distributions. These interesting findings could provide insightful information for the better understanding of the intracellular internalization mechanism of TAT peptide-modified nanocargo and might shed new light on the development of highly efficient intracellular carriers for site-specific delivery of drugs and genes.

  11. Range of motion and leg rotation affect electromyography activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen M; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-09-01

    Leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed 8 LE REP at their 8 repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP × ROM interaction was detected (p < 0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, and 8 (p ≤ 0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p < 0.001). For vastus lateralis (VL), EMG increased across REP (p < 0.001) with NEU and TO EMG increasing linearly throughout ROM and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO, the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  12. Range of motion and leg rotation affect EMG activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-06-30

    The leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed eight LE REP at their 8-repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP x ROM interaction was detected (p<0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, 8 (p<0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p<0.001). For vastus lateralis (VL), EMG increased across REP (p<0.001) with NEU and TO EMG increasing linearly throughout ROM, and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  13. Enhancing International Research and Development-Project Activity on University Campuses: Insights from U.S. Senior International Officers

    ERIC Educational Resources Information Center

    Koehn, Peter H.; Deardorff, Darla K.; Bolognese, Kerry D.

    2011-01-01

    In the interconnected world of the UN Decade of Education for Sustainable Development, the ability of higher-education institutions to contribute to and benefit from international research undertakings, sustainable-development-project activity, and capacity-building endeavors requires transnational involvement. While the potential benefits are…

  14. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  15. Differences in Muscle Activities of the Infraspinatus and Posterior Deltoid during Shoulder External Rotation in Open Kinetic Chain and Closed Kinetic Chain Exercises.

    PubMed

    Kang, Min-Hyeok; Oh, Jae-Seop; Jang, Jun-Hyeok

    2014-06-01

    [Purpose] This study investigated the changes in electromyographic (EMG) activities of the infraspinatus and posterior deltoid muscles during shoulder external rotation under open kinetic chain (OKC) and closed kinetic chain (CKC) exercise conditions. [Subjects] In total, 15 healthy males participated in this study. [Methods] Subjects performed shoulder external rotations under CKC and OKC conditions while standing with and without weight support provided by a height-adjustable table. Pressure biofeedback was used to ensure a constant amount of weight support. The activities of the infraspinatus and posterior deltoid muscles during shoulder external rotation were measured using a wireless surface EMG system. The paired t-test was used to compare the EMG activities of the infraspinatus and the posterior deltoid muscles and the ratio of the infraspinatus to the posterior deltoid during shoulder external rotation under OKC and CKC conditions. [Results] The EMG activity of the infraspinatus and the ratio of the infraspinatus to the posterior deltoid activities were significantly increased, whereas the posterior deltoid activity was significantly decreased under the CKC condition compared to the OKC condition. [Conclusion] Clinicians should consider the CKC shoulder external rotation exercise when they wish to selectively strengthen the infraspinatus. PMID:25013291

  16. 14 CFR § 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false News releases concerning international... ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international activities. (a) Releases of information involving NASA activities, views, programs, or...

  17. 76 FR 30743 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... January 28, 2011 (76 FR 5212). Interested parties are encouraged to send comments to the OMB, Office of...; Internal Fraud Activities ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the revised..., ``Internal Fraud Activities,'' to the Office of Management and Budget (OMB) for review and approval for...

  18. 21 CFR 357.810 - Active ingredients for deodorant drug products for internal use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Active ingredients for deodorant drug products for internal use. 357.810 Section 357.810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... HUMAN USE Deodorant Drug Products for Internal Use § 357.810 Active ingredients for deodorant...

  19. 21 CFR 357.810 - Active ingredients for deodorant drug products for internal use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Active ingredients for deodorant drug products for internal use. 357.810 Section 357.810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... HUMAN USE Deodorant Drug Products for Internal Use § 357.810 Active ingredients for deodorant...

  20. 12 CFR 204.122 - Secondary market activities of international banking facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Secondary market activities of international banking facilities. 204.122 Section 204.122 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF...) Interpretations § 204.122 Secondary market activities of international banking facilities. (a) Questions have...

  1. 12 CFR 204.122 - Secondary market activities of international banking facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Secondary market activities of international banking facilities. 204.122 Section 204.122 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF...) Interpretations § 204.122 Secondary market activities of international banking facilities. (a) Questions have...

  2. 45 CFR 2516.820 - What types of internal evaluation activities are required of programs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Evaluation Requirements § 2516.820 What types of internal evaluation activities are required of programs? Programs are... 45 Public Welfare 4 2013-10-01 2013-10-01 false What types of internal evaluation activities...

  3. 45 CFR 2516.820 - What types of internal evaluation activities are required of programs?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Evaluation Requirements § 2516.820 What types of internal evaluation activities are required of programs? Programs are... 45 Public Welfare 4 2014-10-01 2014-10-01 false What types of internal evaluation activities...

  4. 45 CFR 2516.820 - What types of internal evaluation activities are required of programs?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS Evaluation Requirements § 2516.820 What types of internal evaluation activities are required of programs? Programs are... 45 Public Welfare 4 2012-10-01 2012-10-01 false What types of internal evaluation activities...

  5. 12 CFR 204.122 - Secondary market activities of international banking facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Secondary market activities of international banking facilities. 204.122 Section 204.122 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF...) Interpretations § 204.122 Secondary market activities of international banking facilities. (a) Questions have...

  6. 12 CFR 204.122 - Secondary market activities of international banking facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Secondary market activities of international banking facilities. 204.122 Section 204.122 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF...) Interpretations § 204.122 Secondary market activities of international banking facilities. (a) Questions have...

  7. 12 CFR 204.122 - Secondary market activities of international banking facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Secondary market activities of international banking facilities. 204.122 Section 204.122 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF...) Interpretations § 204.122 Secondary market activities of international banking facilities. (a) Questions have...

  8. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  9. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  10. Isokinetic torque imbalances in the rotator cuff of the elite water polo player.

    PubMed

    McMaster, W C; Long, S C; Caiozzo, V J

    1991-01-01

    The specific repetitive activity of water polo, like baseball pitching, emphasizes adduction and internal rotation. This study used the Cybex II to evaluate the isokinetic strength of the rotator cuff in elite water polo players and in a group of control subjects. The water polo players were significantly stronger than the controls. Of greater importance was the confirmation of imbalances in the rotator cuff force couples of adduction/abduction and external/internal rotation. These changes are similar to those reported for pitchers. The adductors in the water polo group had gained in relative strength resulting in an increase in the adduction/abduction ratio to about 2:1. The internal rotators had gained in relative strength resulting in a decrease in the external/internal ratio to about 0.6:1. For both force couples the differences are more apparent at a slow speed. Side-to-side differences were not significant.

  11. 14 CFR 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international... Headquarters offices of External Relations and Public Affairs. (b) NASA Centers and Headquarters offices will report all visits proposed by representatives of foreign news media to the Public Affairs Officer of...

  12. College Professors' and Instructors' Attitudes toward International Project Activity

    ERIC Educational Resources Information Center

    Ryzhkova, I. V.

    2010-01-01

    The Bologna process, the most successful European project in the field of higher education, calls for colleges and universities to take joint actions to create a unified European educational space. One possible way to accomplish this task is to implement international scientific research projects. In connection with this, it becomes necessary to…

  13. On the use of sensor fusion to reduce the impact of rotational and additive noise in human activity recognition.

    PubMed

    Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2012-01-01

    The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  14. On the Use of Sensor Fusion to Reduce the Impact of Rotational and Additive Noise in Human Activity Recognition

    PubMed Central

    Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2012-01-01

    The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered. PMID:22969386

  15. Association between internalizing disorders and day-to-day activities of low energetic expenditure.

    PubMed

    Gosmann, Natan Pereira; Salum, Giovanni Abrahão; Schuch, Felipe; Silveira, Patrícia Pelufo; Bosa, Vera Lucia; Goldani, Marcelo Zubaran; Manfro, Gisele Gus

    2015-02-01

    The objective of this study is to compare energetic expenditure in day-to-day activities among subjects with internalizing disorders (depression and anxiety), externalizing disorders (attention deficit/hyperactivity disorder and oppositional defiant disorder) and healthy children and adolescents without any psychiatric diagnosis. One hundred and five (n = 105) students from a community sample were evaluated throughout a structured psychiatric interview and categorized into three groups: internalizing (n = 54), externalizing (n = 12) and typically developing controls (TDC, n = 39). Energetic expenditure was evaluated using 3-day physical activity record. Subjects with internalizing disorders performed activities with lower energetic expenditure as compared to those with externalizing disorders and TDC. Participants with externalizing disorders had more energetic expenditure variability. Our study suggests that internalizing disorders are associated with activities of low energetic expenditure in day-to-day activities, extending previous findings with physical exercise. These findings may further contribute to the understanding of the associated morbidity previously described in patients with internalizing disorders.

