Science.gov

Sample records for active ion concentration

  1. Platelet activating factor raises intracellular calcium ion concentration in macrophages

    PubMed Central

    1986-01-01

    Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in

  2. Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans.

    PubMed

    Kawabe, Yoshishige; Inoue, Chihiro; Suto, Koichi; Chida, Tadashi

    2003-01-01

    The influence of high concentrations of ferric ions on the biochemical activity of Acidithiobacillus ferrooxidans was studied using intact cells. The specific oxidation rate of ferrous ions decreased with increasing ferric ion concentration. Lineweaver-Burk plots revealed typical competitive inhibition kinetics, because the slopes varied with the ferric ion concentration. A linear relationship between the slope and the square of the ferric ion concentration revealed that the iron-oxidizing enzyme system of A. ferrooxidans was competitively inhibited by about two molecules of ferric ion. The kinetic equation based on this inhibition model agreed with the experimental observation at a high ferric ion concentration where the bacterium is usually exposed in bioleaching and biooxidation plants.

  3. Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-12-09

    The lasing dynamics of fibre lasers with a core based on quartz glass doped with holmium ions to concentrations in the range of 10{sup 19}-10{sup 20} cm{sup -3} is investigated. It is shown that fibre lasers with a high concentration of active holmium ions generate pulses, but a decrease in the holmium concentration changes the lasing from pulsed to cw regime. At the same time, a decrease in the active-ion concentration and the corresponding increase in the fibre length in the cavity reduce the lasing efficiency. (lasers)

  4. Effect of active-ion concentration on holmium fibre laser efficiency

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-08-03

    We have measured the fraction of holmium ions that relax nonradiatively to the ground level as a result of interaction at a metastable level in optical fibres with a silica-based core doped with holmium ions to 2 x 10{sup 19} - 2 x 10{sup 20} cm{sup -3}. The percentage of such ions has been shown to depend on the absolute active-ion concentration. The fibres have been used to make a number of 2.05-{mu}m lasers, and their slope efficiency has been measured. The laser efficiency decreases with increasing holmium concentration in the fibres (lasers)

  5. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  6. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  7. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell.

    PubMed Central

    Atwater, I; Dawson, C M; Ribalet, B; Rojas, E

    1979-01-01

    1. Membrane potentials and input resistance were measured in beta-cells from mouse pancreatic islets of Langerhans in a study designed to assess the role of a K permeability specifically blocked by quinine or quinidine and activated by intracellular calcium ion concentration ([Ca2+])i-activated PK). 2. Addition of 100 microM-quinine to the perifusion medium resulted in a 10--30 mV depolarization of the membrane and an increase in the input resistance of ca. 4.10(7) omega. 3. In the absence of glucose, 100 microM-quinine induced electrical activity. 4. In the presence of glucose, 100 microM-quinine abolished the burst pattern of electrical activity and very much reduced the graded response of spike frequency normally seen with different concentrations of glucose. 5. Addition of mitochondrial inhibitors, KCN, NaN3, DNP, CCCP, FCCP, to the perifusion medium containing glucose rapidly hyperpolarized the beta-cell membrane, inducing a concomitant decrease in input resistance. 6. In the presence of glucose, these mitochondrial inhibitors reversibly blocked electrical activity; upon removal of the inhibitor, recovery of electrical activity followed a biphasic pattern. 7. The effects of mitochondrial inhibitors were partially reversed by 100 microM-quinine. 8. It is proposed that the membrane potential of the beta-cell in the absence of glucose is predominantly controlled by the [Ca2+]i-activated PK. It is further suggested that this permeability to K controls the level for glucose stimulation and leads to the generation of the burst pattern. PMID:381636

  8. Lithium ions in nanomolar concentration modulate glycine-activated chloride current in rat hippocampal neurons.

    PubMed

    Solntseva, E I; Bukanova, J V; Kondratenko, R V; Skrebitsky, V G

    2016-03-01

    Lithium salts are successfully used to treat bipolar disorder. At the same time, according to recent data lithium may be considered as a candidate medication for the treatment of neurodegenerative disorders. The mechanisms of therapeutic action of lithium have not been fully elucidated. In particular, in the literature there are no data on the effect of lithium on the glycine receptors. In the present study we investigated the effect of Li(+) on glycine-activated chloride current (IGly) in rat isolated pyramidal hippocampal neurons using patch-clamp technique. The effects of Li(+) were studied with two glycine concentrations: 100 μM (EC50) and 500 μM (nearly saturating). Li(+) was applied to the cell in two ways: first, by 600 ms co-application with glycine through micropipette (short application), and, second, by addition to an extracellular perfusate for 10 min (longer application). Li(+) was used in the range of concentrations of 1 nM-1 mM. Short application of Li(+) caused two effects: (1) an acceleration of desensitization (a decrease in the time of half-decay, or "τ") of IGly induced by both 100 μM and 500 μM glycine, and (2) a reduction of the peak amplitude of the IGly, induced by 100 μM, but not by 500 μM glycine. Both effects were not voltage-dependent. Dose-response curves for both effects were N-shaped with two maximums at 100 nM and 1 mM of Li(+) and a minimum at 1 μM of Li(+). This complex form of dose-response may indicate that the process activated by high concentrations of lithium inhibits the process that is sensitive to low concentrations of lithium. Longer application of Li(+)caused similar effects, but in this case 1 μM lithium was effective and the dose-effect curves were not N-shaped. The inhibitory effect of lithium ions on glycine-activated current suggests that lithium in low concentrations is able to modulate tonic inhibition in the hippocampus. This important property of lithium should be considered when using this drug as a

  9. Phosphate glass core/silica clad fibres with a high concentration of active rare-earth ions

    NASA Astrophysics Data System (ADS)

    Egorova, O. N.; Galagan, B. I.; Denker, B. I.; Sverchkov, S. E.; Semjonov, S. L.

    2016-12-01

    We report a study of silica-clad composite optical fibres having a phosphate glass core doped with active rare-earth elements. The phosphate glass core allows a high concentration of active rare-earth ions to be obtained, and the silica cladding ensures high mechanical strength and facilitates fusion splicing of such fibres to silica fibres. Owing to the high concentration of active rare-earth ions, this type of fibre is potentially attractive for applications where a small cavity length and high lasing efficiency are needed.

  10. Investigating the effect of electro-active ion concentration on spectral induced polarization signatures arising from biomineralization pathways

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L. D.; Williams, K. H.; Hubbard, S. S.; Wu, Y.

    2010-12-01

    Spectral induced polarization (SIP) is a proven geophysical method for detecting biomineral formation with promising applications for monitoring biogeochemical products during microbial induced sequestration of heavy metals and radionuclides in soils. SIP has been used to monitor the evolution of bioremediation-induced end-products at the uranium-contaminated U.S. Department of Energy Rifle Integrated Field Research Challenge site in Colorado. Although a significant SIP response was detected, the quantitative interpretation is non-trivial as the polarization of metallic minerals depends both on the mineral surface properties and the electrolyte chemistry. In previous experiments SIP mechanisms were studied under complex environments and individual source mechanisms could not be evaluated. Here we examine the role of electrolyte chemistry by comparing the effect of redox active / inactive ions on metallic polarization. In these abiotic experiments magnetite was used as a proxy biomineral and dispersed within columns packed with sand. Parallel columns were saturated with solutions of different concentrations of active (Fe2+) and inactive (Ca2+) ions (0.01mM-10mM) and SIP measurements made (0.1-1000 Hz). Experimental results show small, but detectable, differences in the effect of active ion and inactive ion concentration on the SIP response. To better characterize the effect of electro-active ions on metallic minerals we used a Cole - Cole type relaxation model, to describe the SIP responses. In order to better resolve the relaxation model parameters, we followed a two-step approach whereby we started with a Bayesian based inversion to resolve for the initial parameter estimates, and subsequently used these estimates as a starting model for a deterministic solution. Our results suggest that changes in the active ion concentration, in the presence of magnetite, alone are unlikely to fully explain recent SIP monitoring data from the Rifle site.

  11. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars

    PubMed Central

    Gharsallah, Charfeddine; Fakhfakh, Hatem; Grubb, Douglas; Gorsane, Faten

    2016-01-01

    Salinity is a constraint limiting plant growth and productivity of crops throughout the world. Understanding the mechanism underlying plant response to salinity provides new insights into the improvement of salt tolerance-crops of importance. In the present study, we report on the responses of twenty cultivars of tomato. We have clustered genotypes into scale classes according to their response to increased NaCl levels. Three local tomato genotypes, representative of different saline scale classes, were selected for further investigation. During early (0 h, 6 h and 12 h) and later (7 days) stages of the response to salt treatment, ion concentrations (Na+, K+  and Ca2+), proline content, enzyme activities (catalase, ascorbate peroxidase and guiacol peroxidase) were recorded. qPCR analysis of candidate genes WRKY (8, 31and 39), ERF (9, 16 and 80), LeNHX (1, 3 and 4) and HKT (class I) were performed. A high K+, Ca2 +and proline accumulation as well as a decrease of Na+  concentration-mediated salt tolerance. Concomitant with a pattern of high-antioxidant enzyme activities, tolerant genotypes also displayed differential patterns of gene expression during the response to salt stress. PMID:27543452

  12. Light ion concentrations in Jupiter's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Tokar, R. L.; Gurnett, D. A.; Shaw, R. R.; Bagenal, F.

    1982-01-01

    The light ion distribution in the inner Jovian magnetosphere is investigated using whistler dispersion measurements from the Voyager 1 plasma wave instrument and heavy ion plasma concentrations from the plasma instrument. Two models are developed for the light ion concentration over 14 L shells between L = 5.2 and 6.2, one giving a constant concentration along the field line and the other corresponding to an exponential density distribution. Due to heavy ion concentrations near the equator that are typically an order of magnitude larger than the light ion concentration, results obtained are mainly relevant to the light ion concentration outside of the torus. Light ion concentration near the equator ranges from about 1-10% of the heavy ion concentration, while outside the torus the light ions are the dominant species.

  13. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  14. Effect of Salinity and Alkalinity on Luciobarbus capito Gill Na+/K+-ATPase Enzyme Activity, Plasma Ion Concentration, and Osmotic Pressure

    PubMed Central

    2016-01-01

    We evaluated the individual and combined effects of salinity and alkalinity on gill Na+/K+-ATPase enzyme activity, plasma ion concentration, and osmotic pressure in Luciobarbus capito. Increasing salinity concentrations (5, 8, 11, and 14 g/L) were associated with an initial increase and then decrease in L. capito gill Na+/K+-ATPase activity. Activity was affected by the difference between internal and external Na+ ion concentrations and osmotic pressure (P < 0.05). Both plasma ion (Na+, K+, and Cl−) concentration and osmotic pressure increased significantly (P < 0.05). An increase in alkalinity (15, 30, 45, and 60 mM) caused a significant increase in plasma K+ and urea nitrogen concentrations (P < 0.05) but had no effect on either plasma osmotic pressure or gill filament ATPase activity. In the two-factor experiment, the saline-alkaline interaction caused a significant increase in plasma ion (Na+, Cl−, and urea nitrogen) and osmotic pressure (P < 0.05). Variance analysis revealed that salinity, alkalinity, and their interaction significantly affected osmotic pressure, with salinity being most affected, followed by alkalinity, and their interaction. Gill filament ATPase activity increased at first and then decreased; peak values were observed in the orthogonal experiment group at a salinity of 8 g/L and alkalinity of 30 mM. PMID:27981049

  15. Concentration gradient effects of sodium and lithium ions and deuterium isotope effects on the activities of H+-ATP synthase from chloroplasts.

    PubMed

    Chen, M-F; Wang, J-D; Su, T-M

    2009-03-18

    We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H(+)-ATP synthase from chloroplasts (CF(0)F(1)). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF(0)F(1). In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF(0). In the presence of sodium or lithium ions and with the application of a membrane potential, unexpected enzyme behaviors of CF(0)F(1) were evident. To account for these observations, we propose that both of the sodium and lithium ions could undergo localized hydrolysis reactions in the chemical environment of the ion channel of CF(0). The protons generated locally could proceed to complete the ion translocation process in the ATP synthesis reaction of CF(0)F(1). Experimental and theoretical deuterium isotope effects of the localized hydrolysis on the activities of CF(0)F(1), and the energetics of these related reactions, support this proposed mechanism. Our experimental observations could be understood in the framework of the well-established ion translocation models for the H(+)-ATP synthase from Escherichia coli, and the Na(+)-ATP synthase from Propionigenium modestum and Ilyobacter tartaricus.

  16. Na-KATPase activity and intracellular ion concentrations in the lactating guinea pig mammary gland. Studies on Na-K activated adenosine triphosphatase, XXXVI.

    PubMed

    Vreeswijk, J H; de Pont, J J; Bonting, S L

    1975-01-01

    The intracellular sodium, potassium and chloride concentrations in slices of lactating guinea pig mammary gland have been determined by chemical analysis and the use of appropriate values for extracellular space. These ion concentrations after 1 hr incubation at 37 degrees C in a Krebs-Ringer bicarbonate solution are 45mM Na+, 138 mM K+ and 44 mM Cl-, which values are in agreement with those found in fresh mammary gland slices. Inhibition of the NaK activated ATPase cation pump system of the tissue by 10(-4)M ouabain, anoxia or cooling to 0 degrees C Causes a gain of Na+ and an equimolar loss of K+ without a significant change in chloride concentration. The effect of cooling (0 degrees C) is reversible by reincubation at 37 degrees C. Water content of the tissue (76.5% of wet weight) and extracellular space (40.5%) do not change under these conditions. The results permit the conclusion that the NaK activated ATPase system is responsible for the maintenance of the intracellular Na+ and K+ concentrations, but do not support the presence of a chloride pump.

  17. Stability of nitrate-ion concentrations in simulated deposition samples used for quality-assurance activities by the U.S. Geological Survey

    USGS Publications Warehouse

    Willoughby, T.C.; See, R.B.; Schroder, L.J.

    1989-01-01

    Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)

  18. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  19. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  20. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  1. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    PubMed

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  2. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells

    PubMed Central

    Sagheddu, Claudia; Boccaccio, Anna; Dibattista, Michele; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2010-01-01

    Ca2+-activated Cl− channels play relevant roles in several physiological processes, including olfactory transduction, but their molecular identity is still unclear. Recent evidence suggests that members of the transmembrane 16 (TMEM16, also named anoctamin) family form Ca2+-activated Cl− channels in several cell types. In vertebrate olfactory transduction, TMEM16b/anoctamin2 has been proposed as the major molecular component of Ca2+-activated Cl− channels. However, a comparison of the functional properties in the whole-cell configuration between the native and the candidate channel has not yet been performed. In this study, we have used the whole-cell voltage-clamp technique to measure functional properties of the native channel in mouse isolated olfactory sensory neurons and compare them with those of mouse TMEM16b/anoctamin2 expressed in HEK 293T cells. We directly activated channels by rapid and reproducible intracellular Ca2+ concentration jumps obtained from photorelease of caged Ca2+ and determined extracellular blocking properties and anion selectivity of the channels. We found that the Cl− channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and DIDS applied at the extracellular side of the membrane caused a similar inhibition of the two currents. Anion selectivity measured exchanging external ions and revealed that, in both types of currents, the reversal potential for some anions was time dependent. Furthermore, we confirmed by immunohistochemistry that TMEM16b/anoctamin2 largely co-localized with adenylyl cyclase III at the surface of the olfactory epithelium. Therefore, we conclude that the measured electrophysiological properties in the whole-cell configuration are largely similar, and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the native olfactory Ca2+-activated Cl− current. PMID:20837642

  3. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells.

    PubMed

    Sagheddu, Claudia; Boccaccio, Anna; Dibattista, Michele; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2010-11-01

    Ca(2+)-activated Cl(-) channels play relevant roles in several physiological processes, including olfactory transduction, but their molecular identity is still unclear. Recent evidence suggests that members of the transmembrane 16 (TMEM16, also named anoctamin) family form Ca(2+)-activated Cl(-) channels in several cell types. In vertebrate olfactory transduction, TMEM16b/anoctamin2 has been proposed as the major molecular component of Ca(2+)-activated Cl(-) channels. However, a comparison of the functional properties in the whole-cell configuration between the native and the candidate channel has not yet been performed. In this study, we have used the whole-cell voltage-clamp technique to measure functional properties of the native channel in mouse isolated olfactory sensory neurons and compare them with those of mouse TMEM16b/anoctamin2 expressed in HEK 293T cells. We directly activated channels by rapid and reproducible intracellular Ca(2+) concentration jumps obtained from photorelease of caged Ca(2+) and determined extracellular blocking properties and anion selectivity of the channels. We found that the Cl(-) channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and DIDS applied at the extracellular side of the membrane caused a similar inhibition of the two currents. Anion selectivity measured exchanging external ions and revealed that, in both types of currents, the reversal potential for some anions was time dependent. Furthermore, we confirmed by immunohistochemistry that TMEM16b/anoctamin2 largely co-localized with adenylyl cyclase III at the surface of the olfactory epithelium. Therefore, we conclude that the measured electrophysiological properties in the whole-cell configuration are largely similar, and further indicate that TMEM16b/anoctamin2 is likely to be a major subunit of the native olfactory Ca(2+)-activated Cl(-) current.

  4. Predicting criteria continuous concentrations of metals or metalloids for protecting marine life by use of quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD).

    PubMed

    Qie, Yu; Chen, Cheng; Guo, Fei; Mu, Yunsong; Sun, Fuhong; Wang, Hao; Wang, Ying; Wang, Huanhua; Wu, Fengchang; Hu, Qing; Dang, Zhi; Giesy, John P

    2017-02-26

    Marine pollution by metals has been a major challenge for ecological systems; however, water quality criteria (WQC) for metals in saltwater is still lacking. Especially from a regulatory perspective, chronic effects of metals on marine organisms should receive more attention. A quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD) model, based on chronic toxicities for eight marine organisms, was established to predict the criteria continuous concentrations (CCCs) of 21 metals. The results showed that the chronic toxicities of various metals had good relationships with their physicochemical properties. Predicted CCCs of six metals (Hg(2+), Cu(2+), Pb(2+), Cd(2+), Ni(2+) and Zn(2+)) were in accordance with the values recommended by the U.S. EPA, with prediction errors being less than an order of magnitude. The QICAR-SSD approach provides an alternative tool to empirical methods and can be useful for deriving scientifically defensible WQC for metals for marine organisms and conducting ecological risk assessments.

  5. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  6. Large ion concentration gradients below the equatorial F peak.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.

    1973-01-01

    Very large vertical and longitudinal gradients in the ion concentrations are observed below the F peak near the magnetic equator with the retarding potential analyzer on Ogo 6. Ion concentration 'bite outs' of up to a factor of 1000 are observed above 400 km. They appear to be associated with the bottomside of the nighttime F layer. The ion composition in the minima may contain large fractions of ions heavier than O(+) (e.g., NO(+) and Fe(+)). It is suggested that convective electric fields associated with spread F steepen the bottomside of the F layer and also introduce longitudinal irregularities in the vertical ion concentration profiles.

  7. Capillarity ion concentration polarization as spontaneous desalting mechanism

    PubMed Central

    Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae

    2016-01-01

    To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system. PMID:27032534

  8. Capillarity ion concentration polarization as spontaneous desalting mechanism.

    PubMed

    Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae

    2016-04-01

    To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.

  9. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  10. Antibacterial activity of nanosilver ions and particles.

    PubMed

    Sotiriou, Georgios A; Pratsinis, Sotiris E

    2010-07-15

    The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO(2) nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction the exposed Ag surface area was measured qualitatively by O(2) chemisorption. Furthermore, the fraction of dissolved nanosilver was determined by measuring the released (leached) Ag(+) ion concentration in aqueous suspensions of such Ag/SiO(2) particles. The antibacterial effect of Ag(+) ions was distinguished from that of nanosilver particles by monitoring the growth of E. coli populations in the presence and absence of Ag/SiO(2) particles. The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(+) ions. In contrast, when relatively larger Ag nanoparticles were used, the concentration of the released Ag(+) ions was lower. Then the antibacterial activity of the released Ag(+) ions and nanosilver particles was comparable.

  11. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    PubMed

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  12. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  13. Edge Vortex Flow Due to Inhomogeneous Ion Concentration

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2017-04-01

    The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.

  14. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  15. Activation of mammalian tyrosinase by ferrous ions.

    PubMed

    Palumbo, A; d'Ischia, M; Misuraca, G; Carratú, L; Prota, G

    1990-03-26

    Kinetic experiments are reported showing that mammalian tyrosinase from B16 mouse melanoma is significantly activated by catalytic amounts of ferrous ions. Monitoring of tyrosine oxidation by both dopachrome formation and oxygen consumption showed that ferrous ions at micromolar concentrations induce a marked enzymatic activity with 0.01 U/ml of highly purified tyrosinase, whereas no detectable reaction occurs in the absence of metal over a sufficiently prolonged period of time. The extent of the activating effect, which is specific for the reduced form of iron, is proportional to the concentration of the added metal with a typical saturation profile, no further effect being observed beyond a threshold value. Changing the buffer system from phosphate to hepes or tris results in a marked decrease of the Fe2(+)-induced activation. Scavengers of active oxygen species, such as superoxide dismutase, catalase, formate and mannitol have no detectable effect on the tyrosinase activity. These results are accounted for in terms of an activation mechanism involving reduction of the cupric ions at the active site of the resting enzyme.

