Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent
NASA Astrophysics Data System (ADS)
Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku
2018-03-01
In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.
NASA Astrophysics Data System (ADS)
Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang
2015-07-01
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
2016-01-01
We evaluated the individual and combined effects of salinity and alkalinity on gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure in Luciobarbus capito. Increasing salinity concentrations (5, 8, 11, and 14 g/L) were associated with an initial increase and then decrease in L. capito gill Na+/K+-ATPase activity. Activity was affected by the difference between internal and external Na+ ion concentrations and osmotic pressure (P < 0.05). Both plasma ion (Na+, K+, and Cl−) concentration and osmotic pressure increased significantly (P < 0.05). An increase in alkalinity (15, 30, 45, and 60 mM) caused a significant increase in plasma K+ and urea nitrogen concentrations (P < 0.05) but had no effect on either plasma osmotic pressure or gill filament ATPase activity. In the two-factor experiment, the saline-alkaline interaction caused a significant increase in plasma ion (Na+, Cl−, and urea nitrogen) and osmotic pressure (P < 0.05). Variance analysis revealed that salinity, alkalinity, and their interaction significantly affected osmotic pressure, with salinity being most affected, followed by alkalinity, and their interaction. Gill filament ATPase activity increased at first and then decreased; peak values were observed in the orthogonal experiment group at a salinity of 8 g/L and alkalinity of 30 mM. PMID:27981049
Elumalai, Vetrimurugan; Brindha, K; Elango, L
2017-07-01
Impact of agricultural activities on groundwater can be determined from the concentration of nutrients present in groundwater. This study was carried out with the aim to assess the minor ions content of groundwater and to identify its sources, spatial, and seasonal variations in a part of the Cauvery River basin, southern India. Groundwater samples were collected from July 2007 to September 2009 and were analyzed for minor ions. These ions were in the order of dominance of nitrate> phosphate> bromide> fluoride> ammonium= nitrite> lithium. The concentration of ions tends to increase towards the coast except for fluoride. Increased concentration of ions identified in shallow wells than in deep wells with an exception of few locations indicates the impact of human activities. Relatively high concentration of agriculture-sourced nitrate was identified which pose a threat to groundwater suitability for agriculture and domestic usage. Combined influence of use of agrochemicals, improper sewage disposal, aquaculture activities, seawater intrusion due to heavy pumping near the coast, and natural weathering of aquifer materials are the major sources. Also, fine grain sediments of this area aid in poor flushing of the ions towards the sea resulting in accumulation of higher concentration of ions. A sustainable management strategy is essential to control the concentration of these ions, especially nitrate. Reduced use of fertilizers, increasing the rainfall recharge for diluting the pollutants in groundwater and maintaining the river flow for sufficiently longer period to reduce dependence on groundwater for irrigation can help to improve the situation.
Masola, B; Zvinavashe, E
2003-06-01
The effects of ammonium and other ions on phosphate dependent glutaminase (PDG) activity in intact rat enterocyte mitochondria were investigated. Sulphate and bicarbonate activated the enzyme in absence and presence of added phosphate. In presence of 10 mM phosphate, ammonium at concentrations <1 mM inhibited the enzyme. This inhibition was reversed by increased concentration of phosphate or sulphate. The inhibition of PDG by ammonium in presence of 10 mM phosphate was biphasic with respect to glutamine concentration, its effect being through a lowering of V(max) at glutamine concentration of =5 mM, and increased K(m) for substrate concentration above 5 mM. The activation of the enzyme by bicarbonate was through an increase in V(max). Ammonium and bicarbonate ions may therefore be important physiological regulators of PDG. It is suggested that phosphate and other polyvalent ions may function by preventing product inhibition of the enzyme through promotion of PDG dimer formation. The dimerized enzyme may have a high affinity for glutamine and reduced sensitivity to inhibition by ammonium ions.
High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing
NASA Astrophysics Data System (ADS)
Niwa, Takaki; Fujii, Takahiro; Oka, Tohru
2017-09-01
A high activation ratio of Mg ion implantation by conventional rapid thermal annealing (RTA) was demonstrated. To obtain the high activation ratio of Mg ion implantation, the dependence of hole concentration on Mg dose was investigated. A maximum hole concentration and a high activation ratio of 2.3% were obtained at a Mg dose of 2.3 × 1014 cm-2 between 9.2 × 1013 and 2.3 × 1015 cm-2. The ratio is, to the best of our knowledge, the highest ever obtained by conventional RTA.
Active ion transport in dog tongue: a possible role in taste.
DeSimone, J A; Heck, G L; DeSimone, S K
1981-11-27
An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.
Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements
PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.
2004-01-01
It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442
Willoughby, T.C.; See, R.B.; Schroder, L.J.
1989-01-01
Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)
Ion-dipole interactions in concentrated organic electrolytes.
Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel
2003-06-16
An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.
Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme
Inoue, Atsushi; Takagi, Yasuomi; Taira, Kazunari
2004-01-01
Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst. PMID:15302920
Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures
Otto, Caitlin C.; Haydel, Shelley E.
2013-01-01
We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149
NASA Astrophysics Data System (ADS)
Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li
2008-02-01
The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.
Zheng, Jin; Hu, Yan-Yan
2018-01-31
Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li 7 La 3 Zr 2 O 12 (LLZO) phase in the LLZO-poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.
Ikeno, K
1990-09-01
Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu
2014-06-21
Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less
Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizrahi, L.; Achituv, Y.
Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is knownmore » that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.« less
Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha
2008-01-01
We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...
NASA Astrophysics Data System (ADS)
Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae
2017-07-01
Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckstein, Sebastian; Hintermeier, Peter H.; Olarte, Mariefel V.
The hydronium ion normalized reaction rate in aqueous phase alkylation of phenol with ethanol on H-MFI zeolites increases with decreasing concentration of acid sites. Higher rates are caused by higher concentrations of phenol in the zeolite pores, as the concentration of hydronium ions generated by zeolite Brønsted acid sites decreases. Considering the different concentrations of reacting species it is shown that the intrinsic rate constant for alkylation is independent of the concentration of hydronium ions in the zeolite pores. Alkylation at the aromatic ring of phenol and of toluene as well as O-alkylation of phenol have the same activation energy,more » 104 ± 5 kJ/mol. This is energetic barrier to form the ethyl carbenium ion from ethanol associated to the hydronium ion. Thus, in both the reaction pathways the catalyst involves a carbenium ion, which forms a bond to a nucleophilic oxygen (ether formation) or carbon (alkylation).« less
[Membrane mechanisms of effects of antihypoxic agents bemethyl and almide on neurons of Mollusca].
Vislobokov, A I; Marysheva, V V; Shabanov, P D
2003-01-01
Membranotropic effects of the antihypoxants bemithyl and almide, structural analogs of thiobenzimidazole, have been studied on the isolated neuronal preparations of Lymaea stagnalis branchycephalic mollusk. Both drugs in a concentration range of 100-1000 microM produced a reversible, dose-dependent nonselective single-phase blocking action upon the ion channels and completely blocked the channels at a concentration of 10 mM. Therefore, bemithyl and almide are active membranotropic compounds capable (in sufficiently high concentrations) of changing the conductivity of slow sodium, calcium, and potassium ion channels in excitable cells. The protective antihypoxant drug reactions on a systemic level of the organism are probably related to the fact that both drugs in small concentrations are capable of hyperpolarizing the cell membrane, activating the ion channel function, and stabilizing the action potential under hypoxia conditions; in greater concentrations, bemithyl and almide are capable of blocking ion currents, thus reducing the excitability of cells and protecting them from overstress.
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.
1993-01-01
During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.
Haack, Nicole; Durry, Simone; Kafitz, Karl W.; Chesler, Mitchell; Rose, Christine R.
2015-01-01
Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. In the present study, we demonstrate the fabrication and calibration of double-barreled ion-selective microelectrodes, which have proven to be excellent tools for such measurements in brain tissue. Moreover, so-called “concentric” ion-selective microelectrodes are also described, which, based on their different design, offer a far better temporal resolution of fast ion changes. We then show how these electrodes can be employed in acute brain slice preparations of the mouse hippocampus. Using double-barreled, potassium-selective microelectrodes, changes in the extracellular potassium concentration ([K+]o) in response to exogenous application of glutamate receptor agonists or during epileptiform activity are demonstrated. Furthermore, we illustrate the response characteristics of sodium-sensitive, double-barreled and concentric electrodes and compare their detection of changes in the extracellular sodium concentration ([Na+]o) evoked by bath or pressure application of drugs. These measurements show that while response amplitudes are similar, the concentric sodium microelectrodes display a superior signal-to-noise ratio and response time as compared to the double-barreled design. Generally, the demonstrated procedures will be easily transferable to measurement of other ions species, including pH or calcium, and will also be applicable to other preparations. PMID:26381747
Purification and properties of rennin-like enzyme from Aspergillus ochraceus.
Ismail, A A; Foda, M S; Khorshid, M A
1978-01-01
An active milk-clotting enzyme was purified some 40-fold from culture supernatant of Aspergillus ochraceus. The purification steps included ammonium sulfate precipitation, G-100 Sephadex gel filtration, and ion exchange chromatography, using DEAE Cellulose column. The enzyme exhibited milk-clotting activity and proteolytic behaviour, an optimum at pH 6.0 and in the range of 7--8.5, respectively. The purified enzyme was actively proteolytic against casein, haemoglobin, and bovine serum albumin at pH 8. The milk-clotting activity was greatly enhanced by manganous ions and by increasing concentrations of calcium chloride. Copper, zinc, and ammonium ions were potent inhibitors of the milk-curdling activity of the purified enzyme. Significant inhibition was also noted with sodium chloride at concentrations of 3% or more. Under the specified reaction condition, maximum rate of proteolysis against casein was obtained at 0.4% substrate concentration, whereas the milk-clotting time was linear proportional to dry skim milk concentration in the range of 8 to 24%. The results are discussed in comparison with other microbial milk-clotting enzymes, and limitations of applicability are also presented.
Bassi, G S; Murchie, A I; Lilley, D M
1996-01-01
The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086
NASA Astrophysics Data System (ADS)
Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.
2011-12-01
Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.
Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes
Lee, Seong-Ki; Boron, Walter F.; Parker, Mark D.
2013-01-01
Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study. PMID:23322102
Pathak, Satya P; Gopal, K
2012-07-01
The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.
NASA Astrophysics Data System (ADS)
Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu
2017-10-01
The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.
Hübel, Niklas; Dahlem, Markus A.
2014-01-01
The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively. PMID:25474648
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, C.; Jeong, S.
2018-01-01
In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.
Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu
The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less
Underscreening in concentrated electrolytes.
Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan
2017-07-01
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
Measurements of fast ion spatial dynamics during magnetic activity in the RFP
NASA Astrophysics Data System (ADS)
Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.
2017-10-01
Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.
CRYSTALLINE INORGANIC PYROPHOSPHATASE ISOLATED FROM BAKER'S YEAST
Kunitz, M.
1952-01-01
Crystalline inorganic pyrophosphatase has been isolated from baker's yeast. The crystalline enzyme is a protein of the albumin type with an isoelectric point near pH 4.8. Its molecular weight is of the order of 100,000. It contains about 5 per cent tyrosine and 3.5 per cent tryptophane. It is most stable at pH 6.8. The new crystalline protein acts as a specific catalyst for the hydrolysis of inorganic pyrophosphate into orthophosphate ions. It does not catalyze the hydrolysis of the pyrophosphate radical of such organic esters as adenosine di- and triphosphate, or thiamine pyrophosphate. Crystalline pyrophosphatase requires the presence of Mg, Co, or Mn ions as activators. These ions are antagonized by calcium ions. Mg is also antagonized by Co or Mn ions. The rate of the enzymatic hydrolysis of inorganic pyrophosphate is proportional to the concentration of enzyme and is a function of pH, temperature, concentration of substrate, and concentration of activating ion. The approximate conditions for optimum rate are: 40°C. and pH 7.0 at a concentration of 3 to 4 x 10–3 M Na4P2O7 and an equivalent concentration of magnesium salt. The enzymatic hydrolysis of Na4P2O7 or K4P2O7 proceeds to completion and is irreversible under the conditions at which hydrolysis is occurring. Details are given of the method of isolation of the crystalline enzyme. PMID:14898026
The preparation and antioxidant activity of glucosamine sulfate
NASA Astrophysics Data System (ADS)
Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng
2009-05-01
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes
Cash, Derek J.; Hess, George P.
1980-01-01
Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells. PMID:6928684
Sun, Qifei; Wu, Yipin; Jonusaite, Sima; Pleinis, John M; Humphreys, John M; He, Haixia; Schellinger, Jeffrey N; Akella, Radha; Stenesen, Drew; Krämer, Helmut; Goldsmith, Elizabeth J; Rodan, Aylin R
2018-05-01
Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule. Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux. Results In vitro , autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK , with or without Drosophila Mo25 , did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux. Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium. Copyright © 2018 by the American Society of Nephrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun
2017-11-15
As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.
NASA Astrophysics Data System (ADS)
Purswani, P.; Karpyn, Z.
2017-12-01
Chemical tuning of injecting brine has found great success in improving oil recovery from oil-wet rocks. In particular, the importance of Mg2+, Ca2+, and SO42- ions has been identified as critical for incremental oil recovery via multi-ion exchange mechanism of wettability alteration. To improve understanding of this underlying mechanism and, to evaluate the individual contribution of these ions towards improving oil recovery, a series of waterflood experiments with varying ion composition were performed at 90 oC. Characterization techniques like zeta potential (ZP), contact angle measurements and trace element analysis were performed to evaluate the surface interactions taking place among the rock samples, brine solution, and the crude oil. ZP measurements highlight the affinity of Mg2+, Ca2+, and SO42- ions towards the rock surface in chemically tuned brines (CTBs), where, an increase in the magnitude of ZP was seen with an increase in the concentration of each of these ions. Oil recovery measurements showed an increase in oil recovery for all the CTBs compared to seawater. Relative permeability estimations and contact angle measurements showed corresponding trends of increasing water-wetness. Maximum recovery of 75.47% original oil in place (OOIP) was observed for the brine with increased Mg2+ ion concentration due to higher activity of Mg2+ ions. Lower recovery of 63.58% OOIP was seen for the brine with increased Ca2+ ion concentration due to lower activity of Ca2+ ions, and further lower recovery of 58.59% OOIP was seen for the brine with increased SO42- ion concentration due to the possible precipitation of these ions on the rock surface. These surface reactions were confirmed through the ionic analysis of the effluent brine during each waterflooding experiment. These results help understand the importance of chemical tuning of brines towards improving oil recovery and provides experimental insight into the chemical reactions that occur during this process.
Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli.
Choi, Yoojin; Kim, Hyun-A; Kim, Kyoung-Woong; Lee, Byung-Tae
2018-04-01
With the increase in silver (Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles (AgNPs) and silver ions (Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of AgNPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both AgNPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than AgNPs under the same concentrations. To understand the toxicity of AgNPs at a cellular level, reactive oxygen species (ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of AgNPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of AgNPs to Ag ions; fixed the AgNPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the AgNPs concentration. Exposure to AgNPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity (for a fixed AgNPs concentration of 5mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. AgNPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from AgNPs under the single and coexistence conditions. Further works are needed to consider this potential for AgNPs and Ag ions toxicity across a range of environmental conditions. As silver nanoparticles (AgNPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the AgNPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of AgNPs and silver ions (Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of AgNPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian
2017-12-01
The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillard, D.A.; DuFresne, D.L.; Caudle, D.D.
2000-01-01
Although marine organisms are naturally adapted to salinities well above those of freshwater, elevated concentrations of specific ions have been shown to cause adverse effects on some saltwater species. Because some ions are also physiologically essential, a deficiency of these ions can also cause significant effects. To provide a predictive tool to assess toxicity associated with major ions, mysid shrimp (Mysidopsis bahia), sheepshead minnows (Cyprinodon variegatus), and inland silverside minnows (Menidia beryllina) were exposed to saline solutions containing calcium, magnesium, potassium, strontium, bicarbonate, borate, bromide, and sulfate at concentrations above and below what would be found in seawater. Solution salinitymore » was maintained at approximately 31% by increasing or decreasing sodium and chloride concentrations. Logistic regression models were developed with both the ion molar concentrations and ion activity. Toxicity to all three species was observed when either a deficiency or an excess of potassium and calcium occurred. Significant mortality occurred in all species when exposed to excess concentrations of magnesium, bicarbonate, and borate. The response to the remaining ions varied with species. Sheepshead minnows were the most tolerant of both deficient and elevated levels of the different ions. Mysid shrimp and inland silverside minnows demonstrated similar sensitivities to several ions, but silverside minnow response was more variable. As a result, the logistic models that predict inland silverside minnow survival generally were less robust than for the other two species.« less
The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.
Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M
2017-06-01
The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Bhukal, Santosh; Bansal, S.; Singhal, Sonal
2014-02-01
Cd2+ ion substituted nano-crystalline cobalt-zinc ferrites having chemical formula Co0.6Zn0.4Cu0.2CdxFe1.8-xO4 (x = 0.2, 0.4, 0.6 and 0.8) have been prepared using sol-gel auto-combustion method. The X-ray diffraction analysis confirmed the crystalline structure and phase purity of all the prepared nano-ferrites. The lattice constant was found to vary linearly from 8.360 Å to 8.390 Å for cadmium ion concentration from 0.2 to 0.8 in accordance with Vegard's law. Ionic radii of tetrahedral site (rA) and octahedral site (rB) was found to increase with increase in the cadmium ion concentration because of larger size of Cd2+ ion (0.97 Å) as compared to that of Fe3+ ion (0.67 Å). Vibrating sample magnetometer (VSM) results revealed that the saturation magnetization, coercivity and anisotropy constant decrease with increase in the cadmium concentration. The distribution of cations among A and B sites of the lattice was estimated by the magnetic moments which were calculated from the magnetic data. Moreover resistivity was found to be decrease with increase in the cadmium concentration. There was increase in drift mobility with increase in temperature because of the enhanced mobility of charge carriers due to thermal activation. Co0.6Zn0.4Cu0.2CdxFe1.8-xO4 showed good catalytic activity towards methyl orange and easily recovered by magnetic separation after the reaction. The photo-catalytic degradation was enhanced as the concentration of cadmium ion increased from 0.2 to 0.8 may be due to decrease in band gap with increase in Cd2+ ion concentration.
Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells
NASA Astrophysics Data System (ADS)
Wang, Yuchi; Mao, Hua; Wong, Lid B.
2010-02-01
We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.
Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang
2016-11-15
The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toxic effects of heavy metal Cu2+ on the pacific oyster Crassostrea gigas
NASA Astrophysics Data System (ADS)
Gao, Ceng; Zhang, Xinxin; Li, Xiumei; Tang, Xuexi
2017-05-01
The effects of different concentrations of heavy metal ions on the survival of the Pacific oyster Crassostrea gigas were studied by using experimental ecology method in 96 h. The results showed that the LC50 of copper ion was 21.748mg/L and the safe concentration was 2.1748mg/L mg/L. Under the condition of laboratory, under laboratory conditions, the research of Cu2+ Stress on the C. gigas gill and digestive gland and adductor muscle tissue SOD, GPx and the induction of CAT activity. The results showed that the activities of SOD, GPx and CAT in the C. gigas were significantly changed by copper ion + stress. The results showed that in the low concentration Cu2+ treatment could induce the three kinds of enzymes, in the high concentration Cu2+ treatment group, SOD and CAT and GPx on the inhibition of the effect. The sensitivity of the three antioxidant enzymes to copper ion showed a certain difference. The sensitivity of the three kinds of tissue enzymes to Cu2+ treatment was digestive gland> fascia> gill. The experimental results show that the single factor for copper in water pollutants, the C. gigas digestive gland tissue SOD, GPX and CAT activity has certain significance to it, but will it as index applied to the actual water need further study.
Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae
Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie
2012-01-01
Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479
Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics
NASA Astrophysics Data System (ADS)
Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi
2012-06-01
Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.
Influence of several metal ions on the gelation activation energy of silicon tetraethoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1988-01-01
The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.
Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strnad, C.F.; Wong, K.
1986-05-01
Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, themore » chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.« less
Dias, Decivaldo S; Coelho, Milton V
2007-01-01
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.
Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting
Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel
2016-01-01
The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to a reevaluation of the strengths and limitations of Poisson–Boltzmann theory and highlights the need for next-generation atomic-level models of the ion atmosphere. PMID:26517731
Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...
NASA Astrophysics Data System (ADS)
Puchalska, M.; Watras, A.
2016-06-01
We present a detailed analysis of luminescence behavior of singly Nd3+ doped and Nd3+, Na+ co-doped calcium aluminates powders: Ca1-xNdxAl4O7 and Ca1-2xNdxNaxAl4O7 (x=0.001-0.1). Relatively intense Nd3+ luminescence in IR region corresponding to typical 4F3/2→4IJ (J=9/2-13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f-f levels. The effect of dopant concentration and charge compensation by co-doping with Na+ ions on morphology and optical properties were studied. The results show that both, the Nd3+ concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd3+with raising activator content due to certain defects created in the crystal lattice. On the other hand Na+ addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd3+ ions local symmetries. Consequently, charge compensated by Na+ co-doping materials showed significantly enhanced Nd3+ luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd3+ ions. Analysis with Inokuti-Hirayama model indicated dipole-dipole mechanism of ion-ion interaction. Na+ addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl4O7 lattice.
Ion exchange determines iodine-131 concentration in aqueous samples
NASA Technical Reports Server (NTRS)
Fairman, W. D.; Sedlet, J.
1967-01-01
Inorganic radioiodide in aqueous media is analyzed by separating the radioactive iodine-131 as the iodide ion on a silver chloride column. The activity in the final precipitate may be determined by beta or gamma counting.
Ionic regulation of the cardiac sodium-calcium exchanger.
Reeves, John P; Condrescu, Madalina
2008-01-01
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP₂) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP₂ levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.
Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.
Apell, H J; Marcus, M M; Anner, B M; Oetliker, H; Läuger, P
1985-01-01
A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Adelman, William J.; Taylor, Robert E.
1964-01-01
It was observed that a reduction of the sodium chloride concentration in the external solution bathing a squid giant axon by replacement with sucrose resulted in marked decreases in the peak inward and steady-state outward currents through the axon membrane following a step decrease in membrane potential. These effects are quantitatively acounted for by the increase in series resistance resulting from the decreased conductivity of the sea water and the assumption that the sodium current obeys a relation of the form I = k1C1 - k2C2 where C1, C2 are internal and external ion activities and k1, k2 are independent of concentration. It is concluded that the potassium ion current is independent of the sodium concentration. That the inward current is carried by sodium ions has been confirmed. The electrical potential (or barrier height) profile in the membrane which drives sodium ions appears to be independent of sodium ion concentration or current. A specific effect of the sucrose on hyperpolarizing currents was observed and noted but not investigated in detail. PMID:14232131
Jakobsson, Eric; Argüello-Miranda, Orlando; Chiu, See-Wing; Fazal, Zeeshan; Kruczek, James; Nunez-Corrales, Santiago; Pandit, Sagar; Pritchet, Laura
2017-12-01
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Water-assisted growth of graphene-carbon nanotube hybrids in plasma
NASA Astrophysics Data System (ADS)
Tewari, Aarti; Ghosh, Santanu; Srivastava, Pankaj
2018-04-01
The enhanced growth of graphene-carbon nanotube (CNT) hybrids in a hydrocarbon and hydrogen plasma assisted by water is numerically formulated. The catalyst activity and agglomeration of catalyst particles are the rate determining factors in the growth of hybrids and their constituents, i.e., the CNT and graphene. The water vapor concentration is varied to investigate its effect on the growth process. The enhanced catalyst activity on account of oxidation by hydroxyl ions of water to impede the agglomeration of catalyst particles and the removal of amorphous carbon through etching by hydrogen ions of water are seen to be the main driving forces behind the many fold increase in the dimensions of constituent nanostructures and the hybrids with water vapor concentration. Importantly, beyond a certain specific water vapor concentration, the growth rates dropped due to active oxidation of the catalyst particle.
Goulding, N J; Guyre, P M
1992-01-01
Neutrophil Fc gamma receptor (Fc gamma R) signalling responses were compared in healthy subjects, patients with definite rheumatoid arthritis (RA), ankylosing spondylitis, and osteoarthritis. The patients with A were subdivided into those with active synovitis and those with quiescent disease. Basal intracellular calcium ion concentrations in patients with inactive RA were significantly higher than in control subjects, which in turn were greater than in patients with active RA. Transient cytosolic calcium ion fluxes were observed after binding Fc gamma RII or Fc gamma RIII with specific monoclonal antibodies and cross linking with the F(ab')2 fragment of antimouse IgG. Response times were significantly faster for Fc gamma RII than for Fc gamma RIII. Peak concentrations of intracellular calcium ions after neutrophil stimulation were comparable for Fc gamma RII and RIII in healthy subjects. Neutrophils in patients with ankylosing spondylitis and osteoarthritis responded to Fc gamma R triggering, but in the group with active RA fluxes of calcium ions were severely depressed. Neutrophils isolated from patients with RA with quiescent disease showed exaggerated responses when compared with controls. Expression of all three Fc gamma R types on neutrophils from patients with active RA, as measured by monoclonal antibody binding, was comparable with control cells. Impairment of neutrophil Fc gamma R cytosolic signalling in active RA could reflect a receptor signalling defect with potential effects on Fc mediated functions, or a fundamental defect in calcium ion homeostasis within these cells. PMID:1535494
Kim, Kwang-Wook; Lee, Keun-Young; Chung, Dong-Yong; Lee, Eil-Hee; Moon, Jei-Kwon; Shin, Dong-Woo
2012-09-30
This work studied the stability of peroxide in uranyl peroxo carbonato complex ions in a carbonate solution with hydrogen peroxide using absorption and Raman spectroscopies, and evaluated the temperature dependence of the decomposition characteristics of uranyl peroxo carbonato complex ions in the solution. The uranyl peroxo carbonato complex ions self-decomposed more rapidly into uranyl tris-carbonato complex ions in higher temperature carbonate solutions. The concentration of peroxide in the solution without free hydrogen peroxide represents the concentration of uranyl peroxo carbonato complex ions in a mixture of uranyl peroxo carbonato complex and uranyl tris-carbonato complex ions. The self-decomposition of the uranyl peroxo carbonato complex ions was a first order reaction, and its activation energy was evaluated to be 7.144×10(3) J mol(-1). The precipitation of sodium uranium oxide hydroxide occurred when the amount of uranyl tris-carbonato complex ions generated from the decomposition of the uranyl peroxo carbonato complex ions exceeded the solubility of uranyl tris-carbonato ions in the solution at the solution temperature. Copyright © 2012 Elsevier B.V. All rights reserved.
Removal of lead (II) ions from aqueous solutions onto activated carbon derived from waste biomass.
Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay
2013-01-01
The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g⁻¹. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.
Tsuchiya, Yo; Kawamata, Koichi
2017-11-01
Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum.
Zhou, Qingyang; Gao, Jingqing; Zhang, Ruimin; Zhang, Ruiqin
2017-09-01
Ammonia has been a major reason of macrophyte decline in the water environment, and ammonium ion toxicity should be seen as universal, even in species frequently labeled as "NH 4 + specialists". To study the effects of high NH 4 + -N stress of ammonium ion nitrogen on tolerant submerged macrophytes and investigate the pathways of nitrogen assimilation in different organisms, Myriophyllum aquaticum was selected and treated with various concentrations of ammonium ions at different times. Increasing of ammonium concentration leads to an overall increase in incipient ammonia content in leaves and stems of plants. In middle and later stages, high concentrations of NH 4 + ion nitrogen taken up by M. aquaticum decreased, whereas the content of NO 3 - ion nitrogen increased. Moreover, in M. aquaticum, the activities of the enzymes nitrate reductase, glutamine synthetase and asparagine synthetase changed remarkably in the process of alleviating NH 4 + toxicity and deficiency. The results of the present study may support the studies on detoxification of high ammonium ion content in NH 4 + -tolerant submerged macrophytes and exploration of tissue-specific expression systems. Copyright © 2017. Published by Elsevier Inc.
Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials
NASA Astrophysics Data System (ADS)
Szpikowska-Sroka, Barbara; Pawlik, Natalia; Pisarski, Wojciech A.
2016-12-01
The sol-gel powders doubly-doped with Gd3+/Eu3+ ions with different concentration of Gd3+ have been successfully obtained. The spectroscopic characterization of prepared samples was conducted based on excitation and emission spectra as well as luminescence decay analysis. Upon direct excitation of Eu3+ active ions, the characteristic 5D0 → 7F1 (orange) and 5D0 → 7F2 (red) emission bands were observed. The energy transfer from Gd3+ to Eu3+ ions was registered upon λexc = 273 nm excitation. An efficient conversion of ultraviolet radiation (UV) into visible luminescence was successfully observed. The energy transfer process from Gd3+ to Eu3+ led to longer luminescence decay from the 5D0 state in comparison to that obtained under direct excitation of Eu3+ ions (λexc = 393 nm). Generally, obtained results clearly indicated the beneficial influence of increasing concentration of Gd3+ ions on luminescence properties of Eu3+ in studied silica sol-gel phosphors.
NASA Astrophysics Data System (ADS)
Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.
2015-09-01
Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.
Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza
2013-08-01
Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.
Current-Induced Transistor Sensorics with Electrogenic Cells
Fromherz, Peter
2016-01-01
The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627
Measuring Light Air Ions in a Speleotherapeutic Cave
NASA Astrophysics Data System (ADS)
Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.
2017-02-01
The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.
Fog chemistry at three sites in Norway
NASA Astrophysics Data System (ADS)
Wang, Youliang; Zhang, Jinwei; Marcotte, Aurelie R.; Karl, Matthias; Dye, Christian; Herckes, Pierre
2015-01-01
Fog composition was investigated at three sites in Norway, one in suburban Oslo and two coastal sites in the area of the Mongstad refinery. Overall fog frequency during the study periods was low. Fog pH was around 5 with slightly lower values at Hakadal, the suburban site, compared to the coastal sites, which were slightly above 5. Major ions at the coastal sites were sodium and chloride consistent with the marine environment. The ion chemistry at the suburban site was dominated by ammonium, sulfate and nitrate, consistent with fogs in anthropogenically impacted environments. Overall concentrations of major ions were very low, orders of magnitude lower than those in polluted urban fogs. Organic matter concentrations were also low (< 3 mgC/L) consistent with limited anthropogenic impact and little biogenic activity in the winter months. Selected amine concentrations were determined and ranged from nanomolar concentrations for ethylamines to several hundred nanomolar concentrations for dimethylamine, the most abundant amine investigated. While N-nitrosodimehylamine was detected in fog, the concentrations were very low in the fogs.