  16. Summary of International Guidelines for Physical Activity Following Pregnancy

    PubMed Central

    Evenson, Kelly R.; Mottola, Michelle F.; Owe, Katrine M.; Rousham, Emily K.; Brown, Wendy J.

    2014-01-01

    Postpartum physical activity can improve mood, maintain cardiorespiratory fitness, improve weight control, promote weight loss, and reduce depression and anxiety. This review summarizes current guidelines for postpartum physical activity worldwide. PubMed (MedLINE) was searched for country-specific government and clinical guidelines on physical activity following pregnancy through the year 2013. Only the most recent guideline was included in the review. An abstraction form facilitated extraction of key details and helped to summarize results. Six guidelines were identified from five countries (Australia, Canada, Norway, United Kingdom, United States). All guidelines were embedded within pregnancy-related physical activity recommendations. All provided physical activity advice related to breastfeeding and three remarked about physical activity following Caesarean delivery. Recommended physical activities mentioned in the guidelines included aerobic (3/6), pelvic floor exercise (3/6), strengthening (2/6), stretching (2/6), and walking (2/6). None of the guidelines discussed sedentary behavior. The guidelines that were identified lacked specificity for physical activity. Greater clarity in guidelines would be more useful to both practitioners and the women they serve. Postpartum physical activity guidelines have the potential to assist women to initiate or resume physical activity following childbirth, so that they can transition to meeting recommended levels of physical activity. Health care providers have a critical role in encouraging women to be active at this time, and the availability of more explicit guidelines may assist them to routinely include physical activity advice in their postpartum care. PMID:25112589

  17. International Approaches to Whole-of-School Physical Activity Promotion

    ERIC Educational Resources Information Center

    McMullen, Jaimie; Ní Chróinín, Déirdre; Tammelin, Tuija; Pogorzelska, Malgorzata; van der Mars, Hans

    2015-01-01

    Increasing physical activity opportunities in schools has emerged as a global priority among school-aged youth. As a result, many countries have designed and implemented whole-of-school physical activity initiatives that seek to increase physical activity opportunities that are available to school-aged children before, during, and after school.…

  18. ‘Progressive Development of International Law’ on Remote Sensing Activities: from the View of International Cooperation

    NASA Astrophysics Data System (ADS)

    Fukunaga, Masatoshi

    The objective of this paper is to investigate into the development of international law on remote sensing activities. There is one general United Nations General Assembly Resolution concerning remote sensing activities, but the problems remain to be solved. Considering international cooperation on remote sensing activities, it seems that there is a common direction that data exchange/sharing should be taken place based on ‘non-discriminatory’ principle, ‘free or no more than the cost of reproduction and delivery,’ and ‘best endeavours.’ It is also mentioned that the remote sensing data exchange/sharing on international cooperation have indirectly been engaging in the harmonization among interests of sensing States, developing countries and sensed States. It is assumed that the data exchange/sharing principles have been contributing to the development of customary international law as “limited in the peacetime and for civil use, every State shall enjoy the access in the manner of nondiscriminatory and reasonable cost and time to the data owned by governmental entities substantially.”

  19. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats.

    PubMed

    Bahník, Štěpán; Stuchlík, Aleš

    2015-01-01

    The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidance must be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark. PMID:26417540

  20. Shoulder rotators electro-mechanical properties change with intensive volleyball practice: a pilot study.

    PubMed

    Cornu, C; Nordez, A; Bideau, B

    2009-12-01

    This pilot study was designed to assess the incidence of high-level volleyball practice on muscle strength production and muscle activation during internal and external shoulder rotations. Seven professional and seven French amateur league volleyball players performed maximal isometric at three forearm angles, concentric and eccentric isokinetic internal and external shoulder rotations. The torque production and muscle activation levels of PECTORALIS MAJOR and INFRASPINATUS were determined. Few significant differences were found for muscle activation and co-activation between amateur and professional volleyball players during both internal and external rotations. No significant difference in torque production was observed for shoulder internal rotation between professional and amateur volleyball players. Torque production was significantly higher during shoulder external rotation for amateur (46.58+/-2.62 N . m) compared to professional (35.35+/-1.17 N . m) volleyball players relative to isometric contractions, but it was not different during isokinetic efforts. The torque ratios for external/internal rotations were always significantly lower for professional (0.42+/-0.03 pooling isometric and concentric conditions) compared to amateur volleyball players (0.56+/-0.03 pooling isometric and concentric conditions). Those results emphasize that a high level of volleyball practice induces a strong external rotators deficit compared to sports such as swimming, baseball or tennis.

  1. Effects of Stimulus Type and Strategy on Mental Rotation Network: An Activation Likelihood Estimation Meta-Analysis

    PubMed Central

    Tomasino, Barbara; Gremese, Michele

    2016-01-01

    We can predict how an object would look like if we were to see it from different viewpoints. The brain network governing mental rotation (MR) has been studied using a variety of stimuli and tasks instructions. By using activation likelihood estimation (ALE) meta-analysis we tested whether different MR networks can be modulated by the type of stimulus (body vs. non-body parts) or by the type of tasks instructions (motor imagery-based vs. non-motor imagery-based MR instructions). Testing for the bodily and non-bodily stimulus axis revealed a bilateral sensorimotor activation for bodily-related as compared to non-bodily-related stimuli and a posterior right lateralized activation for non-bodily-related as compared to bodily-related stimuli. A top-down modulation of the network was exerted by the MR tasks instructions with a bilateral (preferentially sensorimotor left) network for motor imagery- vs. non-motor imagery-based MR instructions and the latter activating a preferentially posterior right occipito-temporal-parietal network. The present quantitative meta-analysis summarizes and amends previous descriptions of the brain network related to MR and shows how it is modulated by top-down and bottom-up experimental factors. PMID:26779003

  2. Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies

    SciTech Connect

    Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.

    2013-01-01

    Commercially available nanoparticle platinum on high surface area carbon black (Pt/HSC) electrocatalysts were characterized in rotating disk electrode (RDE) setups using varying ink formulations and film drying techniques in an attempt to obtain thin, uniform films and reproducible activity. Electrodes prepared from Nafion-free inks that were dried under an isopropyl alcohol (IPA) atmosphere produced uniform, thin films at low electrocatalyst loadings of ~4.5 mg/cm2 Pt. These Nafion-free/IPA-dried electrodes were found to exhibit oxygen reduction reaction (ORR) activities higher than conventional Nafion-based/Air-dried electrodes by a factor of ~2.8. The magnitude of mass and specific activities were determined to be im ~771 ±56 mA/mgPt and is~812 ±59 mA/cm2Pt respectively and appear to be the highest values reported for RDE measurements on Pt/HSC in 0.1M HClO4 at 20 mV/s and 25°C. Electrochemical diagnostics including ORR I-V profiles, cyclic voltammograms and electrochemical impedance spectroscopy (EIS) studies were conducted to investigate the thin film Pt/HSC electrodes and correlate results to film morphology and electrochemical activity.