  16. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    NASA Astrophysics Data System (ADS)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  17. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications

    PubMed Central

    Kim, Sung Jae; Song, Yong-Ak; Han, Jongyoon

    2010-01-01

    Recently, a new type of electrokinetic concentration devices has been developed in a microfluidic chip format, which allows efficient trapping and concentration of biomolecules by utilizing ion concentration polarization near nanofluidic structures. These devices have drawn much attention not only due to their potential application in biomolecule sensing, but also due to the rich scientific content related to ion concentration polarization, the underlying physical phenomenon for the operation of these electrokinetic concentration devices. This tutorial review provides an introduction to the scientific and engineering advances achieved, in-depth discussion about several interesting applications of these unique concentration devices, and their current limitations and challenges. PMID:20179814

  18. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  19. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  20. Ion exchange determines iodine-131 concentration in aqueous samples

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1967-01-01

    Inorganic radioiodide in aqueous media is analyzed by separating the radioactive iodine-131 as the iodide ion on a silver chloride column. The activity in the final precipitate may be determined by beta or gamma counting.

  1. Faradaic Ion Concentration Polarization on a Paper Fluidic Platform.

    PubMed

    Li, Xiang; Luo, Long; Crooks, Richard M

    2017-04-04

    We describe the design and characteristics of a paper-based analytical device for analyte concentration enrichment. The device, called a hybrid paper-based analytical device (hyPAD), uses faradaic electrochemistry to create an ion depletion zone (IDZ), and hence a local electric field, within a nitrocellulose flow channel. Charged analytes are concentrated near the IDZ when their electrophoretic and electroosmotic velocities balance. This process is called faradaic ion concentration polarization. The hyPAD is simple to construct and uses only low-cost materials. The hyPAD can be tuned for optimal performance by adjusting the applied voltage or changing the electrode design. Moreover, the throughput of hyPAD is 2 orders of magnitude higher than that of conventional, micron-scale microfluidic devices. The hyPAD is able to concentrate a range of analytes, including small molecules, DNA, proteins, and nanoparticles, in the range of 200-500-fold within 5 min.

  2. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  3. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl‑ = 2.03[10‑9m2s‑1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D‑ ‑ D+)/(D‑ + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  4. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    PubMed Central

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-01-01

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl− = 2.03[10−9m2s−1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D− − D+)/(D− + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis). PMID:27158057

  5. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    PubMed

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-09

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  6. Concentration profiles in heterogeneous ion-exchange membranes

    SciTech Connect

    Smirnova, N.M.; Glazkova, I.N.; Glukhova, L.P.; Murzinov, V.I.; Komarova, N.I.; Kvaratskheli, Yu.K.

    1982-05-10

    Concentration profiles of uranium and SO/sub 4//sup -2/ ions were determined in MKK-1 (based on KU-2 cation-exchange resin) and MAK-2 (based on AM anion-exchange resin) heterogeneous membranes in the course of diffusion and electrodialysis. The method employed for locating the position and determining the concentration of ions in a particular region of an ion-exchange material was local x-ray spectrochemical analysis with the aid of an electron probe. A solution containing 10g of U per liter and 0.5 N/sub 2/SO/sub 4/ was used as the ''transferring'' solution. Uranium is present in this solution in the form of UO/sub 2//sup 2 +/ cations and (UO/sub 2/(SO/sub 4/)/sub 2/)/sup 2 -/ and (UO/sub 2/(SO/sub 4/)/sub 3/)/sup 4 -/ anionic complexes, so that it is transported both through the cation-exchange and the anion-exchange membranes. The ''receiving'' solution was 0.1N H/sub 2/SO/sub 4/. The REMP-2 electron probe microanalyzer was used for recording the concentration profiles. The uranium L..cap alpha../sub 1/ line (lambda = 9.1 x 10/sup -11/m) and the sulfur K..cap alpha../sub 1,2/ line (lambda = 53.7 x 10/sup -11/m) were used as the analytical lines. The membrane conductivities, and the amount of uranium sorbed were determined at the same time. This investigation confirmed that the method of local x-ray spectrochemical analysis in conjunction with physicochemical investigations of the properties of ion-exchange membranes is a promising, reliable, and rapid method for studying the mechanism of ion transport in comparison with the use of multiplet devices. It can make mathematical modelling of transport processes considerably easier and more precise, as introduction of various assumptions is obviated.

  7. Aerosol ion concentration dependence on atmospheric conditions in Chicago

    NASA Astrophysics Data System (ADS)

    Fosco, Tinamarie; Schmeling, Martina

    This study seeks to determine the influence of precursor trace gases and local meteorology, including lake breeze events, on the concentrations of secondary aerosol species in Chicago. For this, two particulate air samples per day were collected onto quartz fiber filters at the Loyola University Chicago Air Station (LUCAS) during the summer months of 2002 and 2003 and subsequently analyzed by ion chromatography for sulfate, nitrate and oxalate. In parallel, mixing ratios of ozone (O 3) and nitrogen oxides (NO and NO 2dbnd NO x) were monitored and weather parameters were recorded. In addition, backward trajectories were obtained to estimate air mass transport to Chicago. Ozone and NO x mixing ratios as well as sulfate, nitrate and oxalate concentrations varied substantially throughout the study, but three situations could be distinguished based on meteorology and chemistry. Case one had the lowest ozone, NO x and ion levels due to wind directions constantly from Lake Michigan. Case two comprised of days showing the highest pollutant levels because of to predominantly southwestern air currents and warm temperatures and case three experienced an air stagnation situation in the morning leading to high NO x mixing ratios and a subsequent lake breeze event. In the last case, elevated ozone mixing ratios and ion concentrations were observed after lake breeze onset indicating pollutant transport.

  8. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    SciTech Connect

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  9. Overlimiting current through ion concentration polarization layer: Hydrodynamic convection effects

    NASA Astrophysics Data System (ADS)

    Cho, Inhee; Kim, Sung Jae

    2013-11-01

    In this presentation, we experimentally investigated an effect of the hydrodymanic convective flow on an ion transport through nanoporous membrane in a micro/nanofluidic system. The convective motion of ions in an ion concentration polarization zone was controlled by external hydrodynamic inflows adjacent to the nanoporous membrane. The ion depletion region (which is regarded as a high electrical resistance) is spatially confined to a triangular shape with an additional hydrodymanic convective flow, resulting in a significant alternation in classical liming current value. Furthermore, the extreme spatial confinement can completely eliminate the limiting current region at higher flow rate so that one can obtain high current value which turns to be high power efficiency. Therefore, this mechanism would be utilized as minimizing power consumption for various electrochemical membrane systems such as fuel-cell, electro-desalination system and nanofluidic preconcentrator, etc. This work is supported by Basic Science Research Program (2013R1A1A1008125) and Future-based Technology Development Program (Nano Fields) (2009-0082952) through the NRF funded by the Ministry of Science, ICT & Future Planning.

  10. Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazenes and Polyphosphazene Ionomers

    NASA Astrophysics Data System (ADS)

    Runt, Jim; Klein, Robert

    2007-03-01

    Previous investigations have shed some light on the ion conduction process in polymer electrolytes, yet ion transport is still not well understood. Here, upon the application of a physical model of electrode polarization to two systems with nearly identical chemical structure, one composed of an ionomer (MI) with a single mobile cation, and the other a salt-doped polymer (M+S) with mobile cation and mobile anion, quantitative comparison of the conductivity parameters is achieved. The polymer electrolyte chemistries of both MI and M+S are based on poly(methoxyethoxy-ethoxy phosphazene) (MEEP). The glass transition was found to be an important factor governing the conductivity and ion mobility. However, even accounting for the glass transition, the mobility of ions in the M+S system is 10 times larger than that in the MI system, which must arise from faster diffusion of the anion than the cation. Values for mobile ion concentration are also approximately 10 times higher in M+S than MI. These differences originate from free volume available for diffusion and local environment surrounding the ion pairs, demonstrating that the location of the ion pairs in the polymer matrix has a crucial effect on both conductivity parameters. Research supported by NSF Polymers Program.

  11. 3D concentration distributions of ion implants in amorphous solids

    NASA Astrophysics Data System (ADS)

    Günzler, R.; Weiser, M.; Kalbitz, S.

    1992-01-01

    Spatial distributions of implanted ions have been derived from depth profiles of implants at varied incidence angle by applying tomographic techniques. To this end we have developed a new version of an algorithm known as simultaneous iterative reconstruction technique (SIRT), which covers the experimental concentration range of about three decades. In addition, the finite depth resolution of the nuclear reaction analysis (NRA) is accounted for in our computer program. In this way, we have reconstructed the three-dimensional implantation distributions of 0.15 MeV 1H, 1.5 and 6 MeV 15N, and 4 MeV 30Si in amorphized Ge layers. The agreement with TRIM calculations is reasonable: 10% ± 0.5% for the first and 10% ± 5% for the second range moments. Consequences of the longitudinal and lateral tailing for ion beam applications to large scale integration problems are discussed.

  12. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  13. Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

    NASA Astrophysics Data System (ADS)

    Queralt-Martín, María; García-Giménez, Elena; Aguilella, Vicente M.; Ramirez, Patricio; Mafe, Salvador; Alcaraz, Antonio

    2013-07-01

    We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying properties can be used to pump potassium ions against an external concentration gradient under asymmetric pH conditions. The results are discussed in terms of the ionic selectivity and rectification ratio of the channel. The physical concepts involved may be applied to separation processes with synthetic nanopores and to bioelectrical phenomena.

  14. Elevated major ion concentrations inhibit larval mayfly growth and development.

    PubMed

    Johnson, Brent R; Weaver, Paul C; Nietch, Christopher T; Lazorchak, James M; Struewing, Katherine A; Funk, David H

    2015-01-01

    Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2 ) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363 µS cm(-1) ) and larvae in treatments with specific conductance >812 µS cm(-1) were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513 µS cm(-1) and the calculated 20-d 50% lethal concentration was 2866 µS cm(-1) . The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species.

  15. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  16. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  17. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  18. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  19. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen ion concentration (pH) analyzer is a device that consists of a catheter-tip pH electrode and that...

  20. A Plasmaspheric Mass Density Model and Constraints on its Heavy Ion Concentration

    NASA Technical Reports Server (NTRS)

    Berube, D.; Moldwin, M. B.; Green, J. L.

    2004-01-01

    The first empirical model of the equatorial mass density of the plasmasphere is constructed using ground-based ULF wave diagnostics. Plasmaspheric mass density between L=l.7 and L=3.2 has been determined using over 5200 hours of data from pairs of stations in the MEASURE array of ground magnetometers. The least-squares fit to the data as a function of L shows that mass density falls logarithmically with L. Average ion mass as a function of L is also estimated by combining the mass density model with plasmaspheric electron density profiles determined from the IMAGE Radio Plasma Imager (RPI). Additionally, we use the RPI electron density database to examine how the average ion mass changes under different levels of geomagnetic activity. We find that average ion mass is greatest under the most disturbed conditions. This result indicates that heavy ion concentrations are enhanced during large geomagnetic disturbances, and therefore play an important role in storm-time plasmaspheric dynamics. The average ion mass is also used to constrain the concentrations of He(+) and O(+). Estimates of the He(+) concentration determined this way can be useful for interpreting IMAGE Extreme Ultraviolet Imager (EUV) images.

  1. Is the solution activity derivative sufficient to parameterize ion-ion interactions in aqueous solution?-ions for TIP5P water.

    PubMed

    Satarifard, Vahid; Kashefolgheta, Sadra; Vila Verde, Ana; Grafmueller, Andrea

    2017-04-10

    Biomolecular processes involve hydrated ions, and thus molecular simulations of such processes require accurate force-field parameters for these ions. In the best force-fields, both ion-water and anion-cation interactions are explicitly parameterized. First, the ion Lennard-Jones parameters are optimized to reproduce, e.g., single ion solvation free energies; then ion-pair interactions are often adjusted to match experimental activity or activity derivatives. Here we apply this approach to derive optimized parameters for concentrated NaCl, KCl, MgCl2 and CaCl2 salt solutions, to be used with the TIP5P water model. These parameters are of interest because of a number of desirable properties of the TIP5P water model, especially for the simulation of carbohydrates. The results show, that this approach is insufficient, because the activity derivative often reaches a plateau near the target experimental value, for a wide range of parameter values. The plateau emerges from the interconversion between different types of ion pairs, so parameters leading to equally good agreement with the target solution activity or activity derivative yield very different solution structures. To resolve this indetermination, a second target property, such as the experimentally determined ion-ion coordination number, is required to uniquely determine anion-cation interactions. Simulations show that combining activity derivatives and coordination number as experimental target properties to parameterize ion-ion interactions, is a powerful method for reliable ion-water force field parameterization, and gives insight into the concentration of contact or solvent shared ion pairs in a wide range of salt concentrations. For the alkali and halide ions Li(+), Rb(+), Cs(+), F(-), Br(-), I(-), we present ion-water parameters appropriate at infinite dilution only.

  2. Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2017-01-01

    We quantify the diffusiophoresis and electrophoresis of a uniformly charged, spherical colloid in a binary electrolyte using modified Poisson-Nernst-Planck equations that account for steric repulsion between finite sized ions. Specifically, we utilize the Bikerman (Bik) lattice gas model and the Carnahan-Starling (CS) and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state for monodisperse and polydisperse, respectively, hard spheres. We compute the phoretic mobility for weak applied fields using an asymptotic approach for thin diffuse layers, where ion steric effects are expected to be most prevalent. The thin diffuse layer limit requires λD/R →0 , where λD is the Debye screening length and R is the particle radius; this limit is readily attained for micron-sized colloids in concentrated electrolytic solutions. It is well known that the classic Poisson-Boltzmann (PB) model for pointlike, noninteracting ions leads to a prediction of a maximum in both the diffusiophoretic and electrophoretic mobilities with increasing particle zeta potential (at fixed λD/R ). In contrast, we find that ion sterics essentially eliminate this maximum (for reasonably attainable zeta potentials) and increase the mobility relative to PB. Next, we consider the more experimentally relevant case of a particle with a constant surface charge density and vary the electrolyte concentration, neglecting charge regulation on surface active sites. Rather surprisingly, there is little difference between the predictions of the four models (PB, Bik, CS, and BMCSL) for electrophoretic mobility in concentrated solutions, at reasonable surface charge densities (˜1 -10 μ C /cm2 ). This is because as the concentration increases, the zeta potential is reduced (to below the thermal voltage for concentrations above about 1 M) and therefore the diffuse layer structure is largely unaffected by ion sterics. For gradients of symmetric electrolytes (equal diffusivities, charge, and size

  3. Micro/nanofluidic Diode using Asymmetric Ion Concentration Polarization Layer

    NASA Astrophysics Data System (ADS)

    Sohn, Seoyun; Cho, Inhee; Kim, Sung Jae

    2016-11-01

    Recent developments of ion concentration polarization (ICP) theory would suggest that an over-limiting conductance (OLC) of the device is subject to the morphology of ICP layer and a micro-structure is able to alter the morphology. In this study, we demonstrated an ion rectification resulted only from asymmetric microscale structures, while conventional nanofluidic diode applications have usually employed a nanoscale asymmetry which requires sophisticate and expensive fabrication processes. We designed two dead-end microchannels incorporated with the nanoporous membrane. The difference in width of the microchannels was designed to yield asymmetry to the device. Cyclic voltammetry measurement was conducted to investigate the OLC behaviors on both forward and reverse bias. The diodic characteristics on I-V responses were observed at various ratio of the different microchannel width. In addition, we experimentally verified the logarithmical linearity between the ratios and the rectification ratios of OLC. This quantitative analysis would guide the further application utilizing microscale asymmetric diode device that now can be realized with minimum fabrication endeavors.

  4. The Sensitivity of Marine Calcification to carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Langdon, C.

    2006-12-01

    It is now well established that the rate of calcification of biogenic calcification is a function of the carbonate ion concentration. This relationship has been best established in the case of corals. Data is now available for twelve species. For the purpose of comparison it is convenient to normalize the calcification rates to the rate achieved at the pre-industrial carbonate ion concentration of the surface tropical ocean taken for the purposes of this analysis to be 255 μmol kg-1. If the rates from all the available studies are processed in this way and then regressed against the carbonate ion concentration one obtains that the normalized calcification = -24.5+0.47[CO32-], r#2=0.74. From this relationship one can calculate that at the present time the rate of coral calcification may have declined by 19% relative to the pre-industrial rate and by the end of the century, if pCO2 reaches 700 μatm, it could decline by 54%. This assumes that any rise in sea surface temperature does not have a significant effect on coral calcification. At the present time this is a major source of uncertainty. Several studies show that corals are adapted to the mean annual temperature that they experience and the rate of calcification during the summer is depressed relative to the maximal rates observed during the spring and fall. In this scenario any increase in the mean annual temperature will result in a reduced annual rate of calcification. These studies show that the rate of calcification falls off at the rate of 24±17 % per °C once the temperature exceeds the species thermal optimum. Other studies based on long-lived massive corals widely used in paleo-climate reconstructions exhibit a linear relationship with temperature that shows no sign of tapering off at the highest temperatures for which data are available. At this time we do not know which pattern is more representative of the aggregate response of corals on a typical coral reef. It should not be forgotten that

  5. Determination of molybdenum (VI) in sea water with preliminary concentration by the method of ion flotation

    SciTech Connect

    Andreeva, I. Yu.; Drapchinskaya, O.L.; Lebedeva, L.I.

    1985-10-01

    The purpose of this paper is to assess the feasibility of using the method of ion flotation for the concentration of microamounts of molybdenum (VI) during determination in sea water. The ion flotation method is used for the purification of industrial sewage from the ions of nonferrous metals, including molybdenum (VI) with its content of up to 50 mg/liter. A 1.10/sup -4/M solution of sodium molybdate in 0.1M NaOH was used. The effect of different factors on the ion flotation process of molybdenum (VI) was investigated: pH of the solution, flotation times, concentrations of surface-active substances (SAS), molybdenum (IV), extraneous salts. Data presented show that the ion flotation method in conjunction with the photometric method of determining molybdenum with brompyrogallol red (BPR) and cetylpridinium chloride (CP) (limit of detection 0.02 micrograms/liter) allows the content of molybdenum (VI) in sea water to be established with sufficient reliability and reproducibility.

  6. Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Jayaratne, E. R.; Morawska, L.

    2015-04-01

    A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (- 1.2 × 103 cm- 3 | + 1.6 × 103 cm- 3) and 4.4 × 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.

  7. The Influence of the Driving Voltage and Ion Concentration on the Lateral Ion Transport in Nematic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, Goran; Neyts, Kristiaan; Vermael, Stefaan; Verschueren, Alwin R. M.; van Asselt, Rob

    2005-08-01

    Nematic liquid crystal displays (LCDs) contain ions that influence the electrooptical characteristics of the display. A typical super-twisted nematic (STN) display for mobile phone applications becomes darker at a standard driving frequency if it contains many impurity ions. We have discovered that ions can travel in the plane of the glass plates in the absence of a lateral electric field, leading to lateral nonhomogeneity in transmission (dark and bright stripes). In this paper, we present our research on the lateral ion transport dependence on the driving square wave (SQW) amplitude and dc component at a wide range of ion concentrations. The existence of a dc component, a high ion concentration and high SQW amplitudes increase the lateral ion speed.

  8. Natural variability in the surface ocean carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  9. Natural variability in the surface ocean carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-08-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean timeseries sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30 year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the

  10. Control of sturgeon sperm motility: Antagonism between K+ ions concentration and osmolality.

    PubMed

    Prokopchuk, Galina; Dzyuba, Borys; Rodina, Marek; Cosson, Jacky

    2016-01-01

    Spermatozoa are stored in a quiescent state in the male reproductive tract and motility is induced in response to various environmental stimuli, such as change of osmolality (general case) and a decrease of extracellular K+ in fish from Acipenseridae family. This study was aimed to investigate the relationship between osmolality and extracellular K+ concentration in controlling sperm motility in sturgeon. Pre-incubation of sturgeon sperm for 5s in hypertonic solutions of glycerol, NaCl, or sucrose (each of 335 mOsm/kg osmolality) prepares sturgeon spermatozoa to become fully motile in presence of high concentration of K+ ions (15 mM), which has previously been demonstrated to fully repress motility. Furthermore, presence of 0.5mM KCl during the high osmolality pre-incubation exposure completely prevented subsequent spermatozoa activation in a K+-rich media. Manipulating the transport of K+ ions by the presence of K+ ionophore (valinomycin), it was concluded that once an efflux of K+ ions, the precursor of sturgeon sperm motility activation, is taking place, spermatozoa then become insensitive to a large extracellular K+ concentration.

  11. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    PubMed

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively.

  12. Enzyme catalyzed optofluidic biolaser for sensitive ion concentration detection

    NASA Astrophysics Data System (ADS)

    Gong, Chaoyang; Gong, Yuan; Oo, Maung Kyaw Khaing; Wu, Yu; Rao, Yunjiang; Fan, Xudong

    2016-12-01

    The enzyme horseradish peroxidase (HRP) has been extensively used in biochemistry for its ability to amplify a weak signal. By using HRP catalyzed substrate as the gain medium, we demonstrate sensitive ion concentration detection based on the optofluidic laser. The enzyme catalyzed reaction occurs in bulk solution inside a Fabry-Perot laser cavity, where the colorless, non-fluorescent 10-Acetyl-3,7-dihydroxyphenoxazine (ADHP) substrate is oxidized to produce highly fluorescent resorufin. Laser emission is achieved when pumped with the second harmonic wave of a Q-switched YAG laser. Further, we use sulfide anion (S2-) as an example to investigate the sensing performance of enzyme catalyzed optofluidic laser. The laser onset time difference between the sample to be tested and the reference is set to be the sensing output. Thanks to the amplification effects of both the enzymatic reaction and laser emission, we achieve a detection limit of 10 nM and a dynamic range of 3 orders of magnitude.