Roles of ion transport in control of cell motility.
Stock, Christian; Ludwig, Florian T; Hanley, Peter J; Schwab, Albrecht
2013-01-01
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.
Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay
2015-01-01
In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.
Roychowdhury-Saha, Manami; Burke, Donald H.
2007-01-01
Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566
Vreeswijk, J H; de Pont, J J; Bonting, S L
1975-01-01
The intracellular sodium, potassium and chloride concentrations in slices of lactating guinea pig mammary gland have been determined by chemical analysis and the use of appropriate values for extracellular space. These ion concentrations after 1 hr incubation at 37 degrees C in a Krebs-Ringer bicarbonate solution are 45mM Na+, 138 mM K+ and 44 mM Cl-, which values are in agreement with those found in fresh mammary gland slices. Inhibition of the NaK activated ATPase cation pump system of the tissue by 10(-4)M ouabain, anoxia or cooling to 0 degrees C Causes a gain of Na+ and an equimolar loss of K+ without a significant change in chloride concentration. The effect of cooling (0 degrees C) is reversible by reincubation at 37 degrees C. Water content of the tissue (76.5% of wet weight) and extracellular space (40.5%) do not change under these conditions. The results permit the conclusion that the NaK activated ATPase system is responsible for the maintenance of the intracellular Na+ and K+ concentrations, but do not support the presence of a chloride pump.
NASA Astrophysics Data System (ADS)
Pranoto; Masykur, A.; Nugroho, Y. A.
2018-03-01
Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.
NASA Astrophysics Data System (ADS)
Ahlstrand, Emma; Zukerman Schpector, Julio; Friedman, Ran
2017-11-01
When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be compared with observables obtained from simulations. We carried out molecular dynamics simulations of alkali acetate solutions using polarizable and non-polarizable forcefields and examined the ion-acetate interactions. In particular, activity coefficients and association constants were studied in a range of concentrations (0.03, 0.1, and 1M). In addition, quantum-mechanics (QM) based energy decomposition analysis was performed in order to estimate the contribution of polarization, electrostatics, dispersion, and QM (non-classical) effects on the cation-acetate and cation-water interactions. Simulations of Li-acetate solutions in general overestimated the binding of Li+ and acetates. In lower concentrations, the activity coefficients of alkali-acetate solutions were too high, which is suggested to be due to the simulation protocol and not the forcefields. Energy decomposition analysis suggested that improvement of the forcefield parameters to enable accurate simulations of Li-acetate solutions can be achieved but may require the use of a polarizable forcefield. Importantly, simulations with some ion parameters could not reproduce the correct ion-oxygen distances, which calls for caution in the choice of ion parameters when protein simulations are performed in electrolyte solutions.
Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
NASA Astrophysics Data System (ADS)
Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET
2017-05-01
Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovinger, D.M.; White, G.; Weight, F.F.
1990-02-26
Recent studies indicate that intoxicating concentrations of EtOH inhibit neuronal responses to activation of NMDA-type glutamate receptors. The authors have observed that the potency of different alcohols for inhibiting NMDA-activated ion current in hippocampal neurons increases as a function of increasing hydrophobicity, suggesting that EtOH acts at a hydrophobic site. To further characterize the mechanisms of this effect, the authors examined the voltage-dependence of the EtOH inhibition of NMDA-activated ion current as well as potential interactions of EtOH with other effectors of the NMDA receptor/ionophore complex. The amount of inhibition of peak NMDA-activated current by 50 mM EtOH did notmore » differ over a range of membrane potentials from {minus}60 to +60 mV, and EtOH did not alter the reversal potential of NMDA-activated current. The percent inhibition observed in the presence of 10-100 mM EtOH did not differ with NMDA concentrations from 10-100 {mu}M. The percent inhibition by 50 mM EtOH (30-48%) did not differ in the absence or presence of the channel blockers Mg{sup 2+} (50-500 {mu}M), Zn{sup 2+} (5 and 20 {mu}M) or ketamine (2 and 10 {mu}M), or with increasing concentrations of the NMDA receptor cofactor glycine (0.01-1 {mu}M). These data indicate that: (i) EtOH does not change the ion selectivity of the ionophore, and (ii) EtOH does not appear to interact with previously described binding sites on the NMDA receptor/ionophore complex.« less
Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L
2014-01-01
Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670
Spectroscopic studies on the antioxidant activity of ellagic acid
NASA Astrophysics Data System (ADS)
Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel
2014-09-01
Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.
Spectroscopic studies on the antioxidant activity of p-coumaric acid
NASA Astrophysics Data System (ADS)
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.
Shao, Tiantian; Zheng, Hui; Song, Kaishan; Zhao, Ying; Zhang, Bai
2017-08-01
Absorption characteristics of optically active substances, including non-algal particles, phytoplankton, and chromophoric dissolved organic matter (CDOM), were measured in conjunction with environmental factors in five rivers within the Liaohe River watershed. Spectral absorption of non-algal particles [a NAP (λ)] was similar to that of total particles for most samples, suggesting that the absorption of the total particles [a p (λ)] was dominated by a NAP (λ). The CDOM absorption spectra [a CDOM (λ)] of West Liaohe and Taizihe rivers were easily distinguished from those of Hunhe, Liaohe, and East Liaohe rivers. Redundancy analysis indicated that absorption by optically active substances and anthropogenic nutrient disturbances probably resulted in the diversity of water quality parameters. The environmental variables including dissolved organic carbon, total alkalinity (TAlk), and total nitrogen (TN) had a significant correlation with CDOM absorption at 440 nm [a CDOM (440)]. There was almost no correlation between a p (λ) and chlorophyll a, TN, total phosphorus, and TAlk. Moreover, total copper ion concentration and mercury ion concentration had a strong correlation with a p (440), a p (675), a NAP (440), and a NAP (675). The concentration of total aluminum ions exhibited a positive correlation with a p (675) and a NAP (675) (p < 0.05), and a significant correlation was observed between total arsenic concentration and a CDOM (440). Furthermore, the interaction between metal ions and optically active substances provided an insight into particulates and CDOM properties linked to water quality characteristics for rivers in semiarid areas.
On the photon annealing of silicon-implanted gallium-nitride layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleznev, B. I., E-mail: Boris.Seleznev@novsu.ru; Moskalev, G. Ya.; Fedorov, D. G.
2016-06-15
The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.
Landstetter, Claudia; Wallner, Gabriele
2006-01-01
The activity concentration of (90)Sr was determined in several deer bones from Austria. Strontium specific ion exchange columns with 4',4''(5'')-di-t-butylcyclohexane-18-crown-6 from Eichrom Industries, Inc. were used for separation. The yield of the chemical procedure was quantified with AAS. Directly after column separation, the solution containing (90)Sr was mixed with the scintillation cocktail HiSafe III and measured by liquid scintillation counting. Prevention of (210)Pb contamination and reusability of the separation columns was investigated as well as the activity distribution within the bones. Results were compared with pre-Chernobyl measurements in Austria; a correlation between activity concentration of (90)Sr and site altitude was found.
NASA Astrophysics Data System (ADS)
Kim, Myojeong; Jo, Byeong Chul; Yoon, Hyun Jung; Wu, Sangwook; Thangappan, Jayaraman; Eun, Changsun
2018-05-01
The selectivity and conduction specificity of the KcsA channel toward potassium ions is crucial to the activity of this protein and this channel is intricately associated with several osmotic regulation and neuronal signaling processes. Despite multi-ion characteristics, the selective conduction behavior of KcsA is controlled by the size and distance specific electrostatic interaction between the selected residues and the potassium ions. The mechanism describing the movement of potassium ions in the channel and the conformational changes to KcsA that facilitate ion movement were investigated by a molecular dynamics (MD) simulation. In this study, we analyze the movement of potassium ions and water molecules at various time intervals during a 90 ns molecular dynamics simulation in the high potassium ion concentration regime and in the absence of the voltage. Examination of specific (3.6, 17.3, 43.38 and 43.44 ns) simulation periods revealed that key residues in the selectivity filter of KcsA influence the movement of potassium ions in the channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Heqiao; Liu Jianying; Malkas, Linda H.
2009-04-15
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediatedmore » by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells.« less
Dai, Heqiao; Liu, Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.
2009-01-01
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 =88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2–13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr (III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells. PMID:19371627
Wide range radioactive gas concentration detector
Anderson, David F.
1984-01-01
A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
THE ENZYMATIC RESPONSE OF ASTROCYTES TO VARIOUS IONS IN VITRO
Friede, Reinhard L.
1964-01-01
The effect of environmental ion concentration on the enzyme activity of astrocytes was investigated in tissue cultures of rat cerebral cortex. It was found that the oxidative enzymatic activity (succinic dehydrogenase, DPN-diaphorase, and several other enzymes) of astrocytes depended on the concentration of NaCl in the environment. This response was not specific for NaCl, but was also elicited by MgCl2 and LiCl; the response was less consistent, and often questionable for KCl. However, only NaCl could elicit enzymatic changes in astrocytes at concentrations known to be present in a living organism. Astrocytes were the only cells which responded this way; it appeared that the foot-plates were particularly involved in the response since increase of enzyme activity occurred earlier in the foot-plates than in the perikarya. It was concluded that astrocytes are metabolically involved in the maintenance of the ionic and osmotic environment of the central nervous system, particularly in regard to the active transport of sodium. PMID:14105217
Gomez, J; Salmon, C Garrido; Filho, O Baffa; Santos, J Peixoto; Pitella, J
2012-06-01
Parkinson disease and related syndromes are associated directly with the concentrations of neuromelanin, iron and other heavy metals, and nowadays it is discussed the possible protective role of neuromelanin by the sequester redox active iron ions, reducing the formation of free hydroxyl radicals and therefore inactivating the iron ions that induce oxidative stress. The aim of this work is to study the concentration ratios between iron ions and neuromelanin in subthalamic nucleus of patients with Parkinson's disease (PD) using Electron Spin Resonance (ESR). Necropsy samples of subthalamic nucleus from eight human brains were studied: three non-affected by any neurodegenerative disease and five with Parkinson's disease. The samples were stored in formaldehyde and washed with a solution of 0.01 molar of ethylenediaminetetraacetic acid. ESR experiments were development in a JEOL FA-200 X-Band spectrometer at different temperatures between -170° C to room temperature. The relative concentrations of each species were estimated from the double integral values of the fitted spectra. For all samples, ESR spectra showed to be composed of three different signals following the Curie's law. One signal was attributed to high-spin ferric ions (g∼ 4.3) in rhomboedric symmetry, Cu(II) ions (close to g=2.0) and neuromelanin (g∼ 2.01). The ferric ions concentration ratio between patients and controls was 3.0±0.2. The same ratio for neuromelanine was 0.24±0.06. Our preliminary results indicated a significant increment of iron concentration in PD samples which agrees with previous histochemical and biochemical reports. This finding and the clear reduction of neuromelanin concentration in PD samples suggest the possible role of neuromelanin as iron ions storage. © 2012 American Association of Physicists in Medicine.
Modeling interactions in major ion toxicity to Ceriodaphnia dubia
Various anthopogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...
THE ROLE OF INORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING
Effluent toxicity testing methods have been well defined, but to a large part have not attempted to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role that various total dissolved solids in effluents have on regula...
NASA Astrophysics Data System (ADS)
Saputro, S.; Mahardiani, L.; Wulandari, D. A.
2018-03-01
This research aimed to know the usage of sawdust of teak wood and rice husk waste as Pb (II) ion adsorbents in simulated liquid waste, the combined optimum mass required adsorbent to adsorb Pb(II) ion, the sensitivity of the solid-phase spectrophotometry (sps) method in determining the decrease of Pb (II) metal ion levels in the μg/L level. This research was conducted by experimental method in laboratory. Adsorbents used in this study were charcoal of sawdust sawdust activated using 15% ZnCl2 solution and activated rice husk using 2 N NaOH solution. The adsorption processes of sawdust and rice husk with Pb(II) solution was done by variation of mass combination with a ratio of 1: 0; 0: 1; 1: 1; 1: 2; and 2: 1. Analysis of Pb(II) ion concentration using SPS and characterization of sawdust and rice husk adsorbent ads using FTIR. The results showed that activated charcoal from sawdust of teak wood and rice husks can be used as Pb (II) metal ion adsorbents with adsorption capacity of 0.86 μg/L, charcoal from sawdust of teak wood and rice husk adsorbent with a combination of optimum mass contact of sawdust and rice husk is 2:1 as much as 3 grams can adsorb 42.80 μg/L. Solid-phase spectophotometry is a sensitive method for analysis of concentration decreasing levels of Pb(II) ion, after it was absorbed by sawdust of teak wood and rice husk with high sensitivity and has the limit of detection (LOD) of 0.06 μg/L.
Depolarization of the Internal Membrane System in the Activation of Frog Skeletal Muscle
Costantin, L. L.; Podolsky, R. J.
1967-01-01
"Skinned" muscle fibers, single fibers from the frog semitendinosus muscle in which the sarcolemma had been removed, could be reversibly activated by electrical stimulation. Electrical responsiveness was abolished when the skinned fiber was prepared from a muscle exposed to a cardiac glycoside, and the development of responsiveness was delayed when the muscle was bathed in high potassium solution. The findings were taken as evidence that active sodium-potassium exchange across the internal membranes restored electrical excitability, after the sarcolemma had been removed, by establishing a potential gradient across the internal membranes. In general, the contractions were graded with the strength of the applied current. On occasion, however, "all-or-none" type responses were seen, raising the possibility that the internal membranes were capable of an electrically regenerative response. Activation could also be produced by an elevation of the intracellular chloride ion concentration or a decrease in the intracellular potassium, ion concentration, suggesting that depolarization of some element of the internal membrane system, that is, a decrease in the potential of the lumen of the internal membrane system relative to the potential of the myofibrillar space, was responsible for activation in these experiments. The distribution of both the electrically induced contractions and those produced by changes in the intracellular ion concentrations indicated that the responsive element of the internal membrane system was electrically continuous over many sarcomeres. PMID:6033576
A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate
Lott, William B.; Pontius, Brian W.; von Hippel, Peter H.
1998-01-01
Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 μM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and >50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and >37.5 μM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2′-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5′-oxygen in the transition state. We suggest structural reasons why the Mg2+–La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction. PMID:9435228
Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza
2013-01-01
Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only. PMID:23988173
Mishra, Vishal
2015-01-01
The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (<0.001-0.04), sum of square errors (0.061-0.016), root mean square error (0.01-0.04) and F-test (2.22-19.92) reported in the present research indicated the suitability of the model over a wide range of proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.
Wang, Honglei; Zhu, Bin; Shen, Lijuan; Kang, Hanqing
2012-01-01
To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 10(4) cm(-3) x nm(-1) on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 microm) is larger than on coarse particles (> 2.1 microm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO4(2-).
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Antibacterial activities of tellurium nanomaterials.
Lin, Zong-Hong; Lee, Chia-Hsin; Chang, Hsin-Yun; Chang, Huan-Tsung
2012-05-01
We prepared four differently shaped Te nanomaterials (NMs) as antibacterial reagents against Escherichia coli. By controlling the concentrations of hydrazine (N(2)H(4)) as reducing agent, NaCl, and temperature, we prepared Te nanowires, nanopencils, nanorices, and nanocubes. These four Te NMs resulted in a live/dead ratio of E. coli cells of less than 0.1, which is smaller than that of Ag nanoparticles. The order of antibacterial activity against E. coli is nanocubes ≈ nanorices > nanopencils ≈ nanowires. This is in good agreement with the concentration order of tellurite (TeO(3)(2-)) ions released from Te NMs in E. coli cells, revealing that TeO(3)(2-) ions account for the antibacterial activity of the four Te NMs. We found that spherical Te nanoparticles (32 nm in diameter) with TeO(3)(2-) ions were formed in the E. coli cells. Compared to Ag nanoparticles that are commonly used as antibacterial reagents, Te NMs have higher antibacterial activity and lower toxicity. Thus, Te NMs hold great practical potential as a new and efficient antibacterial agent. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physics and chemistry of antimicrobial behavior of ion-exchanged silver in glass.
Borrelli, N F; Senaratne, W; Wei, Y; Petzold, O
2015-02-04
The results of a comprehensive study involving the antimicrobial activity in a silver ion-exchanged glass are presented. The study includes the glass composition, the method of incorporating silver into the glass, the effective concentration of the silver available at the glass surface, and the effect of the ambient environment. A quantitative kinetic model that includes the above factors in predicting the antimicrobial activity is proposed. Finally, experimental data demonstrating antibacterial activity against Staphylococcus aureus with correlation to the predicted model is shown.
Variable stoichiometry in active ion transport: theoretical analysis of physiological consequences.
Johnson, E A; Tanford, C; Reynolds, J A
1985-08-01
Active ion transport systems with fixed stoichiometry are subject to a thermodynamic limit on the ion concentration gradients that they can generate and maintain, and their net rates of transport must inevitably decrease as this limit is approached. The capability to vary stoichiometry might thus be physiologically advantageous: a shift to lower stoichiometry (fewer ions pumped per reaction cycle) at increasing thermodynamic load could increase the limit on the supportable concentration gradient and could accelerate the rate of transport under high-load conditions. Here we present a theoretical and numerical analysis of this possibility, using the sarcoplasmic reticulum ATP-driven Ca pump as the example. It is easy to introduce alternate pathways into the reaction cycle for this system to shift the stoichiometry (Ca2+/ATP) from the normal value of 2:1 to 1:1, but it cannot be done without simultaneous generation of a pathway for uncoupled leak of Ca2+ across the membrane. This counteracts the advantageous effect of the change in transport stoichiometry and a physiologically useful rate acceleration cannot be obtained. This result is likely to be generally applicable to most active transport systems.
Variable stoichiometry in active ion transport: theoretical analysis of physiological consequences.
Johnson, E A; Tanford, C; Reynolds, J A
1985-01-01
Active ion transport systems with fixed stoichiometry are subject to a thermodynamic limit on the ion concentration gradients that they can generate and maintain, and their net rates of transport must inevitably decrease as this limit is approached. The capability to vary stoichiometry might thus be physiologically advantageous: a shift to lower stoichiometry (fewer ions pumped per reaction cycle) at increasing thermodynamic load could increase the limit on the supportable concentration gradient and could accelerate the rate of transport under high-load conditions. Here we present a theoretical and numerical analysis of this possibility, using the sarcoplasmic reticulum ATP-driven Ca pump as the example. It is easy to introduce alternate pathways into the reaction cycle for this system to shift the stoichiometry (Ca2+/ATP) from the normal value of 2:1 to 1:1, but it cannot be done without simultaneous generation of a pathway for uncoupled leak of Ca2+ across the membrane. This counteracts the advantageous effect of the change in transport stoichiometry and a physiologically useful rate acceleration cannot be obtained. This result is likely to be generally applicable to most active transport systems. PMID:3860866
Modeling interactions in major ion toxicity to Ceriodaphnia dubia (presentation)
Various anthropogenic activities can cause exposures of freshwater systems to greatly elevated concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) with widely-varying compositions. A data set on the acute toxicity of single salts and binary salt mixtures to Ceriodaphnia d...
Increased concentrations of major ions (Na, K, Ca, Mg, Cl, SO4, HCO3) in freshwater systems can result from a variety of anthropogenic activities, and can adversely affect aquatic organisms if the increase is sufficiently severe. Laboratory tests have indicated that the toxicity...
Reduced deuterium retention in simultaneously damaged and annealed tungsten
NASA Astrophysics Data System (ADS)
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; Baldwin, M. J.; Yu, J. H.; Doerner, R. P.; Tynan, G. R.
2017-10-01
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D2 plasma ion fluence of 1024 D+/m2. Nuclear reaction analysis (NRA), utilizing the D(3He,p)4He nuclear reaction, is used to probe the D concentration in the near surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.
Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando
2010-06-15
Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.
Islam, A. E.; Zakharov, D.; Stach, E. A.; ...
2015-09-16
Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less
Ion Traps at the Sun: Implications for Elemental Fractionation
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay
2018-04-01
Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.
Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Ki Kim, Moon; Kim, Young-Rok; Maruta, Shinsaku; Min Kim, Sun; Jeon, Tae-Joon
2015-01-01
Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations. PMID:26189604
SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process
NASA Astrophysics Data System (ADS)
Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.
2011-11-01
Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.
Das, Dhiman; Phan, Dinh-Tuan; Zhao, Yugang; Kang, Yuejun; Chan, Vincent; Yang, Chun
2017-03-01
A novel continuous flow microfluidic platform specifically designed for environmental monitoring of O/W emulsions during an aftermath of oil spills is reported herein. Ionized polycyclic aromatic hydrocarbons which are toxic are readily released from crude oil to the surrounding water phase through the smaller oil droplets with enhanced surface area. Hence, a multi-module microfluidic device is fabricated to form ion enrichment zones in the water phase of O/W emulsions for the ease of detection and to separate micron-sized oil droplets from the O/W emulsions. Fluorescein ions in the water phase are used to simulate the presence of these toxic ions in the O/W emulsion. A DC-biased AC electric field is employed in both modules. In the first module, a nanoporous Nafion membrane is used for activating the concentration polarization effect on the fluorescein ions, resulting in the formation of stable ion enrichment zones in the water phase of the emulsion. A 35.6% amplification of the fluorescent signal is achieved in the ion enrichment zone; corresponding to 100% enrichment of the fluorescent dye concentration. In this module, the main inlet is split into two channels by using a Y-junction so that there are two outlets for the oil droplets. The second module located downstream of the first module consists of two oil droplet entrapment zones at two outlets. By switching on the appropriate electrodes, either one of the two oil droplet entrapment zones can be activated and the droplets can be blocked in the corresponding outlet. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells
Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.
2014-01-01
In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640
Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tyurina, Y Y; Tyurin, V A
2000-01-01
Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in 45Ca2+ influx, decreases in the activity of Na+,K+-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i, 45Ca2+ influx, and Na+,K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+,K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.
Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes
Flowers, Timothy J.; Munns, Rana; Colmer, Timothy D.
2015-01-01
Background Halophytes are the flora of saline soils. They adjust osmotically to soil salinity by accumulating ions and sequestering the vast majority of these (generally Na+ and Cl−) in vacuoles, while in the cytoplasm organic solutes are accumulated to prevent adverse effects on metabolism. At high salinities, however, growth is inhibited. Possible causes are: toxicity to metabolism of Na+ and/or Cl− in the cytoplasm; insufficient osmotic adjustment resulting in reduced net photosynthesis because of stomatal closure; reduced turgor for expansion growth; adverse cellular water relations if ions build up in the apoplast (cell walls) of leaves; diversion of energy needed to maintain solute homeostasis; sub-optimal levels of K+ (or other mineral nutrients) required for maintaining enzyme activities; possible damage from reactive oxygen species; or changes in hormonal concentrations. Scope This review discusses the evidence for Na+ and Cl− toxicity and the concept of tissue tolerance in relation to halophytes. Conclusions The data reviewed here suggest that halophytes tolerate cytoplasmic Na+ and Cl− concentrations of 100–200 mm, but whether these ions ever reach toxic concentrations that inhibit metabolism in the cytoplasm or cause death is unknown. Measurements of ion concentrations in the cytosol of various cell types for contrasting species and growth conditions are needed. Future work should also focus on the properties of the tonoplast that enable ion accumulation and prevent ion leakage, such as the special properties of ion transporters and of the lipids that determine membrane permeability. PMID:25466549
Determination of ion mobility in EHD flow zone of plasma generator
NASA Astrophysics Data System (ADS)
Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik
2015-12-01
Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility
Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan
2013-08-01
The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immobilization of mercury and zinc in an alkali-activated slag matrix.
Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa
2003-07-04
The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.
Effects of metal ions on the catalytic degradation of dicofol by cellulase.
Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo
2015-07-01
A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.
Long-range electrostatic screening in ionic liquids
Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.
2015-01-01
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001
Ozawa, Eijiro
2011-01-01
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.
In vitro activity of minimised hammerhead ribozymes.
Hendry, P; McCall, M J; Santiago, F S; Jennings, P A
1995-01-01
A number of minimised hammerhead ribozymes (minizymes) which lack stem II have been kinetically characterised. These minizymes display optimal cleavage activity at temperatures around 37 degrees C. The cleavage reactions of the minizymes are first order in hydroxide ion concentration up to around pH 9.3 above which the cleavage rate constants decline rapidly. The reactions show a biphasic dependence on magnesium-ion concentration; one of the interactions has an apparent dissociation constant of around 20 mM while the other appears to be very weak, showing no sign of saturation at 200 mM MgCl2. The minizymes are significantly less active than comparable, full-size ribozymes when cleaving short substrates. However, at a particular site in a transcribed TAT gene from HIV-1, minizymes are more effective than ribozymes. PMID:7479037
Olushola, Ayoola I.; Aderibigbe, Komolafe O.; Stephen, Saka O.; Ayodeji, Odukoya S.
2017-01-01
Background. The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt–fed adult Wistar rats in this study. Method. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results. Results revealed that concentration of potassium ion and nitric oxide was significantly lower (P < .05) in high salt–fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt–fed group while P americana prevented biochemical perturbations in other experimental groups. Conclusion. In conclusion, high salt–diet induced biochemical alterations which were significantly protected by oral administration of P americana extract. PMID:29228805
Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S
2017-10-01
The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.
Spectroscopic studies on the antioxidant activity of p-coumaric acid.
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors
NASA Astrophysics Data System (ADS)
Cho, Shinho
2018-04-01
BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.
Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1
Higinbotham, N.; Etherton, Bud; Foster, R. J.
1967-01-01
The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of regulation of ion uptake in the intact plant although other correlative mechanisms may be involved. PMID:16656483
Nandy, Lucy; Dutcher, Cari S
2017-09-21
Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S.; Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my
An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHNmore » elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.« less
Stähli, Christoph; Muja, Naser; Nazhat, Showan N
2013-02-01
The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.
Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A
1997-01-01
Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.
Several anthropogenic activities cause excess total dissolved solids (TDS) content and its correlate, specific conductivity, in surface waters due to increases in the major geochemical ions (e.g., Na, Ca, Cl, SO4). However, the relative concentrations of major ions varies with t...
Ion exchanger from chemically modified banana leaves.
El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H
2013-07-25
Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Savarino, Lucia; Cadossi, Matteo; Chiarello, Eugenio; Baldini, Nicola; Giannini, Sandro
2013-09-01
Metal-on-metal hip resurfacing arthroplasty (MOM HR) has become an established alternative to traditional metal-on-metal total hip arthroplasty (MOM THA) for younger, more active patients. Nevertheless, concerns remain regarding wear and corrosion of the bearing surfaces and the resulting systemic metal ion distribution. We therefore asked whether (1) serum ion concentrations in patients with MOM HR at the time of long-term followup were higher than concentrations in a control population with no hip implants; (2) the ion concentrations in patients with MOM HR were different from those in patients with MOM THA; and (3) sex would influence ion levels with regard to implant type. The MOM HR and MOM THA groups consisted of 25 patients (evaluated at a minimum of 96 months) and 16 patients (evaluated at a minimum of 106 months), respectively. Forty-eight healthy donors were recruited for reference values. Cobalt, chromium, nickel, and molybdenum were measured by furnace graphite atomic absorption spectrophotometry. Ion concentrations of cobalt, chromium, and molybdenum in MOM HR were higher than in controls. Chromium and cobalt release were higher in MOM HR than in MOM THA. The sex-based analysis showed the difference was because women had higher concentrations in the MOM HR group than in the MOM THA group, whereas there was no difference between the men in the two groups. In MOM HR, high metal ion release persists for the long term. Consequently, it is important to implement strict biomonitoring for patients who have received these implants. The sustained high levels of chromium in females within the MOM HR group are concerning and merits strong consideration when choosing implants in this patient group.
Zahid, A.; Hassan, M.Q.; Balke, K.-D.; Flegr, M.; Clark, D.W.
2008-01-01
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25-33 m) and deep (191-318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl- and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl-. Use of chemical fertilizers may cause higher concentrations of NH 4+ and PO 43- in shallow well samples. In general, most ions are positively correlated with Cl-, with Na+ showing an especially strong correlation with Cl-, indicating that these ions are derived from the same source of saline waters. The relationship between Cl-/HCO 3- ratios and Cl- also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO 3- reflect the degree of water-rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO 42- and NO 3- and high concentrations of dissolved Fe and PO 43- and NH 4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO 42- and NO 3- but correlate weakly with Mo, Fe concentrations and positively with those of P, PO 43- and NH 4+ ions. ?? 2007 Springer-Verlag.
Zhang, Meng; Guo, Shuhai; Li, Fengmei; Wu, Bo
2017-10-15
This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R 2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.
Joung, In Suk; Luchko, Tyler; Case, David A.
2013-01-01
Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564
Devés, R; Krupka, R M
1987-01-01
The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.
NASA Astrophysics Data System (ADS)
Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.
2018-04-01
Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.
Effects of mountain agriculture on nutrient cycling at upstream watersheds
NASA Astrophysics Data System (ADS)
Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.
2015-05-01
The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities, especially excessive fertilization, on ecosystem nutrient cycling at mountain watersheds.
Characterization of Membrane Patch-Ion Channel Probes for Scanning Ion Conductance Microscopy.
Shi, Wenqing; Zeng, Yuhan; Zhu, Cheng; Xiao, Yucheng; Cummins, Theodore R; Hou, Jianghui; Baker, Lane A
2018-05-01
Integration of dual-barrel membrane patch-ion channel probes (MP-ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP-ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2 + -activated K + channels to establish the generalizability of the methods. Next, the capability of the MP-ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof-of-principle experiment is performed and site-specific molecular/ionic flux sensing is demonstrated at single-ion-channel level, which show that the MP-ICP platform can be used to quantify local molecular/ionic concentrations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterization of Tb3+ ions doped zincborophosphate glasses for green emission
NASA Astrophysics Data System (ADS)
Bindu, S. Hima; Raju, D. Siva; Krishna, V. Vinay; Raju, Ch. Linga
2017-06-01
The present study reports the preparation of various concentrations of Tb3+ ions doped zincborophosphate glasses and analysis by XRD, FTIR, optical, emission and decay curve spectras. The effect of borate groups on the phosphate was evidenced by FTIR spectroscopy. The JO intensity parameters was calculated using Judd-Offlet theory. The fluroscence spectra of Tb3+ doped zincborophosphate glasses revealed the efficient blue and green emissions due to 5D3 and 5D4 excited levels to 7Fj ground state respectively. The decay curves exhibits single exponential curves for all the Tb3+ ion concentrations. Various radiative and fluorescence parameters are calculated using JO intensity parameters. Based on the results obtained in the present study, the Tb3+ ions doped zincborophosphate glasses behaves as a efficient laser active materials for highintensity emissions in the green region.
Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.
Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming
2017-05-01
The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.
Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2
NASA Technical Reports Server (NTRS)
Semkow, K. W.; Haskin, L. A.
1985-01-01
The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.
Nickel(II) biosorption by Rhodotorula glutinis.
Suazo-Madrid, Alicia; Morales-Barrera, Liliana; Aranda-García, Erick; Cristiani-Urbina, Eliseo
2011-01-01
The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g(-1) at 25°C, and 63.53 mg g(-1) at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.
Inhibitory Effect of Fluoride on Na+,K+ ATPase Activity in Human Erythrocyte Membrane.
A, Shashi; G, Meenakshi
2015-12-01
The present study was performed to evaluate the role of long-term consumption of excessive fluoride on electrolyte homeostasis and their transporting mechanisms in erythrocytes of subjects afflicted with dental and skeletal fluorosis. A total of 620 adult (20-50 years) Indian residents participated in this study: 258 men and 242 women exposed to high concentrations of fluoride and 120 age and gender-matched control subjects. Erythrocytes were isolated from blood samples, washed, and used for the estimation of intraerythrocyte sodium and potassium concentrations. Na+,K+ ATPase activity was determined spectrophotometrically from a ghost erythrocyte membrane prepared by osmotic lysis. Erythrocyte analytes were correlated with the water and serum fluoride concentrations by Pearson's bivariate correlation and regression analysis. Results indicated a significant increase in intraerythrocyte sodium (F=14306.265, P<0.0001) in subjects from endemic fluorosis study groups as compared to controls. A significant (P<0.05) positive correlation of intracellular sodium was found with water and serum fluoride concentrations. Mean concentration of intraerythrocytic potassium ions showed significant reduction (F=9136.318, P<0.0001) in subjects exposed to fluoride. A significant (P<0.05) negative correlation of potassium ions was noted with water and serum fluoride concentrations. Na+,K+ ATPase activity was significantly declined (F=1572.763, P<0.0001) in subjects exposed to fluoride. A significant (P<0.05) inverse relationship of Na+,K+ ATPase activity was revealed with water and serum fluoride concentrations.
Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H
2003-06-01
An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.
Hrabcová, Dana; Pásek, Michal; Šimurda, Jiří; Christé, Georges
2013-12-13
We have developed a computer model of human cardiac ventricular myocyte (CVM), including t-tubular and cleft spaces with the aim of evaluating the impact of accumulation-depletion of ions in restricted extracellular spaces on transmembrane ion transport and ionic homeostasis in human CVM. The model was based on available data from human CVMs. Under steady state, the effect of ion concentration changes in extracellular spaces on [Ca2+]i-transient was explored as a function of critical fractions of ion transporters in t-tubular membrane (not documented for human CVM). Depletion of Ca2+ and accumulation of K+ occurring in extracellular spaces slightly affected the transmembrane Ca2+ flux, but not the action potential duration (APD90). The [Ca2+]i-transient was reduced (by 2%-9%), depending on the stimulation frequency, the rate of ion exchange between t-tubules and clefts and fractions of ion-transfer proteins in the t-tubular membrane. Under non-steady state, the responses of the model to changes of stimulation frequency were analyzed. A sudden increase of frequency (1-2.5 Hz) caused a temporal decrease of [Ca2+] in both extracellular spaces, a reduction of [Ca2+]i-transient (by 15%) and APD90 (by 13 ms). The results reveal different effects of activity-related ion concentration changes in human cardiac t-tubules (steady-state effects) and intercellular clefts (transient effects) in the modulation of membrane ion transport and Ca2+ turnover.
Silver, I A; Deas, J; Erecińska, M
2001-01-01
In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and an increase in lactate production. Glycolytic activity was also stimulated when cells were not in direct contact with 45S5 Bioglass particles but communicated with them only through the medium. Similarly, raising the pH of culture medium enhanced lactate synthesis. 45S5 Bioglass had no effect on osteoblast viability and, under most conditions, did not affect either proliferation or differentiation. Bioactive glasses 58S and 77S altered neither the ion levels nor enhanced metabolic activity. It is concluded that: (1) some bioactive glasses exhibit well-defined effects in osteoblasts in culture which are accessible to experimentation; (2) 45S5 Bioglass causes marked external and internal alkalinization which is, most likely, responsible for enhanced glycolysis and, hence, cellular ATP production; (3) changes in [H+] could contribute to alternations in concentrations of other intracellular ions; and (4) the rise in [Ca2+]i may influence activities of a number of intracellular enzymes and pathways. It is postulated that the beneficial effect of 45S5 on in vivo bone growth and repair may be due to some extent to alkalinization, which in turn increases collagen synthesis and crosslinking, and hydroxyapatite formation.
Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad
2016-01-01
Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions. PMID:27788249
Behera, Rabindra K; Theil, Elizabeth C
2014-06-03
Ferritin biominerals are protein-caged metabolic iron concentrates used for iron-protein cofactors and oxidant protection (Fe(2+) and O2 sequestration). Fe(2+) passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe(2+) substrate movement to ferritin enzyme (Fox) sites. Fe(2+) and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe(3+)-O-Fe(3+)] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe(2+) concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe(2+) access), Mn(2+) < Co(2+) < Cu(2+) < Zn(2+), reflecting metal ion-protein binding stabilities. Fe(2+)-Cys126 binding in ferritin ion channels, observed as Cu(2+)-S-Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu(2+) inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe(2+) movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe(2+) into ferritin enzymatic sites. The results clarify Fe(2+) transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations.
Reduced deuterium retention in simultaneously damaged and annealed tungsten
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; ...
2017-06-24
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less
Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek
2014-08-01
This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.
Reduced deuterium retention in simultaneously damaged and annealed tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less
11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China
NASA Astrophysics Data System (ADS)
Li, Siyue; Ye, Chen; Zhang, Quanfa
2017-08-01
Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.
Spermicidal activity of some halides.
Narayan, J P; Singh, J N
1979-01-01
Though most of the metallic ions are spermicidal in action, the present investigation emphasises the spermicidal activity of anions. Among the inorganic compounds screened at 4 concentrations (0.01%, 0.1%, 1% and 5%) halides are mainly spermicidal, except NaCl, KCl & CsCl which are spermiostatic; sulphates and nitrates are mainly spermiostatic except ZnSO4 at 1% concentration and above; CuSO4, Al2 (SO4)3, Uo2(NO3)2.6H2O and AgNO3 at 5% concentration where they become spermicidal.
Relation of morphology of electrodeposited zinc to ion concentration profile
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.; Sabo, B. B.
1977-01-01
The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puchalska, M., E-mail: malgorzata.puchalska@chem.uni.wroc.pl; Watras, A.
2016-06-15
We present a detailed analysis of luminescence behavior of singly Nd{sup 3+} doped and Nd{sup 3+}, Na{sup +} co-doped calcium aluminates powders: Ca{sub 1−x}Nd{sub x}Al{sub 4}O{sub 7} and Ca{sub 1−2x}Nd{sub x}Na{sub x}Al{sub 4}O{sub 7} (x=0.001–0.1). Relatively intense Nd{sup 3+} luminescence in IR region corresponding to typical {sup 4}F{sub 3/2}→{sup 4}I{sub J} (J=9/2–13/2) transitions with maximum located at about 1079 nm was obtained in all samples on direct excitation into f–f levels. The effect of dopant concentration and charge compensation by co-doping with Na{sup +} ions on morphology and optical properties were studied. The results show that both, the Nd{sup 3+}more » concentration and the alkali metal co-doping affected the optical properties but had no influence on the powders morphology. The studies of luminescence spectra (298 and 77 K) in a function of dopant concentration showed an increasing distortion of the local symmetry of Nd{sup 3+}with raising activator content due to certain defects created in the crystal lattice. On the other hand Na{sup +} addition led to significant narrowing of absorption and luminescence bands and also a reduction of the number of their components, showing smaller disturbance of Nd{sup 3+} ions local symmetries. Consequently, charge compensated by Na{sup +} co-doping materials showed significantly enhanced Nd{sup 3+} luminescence. The decrease of emission intensity and luminescence lifetimes with increase of activator concentration was attributed mainly to phonon-assisted cross-relaxation processes between Nd{sup 3+} ions. Analysis with Inokuti–Hirayama model indicated dipole–dipole mechanism of ion-ion interaction. Na{sup +} addition led to much smaller concentration quenching due to smaller clustering of dopant ions in CaAl{sub 4}O{sub 7} lattice.« less
Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica
2014-01-01
The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770
Luminescent and lasing characteristics of heavily doped Yb{sup 3+}:KY(WO{sub 4}){sub 2} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisel', V E; Troshin, A E; Shcherbitskii, V G
The luminescence decay times are measured taking into account reabsorption for KY(WO{sub 4}){sub 2}:Yb(KYW:Yb) crystals with atomic concentrations of active ions from 0.2% to 30%. The radiative lifetime of Yb{sup 3+} ions was measured to be 233 {mu}s. The cw output power of 1.46 and 1.62 W was achieved with the slope efficiency 52% and 47% for Yb:KYW lasers with the atomic concentration of Yb{sup 3+} ions equal to 10% and 30%, respectively. Using a semiconductor mirror with a saturable absorber (SESAM) in the passive mode-locking regime, pulses of duration 194 and 180 fs were obtained at wavelengths of 1042more » and 1039 nm for crystals with Yb{sup 3+} concentrations equal to 10% and 30%, respectively, the average output power being 0.63 and 0.75 W. (lasers and amplifiers)« less
Mount, David R.; Erickson, Russell J.; Highland, Terry L.; Hockett, J. Russell; Hoff, Dale J.; Jenson, Correne T.; Norberg-King, Teresa J.; Peterson, Kira N.; Polaske, Zach; Wisniewski, Stephanie
2018-01-01
The ions Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3−/CO32− (referred to here as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can increase to harmful levels from a variety of anthropogenic activities. It is also known that the toxicities of major ion salts can vary depending on the concentrations of other ions, and understanding these relationships is key to establishing appropriate environmental limits. In this paper we present a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of twelve major ion salts and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic below saturation, with the lowest LC50s found for K salts. All ten salts that showed toxicity also showed some degree of reduced toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH demonstrated that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts, while the toxicities of K salts were primarily influenced by the concentration of Na. These experiments also indicated multiple mechanisms of toxicity and suggested important aspects of dosimetry: the toxicities of K, Mg, and Ca salts were best related to the chemical activity of the cation, while the toxicities of Na salts also reflected an influence of the anions and were well correlated with osmolarity. Understanding these relationships between major ion toxicity and background water chemistry should aid in the development of sensible risk assessment and regulatory standards. PMID:27167636
Wang, Yi-Min; Zhou, Dong-Mei; Yuan, Xu-Yin; Zhang, Xiao-Hui; Li, Yi
2018-05-01
Responses of wheat (Triticum aestivum L.) seedling roots to the mixtures of copper (Cu), cadmium (Cd) and humic acids (HA) were investigated using the solution culture experiments, focusing on the interaction patterns between multiple metals and their influences on root proton release. A concentration-addition multiplication (CA) model was introduced into the modeling analysis. In comparison with metal ion activities in bulk-phase solutions, the incorporation of ion activities at the root cell membrane surfaces (CMs) (denoted as {Cu 2+ } 0 and {Cd 2+ } 0 ) into the CA model could significantly improve their correlation with RRE (relative root elongation) from 0.819 to 0.927. Modeling analysis indicated that the co-existence of {Cu 2+ } 0 significantly enhanced the rhizotoxicity of {Cd 2+ } 0 , while no significant effect of {Cd 2+ } 0 on the {Cu 2+ } 0 rhizotoxicity. 10 mg/L HA stimulated the root elongation even under metal stress. Although high concentration of metal ions inhibited the root proton release rate (ΔH + ), both the low concentration of metal ions and HA treatments increased the values of ΔH + . In HA-Cu-Cd mixtures, actions of metal ions on ΔH + values were varied intricately among treatments but well modeled by the CA model. We concluded from the CA models that the electrostatic effect is vitally important for explaining the effect of {Cu 2+ } 0 on the rhizotoxicity of {Cd 2+ } 0 , while it plays no unique role in understanding the influence of {Cd 2+ } 0 on the rhizotoxicity of {Cu 2+ } 0. Thus our study provide a novel way for modeling multiple metals behaviors in the environment and understanding the mechanisms of ion interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Menéndez, M. Isabel; Borge, Javier
2014-01-01
The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Fiskum, Sandra K.; Smoot, Margaret R.
Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conductedmore » at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..« less
Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa
2009-07-30
The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.
Investigating Factors that Affect Dissolved Oxygen Concentration in Water
ERIC Educational Resources Information Center
Jantzen, Paul G.
1978-01-01
Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)
Angamo, Eskedar Ayele; Rösner, Joerg; Liotta, Agustin; Kovács, Richard; Heinemann, Uwe
2016-11-01
Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K + , Na + , Ca 2+ , and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of K ATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K + concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po 2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH 2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose. Copyright © 2016 the American Physiological Society.
Angamo, Eskedar Ayele; Rösner, Joerg; Liotta, Agustin; Kovács, Richard
2016-01-01
Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K+, Na+, Ca2+, and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of KATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K+ concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH2. These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose. PMID:27559140
Release of major ions during rigor mortis development in kid Longissimus dorsi muscle.
Feidt, C; Brun-Bellut, J
1999-01-01
Ionic strength plays an important role in post mortem muscle changes. Its increase is due to ion release during the development of rigor mortis. Twelve alpine kids were used to study the effects of chilling and meat pH on ion release. Free ions were measured in Longissimus dorsi muscle by capillary electrophoresis after water extraction. All free ion concentrations increased after death, but there were differences between ions. Temperature was not a factor affecting ion release in contrast to ultimate pH value. Three release mechanisms are believed to coexist: a passive binding to proteins, which stops as pH decreases, an active segregation which stops as ATP disappears and the production of metabolites due to anaerobic glycolysis.
Effect of metal ions on the activity of casein kinase II from Xenopus laevis.
Gatica, M; Hinrichs, M V; Jedlicki, A; Allende, C C; Allende, J E
1993-01-04
Casein kinase II purified from the nuclei of Xenopus laevis oocytes as well as the recombinant alpha and beta subunits of the X. laevis CKII, produced in E. coli from the cloned cDNA genes, were tested with different divalent metal ions. The enzyme from both sources was active with either Mg2+, Mn2+, or Co2+. Optimal concentrations were 7-10 mM for Mg2+, 0.5-0.7 mM for Mn2+ and 1-2 mM for Co2+. In the presence of Mn2+ or Co2+ the enzyme used GTP more efficiently than ATP as a phosphate donor while the reverse was true in the presence of Mg2+. The apparent Km values for both nucleotide triphosphates were greatly decreased in the presence of Mn2+ as compared with Mg2+. Addition of Zn2+ (above 150 microM) to an assay containing the optimal Mg2+ ion concentration caused strong inhibition of both holoenzyme and alpha subunit. Inhibition of the holoenzyme by 400 microM Ni2+ could be reversed by high concentrations of Mg2+ but no reversal of this inhibition was observed with the alpha subunit.
Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes
NASA Astrophysics Data System (ADS)
Stout, Robert F.; Khair, Aditya S.
2017-01-01
We quantify the diffusiophoresis and electrophoresis of a uniformly charged, spherical colloid in a binary electrolyte using modified Poisson-Nernst-Planck equations that account for steric repulsion between finite sized ions. Specifically, we utilize the Bikerman (Bik) lattice gas model and the Carnahan-Starling (CS) and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state for monodisperse and polydisperse, respectively, hard spheres. We compute the phoretic mobility for weak applied fields using an asymptotic approach for thin diffuse layers, where ion steric effects are expected to be most prevalent. The thin diffuse layer limit requires λD/R →0 , where λD is the Debye screening length and R is the particle radius; this limit is readily attained for micron-sized colloids in concentrated electrolytic solutions. It is well known that the classic Poisson-Boltzmann (PB) model for pointlike, noninteracting ions leads to a prediction of a maximum in both the diffusiophoretic and electrophoretic mobilities with increasing particle zeta potential (at fixed λD/R ). In contrast, we find that ion sterics essentially eliminate this maximum (for reasonably attainable zeta potentials) and increase the mobility relative to PB. Next, we consider the more experimentally relevant case of a particle with a constant surface charge density and vary the electrolyte concentration, neglecting charge regulation on surface active sites. Rather surprisingly, there is little difference between the predictions of the four models (PB, Bik, CS, and BMCSL) for electrophoretic mobility in concentrated solutions, at reasonable surface charge densities (˜1 -10 μ C /cm2 ). This is because as the concentration increases, the zeta potential is reduced (to below the thermal voltage for concentrations above about 1 M) and therefore the diffuse layer structure is largely unaffected by ion sterics. For gradients of symmetric electrolytes (equal diffusivities, charge, and size) diffusiophoresis is also essentially unaffected by ion sterics, with a mobility that approaches zero with increasing concentration, just as in electrophoresis. For gradients of asymmetric electrolytes, the difference in diffusivities of the cation and anions leads to an induced electric field that acts on the charged particle. Importantly, we show that ion sterics leads to an excess contribution to the induced electric field, which increases rapidly with concentration. This increase overwhelms the accompanying decrease in zeta potential. The result is the diffusiophoretic mobility increases with concentration, rather than approaching zero. Therefore, diffusiophoresis could be an appealing alternative transport mechanism to electrophoresis in concentrated electrolyte solutions.
Nikanov, A N; Markova, O L; Frolova, N M; Kulikova, K S
2013-01-01
Studies on the assessment of the effect of treatment-and-preventive drinks, i.e. "Leovit" dietary kissels, and "Zosterin-Ultra" biologically active food additive, on copper, nickel and cobalt ion concentrations in urine and on lead blood concentrations in workers employed at the "Kola Mining Company" limited liability joint-stock company and exposed to long-term metal aerosol effects, were carried out. Dependence of ion concentrations of these metals in biological media on exposure duration was reported. The study findings reveal the advisability of use of the above-mentioned food additives, having detoxication properties, while carrying out preventive measures among workers exposed to heavy metals.
Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1987-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Thoron, radon and air ions spatial distribution in indoor air.
Kolarž, Predrag; Vaupotič, Janja; Kobal, Ivan; Ujić, Predrag; Stojanovska, Zdenka; Žunić, Zora S
2017-07-01
Spatial distribution of radioactive gasses thoron (Tn) and radon (Rn) in indoor air of 9 houses mostly during winter period of 2013 has been studied. According to properties of alpha decay of both elements, air ionization was also measured. Simultaneous continual measurements using three Rn/Tn and three air-ion active instruments deployed on to three different distances from the wall surface have shown various outcomes. It has turned out that Tn and air ions concentrations decrease with the distance increase, while Rn remained uniformly distributed. Exponential fittings function for Tn variation with distance was used for the diffusion length and constant as well as the exhalation rate determination. The obtained values were similar with experimental data reported in the literature. Concentrations of air ions were found to be in relation with Rn and obvious, but to a lesser extent, with Tn. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kawaii, S; Yamashita, K; Nakai, M; Takahashi, M; Fusetani, N
1999-02-01
The influence of Ca2+ and Mg2+ ions on both atrichous isorhiza (AI) discharge and settlement of actinular larvae of the hydroid Tubularia mesembryanthemum was investigated. Mg2+-supplemented artificial seawater (ASW) completely inhibited both events at a concentration of 206 mM, whereas lowered Mg2+ concentrations enhanced them. Ca2+ ions in the bathing solution highly regulated AI discharge and settlement, and Mg2+ ions may down-regulate these events. The effect of inorganic Ca2+-channel blockers, including Gd3+ and La3+, was also examined. Larval settlement was inhibited by Co2+, Ni2+, Cd2+, La3+, and Gd3+, with half inhibitory concentrations (IC50) of 5800, 260, 53, 45, and 7 {mu}M, respectively; AI discharge was also inhibited by these ions, with IC50 values of 6600, 500, 78, 41, and 5 {mu}M, respectively. These results suggest possible involvement of stretch-activated Ca2+ channels in the signal transmission of both AI discharge and larval settlement. Copyright © 1999 by Marine Biological Laboratory.
Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu
2017-05-12
Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilichev, A.N.; Ukharskii, A.A.; Matyshak, V.A.
1995-03-01
Data are obtained on the concentration of Cu{sup 2+}{sub isol}, Cu{sub ass}, and Cu{sup +} ions and the activity in the reaction of NO reduction with propane on copper-containing zeolites (0.15-2.86% Cu/ZSM-5). A correlation between the NO conversion and Cu{sup 2+}{sub isol} concentration is found and discussed.
Neher, E.; Lux, H. D.
1973-01-01
K+-sensitive liquid ion-exchanger microelectrodes are shown to be capable of measuring concentration changes which occur on a millisecond time scale. However, some quaternary ammonium ions, such as tetraethylammonium and acetylcholine, are able to block electrode function when present in concentrations as low as 10-4 to 10-3 M. Changes in extracellular potassium concentration caused by spike activity or voltage clamp pulses of exposed single neurons of the snail Helix pomatia may be measured by these electrodes. Quantitative analysis shows that the total amount of excess potassium found in the vicinity of the cell a short time after a clamp pulse, is in relatively good agreement with the amount of potassium carried by the membrane current. PMID:4689624
Mineral induced phosphorylation of glycolate ion--a metaphor in chemical evolution
NASA Technical Reports Server (NTRS)
Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G.
1997-01-01
Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from l0(-3) m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from l0(-2) m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.
Kim, Jaeeun; Hahn, Ji-Sook; Franklin, Michael J; Stewart, Philip S; Yoon, Jeyong
2009-01-01
The aim of the study was to determine the susceptibility of active and dormant cell populations from Pseudomonas aeruginosa biofilms to non-antibiotic antimicrobial agents such as chlorine, hydrogen peroxide and silver ions in comparison with antibiotics. Active cells in colony biofilm were differentially labelled by induction of a green fluorescent protein (GFP). Active and dormant cells were sorted in phosphate buffered solution by flow cytometry. Reductions in viability were determined with plate counts. The spatial pattern of metabolic activity in colony biofilm was verified, and the active and dormant cells were successfully sorted according to the GFP intensity. Active cells had bigger cell size and higher intracellular density than dormant cells. While dormant cells were more tolerant to tobramycin and silver ions, active cells were more tolerant to chlorine. Metabolically active cells contain denser intracellular components that can react with highly reactive oxidants such as chlorine, thereby reducing the available concentrations of chlorine. In contrast, the concentrations of silver ions and hydrogen peroxide were constant during treatment. Aerobically grown stationary cells were significantly more tolerant to chlorine unlike other antimicrobial agents. Chlorine was more effective in inactivation of metabolically inactive dormant cells and also more effective under anaerobic conditions. The high oxidative reactivity and rapid decay of chlorine might influence the different antimicrobial actions of chlorine compared with antibiotics. This study contributes to understanding the effects of dormancy and the presence of oxygen on the susceptibility of P. aeruginosa biofilm to a wide range of antimicrobial agents.
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S
2004-11-01
The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance-concentration relations observed in experiments.
Do ion levels in hip resurfacing differ from metal-on-metal THA at midterm?
Moroni, A; Savarino, L; Hoque, M; Cadossi, M; Baldini, N
2011-01-01
Metal-on-metal Birmingham hip resurfacing (MOM-BHR) is an alternative to metal-on-metal total hip arthroplasty (MOM-THA), especially for young and/or active patients. However, wear resulting in increased serum ion levels is a concern. We asked whether (1) serum chromium (Cr), cobalt (Co), and molybdenum (Mo) concentrations would differ between patients with either MOM-BHR or MOM-THA at 5 years, (2) confounding factors such as gender would influence ion levels; and (3) ion levels would differ at 2 and 5 years for each implant type. Ions were measured in two groups with either MOM-BHR (n = 20) or MOM-THA (n = 35) and a mean 5-year followup, and two groups with either MOM-BHR (n = 15) or MOM-THA (n = 25) and a mean 2-year followup. Forty-eight healthy blood donors were recruited for reference values. At 5 years, there were no differences in ion levels between patients with MOM-BHR or MOM-THA. Gender was a confounding factor, and in the MOM-BHR group at 5 years, Cr concentrations were greater in females compared with those of males. Mean ion levels were similar in patients with 2 and 5 years of followup for each implant type. Ion levels in patients were sevenfold to 10-fold higher than in controls. As the metal ion concentrations in the serum at 5 years were in the range reported in the literature, we do not believe concerns regarding excessive metal ion levels after MOM-BHR are justified. Level III, therapeutic study. See the Guidelines for Authors for a complete description of level of evidence.
NASA Astrophysics Data System (ADS)
Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group
2018-04-01
In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.
Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta
2017-04-01
Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .
NASA Astrophysics Data System (ADS)
Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng
2015-02-01
Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.
Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat
Willard, F. L.; Kodras, Rudolph
1967-01-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407
Survey of chemical compounds tested in vitro against rumen protozoa for possible control of bloat.
Willard, F L; Kodras, R
1967-09-01
Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-beta-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants.
Belgacem, Ahmed; Rebiai, Rachid; Hadoun, Hocine; Khemaissia, Sihem; Belmedani, Mohamed
2014-01-01
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m(2)/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.
The role of calcium ions in cytological effects of hypogravity
NASA Astrophysics Data System (ADS)
Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Palladina, T. A.; Tarasenko, V. A.
Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funaria hygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.
Wutor, V C; Togo, C A; Pletschke, B I
2007-06-01
The presence of coliforms in polluted water was determined enzymatically (in situ) by directly monitoring the activity of beta-d-galactosidase (B-GAL) through the hydrolysis of the yellow chromogenic subtrate, chlorophenol red beta-d-galactopyranoside (CPRG), which produced a red chlorophenol red (CPR) product. The objectives of this study were to monitor the effect of compounds commonly found in the environment and used in water treatment on a B-GAL CPRG assay and to investigate the differences between the environmental B-GAL enzyme and the pure commercial enzyme. Environmental B-GAL was optimally active at pH 7.8. Two temperature optima were observed at 35 and 55 degrees C, respectively. B-GAL activity was strongly inhibited by silver and copper ions. While calcium and ferrous ions at lower concentrations (50-100mgl(-1)) increased the enzyme activity, a reduction was observed at higher concentrations (200mgl(-1)). Sodium hypochlorite, normally used in rural areas to disinfect water gradually decreased B-GAL activity at concentrations between 0 and 5600ppm for both the commercial and environmental enzymes. B-GAL from the environment behaved differently from its commercially available counterpart.
OZAWA, Eijiro
2011-01-01
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction. PMID:21986313
NASA Astrophysics Data System (ADS)
Patwardhan, Anjali A.
The antibacterial activity of aminoglycosides stems from their high affinity binding to the 16S rRNA in bacteria resulting in inhibition of protein synthesis. Used to treat acute bacterial infections these antibiotics have limited applications due to their high dosage requirements and the emergence of resistant strains. We have synthesized and characterized Cu(II) derivatives of the aminoglycosides, kanamycin A, tobramycin, neamine, kanamycin B, neomycin B, and paromomycin. The first three exhibit preferential and tight binding to Cu(II) as against neomycin B and kanamycin B and paromomycin. EPR of frozen solutions and UV-visible spectroscopy suggest a change in geometry around the Cu(II) but the stabilities of the complexes in water differ. These copper derivatives efficiently cleave plasmid DNA at micromolar concentrations (hydrolytic) and at nanomolar concentrations in the presence co-reactants like hydrogen peroxide or ascorbic acid. Hydrolysis is multi turnover and exhibits Michelis-Menten kinetics with enzyme-like behavior whereas oxidative cleavage is highly specific with C-4' H abstraction resulting in characteristic base propenal and nucleotide base products. Hydroxyl radicals generated are copper based and are generated in close proximity of the substrate. Hammerhead ribozymes are selectively hydrolyzed in the presence of divalent ions with Mg2+ being the metal ion of choice in vivo . Our studies with complex ions like cobalt hexaammine and fac-triamminetriaquochromium(III) establish outer sphere interactions of Mg2+ with the hammerhead in the catalytic site. There are two sets of sites, one structural and one catalytic. Complex ions in the catalytic site and divalent ions in the structural site result in a slow but active hammerhead ribozyme suggesting that the complex ions are not inhibitory, contrary to what was suggested previously.
Trace element and major ion composition of wet and dry depositon in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Kaya, Güven; Tuncel, Gürdal
Daily, wet-only precipitation samples collected over a two year period were analyzed for SO 42-, NO 3-, Cl -, NH 4+, H +, Ca, Mg, K, Na, Al, Cu, Cd, Cr, Zn, V and Ni. Weekly dry-deposition samples collected on petri-dishes over the same period were analyzed only for major ions. Concentrations of ions and elements in Ankara precipitation are comparable with concentrations reported in literature for other urban areas. However, the wet deposition fluxes are the lowest among literature values, owing to small annual precipitation in the region. Although, annual average pH in precipitation is 4.7, episodic rain events with fairly low pH's were observed. Approximately half of the acidity in Ankara precipitation is neutralized in the winter season, while the acidity is completely neutralized by airborne soil particles that are rich in CaCO 3 in the summer precipitation. The SO 42- and NO 3- contributes approximately equally on the free acidity in winter. Main forms of SO 42- and NO 3- in precipitation are CaSO 4 and Ca(NO 3) 2, respectively. Crustal elements and ions have higher concentrations during summer season, while anthropogenic ions and elements did not show well-defined seasonal cycles. The lack of industrial activity in Ankara has profound influence on the temporal behavior of elements and ions.
Khodadoust, Saeid; Cham Kouri, Narges
2014-04-05
A simple and accurate spectrophotometric method for determination of trace amounts of Sn (II) ion in soil sample was developed by using the methylene blue (MB) in the presence of activated carbon (AC) as the adsorbent Solid Phase Extraction (SPE) of Sn (II) and then determined by UV-Vis. The Beer's law is obeyed over the concentration range of 1-80ngmL(-1) of Sn (II) with the detection limits of 0.34ngmL(-1). The influence of type and volume of eluent, concentration of MB, pH, and amount of AC on sensitivity of spectrophotometric method were optimized. The method has been successfully applied for Sn (II) ion determination in soil sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Kargi, Fikret; Cikla, Sinem
2007-12-01
Biosorption of zinc (II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a completely mixed tank operating in fed-batch mode instead of an adsorption column. Experiments with variable feed flow rate (0.05-0.5 L h(-1)), feed Zn(II) ion concentrations (37.5-275 mg L(-1)) and amount of adsorbent (1-6 g PWS) were performed using fed-batch operation at pH 5 and room temperature (20-25 degrees C). Break-through curves describing variations of aqueous (effluent) zinc ion concentrations with time were determined for different operating conditions. Percent zinc removal from the aqueous phase decreased, but the biosorbed (solid phase) zinc ion concentration increased with increasing feed flow rate and zinc concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS (q'(s)) and the rate constant (K) for zinc ion biosorption. Biosorption capacity (q'(s)=57.7 g Zn kg(-1) PWS) of PWS in fed-batch operation was found to be comparable with powdered activated carbon (PAC) in column operations. However, the adsorption rate constant (K=9.17 m(3) kg(-1) h(-1)) in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations. Therefore, a completely mixed tank operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.
Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe
2015-05-15
To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion. Copyright © 2015 Elsevier B.V. All rights reserved.
Hosseinzadeh, Reza; Khorsandi, Khatereh
2017-06-01
The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm -2 ) and blue LED (465nm; power density: 34mWcm -2 )) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL -1 ), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together. Copyright © 2017 Elsevier B.V. All rights reserved.
Blewett, Tamzin A; Wood, Chris M; Glover, Chris N
2016-07-01
Inanga (Galaxias maculatus) are a euryhaline and amphidromous Southern hemisphere fish species inhabiting waters highly contaminated in trace elements such as nickel (Ni). Ni is known to exert its toxic effects on aquatic biota via three key mechanisms: inhibition of respiration, impaired ion regulation, and stimulation of oxidative stress. Inanga acclimated to freshwater (FW), 50% seawater (SW) or 100% SW were exposed to 0, 150 or 2000 μg Ni L(-1), and tissue Ni accumulation, metabolic rate, ion regulation (tissue ions, calcium (Ca) ion influx), and oxidative stress (catalase activity, protein carbonylation) were measured after 96 h. Ni accumulation increased with Ni exposure concentration in gill, gut and remaining body, but not in liver. Only in the gill was Ni accumulation affected by exposure salinity, with lower branchial Ni burdens in 100% and 50% SW inanga, relative to FW fish. There were no Ni-dependent effects on respiration, or Ca influx, and the only Ni-dependent effect on tissue ion content was on gill potassium. Catalase activity and protein carbonylation were affected by Ni, primarily in FW, but only at 150 μg Ni L(-1). Salinity therefore offsets the effects of Ni, despite minimal changes in Ni bioavailability. These data suggest only minor effects of Ni in inanga, even at highly elevated environmental Ni concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physical chemistry and evolution of salt tolerance in halobacteria
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1980-01-01
The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.
NASA Astrophysics Data System (ADS)
Subbotin, K. A.; Osipova, Yu. N.; Lis, D. A.; Smirnov, V. A.; Zharikov, E. V.; Shcherbakov, I. A.
2017-07-01
Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.
Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo
2018-07-01
An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.
Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.
Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian
2015-03-02
The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. Copyright © 2014. Published by Elsevier B.V.
Stimulation of eryptosis by aluminium ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter
2006-12-01
Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al{sup 3+} ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACSmore » analysis. Exposure to Al{sup 3+} ions ({>=} 10 {mu}M Al{sup 3+} for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations ({>=} 30 {mu}M Al{sup 3+}). According to Fluo3 fluorescence Al{sup 3+} ions ({>=} 30 {mu}M for 3 h) increased cytosolic Ca{sup 2+} activity. Al{sup 3+} ions ({>=} 10 {mu}M for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al{sup 3+} ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al{sup 3+} ions decrease cytosolic ATP leading to activation of Ca{sup 2+}-permeable cation channels, Ca{sup 2+} entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al{sup 3+} ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al{sup 3+} intoxication.« less
Stottlemyer, R.; Toczydlowski, D.
1999-01-01
We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering products, especially C(B), HCO3-, and Si, from deeper soils. Soil water was a major component in the hydrologic and chemical budgets.We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soils were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (CB), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. D
Vopálenská, Irena; Váchová, Libuše; Palková, Zdena
2015-10-15
Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tiurina, Iu Iu; Tiurin, V A
1999-04-01
An increase of intracellular calcium ion concentration and of the 45Ca2+ entry, a decrease in Na+,K(+)-ATPase activity, and activation of Na+/Ca2+ exchange were shown to be initiated by glutamate in the rat brain cortex synaptosomes. These effects could be prevented with antagonists and blocking agents of the NMDA receptors. Pre-incubation of the synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 was shown to normalise [45Ca2+], the rate of 45Ca2+ entry, and the activity of Na+,K(+)-ATPase in the synaptosomes. The data obtained suggest that calcium ions entering the brain cortex neurones via the NMDA receptors in presence of excessive glutamate, trigger activation of free radical reactions damaging the neurones in ischemia, cerebral lesions, and other pathological conditions.
Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.
1993-01-01
1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366
Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid
NASA Astrophysics Data System (ADS)
Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.
2017-08-01
The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.
Spatio-temporal variation in stream water chemistry in a tropical urban watershed
A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez
2014-01-01
Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...
A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET
Storm, Petter; Kjaer Klausen, Thomas; Trulsson, Maria; Ho CS, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina
2013-01-01
Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues. PMID:23505537
A unifying mechanism for cancer cell death through ion channel activation by HAMLET.
Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina
2013-01-01
Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.
Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw
2003-01-01
Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598
Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping
2016-01-05
A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.
Air ion concentrations in various urban outdoor environments
NASA Astrophysics Data System (ADS)
Ling, Xuan; Jayaratne, Rohan; Morawska, Lidia
2010-06-01
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm -3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm -3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
2013-01-01
Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to increased levels of components of the reductive iron uptake system in comparison to the wild-type, independent of iron concentrations in the media. However, the additional induction of this system by low iron concentrations was independent of HOG1. PMID:23347662
Li, Tengfei; Cui, Zhimin; Wang, Yan; Yang, Wen; Li, Duo; Song, QinXin; Sun, Luning; Ding, Li
2018-03-20
As an orally active iron chelator, deferasirox forms its ion complexes in the prepared plasma samples and LC-MS mobile phase where ferric ion exists, and then comparing with the nominal concentration level, a lower detected concentration level of deferasirox would be obtained after LC-MS analysis, if no proper treatment was adopted. Meanwhile, the phenomenon would be observed that multiple repeat injections of the same deferasirox plasma sample in the same tube would show the lower and lower detected concentration levels of deferasirox, which caused by more and more ferric ions from the injection needle dissolved in the sample solution as multiple repeated injections. The addition of a proper concentration of EDTA in the mobile phase and the sample will competitively inhibit deferasirox from complexing with ferric ion, and prevent the decrease of deferasirox concentration. In this paper, an LC-MS/MS method was developed and validated for the determination of deferasirox in human plasma. To achieve the protein precipitation, the analytes were extracted from aliquots of 200 μL human plasma with acetonitrile. Chromatographic separation was performed on an ODS-C18 column with the mobile phase consisted of methanol and 0.1% formic acid containing 0.04 mM ethylenediamine tetraacetate dihydrate (EDTA) (80:20, v/v) at a flow rate of 0.5 mL/min. Deferasirox and the internal standard (IS, mifepristone) were detected using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor-to-product ion transitions m/z 374.2 → 108.1 for deferasirox and m/z 430.1 → 372.2 for the IS. The method exhibited good linearity over the concentration range of 0.04-40 μg/mL for deferasirox. The method was successfully applied to a pharmacokinetic study in 10 Chinese healthy volunteers after oral administration of deferasirox. Copyright © 2018 Elsevier B.V. All rights reserved.
Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...
Reynolds, J A; Johnson, E A; Tanford, C
1985-01-01
If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center. PMID:2987939
Lee, Hyekyung; Kim, Junsuk; Kim, Hyeonsoo; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae
2017-08-24
Over the past decade, nanofluidic diodes that rectify ionic currents (i.e. greater current in one direction than in the opposite direction) have drawn significant attention in biomolecular sensing, switching and energy harvesting devices. To obtain current rectification, conventional nanofluidic diodes have utilized complex nanoscale asymmetry such as nanochannel geometry, surface charge density, and reservoir concentration. Avoiding the use of sophisticated nano-asymmetry, micro/nanofluidic diodes using microscale asymmetry have been recently introduced; however, their diodic performance is still impeded by (i) low (even absent) rectification effects at physiological concentrations over 100 mM and strong dependency on the bulk concentration, and (ii) the fact that they possess only passive predefined rectification factors. Here, we demonstrated a new class of micro/nanofluidic diode with an ideal perm-selective nanoporous membrane based on ion concentration polarization (ICP) phenomenon. Thin side-microchannels installed near a nanojunction served as mitigators of the amplified electrokinetic flows generated by ICP and induced convective salt transfer to the nanoporous membrane, leading to actively controlled micro-scale asymmetry. Using this device, current rectifications were successfully demonstrated in a wide range of electrolytic concentrations (10 -5 M to 3 M) as a function of the fluidic resistance of the side-microchannels. Noteworthily, it was confirmed that the rectification factors were independent from the bulk concentration due to the ideal perm-selectivity. Moreover, the rectification of the presenting diode was actively controlled by adjusting the external convective flows, while that of the previous diode was passively determined by invariant nanoscale asymmetry.
Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2017-09-19
Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.
The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.
Ahlers, J
1975-01-01
1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995
Cova, D; Molinari, G P; Rossini, L
1986-01-01
Methyl bromide and bromide ion concentrations were estimated in pasta manufactured before and after fumigation with methyl bromide. The first trial estimated the bromide ion concentrations in fumigated and unfumigated flours and in pastas obtained from these. The concentration of bromide ions in fumigated flours was not significantly different from unfumigated flours. Only some pastas, manufactured from fumigated flours, showed a higher bromide ion concentration than those manufactured from unfumigated flours. The second trial evaluated the bromide ion concentrations of rices, white flours, flours, pastas made only from flours, pastas with eggs and pastas with eggs and spinach, before and after exposure to methyl bromide in their retail packagings. The bromide ion concentrations in fumigated pastas with eggs, pastas with eggs and spinach and rice were higher than in those unfumigated. In the pastas with eggs the bromide ion concentration after fumigation increased ten times (from about 4 to 40 mg/kg). Results showed that the bromide ion and methyl bromide levels estimated in all the foodstuffs examined were lower than the maximum limits fixed by several different national regulations.
Ghazy, S E; Mahmoud, I A; Ragab, A H
2006-01-01
Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.
Iverson, Chad D; Gu, Xinyun; Lucy, Charles A
2016-08-05
This work systematically investigates the selectivity changes on many HILIC phases from w(w)pH 3.7-6.8, at 5 and 25mM buffer concentrations. Hydrophilicity (kcytosine/kuracil) vs. ion interaction (kBTMA/kuracil) selectivity plots developed by Ibrahim et al. (J. Chromatogr. A 1260 (2012) 126-131) are used to investigate the effect of mobile phase changes on the selectivity of 18 HILIC columns from various classes. "Selectivity change plots" focus on the change in hydrophilicity and ion interaction that the columns exhibit upon changing mobile phase conditions. In general, the selectivity behavior of most HILIC columns is dominated by silanol activity. Minimal changes in selectivity are observed upon changing pH between w(w)pH 5 and 6.8. However, a reduction in ionic interaction is observed when the buffer concentration is increased at w(w)pH≥5.0 due to ionic shielding. Reduction of the w(w)pH to<5.0 results in decreasing cation exchange activity due to silanol protonation. Under all eluent conditions, the majority of phases show little change in their hydrophilicity. Copyright © 2016 Elsevier B.V. All rights reserved.
21 CFR 111.365 - What precautions must you take to prevent contamination?
Code of Federal Regulations, 2012 CFR
2012-04-01
..., refrigerating, controlling hydrogen-ion concentration (pH), controlling humidity, controlling water activity (aw... are under a material review; (h) Performing mechanical manufacturing steps (such as cutting, sorting...
21 CFR 111.365 - What precautions must you take to prevent contamination?
Code of Federal Regulations, 2014 CFR
2014-04-01
..., refrigerating, controlling hydrogen-ion concentration (pH), controlling humidity, controlling water activity (aw... are under a material review; (h) Performing mechanical manufacturing steps (such as cutting, sorting...
21 CFR 111.365 - What precautions must you take to prevent contamination?
Code of Federal Regulations, 2013 CFR
2013-04-01
..., refrigerating, controlling hydrogen-ion concentration (pH), controlling humidity, controlling water activity (aw... are under a material review; (h) Performing mechanical manufacturing steps (such as cutting, sorting...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
AFE ion mass spectrometer design study
NASA Technical Reports Server (NTRS)
Wright, Willie
1989-01-01
This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAquino, J. Alejandro; Denninger, Andrew R.; Moulin, Aaron G.
2010-01-12
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism,more » isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K{sub a} = 7.6 {+-} 0.5 x 10{sup 4}, which is very similar to the reported value for the wild-type repressor, K{sub a} = 6.3 x 10{sup 4}. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.« less
Some blood chemistry values for five Chesapeake Bay area fishes
Hunn, J.B.; Robinson, P.F.
1966-01-01
Blood samples from gizzard shad,largemouth bass, white perch, pumpkinseed, and toadfish were analyzed for hemoglobin, total plasma protein, total plasma cholesterol, and ion concentrations of plasma sodium, potassium, and chloride. The hemoglobin concentration and total plasma cholesterol found in a given species seem to have positive correlation with the customary activity level of that species. The plasma ionic concentrations in general agree with those found by other authors.
Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell
2018-05-01
Field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but little is known about how ionic composition influences these responses. The present study evaluated the acute toxicity of major ion salts to the mayfly Neocloeon triangulifer over a range of background water quality conditions. The mayfly was particularly sensitive to Na 2 SO 4 , with the median lethal concentration (LC50) of 1338 mg SO 4 /L being lower than LC50s reported for 7 other species at that hardness. Increasing hardness of the dilution water from 30 to 150 mg/L (as CaCO 3 ) resulted in doubling of LC50s for sodium salts, and an approximately 1.5-fold increase in LC50 for MgSO 4 . Potassium salt toxicity was not strongly influenced by hardness, consistent with findings for other species. When hardness was held constant but the Ca to Mg ratio was manipulated, the ameliorative effect on Na 2 SO 4 and NaCl did not appear as strong as when hardness was varied; but for MgSO 4 the amelioration relative to Ca activity was similar between the 2 experiments. The toxicity of K salts to N. triangulifer was similar to Na salts on a millimolar basis, which contrasts with several other species for which K salts have been much more toxic. In addition, the toxicity of KCl to N. triangulifer was not notably affected by Na concentration, as has been shown for Ceriodaphnia dubia. Finally, plotting LC50s in terms of ion activity (Cl, SO 4 , Na, Mg, or K) over the range of Ca activities in dilution water resulted in significant positive relationships, with comparable slopes to those previously observed for C. dubia over the same range of Ca activities. Environ Toxicol Chem 2018;37:1330-1339. © 2018 SETAC. © 2018 SETAC.
NASA Astrophysics Data System (ADS)
Yadav, Sushma; Chandra, Amalendu
2017-12-01
We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.
Electronegative nonlinear oscillating modes in plasmas
NASA Astrophysics Data System (ADS)
Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin
2018-02-01
The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.
Scott, R H; Sweeney, M I; Kobrinsky, E M; Pearson, H A; Timms, G H; Pullar, I A; Wedley, S; Dolphin, A C
1992-05-01
1. Toxins from invertebrates have proved useful tools for investigation of the properties of ion channels. In this study we describe the actions of arginine polyamine which is believed to be a close analogue of FTX, a polyamine isolated from the American funnel web spider, Agelenopsis aperta. 2. Voltage-activated Ca2+ currents and Ca(2+)-dependent Cl- currents recorded from rat cultured dorsal root ganglion neurones were reversibly inhibited by arginine polyamine (AP; 0.001 to 100 microM). Low voltage-activated T-type Ca2+ currents were significantly more sensitive to AP than high voltage-activated Ca2+ currents. The IC50 values for the actions of AP on low and high voltage-activated Ca2+ currents were 10 nM and 3 microM respectively. AP was equally effective in inhibiting high voltage-activated currents carried by Ba2+, Sr2+ or Ca2+. However, AP-induced inhibition of Ca2+ currents was attenuated by increasing the extracellular Ca2+ concentration from 2 mM to 10 mM. 3. The actions of AP on a Ca(2+)-independent K+ current were more complex, 1 microM AP enhanced this current but 10 microM AP had a dual action, initially enhancing but then inhibiting the K+ current. 4. gamma-Aminobutyric acid-activated Cl- currents were also reversibly inhibited by 1 to 10 microM AP. In contrast N-methyl-D-aspartate currents recorded from rat cultured cerebellar neurones were greatly enhanced by 10 microM AP. 5. We conclude that at a concentration of 10 nM, AP is a selective inhibitor of low threshold T-type voltage-activated Ca2+ currents. However, at higher concentrations 1-10 microM AP interacts with ion channels or other membrane constituents to produce a variety of actions on both voltage and ligand gated ion channels.
Simulation of electrochemical behavior in Lithium ion battery during discharge process.
Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.
Simulation of electrochemical behavior in Lithium ion battery during discharge process
Chen, Yong; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535
Ion beam modification of topological insulator bismuth selenide
Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; ...
2014-12-17
In this study, we demonstrate chemical doping of a topological insulator Bi 2Se 3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi 2Se 3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi 2Se 3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allowmore » better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less
Yaroshchuk, A; Licón, E E; Zholkovskiy, E K; Bondarenko, M P; Heldal, T
2017-07-01
To have non-zero net flow in AC electroosmotic pumps, the electroosmosis (EO) has to be non-linear and asymmetric. This can be achieved due to ionic concentration polarization. This is known to occur close to micro-/nano-interfaces provided that the sizes of the nanopores are not too large compared to the Debye screening length. However, operation of the corresponding EO pumps can be quite sensitive to the solution concentration and, thus, unstable in practical applications. Concentration polarization of ion-exchange membranes is much more robust. However, the hydraulic permeability of the membrane is very low, which makes EO flows through them extremely small. This communication shows theoretically how this problem can be resolved via making scarce microscopic perforations in an ion-exchange membrane and putting it in series with an EO-active nano-porous medium. The problem of coupled flow, concentration and electrostatic-potential distributions is solved numerically by using finite-element methods. This analysis reveals that even quite scarce perforations of micron-scale diameters are sufficient to observe practically-interesting EO flows in the system. If the average distance between the perforations is smaller than the thickness of the EO-active layer, there is an effective homogenization of the electrolyte concentration and hydrostatic pressure in the lateral direction at some distance from the interface. The simulations show this distance to be somewhat lower than the half-distance between the perforations. On the other hand, when the surface fraction of perforations is sufficiently small (below a fraction of a percent) this "homogeneous" concentration is considerably reduced (or increased, depending on the current direction), which makes the EO strongly non-linear and asymmetric. This analysis provides initial guidance for the design of high-productivity and inexpensive AC electroosmotic pumps.
Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel.
Hou, Jingtao; Sha, Zhenjie; Hartley, William; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Li, Yuanzhi; Ke, Yujie; Long, Yi; Xue, Shengguo
2018-07-01
Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K + concentration in the tunnel. Batch experimental results reveal that increasing K + concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min -1 , but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K + concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn 2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K + concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K + doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics.
Wu, Chengtie; Chang, Jiang
2007-10-01
The aim of this study was to investigate the effect of three bioceramics in the CaO-SiO(2)-MgO systems with different composition on the in vitro degradation, bioactivity, and cytocompatibility. The degradation was evaluated through the activation energy of Si ion release from ceramics and the weight loss of the ceramics in Tris-HCl buffers. The in vitro bioactivity of the ceramics was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF). The cytocompatibility was evaluated through osteoblast morphology and proliferation. The results showed that the activation energy of Si ion release increased and the degradation decreased from bredigite to diopside ceramics with the increase of Mg content, and the apatite-formation ability in SBF decreased. The Ca, Si, and Mg containing ionic products from three ceramics could stimulate cell proliferation at lower concentration, and inhibit cell proliferation with the increase of ion concentrations. Furthermore, osteoblasts could adhere, spread, and proliferate on three ceramic disks, and cell proliferation on diopside was more obvious than that on other two ceramic disks.
Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian
2014-09-01
Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
NASA Astrophysics Data System (ADS)
Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan
2018-06-01
Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.
Earnshaw, D J; Gait, M J
1998-01-01
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982
The indoor-outdoor characteristics of water-soluble ion in PM2.5 in Tianjin wintertime.
Wang, Baoqing; Niu, Honghong; Liu, Bowei; Hu, Xinxin; Ren, Zihui
2018-05-15
The indoor and outdoor PM 2.5 mass concentration, water-soluble ion by filter sampler was analyzed on December 3-21, 2015 during wintertime in Tianjin, China. The results indicate that high humidity conditions result in the accumulation of atmospheric pollutants and reduce atmosphere visibility. The I/O ratio for PM 2.5 concentration in dormitory and lab are less than 1 in haze days. Indoor PM 2.5 concentration increases rapidly with outdoor PM 2.5 concentration increasing in haze days. The filtration factors of the dormitory and lab indicate nearly half of the outdoor PM 2.5 enters indoor environment. The human activities in dormitory could cause more the formation of PM 2.5 than those in lab. The concentration of SO 4 2- is the highest ion in water-soluble ion for outdoor PM 2.5 . The SO 4 2- , NO 3 - , NH 4 + , and Cl - are generated mainly by outdoor sources; however, the Na + , Ca 2+ , and Mg 2+ are generated mainly by indoor sources. The NH 4 NO 3 , (NH 4 ) 2 SO 4 , and NH 4 Cl accounts for 20.2~41.8%, 32.0~51.4%, and 6.4~10.6% of the total water-soluble ion in different indoor-outdoor environment. The total secondary aerosols including NH 4 NO 3 , (NH 4 ) 2 SO 4 , and NH 4 Cl in PM 2.5 are 28.3, 42.1, 28.2, 31.0, and 33.9% in outdoor environment for haze days, outdoor environment for non-haze days, dormitory for haze days, dormitory for non-haze days, and lab for haze days, respectively.
Capillarity ion concentration polarization as spontaneous desalting mechanism.
Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae
2016-04-01
To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.
Determination of phosphate in natural waters by activation analysis of tungstophosphoric acid
Allen, Herbert E.; Hahn, Richard B.
1969-01-01
Activation analysis may be used to determine quantitatively traces of phosphate in natural waters. Methods based on the reaction 31P(n,γ)32P are subject to interference by sulfur and chlorine which give rise to 32P through n,p and n,α reactions. If the ratio of phosphorus to sulfur or chlorine is small, as it is in most natural waters, accurate analyses by these methods are difficult to achieve. In the activation analysis method, molybdate and tungstate ions are added to samples containing phosphate ion to form tungstomolybdophosphoric acid. The complex is extracted with 2,6-dimethyl-4-heptanone. After activation of an aliquot of the organic phase for 1 hour at a flux of 1013 neutrons per cm2, per second, the gamma spectrum is essentially that of tungsten-187. The induced activity is proportional to the concentration of phosphate in the sample. A test of the method showed it to give accurate results at concentrations of 4 to at least 200 p.p.b. of phosphorus when an aliquot of 100 μl. was activated. By suitable reagent purification, counting for longer times, and activation of larger aliquots, the detection limit could be lowered several hundredfold.
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system
Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.
2013-01-01
Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004
A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.
Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J
2013-01-01
Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.
Variability of air ion concentrations in urban Paris
NASA Astrophysics Data System (ADS)
Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.
2015-12-01
Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5-10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5-1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.
Xu, Hong-Tao; Colby-Germinario, Susan P; Hassounah, Said; Quashie, Peter K; Han, Yingshan; Oliveira, Maureen; Stranix, Brent R; Wainberg, Mark A
2016-01-01
The viral RNA-dependent RNA polymerase (RdRp) activity of the dengue virus (DENV) NS5 protein is an attractive target for drug design. Here, we report the identification of a novel class of inhibitor (i.e., an active-site metal ion chelator) that acts against DENV RdRp activity. DENV RdRp utilizes a two-metal-ion mechanism of catalysis; therefore, we constructed a small library of compounds, through mechanism-based drug design, aimed at chelating divalent metal ions in the catalytic site of DENV RdRp. We now describe a pyridoxine-derived small-molecule inhibitor that targets DENV RdRp and show that 5-benzenesulfonylmethyl-3-hydroxy-4-hydroxymethyl-pyridine-2-carboxylic acid hydroxyamide (termed DMB220) inhibited the RdRp activity of DENV serotypes 1 to 4 at low micromolar 50% inhibitory concentrations (IC50s of 5 to 6.7 μM) in an enzymatic assay. The antiviral activity of DMB220 against DENV infection was also verified in a cell-based assay and showed a 50% effective concentration (EC50) of <3 μM. Enzyme assays proved that DMB220 was competitive with nucleotide incorporation. DMB220 did not inhibit the enzymatic activity of recombinant HIV-1 reverse transcriptase and showed only weak inhibition of HIV-1 integrase strand transfer activity, indicating high specificity for DENV RdRp. S600T substitution in the DENV RdRp, which was previously shown to confer resistance to nucleoside analogue inhibitors (NI), conferred 3-fold hypersusceptibility to DMB220, and enzymatic analyses showed that this hypersusceptibility may arise from the decreased binding/incorporation efficiency of the natural NTP substrate without significantly impacting inhibitor binding. Thus, metal ion chelation at the active site of DENV RdRp represents a viable anti-DENV strategy, and DMB220 is the first of a new class of DENV inhibitor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna
2013-09-01
The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.
Mak, D O; Webb, W W
1997-03-01
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.
Birceanu, Oana; Sorensen, Lisa A; Henry, Matthew; McClelland, Grant B; Wang, Yuxiang S; Wilkie, Michael P
2014-03-01
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in the Great Lakes through its application to nursery streams containing larval sea lampreys. TFM uncouples oxidative phosphorylation, impairing mitochondrial ATP production in sea lampreys and rainbow trout (Oncorhynchus mykiss). However, little else is known about its sub-lethal effects on non-target aquatic species. The present study tested the hypotheses that TFM exposure in hard water leads to (i) marked depletion of energy stores in metabolically active tissues (brain, muscle, kidney, liver) and (ii) disruption of active ion transport across the gill, adversely affecting electrolyte homeostasis in trout. Exposure of trout to 11.0mgl(-1) TFM (12-h LC50) led to increases in muscle TFM and TFM-glucuronide concentrations, peaking at 9h and 12h, respectively. Muscle and brain glycogen was reduced by 50%, while kidney and muscle lactate increased with TFM exposure. Kidney ATP and phosphocreatine decreased by 50% and 70%, respectively. TFM exposure caused no changes in whole body ion (Na(+), Cl(-), Ca(2+), K(+)) concentrations, gill Na(+)/K(+) ATPase activity, or unidirectional Na(+) movements across the gills. We conclude that TFM causes a mismatch between ATP supply and demand in trout, leading to increased reliance on glycolysis, but it does not have physiologically relevant effects on ion balance in hard water. © 2013.
Behera, Rabindra K.; Theil, Elizabeth C.
2014-01-01
Ferritin biominerals are protein-caged metabolic iron concentrates used for iron–protein cofactors and oxidant protection (Fe2+ and O2 sequestration). Fe2+ passage through ion channels in the protein cages, like membrane ion channels, required for ferritin biomineral synthesis, is followed by Fe2+ substrate movement to ferritin enzyme (Fox) sites. Fe2+ and O2 substrates are coupled via a diferric peroxo (DFP) intermediate, λmax 650 nm, which decays to [Fe3+–O–Fe3+] precursors of caged ferritin biominerals. Structural studies show multiple conformations for conserved, carboxylate residues E136 and E57, which are between ferritin ion channel exits and enzymatic sites, suggesting functional connections. Here we show that E136 and E57 are required for ferritin enzyme activity and thus are functional links between ferritin ion channels and enzymatic sites. DFP formation (Kcat and kcat/Km), DFP decay, and protein-caged hydrated ferric oxide accumulation decreased in ferritin E57A and E136A; saturation required higher Fe2+ concentrations. Divalent cations (both ion channel and intracage binding) selectively inhibit ferritin enzyme activity (block Fe2+ access), Mn2+ << Co2+ < Cu2+ < Zn2+, reflecting metal ion–protein binding stabilities. Fe2+–Cys126 binding in ferritin ion channels, observed as Cu2+–S–Cys126 charge-transfer bands in ferritin E130D UV-vis spectra and resistance to Cu2+ inhibition in ferritin C126S, was unpredicted. Identifying E57 and E136 links in Fe2+ movement from ferritin ion channels to ferritin enzyme sites completes a bucket brigade that moves external Fe2+ into ferritin enzymatic sites. The results clarify Fe2+ transport within ferritin and model molecular links between membrane ion channels and cytoplasmic destinations. PMID:24843174
Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha
1998-01-01
An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.
Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.
Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet
2009-01-15
Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
Persistent Ion Pairing in Aqueous Hydrochloric Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam
2014-07-03
For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that themore » Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.« less
Kalis, Erwin J J; Weng, Liping; Dousma, Freerk; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2006-02-01
Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass spectrometer (ICP-MS). However, free metal ion concentrations in natural waters are commonly below the detection limit of ICP-MS. We decreased the detection limit by making use of a ligand, and we developed a field DMT cell that can be applied in situ in natural waters. A kinetic approach can be used to calculate free metal ion concentrations when the equilibrium time becomes too large. The field DMT measured in situ in natural waters a free metal ion concentration ranging from 0.015% (Cu) to 13% (Zn) of a total metal concentration ranging from 0.06 nM (Cd) to 237 nM (Zn). The free metal ion concentrations were difficult to predict using an equilibrium speciation model, probably due to the uncertainty in the nature of the dissolved organic matter or the presence of other reactive colloids. It is shown that DMT can follow changes in the free metal ion concentration on times scales less than a day under certain conditions.
Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver
2005-04-27
Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.
Enhancing boron rejection in FO using alkaline draw solutions.
Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y
2017-07-01
This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss.
Fernandes, Jorge M O; Kemp, Graham D; Molle, M Gerard; Smith, Valerie J
2002-01-01
Skin exudates of rainbow trout contain a potent 13.6 kDa anti-microbial protein which, from partial internal amino acid sequencing, peptide mass fingerprinting, matrix-associated laser desorption/ionization MS and amino acid analysis, seems to be histone H2A, acetylated at the N-terminus. The protein, purified to homogeneity by ion-exchange and reversed-phase chromatography, exhibits powerful anti-bacterial activity against Gram-positive bacteria, with minimal inhibitory concentrations in the submicromolar range. Kinetic analysis revealed that at a concentration of 0.3 microM all test bacteria lose viability after 30 min incubation. Weaker activity is also displayed against the yeast Saccharomyces cerevisiae. The protein is salt-sensitive and has no haemolytic activity towards trout erythrocytes at concentrations below 0.3 microM. Reconstitution of the protein in a planar lipid bilayer strongly disturbs the membrane but does not form stable ion channels, indicating that its anti-bacterial activity is probably not due to pore-forming properties. This is the first report to show that, in addition to its classical function in the cell, histone H2A has extremely strong anti-microbial properties and could therefore help contribute to protection against bacterial invasion. PMID:12164782
Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.
Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester
2015-07-07
A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.
NASA Astrophysics Data System (ADS)
Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol
2008-12-01
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.
EVAPORITE MICROBIAL FILMS, MATS, MICROBIALITES AND STROMATOLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, R; Penny Morris, P; Garriet Smith, G
2008-01-28
Evaporitic environments are found in a variety of depositional environments as early as the Archean. The depositional settings, microbial community and mineralogical composition vary significantly as no two settings are identical. The common thread linking all of the settings is that evaporation exceeds precipitation resulting in elevated concentrations of cations and anions that are higher than in oceanic systems. The Dead Sea and Storrs Lake are examples of two diverse modern evaporitic settings as the former is below sea level and the latter is a coastal lake on an island in the Caribbean. Each system varies in water chemistry asmore » the Dead Sea dissolved ions originate from surface weathered materials, springs, and aquifers while Storrs Lake dissolved ion concentration is primarily derived from sea water. Consequently some of the ions, i.e., Sr, Ba are found at significantly lower concentrations in Storrs Lake than in the Dead Sea. The origin of the dissolved ions are ultimately responsible for the pH of each system, alkaline versus mildly acidic. Each system exhibits unique biogeochemical properties as the extreme environments select certain microorganisms. Storrs Lake possesses significant biofilms and stromatolitic deposits and the alkalinity varies depending on rainfall and storm activity. The microbial community Storrs Lake is much more diverse and active than those observed in the Dead Sea. The Dead Sea waters are mildly acidic, lack stromatolites, and possess a lower density of microbial populations. The general absence of microbial and biofilm fossilization is due to the depletion of HCO{sub 3} and slightly acidic pH.« less
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. The nanoparticles prepared in this study were spherical, with an average particle size of 85-424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug.
Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul
2012-01-01
Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837
Quality of drinking water from the agricultural area treated with pitcher water filters
Królak, Elżbieta; Raczuk, Jolanta; Sakowicz, Danuta; Biardzka, Elżbieta
Home methods of drinking water treatment through filtration have recently become quite popular. The aim of the study was to compare chemical composition of unfiltered water with water filtered in households with pitcher water filters. Obtained results were discussed in view of the effect of analysed chemical components of water on human health. Water samples were taken from water works supplies and from home dug wells from the agricultural area. Unfiltered water and water filtered through filters filled with active carbon and ion-exchanging resin and placed in a pitcher were analysed. Electrolytic conductivity, pH, hardness and the concentrations of calcium, magnesium, nitrate, phosphate and chloride ions were determined in water samples. Results of analyses were statistically processed. As a result of water filtration, the concentration of phosphates significantly increased and the concentrations of calcium, magnesium, electrolytic conductivity and pH decreased. No changes were noted in the concentration of chloride ions. Filtering water decreased the concentration of nitrates in dug wells samples. Using water purification devices is justified in the case of water originating from home dug wells contaminated with nitrates when, at the same time, consumers’ diet is supplemented with calcium and magnesium. Filtration of water from water works supplies, controlled by sanitary inspection seems aimless.
Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine
NASA Astrophysics Data System (ADS)
Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.
2018-06-01
Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.
Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria
2008-03-01
A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.
NASA Astrophysics Data System (ADS)
Boris, D. R.; Emmert, G. A.
2007-11-01
The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.
Đolić, Maja B; Rajaković-Ognjanović, Vladana N; Štrbac, Svetlana B; Dimitrijević, Suzana I; Mitrić, Miodrag N; Onjia, Antonije E; Rajaković, Ljubinka V
2017-10-25
The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu 2+ - and Zn 2+ - ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu 2+ - ions, were 15.90 and 3.60mg/g, respectively, while for the materials activated by Zn 2+ - ions, the corresponding capacities were 14.00 and 4.72mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu 2+ -, and Zn 2+ -activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu 2+ - and Zn 2+ -activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. Copyright © 2017 Elsevier B.V. All rights reserved.
Boosting the signal: Endothelial inward rectifier K+ channels.
Jackson, William F
2017-04-01
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.
The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.
Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J
2016-01-01
Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.
Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels
Nache, Vasilica; Kusch, Jana; Biskup, Christoph; Schulz, Eckhard; Zimmer, Thomas; Hagen, Volker; Benndorf, Klaus
2008-01-01
Olfactory-type cyclic nucleotide-gated (CNG) ion channels open by the binding of cyclic nucleotides to a binding domain in the C-terminus. Employing the Eyring rate theory, we performed a thermodynamic analysis of the activation gating in homotetrameric CNGA2 channels. Lowering the temperature shifted the concentration-response relationship to lower concentrations, resulting in a decrease of both the enthalpy ΔH and entropy ΔS upon channel opening, suggesting that the order of an open CNGA2 channel plus its environment is higher than that of the closed channel. Activation time courses induced by cGMP concentration jumps were used to study thermodynamics of the transition state. The activation enthalpies ΔH‡ were positive at all cGMP concentrations. In contrast, the activation entropy ΔS‡ was positive at low cGMP concentrations and became then negative at increasing cGMP concentrations. The enthalpic and entropic parts of the activation energies approximately balance each other at all cGMP concentrations, leaving the free enthalpy of activation in the range between 19 and 21 kcal/mol. We conclude that channel activation proceeds through different pathways at different cGMP concentrations. Compared to the unliganded channel, low cGMP concentrations generate a transitional state of lower order whereas high cGMP concentrations generate a transitional state of higher order. PMID:18567637
Interfacial activity in alkaline flooding enhanced oil recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.K.
1981-01-01
The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less
Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants1[W][OA
Fu, Qiushi; Cheng, Lailiang; Guo, Yangdong; Turgeon, Robert
2011-01-01
Most herbaceous plants employ thermodynamically active mechanisms of phloem loading, whereas in many trees, the mechanism is passive, by diffusion. Considering the different water transport characteristics of herbs and trees, we hypothesized that water relations play a role in the adoption of phloem loading strategies. We measured whole-plant hydraulic conductance (Kp), osmolality, concentrations of polar metabolites, and key inorganic ions in recently mature leaves of 45 dicotyledonous species at midafternoon. Trees, and the few herbs that load passively, have low Kp, high osmolality, and high concentrations of transport sugars and total polar metabolites. In contrast, herbs that actively load sucrose alone have high Kp, low osmolality, and low concentrations of sugars and total polar metabolites. Solute levels are higher in sugar alcohol-transporting species, both herbs and trees, allowing them to operate at lower leaf water potentials. Polar metabolites are largely responsible for leaf osmolality above a baseline level (approximately 300 mm) contributed by ions. The results suggest that trees must offset low Kp with high concentrations of foliar transport sugars, providing the motivating force for sugar diffusion and rendering active phloem loading unnecessary. In contrast, the high Kp of most herbaceous plants allows them to lower sugar concentrations in leaves. This reduces inventory costs and significantly increases growth potential but necessitates active phloem loading. Viewed from this perspective, the elevation of hydraulic conductance marks a major milestone in the evolution of the herbaceous habit, not only by facilitating water transport but also by maximizing carbon use efficiency and growth. PMID:21873572
Kosenko, Elena A; Solomadin, Iliya N; Tikhonova, Lyudmila A; Reddy, V Prakash; Aliev, Gjumrakch; Kaminsky, Yury G
2014-02-01
Aβ exerts prooxidant or antioxidant effects based on the metal ion concentrations that it sequesters from the cytosol; at low metal ion concentrations, it is an antioxidant, whereas at relatively higher concentration it is a prooxidant. Thus Alzheimer disease (AD) treatment strategies based solely on the amyloid-β clearance should be re-examined in light of the vast accumulating evidence that increased oxidative stress in the human brains is the key causative factor for AD. Accumulating evidence indicates that the reduced brain glucose availability and brain hypoxia, due to the relatively lower concentration of ATP and 2,3-diphosphoglycerate, may be associated with increased concentration of endogenous ammonia, a potential neurotoxin in the AD brains. In this review, we summarize the progress in this area, and present some of our ongoing research activities with regard to brain Amyloid-β, systemic ammonia, erythrocyte energy metabolism and the role of 2,3-diphosphoglycerate in AD pathogenesis.
A cross-fostering analysis of bromine ion concentration in rats that inhaled 1-bromopropane vapor.
Ishidao, Toru; Fueta, Yukiko; Ueno, Susumu; Yoshida, Yasuhiro; Hori, Hajime
2016-06-16
Inhaled 1-bromopropane decomposes easily and releases bromine ion. However, the kinetics and transfer of bromine ion into the next generation have not been clarified. In this work, the kinetics of bromine ion transfer to the next generation was investigated by using cross-fostering analysis and a one-compartment model. Pregnant Wistar rats were exposed to 700 ppm of 1-bromopropane vapor for 6 h per day during gestation days (GDs) 1-20. After birth, cross-fostering was performed between mother exposure groups and mother control groups, and the pups were subdivided into the following four groups: exposure group, postnatal exposure group, gestation exposure group, and control group. Bromine ion concentrations in the brain were measured temporally. Bromine ion concentrations in mother rats were lower than those in virgin rats, and the concentrations in fetuses were higher than those in mothers on GD20. In the postnatal period, the concentrations in the gestation exposure group decreased with time, and the biological half-life was 3.1 days. Conversely, bromine ion concentration in the postnatal exposure group increased until postnatal day 4 and then decreased. This tendency was also observed in the exposure group. A one-compartment model was applied to analyze the behavior of bromine ion concentration in the brain. By taking into account the increase of body weight and change in the bromine ion uptake rate in pups, the bromine ion concentrations in the brains of the rats could be estimated with acceptable precision.
NASA Astrophysics Data System (ADS)
Owari, S.; Tomaru, H.; Matsumoto, R.
2016-12-01
We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).
2007-05-01
symptoms depending on the relative concentration, even leading to death.32 2.4. Instrument Settings Both positive and negative ions can be formed...Detection Technology, pp. 619-633, 1992. 7. Osorio, Celia ; Gomez, Lewis M.; Hernandez, Samuel P.; Castro, Miguel E., Time-of- flight Mass Spectroscopy...vol. 15, pp. 1950-1952. 34. Federal Facilities Assessment Branch, Public Health Assessment, US Army Umatilla Depot Activity, Centers for Disease
[Effect of sodium and calcium ions on glutamate and glutamine oxidation by rat brain synaptosomes].
Nilova, N S
1978-08-01
5 mM oxidative substrates and 0.15 mM Ca(2+) being used, different effects of Ca(2+) on the oxidation are possible, such as an additional inhibition of glutamine oxidation and an additional activation of glutamate oxidation. A decreased Na+-ion concentration in the medium inhibited synaptosomal respiration with glutamate as a substrate. With glutamine as a substrate oxygen consumption does not change.
Cyanobacteria as test organisms and biosorbents
NASA Astrophysics Data System (ADS)
Fokina, A. I.; Ogorodnikova, S. Yu.; Domracheva, L. I.; Lyalina, E. I.; Gornostaeva, E. A.; Ashikhmina, T. Ya.; Kondakova, L. V.
2017-01-01
Bioassay and biosorption potentials of different groups of cyanobacteria ( CB)— Nostoc linckia (Roth.) Born. et Flah. No. 271, natural biofilms dominated by CB of Phormidium genus, and biofilms dominated by Nostoc commune (Vauch. Elenk)—were estimated. The physiological-biochemical response of CB to the influence of copper sulfate (II) (catalase activity with a gasometric method and dehydrogenase activity, lipid peroxidation, and chlorophyll ɑ and pheophytin contents with a spectrophotometric method) was studied; metal bioaccumulation was determined with a stripping voltammetry method. It was found that the communities dominated by Phormidium genus (CB biomass 0.2 g/dm3) removed copper compounds from the solutions with Cu2+ ion concentration of 20 mg/dm3 almost completely (by 99%); communities dominated by CB N. commune, by 87%; and pure culture of N. linckia, by 50%. Dehydrogenase and catalase activities and the intensity of bioluminescence proved to be sensitive indicators of the response of CB to Cu2+ ions. The impact of Cu2+ ions (20 mg/dm3) on a biofilm dominated by CB of Phormidium genus resulted in the fivefold decrease of catalase activity during 24 h; dehydrogenase activity decreased by nearly 357 times. The bioluminescence intensity during 24 h decreased by 1.3-100 times under the impact of Cu2+ (2 mg/dm3) and by 8.6-200 times in variants with a higher concentration of Cu2+ (20 mg/dm3). This regularity can be used as a test function in bioassay.
NASA Astrophysics Data System (ADS)
Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.
2014-11-01
In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.
Role of oxygen defects on the magnetic properties of ultra-small Sn1-xFexO2 nanoparticles
NASA Astrophysics Data System (ADS)
Dodge, Kelsey; Chess, Jordan; Eixenberger, Josh; Alanko, Gordon; Hanna, Charles B.; Punnoose, Alex
2013-05-01
Although the role of oxygen defects in the magnetism of metal oxide semiconductors has been widely discussed, it is been difficult to directly measure the oxygen defect concentration of samples to verify this. This work demonstrates a direct correlation between the photocatalytic activity of Sn1-xFexO2 nanoparticles and their magnetic properties. For this, a series of ˜2.6 nm sized, well characterized, single-phase Sn1-xFexO2 crystallites with x = 0-0.20 were synthesized using tin acetate, urea, and appropriate amounts of iron acetate. X-ray photoelectron spectroscopy confirmed the concentration and 3+ oxidation state of the doped Fe ions. The maximum magnetic moment/Fe ion, μ, of 1.6 × 10-4 μB observed for the 0.1% Fe doped sample is smaller than the expected spin-only contribution from either high or low spin Fe3+ ions, and μ decreases with increasing Fe concentration. This behavior cannot be explained by the existing models of magnetic exchange. Photocatalytic studies of pure and Fe-doped SnO2 were used to understand the roles of doped Fe3+ ions and of the oxygen vacancies and defects. The photocatalytic rate constant k also showed an increase when SnO2 nanoparticles were doped with low concentrations of Fe3+, reaching a maximum at 0.1% Fe, followed by a rapid decrease of k for further increase in Fe%. Fe doping presumably increases the concentration of oxygen vacancies, and both Fe3+ ions and oxygen vacancies act as electron acceptors to reduce e--h+ recombination and promote transfer of electrons (and/or holes) to the nanoparticle surface, where they participate in redox reactions. This electron transfer from the Fe3+ ions to local defect density of states at the nanoparticle surface could develop a magnetic moment at the surface states and leads to spontaneous ferromagnetic ordering of the surface shell under favorable conditions. However, at higher doping levels, the same Fe3+ ions might act as recombination centers causing a decrease of both k and magnetic moment μ.
Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.
Edelson, J; McMullen, J P
1976-09-01
Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.
Is slack an intrinsic seizure terminator?
Igelström, Kajsa M
2013-06-01
Understanding how epileptic seizures are initiated and propagated across large brain networks is difficult, but an even greater mystery is what makes them stop. Failure of spontaneous seizure termination leads to status epilepticus-a state of uninterrupted seizure activity that can cause death or permanent brain damage. Global factors, like changes in neuromodulators and ion concentrations, are likely to play major roles in spontaneous seizure cessation, but individual neurons also have intrinsic active ion currents that may contribute. The recently discovered gene Slack encodes a sodium-activated potassium channel that mediates a major proportion of the outward current in many neurons. Although given little attention, the current flowing through this channel may have properties consistent with a role in seizure termination.
Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.
Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J
2012-01-01
The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.
Cherpakov, R A; Grebenchikov, O A; Plotnikov, E Ju; Likhvantsev, V V
2015-01-01
To examine the efficacy of renal preconditioning effect of dalargin and lithium ions by observing the model of gentamycin-induced acute renalfailure. The experiments were performed on white rats, male. The influence of dalargin and lithium ions on the development of gentamycin-induced acute renalfailure was studied in vivo. On the first 24 hours after dalargin injections were terminated, the rats were euthanized humanly. After this we took the blood for a biochemistry study and a renal culture for biochemical test and also for the test of gsk-3β activity. Concentrations of creatinine and urea were studied in serum. The culture samples of renal tubular epithelium before insertion of gentamycin were incubated in dalargin or lithium ions in different concentrations. After that the substratum was immediately changed to gentamycin in different concentrations also and the incubated for 24 hours. After all the standards MTT-test was performed (based on the ability of living cells to reduce the unpainted form by 3-4,5-dimethylthiazol-2-yl-2,5-difenilterarazola to blue crystalline farmazan). Lithium precondition leads to the 250% increase of gsk-3β concentration (p = 0.035). The same results were observed after injection of dalargin in 50 mcg/kg concentration. Concentration of creatinine was 44% lower in the dalargin group than in the control group (p = 0.022). Concentration of creatinine was 32% lower in the lithium group than in the control group (p = 0.030). Concentration of urea was 27% lower in the lithium group than in the control group (p = 0.049). Morphological inflammatory changes in the control group were more significant also. In vitro studies showed the maximum efficacy in the lithium group. The most effective dalargin concentration was 5 mg/ml. Lithium and dalargine preconditioning lowers the signs of gentamycine induced acute renal failure and damage rate of renal parenchyma in vivo and in vitro.
NASA Astrophysics Data System (ADS)
Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Arakaki, T.; Tanahara, A.; Oomori, T.; Miyagi, T.; Kadena, H.; Ishizaki, T.; Nakama, F.
2007-12-01
The study of perchlorate has become quite active in the U.S. in the last several years. Perchlorate has been recognized as a new environmental pollutant and it attracted much attention quickly in the world. The health concern about perchlorate stems from the fact that it displaces iodide in the thyroid gland, while iodine-containing thyroid hormones are essential for proper neural development from the fetal stage through the first years of life. In this study, we determined the concentrations of perchlorate ion present in the atmospheric aerosols collected in Okinawa Island, Japan. We then examined the relationships between the perchlorate concentrations and the environmental parameters and the climatic conditions peculiar to Okinawa. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS). Each sampling duration was one week. The quartz filters with aerosols were stirred with Milli-Q pure water for three hours before perchlorate ion was extracted. The extracted perchlorate ion concentrations were determined by ion chromatography (ICS-2000, DIONEX). The mean perchlorate concentration for the samples collected at CHAAMS was 1.83 ng/m3, and the minimum was 0.18 ng/m3. The samples collected during November 21-27, 2005, January 23-30, 2006 and April 24-01, 2006 had highest perchlorate concentrations. For these three samples, we performed back trajectory analysis, and found that the air mass for the three samples arrived from the Asian continent. A relatively strong correlation (r2 = 0.55) was found between perchlorate and nss-sulfate concentrations for the CHAAMS samples. Furthermore, we analyzed perchlorate in the soils and the fertilizers used for sugar cane farming around the CHAAMS area. The Milli-Q extract of the soil and the fertilizers did not contain any detectable levels of perchlorate ions. Therefore, it was suggested that perchlorate found in the atmospheric aerosols collected at CHAAMS was probably transported from the Asian continent.
Active Calcium and Strontium Transport in Human Erythrocyte Ghosts
Olson, Erik J.; Cazort, Ralph J.
1969-01-01
Both calcium and strontium could be transported actively from erythrocytes if adenosine triphosphate, guanosine triphosphate, or inosine triphosphate were included in the hypotonic medium used to infuse calcium or strontium into the cells. Acetyl phosphate and pyrophosphate were not energy sources for the transport of either ion. Neither calcium nor strontium transport was accompanied by magnesium exchange, and the addition of Mg++ to the reaction medium in a final concentration of 3.0 mmoles/liter did not promote the transport of either ion. In the absence of nucleotide triphosphates, the addition of 1.5 mmoles/liter of Sr++ to the reaction solution did not bring about active calcium transport and similarly 1.5 mmoles/liter of Ca++ did not bring about active strontium transport. The inclusion of 1.5 mmoles/liter of Ca++ or Sr++ in the reaction medium did not interfere with the transport of the other ion when the erythrocytes were infused with adenosine triphosphate. PMID:4304202
Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride
Sauerheber, Richard
2013-01-01
The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings. PMID:23840230
Physiologic conditions affect toxicity of ingested industrial fluoride.
Sauerheber, Richard
2013-01-01
The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.
Study on the formation of graphene by ion implantation on Cu, Ni and CuNi alloy
NASA Astrophysics Data System (ADS)
Kim, Janghyuk; Kim, Hong-Yeol; Jeon, Jeong Heum; An, Sungjoo; Hong, Jongwon; Kim, Jihyun
2018-09-01
This study identifies the details for direct synthesis of graphene by carbon ion implantation on Cu, Ni and CuNi alloy. Firstly, diffusion and concentration of carbon atoms in Cu and Ni are estimated separately. The concentrations of carbon atoms near the surfaces of Cu and Ni after carbon ion implantation and subsequent thermal annealing were correlated with the number of atoms and with the coverage or thickness of graphene. Systematic experiments showed that the Cu has higher carbon diffusivity and graphene coverage than Ni but higher temperatures and longer annealing times are required to synthesize graphene, similar to those in chemical vapor deposition method. The CuNi system shows better graphene coverage and quality than that on a single metal catalyst even after a short annealing time, as it has larger carbon diffusivity and lower carbon solubility than Ni and shows lower activation energy than Cu.
NASA Astrophysics Data System (ADS)
Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra
2017-04-01
Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.
NASA Astrophysics Data System (ADS)
Degefie, D. T.; El-Madany, T.-S.; Held, M.; Hejkal, J.; Hammer, E.; Dupont, J.-C.; Haeffelin, M.; Fleischer, E.; Klemm, O.
2015-10-01
The chemical composition of collected fog water and its temporal evolution was studied during the PARISFOG campaign in winter 2012/2013 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphéric) atmospheric observatory outside Paris, France. A further development of the caltech active fog collector was applied, in which the collected fog water gets into contact with Teflon and polyether ether ketone (PEEK) material exclusively. The collector was operational whenever the visibility was below 1000 m. In addition, the turbulent and gravitational fluxes of fog water and water vapor flux were used to examine in detail the temporal evolution the chemical composition of two fogs. The technique was applied to two fog events, one representing a radiation fog and the other one representing a stratus lowering fog. The result revealed that the dominant inorganic species in the fog water were NH4+, NO3-, Ca2 + and SO42 -, which accounted for more than 85% of the ion balance. The pH ranged from 3.7 to 6.2. In the evolution the two fog events, the interaction among the turbulent fog water flux, gravitational fog water flux and water vapor flux controlled the major ion loads (amount of ions, dissolved in fog droplets per volume of air) and ion concentrations (amount dissolved per volume of liquid water) of the fog water. In the radiation fog event, an increase of ion loads and ion concentrations occurred when the direction of water vapor flux towards to the place where the condensation process occurred. A decrease of ion loads and ion concentrations mainly happened by gravitational fog water flux with a minor contribution from turbulent fog water flux. However, when the turbulent water vapor flux was oriented downward, it turned the turbulent fog water flux upward and offset the removal of ions in the fog. In the stratus lowering fog event, the turbulent fog water flux and the gravitational water flux together mainly contributed to the fog water deposition and removal of ions. Increases of ion loads and ion concentrations occurred in response to slight downward water vapor flux. This study also indicates that the turbulent transport of fog droplets contributed to the preferential deposition of certain sizes fog droplets such that it affected the chemical composition of the fog water. For instance, both the NO3- concentration and load decreased fast as compared to NH4+ and SO42 - during the deposition period. This suggested that the chemical composition was dependent on fog droplets size.
Ultrafast Scavenging of the Precursor of H(•) Atom, (e(-), H3O(+)), in Aqueous Solutions.
Balcerzyk, Anna; Schmidhammer, Uli; Wang, Furong; de la Lande, Aurélien; Mostafavi, Mehran
2016-09-01
Picosecond pulse radiolysis measurements have been performed in several highly concentrated HClO4 and H3PO4 aqueous solutions containing silver ions at different concentrations. Silver ion reduction is used to unravel the ultrafast reduction reactions observed at the end of a 7 ps electron pulse. Solvated electrons and silver atoms are observed by the pulse (electron beam)-probe (supercontinuum light) method. In highly acidic solutions, ultrafast reduction of silver ions is observed, a finding that is not compatible with a reaction between the H(•) atom and silver ions, which is known to be thermally activated. In addition, silver ion reduction is found to be even more efficient in phosphoric acid solution than that in neutral solution. In the acidic solutions investigated here, the species responsible for the reduction of silver atoms is considered to be the precursor of the H(•) atom. This precursor, denoted (e(-), H3O(+)), is a pair constituting an electron (not fully solvated) and H3O(+). Its structure differs from that of the pair of a solvated electron and a hydronium ion (es(-), H3O(+)), which absorbs in the visible region. The (e(-), H3O(+)) pair , called the pre-H(•) atom here, undergoes ultrafast electron transfer and can, like the presolvated electron, reduce silver ions much faster than the H(•) atom. Moreover, it is found that with the same concentration of H3O(+) the reduction reaction is favored in the phosphoric acid solution compared to that in the perchloric acid solution because of the less-efficient electron solvation process. The kinetics show that among the three reducing species, (e(-), H3O(+)), (es(-), H3O(+)), and H(•) atom, the first one is the most efficient.
Polyamine replacement by magnesium ions in BHK-21/C13 cells
Melvin, Maureen A. L.; Keir, Hamish M.
1979-01-01
Cultures of BHK-21/C13 cells, whose growth was inhibited by deprivation of serum, were stimulated to grow by addition of serum to the culture medium. Addition of MgCl2 to the medium, to increase the concentration of Mg2+ ions by 15mm, 30min before addition of serum, had no effect on the stimulation of cell growth, but inhibited the accumulation of cellular spermidine, so that the spermidine/spermine molar ratio was lower in these cultures than in cultures that had received no additional cations. The increase in the activity of ornithine decarboxylase that occurs 4–5h after serum `step-up' was substantially diminished by increasing the concentration of Mg2+ ions, but not of Na+ or K+ ions, in the medium by 30mm, 30min before addition of serum, and this inhibition was maintained for at least 24h. Methylglyoxal bis(guanylhydrazone), added to serum-deprived cultures to a concentration of 20μm, 30min before addition of serum, severely inhibited the increase in cell growth. The inhibitory effects of the drug were prevented by simultaneous addition of spermidine to the medium (to 100μm), and were partly prevented by the simultaneous addition of Mg2+ ions (to 30mm). Mg2+ ions were particularly effective in overcoming the inhibitory effect of methylglyoxal bis(guanylhydrazone) on the synthesis of DNA. Thus although a certain lack of specificity for cations exists in BHK-21/C13 cells, in that Mg2+ ions can be substituted for polyamines, particularly spermidine, to some extent, there are cellular processes for which the requirement for polyamines as cations is specific. PMID:444220
Djamali, Essmaiil; Chen, Keith; Cobble, James W
2009-08-27
Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0
Capillary Ion Concentration Polarization for Power-Free Salt Purification
NASA Astrophysics Data System (ADS)
Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae
2014-11-01
In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.
Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan
NASA Astrophysics Data System (ADS)
Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.
2017-12-01
The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.
Bellomo, Elisa; Abro, Asma; Hogstrand, Christer; Maret, Wolfgang; Domene, Carmen
2018-03-28
While the majority of phosphatases are metalloenzymes, the prevailing model for the reactions catalyzed by protein tyrosine phosphatases does not involve any metal ion, yet both metal cations and oxoanions affect their enzymatic activity. Mg 2+ and Zn 2+ activate and inhibit, respectively, protein tyrosine phosphatase 1B (PTP1B). Molecular dynamics simulations, metadynamics, and quantum chemical calculations in combination with experimental investigations demonstrate that Mg 2+ and Zn 2+ compete for the same binding site in the active site only in the closed conformation of the enzyme in its phosphorylated state. The two cations have different effects on the arrangements and activities of water molecules that are necessary for the hydrolysis of the phosphocysteine intermediate in the second catalytic step of the reaction. Remarkable differences between the established structural enzymology of PTP1B investigated ex vivo and the function of PTP1B in vivo become evident. Different reaction pathways are viable when the presence of metal ions and their cellular concentrations are considered. The findings suggest that the substrate delivers the inhibitory Zn 2+ ion to the active site. The inhibition and activation can be ascribed to the different coordination chemistries of Zn 2+ and Mg 2+ ions and the orientation of the metal-coordinated water molecules. Metallochemistry adds an additional dimension to the regulation of PTP1B and presumably other members of this enzyme family.
An Open and Shut Case: The Interaction of Magnesium with MST Enzymes
2016-01-01
The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous ions is documented at nanomolar concentrations, which is a potentially physiologically relevant mode of regulation for siderophore biosynthesis in vivo. PMID:27373320
Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J
2013-12-19
The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.
Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y
2017-02-01
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.
Wavelength dependence of Verdet constant of Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snetkov, I. L., E-mail: snetkov@appl.sci-nnov.ru; Palashov, O. V.; Permin, D. A.
2016-04-18
Samples of the magneto-active material—Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics with Tb{sup 3+} ion concentrations of 10%, 20%, 30%, and 100% (Tb{sub 2}O{sub 3})—were prepared and studied. The wavelength dependence of Verdet constant in the 380 nm–1750 nm range was approximated for all investigated ceramic samples and was predicted for a pure Tb{sub 2}O{sub 3} material. Tb{sub 2}O{sub 3} ceramics demonstrates a more than three times higher Verdet constant in comparison with terbium gallium garnet crystal or ceramics. The linear dependence of the Verdet constant on Tb{sup 3+} ion concentration in the Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics was demonstrated. The obtained data willmore » be useful for fabricating magneto-optical elements of Faraday devices based on Tb{sup 3+}:Y{sub 2}O{sub 3} with arbitrary Tb{sup 3+} ion concentration operating at room temperature in the wavelength range of 380 nm–1750 nm.« less
Levels and indoor-outdoor relationships of PM 10 and soluble inorganic ions in Beirut, Lebanon
NASA Astrophysics Data System (ADS)
Saliba, N. A.; Atallah, M.; Al-Kadamany, G.