  3. The effects of hip external rotator exercises and toe-spread exercises on lower extremity muscle activities during stair-walking in subjects with pronated foot

    PubMed Central

    Goo, Young-Mi; Kim, Da-Yeon; Kim, Tae-Ho

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of toe-spread (TS) exercises and hip external rotator strengthening exercises for pronated feet on lower extremity muscle activities during stair-walking. [Subjects and Methods] The participants were 20 healthy adults with no present or previous pain, no past history of surgery on the foot or the ankle, and no foot deformities. Ten subjects performed hip external rotator strengthening exercises and TS exercises and the remaining ten subjects performed only TS exercises five times per week for four weeks. [Results] Less change in navicular drop height occurred in the group that performed hip external rotator exercises than in the group that performed only TS exercises. The group that performed only TS exercises showed increased abductor hallucis muscle activity during both stair-climbing and -descending, and the group that performed hip external rotator exercises showed increased muscle activities of the vastus medialis and abductor hallucis during stair-climbing and increased muscle activity of only the abductor hallucis during stair-descending after exercise. [Conclusion] Stair-walking can be more effectively performed if the hip external rotator muscle is strengthened when TS exercises are performed for the pronated foot. PMID:27134364

  4. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  5. Proteorhodopsin Activation Is Modulated by Dynamic Changes in Internal Hydration.

    PubMed

    Feng, Jun; Mertz, Blake

    2015-12-01

    Proteorhodopsin, a member of the microbial rhodopsin family, is a seven-transmembrane α-helical protein that functions as a light-driven proton pump. Understanding the proton-pumping mechanism of proteorhodopsin requires intimate knowledge of the proton transfer pathway via complex hydrogen-bonding networks formed by amino acid residues and internal water molecules. Here we conducted a series of microsecond time scale molecular dynamics simulations on both the dark state and the initial photoactivated state of blue proteorhodopsin to reveal the structural basis for proton transfer with respect to protein internal hydration. A complex series of dynamic hydrogen-bonding networks involving water molecules exists, facilitated by water channels and hydration sites within proteorhodopsin. High levels of hydration were discovered at each proton transfer site-the retinal binding pocket and proton uptake and release sites-underscoring the critical participation of water molecules in the proton-pumping mechanism. Water-bridged interactions and local water channels were also observed and can potentially mediate long-distance proton transfer between each site. The most significant phenomenon is after isomerization of retinal, an increase in water flux occurs that connects the proton release group, a conserved arginine residue, and the retinal binding pocket. Our results provide a detailed description of the internal hydration of the early photointermediates in the proteorhodopsin photocycle under alkaline pH conditions. These results lay the fundamental groundwork for understanding the intimate role that hydration plays in the structure-function relationship underlying the proteorhodopsin proton-pumping mechanism, as well as providing context for the relationship of hydration in proteorhodopsin to other microbial retinal proteins. PMID:26562497

  6. Continued activity in P/2013 P5 PANSTARRS. Unexpected comet, rotational break-up, or rubbing binary asteroid?

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Boehnhardt, H.; Snodgrass, C.; Meech, K. J.; Deller, J.; Gillon, M.; Jehin, E.; Kuehrt, E.; Lowry, S. C.; Manfroid, J.; Micheli, M.; Mottola, S.; Opitom, C.; Vincent, J.-B.; Wainscoat, R.

    2014-03-01

    The object P/2013 P5 PANSTARRS was discovered in August 2013, displaying a cometary tail, but its orbital elements indicated that it was a typical member of the inner asteroid main belt. We monitored the object from 2013 August 30 until 2013 October 05 using the CFHT 3.6 m telescope (Mauna Kea, HI), the NTT (ESO, La Silla), the CA 1.23 m telescope (Calar Alto), the Perkins 1.8m (Lowell) and the 0.6 m TRAPPIST telescope (La Silla). We measured its nuclear radius to be r ≲ 0.25-0.29 km, and its colours g' - r' = 0.58 ± 0.05 and r' - i' = 0.23 ± 0.06, typical for an S-class asteroid, as expected for an object in the inner asteroid belt and in the vicinity of the Flora collisional family. We failed to detect any rotational light curve with an amplitude <0.05 mag and a double-peaked rotation period <20 h. The evolution of the tail during the observations was as expected from a dust tail. A detailed Finson-Probstein analysis of deep images acquired with the NTT in early September and with the CFHT in late September indicated that the object was active since at least late January 2013 until the time of the latest observations in 2013 September, with at least two peaks of activity around 2013 June 14 ± 10 d and 2013 July 22 ± 3 d. The changes of activity level and the activity peaks were extremely sharp and short, shorter than the temporal resolution of our observations (~1 d). The dust distribution was similar during these two events, with dust grains covering at least the 1-1000 μm range. The total mass ejected in grains <1 mm was estimated to be 3.0 × 106 kg and 2.6 × 107 kg around the two activity peaks. Rotational disruption cannot be ruled out as the cause of the dust ejection. We also propose that the components of a contact binary might gently rub and produce the observed emission. Volatile sublimation might also explain what appears as cometary activity over a period of 8 months. However, while main belt comets best explained by ice sublimation are found

  7. An Analysis of an Automatic Coolant Bypass in the International Space Station Node 2 Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.

  8. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  9. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  10. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  11. Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed.

    PubMed

    Tan, Chung-Sung; Lee, Pei-Lun

    2008-03-15

    Desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol (TFP) by supercritical carbon dioxide in a rotating packed bed was investigated in this study. The experimental data show that the time required to achieve complete desorption of TFP from activated carbon in a rotating packed bed was much lower than that in a static packed bed. The reduction of desorption time is attributed to the presence of centrifugal force. The supercritical CO2 desorption efficiency in a rotating packed bed was observed to increase with increasing rotation speed, pressure, and C02 flow rate. To enhance desorption efficiency, a smaller activated carbon particle size was suggested. At low operating pressures such as 8.96 and 11.72 MPa, a better desorption efficiency was found to occur at lower temperatures in a temperature range of 305-335 K. However, at high operating pressures such as 15.86 MPa, a temperature of 315 K was found to be more appropriate for desorption, as compared to other temperatures. Due to a reduction of packed bed volume and an increase in desorption efficiency, supercritical CO2 desorption in a rotating packed bed is suggested for recovering TFP from the exhaust gases. PMID:18409651

  12. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space...

  13. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space...

  14. Earth Rotation Parameters from DSN VLBI: 1994

    NASA Technical Reports Server (NTRS)

    Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.

    1994-01-01

    In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).

  15. Revisiting a possible relationship between solar activity and Earth rotation variability

    NASA Astrophysics Data System (ADS)

    Abarca del Rio, R.; Gambis, D.

    2011-10-01

    A variety of studies have searched to establish a possible relationship between the solar activity and earth variations (Danjon, 1958-1962; Challinor, 1971; Currie, 1980, Gambis, 1990). We are revisiting previous studies (Bourget et al, 1992, Abarca del Rio et al, 2003, Marris et al, 2004) concerning the possible relationship between solar activity variability and length of day (LOD) variations at decadal time scales. Assuming that changes in AAM for the entire atmosphere are accompanied by equal, but opposite, changes in the angular momentum of the earth it is possible to infer changes in LOD from global AAM time series, through the relation : delta (LOD) (ms) = 1.68 10^29 delta(AAM) (kgm2/s) (Rosen and Salstein, 1983), where δ(LOD) is given in milliseconds. Given the close relationship at seasonal to interannual time's scales between LOD and the Atmospheric Angular Momentum (AAM) (see Abarca del Rio et al., 2003) it is possible to infer from century long atmospheric simulations what may have been the variability in the associated LOD variability throughout the last century. In the absence of a homogeneous century long LOD time series, we take advantage of the recent atmospheric reanalyzes extending since 1871 (Compo, Whitaker and Sardeshmukh, 2006). The atmospheric data (winds) of these reanalyzes allow computing AAM up to the top of the atmosphere; though here only troposphere data (up to 100 hPa) was taken into account.

  16. English Activities in International Understanding Lessons in a Japanese Public Elementary School

    ERIC Educational Resources Information Center

    Monoi-Yamaga, Naoko

    2010-01-01

    This study was an investigation of public elementary school students' affective changes through English Activities of international understanding lessons at Japanese public elementary school. The learners' expected affective changes were regarded as "International Posture", "Self-esteem", "Collective Self-esteem", and "Interest in Foreign Affairs"…

  17. Promoting Physical Activity among International Students in Higher Education: A Peer-Education Approach

    ERIC Educational Resources Information Center

    Yan, Zi; Cardinal, Bradley J.