  13. Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte.

    PubMed

    Hrabcová, Dana; Pásek, Michal; Šimurda, Jiří; Christé, Georges

    2013-12-13

    We have developed a computer model of human cardiac ventricular myocyte (CVM), including t-tubular and cleft spaces with the aim of evaluating the impact of accumulation-depletion of ions in restricted extracellular spaces on transmembrane ion transport and ionic homeostasis in human CVM. The model was based on available data from human CVMs. Under steady state, the effect of ion concentration changes in extracellular spaces on [Ca2+]i-transient was explored as a function of critical fractions of ion transporters in t-tubular membrane (not documented for human CVM). Depletion of Ca2+ and accumulation of K+ occurring in extracellular spaces slightly affected the transmembrane Ca2+ flux, but not the action potential duration (APD90). The [Ca2+]i-transient was reduced (by 2%-9%), depending on the stimulation frequency, the rate of ion exchange between t-tubules and clefts and fractions of ion-transfer proteins in the t-tubular membrane. Under non-steady state, the responses of the model to changes of stimulation frequency were analyzed. A sudden increase of frequency (1-2.5 Hz) caused a temporal decrease of [Ca2+] in both extracellular spaces, a reduction of [Ca2+]i-transient (by 15%) and APD90 (by 13 ms). The results reveal different effects of activity-related ion concentration changes in human cardiac t-tubules (steady-state effects) and intercellular clefts (transient effects) in the modulation of membrane ion transport and Ca2+ turnover.

  14. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores.

    PubMed

    Tajparast, Mohammad; Virdi, Gautam; Glavinović, Mladen I

    2015-10-01

    During release of vesicular content the resistance of the fusion pore sometimes changes rapidly and repeatedly. However, it is not clear why the pore 'flickers'. Engineered nanopores often rectify, but how different factors influence the rectification requires clarification. To better understand the ionic 'causes' of pore conductivity and its changes we simulated ion transport through a short nanopore using Poisson-Nernst-Planck equations, coupling it to the transport of water using Navier-Stokes equations. We extracted the potential, concentration, and ion flux profiles. In uniformly charged nanopores the voltage bias determines which counter-ion flux dominates, and it is carried by the counter-ions of the highest concentration. In unipolar nanopores this simple rule breaks down. The dominant counter-ion in the charged half is from the adjacent compartment, but the bias determines what counter-ion flux is dominant--the same ion (regular bias), or a different and smaller (reverse bias), and this difference determines the level of rectification. In bipolar nanopores the dominant counter-ions in each half are from the adjacent compartments, and the total ion concentration dips in the middle near the wall. With regular bias the total ion concentration peaks in the pore center; the ions that carry the current through the nanopore start as counter-ions and their fluxes are large. With reverse bias the total concentration dips near the wall and in the center, both dominant ion fluxes through the nanopore start as co-ions and are very small, whereas those starting as counter-ions do not go through.

  15. Cytotoxicity of copper ions released from metal: variation with the exposure period and concentration gradients.

    PubMed

    Cortizo, María Cecilia; Fernández Lorenzo de Mele, Mónica

    2004-01-01

    The aim of this work is to contribute to the elucidation of the cytotoxic process caused by the copper ions released from the biomaterials. Clonal cell lines UMR106 were used in the experiments. Copper ions were obtained from two different sources: copper salts and metal dissolution. Experiments carried out with constant ion concentrations (copper salts) were compared with those with concentrations that vary with time and location (dissolution of the metal). Present results and others previously reported could be interpreted through mathematical models that describe: (1) the variation of concentration of copper ions with time and location within a biofilm and (2) the variation of the killing rate with the concentration of the toxic ion and time. The large number of dead cells found near the copper sample with an average ion concentration below the toxic limit could be interpreted bearing in mind that these cells should be exposed to a local concentration higher than this limit. A logarithmic dependence between the number of cells and exposure time was found for nearly constant ion concentrations. Apparent discrepancies, observed when these results and those of different researchers were contrasted, could be explained considering the dissimilar experimental conditions such as the source of the ions and their local concentration at real time.

  16. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  17. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  18. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  19. Air ion mobility spectra and concentrations upwind and downwind of overhead AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Wright, Matthew D.; Buckley, Alison J.; Matthews, James C.; Shallcross, Dudley E.; Henshaw, Denis L.

    2014-10-01

    Corona ions produced by high-voltage power lines (HVPLs) can alter the nearby electrical environment, potentially increasing aerosol charge levels downwind. However, there is a lack of knowledge concerning the concentration and mobility of ions from AC HVPLs and their dispersion away from the line. We present ion concentration and mobility measurements made near AC HVPLs in South-West England. Examples of typical mobility spectra are shown highlighting features commonly observed. Corona was observed during 33 of 46 measurements, at 9 of 11 sites, with positive or ‘bipolar' (both polarities) ion production commonly seen. Ion production usually increases atmospheric concentrations by only a modest amount, but extreme cases can enhance concentration by an order of magnitude or more. A polarity imbalance is required to increase aerosol charge via ion attachment; this was observed on 15 of 24 days when positive corona was observed, but was not seen for negative ions. Ion mobility was higher downwind compared with upwind for both ion polarities, but the increase was not statistically significant. Future work should focus on identifying and characterising ‘heavy-producing' HVPLs, and obtaining results in conditions which may favour negative ion production e.g. high humidity, inclement weather or during nighttime.

  20. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  1. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina

    2009-01-01

    Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at

  2. Threshold residual ion concentration on photomask surface to prevent haze defects

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Min; Lee, Jae-Chul; Kang, Dong-Shik; Lee, Dong-Heok; Shin, Chul; Choi, Moon-Hwan; Choi, Sang-Soo

    2007-05-01

    Haze generation has been serious issue on wafer lithography process, as illumination wavelength become shorter with 248nm and 193nm. Several published papers have been reported that ammonium and sulfate residual ion on mask surface is major source of haze generation. These ions are come from conventional photomask cleaning process. PKL have been studied new cleaning process to minimize haze generation and found cleaning process condition. Also, PKL found that residual ammonium ion is major source of haze generation than residual sulfate ion. New cleaning process improved residual ammonium ion concentration to less than 45 ppb from 900 ppb with conventional RCA cleaning. And illumination doses generating haze have been tested on five residual ammonium ion, 1500 ppb, 900 ppb, 160 ppb, 70 ppb, 45 ppb, respectively. In house designed Haze Acceleration Test Bench (HATB) was used to expose masks. Haze were not generated until from 25 kJ to 100 kJ, on 160 ppb to 45 ppb of ammonium ion concentration, respectively. And the residual of sulfate ion and its haze generation dose did not correspond. Residual ammonium ions need to be controlled tightly than sulfate ion. PKL concentrated on minimizing ammonium residual with new cleaning process and found the optimized cleaning process for preventing 100kJ of cumulative energy on ArF embedded attenuated PSM (EAPSM).

  3. [Hydrogen ion activity in the cell].

    PubMed

    Sorokin, Z A

    1976-07-01

    Literature data and results of our experiments evidence for a heterogenous hydrogen distribution in cells. Intracellular pH should be regarded as a mean activity of hydrogen ions which is the sum of activities in different phases of a cell. Intracellular pH value does not depend on the transmembrane action potential difference, and is resistant to respiratory and metabolic disorders of acid-base equilibrium in the body. It also slightly changes with changing the electrolyte composition and pH of the medium and is not influenced by metabolic inhibitors. A low hydrogen activity in the cell has a certain functional significance. The pH stability is ensured by a number of regulatory mechanism: the buffer properties of the protoplasm itself, and the active hydrogen transport into the medium. Hydrogen released from cells is supposed to be connected with functioning of a specific respiratory chain of superficial protoplasmic membranes.

  4. Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions

    DOEpatents

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    A high concentration of positive molecular ions of hydrogen or deuterium gas is extracted from a positive ion source having a short path length of extracted ions, relative to the mean free path of the gas molecules, to minimize the production of other ion species by collision between the positive ions and gas molecules. The ion source has arrays of permanent magnets to produce a multi-cusp magnetic field in regions remote from the plasma grid and the electron emitters, for largely confining the plasma to the space therebetween. The ion source has a chamber which is short in length, relative to its transverse dimensions, and the electron emitters are at an even shorter distance from the plasma grid, which contains one or more extraction apertures.

  5. A cross-fostering analysis of bromine ion concentration in rats that inhaled 1-bromopropane vapor

    PubMed Central

    Ishidao, Toru; Fueta, Yukiko; Ueno, Susumu; Yoshida, Yasuhiro; Hori, Hajime

    2016-01-01

    Objective: Inhaled 1-bromopropane decomposes easily and releases bromine ion. However, the kinetics and transfer of bromine ion into the next generation have not been clarified. In this work, the kinetics of bromine ion transfer to the next generation was investigated by using cross-fostering analysis and a one-compartment model. Methods: Pregnant Wistar rats were exposed to 700 ppm of 1-bromopropane vapor for 6 h per day during gestation days (GDs) 1-20. After birth, cross-fostering was performed between mother exposure groups and mother control groups, and the pups were subdivided into the following four groups: exposure group, postnatal exposure group, gestation exposure group, and control group. Bromine ion concentrations in the brain were measured temporally. Results: Bromine ion concentrations in mother rats were lower than those in virgin rats, and the concentrations in fetuses were higher than those in mothers on GD20. In the postnatal period, the concentrations in the gestation exposure group decreased with time, and the biological half-life was 3.1 days. Conversely, bromine ion concentration in the postnatal exposure group increased until postnatal day 4 and then decreased. This tendency was also observed in the exposure group. A one-compartment model was applied to analyze the behavior of bromine ion concentration in the brain. By taking into account the increase of body weight and change in the bromine ion uptake rate in pups, the bromine ion concentrations in the brains of the rats could be estimated with acceptable precision. PMID:27108641

  6. Incomplete ion dissociation underlies the weakened attraction between DNA helices at high spermidine concentrations.

    PubMed

    Yang, Jie; Rau, Donald C

    2005-09-01

    We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt solutions are consistent with this interpretation. Spermidine salts are not fully dissociated at higher concentrations. The competition for DNA binding among the fully charged trivalent ion and the lesser charged complex species at higher concentrations significantly weakens attraction between DNA helices in the condensed state. This is contrary to the suggestion that the binding of spermidine at higher concentrations causes DNA overcharging and consequent electrostatic repulsion.

  7. Ultrafast active mixer using polyelectrolytic ion extractor.

    PubMed

    Chun, Honggu; Kim, Hee Chan; Chung, Taek Dong

    2008-05-01

    We report on a low voltage, straight/smooth surface, and efficient active micromixer. The mixing principle is based on alternative ion depletion-enrichment using a pair of positively charged polyelectrolytic gel electrodes (pPGEs), which face each other joined by a microchannel. This system has an external AC signal source electrically connected to the pPGEs via the respective 1 M KCl solutions and Ag/AgCl electrodes. When an electric bias is applied between the two pPGEs, anions are extracted through one of the pPGEs to create a local ion-deficient region. Simultaneously, an ion-rich area appears near the other pPGE due to an inward anionic flux. As the direction of the charge flow is periodically reversed by the AC signal source, the ion depletion-enrichment regions are alternately swapped with each other on the 'push-pull' basis. The turmoil between the pPGEs quickly mixes the solutions in the microchannel without any mechanical moving part or specially machined structures. In the proposed system, both AC frequency and current density can be easily and finely controlled so that one can quickly find the optimal conditions for a given sample. The micromixer as made showed a mixing efficiency higher than 90% for sample solutions of 1 mM Rhodamine 6G and PBS at pH 7.4 when the flow rate was under 6 mm s(-1). In addition to the solution-solution mixing, the micromixer can effectively mix suspended microparticles with solution. As a representative example, rapid and efficient lysis of human red blood cells was demonstrated allowing minimal damage of the white blood cells.

  8. Ion correlations in nanofluidic channels: Effects of ion size, valence, and concentration on voltage- and pressure-driven currents

    PubMed Central

    Hoffmann, Jordan

    2013-01-01

    The effects of ion-ion and ion-wall correlations in nanochannels are explored, specifically how they influence voltage- and pressure-driven currents and pressure-to-voltage energy conversion. Cations of different diameters (0.15, 0.3, and 0.9 nm) and different valences (+1, +2, and +3) at concentrations ranging from 10–6 M to 1 M are considered in 50 nm- and 100 nm-wide nanoslits with wall surface charges ranging from 0 C/m2 to –0.3 C/m2. These parameters are typical of nanofluidic devices. Ion correlations have significant effects on device properties over large parts of this parameter space. These effects are the result of ion layering (oscillatory concentration profiles) for large monovalent cations and charge inversion (more cations in the first layer near the wall than necessary to neutralize the surface charge) for the multivalent cations. The ions were modeled as charged, hard spheres using density functional theory of fluids and current was computed with the Navier-Stokes equations with two different no-slip conditions. PMID:23286510

  9. Particle concentration effect: adsorption of divalent metal ions on coffee grounds.

    PubMed

    Utomo, Handojo Djati; Hunter, Keith A

    2010-03-01

    The adsorption of divalent metal ions Cu2+, Pb2+, Zn2+, and Cd2+ on coffee grounds as a function of coffee grounds concentration was studied in which adsorption density decreased as the concentration of coffee grounds (C(s)) increased. Adsorption studies were conducted by equilibrating aqueous solutions of each metal ion at concentrations in the range 19-291 micromol L(-1) with coffee suspensions in the concentration range 0.971-8.738 g L(-1), with the initial pH adjusted to 5.0+/-0.1 using NaOH or HNO3. Metastable Equilibrium Adsorption theory did not adequately explain the adsorption phenomenon, except at low concentrations of coffee grounds and trace metal ions. Instead the results indicated that flocculation might reduce the surface availability thus reducing the adsorption density. The flocculation theory was confirmed after a further experiment adding dispersant sodium hexa-meta-phosphate (NaHMP) to the suspension.

  10. Meaning and Measurability of Single-Ion Activities, the Thermodynamic Foundations of pH, and the Gibbs Free Energy for the Transfer of Ions between Dissimilar Materials

    PubMed Central

    Rockwood, Alan L

    2015-01-01

    Considering the relationship between concentration and vapor pressure (or the relationship between concentration and fugacity) single-ion activity coefficients are definable in purely thermodynamic terms. The measurement process involves measuring a contact potential between a solution and an external electrode. Contact potentials are measurable by using thermodynamically reversible processes. Extrapolation of an equation to zero concentration and ionic strength enables determination of single-ion activity coefficients. Single-ion activities can be defined and measured without using any extra-thermodynamic assumptions, concepts, or measurements. This method could serve as a gold standard for the validation of extra-thermodynamic methods for determining single-ion activities. Furthermore, it places the concept of pH on a thermodynamically solid foundation. Contact potential measurements can also be used to determine the Gibbs free energy for the transfer of ions between dissimilar materials. PMID:25919971

  11. From electroconvective vortices to current hot spots on ion selective membranes subject to concentration polarization

    NASA Astrophysics Data System (ADS)

    Wang, Karen; Mani, Ali

    2016-11-01

    Electroconvective instabilities near ion-selective surfaces have been shown to greatly enhance ion transport and play a significant role in a wide range of applications in electrochemistry. When the driving voltage exceeds a threshold, electroconvection becomes chaotic and leads to intermittent spikes of current density on the ion-selective surface. We present an investigation of this phenomenon by considering a canonical setting consisting of a symmetric binary electrolyte next to a flat, ion-selective membrane subject to an external driving voltage. By tracking individual rolls of vortices, we reveal the common mechanism under which the three-way coupled fluid dynamics, ion transport, and electrostatic effects lead to advective displacement of ion concentration field, sustained vortices and vortex migration, and current hot spots on the membrane.

  12. Effect of chloride ion concentration on the galvanic corrosion of α phase brass by eccrine sweat.

    PubMed

    Meekins, Andrew; Bond, John W; Chaloner, Penelope

    2012-07-01

    Inductively coupled plasma mass spectrometry measurement of the relative concentration of sodium, chloride, calcium, and potassium ions in eccrine sweat deposits from 40 donors revealed positive correlations between chloride and sodium (ρ = 0.684, p < 0.01) and chloride and calcium ions (ρ = 0.91, p < 0.01). Correlations between ion concentration and the corrosion of α phase brass by the donated sweat were investigated by visual grading of the degree of corrosion, by measuring the copper/zinc ratio using energy-dispersive X-ray spectroscopy, and from a measurement of the potential difference between corroded and uncorroded brass when a large potential was applied to the uncorroded brass. An increasing copper/zinc ratio (indicative of dezincification) was found to correlate positively to both chloride ion concentration and visual grading of corrosion, while visual grading gave correlations with potential difference measurements that were indicative of the preferential surface oxidation of zinc rather than copper.

  13. Evaluation of Cu Ion Concentration Effects on Cu Etching Rate in Chemical-Mechanical Polishing Slurry

    NASA Astrophysics Data System (ADS)

    Nishizawa, Hideaki; Sugiura, Osamu; Matsumura, Yoshiyuki; Kinoshita, Masaharu

    2007-04-01

    The effects of Cu ion concentration of the different solutions on Cu etching rate were investigated. From the dipping experiment of Cu substrates in different solutions of malic acid, hydrogen peroxide (H2O2), benzotriazole (BTA), and Cu ions, it was revealed that Cu etching rate is increased if the concentration of Cu(II) ions added in the solution is high. This is considered to be caused by the effect of Cu(II) ions on H2O2 molecules. In the solution of pH 7, the Cu etching rate increased markedly between 1.7× 10-4 and 3.4× 10-4 M Cu(II) ion concentrations. The maximum increase in the etching rate was from 990 to 2200 nm/min at a H2O2 concentration of 2 wt %. In the solution of pH 3, a marked change in the etching rate was not observed. Our results show that the concentration of Cu ions on the polishing pad in chemical-mechanical polishing (CMP) process is very important.

  14. Rapid analysis of perchlorate, chlorate and bromate ions in concentrated sodium hypochlorite solutions.

    PubMed

    Pisarenko, Aleksey N; Stanford, Benjamin D; Quiñones, Oscar; Pacey, Gilbert E; Gordon, Gilbert; Snyder, Shane A

    2010-02-05

    A sensitive, rapid, and rugged liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for measuring concentrations of perchlorate, chlorate, and bromate ions in concentrated sodium hypochlorite solutions is presented. The LC-MS/MS method offers a practical quantitation limit (PQL) of 0.05 microg L(-1) for ClO(4)(-), 0.2 microg L(-1) for BrO(3)(-), and 0.7 microg L(-1) for ClO(3)(-) and a sample analysis time of only 10 min. Additionally, an iodometric titration technique was compared with the LC-MS/MS method for measurement of chlorate ion at high concentration. The LC-MS/MS method was the most reproducible for chlorate concentrations below 0.025 M while the iodometric titration method employed was the most reproducible above 0.025 M. By using both methods, concentrations of chlorate can be measured over a wide range, from 0.7 microg L(-1) to 210 g L(-1) in hypochlorite ion solutions. Seven quenching agents were also evaluated for their ability to neutralize hypochlorite ion, thereby stopping formation of perchlorate ion in solution, without adversely impacting the other oxyhalide ions. Malonic acid was chosen as the quenching agent of choice, meeting all evaluation criteria outlined in this manuscript.

  15. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  16. Influence of phosvitin and calcium gluconate concentration on permeation and intestinal absorption of calcium ions.

    PubMed

    Dolińska, Barbara; Łopata, Katarzyna; Mikulska, Agnieszka; Leszczyńska, Lucyna; Ryszka, Florian

    2012-06-01

    The effect of egg yolk phosvitin on the permeation and absorption of calcium was investigated in vitro in relation to calcium gluconate concentration. Obtained results indicate that phosvitin significantly reduces the intestinal calcium absorption from 1 and 10 mM of calcium gluconate solution. It is associated with the formation of the complex of Ca (II) ions with phosvitin. The process of calcium permeation increases under phosvitin influence when calcium gluconate concentrations rise up to 10 mM. At a higher concentration of calcium gluconate (20 mM), no effect of phosvitin was seen on permeation of calcium ions.

  17. Concentration Dependent Ion-Protein Interaction Patterns Underlying Protein Oligomerization Behaviours

    NASA Astrophysics Data System (ADS)

    Batoulis, Helena; Schmidt, Thomas H.; Weber, Pascal; Schloetel, Jan-Gero; Kandt, Christian; Lang, Thorsten

    2016-04-01

    Salts and proteins comprise two of the basic molecular components of biological materials. Kosmotropic/chaotropic co-solvation and matching ion water affinities explain basic ionic effects on protein aggregation observed in simple solutions. However, it is unclear how these theories apply to proteins in complex biological environments and what the underlying ionic binding patterns are. Using the positive ion Ca2+ and the negatively charged membrane protein SNAP25, we studied ion effects on protein oligomerization in solution, in native membranes and in molecular dynamics (MD) simulations. We find that concentration-dependent ion-induced protein oligomerization is a fundamental chemico-physical principle applying not only to soluble but also to membrane-anchored proteins in their native environment. Oligomerization is driven by the interaction of Ca2+ ions with the carboxylate groups of aspartate and glutamate. From low up to middle concentrations, salt bridges between Ca2+ ions and two or more protein residues lead to increasingly larger oligomers, while at high concentrations oligomers disperse due to overcharging effects. The insights provide a conceptual framework at the interface of physics, chemistry and biology to explain binding of ions to charged protein surfaces on an atomistic scale, as occurring during protein solubilisation, aggregation and oligomerization both in simple solutions and membrane systems.