2009-03-01
PM 10, which is considered among the major indoor and outdoor pollutants, was measured in several residential homes and corresponding outdoor environments in the Great Beirut area over the summer and winter seasons of 2005. Few studies on PM 10 levels indoors in Beirut are restricted to short-term periods in public places. In this study, 78 PM 10 samples were collected on Teflon filters using an active sampler at a flow rate of 5 L/min. PM 10 mass concentrations were determined by gravimetric analysis, and inorganic chemical speciation was carried out using ion chromatography. Outdoors, PM 10 elevated mass concentrations correlated well with high traffic density. The observed high intra-site temporal variation (minimum of 34 and a maximum of 120 μg/m 3) was attributed to the dynamic air masses passing over the Eastern Mediterranean region. Indoors, PM 10 levels were highly affected by outdoor levels, but were enhanced over those of outdoors when smoking activities were recorded. In winter, the overall average outdoor concentration dropped by 19%, whereas the average indoor concentration increased by 50% over the ones calculated for the summer. Ventilation and air exchange rates were found to be approximately equal to unity during summer since most doors and windows remain open. This rate drops to almost half during winter. As for particulate ions namely nitrates and sulfates, the former showed concentrations that are higher than the values reported in the region in both winter and summer seasons, suggesting high emissions from local vehicles. However, SO 42- average concentrations were comparable to values reported in other studies conducted in Eastern Mediterranean sites. Soluble particulate nitrates and sulfates exhibited similar indoor and outdoor levels in non-smoking homes (IO ~ 1), but in smoking homes the drop in nitrate concentrations reached around 70%, indicating a high anionic reactivity with tobacco smokes.
Release of mineral ions in dental plaque following acid production.
Tanaka, M; Margolis, H C
1999-03-01
The release of appreciable amounts of calcium, phosphate and fluoride found in whole plaque into the plaque-fluid phase, following bacterial acid production, can potentially reduce the driving force for tooth demineralization. However, limited information is available on this topic, particularly on the release of fluoride. This study sought to determine the change in calcium, phosphate and fluoride concentrations in plaque fluid after sucrose exposure. 48 h overnight-fasted supragingival plaque samples were collected from all tooth surfaces (with the exception of the lower lingual anterior teeth) of one half of an individual mouth, following a 1 min water rinse. Plaque samples were then collected from the other half of the same mouth, following a 292 mM sucrose rinse. Plaque fluid was isolated by centrifugation and analysed for total calcium and phosphate (ion chromatography) and for free fluoride (ion-specific electrode). Samples were collected from seven individuals. Following sucrose exposure, plaque-fluid pH decreased significantly from 6.5+/- 0.3 to 5.4+/-0.2; calcium concentrations (mmol/l) also increased significantly (p < 0.01) from 1.9+/-0.5 to 5.0+/-2.1. Fluoride and phosphate concentrations in plaque fluid, however, did not increase significantly after sucrose exposure: mean concentrations (mmol/l) of fluoride after the water and sucrose rinses were 0.006+/-0.003 and 0.005+/-0.002, respectively, and mean phosphate concentrations (mmol/l) were 11.0+/-2.0 and 12.0+/-3.0, respectively. When results were expressed per wet plaque weight, phosphate concentrations were also found to increase significantly. The same trends were observed when additional plaque samples were treated in vitro with sucrose: fluoride-ion activity did not increase in plaque under in vivo-like conditions.
Salt stress aggravates boron toxicity symptoms in banana leaves by impairing guttation.
Shapira, O R; Israeli, Yair; Shani, Uri; Schwartz, Amnon
2013-02-01
Boron (B) is known to accumulate in the leaf margins of different plant species, arguably a passive consequence of enhanced transpiration at the ends of the vascular system. However, transpiration rate is not the only factor affecting ion distribution. We examine an alternative hypothesis, suggesting the participation of the leaf bundle sheath in controlling radial water and solute transport from the xylem to the mesophyll in analogy to the root endodermis. In banana, excess B that remains confined to the vascular system is effectively disposed of via dissolution in the guttation fluid; therefore, impairing guttation should aggravate B damage to the leaf margins. Banana plants were subjected to increasing B concentrations. Guttation rates were manipulated by imposing a moderate osmotic stress. Guttation fluid was collected and analysed continuously. The distribution of ions across the lamina was determined. Impairing guttation indeed led to increased B damage to the leaf margins. The kinetics of ion concentration in guttation samples revealed major differences between ion species, corresponding to their distribution in the lamina dry matter. We provide evidence that the distribution pattern of B and other ions across banana leaves depends on active filtration of the transpiration stream and on guttation. © 2012 Blackwell Publishing Ltd.
Niederer, Steven
2013-01-01
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to depletion in the ischemic region. PMID:23577101
Kinetic Studies of the Thermal Decomposition of 2-Chloroethylphosphonic Acid in Aqueous Solution
Biddle, Eric; Kerfoot, Douglas G. S.; Kho, Yioe Hwa; Russell, Kenneth E.
1976-01-01
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions. PMID:16659748
Nabarlatz, Debora; de Celis, Jorge; Bonelli, Pablo; Cukierman, Ana Lea
2012-04-30
Vinal-derived Activated Carbon (VAC) developed by phosphoric acid activation of sawdust from Prosopis ruscifolia native wood was tested for the adsorption of Ni(II) ions from dilute solutions in both batch and dynamic modes, comparing it with a Commercial Activated Carbon (CAC). Batch experiments were performed to determine adsorption kinetics and equilibrium isotherms for both carbons. It was possible to remove near 6.55 mg Ni g(-1) VAC and 7.65 mg Ni g(-1) CAC after 5 h and 10 h contact time, respectively. A pseudo second order equation fitted well with the kinetics of the process, and Langmuir adsorption model was used to adjust the experimental results concerning the adsorption isotherm. The parameters obtained indicate a stronger interaction between sorbent and sorbate for VAC (K = 26.56 L mmol(-1)) than for CAC (K = 19.54 L mmol(-1)). Continuous experiments were performed in a fixed-bed column packed with the investigated carbons, evaluating the influence of operational parameters such as flow rate, bed height and feed concentration on the breakthrough curves obtained. The breakthrough occurred more slowly for low concentrations of the metal ion in the feed, low flow rates and high bed height. The breakthrough curves were properly represented by Hall's model for both carbon types. Regeneration of the vinal activated carbon in column was tested, obtaining the same breakthrough curve in a new cycle of use. Finally, vinal-derived activated carbon can effectively be used to treat wastewater having until 30 ppm Ni(II). Copyright © 2011 Elsevier Ltd. All rights reserved.
Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH
NASA Astrophysics Data System (ADS)
Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu
2016-02-01
This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.
Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies
NASA Astrophysics Data System (ADS)
Gujar, Varsha B.; Ottoor, Divya
2017-02-01
Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.
Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.
1998-07-07
An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.
Miki, Saeki; Kitagawa, Haruaki; Kitagawa, Ranna; Kiba, Wakako; Hayashi, Mikako; Imazato, Satoshi
2016-09-01
A surface pre-reacted glass-ionomer (S-PRG) filler is a technology of interest for providing bio-functions to restorative materials. Resin composites containing S-PRG filler have been reported to show less plaque accumulation and reduced bacterial attachment. In this study, experimental resin composites containing S-PRG filler at various concentrations were fabricated, and the inhibitory effects on bacterial growth on their surface and the association of ions released from S-PRG filler with antibacterial activity were evaluated. Five kinds of experimental resin composites containing S-PRG filler at 0, 13.9, 27.3, 41.8, or 55.9 (vol.%) were fabricated. Streptococcus mutans was cultured on the cured discs for 18h to examine the growth of bacteria in contact with the surface of the experimental resins. The concentrations of Al(3+), BO3(3-), F(-), Na(+), SiO3(2-), or Sr(2+) released from each experimental resin into water were measured. The standardized solutions of each ion were prepared at the concentrations determined to be released from the experimental resin, and their inhibitory effects of single ion species on S. mutans growth were evaluated by using each standardized solution. Resin composites containing S-PRG filler at 13.9 (vol.%) or greater inhibited S. mutans growth on their surface. When S. mutans was incubated in the presence of six kinds of ions at the concentrations released from the resin composite containing S-PRG filler at 55.9 (vol.%), a significant reduction in bacterial number was observed for BO3(3-), F(-), Al(3+), and SiO3(2-). Among these four ions, BO3(3-) and F(-) demonstrated the strongest inhibitory effect on S. mutans growth. Our findings suggest that resin composites containing S-PRG filler inhibit the growth of S. mutans on their surface. BO3(3-), F(-), Al(3+) and SiO3(2-) released from S-PRG filler have the ability to inhibit S. mutans growth, and the inhibitory effects are mainly attributed to release of BO3(3-) and F(-). Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhra, Richa; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in
2015-05-15
A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnOmore » nanosheets depends upon the presence of surface oxygen vacancies.« less
NASA Technical Reports Server (NTRS)
Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)
2000-01-01
Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.
Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak; Ramløv, Hans; Møbjerg, Nadja
2013-04-01
Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.
Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin
2018-01-01
Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Groundwater transport of strontium 90 in a glacial outwash environment
Kipp, Kenneth L.; Stollenwerk, Kenneth G.; Grove, David B.
1986-01-01
As part of the investigation of groundwater contamination at a uranium-scrap recovery plant at Wood River Junction, Rhode Island, laboratory experiments led to the development of a model for predicting the transport of strontium 90 in glacial outwash sediments based on an approximate mechanism for ion exchange. The multicomponent system was simplified to two components by regarding all exchangeable cations other than strontium 90 as a single component. The binary ion-exchange parameter was a function of the variable, total ion concentration. A one-dimensional solute transport model was formulated to evaluate the time necessary for natural groundwater flow to remove the strontium 90 contamination plume from the groundwater system to the Pawcatuck River. The finite difference transport equations were solved sequentially for total ion concentrations, then strontium 90 concentrations. Clay-free quartz and feldspar sands at the study site have little potential for strontium 90 sorption, and high calcium, magnesium, and sodium concentrations compete for the few ion exchange sites. As the total ion concentration plume moves out of the system, ion exchange of strontium 90 increases, reducing the strontium 90 concentration in the groundwater. Cleanout times predicted using the binary ion exchange mechanism were about two thirds of those predicted using a constant distribution coefficient. It is suggested that this type of model can simulate solute transport more realistically in many groundwater systems where the total ion concentration is not constant.
NASA Astrophysics Data System (ADS)
Li, L. Y.; Cao, J. B.; Yang, J. Y.; Berthelier, J. J.; Lebreton, J.-P.
2015-12-01
Using the plasma data of Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite and the NRLMSISE-00 atmospheric model, we examined the semiannual and solar activity variations of the daytime plasma and neutral composition densities in the ionosphere-plasmasphere transition region (~670-710 km). The results demonstrate that the semiannually latitudinal variation of the daytime oxygen ions (O+) is basically controlled by that of neutral atomic oxygen (O), whereas the latitude distributions of the helium and hydrogen ions (He+ and H+) do not fully depend on the neutral atomic helium (He) and hydrogen (H). The summer enhancement of the heavy oxygen ions is consistent with the neutral O enhancement in the summer hemisphere, and the oxygen ion density has significantly the summer-dense and winter-tenuous hemispheric asymmetry with respect to the dip equator. Although the winter enhancements of the lighter He+ and H+ ions are also associated with the neutral He and H enhancements in the winter hemisphere, the high-density light ions (He+ and H+) and electrons (e-) mainly appear at the low and middle magnetic latitudes (|λ| < 50°). The equatorial accumulations of the light plasma species indicate that the light charged particles (He+, H+, and e-) are easily transported by some equatorward forces (e.g., the magnetic mirror force and centrifugal force). The frequent Coulomb collisions between the charged particles probably lead to the particle trappings at different latitudes. Moreover, the neutral composition densities also influence their ion concentrations during different solar activities. From the low-F10.7 year (2007-2008) to the high-F10.7 year (2004-2005), the daytime oxygen ions and electrons increase with the increasing neutral atomic oxygen, whereas the daytime hydrogen ions tend to decrease with the decreasing neutral atomic hydrogen. The helium ion density has no obvious solar activity variation, suggesting that the generation (via the neutral He photoionization) and loss (via the charge exchange with neutral nitrogen N2 and/or the recombination with electrons) of the daytime He+ ions are comparable during different solar activities.
Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana
2017-04-01
In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl 2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.
Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul
2014-02-01
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.
Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.
Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek
2014-06-15
This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mosher, Shad; Cope, W. Gregory; Weber, Frank X.; Shea, Damian; Kwak, Thomas J.
2012-01-01
Freshwater mussels are an imperiled fauna exposed to a variety of environmental toxicants such as lead (Pb) and studies are urgently needed to assess their health and condition to guide conservation efforts. A 28-day laboratory toxicity test with Pb and adult Eastern elliptio mussels (Elliptio complanata) was conducted to determine uptake kinetics and to assess the toxicological effects of Pb exposure. Test mussels were collected from a relatively uncontaminated reference site and exposed to a water-only control and five concentrations of Pb (as lead nitrate) ranging from 1 to 245 mu g/L in a static renewal test with a water hardness of 42 mg/L. Endpoints included tissue Pb concentrations, hemolymph Pb and ion (Na+, K+, Cl-, Ca2+) concentrations, and Na+, K+-ATPase enzyme activity in gill tissue. Mussels accumulated Pb rapidly, with tissue concentrations increasing at an exposure-dependent rate for the first 2 weeks, but with no significant increase from 2 to 4 weeks. Mussel tissue Pb concentrations ranged from 0.34 to 898 mu g/g dry weight, were strongly related to Pb in test water at every time interval (7, 14, 21, and 28 days), and did not significantly increase after day 14. Hemolymph Pb concentration was variable, dependent on exposure concentration, and showed no appreciable change with time beyond day 7, except for mussels in the greatest exposure concentration (245 mu g/L), which showed a significant reduction in Pb by 28 days, suggesting a threshold for Pb binding or elimination in hemolymph at concentrations near 1000 mu g/g. The Na+, K+-ATPase activity in the gill tissue of mussels was significantly reduced by Pb on day 28 and was highly correlated with tissue Pb concentration (R2 = 0.92; P = 0.013). The Na+, K+-ATPase activity was correlated with reduced hemolymph Na+ concentration at the greatest Pb exposure when enzyme activity was at 30% of controls. Hemolymph Ca2+ concentration increased significantly in mussels from the greatest Pb exposure and may be due to remobilization from the shell in an attempt to buffer the hemolymph against Pb uptake and toxicity. We conclude that Na+, K+-ATPase activity in mussels was adversely affected by Pb exposure, however, because the effects on activity were variable at the lower test concentrations, additional research is warranted over this range of exposures. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.
Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard
2013-02-01
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.
Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang
2009-07-30
Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.
McBride, Devin W.; Rodgers, Victor G. J.
2013-01-01
The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733
How ions affect the structure of water.
Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A
2002-10-16
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.
Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K
2015-01-01
Background: Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Materials and Methods: Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Results: Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson’s correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Conclusion: Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an orthodontist’s inventory. PMID:26464533
Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K
2015-08-01
Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson's correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an orthodontist's inventory.
NASA Astrophysics Data System (ADS)
Wright, Matthew D.; Buckley, Alison J.; Matthews, James C.; Shallcross, Dudley E.; Henshaw, Denis L.
2014-10-01
Corona ions produced by high-voltage power lines (HVPLs) can alter the nearby electrical environment, potentially increasing aerosol charge levels downwind. However, there is a lack of knowledge concerning the concentration and mobility of ions from AC HVPLs and their dispersion away from the line. We present ion concentration and mobility measurements made near AC HVPLs in South-West England. Examples of typical mobility spectra are shown highlighting features commonly observed. Corona was observed during 33 of 46 measurements, at 9 of 11 sites, with positive or ‘bipolar' (both polarities) ion production commonly seen. Ion production usually increases atmospheric concentrations by only a modest amount, but extreme cases can enhance concentration by an order of magnitude or more. A polarity imbalance is required to increase aerosol charge via ion attachment; this was observed on 15 of 24 days when positive corona was observed, but was not seen for negative ions. Ion mobility was higher downwind compared with upwind for both ion polarities, but the increase was not statistically significant. Future work should focus on identifying and characterising ‘heavy-producing' HVPLs, and obtaining results in conditions which may favour negative ion production e.g. high humidity, inclement weather or during nighttime.
Luminescence properties of europium?terbium double activated calcium tungstate phosphor*1
NASA Astrophysics Data System (ADS)
Nazarov, M. V.; Jeon, D. Y.; Kang, J. H.; Popovici, E.-J.; Muresan, L.-E.; Zamoryanskaya, M. V.; Tsukerblat, B. S.
2004-08-01
Double incorporation of Eu 3+ and Tb 3+ ions into a CaWO 4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO 4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed. This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.
Corrosion behaviour of Ti-15Mo alloy for dental implant applications.
Kumar, Satendra; Narayanan, T S N Sankara
2008-07-01
The corrosion behaviour of Ti-15Mo alloy in 0.15M NaCl solution containing varying concentrations of fluoride ions (190, 570, 1140 and 9500 ppm) is evaluated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and chronoamperometric/current-time transient (CTT) studies to ascertain its suitability for dental implant applications. The study reveals that there is a strong dependence of the corrosion resistance of Ti-15Mo alloy on the concentration of fluoride ions in the electrolyte medium. Increase in fluoride ion concentration from 0 to 9500 ppm shifts the corrosion potential (E(corr)) from -275 to -457 mV vs. SCE, increases the corrosion current density (i(corr)) from 0.31 to 2.30 microA/cm(2), the passive current density (i(pass)) from 0.07 to 7.32 mA/cm(2) and the double-layer capacitance (C(dl)) from 9.63 x 10(-5) to 1.79 x 10(-4)F and reduces the charge transfer resistance (R(ct)) from 6.58 x 10(4) to 6.64 x 10(3)Omega cm(2). In spite of the active dissolution, the Ti-15Mo alloy exhibit passivity at anodic potentials at all concentrations of the fluoride ions studied. In dental implants since the exposure of the alloy will be limited only to its 'neck', the amount of Mo ions released from Ti-15Mo alloy is not likely to have an adverse and hence, in terms of biocompatibility this alloy seems to be acceptable for dental implant applications. The results of the study suggest that Ti-15Mo alloy can be a suitable alternative for dental implant applications.
Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.
Schröder, B; Schlumbohm, C; Kaune, R; Breves, G
1996-05-01
1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions.
Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.
Schröder, B; Schlumbohm, C; Kaune, R; Breves, G
1996-01-01
1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions. PMID:8734984
Cortical spreading depression: An enigma
NASA Astrophysics Data System (ADS)
Miura, R. M.; Huang, H.; Wylie, J. J.
2007-08-01
The brain is a complex organ with active components composed largely of neurons, glial cells, and blood vessels. There exists an enormous experimental and theoretical literature on the mechanisms involved in the functioning of the brain, but we still do not have a good understanding of how it works on a gross mechanistic level. In general, the brain maintains a homeostatic state with relatively small ion concentration changes, the major ions being sodium, potassium, and chloride. Calcium ions are present in smaller quantities but still play an important role in many phenomena. Cortical spreading depression (CSD for short) was discovered over 60 years ago by A.A.P. Leão, a Brazilian physiologist doing his doctoral research on epilepsy at Harvard University, “Spreading depression of activity in the cerebral cortex," J. Neurophysiol., 7 (1944), pp. 359-390. Cortical spreading depression is characterized by massive changes in ionic concentrations and slow nonlinear chemical waves, with speeds on the order of mm/min, in the cortex of different brain structures in various experimental animals. In humans, CSD is associated with migraine with aura, where a light scintillation in the visual field propagates, then disappears, and is followed by a sustained headache. To date, CSD remains an enigma, and further detailed experimental and theoretical investigations are needed to develop a comprehensive picture of the diverse mechanisms involved in producing CSD. A number of mechanisms have been hypothesized to be important for CSD wave propagation. In this paper, we briefly describe several characteristics of CSD wave propagation, and examine some of the mechanisms that are believed to be important, including ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Continuum models of CSD, consisting of coupled nonlinear diffusion equations for the ion concentrations, and a discrete lattice-Boltzmann method approach will be described. Also, we will describe some open problems and remaining challenges.
Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan
2013-01-01
Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.
Electrokinetic ion breakdown in a nanochannel
NASA Astrophysics Data System (ADS)
Wang, Jun-yao; Xu, Zheng
2016-07-01
In this paper, the electrokinetic ion breakdown in a nanochannel is investigated. The Poisson-Nernst-Planck equations are employed to simulate the influence of the voltage on the concentration. Both theoretical research and experiments show that increasing the voltage can promote the ion concentration, but high voltage will break up the repulsion effect of the electric double layer and bring the concentration down. For a given micro-nanochannel, the ion concentration has a peak value corresponding with a peak voltage. Narrowing the width of a nanochannel improves the peak voltage and the peak concentration. The results will be beneficial to research the internal discipline of electrokinetic concentration.
NASA Technical Reports Server (NTRS)
1982-01-01
A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.
Physiological effects of waterborne lead exposure in spiny dogfish (Squalus acanthias).
Eyckmans, Marleen; Lardon, Isabelle; Wood, Chris M; De Boeck, Gudrun
2013-01-15
To broaden our knowledge about the toxicity of metals in marine elasmobranchs, cannulated spiny dogfish (Squalus acanthias) were exposed to 20 μM and 100 μM lead (Pb). Since we wanted to focus on sub lethal ion-osmoregulatory and respiratory disturbances, arterial blood samples were analysed for pH(a), PaO(2), haematocrit and total CO(2) values at several time points. Plasma was used to determine urea, TMAO, lactate and ion concentrations. After 96 h, Pb concentrations were determined in a number of tissues, such as gill, rectal gland, skin and liver. To further investigate ion and osmoregulation, Na(+)/K(+)-ATPase activities in gill and rectal gland were analysed as well as rates of ammonia and urea excretion. Additionally, we studied the energy reserves in muscle and liver. Pb strongly accumulated in gills and especially in skin. Lower accumulation rates occurred in gut, kidney and rectal gland. A clear disturbance in acid-base status was observed after one day of exposure indicating a transient period of hyperventilation. The increase in pH(a) was temporary at 20 μM, but persisted at 100 μM. After 2 days, plasma Na and Cl concentrations were reduced compared to controls at 100 μM Pb and urea excretion rates were elevated. Pb caused impaired Na(+)/K(+)-ATPase activity in gills, but not in rectal gland. We conclude that spiny dogfish experienced relatively low ion-osmoregulatory and respiratory distress when exposed to lead, particularly when compared to effects of other metals such as silver. These elasmobranchs appear to be able to minimize the disturbance and maintain physiological homeostasis during an acute Pb exposure. Copyright © 2012 Elsevier B.V. All rights reserved.
Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen
2014-01-01
Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.
Introductory Laboratory Exercises in Radiobiology
ERIC Educational Resources Information Center
Williams, J. R. Parry; Servant, D. M.
1970-01-01
Describes experiments suitable for introducing use of radioisotopes in biology. Includes demonstrations of tracing food chains, uptake of ions by plants, concentration of elements by insects, tracing photosynthetic reactions, activation analysis of copper, and somatic and genetic effects. Uses autoradiographic and counting techniques. (AL)
NASA Astrophysics Data System (ADS)
Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.
2017-12-01
This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.
Motion-based threat detection using microrods: experiments and numerical simulations.
Ezhilan, Barath; Gao, Wei; Pei, Allen; Rozen, Isaac; Dong, Renfeng; Jurado-Sanchez, Beatriz; Wang, Joseph; Saintillan, David
2015-05-07
Motion-based chemical sensing using microscale particles has attracted considerable recent attention. In this paper, we report on new experiments and Brownian dynamics simulations that cast light on the dynamics of both passive and active microrods (gold wires and gold-platinum micromotors) in a silver ion gradient. We demonstrate that such microrods can be used for threat detection in the form of a silver ion source, allowing for the determination of both the location of the source and concentration of silver. This threat detection strategy relies on the diffusiophoretic motion of both passive and active microrods in the ionic gradient and on the speed acceleration of the Au-Pt micromotors in the presence of silver ions. A Langevin model describing the microrod dynamics and accounting for all of these effects is presented, and key model parameters are extracted from the experimental data, thereby providing a reliable estimate for the full spatiotemporal distribution of the silver ions in the vicinity of the source.
Hegde, Mithra N.; Tahiliani, Divya; Shetty, Shilpa; Devadiga, Darshana
2014-01-01
Background: Diabetes Mellitus is a metabolic syndrome, affecting the oral health in various ways with dental caries being one of the most common problems encountered. Saliva is one of the most abundant secretions in the human body with a variety of natural protective and defence molecules bathing the oral cavity maintaining equilibrium. Its collection is easy and non-invasive. Aims: To compare and evaluate salivary alkaline phosphatase levels and calcium ion levels between caries active type II diabetes mellitus patients and non-diabetics. Materials and Methods: This study was carried out on caries-active age and gender matched 60 non-diabetic and 60 patients with known Type II diabetes mellitus subjects of age group 25-50 years with DMFT index >10. Saliva sample was collected to analyse for alkaline phosphatase enzyme and concentration of calcium ions using Agappe kits. Statistical Analysis: Student ‘t’ test was used to correlate the salivary electrolyte concentration in non- diabetic and diabetic patients with dental caries. A ‘P’ value of 0.05 or less was considered significant. Results are presented as mean ± standard deviation (X ± SD). Results: The alkaline phosphatase (ALP) activity in saliva was higher in diabetic patients when compared to that of non-diabetic patients with salivary calcium ions were significantly higher in non-diabetic individuals. Conclusion: Diabetes Mellitus patients are more prone to dental caries, hence require intervention to improve the quality of saliva. PMID:25395756
Patel, Nikunjkumar; Wiśniowska, Barbara; Jamei, Masoud; Polak, Sebastian
2017-11-27
A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I Kr , I Ks , I CaL ); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.
Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.
2006-01-01
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776
2015-01-01
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831
Characteristics of water-soluble ions before, during and after fog events
NASA Astrophysics Data System (ADS)
Li, P.; Du, H.; Yang, C.; Yao, J.; Du, J.; Chen, J.
2010-07-01
Two atmospheric processes of rain-fog-haze and haze-fog-rain were observed on Feb.8th and Mar. 14th, 2010 in urban Shanghai. On-line characterization of water-soluble ions of aerosol was performed before, during and after two fog episodes by an instrument of Monitoring AeRosoles and GAses (MARGA). Fog water samples were also collected to study the chemical ion characteristics for identifying the property of fogs. After rain, total water-soluble ion concentration in PM2.5 increased by 71.9%. Afterwards, a fog formation was observed as a frontal fog. Six fog water samples were collected to measure concentration of water-soluble ions, whose total concentrations decreased from beginning to end of fog. At the end of fog, the total water-soluble ion concentration of aerosol was continually increased. Meanwhile with a sharp decline of RH down to 70% in two hours, and a haze episode was observed. The reverse process, haze-fog-rain process, was also investigated. After the haze episode, total water-soluble ions concentration of aerosol rarely increased, but fog appeared with sharp increase of RH. Concentration of water-soluble ions in the fog water sample was higher than mean concentration of samples in 2009. When the fog started to disperse, the ion concentration hardly changed. As water vapor continued to increase, rain was observed. The inorganic compositions of aerosol in both fog events were dominated by sulfate and ammonium. The in situ investigation clearly illustrated that fog water mainly influenced by continental sources was dirtier and contained more sediment comparing with fog water influenced by marine sources.
Doping mechanism of antinomy in PbWO4
NASA Astrophysics Data System (ADS)
Li, Wensheng; Tang, Tong B.; Feng, Xiqi
2002-01-01
Sb doped PbWO4 (Sb:PWO) shows unique features in its dielectric and visible spectra. We propose that, in low concentration, the dopant enters the lattice as interstitial ions, and at high level it also substitute for W6+ sties. The existence of interstitial ions with relatively high mobility leads to non-negligible dc conductivity, whereas the substitutional impurity produces O23- color centers, which results in absorption at 420 nm, as well as holes hopping among oxygen ions in the Sb-O tetrahedra, that is the origin for the observed dielectric relaxation with an unusually low activation energy of 30±2 meV.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
NASA Astrophysics Data System (ADS)
Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio
2017-08-01
Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.
Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene
Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.
2012-01-01
The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665
Zhou, Y C; Lu, Benzhuo; Huber, Gary A; Holst, Michael J; McCammon, J Andrew
2008-01-17
The Poisson-Nernst-Planck (PNP) equation provides a continuum description of electrostatic-driven diffusion and is used here to model the diffusion and reaction of acetylcholine (ACh) with acetylcholinesterase (AChE) enzymes. This study focuses on the effects of ion and substrate concentrations on the reaction rate and rate coefficient. To this end, the PNP equations are numerically solved with a hybrid finite element and boundary element method at a wide range of ion and substrate concentrations, and the results are compared with the partially coupled Smoluchowski-Poisson-Boltzmann model. The reaction rate is found to depend strongly on the concentrations of both the substrate and ions; this is explained by the competition between the intersubstrate repulsion and the ionic screening effects. The reaction rate coefficient is independent of the substrate concentration only at very high ion concentrations, whereas at low ion concentrations the behavior of the rate depends strongly on the substrate concentration. Moreover, at physiological ion concentrations, variations in substrate concentration significantly affect the transient behavior of the reaction. Our results offer a reliable estimate of reaction rates at various conditions and imply that the concentrations of charged substrates must be coupled with the electrostatic computation to provide a more realistic description of neurotransmission and other electrodiffusion and reaction processes.
Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters
Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.
2016-01-01
To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.
Effects of Mg2+ and adenine nucleotides on thymidylate synthetase from different mouse tumors.
Rode, W; Jastreboff, M M
1984-01-01
Magnesium ions variably influenced activity of highly purified thymidylate synthetase preparations from different mouse tumors, activating the enzyme from Ehrlich ascites carcinoma (EAC) cells and inhibiting the enzyme from L1210 and L5178Y cells and from 5-fluorodeoxyuridine (FdUrd)-resistant EAC cells. In the presence of Mg2+ in a concentration resulting in either maximum activation or inhibition (25-30 mM) the enzymes from both the sensitive and FdUrd-resistant EAC lines and L5178Y cells were activated by ATP. Under the same conditions of Mg2+ concentration ADP and AMP inhibited the enzyme from the parental but not from the FdUrd-resistant EAC cells.
Measurements of ion concentration in gasoline and diesel engine exhaust
NASA Astrophysics Data System (ADS)
Yu, Fangqun; Lanni, Thomas; Frank, Brian P.
The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.
Wei, Wei; Chen, Guanying; Baev, Alexander; He, Guang S; Shao, Wei; Damasco, Jossana; Prasad, Paras N
2016-11-23
The phenomenon of luminescence concentration quenching exists widely in lanthanide-based luminescent materials, setting a limit on the content of lanthanide emitter that can be used to hold the brightness. Here, we introduce a concept involving energy harvesting by a strong absorber and subsequent energy transfer to a lanthanide that largely alleviates concentration quenching. We apply this concept to Nd 3+ emitters, and we show both experimentally and theoretically that the optimal doping concentration of Nd 3+ in colloidal NaYF 4 :Nd upconverting nanoparticles is increased from 2 to 20 mol% when an energy harvestor organic dye (indocyanine green, ICG) is anchored onto the nanoparticle surface, resulting in ∼10 times upconversion brightness. Theoretical analysis indicated that a combination of efficient photon harvesting due to the large absorption cross section of ICG (∼30 000 times higher than that of Nd 3+ ), non-radiative energy transfer (efficiency ∼57%) from ICG to the surface bound Nd 3+ ions, and energy migration among the Nd 3+ ions was able to activate Nd 3+ ions inside the nanoparticle at a rate comparable with that of the pronounced short-range quenching interaction at elevated Nd 3+ concentrations. This resulted in the optimal concentration increase to produce significantly enhanced brightness. Theoretical modeling shows a good agreement with the experimental observation. This strategy can be utilized for a wide range of other lanthanide-doped nanomaterials being utilized for bioimaging and solar cell applications.
Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.
Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T
2016-07-07
We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.
Granular activated carbons from broiler manure: physical, chemical and adsorptive properties.
Lima, Isabel M; Marshall, Wayne E
2005-04-01
Broiler manure produced at large concentrated facilities poses risks to the quality of water and public health. This study utilizes broiler litter and cake as source materials for granular activated carbon production and optimizes conditions for their production. Pelletized manure samples were pyrolyzed at 700 degrees C for 1 h followed by activation in an inert atmosphere under steam at different water flow rates, for a period ranging from 15 to 75 min. Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant, yields varied from 18% to 28%, surface area varied from 253 to 548 m2/g and copper ion adsorption varied from 0.13 to 1.92 mmol Cu2+/g carbon. Best overall performing carbons were steam activated for 45 min at 3 ml/min. Comparative studies with commercial carbons revealed the broiler cake-based carbon as having the highest copper ion efficiency.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions. PMID:28467507
NASA Astrophysics Data System (ADS)
Foreman, David J.; Dziekonski, Eric T.; McLuckey, Scott A.
2018-04-01
A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. [Figure not available: see fulltext.
Foreman, David J; Dziekonski, Eric T; McLuckey, Scott A
2018-04-30
A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. Graphical Abstract ᅟ.
A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.
Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng
2013-04-15
A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.
Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon
NASA Astrophysics Data System (ADS)
Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira
2018-04-01
Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.
Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C
2010-02-01
There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.
A closed loop process for recycling spent lithium ion batteries
NASA Astrophysics Data System (ADS)
Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan
2014-09-01
As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
Test and Evaluation of a Pilot System for Ion Exchange Treatment of Cadmium Cyanide Wastes
1993-09-01
rate, metal concentration and solution chemistry , and temperature. These factors affect the diffusion rate of metal ions from the bulk solution to the...Changes in Cd2+ or CN- resin capacity and removal efficiency after a number of regeneration cycles; • Discharge leakage levels of Cd2+ and CN- after...a filter to remove any suspended solids, an activated-carbon column to remove any organic matter (this step was not utilized since organic levels
Nechaeva, O V; Tikhomirova, E I; Zayarsky, D A; Bespalova, N V; Glinskaya, E V; Shurshalova, N F; Al Bayati, B M; Babailova, A I
2017-04-01
The dynamics of microbial biofilm formation by standard strain and by clinical strains of uropathogenic coliform bacteria was investigated in vitro and the effect of sublethal concentrations of the polymer compound polyazolidinammonium modified with iodine hydrate ions on the initial stages of biofilm formation was assessed. Treatment of immunological plate wells with the polymeric compound prevented film formation, especially in case of clinical E. coli strain carrying FimH virulence gene.
Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells
Tilley, Drew C.; Eum, Kenneth S.; Fletcher-Taylor, Sebastian; Austin, Daniel C.; Dupré, Christophe; Patrón, Lilian A.; Garcia, Rita L.; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E.; Sack, Jon T.
2014-01-01
Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX–fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
Monitoring of natural factors in Czech speleotherapeutic centres
NASA Astrophysics Data System (ADS)
Sas, D.; Navrátil, O.; Sládek, P.
1999-01-01
The work deals with the problems of volume activity of radon and its daughter products, of the concentration of positive and negative atmospheric ions and microclimatic conditions in speleotherapeutic centres Zlaté Hory (ore gallery) and Javoříčko (cave).
Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K
2016-11-01
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.
Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine
Pietak, Alexis; Levin, Michael
2016-01-01
Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581
Chen, Jinyuan; Qian, Yi; Li, Herong; Cheng, Yanhong; Zhao, Meirong
2015-08-01
Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.
Oxygen Ions in Magnetotail Reconnection
NASA Astrophysics Data System (ADS)
Liang, H.; Walker, R. J.; Lapenta, G.; Schriver, D.; El-Alaoui, M.; Berchem, J.
2016-12-01
Spacecraft have observed a significant fraction of oxygen ions (O+) in Earth's magnetotail X-line during the periods of enhanced geomagnetic activity. It is important to understand how such O+ influences the reconnection process and how the O+ ions are heated due to reconnection. To this end we have used a 2.5D implicit Particle-in-Cell simulation (iPic3D) in a 2D Harris current sheet in the presence of H+ and O+. By comparing the simulation runs for oxygen concentrations of 50%, 5% and 0% (i.e. latter run only H+ ions), we found that (1) the dipolarization front (DF) propagation is encumbered by the current sheet O+ inertia, which reduces the DF speed and delays the fast reconnection phase; (2) the reconnection rate in the 50% O+ Run is much less than the 0% O+ Run, which can be attributed to the O+ drag on the convective magnetic flux via an ambipolar electric field in the O+ diffusion region; (3) without entering the exhaust, the lobe O+ can be accelerated near the separatrices away from the X-point by the Hall electric field and form the hot population downstream of the DFs; (4) the pre-existing current sheet O+ ions are reflected by the DFs and form a hook-shaped distribution in phase space, from which the DF speed history can be deduced; (5) the DF thickness is proportional to the O+ concentration in the pre-existing current sheet. These results illustrate the differences between storm-time and non-storm substorms due to a significant concentration of oxygen ions. The oxygen heating results are expected to be observable by the Magnetospheric Multiscale (MMS) mission in the magnetotail.
Removal of cadmium (II) from simulated wastewater by ion flotation technique
2013-01-01
A separation technique which has recently received a sharp increase in research activities is “ion flotation”. This technique has four important advantages for treating wastewaters: low energy consumption, small space requirements, small volume of sludge and acting selectively. The present study aims to optimize parameters of ion flotation for cadmium removal in simulated wastewater at laboratory scale. It was obtained on the reaction between Cd2+ and sodium dodecylesulfate (SDS) collector followed by flotation with ethanol as frother. Test solution was prepared by combining the required amount of cadmium ion, SDS and necessary frother or sodium sulfate solution. All experiments were carried out in a flotation column at laboratory temperature (27°C), adjusted pH = 4 and 120 minutes. The different parameters (namely: flow rate, cadmium, SDS and frother concentrations and ionic strength) influencing the flotation process were examined. The best removal efficiency obtained at a collector-metal ratio of 3:1 in 60 min with flow rate of 150 mL/min was 84%. The maximum cadmium removal was 92.1% where ethanol was introduced at a concentration 0.4% to flotation column with above conditions. The obtained results were promising, as both cadmium and collector were effectively removed from wastewater. Hence, the application of ion flotation for metal ions removal from effluents seems to be efficient. PMID:23388386
USDA-ARS?s Scientific Manuscript database
Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...
Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari
2015-08-12
A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. Copyright © 2015 Elsevier B.V. All rights reserved.
LEACHATE MIGRATION FROM A SOLID WASTE DISPOSAL FACILITY NEAR BISCAYNE NATIONAL PARK, SOUTH FLORIDA.
Waller, Bradley G.; Labowski, James L.
1987-01-01
Leachate from the Dade County Solid Waste Disposal Facility (SWDF) is migrating to the east (seaward) and to the south from the currently active disposal cell. Water levels and ground-water flow directions are strongly influenced by water-management practices. The SWDF is constructed over the salt-intruded part of the highly transmissive Biscayne aquifer and because of this, chloride ion concentrations and specific conductance levels could not be used as indicators of leachate concentrations. Leachate was detected in multi-depth wells located 75 meters to the south and 20 meters to the east of the active cell. Concentrations of water-quality indicators had mean concentrations generally 2 to 10 times higher than baseline conditions. Primary controls over leachate movement in the SWDF are water-management practices in the Black Creek and Gould Canals, configuration and integrity of the liner beneath the active cell, and low hydraulic gradients in the landfill area.
Frontistis, Zacharias; Antonopoulou, Maria; Venieri, Danae; Konstantinou, Ioannis; Mantzavinos, Dionissios
2017-06-15
The electrochemical oxidation of a commercial amoxicillin formulation over a boron-doped diamond (BDD) anode was investigated. The effect of initial COD concentration (1-2 g/L), current density (30-50 mA/cm 2 ), treatment time (15-90 min), initial pH (3-9) and electrolyte concentration (2-4 g/L NaCl) on COD removal was assessed through a factorial design methodology. For the range of conditions in question, the first three single effects, as well as the interaction between COD and time were the most important ones in terms of mass of COD removed. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was employed to identify major transformation by-products (TBPs); thirteen compounds were detected as TBPs of AMX electrochemical degradation, while several others appear in the original formulation. AMX degradation occurs though the following pathways: (i) hydroxylation mainly in the benzoic ring, (ii) opening of β-lactam ring followed by decarboxylation, hydroxylation and re-arrangement, and (iii) bond cleavage between the carbons of amino and amide groups. Furthermore, the process is accompanied by the release of several ions, i.e. nitrate, sulfate and ammonium. The antibiotic activity of AMX up to 1000 mg/L was tested against Klebsiella pneumoniae and Enterococcus faecalis reference strains; both bacteria are completely inactivated at this concentration but the activity is reduced substantially at lower concentrations. Oxidized samples still exhibit some antibacterial activity (50-60%) which is due to TBPs and active chlorine species present in the liquid phase. The latter are generated from chloride ions and enhance considerably AMX degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Calcium ion binding to a soil fulvic acid using a donnan potential model
Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.
1999-01-01
Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.
NASA Astrophysics Data System (ADS)
Tao, Mengmeng; Feng, Guobin; Yu, Ting; Ye, Xisheng; Wang, Zhenbao; Shen, Yanlong; Zhao, Jun
2018-03-01
Impacts of Tm ion concentration and Ho ion concentration on the saturable behaviors of Tm-Ho codoped fiber saturable absorbers and the output characteristics of the passively Q-switched laser systems are investigated and analyzed both at the initial lasing state and the stable passive Q-switching state. Simulations show that, varying concentrations of Tm and Ho ions have different impacts on the temporal evolution processes but similar effects on the macroscopic characteristics of the laser system. The root for the impacts of dopant concentrations is the population of the 3H6 energy level and the cavity loss it induces. For Tm ions, the rise of the Tm concentration improves the population of the 3H6 energy level directly, while, for Ho ions, higher Ho concentration leads to larger recovery rate of the 3H6 energy level, thus increasing the population of the 3H6 energy level indirectly. As for limited total dopant concentration, the Tm:Ho concentration ratio can be optimized for different applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dargent, B.; Couraud, F.
1990-08-01
To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na{sup +}-channel activators (scorpion {alpha} toxin, batrachotoxin, and veratridine) on the density of Na{sup +} channels in fetal rat brain neurons in vitro. A partial but rapid (t{sub 1/2}, 15 min) disappearance of surface Na{sup +} channels was observed as measured by a decrease in the specific binding of ({sup 3}H)saxitoxin and {sup 125}I-labeled scorpion {beta} toxin and a decrease in specific {sup 22}Na{sup +} uptake. Moreover, the increase in the number of Na{sup +}more » channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na{sup +} channels was abolished by tetrodotoxin, was found to be dependent on the external Na{sup +} concentration, and was prevented when either choline (a nonpermeant ion) or Li{sup +} (a permeant ion) was substituted for Na{sup +}. Amphotericin B, a Na{sup +} ionophore, and monensin were able to mimick the effect of Na{sup +}-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na{sup +}-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na{sup +} concentration, whether elicited by Na{sup +}-channel activators or mediated by a Na{sup +} ionophore, can induce a decrease in surface Na{sup +} channels and therefore is involved in down-regulation of Na{sup +}-channel density in fetal rat brain neurons in vitro.« less
Effects of mountain tea plantations on nutrient cycling at upstream watersheds
NASA Astrophysics Data System (ADS)
Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.
2015-11-01
The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agricultural activities, especially excessive fertilization, on ecosystem nutrient cycling at mountain watersheds.
Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...
Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog
NASA Technical Reports Server (NTRS)
Cochran, S. L.
1995-01-01
The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS).
Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi
2004-02-01
In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.
Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration
NASA Astrophysics Data System (ADS)
Kowalska, Izabela; Klimonda, Aleksandra
2017-11-01
The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.
Muntean, C M; Segers-Nolten, G M J
2003-01-01
In this work a confocal Raman microspectrometer is used to investigate the influence of Na(+) and Mg(2+) ions on the DNA structural changes induced by low pH. Measurements are carried out on calf thymus DNA at neutral pH (7) and pH 3 in the presence of low and high concentrations of Na(+) and Mg(2+) ions, respectively. It is found that low concentrations of Na(+) ions do not protect DNA against binding of H(+). High concentrations of monovalent ions can prevent protonation of the DNA double helix. Our Raman spectra show that low concentrations of Mg(2+) ions partly protect DNA against protonation of cytosine (line at 1262 cm(-1)) but do not protect adenine and guanine N(7) against binding of H(+) (characteristic lines at 1304 and 1488 cm(-1), respectively). High concentrations of Mg(2+) can prevent protonation of cytosine and protonation of adenine (disruption of AT pairs). By analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high magnesium salt protect the N(7) of guanine against protonation. A high salt concentration can prevent protonation of guanine, cytosine, and adenine in DNA. Higher salt concentrations cause less DNA protonation than lower salt concentrations. Magnesium ions are found to be more effective in protecting DNA against binding of H(+) as compared with calcium ions presented in a previous study. Divalent metal cations (Mg(2+), Ca(2+)) are more effective in protecting DNA against protonation than monovalent ions (Na(+)). Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 000-000, 2003
The effects of Urtica dioica L. leaf extract on aniline 4-hydroxylase in mice.
Ozen, Tevfik; Korkmaz, Halil
2009-01-01
The effects of hydroalcoholic (80% ethanol-20% water) extract of Urtica dioica L. on microsomal aniline 4-hydroxylase (A4H) were investigated in the liver of Swiss albino mice (8- 10-weeks-old) treated with two doses (50 and 100 mg/kg body weight, given orally for 14 days ). The activities of A4H showed a significant increase in the liver at both dose levels of extract treatment. The hydroalcoholic extract of Urtica dioica induced the activities of A4H that had been increased by treatment of metal ions (Mg2+ and Ca2+) and the mixture of cofactors (NADH and NADPH). At saturated concentration of cofactor, microsomal A4H exhibited significantly even higher activities in the presence of the mixture of cofactors than NADPH and NADH. Mg2+ and Ca2+ ions acted as stimulants in vitro. The present results suggest that the hydroalcoholic extract of Urtica dioica may have modalatory effect on aniline hydroxylase at least in part and enhance the activity of A4H adding metals ions and cofactors.
NASA Astrophysics Data System (ADS)
Shanmugalingam, A.; Murugesan, A.
2018-05-01
This study reports adsorption of Cr(VI) ions from aqueous solution using activated carbon that was prepared from stems of Leucas aspera. Eight hundred and fifty watts power of microwave radiation, 12 min of radiation time, 60% of ZnCl2 solution and 24 h of impregnation time are the optimal parameters to prepare efficient carbon effective activated carbon. It was designated as MWLAC (Microwave assisted Zinc chloride activated Leucas aspera carbon). Various adsorption characteristics such as dose of the adsorbent, agitation time, initial Cr(VI) ion concentration, pH of the solution and temperature on adsorption were studied for removal of Cr(VI) ions from aqueous solution by batch mode. Also the equilibrium adsorption was analyzed by the Langmuir, Freundlich, Tempkin and D-R isotherm models. The order of best describing isotherms was given based on R2 value. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Thermodynamic parameters were also determined and results suggest that the adsorption process is a spontaneous, endothermic and proceeded with increased randomness.
Sinha, Rajeshwari; Khare, S K
2013-10-01
A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting
2015-08-01
To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur
2017-03-01
Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardanyan, Zaruhi; Trchounian, Armen, E-mail: trchounian@ysu.am
2012-01-06
Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reductionmore » potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to interaction of these ions with F{sub 0}F{sub 1} or there might be a Fe{sup 3+}-dependent ATPase different from F{sub 0}F{sub 1} in these bacteria that is active even in the presence of DCCD. Fe{sup 2+} inhibits E. hirae cell growth probably by strong effect on E{sub h} leading to changes in F{sub 0}F{sub 1} and decreasing its activity.« less
Oxygen acceleration in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean
2017-01-01
Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.
Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials
Zhao, Nan; Zhu, Donghui
2016-01-01
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S
2017-08-01
Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Mayr, H.; Brinton, H.; Niemann, H.; Hartle, R.; Daniell, R. E., Jr.
1982-01-01
A comparison of ion and neutral composition measurements at Venus for periods of greatly different solar activity provides qualitative evidence of solar control of the day-to-night transport of light ion and neutral species. Concentrations of H(+) and He in the predawn bulge near solar maximum in November, 1979, exhibit a depletion signature correlated with a pronounced modulation in the solar F10.7 and EUV fluxes. This perturbation, not observed in the predawn region during an earlier period of relative quiet solar conditions, is interpreted as resulting from pronounced changes in solar heating and photoionization on the dayside, which in turn modulate the transport of ions and neutrals into the bulge region.
Characterization and antibacterial properties of porous fibers containing silver ions
NASA Astrophysics Data System (ADS)
Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan
2016-11-01
Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.
Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.
John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J
2007-02-01
Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.
Begam, G Reshma; Vachaspati, C Viswanatha; Ahammed, Y Nazeer; Kumar, K Raghavendra; Reddy, R R; Sharma, S K; Saxena, Mohit; Mandal, T K
2017-01-01
To better understand the sources as well as characterization of regional aerosols at a rural semi-arid region Kadapa (India), size-resolved composition of atmospheric particulate matter (PM) mass concentrations was sampled and analysed. This was carried out by using the Anderson low-pressure impactor for a period of 2 years during March 2013-February 2015. Also, the variations of organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ion components (WSICs) present in total suspended particulate matter (TSPM) were studied over the measurement site. From the statistical analysis, the PM mass concentration showed a higher abundance of coarse mode particles than the fine mode during pre-monsoon season. In contrast, fine mode particles in the PM concentration showed dominance over coarse mode particle contribution during the winter. During the post-monsoon season, the percentage contributions of coarse and fine fractions were equal, whereas during the monsoon, coarse mode fraction was approximately 26 % higher than the fine mode. This distinct feature in the case of fine mode particles during the studied period is mainly attributed to large-scale anthropogenic activities and regional prevailing meteorological conditions. Further, the potential sources of PM have been identified qualitatively by using the ratios of certain ions. A high sulphate (SO 4 ) concentration at the measurement site was observed during the studied period which is caused by the nearby/surrounding mining activity. Carbon fractions (OC and EC) were also analysed from the TSPM, and the results indicated (OC/EC ratio of ~4.2) the formation of a secondary organic aerosol. At last, the cluster backward trajectory analyses were also performed at Kadapa for different seasons to reveal the origin of sources from long-range transport during the study period.
A Novel Optical Intracellular Imaging Approach for Potassium Dynamics in Astrocytes
Rimmele, Theresa S.; Chatton, Jean-Yves
2014-01-01
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution. PMID:25275375
The role of Rho-kinase and calcium ions in constriction triggered by ET-1.
Wiciński, Michał; Szadujkis-Szadurska, Katarzyna; Węclewicz, Mateusz M; Malinowski, Bartosz; Matusiak, Grzegorz; Walczak, Maciej; Wódkiewicz, Eryk; Grześk, Grzegorz; Pawlak-Osińska, Katarzyna
2018-05-05
Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca 2+ related to activation of IP3 receptors and to Rho-kinase activity. Copyright © 2018. Published by Elsevier Inc.
D-region positive and negative ion concentration and mobilities during the February 1979 eclipse
NASA Astrophysics Data System (ADS)
Conley, T. D.; Narcisi, R. S.; Hegblom, E. R.
1983-07-01
Positive and negative ion concentrations and mobilities have been obtained from an analysis of Gerdien condenser measurements on rocket flights, A10.802-1 and A10.802-2, during and after eclipse totality. The aerodynamic instrument calibration and the data analysis techniques are discussed. The measured concentrations on both flights were about 10,000/cu cm in the altitudes range, 45-80 km. These high concentrations at very low altitudes suggest that a relativistic electron precipitation event was occurring during the measurements. The ion concentration measurements along with electron density measurements made by other groups during the eclipse were used to calculate the negative ion/ electron ratio, and the lumped parameter detachment rate. These results are compared with prior measurements during eclipse and solar proton events and code results. The analysis shows that the present negative ion model is incomplete. The reduced mobilities were also determined. The mobility distributions show that the heavy ions of both the positive and negative species dominate from 45 to 70 km. The data reveal more massive ions at higher altitudes than at low altitudes (1000 vs 300 a.m.u.) as well as possible evidence for multiply charged ions below about 60 km.
Abdelkafi, Slim; Abousalham, Abdelkarim
2011-07-01
Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Kosjek, Tina; Negreira, Noelia; Heath, Ester; López de Alda, Miren; Barceló, Damià
2018-01-01
This study aims to identify (bio)transformation products of vincristine, a plant alkaloid chemotherapy drug. A batch biotransformation experiment was set-up using activated sludge at two concentration levels with and without the addition of a carbon source. Sample analysis was performed on an ultra-high performance liquid chromatograph coupled to a high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometer. To identify molecular ions of vincristine transformation products and to propose molecular and chemical structures, we performed data-dependent acquisition experiments combining full-scan mass spectrometry data with product ion spectra. In addition, the use of non-commercial detection and prediction algorithms such as MZmine 2 and EAWAG-BBD Pathway Prediction System, was proven to be proficient for screening for transformation products in complex wastewater matrix total ion chromatograms. In this study eleven vincristine transformation products were detected, nine of which were tentatively identified. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moczydlowski, Edward G.
Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability wasmore » investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.« less
NASA Astrophysics Data System (ADS)
Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît
2016-09-01
The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.
NASA Astrophysics Data System (ADS)
Milazzo, R.; Impellizzeri, G.; Piccinotti, D.; De Salvador, D.; Portavoce, A.; La Magna, A.; Fortunato, G.; Mangelinck, D.; Privitera, V.; Carnera, A.; Napolitani, E.
2017-01-01
Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 1020 cm-3 by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ˜4 × 1019 cm-3. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ˜3 × 1019 cm-3. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overmann, S.R.; Krajicek, J.J.
1995-04-01
The usefulness of common snapping turtles (Chelydra serpentina) as biomonitors of lead (Pb) contamination of aquatic ecosystems was assessed. Thirty-seven snapping turtles were collected from three sites on the Big River, an Ozarkian stream contaminated with Pb mine tailings. Morphometric measurements, tissue Pb concentrations (muscle, blood, bone, carapace, brain, and liver), {delta}-aminolevulinic acid dehydratase ({delta}-ALAD) activity, hematocrit, hemoglobin, plasma glucose, osmolality, and chloride ion content were measured. The data showed no effects of Pb contamination on capture success or morphological measurements. Tissue Pb concentrations were related to capture location. Hematocrit, plasma osmolality, plasma glucose, and plasma chloride ion content weremore » not significantly different with respect to capture location. The {delta}-ALAD activity levels were decreased in turtles taken from contaminated sites. Lead levels in the Big River do not appear to be adversely affecting the snapping turtles of the river. Chelydra serpentina is a useful species for biomonitoring of Pb-contaminated aquatic environments.« less
Ozkantar, Nebiye; Yilmaz, Erkan; Soylak, Mustafa; Tuzen, Mustafa
2015-08-01
A solid-phase extraction method for separation and preconcentration of Ir(IV) ion by using activated carbon cloth (ACC) has been presented. Ir(IV) as their 1-(2-pyridylazo) 2-naphtol (PAN) chelate was adsorbed on ACC at pH 2.0 and was eluted from ACC with acidic dimethylformamide (DMF). The Ir(IV) concentration was determined at 536 nm as Ir(IV)-PAN complex by using UV-vis spectrophotometer. The analytical parameters including pH, sample and eluent flow rates, amount of PAN, eluent type, concentration, and sample volume were optimized. The effects of foreign ions on the recoveries of iridium were also investigated. The preconcentration factor was calculated as 60. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were found as 0.039 and 0.129 μg L(-1), respectively. The method was applied to soil and water samples for iridium determination.
Removal of cadmium ions from wastewater using innovative electronic waste-derived material.
Xu, Meng; Hadi, Pejman; Chen, Guohua; McKay, Gordon
2014-05-30
Cadmium is a highly toxic heavy metal even at a trace level. In this study, a novel material derived from waste PCBs has been applied as an adsorbent to remove cadmium ions from aqueous solutions. The effects of various factors including contact time, initial cadmium ion concentration, pH and adsorbent dosage have been evaluated. The maximum uptake capacity of the newly derived material for cadmium ions has reached 2.1mmol/g at an initial pH 4. This value shows that this material can effectively remove cadmium ions from effluent. The equilibrium isotherm has been analyzed using several isotherm equations and is best described by the Redlich-Peterson model. Furthermore, different commercial adsorbent resins have been studied for comparison purposes. The results further confirm that this activated material is highly competitive with its commercial counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.
The acute toxicity of major ion salts to Ceriodaphnia dubia: I. ...
The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed geochemical weathering or otherwise introduce or concentrate ions. While toxicity of these ions to aquatic organisms has been previously shown, it is also known that their toxicity can vary depending on the concentrations of other co-occurring anions, and understanding these relationships is key to predicting toxicity and establishing appropriate environmental limits. In this paper we conduct a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of all twelve major ionsalts (pairing one of the cations with one of the anions) and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic to C. dubia below saturation, with the lowest LC50s found for K salts. Of the remaining salts, all but CaCl2 showed some degree of decreased toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH were used to show that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts. In contrast, the toxicities of K salts were primarily influenced by the concentration of Na. Th
Selective recovery of salt from coal gasification brine by nanofiltration membranes.
Li, Kun; Ma, Wencheng; Han, Hongjun; Xu, Chunyan; Han, Yuxing; Wang, Dexin; Ma, Weiwei; Zhu, Hao
2018-06-20
The selective extraction and concentration of salt from coal gasification brine (CGB) by nanofiltration membranes is a promising technology to achieve near-zero liquid discharge of coal gasification wastewater. To investigate the feasibility of recovery of salts and the interaction of organic compounds, multivalent ions and monovalent ions on the rejection ratio, three nanofiltration membranes (OWNF1, NF270 and Desal-5 DK) with an 1812 spiral-wound module were used in crossflow filtration. The rejection mechanism was analyzed by comparing the rejection performance as a function of the operation pressure (increasing from 1.0 MPa to 2.5 MPa), the concentration (increasing from 10,000 mg/L to 25,000 mg/L) and pH values (increasing from 3.0 to 10.0). The concentrations of anions and cations were determined using an ion chromatographic analyzer and an inductively coupled plasma emission spectrometer, respectively. The results show that the rejection of sulfate and the chemical oxygen demand were higher than 92.12% and 78.84%, respectively, at appropriate operation, while negative rejection of chloride was observed in the CGB. The decreasing rejection of organic compounds was due to swelling of the membrane pore in high-concentration solutions. Meanwhile, the organic compounds weakened the negative charge of the membrane active layer, consequently decreasing the ion rejection. More than 85% of the sodium chloride could be recovered, indicating that this technology is suitable for resource recovery from CGB and near-zero liquid discharge of coal gasification industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Kovacs, T.; Plane, J. M. C.; Päivärinta, S. M.
2016-12-01
Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during EPP events can decrease ozone by tens of percent. However, the standard ion chemistry parameterizations used in atmospheric models neglect the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. Compared to the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry, WACCM-D represents the lower ionosphere well. Comparison of ion concentrations between the models shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70-90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some ions but is still within tens of percent. We also compare WACCM-D results for the January 2005 solar proton event (SPE) to those from the standard WACCM and observations from the Aura/MLS and SCISAT/ACE-FTS instruments. The results indicate that WACCM-D improves the modeling of {HNO3}, {HCl}, {ClO}, {OH}, and {NOx} during the SPE. For example, Northern Hemispheric {HNO3} from WACCM-D shows an increase by two orders of magnitude at 40-70 km compared to WACCM, reaching 2.6 ppbv, in agreement with the observations. Based on our results, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and improves modeling of EPP atmospheric effects considerably.
NASA Astrophysics Data System (ADS)
Han, C.; Wu, G.; Qin, H.; Wang, Z.
2012-12-01
Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.
Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol)
NASA Astrophysics Data System (ADS)
Schantz, S.; Torell, L. M.; Stevens, J. R.
1988-08-01
Raman spectra of LiClO4 complexed in poly(propylene-glycol) (PPG) have been obtained for concentrations of the monomer to salt ratio (ether oxygen):Li in the range 30:1-5:1. Splitting of the symmetric stretching mode of the ClO4- anion was observed with an intensity profile that varied with salt concentration. This phenomenon indicates a changing environment about the anion. A two-component band analysis leads to the identification of dissociated ions on one hand and solvent-separated ion pairs on the other. The concentration of ion pairs is relatively low compared to that of the dissociated ions, which are predominant for all concentrations. Despite the observed increase in the absolute number of dissociated ions at higher salt concentration, the electrical conductivity is reported to decrease in the same range. This indicates that the number of ``free'' charge carriers is of less importance for the conductivity than the mobility, which is damped in this concentration range. Frequency shifts of the disordered longitudinal-acoustic mode and increased hypersonic velocities, measured with Raman and Brillouin scattering techniques, respectively, indicate increased stiffness of the polymer matrix for increasing salt concentration, which probably results in decreased ion mobility.
Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho
2017-01-01
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.
NASA Astrophysics Data System (ADS)
Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.
2014-12-01
Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means of 120, 117, 42, and 39 μeq l-1, respectively. After exposure to atmospheric particulate matter during cold pool events, surface snow concentrations peaked at 2500, 3600, 93, and 90 μeq l-1 for these ions. Median nitrogen (N) deposition in fresh urban snow samples measured 0.8 kg N ha-1 during January 2011, with similar fog/dry deposition inputs at mid-elevation montane sites. Wintertime anthropogenic air pollution represents a significant source of ions to snow-covered ecosystems proximate to urban montane areas, with important implications for ecosystem function.