    2013-01-01

    International students have become an important and growing group in U.S. higher education. Although many universities offer various types of support to international students, little attention is given to preventive health services or health promotion efforts, such as the promotion of physical activity. This article outlines a theory-based…

  18. The World Wide Web and Active Learning in the International Relations Classroom.

    ERIC Educational Resources Information Center

    Kuzma, Lynn M.

    1998-01-01

    Addresses the use of the World Wide Web by international relations students and scholars. Considers an instructional web project for an international relations class outlining the project's contribution to active learning and the development of students' critical thinking and problem-solving skills. Provides advice for educators interested in…

  19. The International Planetary Data Alliance (IPDA): Overview of the Activities

    NASA Astrophysics Data System (ADS)

    Sarkissian, A.; Gopala Krishna, B.; Crichton, D. J.; Beebe, R.; Yamamoto, Y.; Arviset, C.; Di Capria, M. T.; Mickaelian, A. M.; IPDA

    2016-06-01

    An overview of activities of the IPDA is presented in the frame of the recently growing number of successful space experiments dedicated to planetary observation, with a significantly growing number of people involved in such activity and with significantly growing numbers of web services willing to share data and services in our research domain, but also, in close by domains such as astronomy, heliophysics and atmospheric sciences for the Earth. An overview of a number of space agencies and organizations is given. In total, IPDA consists of 13 national organizations: NASA (USA), CNES (France), ESA (Europe), STFC (UK), JAXA (Japan), ASI (Italy), ISRO (India), DLR (Germany), RKA (Russia), RCSA (China), FMI (Finland), ArSA (Armenia) and United Arab Emirates. Some projects of 2015 in frame of the IPDA activities are described.

  20. An Analysis of the Torsion-Rotation-Vibration Rotational Spectrum of the Lowest In-Plane Bend and First Excited Torsional State of the C(3V) Internal Rotor C2H5CN

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Pickett, Herbert M.; Sastry, K. V. L. N.

    2000-01-01

    C2H5CN (Propionitrile or ethyl cyanide) is a well known interstellar species abundantly observed in hot cores during the onset of star formation. The onset of star formation generally results in elevated temperature, which thermally populates may low lying vibrational states such as the 206/cm in-plane bend and the 212/cm first excited torsional state in C2H5CN. Unfortunately, these two states are strongly coupled through a complex series of torsion-vibration-rotation interactions, which dominate the spectrum. In order to understand the details of these interactions and develop models capable of predicting unmeasured transitions for astronomical observations in C2H5CN and similar molecules, several thousand rotational transitions in the lowest excited in-plane bend and first excited torsional state have been recorded, assigned and analyzed. The analysis reveals very strong a- and b-type Coriolis interactions and a number of other smaller interactions and has a number of important implications for other C3V torsion-rotation-vibration systems. The relative importance and the physical origins of the coupling among the rotational, vibrational and torsional motions will be presented along with a full spectroscopic analysis and supporting astronomical observations.

  1. International Perspectives on Adapted Physical Activity. Selected Papers Presented at the International Symposium on Adapted Physical Activity (5th, Toronto, Canada, October 1-4, 1985).

    ERIC Educational Resources Information Center

    Berridge, Mavis E., Ed.; Ward, Graham R., Ed.

    The 36 papers in this book were presented at the Fifth International Symposium on Adapted Physical Activity. Presentations document some of the research findings and new ideas in physical education and recreation programs designed to improve the quality of life for special populations. The collection represents the breadth of the field, from the…

  2. Black Educational Activism for Community Empowerment: International Leadership Perspectives

    ERIC Educational Resources Information Center

    Wilson, Camille; Johnson, Lauri

    2015-01-01

    This article discusses themes emerging from studies of Black educational activism conducted in London, Toronto, and Detroit. An analysis of narrative data reveals that Black educational activists resist racism and other forms of oppression; act as border crossers and/or boundary spanners as they navigate complex community-based, institutional, and…

  3. Sequence Dance for Lifelong Leisure Activity: An International Experience!

    ERIC Educational Resources Information Center

    Bennett, John P.

    This paper provides the outline of a session in dance at the annual meeting of the American Alliance for Health, Physical Education, Recreation, and Dance. The purpose of the session was to provide an opportunity to celebrate individual differences while learning new skills for lifelong leisure activity through an English dance form known as…

  4. Non-Exercise Estimation of VO[subscript 2]max Using the International Physical Activity Questionnaire

    ERIC Educational Resources Information Center

    Schembre, Susan M.; Riebe, Deborah A.

    2011-01-01

    Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO[subscript 2]max) as well as sub-maximal exercise testing. The International Physical Activity Questionnaire is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO[subscript…

  5. Active retroreflector with in situ beam analysis to measure the rotational orientation in conjunction with a laser tracker

    NASA Astrophysics Data System (ADS)

    Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.

    2013-04-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object`s rotational orientation (pitch, yaw, roll). These devices are based either on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on costly camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT`s beam but are restricted in roll angle measurements. In the past we have presented a new method [1][2] to measure all six degrees of freedom in conjunction with a LT. Now we dramatically optimized the method and designed a new prototype, e.g. taking into consideration optical alignment, reduced power loss, highly optimized measuring signals and higher resolution. A method is described that allows compensating the influence of the LT's beam offset during tracking the active retroreflector. We prove the functionality of the active retroreflector with the LT and, furthermore, demonstrate the capability of the system to characterize the tracking behavior of a LT. The measurement range for the incident laser beam is +/-12° with a resolution of 0.6".

  6. Report on the Status of the UFD Campaign International Activities in Disposal Research at SNL.

    SciTech Connect

    McMahon, Kevin A.

    2015-08-25

    The following summaries are provided as fulfillment of milestone M4FT-15SN0811021 and represent international collaboration activities in disposal research funded by the US DOE Used Fuel Disposition (UFD) Campaign during Fiscal Year 2015.

  7. 78 FR 31578 - Agency Information Collection Activities; Proposed Collection; Comments Requested: International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Agency Information Collection Activities; Proposed Collection; Comments Requested: International Terrorism Victim Compensation Program Application ACTION: 30-Day Notice. The Department of...

  8. 77 FR 26824 - Agency Information Collection; Activity Under OMB Review; Reporting Required for International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... soliciting comments on the following collection of information was published on February 29, 2012 (77 FR... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Reporting Required for International Civil Aviation Organization (ICAO) AGENCY: Research &...

  9. Overview of the PPPL International Experimental Stellarator Collaboration Activity

    SciTech Connect

    Gates, David

    2012-03-28

    PPPL has initiated and strengthened collaborative experimental programs aimed at developing the required toolsets and scientific knowledge for advancing stellarators as a viable fusion energy source. In particular, activities at LHD and W7-X, the two large superconducting helical confinement systems in the world, have been expanded. The focus at LHD has been on diagnostic development and data analysis, since the device is a mature research facility with more than 20MW of heating power available. High beta stability experiments, ion and electron temperature measurements using a recently installed imaging x-ray crystal spectrometer, and 3D equilibrium reconstructions will be described. The focus on W7-X has been to develop hardware capabilities for divertor heat flux control, including plasma-facing components, error field correction coils, and power supplies. Progress on these and other activities will be presented.