  18. Evaluation of a novel method for measurement of intracellular calcium ion concentration in fission yeast.

    PubMed

    Ogata, Fumihiko; Satoh, Ryosuke; Kita, Ayako; Sugiura, Reiko; Kawasaki, Naohito

    2017-01-01

    The distribution of metal and metalloid species in each of the cell compartments is termed as "metallome". It is important to elucidate the molecular mechanism underlying the beneficial or toxic effects exerted by a given metal or metalloid on human health. Therefore, we developed a method to measure intracellular metal ion concentration (particularly, intracellular calcium ion) in fission yeast. We evaluated the effects of nitric acid (HNO3), zymolyase, and westase treatment on cytolysis in fission yeast. Moreover, we evaluated the changes in the intracellular calcium ion concentration in fission yeast in response to treatment with/without micafungin. The fission yeast undergoes lysis when treated with 60% HNO3, which is simpler and cheaper compared to the other treatments. Additionally, the intracellular calcium ion concentration in 60% HNO3-treated fission yeast was determined by inductively coupled plasma atomic emission spectrometry. This study yields significant information pertaining to measurement of the intracellular calcium ion concentration in fission yeast, which is useful for elucidating the physiological or pathological functions of calcium ion in the biological systems. This study is the first step to obtain perspective view on the effect of the metallome in biological systems.

  19. Vacancies driven magnetic ordering in ZnO nanoparticles due to low concentrated Co ions

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Bhatia, Ravi; Kumar, Sanjeev; Kotnala, R. K.

    2016-07-01

    The lattice defects due to oxygen vacancies in ZnO nanoparticles with low doping of Co ions are investigated. The low concentrated Co ions in ZnO are responsible to the free charge carriers and oxygen vacancies to induce long-range ferromagnetic ordering. We have synthesized Zn1-x Co x O [x = 0.002, 0.004, 0.006 and 0.008] nanoparticles by a sol-gel process. X-ray fluorescence analysis detects the chemical composition of Zn, Co and O atoms. Rietveld refinement of x-ray diffraction pattern could confirm the wurtzite ZnO structure and the lattice constants with Co doping. The nanoparticles dimensions as well lattice spacing of ZnO are enhanced with Co substitution. Fourier transform infrared vibrational modes involve some organic groups to induce lattice defects and the ionic coordination among Zn, Co and O atoms. The room temperature Raman active mode E2 indicates frequency shifting with Co to induce stress in the wurtzite lattice. Photoluminescence spectra have a strong near-band-edge emission due to band gap energy and defects related to oxygen vacancies. X-ray photoelectron spectra confirm that the low dopant Co ions in ZnO lattice occupied Zn atoms by introducing oxygen vacancies and the valance states Zn2+, Co2,3+. The zero-field and field cooling magnetic measurement at 500 Oe in Co:ZnO samples indicate long-range ferromagnetism that is enhanced at 10 K due to antiferromagnetic-ferromagnetic ordering. The lattice defects/vacancies due to oxygen act as the medium of magnetic interactions which is explained by the bound magnetic polaron model.

  20. Charged particles and cluster ions produced during cooking activities.

    PubMed

    Stabile, L; Jayaratne, E R; Buonanno, G; Morawska, L

    2014-11-01

    Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.

  1. Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials

    NASA Astrophysics Data System (ADS)

    Szpikowska-Sroka, Barbara; Pawlik, Natalia; Pisarski, Wojciech A.

    2016-12-01

    The sol-gel powders doubly-doped with Gd3+/Eu3+ ions with different concentration of Gd3+ have been successfully obtained. The spectroscopic characterization of prepared samples was conducted based on excitation and emission spectra as well as luminescence decay analysis. Upon direct excitation of Eu3+ active ions, the characteristic 5D0 → 7F1 (orange) and 5D0 → 7F2 (red) emission bands were observed. The energy transfer from Gd3+ to Eu3+ ions was registered upon λexc = 273 nm excitation. An efficient conversion of ultraviolet radiation (UV) into visible luminescence was successfully observed. The energy transfer process from Gd3+ to Eu3+ led to longer luminescence decay from the 5D0 state in comparison to that obtained under direct excitation of Eu3+ ions (λexc = 393 nm). Generally, obtained results clearly indicated the beneficial influence of increasing concentration of Gd3+ ions on luminescence properties of Eu3+ in studied silica sol-gel phosphors.

  2. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  3. Modeling ion exchange in glass with concentration-dependent diffusion coefficients and mobilities

    NASA Astrophysics Data System (ADS)

    Lupascu, Alexandru I.; Kevorkian, Antoine P.; Boudet, Thierry; Saint-Andre, Francoise; Persegol, Dominique; Levy, Michel

    1996-06-01

    Multimode buried waveguides made in silicate glass by field-assisted ion exchange present very asymmetric profiles. We show how this phenomenon originates in the large dependence of the kinetics on the local ion concentrations. For this purpose, we derive an interdiffusion equation that includes the effects of concentration-dependent diffusion coefficients and mobilities. We show how to deduce this dependence from measurements on ion- diffused samples. The maximum concentration of the incoming ions is computed from surface equilibrium conditions and is used in the interdiffusion equation as a limiting parameter for coefficient variations. To control the model accuracy for surface as well as buried waveguides, we measure ion profiles with three independent methods: M-lines, scanning electron microscopy, and near-field refractometry. When applied to Ag+-Na+ exchange in silicate glass, the model yields theoretical estimations in good agreement with experiments. This approach underlines the fundamentally nonlinear process that takes place during ion exchange and is also valuable to properly model singlemode waveguide fabrication.

  4. Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography.

    PubMed

    Wang, Chaozhan; Zhang, Qinming; Cheng, Yan; Wang, Lili

    2010-01-01

    Development of high efficiency and low cost protein refolding methods is a highlighted research focus in biotechnology. Artificial molecular chaperone (AMC) and protein folding liquid chromatography (PFLC) are two attractive refolding methods developed in recent years. In the present work, AMC and one branch of PFLC, ion exchange chromatography (IEC), are integrated to form a new refolding method, artificial molecular chaperone-ion exchange chromatography (AMC-IEC). This new method is applied to the refolding of a widely used model protein, urea-denatured/dithiothreitol-reduced lysozyme. Many factors influencing the refolding of lysozyme, such as urea concentration, beta-cyclodextrin concentration, molar ratio of detergent to protein, mobile phase flow rate, and type of detergent, were investigated, respectively, to optimize the conditions for lysozyme refolding by AMC-IEC. Compared with normal IEC refolding method, the activity recoveries of lysozyme obtained by AMC-IEC were much higher in the investigated range of initial protein concentrations. Moreover, the activity recoveries obtained by using this newly developed refolding method were still quite high for denatured/reduced lysozyme at high initial concentrations. When the initial protein concentration was 200 mg mL(-1), the activity recovery was over 60%. In addition, the lifetime of the chromatographic column during AMC-IEC was much longer than that during protein refolding by normal IEC. Therefore, AMC-IEC is a high efficient and low cost protein refolding method.

  5. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  6. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner.

  7. The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats.

    PubMed

    Amtorp, O; Sorensen, S C

    1974-12-01

    1. The purpose of this study was to study in rats and rabbits the ontogenetic development of the blood-brain barrier to macromolecules and the ontogenetic development of concentration differences between plasma and cerebrospinal fluid for ions which are known to be transported actively across the choroid plexus and the blood-brain barrier.2. By comparing the development of concentration differences for ions with the development of the blood-brain barrier to macromolecules we wanted to evaluate an eventual relationship between the development of these two functions of the blood-brain barrier.3. The concentration of protein in cerebrospinal fluid and plasma was measured in foetal, juvenile and adult rabbits and in new-born, juvenile and adult rats. The concentration of protein was similar in rabbit foetuses at 23 days of gestational age (term at 31 days) and in new-born rats, and the ratio decreases at approximately the same rate in the two species.4. The high concentration of proteins in cerebrospinal fluid might reflect either a high rate of entry of protein into the brain or a low production rate of cerebrospinal fluid. Injection of Diamox(R) (100 mg/kg) 2 hr before sampling of cerebrospinal fluid did not change the concentration of protein in cerebrospinal fluid in new-born rats whereas it increased the concentration in older rats. This finding suggests that new-born rat produces little (if any) cerebrospinal fluid suggesting that the high concentration of protein in cerebrospinal fluid in new-born rats reflect a low rate of turnover of cerebrospinal fluid.5. The concentration of sodium, potassium, chloride and magnesium in plasma and cisternal cerebrospinal fluid was measured in rabbits of different age, from 23 days of gestation until adulthood, and in rats of different ages from birth until adulthood.6. Concentration differences between plasma and cerebrospinal fluid for these were established in the youngest animals examined, indicating that the active

  8. Types and concentrations of metal ions affect local structure and dynamics of RNA

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  9. Complement activation of electrogenic ion transport in isolated rat colon.

    PubMed

    McCole, D F; Otti, B; Newsholme, P; Baird, A W

    1997-11-15

    The complement cascade is an important component in many immune and inflammatory reactions and may contribute to both the diarrhoea and inflammation associated with inflammatory bowel disease. Isolated rat colonic mucosae were voltage clamped in Ussing chambers. Basolateral addition of zymosan-activated whole human serum (ZAS) induced a rapid onset, transient inward short circuit current (SCC). This response was concentration dependent and was significantly attenuated by pre-heating ZAS at 60 degrees C for 30 min. Depletion of complement from normal human serum with cobra venom factor (CVF) significantly lowered SCC responses. Chloride was the primary charge carrying ion as responses to ZAS were abolished in the presence of the loop diuretic bumetanide. The complement component C3a stimulated ion transport but not to the same extent as whole serum. Exogenous C5 was without effect. The cyclooxygenase inhibitor piroxicam significantly attenuated the response to ZAS. These findings support the possibility that complement activation may contribute to the pathophysiology of secretory diarrhoea since activation of electrogenic chloride secretion converts intestinal epithelia to a state of net fluid secretion.

  10. Effect of uranyl ion concentration on structure and dynamics of aqueous uranyl solution: a molecular dynamics simulation study.

    PubMed

    Chopra, Manish; Choudhury, Niharendu

    2014-12-11

    The effect of uranyl ion concentration on structure and dynamics of aqueous solutions of uranyl ions is investigated by molecular dynamics simulations. In order to get an idea about the effect of concentration of uranyl ions on local structural arrangements of water molecules around the uranyl ion, radial distribution functions of water molecules around the uranyl ion are analyzed for aqueous uranyl solutions of various concentrations. The concentration effect on translational dynamics has also been analyzed by calculating diffusion coefficients of uranyl ion, water, and nitrate ions in solution from their respective mean squared displacements. Mobility of water as well as uranyl ions has been found to decrease with increasing concentration of the uranyl ions. Orientational dynamics of water about different molecular axes of water have also been analyzed and decreasing orientational mobility of water with increasing uranyl concentration has been found. In order to get further insight into origin of slowing down of the translational mobility of water molecules with increasing uranyl ion concentration, two separate effects namely long-range effect of uranyl ions on the dynamics of water molecules beyond the solvation shell and short-range effect involving dynamics of solvation shell water have been analyzed. It is found that long-range effect is responsible for the slowing down of translational dynamics of water molecules in the presence of uranyl ions.

  11. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  12. Major Ion concentrations in the new NEEM ice core in Greenland

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Azuma, K. G.; Hirabayashi, M.; Schmidt, K.; Hansson, M.; Twarloh, B.

    2012-12-01

    The drilling of the new deep ice core in NEEM (77.45°N 51.06°W) was terminated in 2010. Using a continuous flow analysis system (CFA), discrete samples were filled and analyzed for major ion concentrations (Na, K, Mg, Ca, Cl, SO_4 and NO_3) using Ion Chromatography (IC). The samples were measured at Alfred Wegener Institute for Polar and Marine Research (Germany) and National Institute of Polar Research (Japan). Here we present preliminary results of the major Ion concentrations. We found highest variations in concentrations of Calcium and Magnesium which are mainly originating from terrestrial sources with concentrations between 5-10 ppb and 4 ppb during the Holocene compared to 800 ppb and 80 ppb during the LGM. This is in line with measurements of particulate dust concentrations. Sulphate concentrations closely follow DO events and vary between 25 ppb during the Holocene and ~400 ppb during the LGM. Sodium concentrations vary between ~ 8 ppb during the Holocene and up to 100 ppb during the LGM. We discuss influences of changes in the source areas and atmospheric transport intensity on the different time scales.

  13. A study of metal ion adsorption at low suspended-solid concentrations

    USGS Publications Warehouse

    Chang, Cecily C.Y.; Davis, J.A.; Kuwabara, J.S.

    1987-01-01

    A procedure for conducting adsorption studies at low suspended solid concentrations in natural waters (<50 mg l-1) is described. Methodological complications previously associated with such experiments have been overcome. Adsorption of zinc ion onto synthetic colloidal titania (TiO2) was studied as a function of pH, supporting electrolyte (NaCl) concentration (0??1-0??002 m) and particle concentration (2-50 mg l-1). The lack of success of the Davis Leckie site bonding model in describing Zn(II) adsorption emphasizes the need for further studies of adsorption at low suspended-solid concentrations. ?? 1987.

  14. Characterization of cathodoluminescence activated by Mn ions in dolomite

    NASA Astrophysics Data System (ADS)

    Kusano, N.; Nishido, H.; Makio, M.; Ninagawa, K.

    2011-12-01

    Cathodoluminescence (CL), the light emission induced by electron irradiation, has been widely applied in mineralogical and petrological investigations, especially for carbonates. Dolomite usually emits a red CL emission related to an impurity center of divalent Mn, but of which each occupancy in Ca and/or Mg site has not been quantitatively estimated. In this study, we have characterized an emission center of CL and developed a method to evaluate site occupancy of Mn ions in dolomite lattice. Three dolomite samples from Hase, Japan (D-06), Binntal, Swiss (D-17) and Blackrock, USA (D-26) were selected for CL measurements after carbon-coating on their polished surfaces. These samples contain Mn ions as an activator, but too low for divalent Fe as a quencher. SEM-CL analysis was conducted using an SEM (JEOL: JSM-5410) combined with a grating monochromator (Oxford: Mono CL2) to measure CL spectra ranging from 300 to 800 nm in 1 nm steps with a temperature controlled stage from -190 to 45 degree C. The dispersed CL was collected by a photoncounting method using a photomultiplier tube (Hamamatsu: R2228) and converted to digital data. All CL spectra were corrected for the total instrumental response. All samples exhibit a broad band in red region between 580 and 640 nm at room temperature, but having a complicated shape overlapped with several bands. It suggests that Mn ions as an activator can be located at deferent sites with deferent occupancies in dolomite lattice. Therefore, a Gaussian fit was conducted to quantitatively deconvolute the emission band in an energy unit. CL of D-06 and D-26 consists of two emission components at around 1.84 and 2.15 eV. The former corresponds to an emission center of impurity Mn ions substituted for Mg site, and the latter to an emission center of divalent Mn for Ca site, resulting in deferent crystal fields. If the concentration of Mn in dolomite is not so high (above 10000 ppm) to cause quenching effect, the intensity might be

  15. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate.

    PubMed

    Liu, C S; Shih, K; Sun, C X; Wang, F

    2012-02-01

    The process of in situ chemical oxidation (ISCO) by persulfate (S(2)O(8)(2-)) can be accelerated by metal ion activation, which more effectively degrades subsurface pollutants by enhancing sulfate radical (SO(4)(-)) generation. This study compared the results of propachlor degradation by Cu(2+) and Fe(2+) activated persulfate and revealed differing degradation kinetics and mechanisms between the two types of activation system. The activation of persulfate by Fe(2+) ions generally resulted in rapid degradation in the early stage, but was accompanied by a dramatic decrease in efficiency due to the rapid depletion of Fe(2+) by the sulfate radicals generated. In contrast, the Cu(2+) activated persulfate had a longer lasting degradation effect and a proportionally greater degradation enhancement at elevated Cu(2+) concentrations. An optimal Fe(2+) concentration should be sought to activate the persulfate, as a high Fe(2+) concentration of 2.5mM or above, as was used in this study, may inhibit propachlor degradation due to the competitive consumption of sulfate radicals by the excess Fe(2+) ions. Higher temperatures (55°C compared with 30°C) resulted in enhanced metal activation, particularly with the Cu(2+) activated system. Furthermore, acidic conditions were found to be more favorable for propachlor degradation by metal activated persulfate. The ecotoxicity of degraded propachlor samples, which was indicated by average well color development (AWCD) for its microbial community activity, was confirmed to be decreased during the degradation processes with these two ions activated persulfate.

  16. Light ion concentrations and fluxes in the polar regions during magnetically quiet times

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Dodson, W. H.

    1980-01-01

    Ion concentrations, flow velocities, and fluxes, measured by the ion mass spectrometer on the Isis 2 satellite for periods around the solstices and equinoxes of 1971 and 1972, have been used in a study of the polar wind morphology during magnetically quiet times. The results confirm the major tenets of polar wind theories; namely, that an upward flow of both H(+) and He(+) ions exists at all times over the entire polar region; H(+) fluxes are of the order of 10 to the 8th ions/sq cm s in both summer and winter polar regions. O(+) is the dominant ion specie at 1400-km altitude in regions of strong H(+) flows, and H(+) is depleted over the entire region where the polar wind flows. H(+) fluxes tend to be lower in winter than in summer, whereas He(+) fluxes are a factor of 10 higher in winter and tend to follow the neutral helium concentration near the F2 maximum. The latter agree well with model calculations of flux in the winter but lie above the model values by a factor of 2 in the summer. H(+) fluxes also agree well with ion flow models.

  17. Light ion concentrations and fluxes in the polar regions during magnetically quiet times

    SciTech Connect

    Hoffman, J.H.; Dodson, W.H.

    1980-02-01

    Ion concentrations, flow velocities, and fluxes, measured by the ion mass spectrometer on the Isis 2 satellite for periods around the solstices and equinoxes of 1971 and 1972, have been used in a study of the polar wind morphology during magnetically quiet times. The results confirm the major tenets of polar wind theories; namely, that an upward flow of both H/sup +/ and He/sup +/ ions exists at all times over the entire polar region; H/sup +/ fluxes are of the order of 10/sup 8/ ions/cm/sup 2/ s in both summer and winter polar regions. O/sup +/ is the dominant ion specie at 1400-km altitude in regions of strong H/sup +/ flows, and H/sup +/ is depleted over the entire region where the polar wind flows. H/sup +/ fluxes tend to be lower in winter than in summer, whereas He/sup +/ fluxes are a factor of 10 higher in winter and tend to follow the neutral helium concentration near the F/sub 2/ maximum. The latter agree well with model calculations of flux in the winter but lie above the model values by a factor of 2 in the summer. H/sup +/ fluxes also agree well with ion flow models.

  18. Variations of ion concentrations in the deep ice core and surface snow at NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Goto-Azuma, K.; Wegner, A.; Hansson, M.; Hirabayashi, M.; Kuramoto, T.; Miyake, T.; Motoyama, H.; NEEM Aerosol Consortium members

    2012-04-01

    Discrete samples were collected from the CFA (Continuous Flow Analysis) melt fractions during the field campaign carried out at NEEM, Greenland in 2009-2011, and were distributed to different laboratories. Ionic species were analyzed at National Institute of Polar Research (Japan) and Alfred Wegener Institute for Polar and Marine Research (Germany). Here we present and compare the ion concentration data obtained by both institutes. Most of the ions show good agreement between the two institutes. As is indicated with the CFA data (Bigler and the NEEM Aerosol Consortium members, EGU 2012), ion chromatograph data also display that calcium and sodium, mainly originated from terrestrial dust and sea-salt, respectively, show large variations associated with Dansgaard-Oeschger (DO) events. Chloride, fluoride, sulfate, sodium, potassium and magnesium also show such variations, as has been already reported for other Greenland ice cores. New ion data obtained from the NEEM deep core also show large variability of oxalate and phosphate concentrations during DO events. Acetate, which is thought to be mainly derived from biomass burning, as is oxalate, appears to show variability associated with DO events, but to a lesser extent. On the other hand, nitrate, ammonium and methanesulfonate do not show such variations. Together with ion data from the deep ice core, we present those from the pits dug during the NEEM field campaign to discuss seasonal variations of ionic species. The seasonal and millennial scale variations of ions are thought to be caused by changes in atmospheric circulation and source strength.

  19. Recent Activities at the ORNL Multicharged Ion Research Facility (MIRF)

    SciTech Connect

    Meyer, Fred W; Bannister, Mark E; Hale, Jerry W; Havener, C C; Krause, Herbert F; Vane, C Randy; Deng, Shihu; Draganic, Ilija N; Harris, Peter R.

    2011-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion-surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: M can now refer to either Multicharged or Molecular.

  20. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: experimental adsorption kinetics analysis.

    PubMed

    Sun, Bin; Hao, Xiao-Gang; Wang, Zhong-De; Guan, Guo-Qing; Zhang, Zhong-Lin; Li, Yi-Bin; Liu, Shi-Bin

    2012-09-30

    A series of experiments were performed to evaluate the continuous separation of cesium based on an electrochemically switched ion exchange (ESIX) process using a diaphragm-isolated reactor with two identical nickel hexacyanoferrate/porous three-dimensional carbon felt (NiHCF/PTCF) electrodes as working electrodes. The effects of applied potential, initial concentrations and pH values of the simulation solutions on the adsorption of cesium ion were investigated. The adsorption rate of cesium ion in the ESIX process was fitted by a pseudo-first-order reaction model. The experiments revealed that the introduction of applied potential on the electrodes greatly enhanced the adsorption/desorption rate of Cs(+) and increased the separation efficiency. H(3)O(+) was found to play a dual role of electrolyte and competitor, and the adsorption rate constant showed a curve diversification with an increase in pH value. Also, it was found that the electrochemically switched adsorption process of Cs(+) by NiHCF/PTCF electrodes proceeded in two main steps, i.e., an ESIX step with a fast adsorption rate and an ion diffusion step with a slow diffusion rate. Meanwhile, the NiHCF/PTCF film electrode showed adsorption selectivity for Cs(+) in preference to Na(+).