Liang, Shijing; Zhu, Shuying; Zhu, Jia; Chen, Yan; Zhang, Yongfan; Wu, Ling
2012-01-21
A series of group IIIA metal ion electron acceptors doped into Sr(0.25)H(1.5)Ta(2)O(6)·H(2)O (HST) samples have been prepared by an impregnation and calcination method for the first time. The samples are characterized by XRD, TEM, DRS and XPS. The variations in the electronic structure and photoelectric response after metal ion doping are investigated by theoretical calculations and photocurrent experiments, respectively. Results show that the metal ions can be efficiently incorporated into the HST crystal structure, which is reflected in the lattice contraction. Meanwhile, the photoabsorption edges of the metal-doped HST samples are red shifted to a longer wavelength. Taking into account the ionic radii and electronegativities of the dopants, as well as the XRD and XPS results, it is concluded that Ta(5+) ions may be partially substituted by the Al(3+) and Ga(3+) ions in the framework, while In(3+) ions are the favourable substitutes for Sr(2+) sites in the cavity. The first-principles DFT calculations confirm that the variation of the band structure is sensitive to the type of group IIIA metal ion. Introducing the dopant only at the Ta site induces an obvious variation in the band structure and the band gap becomes narrow. Meanwhile, an ''extra step'' appeared in the band gap, which can trap photogenerated electrons from the valance band (VB) and could enhance the charge mobility and the photocurrent. For the photocatalytic degradation of methyl orange in an aqueous solution and in benzene in the gas phase, the doped samples show superior photocatalytic activities compared with both undoped samples and TiO(2). The enhanced photocatalytic activities can be well explained by their electronic structure, photoabsorption performance, photoelectric response, and the concentration of the active species. Due to the fact that Ga ion doping can create an acceptor impurity level and change the electronic band, efficiently narrowing the band gap, the Ga-doped sample shows the highest photocatalytic activity.
Calcium promotes activity and confers heat stability on plant peroxidases
Plieth, Christoph; Vollbehr, Sonja
2012-01-01
In this paper we demonstrate how peroxidase (PO) activities and their heat stability correlate with the availability of free Ca2+ ions. Calcium ions work as a molecular switch for PO activity and exert a protective function, rendering POs heat stable. The concentration ranges of these two activities differ markedly. POs are activated by µM Ca2+ concentration ranges, whereas heat stabilization is observed in the nM range. This suggests the existence of different Ca2+ binding sites. The heat stability of POs depends on the source plant species. Terrestrial plants have POs that exhibit higher temperature stability than those POs from limnic and marine plants. Different POs from a single species can differ in terms of heat stability. The abundance of different POs within a plant is dependent on age and developmental stage. The heat stability of a PO does not necessarily correlate with the maximum temperature the source species is usually exposed to in its natural habitat. This raises questions on the role of POs in the heat tolerance of plants. Consequently, detailed investigations are needed to identify and characterize individual POs, with regard to their genetic origin, subcellular expression, tissue abundance, developmental emergence and their functions in innate and acquired heat tolerance. PMID:22580695
Surface Segregation in Ag/TiOx 3D Nanocomposite Prepared by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Xiong, J.; He, L. Y.
2018-05-01
The antimicrobial activities of silver based nanocomposites are usually studied in terms of Ag content and ion release rate. Under this condition, controllable silver ions release with high antibacterial activity is the basis for silver based nanocomposite. The goal is to investigate the influence of O2 content and titanium oxide barrier thickness on the evolution in morphology. The SEM/TEM results showed that the size of Ag nanoparticles has a clear dependence on O2 concentration in reactive sputtering process; increased oxygen implies larger Ag nanoparticles in the matrix. In addition, a clear suppressing effect and better size distribution is obtained after the thickness of coated titanium oxide barrier is verified.
Lyons, P.C.; Palmer, C.A.; Bostick, N.H.; Fletcher, J.D.; Dulong, F.T.; Brown, F.W.; Brown, Z.A.; Krasnow, M.R.; Romankiw, L.A.
1989-01-01
A rank series consisting of twelve vitrinite concentrates and companion whole-coal samples from mined coal beds in the eastern United States, England, and Australia were analyzed for C, H, N, O, ash, and 47 trace and minor elements by standard elemental, instrumental neutron activation analysis (INAA), and direct-current-arc spectrographic (DCAS) techniques. The reflectance of vitrinite, atomic H:C and O:C, and ash-free carbon data were used to determine ranks that range from high-volatile C bituminous coal to meta-anthracite. A van Krevelen (atomic H:C vs. O:C) diagram of the vitrinite concentrates shows a smooth curve having its lowest point at H:C = 0.18 and O:C = 0.01. This improves the van Krevelen diagram by the addition of our vitrinite concentrate from meta-anthracite from the Narragansett basin of New England. Boron content (400-450 ppm) in two Illinois basin vitrinite concentrates was about an order of magnitude higher than B contents in other concentrates analyzed. We attribute this to marine origin or hydrothermal activity. The alkaline-earth elements Ca, Mg and Ba (DCAS) have higher concentrations in our vitrinite concentrates from bituminous coals of the Appalachian basin, than they do in vitrinite concentrates from the marine-roofed bituminous coals of the Illinois basin; therefore, a nonmarine origin for these alkaline-earth elements is postulated for the Appalachian basin coals. An ion-exchange mechanism due to high concentrations of these elements as ions in diagenetic water, but probably not recent ground water, may be responsible for the relatively high values of these elements in Appalachian concentrates. Higher concentrations of Ni and Cr in one of the English vitrinite concentrates and of Zr in the Australian concentrate probably indicate organic association and detrital influence, respectively. ?? 1989.
Wang, Xiao-Lei; Li, Chuan-Rong; Xu, Jing-Wei; Hu, Ding-Meng; Zhao, Zhen-Lei; Zhang, Liu-dong
2013-02-01
Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.
Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects
Zhao, Hua
2015-01-01
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281
Counting ions and other nucleophiles at surfaces by chemical trapping.
Cuccovia, Iolanda Midea; da Silva Lima, Filipe; Chaimovich, Hernan
2017-10-01
The interfaces of membranes and other aggregates are determined by the polarity, electrical charge, molecular volume, degrees of motional freedom and packing density of the head groups of the amphiphiles. These properties also determine the type of bound ion (ion selectivity) and its local density, i.e. concentration defined by choosing an appropriate volume element at the aggregate interface. Bulk and local ion concentrations can differ by orders of magnitude. The relationships between ion (or other compound) concentrations in the bulk solvent and in the interface are complex but, in some cases, well established. As the local ion concentration, rather than that in the bulk, controls a variety of properties of membranes, micelles, vesicles and other objects of theoretical and applied interests, measurement of local (interfacial, bound) ion concentrations is of relevance for understanding and characterizing such aggregates. Many experimental methods for estimating ion distributions between the bulk solution and the interface provide indirect estimates because they are based on concentration-dependent properties, rather than concentration measurements. Dediazoniation, i.e. the loss of N 2 , of a substituted diazophenyl derivative provides a tool for determining the number of nucleophiles (including neutral or negatively charged ions) surrounding the diazophenyl derivative prior to the dediazoniation event. This reaction, defined as chemical trapping, and the appropriate reference points obtained in bulk solution allow direct measurements of local concentrations of a variety of nucleophiles at the surface of membranes and other aggregates. Here we review our contributions of our research group to the use, and understanding, of this method and applications of chemical trapping to the description of local concentrations of ions and other nucleophiles in micelles, reverse micelles, vesicles and solvent mixtures. Among other results, we have shown that interfacial water determines micellar shape, zwitterionic vesicle-forming amphiphiles display ion selectivity and urea does not accumulate at micellar interfaces. We have also shown that reaction products can be predicted from the composition of the initial state, even in non-ideal solvent mixtures, supporting the usefulness of chemical trapping as a method to determine local concentrations. In addition, we have analysed the mechanism of dediazoniation, both on theoretical and experimental basis, and concluded that the formation of a free phenyl cation is not a necessary part of the reaction pathway.
Leem, Yea-Hyun; Lee, Kang-Sik; Kim, Jung-Hwa; Seok, Hyun-Kwang; Chang, Jae-Suk; Lee, Dong-Ho
2016-10-01
Magnesium metal and its alloys have been proposed as a novel class of bone implant biomaterials because of their biodegradability and mechanical properties. The purpose of this study was to determine whether magnesium ions, which are released abundantly from alloys, affect proliferation and differentiation of human bone marrow-derived stromal cells (hBMSCs). High levels of magnesium ions did not induce cytotoxicity in hBMSCs, but treatment with 2.5-10 mm magnesium ions for 48-72 h significantly increased hBMSC proliferation. The expression of integrins α2 and α3, but not β1, was upregulated compared with the control and shifted from α3 to α2 in hBMSCs treated with magnesium ions. Knockdown of integrins α2 and/or α3 significantly reduced magnesium-induced proliferation of hBMSCs. Magnesium exposure profoundly enhanced alkaline phosphatase (ALP) gene expression and activity even at a relatively low magnesium concentration (2.5 mm). Exposure to magnesium ions facilitated hBMSC proliferation via integrin α2 and α3 expression and partly promoted differentiation into osteoblasts via the alteration of ALP expression and activity. Accordingly, magnesium could be a useful biomaterial for orthopaedic applications such as bone implant biomaterials for repair and regeneration of bone defects in orthopaedic and dental fields. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.
2017-08-01
The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed E.; Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S.; Abdel-Fattah, Tarek M.
2017-04-01
A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe3O4) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe3O4-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7-14.1 nm. The surface area was identified as 389 m2/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe3O4-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe3O4-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations.
Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.
Divisekara, T; Navaratne, A N; Abeysekara, A S K
2018-05-01
Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Mei X.; Alexander, Kenneth S.
2016-01-01
Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels. PMID:27885352
Nucleoside pyrophosphatase activity associated with pig kidney alkaline phosphatase
Wass, Milica; Butterworth, P. J.
1971-01-01
1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; Km values are 4×10−5m for ATP and 6.3×10−5m for ADP. Vmax. for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg2+ ions to form MgATP2− or MgADP− complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with Km values identical with those of the respective free nucleotides. 3. Mg2+ ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive–non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg2+ ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations. PMID:4331861
Turakulov, Ia Kh; Luchenko, M B; Gaĭnutdinov, M Kh; Abidov, A A
1985-01-01
Activity of cytoplasmic inhibitor of Ca2+ transport in rat heart mitochondria was studied after total ischemia and incubation of heart homogenates with cAMP. Distinct inactivation of the inhibitor occurred under these conditions. The decrease of the inhibitor activity in ischemic myocardium appears to serve as a compensatory mechanism: 1. pyruvate dehydrogenase and the enzymes of tricarboxylic acid cycle were activated due to increase in Ca2+ concentration in mitochondria, 2. as a result of Ca2+ accumulation in mitochondria the elevated concentration of Ca2+ was decreased in myoplasm, which developed after impairment of plasmatic membranes and of sarcoplasmic reticulum membranes.
Xie, Xianju; Wang, Lin; Xing, Dan; Zhang, Ke; Weir, Michael D; Liu, Huaibing; Bai, Yuxing; Xu, Hockin H K
2017-05-01
A new adhesive containing nanoparticles of amorphous calcium phosphate (NACP) with calcium (Ca) and phosphate (P) ion rechargeability was recently developed; however, it was not antibacterial. The objectives of this study were to: (1) develop a novel adhesive with triple benefits of Ca and P ion recharge, protein-repellent and antibacterial functions via dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC); and (2) investigate dentin bond strength, protein adsorption, Ca and P ion concentration, microcosm biofilm response and pH properties. MPC, DMAHDM and NACP were mixed into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA), pyromellitic glycerol dimethacrylate (PMGDM), 2-hydroxyethyl methacrylate (HEMA) and bisphenol A glycidyl dimethacrylate (BisGMA). Protein adsorption was measured using a micro bicinchoninic acid method. A human saliva microcosm biofilm model was tested on resins. Colony-forming units (CFU), live/dead assay, metabolic activity, Ca and P ion concentration and biofilm culture medium pH were determined. The adhesive with 5% MPC+5% DMAHDM+30% NACP inhibited biofilm growth, reducing biofilm CFU by 4 log, compared to control (p<0.05). Dentin shear bond strengths were similar (p>0.1). Biofilm medium became a Ca and P ion reservoir having ion concentration increasing with NACP filler level. The adhesive with 5% MPC+5% DMAHDM+30% NACP maintained a safe pH>6, while commercial adhesive had a cariogenic pH of 4. The new adhesive with triple benefits of Ca and P ion recharge, protein-repellent and antibacterial functions substantially reduced biofilm growth, reducing biofilm CFU by 4 orders of magnitude, and yielding a much higher pH than commercial adhesive. This novel adhesive is promising to protect tooth structures from biofilm acids. The method of using NACP, MPC and DMAHDM is promising for application to other dental materials to combat caries. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Regulation of transepithelial ion transport by intracellular calcium ions.
Cuthbert, A W
1985-01-01
A photodynamic effect of erythrosine B on the basolateral surface of rat colon epithelium under short circuit conditions is described. The resulting irreversible increase in short circuit current was the result of electrogenic chloride secretion. The effect was dependent upon oxygen and calcium ions, and is probably due to the generation of singlet oxygen which then permeabilises the membranes to calcium. Half maximal activation of secretion in permeabilised preparations occurred at an external calcium concentration of 1 microM. In tight sodium transporting epithelia increased Cai reduces SCC, possibly by a direct effect on apical sodium permeability. In toad urinary bladder SCC fell in response to conditions outlined above for rat colon.
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
NASA Astrophysics Data System (ADS)
Agekyan, V. F.; Akai, I.; Vasil'Ev, N. N.; Karasawa, T.; Karczewski, G.; Serov, A. Yu.; Filosofov, N. G.
2007-06-01
The emission spectra of Zn1-x Mn x Te/Zn0.6Mg0.4Te and Cd1-x Mn x Te/Cd0.5Mg0.5Te quantum-well structures with different manganese concentrations and quantum-well widths are studied at excitation power densities ranging from 105 to 107 W cm-2. Under strong optical pumping, intracenter luminescence of Mn2+ ions degrades as a result of the interaction of excited managanese ions with high-density excitons. This process is accompanied by a strong broadening of the emission band of quantum-well excitons due to the exciton-exciton interaction and saturation of the exciton ground state. Under pumping at a power density of 105 W cm-2, stimulated emission of quantum-well excitons arises in CdTe/Cd0.5Mg0.5Te. The luminescence kinetics of the quantum-well and barrier excitons is investigated with a high temporal resolution. The effect of the quantum-well width and the managanese concentration on the kinetics and band shape of the Mn2+ intracenter luminescence characterized by the contribution of the manganese interface ions is determined.
Two-dimensional modulated ion-acoustic excitations in electronegative plasmas
NASA Astrophysics Data System (ADS)
Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.
2017-09-01
Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.
Amyloid-carbon hybrid membranes for universal water purification
NASA Astrophysics Data System (ADS)
Bolisetty, Sreenath; Mezzenga, Raffaele
2016-04-01
Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.
Sodium and Potassium Ions in Proteins and Enzyme Catalysis.
Vašák, Milan; Schnabl, Joachim
2016-01-01
The group I alkali metal ions Na(+) and K(+) are ubiquitous components of biological fluids that surround biological macromolecules. They play important roles other than being nonspecific ionic buffering agents or mediators of solute exchange and transport. Molecular evolution and regulated high intracellular and extracellular M(+) concentrations led to incorporation of selective Na(+) and K(+) binding sites into enzymes to stabilize catalytic intermediates or to provide optimal positioning of substrates. The mechanism of M(+) activation, as derived from kinetic studies along with structural analysis, has led to the classification of cofactor-like (type I) or allosteric effector (type II) activated enzymes. In the type I mechanism substrate anchoring to the enzyme active site is mediated by M(+), often acting in tandem with a divalent cation like Mg(2+), Mn(2+) or Zn(2+). In the allosteric type II mechanism, M(+) binding enhances enzyme activity through conformational transitions triggered upon binding to a distant site. In this chapter, following the discussion of the coordination chemistry of Na(+) and K(+) ions and the structural features responsible for the metal binding site selectivity in M(+)-activated enzymes, well-defined examples of M(+)-activated enzymes are used to illustrate the structural basis for type I and type II activation by Na(+) and K(+).
Entropy and charge in molecular evolution--the case of phosphate
NASA Technical Reports Server (NTRS)
Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)
1997-01-01
Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.
Czarnik, T.S.; Kozinski, Jane
1994-01-01
Ground-water samples were collected from 71 wells screened in or open to three aquifers in the central part of the Passaic River basin during 1959-88. Water samples from aquifers in glacial sediments and aquifers in sedimentary and igneous bedrock of the Newark Supergroup were analyzed for major ions. Most samples were analyzed for metals, nutrients, and tritium; 38 samples were analyzed for purgeable organic compounds. Calcium and bicarbonate were the predominant ions in ground water in the study area. Ground water was dilute (median dissolved-solids concentration 239 milligrams per liter) and slightly basic (median pH 7.89). Concentrations of inorganic constituents were within U.S. Environmental Protection Agency (USEPA) primary drinking-water regulations. Concentrations of benzene, tetrachloroethylene, and trichloroethylene, however, were greater than USEPA primary drinking-water regulations in six samples. Ground-water samples from aquifers in sedimentary bedrock were enriched in barium, calcium, magnesium, strontium,and sulfate relative to samples form the other aquifers. Such ion enrichment can be attributed either to disolution of carbonate and sulfate-containing minerals or to human activities. Ground-water samples from two wells screened in glacial sediments near swamps contained sulfate in concentrations higher than the median for the aquifer. Sulfate enrichment could result from downward leaching of water enriched in sulfur from the decay of organic matter in the swamps, from the disolution of sulfate-containing minerals, or from human activities. No regional trends in the chemical composition of the ground water in the study area were identified. Sulfate concentrations in ground- water samples from the sedimentary bedrock tended to increase with decreasing altitude of the deepest opening of the well; the correlation coefficient for the ranks of sulfate concentration and the altitude of the deepest opening of the well for 17 pairs of data is -0.690. Concentrations of tritium were greater than the detection limit in 33 of 35 ground-water samples, indicating that most ground water in the study area is more recent than 1953.
Anion dependent ion pairing in concentrated ytterbium halide solutions
NASA Astrophysics Data System (ADS)
Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina
2018-06-01
We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.
Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions
NASA Astrophysics Data System (ADS)
Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.
2005-12-01
The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation in the presence of sulfate ions. Apparently, microbial dolomite precipitation is not intrinsically linked to any particular group of organisms or specific metabolic processes or even specific environment. Furthermore, because heterotrophic microorganisms appear to be able to mediate microbial dolomite precipitation with or without sulfate ions in the media, our results indicate that the kinetic inhibition effect of sulfate ions can be overcome under specific sedimentary conditions. The present study adds a new insight to the dolomite problem, which could lead to a better clarification of the mechanism(s) involved in the massive dolomite formation observed in the geological record. References: [1] Baker, P.A., and Kastner, M., (1981), Science, 213, 214-216. [2] Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tien, A.J., (1995), Nature 377, 220-222.. [3] Warthmann R., van Lith Y., Vasconcelos C., McKenzie J.A. and Karpoff A.M., (2000), Geology 28, 1091-1094.
Contreras-Vite, Juan A.; Cruz-Rangel, Silvia; De Jesús-Pérez, José J.; Aréchiga Figueroa, Iván A.; Rodríguez-Menchaca, Aldo A.; Pérez-Cornejo, Patricia; Hartzell, H. Criss; Arreola, Jorge
2017-01-01
TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth, and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca2+]i), membrane depolarization, extracellular Cl− or permeant anions, and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. a) TMEM16A is activated by voltage in the absence of intracellular Ca2+. b) The Cl− conductance is decreased after reducing extracellular Cl− concentration ([Cl−]o). c) ICl is regulated by physiological concentrations of [Cl−]o. d) In cells dialyzed with 0.2 µM [Ca2+]i, Cl− has a bimodal effect: at [Cl−]o < 30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM [Cl−]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca2+ and Cl− to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca2+ ions coupled to a Vm-dependent binding of an external Cl− ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl− does not alter the apparent Ca2+ affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl− acts by stabilizing the open configuration induced by Ca2+ and by contributing to the Vm dependence of activation. PMID:27138167
NASA Astrophysics Data System (ADS)
Sheykina, Nadezhda; Bogatina, Nina
The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.
Krizkova, Sona; Ryant, Pavel; Krystofova, Olga; Adam, Vojtech; Galiova, Michaela; Beklova, Miroslava; Babula, Petr; Kaiser, Jozef; Novotny, Karel; Novotny, Jan; Liska, Miroslav; Malina, Radomir; Zehnalek, Josef; Hubalek, Jaromir; Havel, Ladislav; Kizek, Rene
2008-01-01
The aim of this work is to investigate sunflower plants response on stress induced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5, and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiological parameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such as lignified cell walls, it was possible to determine the changes of important shoot and root structures, mainly vascular bungles and development of secondary thickening. The differences in vascular bundles organisation, parenchymatic pith development in the root centre and the reduction of phloem part of vascular bundles were well observable. Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cells declined; rhizodermal cells early necrosed and were replaced by the cells of exodermis. Further we employed laser induced breakdown spectroscopy for determination of spatial distribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainly in near-root part of the sample. Moreover basic biochemical indicators of environmental stress were investigated. The total content of proteins expressively decreased with increasing silver(I) ions dose and the time of the treatment. As we compare the results obtained by protein analysis – the total protein contents in shoot as well as root parts – we can assume on the transport of the proteins from the roots to shoots. This phenomenon can be related with the cascade of processes connecting with photosynthesis. The second biochemical parameter, which we investigated, was urease activity. If we compared the activity in treated plants with control, we found out that presence of silver(I) ions markedly enhanced the activity of urease at all applied doses of this toxic metal. Finally we studied the effect of silver(I) ions on activity of urease in in vitro conditions. PMID:27879716
Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.
Anderson, Michael; Schultz, Eric P; Martick, Monika; Scott, William G
2013-10-23
We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na(+) ion binding in the ribozyme's active site. At least two such Na(+) ions are observed. The first Na(+) ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na(+) ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na(+), but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na(+) directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of barium on diffusion of sodium in borosilicate glass.
Mishra, R K; Kumar, Sumit; Tomar, B S; Tyagi, A K; Kaushik, C P; Raj, Kanwar; Manchanda, V K
2008-08-15
Diffusion coefficients of sodium in barium borosilicate glasses having varying concentration of barium were determined by heterogeneous isotopic exchange method using (24)Na as the radiotracer for sodium. The measurements were carried out at various temperatures (748-798 K) to obtain the activation energy (E(a)) of diffusion. The E(a) values were found to increase with increasing barium content of the glass, indicating that introduction of barium in the borosilicate glass hinders the diffusion of alkali metal ions from the glass matrix. The results have been explained in terms of the electrostatic and structural factors, with the increasing barium concentration resulting in population of low energy sites by Na(+) ions and, plausibly, formation of more tight glass network. The leach rate measurements on the glass samples show similar trend.
Anti-cancer activity of ZnO chips by sustained zinc ion release.
Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan
2016-01-01
We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.
Masadome, Takashi; Imato, Toshihiko
2003-07-04
A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.
Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari
2002-01-01
The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824
Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria
Steiner, Michael; Lazaroff, Norman
1974-01-01
A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066
Flow injection trace gas analysis method for on-site determination of organoarsenicals
Aldstadt, III, Joseph H.
1997-01-01
A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.
The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40/sup 0/ from normal). During deposition, the films were partially resputtered by 500-eV Ar/sup +/ ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The netmore » effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40/sup 0/ incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux.« less
Simulation of a model nanopore sensor: Ion competition underlies device behavior.
Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső
2017-12-28
We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.
Simulation of a model nanopore sensor: Ion competition underlies device behavior
NASA Astrophysics Data System (ADS)
Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső
2017-12-01
We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.
Biosorption of copper and lead ions by waste beer yeast.
Han, Runping; Li, Hongkui; Li, Yanhu; Zhang, Jinghua; Xiao, Huijun; Shi, Jie
2006-10-11
Locally available waste beer yeast, a byproduct of brewing industry, was found to be a low cost and promising adsorbent for adsorbing copper and lead ions from wastewater. In this work, biosorption of copper and lead ions on waste beer yeast was investigated in batch mode. The equilibrium adsorptive quantity was determined to be a function of the solution pH, contact time, beer yeast concentration, salt concentration and initial concentration of copper and lead ions. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and lead ions onto beer yeast were 0.0228 and 0.0277 mmol g(-1) at 293 K, respectively. The negative values of the standard free energy change (DeltaG degrees ) indicate spontaneous nature of the process. Competitive biosorption of two metal ions was investigated in terms of sorption quantity. The amount of one metal ion adsorbed onto unit weight of biosorbent (q(e)) decreased with increasing the competing metal ion concentration. The binding capacity for lead is more than for copper. Ion exchange is probably one of the main mechanism during adsorptive process.
Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy
2014-01-01
Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465
Biosorption of Cu(II) ions by cellulose of cabbage waste as biosorbent from agricultural waste
NASA Astrophysics Data System (ADS)
Heraldy, Eddy; Wireni, Lestari, Witri Wahyu
2016-02-01
Biosorption on lignocellulosic wastes has been identified as an appropriate alternative technology to remove heavy metal ions from wastewater. The purpose of this research was to study the ability of cabbage waste biosorbent prepared from agricultural waste on biosorption of Cu(II). Cabbage waste biosorbent was activated with sodium hydroxide at concentration 0.1 M. The biosorption optimum conditions were studied with initial pH (2-8), biosorbent dosage (0.2-1) g/L, contact time (15-90) minutes, and metal ion concentrations (10-100) mg/L by batch method. Experimental data were analyzed in terms of two kinetic models such as pseudo-first-order and pseudo-second-order models. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The results showed that cabbage biosorbent activated by 0.1 M sodium hydroxide enhanced the biosorption capacity from 9,801 mg/g to 12,26 mg/g. The FTIR spectra have shown a typical absorption of cellulose and typical absorption of lignin decrease after activation process. The kinetic biosorption was determined to be appropriate to the pseudo-second order model with constant rate of 0,091 g/mg.min, and the biosorption equilibrium was described well by the Langmuir isotherm model with maximum biosorption capacity of 37.04 mg/g for Cu(II) at pH 5, biosorption proses was spontaneous in nature with biosorption energy 25.86 kJ/mol at 302 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, W.W.; Seliger, H.H.
By methods previously described, the calcium-activated bioluminescent photoproteins were extracted with EDTA from the ctenophores Mnemiopsis sp. and Beroue ovata and then purified extensively. Two forms of the Mnemiopsis photoprotein, mnemiopsin-1 and mnemiopsin-2, and the single Beroue photoprotein, berovin, have been characterized and compared with respect to their physical and spectral properties. Ctenophore photoproteins react in vitro with calcium ions in molar excess of EDTA to produce a rapid flash with first-order decay kinetics. The rates and total light yields of these reactions are differently dependent on pH, temperature, and ionic strength. Mnemiopsin activation is specific for calcium ions. However,more » under certain assay conditions and at low metal ion concentrations a large number of cations appear to activate mnemiopsin. But at higher concentrations, most of these cations are inhibitors. Among these, only Mg/sup 2 +/ and Ba/sup 2 +/ are completely reversible competitive inhibitors of bioluminescence. Total photon yields are enhanced by preincubation with certain hydrophilic alcohols but reduced with long-chain aliphatic alcohols. Molecular weights were estimated by gel filtration on Sephadex and Bio-Gel and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The most reliable molecular weight estimates were 24,000, 27,500, and 25,000 awu for m-1, m-2, and berovin, respectively. Physical and spectral similarities among these photoproteins and the bioluminescent systems of the jellyfish Aequorea and the sea pansy Renilla suggest that similar biochemical mechanisms may exist among all of the bioluminescent coelenterates.« less
Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P
2013-06-15
Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu
1995-08-01
Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
Edge Vortex Flow Due to Inhomogeneous Ion Concentration
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2017-04-01
The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.
Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.
2015-01-01
Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473
Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de
2016-08-01
This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.
2011-04-01
Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.
Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio
2018-03-04
Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.
Contini, Donatella; Price, Steven D.
2016-01-01
Key points In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft.High‐fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance.Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion.Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential.With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. Abstract Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch‐clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High‐fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA‐dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high‐speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells. PMID:27633787
Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.
1999-01-01
An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899
Pavlaki, Maria D; Morgado, Rui G; van Gestel, Cornelis A M; Calado, Ricardo; Soares, Amadeu M V M; Loureiro, Susana
2017-11-01
mMarine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd 2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd 2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd 2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miner, Jacob Carlson; Garcia, Angel Enrique
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
Miner, Jacob Carlson; Garcia, Angel Enrique
2018-05-29
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less
NASA Astrophysics Data System (ADS)
Miner, Jacob Carlson; García, Angel Enrique
2018-06-01
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Miner, Jacob Carlson; García, Angel Enrique
2018-06-14
Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.
Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le
2015-09-15
Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.
Characterization of the interaction between the heavy and light chains of bovine factor Va.
Walker, F J
1992-10-05
Bovine factor Va has been previously been shown to consist of heavy (M(r) = 94,000) and light chains (M(r) = 81,000), that interact in a manner dependent upon the presence of either calcium or manganese ions. In an attempt to understand the mechanism of subunit interaction we have studied the effects of temperature and ions on factor Va stability. The rates of formation of factor Va from isolated chains and dissociation were temperature-dependent with an energy of activation of 6.2 and 1.3 kcal mol-1, respectively. The yield of factor Va from isolated chains was inversely related to the amount of time the chains were incubated at 4 degrees C. Incubation of individual chains revealed that the heavy chain is cold-labile, an effect that is reversible. Manganese ion was observed to prevent the conversion to the inactive form. High salt tends to stabilize the two-chain structure of factor Va, but is inhibitory to its formation from isolated chains. High concentrations of either manganese or calcium ions also inhibited reconstitution of activity. The light chain, in particular, was sensitive to the presence of manganese or calcium ion. Heavy chain that had been cleaved by activated protein C had a weakened interaction with the light chain, and the resulting complex had no procoagulant activity. Cooling of the heavy chain to 4 degrees C enhanced its intrinsic fluorescence. Manganese ion prevented some of this enhancement. The heavy chain fluorescence returned to the room temperature value with a half-life of approximately 10 min. In the presence of manganese ion relaxation was accelerated. The intrinsic fluorescence of activated protein C-cleaved heavy chain was not increased when the temperature was decreased. These data suggest that the heavy chain can exist in two forms. Elevated temperature converts it to a form that can bind ions and have a productive interaction with the light chain. However, conditions that prevent the heavy chain from combining with the light chain also stabilize the two subunit structure, suggesting that the high affinity of the complex is due to conformational changes that occur after chain interaction.