  10. Evaluation of dentin permeability after light activated internal dental bleaching.

    PubMed

    Carrasco, Laise Daniela; Zanello Guerisoli, Danilo M; Pécora, Jesus Djalma; Fröner, Izabel Cristina

    2007-02-01

    The aim of this in vitro study was to assess quantitatively the dentin permeability of human teeth after intracoronal bleaching therapy with 35% hydrogen peroxide activated by LEDs, halogen lamp or using the walking bleach technique. Forty human maxillary central incisors had standard access cavities performed and the cervical thirds of the canals were prepared with Gates-Glidden drills up to a size 130. Roots were resected between the coronal and middle thirds and the apical portions were discarded. A glass ionomer, 2 mm thick cervical plug was placed inside the canal, at the cement-enamel junction level. Group I received 35% hydrogen peroxide gel activated by LEDs. Group II was submitted to 35% hydrogen peroxide gel activated by halogen lamp. Group III received 35% hydrogen peroxide gel and the walking bleach technique was followed. Group IV (control) received a dry cotton pellet inside the pulp chamber with temporary restoration. Dentinal permeability was quantified by copper ion penetration. Linear measurements were obtained by analysis of digital images under x 5 magnification. Mean values and SD for the experimental groups were: I, 7.1% (+/-3.2%); II, 8.4% (+/-3.0%); III, 9.1% (+/-3.0%); IV, 1.3% (+/-2.8%). One-way ANOVA was used to analyze the results. Results showed an increase of permeability values for groups I, II and III when compared to group IV (control); however, no statistical differences were found between the three tested bleaching techniques. It can be concluded that 35% hydrogen peroxide activated by LED, halogen lamp or used following the walking bleach technique produced similar increase in dentinal permeability. PMID:17227378

  11. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  12. Fuzzy and Internal Model Control of an Active Suspension System for a 2-DOF Vehicle Model

    NASA Astrophysics Data System (ADS)

    Demir, Özgür; Karakurt, Derya; Alarçin, Fuat

    2007-09-01

    In this study, Fuzzy-Logic-Based (FL) controller and Internal Model Control (IMC) scheme are designed for active suspension system. An aim of active suspension systems for a vehicle model is to provide good road handling and high passenger comfort by shaping the output function. The simulated system was considered to be a two-degree-of-freedom (2-DOF) model. The effectiveness of this Fuzzy Control is verified by comparison with Internal Model Control simulation results. Simulation results show that the effectiveness of the fuzzy controller is better than Internal Model Control under the same conditions.

  13. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    NASA Astrophysics Data System (ADS)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  14. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  15. Innovative Ideas for Coordinating International Space Activities: International Center for Space Medicine, International Space Authority, and other Global Youth Space Initiatives

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    2002-01-01

    The Space Generation Forum SGF, at UNISPACE-III, as one of its ten formal recommendations to the United Nations in 1999, put forward the suggestion that the an international space authority should be created. Other recommendations were the establishment of an International Center for Space Medicine, creation of a global space exploration and development program, establishment of a global space (Nobel) prize, and a global space library. These projects are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) which shall unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11- 13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the findings of these discussions. In this paper, we present the International Space Authority idea together with recommendations on how that might be taken forward. The purpose of such an organization would be to allow: 1. Oversight and enforcement for the balanced regulation of multiple interests in space 2. Access for all peoples to the material benefits and knowledge and understanding enabled by the exploration and 3. Pooling of national and industry resources for the creation of space infrastructure, missions and enterprises for Operating principles: 1. The ISA regulatory regime would encourage commercialization and the harnessing of competitive market 2. Consistent with its charter to ensure access to all peoples, all UN member states and appropriate NGOs would 3. Close coordination with

  16. Chromospherically active stars. IX - HD 33798 = V390 Auirigae - A lithium-rich rapidly rotating single giant

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Marschall, Laurence A.

    1991-01-01

    Results are presented of spectroscopic observations of HD 33798 obtained to determine if this star is a short-period binary and to examine its evolutionary status. Analysis of 40 radial velocities indicates no periodic velocity variations, suggesting that the star is single, so its rapid rotation is highly unusual. This rotation is inconsistent with the rotational brake hypothesis advanced by Gray (1989). It is proposed that HD 33798 is in a post-main-sequence phase of evolution. Its space motion is similar to FK Com, suggesting that it is a coalesced binary in the process of spinning down. Scenarios are presented to explain its large lithium abundance. A version in which material is transferred from a rapidly rotating core is suggested as the most likely.

  17. Eye Openers: Handbook of International Teaching Activities. Some Borrowed...Some New.

    ERIC Educational Resources Information Center

    Bluegrass International Program, Lexington, KY.

    This collection of global activities and teaching strategies, suggested and used by teachers, helps to foster international education in the classroom. There are 32 separate proposals for learning activities, covering a variety of format styles, educational levels, and classroom procedures. Some examples include: (1) "Global ABC's" is a poem…

  18. Physical Activity and Psychological Benefits. International Society of Sport Psychology Position Statement.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1992

    1992-01-01

    International Society of Sport Psychology clarifies the psychological benefits of physical activity, noting the positive relationship between physical activity level and mental health. Exercise can reduce anxiety, decrease depression levels, reduce neuroticism and anxiety, reduce stress, and have beneficial emotional effects for both sexes across…

  19. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  20. Planning activity for internally generated reward goals in monkey amygdala neurons.

    PubMed

    Hernádi, István; Grabenhorst, Fabian; Schultz, Wolfram

    2015-03-01

    The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed a multi-step choice task in which monkeys followed internal plans to save rewards toward self-defined goals. During this self-controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal's plan to obtain specific rewards several trials ahead. This prospective activity encoded crucial components of the animal's plan, including value and length of the planned choice sequence. It began on initial trials when a plan would be formed, reappeared step by step until reward receipt, and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic of goal-directed behavior. The existence of neuronal planning activity in the amygdala suggests that this structure is important in guiding behavior toward internally generated, distant goals.

  1. US National Committee for the International Year of the Planet Earth: Plans and Activities

    NASA Astrophysics Data System (ADS)

    Hess, J. W.

    2007-12-01

    The International Year of the Planet Earth, as proclaimed by Resolution 60/192 of the United Nations General Assembly at its 60th Session, is a 3-year event (2007-2009) aimed at promoting the contribution to sustainable development of society by using geoscience knowledge and information. It is a joint initiative by the International Union of Geological Sciences (IUGS and UNESCO. The US National Committee (USNC) for the International Year of the Planet Earth is responsible for developing national science and outreach activities that contribute to the success of the global awareness on the use of geosociety for society. The USNC plans for a launch activity early in 2008 and a national outreach activity in the fall. Various US based geoscience societies and federal agencies will be conducting IYPE branded activities in support of the year.

  2. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  3. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  4. The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100).

    PubMed

    Juurlink, L B; Smith, R R; Utz, A L

    2000-01-01

    We have measured the sticking probability of methane excited to v = 1 of the v3 antisymmetric C-H stretching vibration on a clean Ni(100) surface as a function of rotational state (J = 0, 1, 2 and 3) and have investigated the effect of Coriolis-mixing on reactivity. The data span a wide range of kinetic energies (9-49 kJ mol-1) and indicate that rotational excitation does not alter reactivity by more than a factor of two, even at low molecular speeds that allow for considerable rotation of the molecule during the interaction with the surface. In addition, rotation-induced Coriolis-splitting of the v3 mode into F+, F0 and F- states does not significantly affect the reactivity for J = 1 at 49 kJ mol-1 translational energy, even though the nuclear motions of these states differ. The lack of a pronounced rotational energy effect in methane dissociation on Ni(100) suggests that our previous results for (v = 1, v3, J = 2) are representative of all rovibrational sublevels of this vibrational mode. These experiments shed light on the relative importance of rotational hindering and dynamical steering mechanisms in the dissociative chemisorption on Ni(100) and guide future attempts to accurately model methane dissociation on nickel surfaces.

  5. Association between internalizing disorders and day-to-day activities of low energetic expenditure.

    PubMed

    Gosmann, Natan Pereira; Salum, Giovanni Abrahão; Schuch, Felipe; Silveira, Patrícia Pelufo; Bosa, Vera Lucia; Goldani, Marcelo Zubaran; Manfro, Gisele Gus

    2015-02-01

    The objective of this study is to compare energetic expenditure in day-to-day activities among subjects with internalizing disorders (depression and anxiety), externalizing disorders (attention deficit/hyperactivity disorder and oppositional defiant disorder) and healthy children and adolescents without any psychiatric diagnosis. One hundred and five (n = 105) students from a community sample were evaluated throughout a structured psychiatric interview and categorized into three groups: internalizing (n = 54), externalizing (n = 12) and typically developing controls (TDC, n = 39). Energetic expenditure was evaluated using 3-day physical activity record. Subjects with internalizing disorders performed activities with lower energetic expenditure as compared to those with externalizing disorders and TDC. Participants with externalizing disorders had more energetic expenditure variability. Our study suggests that internalizing disorders are associated with activities of low energetic expenditure in day-to-day activities, extending previous findings with physical exercise. These findings may further contribute to the understanding of the associated morbidity previously described in patients with internalizing disorders. PMID:24570170

  6. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  7. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Montes, D.; Gálvez-Ortiz, M. C.; Crespo-Chacón, I.; Martínez-Arnáiz, R. M.; Fernández-Figueroa, M. J.; de Castro, E.; Cornide, M.