  1. Fructose-induced increase in intracellular free Mg2+ ion concentration in rat hepatocytes: relation with the enzymes of glycogen metabolism.

    PubMed Central

    Gaussin, V; Gailly, P; Gillis, J M; Hue, L

    1997-01-01

    In rat hepatocytes subjected to a fructose load, ATP content decreased from 3.8 to 2.6 micromol/g of cells. Under these conditions, the intracellular free Mg2+ ion concentration,as measured with mag-fura 2, increased from 0.25 to 0.43 micromol/g of cells and 0.35 micromol of Mg2+ ions were released per g of cells in the extracellular medium. Therefore the increase in the intracellular free Mg2+ ion concentration was less than expected from the decrease in ATP, indicating that approx. 80% of the Mg2+ ions released from MgATP2- were buffered inside the cells. When this buffer capacity was challenged with an extra Mg2+ ion load by blocking the fructose-induced Mg2+ efflux, again approx. 80% of the extra Mg2+ ion load was buffered. The remaining 20% appearing as free Mg2+ions in fructose-treated hepatocytes could act as second messenger for enzymes having a Km for Mg2+ in the millimolar range. Fructose activated glycogen synthase and glycogen phosphorylase, although both the time course and the dose-dependence of activation were different. This was reflected in a stimulation of glycogen synthesis with concentrations of fructose below 5 mM. Indeed, activation of glycogen synthase reached a maximum at 30 min of incubation and was observed with small (5 mM or less) concentrations of fructose, whereas the activation of glycogen phosphorylase was almost immediate (within 5 min) and maximal with large doses of fructose. The fructose-induced activation of glycogen phosphorylase, but not that of glycogen synthase, could be related to an increase in free Mg2+ ion concentration. PMID:9307033

  2. Calculation of multicomponent ionic diffusion from zero to high concentration: II. Inclusion of associated ion species

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Weare, John H.

    1991-01-01

    This paper presents a theoretical model of multicomponent ionic diffusion which is valid to high concentration for systems which show ion association. The development is completely general for species which do not react with the solvent. It is demonstrated that the Onsager phenomenological coefficients for associated ion species can be unambiguously determined only in solutions where the concentration of these species can be independently measured. In all other instances, only combinations of the Onsager coefficients for the bare ions and the ion pairs can be experimentally determined. The results of our formulations are contrasted with those of more simplified models for systems containing Na 2SO 4 and MgSO 4, as well as for multicomponent natural seawater. The differences between our model and simplified models are significant, especially at high concentration. Inconsistencies which may develop with the use of the simplified approaches are demonstrated. Our approach requires considerable data which are not available at temperatures other than 25°C. Therefore, other approaches which are based only on data at infinite dilution are of great interest. We show here that, if chemical potential derivatives are included in the infinite dilution model of Nernst and Hartley which uses only infinite dilution mobilities, the model can be extended to slightly concentrated solutions. This extended Nernst-Hartley model gives good agreement with all of the existing experimental mutual diffusion coefficient data at concentrations below about 0.2 M in the six component system Na-K-Ca-Mg-Cl-SO 4-H 2O. This may be the most reliable way to extend infinite dilution data into more concentrated regions. In the systems we have studied, the inclusion of ion-association species for weakly interacting species does not appear to provide significant improvement over our generalized Nernst-Hartley model.

  3. Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions.

    PubMed

    Wakabayashi, Tokumitsu; Ymamoto, Ayumi; Kazaana, Akira; Nakano, Yuta; Nojiri, Yui; Kashiwazaki, Moeko

    2016-12-01

    Despite the name, rare earth elements are relatively abundant in soil. Therefore, these elements might interact with biosphere during the history of life. In this study, we have examined the effect of rare earth ions on the growth of bacteria, fungi and soil nematode. All rare earth ions, except radioactive promethium that we have not tested, showed antibacterial and antifungal activities comparable to that of copper ions, which is widely used as antibacterial metals in our daily life. Rare earth ions also have nematicidal activities as they strongly perturb the embryonic development of the nematode, Caenorhabditis elegans. Interestingly, the nematicidal activity increased with increasing atomic number of lanthanide ions. Since the rare earth ions did not show high toxicity to the human lymphoblastoid cell line or even stimulate the growth of the cultured cells at 1 mM, it raised the possibility that we can substitute rare earth elements for the antibacterial metals usually used because of their safety.

  4. Doping concentration evaluation using plasma propagation models in plasma immersion ion implantation (PIII) system

    NASA Astrophysics Data System (ADS)

    Gupta, Dushyant; Prasad, B.; George, P. J.

    2004-01-01

    Plasma immersion ion implantation (PIII) is a high dose-rate implantation process technique in the area of semiconductor device fabrication used to fabricate various device structures like shallow junction, silicon on insulators and in the processing of flat panel display materials, trench doping, etc. The basic mechanism of ions source and their acceleration in PIII technique is different from that of the conventional ion-implantation. In this, the target is immersed in a plasma source and the implantation is done by accelerating the ions with a negative pulse bias voltage, applied to the target. The dynamics of ion transport and the implantation is different from line-of-sight implantation. In this paper, the doping of individual ions (Ar, He and N), in a collisionless PIII system is studied analytically when a negative pulse of 10 kV is applied to the target. The net ion doping concentration in one pulse duration has also been computed during the propagation of plasma sheaths.

  5. Collisional activation with random noise in ion trap mass spectrometry.

    PubMed

    McLuckey, S A; Goeringer, D E; Glish, G L

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.

  6. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  7. Minimizing nitrous oxide in biological nutrient removal from municipal wastewater by controlling copper ion concentrations.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang; Chen, Hong; Li, Xiang; Peng, Yongzhen; Wang, Shuying

    2013-02-01

    In this study, nitrous oxide (N(2)O) production during biological nutrient removal (BNR) from municipal wastewater was reported to be remarkably reduced by controlling copper ion (Cu(2+)) concentration. Firstly, it was observed that the addition of Cu(2+) (10-100 μg/L) reduced N(2)O generation by 54.5-73.2 % and improved total nitrogen removal when synthetic wastewater was treated in an anaerobic-aerobic (with low dissolved oxygen) BNR process. Then, the roles of Cu(2+) were investigated. The activities of nitrite and nitrous oxide reductases were increased by Cu(2+) addition, which accelerated the bio-reductions of both nitrite to nitric oxide (NO (2) (-)  → NO) and nitrous oxide to nitrogen gas (N(2)O → N(2)). The quantitative real-time polymerase chain reaction assay indicated that Cu(2+) addition increased the number of N(2)O reducing denitrifiers. Further investigation showed that more polyhydoxyalkanoates were utilized in the Cu(2+)-added system for denitrification. Finally, the feasibility of reducing N(2)O generation by controlling Cu(2+) was examined in two other BNR processes treating real municipal wastewater. As the Cu(2+) in municipal wastewater is usually below 10 μg/L, according to this study, the supplement of influent Cu(2+) to a concentration of 10-100 μg/L is beneficial to reduce N(2)O emission and improve nitrogen removal when sludge concentration in the BNR system is around 3,200 mg/L.

  8. Ion concentrations in seagrass: A comparison of results from field and controlled-environment studies

    NASA Astrophysics Data System (ADS)

    Garrote-Moreno, Aurora; Cambridge, Marion; Sánchez-Lizaso, Jose Luis

    2016-11-01

    Osmoregulation is essential for the survival of seagrasses in marine and hypersaline environments. The aim of this study was to examine ion concentrations of four seagrass species (Posidonia australis, P. sinuosa, Amphibolis antarctica and A. griffithii) after exposure to salinity changes. Plant fragments were placed in a series of aquaria at marine salinity (35) and, after one week of acclimation, exposed for 7 days to salinities between 20 and 70. Cl-, Na+ and total ion concentration increased with salinity in leaf tissue of the four seagrasses species. These results were compared with those of P. australis and A. antarctica samples collected at three locations at Shark Bay, Western Australia where higher salinities occurred, ranging from 46 to 51. Concentrations of K+ and Ca+2 were higher in seagrass tissues from Shark Bay than in those in aquarium trials. Cl-, Na+ and total ions in P. australis and A. antarctica from Shark Bay were lowest at the highest salinity location. The K+/Na+ ratio in the aquarium trials (under ambient conditions) was in the following order: A. antarctica = A. griffithii > P. australis > P. sinuosa and Ca+2/Na+ ratio was: A. antarctica = A. griffithii > P. sinuosa > P. australis. This species order indicates a physiological capacity to tolerate variation in salinity. Furthermore, these ratios were higher in the locality with highest salinity in Shark Bay, indicating acclimation and adaptation of ion concentrations to the salinity regime in the environment.

  9. nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence.

    PubMed

    McNew, Coy P; LeBoeuf, Eugene J

    2016-07-01

    The demonstrated toxicity coupled with inevitable environmental release of nC60 raise serious concerns about its environmental fate and transport, therefore it is crucial to understand how nC60 will interact with subsurface materials including attached phase soil and sediment organic matter (AP-SOM). This study investigated the attachment of nC60 onto a Harpeth humic acid (HHA) coated silica surface under various solution conditions using a quartz crystal microbalance with dissipation monitoring. The HHA coating greatly enhanced nC60 attachment at low ion concentrations while hindering attachment at high ion concentrations in the presence of both mono and divalent cations. At low ion concentrations, the HHA greatly reduced the surface potential of the silica, enhancing nC60 deposition through reduction in the electrostatic repulsion. At high ion concentrations however, the reduced surface potential became less important due to the near zero energy barrier to deposition and therefore non-DLVO forces dominated, induced by compaction of the HHA layer, and leading to hindered attachment. In this manner, observed contributions from the HHA layer were more complex than previously reported and by monitoring surface charge and calculated DLVO interaction energy alongside attachment experiments, this study advances the mechanistic understanding of the variable attachment contributions from the humic acid layer.

  10. Concentration of Methylamine and Ethylamine Salts measured by a particle into liquid sampler and Ion Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Particle-Into-Liquid Sampler (PILS) and ion chromatographs (ICs) were used to detect the concentration of methylamine salts associated with atmospheric particulate matter reactions in a smog chamber. The smog chamber is located at U.C. Riverside’s College of Engineering Center for Environmental Re...

  11. GEOCHEMICAL FACTORS CONTROLLING FREE CU ION CONCENTRATIONS IN RIVER WATER. (R825395)

    EPA Science Inventory

    Abstract

    Copper speciation was determined monthly at seven sites on four rivers in southern New England to understand which geochemical factors control free metal ion concentrations in river water. Samples were conventionally filtered (<0.45 Investigation of concentration of thiocyanate ion in raw cow's milk from China, New Zealand and the Netherlands.

    PubMed

    Yong, Ling; Wang, Yibaina; Yang, Dajin; Liu, Zhaoping; Abernethy, Grant; Li, Jianwen

    2017-01-15

    Thiocyanate ion is a natural component of cow's milk (hereinafter as milk) which may be artificially augmented to activate the lactoperoxidase milk preservation system. This study presents a survey of thiocyanate levels in raw milk and proposes a naturally occurring baseline concentration of thiocyanate in milk, which is the basis for market supervision. 1669 raw milk samples from China, 270 samples from New Zealand and 120 from the Netherlands were collected in the survey. 65% of the samples contained thiocyanate above the detection limit. The average concentration of thiocyanate was 2.11mg/kg (0.10-16.20mg/kg). Differences in the concentrations of thiocyanate were found among three countries, the 12 selected provinces in China, and between summer and winter. The baseline concentration of thiocyanate found in raw cow's milk was statistically calculated and rounded to 9.0mg/kg. Thiocyanate in milk at this level does not present a food safety concern.

  12. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    PubMed

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses.

  13. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron.

    PubMed

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-10-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits.

  14. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  15. Active experiments and single ion motion in the magnetotail

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.; Yates, G. K.

    1983-07-01

    Analytic solutions to the Lorentz equation which indicate that the magnetic field in the plasma sheet focuses selected ions from the plasma sheet boundaries on the neutral sheet are obtained. The kinetic energy of these ions usually exceeds the threshold energy required for the ion tearing mode instability. Two active experiments based on this effect are proposed. Heavy ions injected towards dusk on the plasma sheet boundary would become focused on the neutral sheet and perhaps trigger the ion tearing mode. A boundary perturbation, such as a thermal chemical release, that locally enhances the boundary turbulence level could be introduced, causing sufficient ksq = 1 ions to be focused on the neutral sheet to trigger the ion tearing mode.

  16. Ion density and temperature variations at altitude of 500 km during moderate seismic activity

    NASA Astrophysics Data System (ADS)

    Bardhan, Ananna; Khurana, M. S.; Bahal, B. M.; Aggarwal, Malini; Sharma, D. K.

    2017-02-01

    Ionospheric ions (O+ and H+) and temperature (Ti) as precursory parameters to seismic activity have been analysed from year 1995 till 1998, using SROSS-C2 (average altitude range of ∼500 km) satellite measurements for moderate magnitude earthquakes. The details of seismic events during this period are downloaded from United State Geological Survey (USGS) and National Earthquake Information Centre (NEIC) website. 13 seismic events of moderate magnitude (M = 4-5.5) from 1995 to 1998, using SROSS-C2 satellite measurements have been analysed. During seismic affected period, considerable decrease in the density of heavier ion - O+ and increase in the ion temperature (Ti) is observed during all the selected events. Lighter ion - H+ doesn't show any significant change. Electric field and electromagnetic emissions generated due to seismogenic activity could be the plausible initializing agents responsible for change in ion concentration and temperature values during these events.

  17. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells.

  18. Strong ambipolar-driven ion upflow within the cleft ion fountain during low geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Shen, Yangyang; Knudsen, David J.; Burchill, Johnathan K.; Howarth, Andrew; Yau, Andrew; Redmon, Robert J.; Miles, David M.; Varney, Roger H.; Nicolls, Michael J.

    2016-07-01

    We investigate low-energy (<10 eV) ion upflows (mainly O+) within the cleft ion fountain (CIF) using conjunctions of the Enhanced Polar Outflow Probe (e-POP) satellite, the DMSP F16 satellite, the SuperDARN radar, and the Resolute Bay Incoherent Scatter Radar North (RISR-N). The SEI instrument on board e-POP enables us to derive ion upflow velocities from the 2-D images of ion distribution functions with a frame rate of 100 images per second, and with a velocity resolution of the order of 25 m/s. We identify three cleft ion fountain events with very intense (>1.6 km/s) ion upflow velocities near 1000 km altitude during quiet geomagnetic activity (Kp < 3). Such large ion upflow velocities have been reported previously at or below 1000 km, but only during active periods. Analysis of the core ion distribution images allows us to demonstrate that the ion temperature within the CIF does not rise by more than 0.3 eV relative to background values, which is consistent with RISR-N observations in the F region. The presence of soft electron precipitation seen by DMSP and lack of significant ion heating indicate that the ion upflows we observe near 1000 km altitude are primarily driven by ambipolar electric fields. DC field-aligned currents (FACs) and convection velocity gradients accompany these events. The strongest ion upflows are associated with downward current regions, which is consistent with some (although not all) previously published results. The moderate correlation coefficient (0.51) between upflow velocities and currents implies that FACs serve as indirect energy inputs to the ion upflow process.

  19. Detection of Heavy-metal Ions Based on Evaporative Concentration Using a Super-hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Yanagimachi, Isao; Nashida, Norihiro; Iwasa, Koichiro; Suzuki, Hiroaki

    A concentrator chip which could detect a variety of heavy-metal ions was fabricated. To improve the detection sensitivity, a droplet of a sample solution was concentrated evaporatively using a super-hydrophobic surface formed with polytetrafluoroethylene (PTFE) beads. The system consists of a working electrode at the center, surrounded by an Ag/AgCl reference electrode. Square-wave anodic stripping voltammetry was conducted using concentrator chips with different working electrode materials. A significant increase in peak height was observed as the sensitive area decreased and the volume of the droplet increased. When a 5-μl droplet was used, the detection limit for lead, cadmium, and arsenic ions was 1 ppb.

  1. Effects of lead on Na+, K+-ATPase and hemolymph ion concentrations in the freshwater mussel Elliptio complanata

    USGS Publications Warehouse

    Mosher, Shad; Cope, W. Gregory; Weber, Frank X.; Shea, Damian; Kwak, Thomas J.

    2012-01-01

    Freshwater mussels are an imperiled fauna exposed to a variety of environmental toxicants such as lead (Pb) and studies are urgently needed to assess their health and condition to guide conservation efforts. A 28-day laboratory toxicity test with Pb and adult Eastern elliptio mussels (Elliptio complanata) was conducted to determine uptake kinetics and to assess the toxicological effects of Pb exposure. Test mussels were collected from a relatively uncontaminated reference site and exposed to a water-only control and five concentrations of Pb (as lead nitrate) ranging from 1 to 245 mu g/L in a static renewal test with a water hardness of 42 mg/L. Endpoints included tissue Pb concentrations, hemolymph Pb and ion (Na+, K+, Cl-, Ca2+) concentrations, and Na+, K+-ATPase enzyme activity in gill tissue. Mussels accumulated Pb rapidly, with tissue concentrations increasing at an exposure-dependent rate for the first 2 weeks, but with no significant increase from 2 to 4 weeks. Mussel tissue Pb concentrations ranged from 0.34 to 898 mu g/g dry weight, were strongly related to Pb in test water at every time interval (7, 14, 21, and 28 days), and did not significantly increase after day 14. Hemolymph Pb concentration was variable, dependent on exposure concentration, and showed no appreciable change with time beyond day 7, except for mussels in the greatest exposure concentration (245 mu g/L), which showed a significant reduction in Pb by 28 days, suggesting a threshold for Pb binding or elimination in hemolymph at concentrations near 1000 mu g/g. The Na+, K+-ATPase activity in the gill tissue of mussels was significantly reduced by Pb on day 28 and was highly correlated with tissue Pb concentration (R2 = 0.92; P = 0.013). The Na+, K+-ATPase activity was correlated with reduced hemolymph Na+ concentration at the greatest Pb exposure when enzyme activity was at 30% of controls. Hemolymph Ca2+ concentration increased significantly in mussels from the greatest Pb exposure and may

  2. Flow-activated ion channels in vascular endothelium.

    PubMed

    Gautam, Mamta; Gojova, Andrea; Barakat, Abdul I

    2006-01-01

    The ability of vascular endothelial cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.

  3. Niobium-gallium oxide with a high concentration of Cr3+ ions: Photoluminescence and structural characteristics

    NASA Astrophysics Data System (ADS)

    Costa, G. K. B.; Pedro, S. S.; López, A.; Carvalho, I. C. S.; Cella, N.; Sosman, L. P.

    2016-10-01

    This work presents photoluminescence data for gallium-niobium oxide with chromium ion as an impurity. The samples were obtained by the solid-state method (SSM) and the wet-chemical method (WCM) and investigated by X-ray diffraction, photoluminescence, excitation, and photoacoustic and X-ray fluorescence. The color of the sample obtained by the SSM was pink, while the color of the sample prepared by the WCM was green. This dramatic difference was associated with Cr3+ concentration and with the neighborhood of the doping ions, obtained from crystallographic data, which is strongly dependent on the preparation method. The difference between the samples was also verified in the photoacoustic and excitation spectra, in which the energy bands were located at different energy levels; on the other hand, in the photoluminescence spectra, no band shift was observed. All spectra were assigned to chromium ions at nonequivalent octahedral sites.

  4. Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Zinner, E.

    1985-01-01

    A new ion probe method for quantitative measurements of the concentrations of all the REE down to the ppm level in 5-20 micron spots is presented. The first application of the method is the determination of REE abundances in meteoritic phosphates. Results are shown to be in good agreement with previous INAA and ion probe determinations. The merrillites in the St. Severin amphoterite are richer in REE than the apatites (the enrichment factors, for various REE, range from 2.3 to 14.2) in contradiction with the results of Ebihara and Honda (1983). Provided good standards for other mineral phases are found or implanted marker ion techniques are used, the method should find a wide range of applications for the study of both terrestrial and extraterrestrial crystals at the microscopic level.

  5. Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance.