    2010-05-01

    Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R'_HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the logFHα/Fbol - (V-J) diagram. The dichotomy may be associated with the age of the stars. Based on observations made with the 2.2 m telescope of the German-Spanish Astronomical Centre, Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institute for Astronomy, Heidelberg, and the Spanish

  8. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  9. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  10. Differential Rotation of the Active G5 V Star κ1 Ceti: Photometry from the MOST Satellite

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Walker, Gordon A. H.; Matthews, Jaymie M.; Kuschnig, Rainer; Shkolnik, Evgenya; Marchenko, Sergey; Bohlender, David A.; Guenther, D. B.; Moffat, Anthony F. J.; Sasselov, Dimitar; Weiss, Werner W.

    2004-12-01

    About 30.5 days of nearly uninterrupted broadband photometry of the solar-type star κ1 Ceti, obtained with the MOST (Microvariability and Oscillations of Stars) satellite, shows evidence for two large starspots with different rotation periods of 8.9 and ~9.3 days (ΔΩ/Ω~=4%). Ground-based measurements of Ca II H and K emission in 2002 and 2003 reveal variations in chromospheric activity with a period of about 9.3 days. The data were obtained during the MOST commissioning phase. When the data are combined with historical observations, they indicate that the 9.3 day spot has been stable in its period for over 30 yr. The photometry, with a sampling rate of approximately once per minute, was also used to search for acoustic (p-mode) oscillations in the star. We detect no clear evidence for p-modes in the κ1 Ceti photometry, with a noise level around 7-9 μmag at frequencies in the range of 0.5-4 mHz (3 σ detection limit of 21-27 μmag). There were no flares or planetary transits during 30.5 days of MOST monitoring with light amplitudes greater than 2 mmag (durations >200 minutes) and 3 mmag (2-200 minute durations). While this rules out any close-in planets with Jupiter diameters >=0.5 and orbital inclinations close to 90°, the scatter in differential radial velocities permit a close giant planet in a more highly inclined orbit. Based on data obtained with the MOST satellite, a Canadian Space Agency mission jointly operated by Dynacon, Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia.

  11. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}ȯ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  12. Directory of International and Regional Organizations Conducting Standards-Related Activities, May 1989

    NASA Astrophysics Data System (ADS)

    Breitenberg, Maureen

    1989-05-01

    The directory contains information on 338 international and regional organizations which conduct standardization, certification, laboratory accreditation, or other standards-related activities. The volume describes their work in these areas, the scope of each organization, national affliations of members, U.S. participants, restrictions on membership, as well as the availability of any standards in English. The volume is designed to serve the needs of Federal agencies and standards writers for information on international and regional organizations involved in standardization and related activities. It may also be useful to manufacturers, engineers, purchasing agents, and others.

  13. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  14. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum

    NASA Technical Reports Server (NTRS)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.

    1989-01-01

    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  15. 31 CFR 594.510 - Official activities of certain international organizations; U.S. person employees of certain...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Licensing Policy § 594.510 Official activities of certain international organizations; U.S. person employees... Secretariat, specifically including, among others, the World Bank, the International Monetary Fund, the...

  16. 31 CFR 595.508 - Official activities of certain international organizations; U.S. person employees of certain...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Licensing Policy § 595.508 Official activities of certain international organizations; U.S. person employees... Secretariat, specifically including, among others, the World Bank, the International Monetary Fund, the...

  17. 31 CFR 597.506 - Official activities of certain international organizations; U.S. person employees of certain...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Statements of Licensing Policy § 597.506 Official activities of certain international... International Monetary Fund, the World Food Programme, and the World Health Organization. (c) The retention...

  18. Effect of leg rotation on hip bone mineral density measurements.

    PubMed

    Lekamwasam, Sarath; Lenora, Robolge Sumith Janaka

    2003-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is widely used in the management of patients with osteoporosis. Factors, which are specific to machine or to operator, can influence the accuracy and precision of BMD estimations. We studied the effect of leg rotation by 10 degrees either internally or externally from the standard position in a group of 50 women (average age 54.9, SD = 11.1 yr) who were free of bone active diseases or medications. External rotation of leg by 10 degrees from the customary position increased the average BMD by 0.005, 0.003, and 0.036 g/cm2 in the femoral neck, trochanter, and Ward's area (p = 0.119, 0.309, and <0.001), respectively. Internal rotation of leg by 10 degrees from the customary position decreased the average BMD by 0.009, 0.005, and 0.006 g/cm2 in the femoral neck, trochanter, and Ward's area (p = <0.001, 0.008, and <0.001), respectively. The number of subjects qualified for the diagnosis of osteoporosis based on the T-scores (equal to or below -2.5) of the femoral neck and trochanter did not change significantly in three different positions (18% in the customary position and after the external rotation and 14% after the internal rotation). A significant change in the femoral neck BMD (defined as 2.77 x precision error) was seen in 12% of subjects after the internal rotation and 8% after the external rotation. Our data emphasize the need for proper positioning of the hip during DXA scanning. Malrotation of the hip can be an important confounding factor when interpreting serial BMD values.

  19. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. PMID:27428437

  20. Isolation of rotational isomers and developments derived therefrom

    PubMed Central

    ŌKI, Michinori

    2010-01-01

    Isolation of rotational isomer models of ethane-type molecules is described. We could experimentally prove that, if rotational isomers whose molecular shape was chiral, the molecule could be optically active, even though it did not carry an asymmetric carbon atom. As an extension, other types of stereochemically fundamental and optically active molecules were isolated and their absolute stereochemistry was determined. One example is the model of meso-tartaric acid, for which optical inactivity had been attributed to internal compensation but is now explained as follows. On dissolution of meso-tartaric acid in a solvent, the molecule gives two kinds of conformers, one of which is a Ci molecule and the other is a C1 molecule. Although the latter is intrinsically optically active, the optical activity is cancelled by its enantiomer. The theory of internal compensation is recommended to be abandoned. As an extension to another area, some reactions of conformers are also discussed. PMID:21084771

  1. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  2. Silent Participation: East Asian International Graduate Students' Views on Active Classroom Participation

    ERIC Educational Resources Information Center

    Kim, Soonhyang

    2008-01-01

    The author reports on perceptions of East Asian international graduate students (EAGS) regarding active classroom participation, as revealed through two focus group interviews with 15 EAGS at a large Midwestern research university in the U.S. The findings indicate that most EAGS shared similar views with their university instructors and American…

  3. Comparing Research Activities of Women and Men Faculty in Departments of Internal Medicine.

    ERIC Educational Resources Information Center

    Levey, Barbara A.; And Others

    1990-01-01

    The study compared research activities of men and women from data obtained in a 1982-83 survey of 7,947 medical school faculty in departments of internal medicine. Among findings were that women researchers had significantly fewer National Institutes of Health grants as well as reduced laboratory space. (Author/DB)

  4. Can Organized Youth Activities Protect against Internalizing Problems among Adolescents Living in Violent Homes?

    ERIC Educational Resources Information Center

    Gardner, Margo; Browning, Christopher; Brooks-Gunn, Jeanne

    2012-01-01

    Using longitudinal data from a subsample of Hispanic, African American, and White youth enrolled in the Project on Human Development in Chicago Neighborhoods (N = 1,419), we examined the effects of both parental involvement in domestic violence and youth participation in organized out-of-school-time activities on internalizing symptoms during…

  5. Roots of Civic Identity: International Perspectives on Community Service and Activism in Youth.

    ERIC Educational Resources Information Center

    Yates, Miranda, Ed.; Youniss, James, Ed.

    This international collection of essays describes the state of community participation among the world's youth. An array of empirical research is used to present portraits of contemporary youth constructing their civic identities through such means as community service and political activism. The collection contains the following essays:…

  6. 45 CFR 2516.820 - What types of internal evaluation activities are required of programs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What types of internal evaluation activities are required of programs? 2516.820 Section 2516.820 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE SCHOOL-BASED SERVICE-LEARNING PROGRAMS...