    PubMed Central

    Guia, A; Stern, M D; Lakatta, E G; Josephson, I R

    2001-01-01

    Little is known about the native properties of unitary cardiac L-type calcium currents (i(Ca)) measured with physiological calcium (Ca) ion concentration, and their role in excitation-contraction (E-C) coupling. Our goal was to chart the concentration-dependence of unitary conductance (gamma) to physiological Ca concentration and compare it to barium ion (Ba) conductance in the absence of agonists. In isolated, K-depolarized rat myocytes, i(Ca) amplitudes were measured using cell-attached patches with 2 to 70 mM Ca or 2 to 105 mM Ba in the pipette. At 0 mV, 2 mM of Ca produced 0.12 pA, and 2 mM of Ba produced 0.19 pA unitary currents. Unitary conductance was described by a Langmuir isotherm relationship with a maximum gammaCa of 5.3 +/- 0.2 pS (n = 15), and gammaBa of 15 +/- 1 pS (n = 27). The concentration producing half-maximal gamma, Kd(gamma), was not different between Ca (1.7 +/- 0.3 mM) and Ba (1.9 +/- 0.4 mM). We found that quasi-physiological concentrations of Ca produced currents that were as easily resolvable as those obtained with the traditionally used higher concentrations. This study leads to future work on the molecular basis of E-C coupling with a physiological concentration of Ca ions permeating the Ca channel. PMID:11371449

  6. Bromate peak distortion in ion chromatography in samples containing high chloride concentrations.

    PubMed

    Pappoe, Michael K; Naeeni, Mohammad Hosein; Lucy, Charles A

    2016-04-29

    In this study, the effect of column overload of the matrix ion, chloride, on the elution peak profiles of trace bromate is investigated. The resultant peak profiles of chloride and bromate are explained on the basis of competitive Langmuir isotherms. The Thermo IonPac AS9-HC, AS19 and AS23 columns are recommended by the manufacturer for bromate (a carcinogen) analysis. Under trace conditions, these columns provide baseline resolution of bromate from matrix ions such as chloride (Rs=2.9, 3.3 and 3.2, respectively for the three columns). Injection of 10-300 mM chloride with both hydroxide and carbonate eluents resulted in overload on these columns. On the basis of competitive Langmuir isotherms, a deficiency in the local concentration of the more retained eluent in addition to analyte overload leads to fronting of the overloaded analyte peak. The peak asymmetries (B/A10%) for chloride changed from 1.0 (Gaussian) under trace conditions to 0.7 (fronting) at 300 mM Cl(-) for IonPac AS9-HC, 0.9-0.6 for AS19 and 0.8-0.5, for AS23, respectively. The 10mM bromate peak is initially near Gaussian (B/A10%=0.9) but becomes increasingly distorted and pulled back into the chloride peak as the concentration of chloride increased. Increasing the eluent strength reduced the pull-back effect on bromate and fronting in chloride in all cases.

  7. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+).

    PubMed

    Sukumar, Piruthivi; Beech, David J

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca(2+) signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca(2+)-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb(2+)). Intracellular Ca(2+) and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb(2+) stimulated TRPC5 at concentrations greater than 1 microM. Control cells without TRPC5 showed little or no response to Pb(2+) and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 microM Pb(2+). The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb(2+) but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb(2+) is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  8. Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions

    DOEpatents

    Ehlers, K.W.; Leung, K.N.

    1983-07-26

    One principal object of the present invention is to provide a novel method and apparatus for generating a high concentration of H/sub 2//sup +/ or D/sub 2//sup +/ ions by using a new and improved multicusp ion source. The basic principle in achieving a high percentage of H/sub 2//sup +/ or D/sub 2//sup +/ ions is to extract them from the source as soon as they are produced. Otherwise they will react with background gas molecules to form tri-atomic ions H/sub 3//sup +/ or D/sub 3//sup +/ or be dissociated by electrons. The former reaction H/sub 2//sup +/ + H/sub 2/ ..-->.. H/sub 3//sup +/ + H can have a very short mean free path length lambda. Assuming a background neutral gas density of approximately 3.3 x 10/sup 13/ cm/sup -3/ and a cross-section sigma of approximately 6 x 10/sup -15/ cm/sup 2/, lambda = (n/sub 0/ sigma)/sup -1/ is estimated to be about 5 cm. Thus the distance traversed by the H/sub 2//sup +/ ion before it arrives at the extractor electrode cannot exceed this value. This in turn sets a limit on the length of the source chamber.

  9. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  10. Change of pH and Iron Ion Concentration During Photodegradation of TCE with Ferrioxalate/UVvis Process

    NASA Astrophysics Data System (ADS)

    Hareyama, Wataru; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi; Nakazawa, Hiroshi

    2006-05-01

    Recently, some studies show various organic compounds such as pesticides and dyes degraded with the irradiation of ultraviolet light and visible light in the presence of oxalic acid and ferric ion (ferrioxalate/UVvis process). The process has much advance than other technologies because it can utilize the wavelength of 300˜450nm and also under the condition of neutral pH. Chlorinated organic compounds such as trichloroethene (TCE), which have caused ground water pollution on a lot of sites, have never been applied by photodegradation with this process. In this study, we showed the degradation of TCE in the presence of oxalic acid and iron ion and the change of pH, ferric and ferrous ion concentration during the photodegradation of TCE with ferrioxalate/UV-vis process. TCE was degraded in the presence of oxalic acid and iron ion. In the reactions, the equilibrium of oxalate ion and iron ion is important since it determines the amount of ferrioxalate complex which absorbs light and induces the reactions of the degradation of TCE. Thus, the pH value and iron ion concentration are the important factors which determine the amount of ferrioxalate complex. The pH is nearly constant during the photodegradation of TCE. The ferrous ion concentration was decreased as soon as beginning photodegradation of TCE, and then the ferrous ion concentration and ferric ion concentration became constant.

  11. Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridings, Christiaan; Andersson, Gunther G.

    2010-11-01

    Equipment is developed to measure the concentration depth profiles in foam films with the vacuum based technique neutral impact collision ion scattering spectroscopy. Thin foam films have not previously been investigated using vacuum based techniques, hence specialized methods and equipment have been developed for generating and equilibrating of foam films under vacuum. A specialized film holder has been developed that encloses the foam film in a pressure cell. The pressure cell is air-tight except for apertures that allow for the entrance and exit of the ion beam to facilitate the analysis with the ion scattering technique. The cell is supplied with a reservoir of solvent which evaporates upon evacuating the main chamber. This causes the cell to be maintained at the vapor pressure of the solvent, thus minimizing further evaporation from the films. In order to investigate the effect of varying the pressure over the films, a hydrostatic pressure is applied to the foam films. Concentration depth profiles of the elements in a thin foam film made from a solution of glycerol and the cationic surfactant hexadecyltrimethylammonium bromide (C16TAB) were measured. The measured concentration depth profiles are used to compare the charge distribution in foam films with the charge distribution at the surface of a bulk solution. A greater charge separation was observed at the films' surface compared to the bulk surface, which implies a greater electrostatic force contribution to the stabilization of thin foam films.

  12. Spectroscopic Analysis of Ion Concentration Profile at Electrode/Electrolyte Interface by Interferometry

    NASA Astrophysics Data System (ADS)

    Moore, David; Saraf, Ravi

    2014-03-01

    Owing to the difference in Fermi levels at an electrode/electrolyte interface, ions form an electrical double layer (EDL) with ion concentrations well over 10-fold compared to bulk. The concentration profile of the EDL intrinsically affects the electrochemical reaction rates at the electrode, which is of great significance in many applications, such as batteries and biosensors. Conventionally, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the electrical properties of the EDL are represented as ``equivalent circuits'' consisting of the resistance to charge transfer (Rct), the double layer capacitance (Cdl) and a ``Warburg (constant phase) diffusion element'' that represents the long range diffusion of ions to the electrode. The translation to the well-understood physical structure can be lost as complicated effects are often lumped together. For example, the effect of subtle modification of the electrode surface by say, redox compounds, enzymes, or polymers is not directly measured, and must be inferred by capacitance changes. An interferometer method will be described to directly measure changes in concentration at the interface during redox process. This method in concert with CV or EIS performed concomitantly will lead to more information to model the diffuse layer for improved understanding of the kinetics of the reaction at different distances from the electrode. Applications to DNA and polymer adsorption binding will be discussed.

  13. Enhancing the catalytic activity of hydronium ions through constrained environments

    NASA Astrophysics Data System (ADS)

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-03-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ-H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces.

  14. Enhancing the catalytic activity of hydronium ions through constrained environments

    PubMed Central

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-01-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ–H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces. PMID:28252021

  15. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  16. Hopping rates and concentrations of mobile fluoride ions in Pb1-xSnxF2 solid solutions

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2007-09-01

    In the present paper, the ion dynamics and relaxation of fluoride ions in Pb1-xSnxF2 (with x =0.2-0.6) solid solutions, prepared by mechanochemical milling, are studied in the conductivity formalism over wide ranges of frequencies and temperatures. The conductivity spectra of the investigated materials are analyzed by the Almond-West (AW) power-law model. The estimated values of the hopping rates and the dc conductivity of different compositions are thermally activated with almost the same activation energy. The calculated values of the concentration of mobile ions, nc, are almost independent of temperature and composition for x =0.2-0.4. The maximum value of nc is obtained for the x =0.6 sample, although it does not show the maximum conductivity. Therefore, the composition dependence of the ionic conductivity of these solid solutions could be explained based on the extracted parameters. The results presented in the current work indicate that the AW model represents a reasonable approximation of the overall frequency-dependent conductivity behavior of the investigated materials. The conductivity spectra at different temperatures for each composition are successfully scaled to a single master curve, indicating a temperature-independent relaxation mechanism. For different compositions, however, the conductivity spectra cannot be scaled properly, indicating composition-dependent relaxation dynamics.

  17. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    PubMed

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  18. Complex Spontaneous Flows and Concentration Banding in Active Polar Films

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; Marchetti, M. Cristina; Liverpool, Tanniemola B.

    2008-11-01

    We study the dynamical properties of active polar liquid crystalline films. Like active nematic films, active polar films undergo a dynamical transition to spontaneously flowing steady states. Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or “banding” not seen in nematics. In addition, a spectacular property unique to polar active films is their ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows become increasingly complicated for strong polarity.

  19. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  20. Estimation of free copper ion concentrations in blood serum using T1 relaxation rates

    NASA Astrophysics Data System (ADS)

    Blicharska, Barbara; Witek, Magdalena; Fornal, Maria; MacKay, Alex L.

    2008-09-01

    The water proton relaxation rate constant R1 = 1/ T1 (at 60 MHz) of blood serum is substantially increased by the presence of free Cu 2+ ions at concentrations above normal physiological levels. Addition of chelating agents to serum containing paramagnetic Cu 2+ nulls this effect. This was demonstrated by looking at the effect of adding a chelating agent—D-penicillamine (D-PEN) to CuSO 4 and CuCl 2 aqueous solutions as well as to rabbit blood serum. We propose that the measurement of water proton spin-lattice relaxation rate constants before and after chelation may be used as an alternative approach for monitoring the presence of free copper ions in blood serum. This method may be used in the diagnosis of some diseases (leukaemia, liver diseases and particularly Wilson's disease) because, in contrast to conventional methods like spectrophotometry which records the total number of both bound and free ions, the proton relaxation technique is sensitive solely to free paramagnetic ions dissolved in blood serum. The change in R1 upon chelation was found to be less than 0.06 s -1 for serum from healthy subjects but greater than 0.06 s -1 for serum from untreated Wilson's patients.

  1. Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames

    NASA Astrophysics Data System (ADS)

    Cancian, J.; Bennett, B. A. V.; Colket, M. B.; Smooke, M. D.

    2013-04-01

    Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative-recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.

  2. Block of sodium channels by internal mono- and divalent guanidinium analogues. Modulation by sodium ion concentration.

    PubMed Central

    Danko, M; Smith-Maxwell, C; McKinney, L; Begenisich, T

    1986-01-01

    We have investigated the block of squid axon sodium channels by mono- and divalent guanidinium analogues. The action of these compounds on steady state sodium currents was independent of the presence or absence of the normal inactivation process. Block by both mono- and divalent analogues was voltage-dependent, but was a steeper function of potential for divalent molecules. The voltage-dependence could not, in general, be reproduced by a simple model based on Boltzmann's equation. Inhibition of steady state currents by guanidinium ions with 50 mM internal sodium was reasonably well described by a 1:1 drug/channel binding function. Increasing the internal sodium ion concentration increased both the degree and voltage-dependence of current inhibition. This is in sharp contrast to the decrease in inactivation caused by internal sodium. Changes in the external sodium concentration had very little effect on drug block. These results are consistent with a model of the sodium channel as a multi-ion pore. Only a small increase in block can be produced by increased internal sodium in a three-barrier two-site model, but a four-barrier three-site model can reproduce these experimental findings. The implications of these results for physical models of inactivation are discussed. PMID:2420382

  3. Analysis of drifting electron concentration in a self-magnetically insulated ion diode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Pak, V. G.

    2015-02-01

    The drifting electron concentration in a self-magnetically insulated ion diode is analyzed using a TEMP-4M accelerator operating in a double bipolar pulse regime with the first pulse (300-600 ns and 150-200 kV) being negative and the second (120 ns and 250-300 kV) being positive. The electron concentration in the drift region is shown to be 1013-1014 cm-3. It is established that the Lorentz force acting on electrons in crossed electric and magnetic fields is 150-200 times greater than the Coulomb repulsion force, which ensures a higher electron concentration in the drift region as compared with the space charge region.

  4. A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2014-10-01

    Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (Papp) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (LogP=3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies.

  5. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-01

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  6. Active transport, ion movements, and pH changes : I. The chemistry of pH changes.

    PubMed

    Good, N E

    1988-10-01

    The transport of substances across cell membranes may be the most fundamental activity of living things. When the substance transported is any ion there can be a change in the concentration of hydrogen ions on the two sides of the membrane. These hydrogen ion concentration changes are not caused by fluxes of hydrogen ions although fluxes of hydrogen ions may sometimes be involved. The reason for the apparent contradiction is quite simple. All aqueous systems are subject to two constraints: (1) to maintain the charge balance, the sum of the cationic charges must equal the sum of the anionic charges and (2) the product of the molar concentration of H(+) and the molar concentration of OH(-), established and maintained by the association and the dissociation of water, remains always at 10(-14). As a consequence the concentrations of H(+) and OH(-) are determined uniquely by differences between the concentrations of the other cations and anions, with [H(+)] and [OH(-)] being dependent variables. Hydrogen ions and hydroxyl ions can be produced or consumed in local reactions whereas any strong ions such as Cl(-), Mg(2+), or K(+) can be neither produced nor consumed in biological reactions. Further consequences of these truisms are outlined here in terms of the chemistry of the kinds of reactions which can lead to pH changes.

  7. A semi-synthetic ion channel platform for detection of phosphatase and protease activity.

    PubMed

    Macrae, Michael X; Blake, Steven; Jiang, Xiayun; Capone, Ricardo; Estes, Daniel J; Mayer, Michael; Yang, Jerry

    2009-11-24

    Sensitive methods to probe the activity of enzymes are important for clinical assays and for elucidating the role of these proteins in complex biochemical networks. This paper describes a semi-synthetic ion channel platform for detecting the activity of two different classes of enzymes with high sensitivity. In the first case, this method uses single ion channel conductance measurements to follow the enzyme-catalyzed hydrolysis of a phosphate group attached to the C-terminus of gramicidin A (gA, an ion channel-forming peptide) in the presence of alkaline phosphatase (AP). Enzymatic hydrolysis of this phosphate group removes negative charges from the entrance of the gA pore, resulting in a product with measurably reduced single ion channel conductance compared to the original gA-phosphate substrate. This technique employs a standard, commercial bilayer setup and takes advantage of the catalytic turnover of enzymes and the amplification characteristics of ion flux through individual gA pores to detect picomolar concentrations of active AP in solution. Furthermore, this technique makes it possible to study the kinetics of an enzyme and provides an estimate for the observed rate constant (k(cat)) and the Michaelis constant (K(M)) by following the conversion of the gA-phosphate substrate to product over time in the presence of different concentrations of AP. In the second case, modification of gA with a substrate for proteolytic cleavage by anthrax lethal factor (LF) afforded a sensitive method for detection of LF activity, illustrating the utility of ion channel-based sensing for detection of a potential biowarfare agent. This ion channel-based platform represents a powerful, novel approach to monitor the activity of femtomoles to picomoles of two different classes of enzymes in solution. Furthermore, this platform has the potential for realizing miniaturized, cost-effective bioanalytical assays that complement currently established assays.

  8. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  9. Activating molecules, ions, and solid particles with acoustic cavitation.

    PubMed

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I

    2014-04-11

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects.

  10. An estimation of safe concentrations of fluoride ion for rainbow trout and brown trout

    SciTech Connect

    Camargo, J.A.

    1995-12-31

    Safe concentrations of fluoride ion (F-) for two trout species, Oncorhynchus mykiss Walbaum and Salmo trutta L., were estimated from short-term toxicity bioassays (maximum exposure time of 192 hours) using the multifactor probit analysis (MPA) software on lethal data. The MPA software solves the concentration-time-response equation simultaneously via the iterative reweighed least squares technique (multiple linear regression). A safe concentration (SC) refers to the concentration of toxic substance that can exist in a laboratory environment for an extended exposure time (infinite hours) causing mortality at 0.01% population of test species. Toxicity bioassays were conducted in soft water (average hardness value of 21.8 mg CaCO{sub 3}/L). Test fluoride solutions were made from sodium fluoride (NaF). There was a differential response to fluoride toxicity between test species, O. mykiss appearing to be a more sensitive species. SC values (mg F-/L) and their 95% confidence limits were 5.14 (3.10--7.53) for O. mykiss and 7.49 (4.42--10.96) for S. trutta. These SCs are higher than safe concentrations proposed for freshwater invertebrates. It is concluded that the combination of acute toxicity testing and MPA software may be a valuable methodology in environmental toxicology to estimate accurate safe concentrations of chemical compounds for aquatic organisms. However, this methodology should not be viewed as a perfect alternative to chronic toxicity testing.

  11. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    PubMed

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density.

  12. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  13. Determination of certain trace impurities in uranium concentrates by activation analysis.

    PubMed

    Abdel-Rassoul, A A; Wahba, S S; Abdel-Aziz, A

    1966-03-01

    A method is presented for the simultaneous determination of chromium, iron, cobalt and zinc in samples of uranium concentrates, oxides and metallic uranium by neutron-activation analysis. The method involves adequate decontamination of gross fission product activities by adsorption on silica gel, removal of uranium by solvent extraction, separation of most carrier-free rare-earth activities by coprecipitation with aluminium chloride, and, finally, fractional separation of the elements concerned by ion-exchange chromatography. The method can assay ppm of such elements in limited quantities of samples by scintillation gamma-ray spectrometric analysis with a reproducibility of 10-15%.

  14. Mineral dust and major ion concentrations in snowpit samples from the NEEM site, Greenland

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Ho; Hwang, Heejin; Hong, Sang Bum; Hur, Soon Do; Choi, Sung-Deuk; Lee, Jeonghoon; Hong, Sungmin

    2015-11-01

    Polar ice sheets conserve atmospheric aerosols at the time of snowfall, which can be used to reconstruct past climate and environmental conditions. We investigated mineral dust and major ion records in snowpit samples obtained from the northwestern Greenland ice sheet near the North Greenland Eemian Ice Drilling (NEEM) camp in June 2009. We analyzed the samples for mineral dust concentrations as well as stable water isotopes (δ18O, δD, and deuterium excess) and major ions (Cl-, SO42-, methanesulfonic acid (MSA), Na+, and Ca2+). Seasonal δ18O and δD cycles indicate that the snowpit samples covered a six-year period from spring 2003 to early summer 2009. Concentrations of mineral dust, nss-Ca2+, and nss-SO42- showed seasonal deposition events with maxima in the winter-spring layers. On the other hand, the Cl-/Na+ ratio and the concentrations of MSA exhibited maxima in the summer layers, making them useful indicators for the summer season. Moreover, an anomalous atmospheric mineral dust event was recorded at a depth of 165-170 cm corresponding to late winter 2005 to spring 2006. A back trajectory analysis suggests that a major contributor to the Greenland aerosol was an air mass passing over the Canadian Arctic and North America. Several trajectories point to Asian regions as a dust source. The mineral dust deposited at NEEM was strongly influenced by long-range atmospheric transport and dust input from arid source areas in northern China and Mongolia.

  15. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  16. Synthesis of novel ion-imprinted polymeric nanoparticles based on dibenzo-21-crown-7 for the selective pre-concentration and recognition of rubidium ions.

    PubMed

    Hashemi, Beshare; Shamsipur, Mojtaba

    2015-12-01

    In this work, we report the first application of ion-imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium-ion-imprinted polymer nanoparticles were prepared using dibenzo-21-crown-7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2'-azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100-200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.

  17. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    SciTech Connect

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  18. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    PubMed Central

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous. PMID:23853528

  19. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism.

    PubMed

    Ferguson, C; Kern, M; Audesirk, G

    2000-06-01

    Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux

  20. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  1. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  2. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The effects of nine metal cations Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water:TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion Mg(2+), Ca(2+), Y(3+) or the water:TEOS mole ratio had no appreaciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  3. [Influence of erbium ion concentration on Judd-Ofelt parameters of Er3+ -doped tellurite glass].

    PubMed

    Zhou, Gang; Dai, Shi-xun; Yu, Chun-lei; Zhang, Jun-jie; Hu, Li-li; Jiang, Zhong-hong

    2006-03-01

    Er3+ -doped tellurite glasses with four different concentrations were fabricated, and the oscillator strength of Er3+ in the tellurite glasses were calculated through the absorption spectra of the glasses. The Judd-Ofelt intensity parameter omega i, spontaneous transition probability A, fluorescence branching ratio beta, and radiative lifetime tau rad of Er3+ were calculated on the basis of Judd-Ofelt theory, and the effect of the erbium ion concentration on the above optical parameters was also discussed. The fluorescence spectra of Er3+: (4)I(13/2)--> (4)I(15/2) transition and the lifetime of Er3+: (4)I(13/2) level of the samples were measured. The stimulated emission cross-section of (4)I(13/2)--> (4)I(15/2) transition of the samples was finally calculated by using McCumber theory. The results show that with the increase in the Er3+ concentration, the oscillator strength and spontaneous transition probability A of Er3+ increase, while the fluorescence branching ratio beta of Er3+ shows little difference. The stimulated emission cross-section of Er3+: (4)I(13/2)--> (4)I(15/2) transition of the samples changes slightly with the increase in the Er3+ concentration. All the fluorescence effective line widths for the four different Er3+ concentration samples are nearly 50 nm.

  4. Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer

    NASA Astrophysics Data System (ADS)

    Cho, Inhee; Kim, Wonseok; Kim, Junsuk; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae

    2016-06-01

    The first experimental and theoretical evidence was provided for the non-negligible role of a diffusio-osmosis in the ion concentration polarization (ICP) layer, which had been reported to be in a high Peclet number regime. Under the assumption that the hydrated shells of cations were stripped out with the amplified electric field inside the ICP layer, its concentration profile possessed a steep concentration gradient at the stripped location. Since the concentration gradient drove a strong diffusio-osmosis, the combination of electro-osmotic and diffusio-osmotic slip velocity had a form of an anomalous nonmonotonic function with both a single- and multiple-cationic solution. A direct measurement of electrolytic concentrations around the layer quantitatively validated our new investigations. This non-negligible diffusio-osmotic contribution in a micro- and nanofluidic platform or porous medium would be essential for clarifying the fundamental insight of nanoscale electrokinetics as well as guiding the engineering of ICP-based electrochemical systems.

  5. Dynamics of micro-vortices induced by ion concentration polarization in electrodialysis

    NASA Astrophysics Data System (ADS)

    de Valenca, Joeri; Wagterveld, R. M.; Lammertink, Rob; Tsai, Peichun Amy; Soft Matter, Fluidics; Interfaces Group, University of Twente Team; Wetsus Team

    2014-11-01

    We experimentally investigate the coupled dynamics of global ion transport and local electroconvective flow of an electrolyte solution close to a charge selective membrane under an electric forcing. At small dc electric currents, due to the membrane permselectivity counterions (cations) transport diffusively through the cation exchange membrane (CEM) whereas the passage of co-ions (anions) is inhibited, thereby forming ion concentration polarization or gradients. At large currents, our simultaneous measurements of voltage drop and flow filed reveal several distinct dynamical regimes. Initially, the electrodialysis system exhibits a linear Ohmic electric resistance and then a rate-limiting regime with a voltage jump. Subsequently, electro-osmotic micro-vortices set in and grow linearly both in size and speed with time. After this linearly growing electroconvective regime, the measured voltage drop levels off around a fixed value. The average vortex size and speed saturate as well, however the individual vortices are unsteady and dynamical. Furthermore, the influence of micro-patterned CEM on the couple dynamics will be presented and discussed.

  6. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    EPA Science Inventory

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  7. Determination of Cu Concentrations in CdTe/CdS Devices by High Mass Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Asher, S. E.; Reedy, R. C.; Dhere, R.; Gessert, t. A.; Young, M. R.

    2000-01-01

    We have used secondary ion mass spectrometry (SIMS) to quantitatively determine the concentration of Cu in CdTe/CdS devices. Empirical standards were fabricated by ion implantation of Cu into single-crystal and polycrystalline CdTe and single-crystal CdS.

  8. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process.

  9. Corona ions from overhead transmission voltage powerlines: effect on direct current electric field and ambient particle concentration levels.

    PubMed

    J-Fatokun, Folasade; Jayaratne, Rohan; Morawska, Lidia; Birtwhistle, David; Rachman, Rihandanu; Mengersen, Kerrie

    2010-01-01

    Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at the comprehensive investigation of corona ions, vertical direct current electric field (dc e-field), ambient aerosol particle charge, and particle number concentration levels in the proximity of some high/subtransmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion, and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels, however, remained relatively constant (10(3) particle cm(-3)), irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity, and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.

  10. Tailored-waveform collisional activation of peptide ion electron transfer survivor ions in cation transmission mode ion/ion reaction experiments.

    PubMed

    Han, Hongling; Londry, Frank A; Erickson, David E; McLuckey, Scott A

    2009-04-01

    Broadband resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 V(p-p), which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument.

  11. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  12. Concentration of ions in selected bottled water samples sold in Malaysia

    NASA Astrophysics Data System (ADS)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  13. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    SciTech Connect

    Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia; Fent, Karl

    2012-03-01

    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.

  14. Study on preparation of Luffa activated carbon and its adsorption of metal ions

    NASA Astrophysics Data System (ADS)

    Zhai, Kuilu; Li, Zichao; Li, Qun

    2017-03-01

    In this paper, loofah was used as raw material and alkali and hydrogen peroxide were used to pre-oxidize. The activated carbon was activated by zinc chloride, and the activated carbon was used to desorb the heavy metal ions nickel and copper. The removal efficiency of heavy metal ions was studied under different conditions. The effects of retinervus Luffae Fructus active carbon adsorption of metal ions on process conditions, including metal ion concentration, reaction temperature, loofah activated carbon types and activated carbon dosage. In the present study, in different strain rate on the loofah sponge material compression tests in a wide range of density from 24 to 64 kg cubic meters. Luffa fibers and followed by carbonization to prepare MCAC KOH activation. MCAC has dense in parallel channels 10 mm in diameter and 4 - 0.3 - 1 mm wall thickness, which is inherited from the native structure of Luffa. Micro and middle holes are formed on the inner surface of the channel wall to form a hierarchical porous structure.

  15. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion

    PubMed Central

    Kato, Souichiro; Goya, Eri; Tanaka, Michiko; Kitagawa, Wataru; Kikuchi, Yoshitomo; Asano, Kozo; Kamagata, Yoichi

    2016-01-01

    Interest in the interaction of microorganisms with cesium ions (Cs+) has arisen, especially in terms of their potent ability for radiocesium bioaccumulation and their important roles in biogeochemical cycling. Although high concentrations of Cs+ display toxic effects on microorganisms, there have been only limited reports for Cs+-tolerant microorganisms. Here we report enrichment and isolation of Cs+-tolerant microorganisms from soil microbiota. Microbial community analysis revealed that bacteria within the phylum Bacteroidetes, especially Flavobacterium spp., dominated in enrichment cultures in the medium supplemented with 50 or 200 mM Cs+, while Gammaproteobacteria was dominant in the control enrichment cultures (in the presence of 50 and 200 mM K+ instead of Cs+). The dominant Flavobacterium sp. was successfully isolated from the enrichment culture and was closely related to Flavobacterium chungbukense with 99.5% identity. Growth experiments clearly demonstrated that the isolate has significantly higher tolerance to Cs+ compared to its close relatives, suggesting the Cs+-tolerance is a specific trait of this strain, but not a universal trait in the genus Flavobacterium. Measurement of intracellular K+ and Cs+ concentrations of the Cs+-tolerant isolate and its close relatives suggested that the ability to maintain low intracellular Cs+ concentration confers the tolerance against high concentrations of external Cs+. PMID:26883718

  16. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.

    PubMed

    Storer, Malina; Dummer, Jack; Lunt, Helen; Scotter, Jenny; McCartin, Fiona; Cook, Julie; Swanney, Maureen; Kendall, Deborah; Logan, Florence; Epton, Michael

    2011-12-01

    Selected ion flow tube-mass spectrometry (SIFT-MS) can measure volatile compounds in breath on-line in real time and has the potential to provide accurate breath tests for a number of inflammatory, infectious and metabolic diseases, including diabetes. Breath concentrations of acetone in type 2 diabetic subjects undertaking a long-term dietary modification programme were studied. Acetone concentrations in the breath of 38 subjects with type 2 diabetes were determined by SIFT-MS. Anthropomorphic measurements, dietary intake and medication use were recorded. Blood was analysed for beta hydroxybutyrate (a ketone body), HbA1c (glycated haemoglobin) and glucose using point-of-care capillary (fingerprick) testing. All subjects were able to undertake breath manoeuvres suitable for analysis. Breath acetone varied between 160 and 862 ppb (median 337 ppb) and was significantly higher in men (median 480 ppb versus 296 ppb, p = 0.01). In this cross-sectional study, no association was observed between breath acetone and either dietary macronutrients or point-of-care capillary blood tests. Breath analysis by SIFT-MS offers a rapid, reproducible and easily performed measurement of acetone concentration in ambulatory patients with type 2 diabetes. The high inter-individual variability in breath acetone concentration may limit its usefulness in cross-sectional studies. Breath acetone may nevertheless be useful for monitoring metabolic changes in longitudinal metabolic studies, in a variety of clinical and research settings.

  17. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion.

    PubMed

    Kato, Souichiro; Goya, Eri; Tanaka, Michiko; Kitagawa, Wataru; Kikuchi, Yoshitomo; Asano, Kozo; Kamagata, Yoichi

    2016-02-17

    Interest in the interaction of microorganisms with cesium ions (Cs(+)) has arisen, especially in terms of their potent ability for radiocesium bioaccumulation and their important roles in biogeochemical cycling. Although high concentrations of Cs(+) display toxic effects on microorganisms, there have been only limited reports for Cs(+)-tolerant microorganisms. Here we report enrichment and isolation of Cs(+)-tolerant microorganisms from soil microbiota. Microbial community analysis revealed that bacteria within the phylum Bacteroidetes, especially Flavobacterium spp., dominated in enrichment cultures in the medium supplemented with 50 or 200 mM Cs(+), while Gammaproteobacteria was dominant in the control enrichment cultures (in the presence of 50 and 200 mM K(+) instead of Cs(+)). The dominant Flavobacterium sp. was successfully isolated from the enrichment culture and was closely related to Flavobacterium chungbukense with 99.5% identity. Growth experiments clearly demonstrated that the isolate has significantly higher tolerance to Cs(+) compared to its close relatives, suggesting the Cs(+)-tolerance is a specific trait of this strain, but not a universal trait in the genus Flavobacterium. Measurement of intracellular K(+) and Cs(+) concentrations of the Cs(+)-tolerant isolate and its close relatives suggested that the ability to maintain low intracellular Cs(+) concentration confers the tolerance against high concentrations of external Cs(+).

  18. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    SciTech Connect

    Mizrahi, L.; Achituv, Y. )

    1989-06-01

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is known that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.

  19. Effect of multi-ions on active flow regulation in plants

    NASA Astrophysics Data System (ADS)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Oh, Hwasuk; Kim, Taejoo; Lee, Sang Joon

    2012-11-01

    Plants have been known to regulate ion-mediated flows actively in xylem vessels. Pits, the porous structures in xylem vessels, are presumed to play a key role in the ion-mediated flow regulation based on dynamic swelling and shrinking of their pectic matrix. However, the autonomous flow regulation in plants has not been elucidated yet and the pectin-swelling hypothesis seems to be simply applied to account for dynamic modulation of xylem conductance. In this study, the effects of multiple ions and their concentration on the water transport in plants were experimentally investigated. In addition, the active regulation mechanism of xylem water flow was also examined with considering the ionic effect.

  20. Athletic Activity and Hormone Concentrations in High School Female Athletes

    PubMed Central

    Wojtys, Edward M.; Jannausch, Mary L.; Kreinbrink, Jennifer L.; Harlow, Siobán D.; Sowers, MaryFran R.

    2015-01-01

    Context: Physical activity may affect the concentrations of circulating endogenous hormones in female athletes. Understanding the relationship between athletic and physical activity and circulating female hormone concentrations is critical. Objective: To test the hypotheses that (1) the estradiol-progesterone profile of high school adolescent girls participating in training, conditioning, and competition would differ from that of physically inactive, age-matched adolescent girls throughout a 3-month period; and (2) athletic training and conditioning would alter body composition (muscle, bone), leading to an increasingly greater lean–body-mass to fat–body-mass ratio with accompanying hormonal changes. Design: Cohort study. Settings: Laboratory and participants' homes. Patients or Other Participants: A total of 106 adolescent girls, ages 14–18 years, who had experienced at least 3 menstrual cycles in their lifetime. Main Outcome Measure(s): Participants were prospectively monitored throughout a 13-week period, with weekly physical activity assessments and 15 urine samples for estrogen, luteinizing hormone, creatinine, and progesterone concentrations. Each girl underwent body-composition measurements before and after the study period. Results: Seventy-four of the 98 girls (76%) who completed the study classified themselves as athletes. Body mass index, body mass, and fat measures remained stable, and 17 teenagers had no complete menstrual cycle during the observation period. Mean concentrations of log(estrogen/creatinine) were slightly greater in nonathletes who had cycles of <24 or >35 days. Mean log(progesterone/creatinine) concentrations in nonathletes were less in the first half and greater in the second half of the cycle, but the differences were not statistically significant. Conclusions: A moderate level of athletic or physical activity did not influence urine concentrations of estrogen, progesterone, or luteinizing hormones. However, none of the

  1. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    NASA Astrophysics Data System (ADS)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  2. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  3. Hydrogen ions control synaptic vesicle ion channel activity in Torpedo electromotor neurones.

    PubMed

    Ahdut-Hacohen, Ronit; Duridanova, Dessislava; Meiri, Halina; Rahamimoff, Rami

    2004-04-15

    During exocytosis the synaptic vesicle fuses with the surface membrane and undergoes a pH jump. When the synaptic vesicle is inside the presynaptic nerve terminal its internal pH is about 5.5 and after fusion, the inside of the vesicle comes in contact with the extracellular medium with a pH of about 7.25. We examined the effect of such pH jump on the opening of the non-specific ion channel in the synaptic vesicle membrane, in the context of the post-fusion hypothesis of transmitter release control. The vesicles were isolated from Torpedo ocellata electromotor neurones. The pH dependence of the opening of the non-specific ion channel was examined using the fused vesicle-attached configuration of the patch clamp technique. The rate of opening depends on both pH and voltage. Increasing the pH from 5.5 to 7.25 activated dramatically the non-specific ion channel of the vesicle membrane. The single channel conductance did not change significantly with the alteration in the pH, and neither did the mean channel open time. These results support the hypothesis that during partial fusion of the vesicle with the surface membrane, ion channels in the vesicle membrane open, admit ions and thus help in the ion exchange process mechanism, leading to the release of the transmitter from the intravesicular ion exchange matrix. This process may have also a pathophysiological significance in conditions of altered pH.

  4. The biological effect of metal ions on the granulation of aerobic granular activated sludge.

    PubMed

    Hao, Wen; Li, Yaochen; Lv, Junping; Chen, Lisha; Zhu, Jianrong

    2016-06-01

    As a special biofilm structure, microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge (AGAS). This experiment was to investigate the biological effect of Ca(2+), Mg(2+), Cu(2+), Fe(2+), Zn(2+), and K(+) which are the most common ions present in biological wastewater treatment systems, on the microbial attachment of AGAS and flocculent activated sludge (FAS), from which AGAS is always derived, in order to provide a new strategy for the rapid cultivation and stability control of AGAS. The result showed that attachment biomass of AGAS was about 300% higher than that of FAS without the addition of metal ions. Different metal ions had different effects on the process of microbial attachment. FAS and AGAS reacted differently to the metal ions as well, and in fact, AGAS was more sensitive to the metal ions. Specifically, Ca(2+), Mg(2+), and K(+) could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations, Cu(2+), Fe(2+), and Zn(2+) were also beneficial to the microbial attachment of FAS at low concentrations, but Cu(2+), Fe(2+), and Zn(2+) greatly inhibited the attachment process of AGAS even at extremely low concentrations. In addition, the acylated homoserine lactone (AHL)-based quorum sensing system, the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions. As all these parameters had close relationships with the microbial attachment process, the microbial attachment may be affected by changes of these parameters.

  5. Increasing Glucose Concentrations Interfere with Estimation of Electrolytes by Indirect Ion Selective Electrode Method.

    PubMed

    Goyal, Bela; Datta, Sudip Kumar; Mir, Altaf A; Ikkurthi, Saidaiah; Prasad, Rajendra; Pal, Arnab

    2016-04-01

    The estimation of electrolytes like sodium (Na(+)), potassium (K(+)) and chloride (Cl(-)) using direct and indirect ion-selective electrodes (ISE) is a routine laboratory practice. Interferents like proteins, triglycerides, drugs etc. are known to affect the results. The present study was designed to look into the effect of increasing glucose concentrations on estimation of Na(+), K(+) and Cl(-) by direct and indirect ISE. Pooled sera was mixed with glucose stock solution (20 g/dL) prepared in normal saline to obtain glucose concentrations ranging from ~100 to ~5000 mg/dL. Na(+), K(+) and Cl(-) levels were estimated by direct and indirect ISE analyzers and results were statistically analysed using ANOVA and Pearson's correlation. Similar experiment was also performed in 24 h urine sample from healthy subjects. Significant difference was observed between Na(+) and Cl(-) measurements by direct and indirect ISE, with indirect ISE values being consistently higher than direct ISE. Besides this, significant difference was observed amongst Na(+) and Cl(-) values from baseline values obtained by indirect ISE at glucose concentrations ≥2486 mg/dL. However, no such difference was observed with direct ISE. Na(+) and Cl(-) estimation by indirect ISE showed significant negative correlation with glucose concentration, more so, above ~2000 mg/dL. K(+), however, showed no significant difference with varying glucose. Similar results were observed in 24 h urine samples with a significant difference observed amongst Na(+) and Cl(-) values at ≥2104 mg/dL glucose. Thus we conclude that high glucose concentrations interfere significantly in estimation of Na(+) and Cl(-) by indirect ISE in serum as well as urine.

  6. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples.

    PubMed

    Roushani, Mahmoud; Beygi, Tahereh Musa; Saedi, Zahra

    2016-01-15

    In this work, a novel Fe(III) ion imprinted polymer as a sorbent for extraction of iron ions from different samples was synthesized. Precipitation of thermal copolymerization was used for preparation of polymeric sorbent. In this technique, methacrylic acid, ethylene glycoldimethacrylate, 2,2'-azobisisobutyronitrile and (DHBPT)2 {(DHBPT)2=3,6-bis (3,5-dimethyl-1-H-pyrzol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine)} were used as monomer, cross-linker, initiator and ligand, respectively, in the presence of Fe(III) ions and ethanol as a porogenic solvent. Moreover, control polymer (NIP) particles were similarly prepared without the Fe(III) ions. XRD, FT-IR, SEM and nitrogen adsorption-desorption techniques have been used to characterization of these prepared polymeric samples. Iron ion imprinted polymer particles, abbreviated as Fe(III)-IIP, were leached with 50 mL of HCl (50% (v/v)). Absorption capacity for ion imprinted polymer was calculated about 40.41 mg·g(-1). Per-concentration of iron ion was investigated as a function of pH, weight of IIP, adsorption and desorption times, and volumes of sample. FAAS technique was used to determination of Fe(III) ion in the foods and waters samples.

  7. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples

    NASA Astrophysics Data System (ADS)

    Roushani, Mahmoud; Beygi, Tahereh Musa; Saedi, Zahra

    2016-01-01

    In this work, a novel Fe(III) ion imprinted polymer as a sorbent for extraction of iron ions from different samples was synthesized. Precipitation of thermal copolymerization was used for preparation of polymeric sorbent. In this technique, methacrylic acid, ethylene glycoldimethacrylate, 2,2‧-azobisisobutyronitrile and (DHBPT)2 {(DHBPT)2 = 3,6-bis (3,5-dimethyl-1-H-pyrzol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine)} were used as monomer, cross-linker, initiator and ligand, respectively, in the presence of Fe(III) ions and ethanol as a porogenic solvent. Moreover, control polymer (NIP) particles were similarly prepared without the Fe(III) ions. XRD, FT-IR, SEM and nitrogen adsorption-desorption techniques have been used to characterization of these prepared polymeric samples. Iron ion imprinted polymer particles, abbreviated as Fe(III)-IIP, were leached with 50 mL of HCl (50% (v/v)). Absorption capacity for ion imprinted polymer was calculated about 40.41 mg·g- 1. Per-concentration of iron ion was investigated as a function of pH, weight of IIP, adsorption and desorption times, and volumes of sample. FAAS technique was used to determination of Fe(III) ion in the foods and waters samples.

  8. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    SciTech Connect

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  9. Ion exchange membrane bioreactor for treating groundwater contaminated with high perchlorate concentrations.

    PubMed

    Fox, Shalom; Oren, Yoram; Ronen, Zeev; Gilron, Jack

    2014-01-15

    Perchlorate contamination of groundwater is a worldwide concern. The most cost efficient treatment for high concentrations is biological treatment. In order to improve and increase the acceptance of this treatment, there is a need to reduce the contact between micro organisms in the treatment unit and the final effluent. An ion exchange membrane bioreactor (IEMB), in which treated water is separated from the bioreactor, was suggested for this purpose. In this study, the IEMB's performance was studied at a concentration as high as 250mgL(-1) that were never studied before. In the bioreactor, glycerol was used as a low cost and nontoxic carbon and energy source for the reduction of perchlorate to chloride. We found that high perchlorate concentrations in the feed rendered the anion exchange membrane significantly less permeable to perchlorate. However, the presence of bacteria in the bio-compartment significantly increased the flux through the membrane by more than 25% in comparison to pure Donnan dialysis. In addition, the results suggested minimal secondary contamination (<3mgCL(-1)) of the treated water with the optimum feed of carbon substrate. Our results show that IEMB can efficiently treat groundwater contaminated with perchlorate as high as 250mgL(-1).

  10. Biodegradation of high concentration phenol containing heavy metal ions by functional biofilm in bioelectro-reactor.

    PubMed

    Li, Xin-gang; Wang, Tao; Sun, Jin-sheng; Huang, Xin; Kong, Xiao-song

    2006-01-01

    Functional microorganisms to high concentration phenol containing Cr6+ and Pb2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr6+ and Pb2+ was observed when changing pH from acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr6+ and Pb2+ dropped to less than 1 mg/L within 12 h and 6 h, from initial values of 50 mg/L and 30 mg/L, respectively.

  11. Ion chromatography of azide in pharmaceutical protein samples with high chloride concentration using suppressed conductivity detection.