  7. Motivational Attitudes toward Participating in Physical Activity among International Students Attending Colleges in the United States

    ERIC Educational Resources Information Center

    Yoh, Taeho

    2009-01-01

    The purpose of this study was to investigate motivational attitudes toward participating in physical activity among international students attending colleges in the United States. Five-hundred twenty-one students participated in this study. The results indicated that the factors of organic development ("keeping good health and physical condition,…

  8. 78 FR 28801 - Foreign-Trade Zone 117-Orange, TX, Authorization of Production Activity, Signal International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... notice in the Federal Register inviting public comment (78 FR 4383, 1-22-2013). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 117--Orange, TX, Authorization of Production Activity, Signal International Texas GP, LLC (Shipbuilding), Orange, TX On January 10, 2013, the Foreign Trade Zone of...

  9. Living With A Red Dwarf: Rotation, Starspots, Activity Cycles, Coronal X-ray Activity And X-uv Irradiances Of Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Jason, Merritt; Guinan, E.; Engle, S.; Pojmanski, G.

    2007-12-01

    As part of our Living with a Red Dwarf Program, we have carried out a detailed study of the radiative and plasma properties of the nearby dM5.5e star Proxima Centauri. Proxima Cen is noteworthy as the nearest star to the Sun. Because of its proximity ( 4.3 L.Y.) and membership in the α Cen system, Proxima Cen is an important star to use as a surrogate for solar-aged mid-dM stars. It is relatively bright (V = 11-mag) and has well determined observational and physical properties (MV, Teff, [Fe/H], angular diameter, mass and age). Importantly for our purposes, Proxima Cen has a reliable age of 5.5-6.0 Gyr from its association with the α Cen system in which α Cen A (G2 V) has a reliable isochronal age determination. We have analyzed 5 years of ASAS-3, V-band photometry to search for evidence of short- and long-term variations in brightness that could arise from magnetically related phenomenon (star spots, faculae, and possible UV flares). We also examine its coronal X-ray emission and variations as well as the stars chromospheric and transition regions in the UV from IUE and FUSE observations. The X-UV/optical data are combined and irradiances are calculated for use in extrasolar planet studies. From the photometry we find a rotational modulation of Prot = 83.5 days, in excellent agreement with the earlier HST/FGS study of Benedict et al. (1998). The character of its light variations indicates possible differential rotation as well as a probable long-term activity cycle of 6.9 +/- 0.5 yrs. Although Proxima Cen should be a fully convective star with a different magnetic dynamo (α2) than our Sun (αΩ), its overall magnetic behavior appears to be solar-like. This research is supported by grants from NSF/RUI AST-507536 and NASA Grants NNX06AD386 and NNG04G038G. We are grateful for this support.

  10. Humeral retroversion and shoulder rotational mobility in young handball practitioners

    PubMed Central

    Quadros, Gustavo Aguiar; Döhnert, Marcelo Baptista

    2015-01-01

    ABSTRACT OBJECTIVE : To evaluate the prevalence of humeral retroversion and rotational mobility (RHH) in young handball practitioners and non-practitioners. METHODS : This is a cross-sectional study performed with two groups: the handball group, with 14 female students practicing handball and the control group, with 13 young participants non-practicing pitch sports. RESULTS : The handball group presented full rotational movement (FRM) hi-gher than the control group in both the dominant shoulder (p=0.001) and the non-dominant shoulder (p=0.0001). The mobility of active and passive internal rotation was significantly higher in handball players in both shoulders. The handball group presented lower internal rotation range of motion for the dominant shoulder as compared to the non-dominant shoul-der (p=0.001). CONCLUSION : Young handball practitioners, des-pite skeletally immature, showed a higher MRT than the control group. The handball group showed loss of internal rotation (medial) on the dominant shoulder as compared to the non--dominant shoulder. Level of Evidence II, Prospective Study. PMID:27057141

  11. Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes

    PubMed Central

    Xu, Ming; Li, Xiao-Xue; Ritter, Joseph K.; Abais, Justine M.; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2·−) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2·− serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2·− production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2·− significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2·− production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells. PMID:23940720

  12. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    PubMed

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. PMID:22560564

  13. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    PubMed

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy.

  14. Internal Audit Guide for Student Activity Funds. A Guide for Those Responsible for the Audit Function to Help Plan, Conduct, Prepare and Present an Effective Internal Audit Report of Student Activity Funds.

    ERIC Educational Resources Information Center

    Association of School Business Officials of the United States and Canada, Park Ridge, IL. Research Corp.

    The purposes of this handbook are to help improve internal systems for auditing funds received from student activities and to help ensure that school board policies and good business practices are being followed. After brief introductory sections, the document discusses internal auditing functions and standards and notes the internal auditing…

  15. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  16. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  17. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    local conditions. We propose a comprehensive study of the intensities of methanol involving both the pure rotation bands and the torsional bands to serve as a benchmark for the theory used to calculate the infrared activity of all single methyl internal rotation molecules.

  18. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    PubMed

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%).

  19. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    PubMed

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%). PMID:21448812

  20. Inventory of U.S.-led International Activities on Building Energy Efficiency Initial Findings

    SciTech Connect

    Delgado, Alison; Evans, Meredydd

    2010-04-01

    Several U.S. Government agencies promote energy efficiency in buildings internationally. The types and scope of activities vary by agency. Those with the largest role include the U.S. Agency for International Development (USAID), the U.S. Department of State and the Environmental Protection Agency (EPA). Both USAID and the Department of State have a substantial presence overseas, which may present some complementarities with the Department of Energy’s efforts to reach out to other countries. Generally speaking, USAID focuses on capacity building and policy issues; the Department of State focuses on broad diplomatic efforts and some targeted grants in support of these efforts, and EPA has more targeted roles linked to ENERGY STAR appliances and a few other activities. Several additional agencies are also involved in trade-related efforts to promote energy efficiency in buildings. These include the Department of Commerce, the Export-Import Bank, the Overseas Private Investment Corporation and the Trade and Development Agency (TDA). This initial synthesis report is designed to summarize broad trends and activities relating to international cooperation on energy efficiency in buildings, which can help the U.S. Department of Energy (DOE) in developing its own strategy in this area. The Pacific Northwest National Laboratory will develop a more complete synthesis report later in 2010 as it populates a database on international projects on building energy efficiency.

  1. Noninvasive imaging of internal muscle activities from multi-channel surface EMG recordings.

    PubMed

    Zhang, Yingchun

    2013-01-01

    Surface Electromyogram (sEMG) technology provides a non-invasive way for rapid monitoring muscle activities, but its poor spatial resolution and specificity limit its application in clinic. To overcome these limitations, a noninvasive muscle activity imaging (MAI) approach has been developed and used to reconstruct internal muscle activities from multi-channel sEMG recordings. A realistic geometric hand model is developed from high-resolution MR images and a distributed bioelectric dipole source model is employed to describe the internal muscle activity space of the muscles. The finite element method and weighted minimum norm method are utilized solve the forward and inverse problems respectively involved in the proposed MAI technique. A series of computer simulations was conducted to test the performance of the proposed MAI approach. Results show that reconstruction results achieved by the MAI technique indeed provide us more detailed and dynamic information of internal muscle activities, which enhance our understanding of the mechanisms underlying the surface EMG recordings.

  2. Getting involved in international development activities: UK initiatives and hidden benefits.

    PubMed

    Cheeseborough, Jackie; Godbolt, Shane; Grant, Maria J

    2015-03-01

    Jackie Cheeseborough and Shane Godbolt describe the role that UK health information professionals have in global health and in supporting colleagues from developing countries to continue to develop as a provision. They give an overview of a range of organisations working to improve access to health information in developing countries and in particular Sub-Saharan Africa including Book Aid International, HIFA, INASP, ITOCA, Phi, TALC, THET and Research4Life. Even in a recession, many UK health librarians are choosing to get involved in international development activities in low-resource countries by volunteering, and discovering hidden benefits for their own organisations, and their own continuing professional development.

  3. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  4. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  5. Entrepreneurialism's Influence on the International Strategies and Activities of Public U.S. Universities

    ERIC Educational Resources Information Center

    Deschamps, Eric

    2013-01-01

    This study explored how international offices engage in entrepreneurial internationalization. Thirty Senior International Officers (SIOs) at public U.S. universities were interviewed to understand why and how their offices seek to generate revenue through their international strategies and activities. This study found that SIOs are engaging in…

  6. Status of Participation in Physical Activity among International Students Attending Colleges and Universities in the United States

    ERIC Educational Resources Information Center

    Yoh, Taeho; Yang, Heewon; Gordon, Brian

    2008-01-01

    This study examined the status of participation in physical activity among international students attending colleges and universities in the United States. Participants for the study were 521 international students from five universities in the Midwestern part of the United States. Descriptive statistics revealed that international college…

  7. Effect of GO-Fe3O4 and rotating magnetic field on cellular metabolic activity of mammalian cells.

    PubMed

    Urbas, Karolina; Jedrzejczak-Silicka, Magdalena; Rakoczy, Rafal; Zaborski, Daniel; Mijowska, Ewa

    2016-04-01

    The effect of hybrid material-graphene flakes with Fe3O4 nanospheres (GO-Fe3O4), graphene oxide (GO) and magnetite nanospheres (Fe3O4) in rotating magnetic field on mammalian cells metabolism has been studied. Several reports shown that exposure to magnetic field may have influence on cellular membrane permeability. Thus, the aim of presented study was to determine the cellular response of L929 fibroblast cells to nanomaterials and rotating magnetic field for 8-h exposure experiment. The GO had tendency to adsorb proteins, thus cell metabolism was decreased and the effect of that mechanism was enhanced by impact of nanospheres and rotating magnetic field. The highest reduction of cellular metabolism was recorded for WST-1 and NR assays at concentration 100 µg/mL of all tested nanomaterials and magnetic induction value 10.06 mT. The lactate dehydrogenase leakage assay has shown significant changes in membrane permeability. Further studies need to be carried out to precisely determine the mechanism of that process. PMID:26809700

  8. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 1—experimental results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Facchini, Bruno

    2016-05-01

    The aero-thermal behavior of the flow field inside 30:1 scaled model reproducing an innovative smooth trailing edge of shaped wedge discharge duct with one row of enlarged pedestals have been investigated in order to determine the effect of rotation, inlet velocity and blowing conditions effects, for Re = 20,000 and 40,000 and Ro = 0-0.23. Two configurations are presented: with and without open tip configurations. Thermo-chromic liquid crystals technique is used to ensure a local measurement of the heat transfer coefficient on the blade suction side under stationary and rotation conditions. Results are reported in terms of detailed 2D HTC maps on the suction side surface as well as the averaged Nusselt number inside the pedestal ducts. Two correlations are proposed, for both closed and open tip configurations, based on the Re, Pr, Ro and a new non-dimensional parameter based on the position along the radial distance, to assess a reliable estimation of the averaged Nusselt number at the inter-pedestal region. A good agreement is found between prediction and experimental data with about ±10 to ±12 % of uncertainty, for the simple form correlation, and about ±16 % using a complex form. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  9. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 2: numerical results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno

    2016-05-01

    This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k-ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  10. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Spacecraft Rotating Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The ISS utilizes two large rotating mechanisms, the SARJ, as part of the solar arrays alignment system for more efficient power generation. The SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2008, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) of one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately was ultimately successful in recovering the functionality of the starboard SARJ. The M&P function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  11. The Activities of the International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    SciTech Connect

    Briggs, Joseph Blair

    2001-10-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) – Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Spain, and Israel are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled “International Handbook of Evaluated Criticality Safety Benchmark Experiments”. The 2001 Edition of the Handbook contains benchmark specifications for 2642 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data.

  12. Internal recycle to improve denitrification in a step feed anoxic/aerobic activated sludge system.

    PubMed

    Boyle, C A; McKenzie, C J; Morgan, S

    2009-01-01

    During periods of low load (weekends and holidays) the Mangere wastewater treatment plant effluent has breached the summer consent conditions for total nitrogen. The purpose of this research was to determine if an internal recycle would improve nitrogen removal in the anoxic/aerobic activated sludge reactors sufficient to meet the summer resource consent standard. The recycle returned nitrate rich mixed liquor from the downstream aerobic zone back to the initial anoxic zone, thus potentially improving denitrification. A full scale trial showed that installation of the internal recycle on each RC would have satisfied the resource consent for total nitrogen in most cases over the three summer resource consent periods since the upgrade. However, further modifications of the internal recycle would be required to ensure that consent conditions were satisfied at all times and to improve the consistency of the results.

  13. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies.

  14. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies. PMID:27279586

  15. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  16. The activation of the sodium pump in pig red blood cells by internal and external cations.

    PubMed

    Brand, S C; Whittam, R

    1985-05-30

    A study has been made with pig red blood cells of the activation of the sodium pump by internal and external cations. Cell Na and K concentrations were altered using a PCMBS cation loading procedure. The procedure was characterised for resultant ionic conditions, maintenance of ATP levels and fragility. The activation of the sodium pump by external K was measured in cells suspended in choline (Na-free) solutions. External Cs was used as a substitute for K and elicited lower rates of pump activity. Both the Vmax and apparent Km for 42K influx and 134Cs influx increased as internal Na concentration was raised (within the non-saturating range). Vmax/apparent Km ratios for cation influx were constant. Raising external Cs concentration exerted a similar influence on pump activation by internal Na: both the maximum pump velocity and the apparent Na-site dissociation constant (K'Na) increased. The results provide evidence for a transmembrane connection between cation binding sites on opposite faces of the membrane and are consistent with a consecutive model for the sodium pump in pig red blood cells. PMID:2581622

  17. Assessment of constitutive activity and internalization of GPR54 (KISS1-R).

    PubMed

    Pampillo, Macarena; Babwah, Andy V

    2010-01-01

    The kisspeptin/GPR54 signaling system positively regulates GnRH secretion, thereby acting as an important regulator of the hypothalamic-pituitary-gonadal axis. It also negatively regulates tumor metastases and placental trophoblast invasion. GPR54 is a G(q/11)-coupled GPCR and activation by kisspeptin stimulates PIP(2) hydrolysis and inositol phosphate (IP) formation, Ca(2+) mobilization, arachidonic acid release, and ERK1/2 and p38 MAP kinase phosphorylation. Recently, we reported that GPR54 displays constitutive activity and internalization in the heterologous human embryonic kidney 293 cell system. Given the physiological and clinical importance of GPR54 as well as other GPCRs, we present assays for measuring constitutive receptor internalization and activity. Specifically, we describe the use of immunofluorescence coupled to confocal imaging, flow cytometry and indirect receptor radiolabeling to measure constitutive receptor internalization, and IP turnover in intact cells to measure constitutive activity. While we use the FLAG-tagged GPR54 molecule as an example to describe these assays, the assays can be applied to a wide range of GPCRs.

  18. Glycoprotein D actively induces rapid internalization of two nectin-1 isoforms during herpes simplex virus entry

    SciTech Connect

    Stiles, Katie M.; Krummenacher, Claude

    2010-03-30

    Entry of herpes simplex virus (HSV) occurs either by fusion at the plasma membrane or by endocytosis and fusion with an endosome. Binding of glycoprotein D (gD) to a receptor such as nectin-1 is essential in both cases. We show that virion gD triggered the rapid down-regulation of nectin-1 with kinetics similar to those of virus entry. In contrast, nectin-1 was not constitutively recycled from the surface of uninfected cells. Both the nectin-1alpha and beta isoforms were internalized in response to gD despite having different cytoplasmic tails. However, deletion of the nectin-1 cytoplasmic tail slowed down-regulation of nectin-1 and internalization of virions. These data suggest that nectin-1 interaction with a cytoplasmic protein is not required for its down-regulation. Overall, this study shows that gD binding actively induces the rapid internalization of various forms of nectin-1. We suggest that HSV activates a nectin-1 internalization pathway to use for endocytic entry.

  19. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2016-05-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to ~450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  20. Development of a cryogenic rotating heat pipe joint

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The performance of two critical technology components required for a continuously rotatable heat pipe: (1) a low-leakage rotatable coupling for the heat pipe pressure vessel, and (2) a rotatable internal wick, is reported. Performance and leakage requirements were established based on 12 months operation of a cryogenic rotatable heat pipe on a satellite in earth orbit.