    PubMed

    Vinković, Kristinka; Drevenkar, Vlasta

    2008-03-15

    Methods based on reversed-phase liquid chromatography with UV detection of 4-nitrobenzoyl- or 3,5-dinitrobenzoyl azide derivatives lack in accuracy and stability of derivatives to be applied for azide determination in pharmaceutical protein samples with high sodium chloride concentrations. This paper describes a sensitive and selective ion chromatographic method, with simple sample preparation and suppressed conductivity detection, developed for trace determination of azide in protein samples containing sodium chloride in concentrations as high as 11.6 g L(-1). Anion exchange stationary phase with quaternary alkyl amine functional groups and gradient elution with sodium hydroxide enabled good resolution of anions with similar retention times: azide, bromide and nitrate, as well as chloride whose retention time was shorter than azide's. Anions with high affinity to stationary phase (phosphate and citrate) were also eluted within acceptable analysis time of 32 min. The stability of sample solutions and the method selectivity, accuracy, precision and sensitivity satisfied the validation criteria of international organizations competent for pharmaceutical industry. The detection and quantitation limit ranges of sodium azide in protein samples were 0.007-0.02 mg L(-1) and 0.02-0.06 mg L(-1), respectively. Both limits increased with the concentration of sodium chloride.

  12. Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts

    PubMed Central

    Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung

    2017-01-01

    This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P<0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.

  13. Effect of Cytoskeletal Reagents on Stretch Activated Ion Channels

    DTIC Science & Technology

    1992-11-12

    transduction. Biophys J59: 1143-1145, 1991. 23. SACHS, F., W. SIGURDSON, A. RUKNUDIN, AND C. BOWMAN. Single- channel mechanosensitive currents. Science 253: 800... mechanosensitive ion channels . In: Advances in Comparative and Environmental Physiology, v0C, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55-77. Report of Inventions: None 4 ...EFFECT OF CYTOSKELETAL REAGENTS ON STRETCH ACTIVATED ION CHANNELS b lfli..3-f-I’- o0*’t 6. AUTHOR(S) Dr.-Frederick Sachs DI 7. PERFORMING ORGANIZATION NAME

  14. Natural activity concentrations in bottled drinking water and consequent doses.

    PubMed

    Kabadayi, Önder; Gümüs, Hasan

    2012-07-01

    The radioactivity concentrations of nuclides (238)U, (232)Th and (40)K in bottled drinking water from six different manufacturers from Turkey were measured using high-resolution gamma-ray spectrometry. The measurement was done using a coaxial high-purity germanium detector system coupled to Ortec-Dspect jr digital MCA system. The average measured activity concentrations of the nuclides (238)U, (232)Th and (40)K are found to be 0.781, 1.05 and 2.19 Bq l(-1), respectively. The measured activity concentrations have been compared with similar studies from different locations. The annual effective doses for ingestion of radionuclides in the water are found to be 0.0246 mSv for (238)U and 0.169 mSv for (232)Th.

  15. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  16. pH buffers for sea water media based on the total hydrogen ion concentration scale

    NASA Astrophysics Data System (ADS)

    Dickson, Andrew G.

    1993-01-01

    Published e.m.f. values measured using the cell ? where p° = 101.325 kPa, and BH + and B are the conjugate acid-base pairs of 2-aminopyridine, 2-amino-2-hydroxymethyl-1,3-propanediol (tris), tetrahydro-1,4-isoxazine (morpholine), and 2-amino-2-methyl-1, 3-propanediol (bis), have been re-evaluated to assign pH values based on the "total" hydrogen ion concentration scale to equimolal ( m =0.04 mol kg -1) buffer solutions based on these compounds. These pH values are consistent with the best available equilibrium constants for acid-base processes in sea water and such pH buffers can be used as pH calibration standards to measure accurate values for oceanic pH on the "total" hydrogen ion pH scale. In addition, the published e.m.f. results for these various amine bases have been used to calculate their respective acidity constants on this pH scale.

  17. Electron energy distributions, vibrational population distributions, and negative-ion concentrations in hydrogen discharges

    SciTech Connect

    Hiskes, J.R.; Karo, A.M.

    1982-06-28

    We consider the negative ion concentrations in hydrogen discharges caused by electron excitation and dissociative attachment processes. The principal formation and destruction processes are discussed for electron densities in the range 10/sup 8/ to 10/sup 13/ electrons cm/sup -3/. Expressions are developed for calculating the high energy portion of the electron energy distribution in the discharge; using these energy distributions the electron excitation rates are evaluated. At low densities, the vibrational distribution arises from singlet electronic excitations and triplet excitations through the /sup 3/..pi../sub u/ state, in equilibrium with wall de-excitation processes. At high densities singlet excitations predominate in equilibrium with atom-molecule de-excitation processes. Possibilities for negative ion generation in a two-chamber tandem system are discussed in which the vibrational excitation occurs in a high power, high electron temperature discharge, kT/sub e/ = 5 eV, and dissociative attachment occurs in a low temperature kT/sub e/ = 1 eV, plasma chamber.

  18. Stacking of lamellae in Mg/Al hydrotalcites: Effect of metal ion concentrations on morphology

    SciTech Connect

    Panda, H.S.; Srivastava, R.; Bahadur, D.

    2008-06-03

    A hybrid nanocomposite based on the intercalation of carbonate anion has been synthesized through co-precipitation technique. Powder X-ray diffraction patterns (PXRD) showed pure layered double hydroxide (LDH) phases having crystallite size around 20 and 13 nm in 'a' and 'c' crystallographic directions, respectively. Fourier transform infrared and Raman spectroscopy measurements exhibit shifting of bands with increase of divalent metal ion concentration and it further suggests the presence of carbonate anions. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) exhibit the three stages of thermal degradation, which is characteristic behaviour of layered double hydroxide. CHN and energy dispersive X-ray analysis support the PXRD and spectroscopy results. The nature of charge observed through Zeta potential analyzer is positive. Transmission electron microscope (TEM) exhibits the characteristic LDH platelet morphology with the platelets stacked one above the other.

  19. Stabilization of ion concentration polarization layer using micro fin structure for high-throughput applications.

    PubMed

    Kim, Kihong; Kim, Wonseok; Lee, Hyekyung; Kim, Sung Jae

    2017-03-09

    Ion concentration polarization (ICP) has been extensively researched concerning new fundamentals in nanoscale electrokinetics and novel engineering applications. While biomedical and environmental ICP applications have a number of advantages compared to conventional methods, the technique has suffered from the critical limitation of low processing capacity because it has been usually presented in a micro/nanofluidic platform. In this paper, we devised micro fin structures inside a macroscale high-throughput ICP device and successfully demonstrated a stable formation of ICP layer and its performance. Since the fin structures created surface conductive fluidic circumstances and assisted in physically suppressing undesirable electrokinetic vortices generated in this fluidic regime, ICP was stably generated even in this macroscale system. Finally, batch-type droplet ICP preconcentrator and continuous-type ICP separator were introduced as examples for high-throughput millimeter-scale ICP devices using the implanted fin structures.

  20. Increased Chloride Conductance As the Proximate Cause of Hydrogen Ion Concentration Effects in Aplysia Neurons

    PubMed Central

    Brown, A. M.; Walker, J. L.; Sutton, R. B.

    1970-01-01

    A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2–8 mv) and half were depolarized (3–10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 ± 1.8 mM (SEM) and 7 others 40.7 ± 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode. PMID:5475996

  1. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons.

    PubMed

    Brown, A M; Sutton, R B; Walker, J L

    1970-11-01

    A fall in extracellular pH increased membrane conductance of the giant cell in the abdominal ganglion of Aplysia californica. Chloride conductance was trebled whereas potassium conductance was increased by 50%. Half the giant cells were hyperpolarized (2-8 mv) and half were depolarized (3-10 mv) by lowering the pH. The hyperpolarizing response always became a depolarizing response in half-chloride solutions. When internal chloride was increased electrophoretically, the hyperpolarization was either decreased or changed to depolarization. The depolarizing response was reduced or became a hyperpolarizing response after soaking the cell in 10.0 mM chloride, artificial seawater solution for 1 hr. Depolarization was unaffected when either external sodium, calcium, or magnesium was omitted. A glass micropipette having an organic liquid chloride ion exchanger in its tip was used to measure intracellular chloride activity in 14 giant cells; 7 had values of 27.7 +/- 1.8 mM (SEM) and 7 others 40.7 +/- 1.5 mM. Three of the first group were hyperpolarized when pH was lowered and three of the second group were depolarized. In all six cells, these changes of membrane potential were in the direction of the chloride equilibrium potential. Intracellular potassium activity was measured by means of a potassium ion exchanger microelectrode.

  2. Survey of Nitrate Ion Concentrations in Vegetables Cultivated in Plant Factories: Comparison with Open-Culture Vegetables.

    PubMed

    Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo

    2017-01-01

    A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.

  3. The concentration of criminal victimization and patterns of routine activities.

    PubMed

    Kuo, Shih-Ya; Cuvelier, Steven J; Sheu, Chuen-Jim; Zhao, Jihong Solomon

    2012-06-01

    Although many repeat victimization studies have focused on describing the prevalence of the phenomenon, this study attempted to explain variations in the concentration of victimization by applying routine activities as a theoretical model. A multivariate analysis of repeat victimization based on the 2005 Taiwan criminal victimization data supported the general applicability of the routine activity model developed in Western culture for predicting repeat victimization. Findings that diverged from Western patterns included family income to assault, gender to robbery, and marital status, family income, and major activity to larceny incidents. These disparities illustrated the importance of considering the broader sociocultural context in the association between risk predictors and the concentration of criminal victimization. The contradictory results and nonsignificant variance also reflected untapped information on respondents' biological features and psychological tendencies. Future victimization research would do well to integrate measurements that are sensitive to salient sociocultural elements of the society being studied and individuals' biological and psychological traits.

  4. Infrared spectroscopy of aqueous ionic salt mixtures at low concentrations: Ion pairing in water

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2007-09-01

    The analysis by infrared spectroscopy of aqueous mixtures of NaI and CsCl was made in order to obtain information at the molecular level of the mixing of these two salts taken as model systems of strong electrolytes in water. In previous papers [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001) and J.-J. Max et al., ibid. 126, 184507 (2007)] it was reported that a pure salt in water forms pairs of monoions to which are attached a fixed number of water molecules, giving solvated water species. Due to their interaction with the ion pairs, the solvated water molecules are strongly perturbed, modifying the IR water spectrum being monitored. After taking the IR spectrum of pure water, a small volume of NaI 2M was added and the IR spectrum taken. Then a small volume of CsCl 2M was added and a new IR spectrum taken. This procedure was repeated to obtain a series of 38 spectra in the 0.05M-0.83M concentration range. Factor analysis made on the series revealed the presence of three types of water: pure water and two salt solvated waters. The number of solvated water molecules on the two salts taken together is ten. Since NaI and CsCl have, respectively, 3.5 and 3.0 solvated water molecules, it was concluded that a reaction occurred in the solutions forming NaCl and CsI that have, respectively, five water molecules each for a total of ten. The analysis of the spectra of the orthogonal factors supports this attribution. These results provide additional proof of ion pairing in water. Furthermore, comparing the band displacements and intensity variations observed on the solvated water species to that of pure water indicates that the dielectric milieu surrounding the ion pairs is not constant. These results do not support the classical view of Debye-Hückel that considers that the ions are independent and the dielectric milieu constant. The present results give some in situ information on the reaction that goes on in "simple" electrolyte systems whose reactivity and

  5. Infrared spectroscopy of aqueous ionic salt mixtures at low concentrations: ion pairing in water.

    PubMed

    Max, Jean-Joseph; Chapados, Camille

    2007-09-21

    The analysis by infrared spectroscopy of aqueous mixtures of NaI and CsCl was made in order to obtain information at the molecular level of the mixing of these two salts taken as model systems of strong electrolytes in water. In previous papers [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001) and J.-J. Max et al., ibid. 126, 184507 (2007)] it was reported that a pure salt in water forms pairs of monoions to which are attached a fixed number of water molecules, giving solvated water species. Due to their interaction with the ion pairs, the solvated water molecules are strongly perturbed, modifying the IR water spectrum being monitored. After taking the IR spectrum of pure water, a small volume of NaI 2M was added and the IR spectrum taken. Then a small volume of CsCl 2M was added and a new IR spectrum taken. This procedure was repeated to obtain a series of 38 spectra in the 0.05M-0.83M concentration range. Factor analysis made on the series revealed the presence of three types of water: pure water and two salt solvated waters. The number of solvated water molecules on the two salts taken together is ten. Since NaI and CsCl have, respectively, 3.5 and 3.0 solvated water molecules, it was concluded that a reaction occurred in the solutions forming NaCl and CsI that have, respectively, five water molecules each for a total of ten. The analysis of the spectra of the orthogonal factors supports this attribution. These results provide additional proof of ion pairing in water. Furthermore, comparing the band displacements and intensity variations observed on the solvated water species to that of pure water indicates that the dielectric milieu surrounding the ion pairs is not constant. These results do not support the classical view of Debye-Huckel that considers that the ions are independent and the dielectric milieu constant. The present results give some in situ information on the reaction that goes on in "simple" electrolyte systems whose reactivity and

  6. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  7. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  8. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  9. The Influence of Hydrogen Ion Concentration on Calcium Binding and Release by Skeletal Muscle Sarcoplasmic Reticulum

    PubMed Central

    Nakamaru, Yoshiaki; Schwartz, Arnold

    1972-01-01

    Calcium release and binding produced by alterations in pH were investigated in isolated sarcoplasmic reticulum (SR) from skeletal muscle. When the pH was abruptly increased from 6.46 to 7.82, after calcium loading for 30 sec, 80–90 nanomoles (nmole) of calcium/mg protein were released. When the pH was abruptly decreased from 7.56 to 6.46, after calcium loading for 30 sec, 25–30 nmole of calcium/mg protein were rebound. The calcium release process was shown to be a function of pH change: 57 nmole of calcium were released per 1 pH unit change per mg protein. The amount of adenosine triphosphate (ATP) bound to the SR was not altered by the pH changes. The release phenomenon was not due to alteration of ATP concentration by the increased pH. Native actomyosin was combined with SR in order to study the effectiveness of calcium release from the SR by pH change in inducing super-precipitation of actomyosin. It was found that SR, in an amount high enough to inhibit superprecipitation at pH 6.5, did not prevent the process when the pH was suddenly increased to 7.3, indicating that the affinity of SR for calcium depends specifically on pH. These data suggest the possible participation of hydrogen ion concentration in excitation-contraction coupling. PMID:5007263

  10. A portable and high energy efficient desalination/purification system by ion concentration polarization

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jae; Kim, Bumjoo; Kwak, Rhokyun; Kim, Geunbae; Han, Jongyoon

    2012-10-01

    The shortage of fresh water is one of the acute challenges that the world is facing now and, thus, energy efficient desalination strategies can provide substantial answers for the water-crisis. Current desalination methods utilizing reverse-osmosis and electrodialysis mechanisms required high power consumptions/large-scale infrastructures which do not make them appropriate for disaster-stricken area or underdeveloped countries. In addition, groundwater contamination by heavy metal compounds, such as arsenic, cadmium and lead, poses significant public health challenges, especially in developing countries. Existing water purification strategies for heavy metal removal are not readily applicable due to technological, environmental, and economical barriers. This presentation elucidates a novel desalination/purification process, where a continuous contaminated stream is divided into filtered and concentrated stream by the ion concentration polarization. The key distinct feature is that both salts and larger particles (cells, viruses, and microorganisms) are pushed away from the membrane, in continuous flow operations, eliminating the membrane fouling that plagues the membrane filtration methods. The power consumption is less than 5Wh/L, comparable to any existing systems. The energy and removal efficiency, and low cost manufacturability hold strong promises for portable, self-powered water purification/desalination system that can have significant impacts on water shortage in developing/rural part of the world.

  11. 1D Measurement of Sodium Ion Flow in Hydrogel After a Bath Concentration Jump.

    PubMed

    Roos, R W; Pel, L; Huinink, H P; Huyghe, J M

    2015-07-01

    NMR is used to measure sodium flow driven by a 1D concentration gradient inside poly-acrylamid (pAA) hydrogel. A sodium concentration jump from 0.5 M NaCl to 0 M NaCl is applied at the bottom of a cylindrical pAA sample. The sodium level and hydrogen level are measured as a function of time and position inside the sample for 5 days. Then a reversed step is applied, and ion flow is measured for another 5 days. During the measurement, the cylindrical sample is radially confined and allowed to swell in the axial direction. At the same time, sodium and moisture in the sample are measured on a 1D spatial grid in the axial direction. A quadriphasic mixture model (Huyghe and Janssen in Int J Eng Sci 35:793, 1997) is used to simulate the results and estimate the diffusion coefficient of sodium and chloride. The best fit results were obtained for D[Formula: see text] cm(2)/s and D[Formula: see text] cm(2)/s, at 25 degrees centigrade. Different time constants were observed for swelling and deswelling.

  12. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  13. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    PubMed Central

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  14. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    PubMed

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  15. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    PubMed

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.

  16. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions.

    PubMed

    Song, Xianghua; Gunawan, Poernomo; Jiang, Rongrong; Leong, Susanna Su Jan; Wang, Kean; Xu, Rong

    2011-10-30

    We report the synthesis and activation of colloidal carbon nanospheres (CNS) for adsorption of Ag(I) ions from aqueous solutions. CNS (400-500 nm in diameter) was synthesized via simple hydrothermal treatment of glucose solution. The surface of nonporous CNS after being activated by NaOH was enriched with -OH and -COO(-) functional groups. Despite the low surface area (<15m(2)/g), the activated CNS exhibited a high adsorption capacity of 152 mg silver/g. Under batch conditions, all Ag(I) ions can be completely adsorbed in less than 6 min with the initial Ag(I) concentrations lower than 2 ppm. This can be attributed to the minimum mass transfer resistance as Ag(I) ions were all deposited and reduced as Ag(0) nanoparticles on the external surface of CNS. The kinetic data can be well fitted to the pseudo-second-order kinetics model. The adsorbed silver can be easily recovered by dilute acid solutions and the CNS can be reactivated by the same treatment with NaOH solution. The excellent adsorption performance and reusability have also been demonstrated in a continuous mode. The NaOH activated CNS reported here could represent a new type of low-cost and efficient adsorbent nanomaterials for removal of trace Ag(I) ions for drinking water production.

  17. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    SciTech Connect

    Khokhra, Richa; Kumar, Rajesh

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnO nanosheets depends upon the presence of surface oxygen vacancies.

  18. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  19. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  20. Correlations of magnetospheric ion composition with geomagnetic and solar activity

    SciTech Connect

    Young, D.T.; Balsiger, H.; Geiss, J.

    1982-11-01

    A large ion composition data set consisting of 1-month averages has been assembled for the energy per charge range 0.9--15.9 keV/e. It includes 48 months of data taken by the Ion Composition Experiments on the ESA/GEOS 1 and 2 satellites at or near geostationary orbit. Data were obtained during the rising and maximum phases of the current solar cycle from May 1977 through November 1981 inclusive. Five ion species are routinely identifiable: H/sup +/, He/sup + +/, He/sup +/, O/sup + +/, and O/sup +/, above a limiting density approx.10/sup -3/ ions cm/sup -3/. Ion densities exhibit a number of very striking statistical correlations with one another and with both Kp and solar EUV as measured by F/sub 10.7/. One principal result is that increases in the densities of magnetospheric He/sup +/, O/sup + +/, and O/sup +/ are observed that are apparently due entirely to increased solar EUV fluxes associated with the ring phase of the current solar cycle. There is a marked rise in O/sup +/ density by a factor of approx.8 with increasing geomagnetic activity, but no correpsonding increase in either He/sup +/ or O/sup + +/ and only a small increase in H/sup +/. The He/sup + +//H/sup +/ ratio is found to be remarkably constant at roughly-equal0.01. Contrary to ion density results, little or no variation is found in mean energy. These observations are interpreted in terms of the composition and dynamics of two sources of magnetospheric plasma: the solar wind and the high-latitude topside ionosphere.

  1. Detection of lead ions in picomolar concentration range using underpotential deposition on silver nanoparticles-deposited glassy carbon electrodes.

    PubMed

    Sivasubramanian, R; Sangaranarayanan, M V

    2011-09-30

    The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of -0.7 V during the electrodeposition step for a period of 50s. The interference of surfactants in the detection of lead ions is also studied.

  2. Correlation between the limiting pH of metal ion solubility and total metal concentration

    SciTech Connect

    Apak, R.; Hizal, J.; Ustaer, C.

    1999-03-15

    As an alternative to species distribution diagrams (pM vs pH curves in aqueous solution) drawn for a fixed total metal concentration, this work has developed simple linear models for correlating the limiting pH of metal ion solubility -- in equilibrium with the least soluble amorphous metal hydroxide solid phase -- to the total metal concentration. Thus adsorptive metal removal processes in complex systems can be better designed once the limiting pH of heavy metal solubility (i.e., pH{sup *}) in such a complex environment can be envisaged by simple linear equations. pH{sup *} vs pM{sub t} (M{sub t} = total metal concentration that can exist in aqueous solution in equilibrium with M(OH){sub 2(s)}) linear curves for uranyl-hydroxide, uranyl-carbonate-hydroxide, and mercuric-chloride-hydroxide simple and mixed-ligand systems and cupric-carbonate-hydroxide complexes in equilibrium with mixed hydroxide solid phases may enable the experimental chemist to distinguish true adsorption (e.g., onto hydrous oxide sorbents) from bulk precipitation removal of the metal and to interpret some anomalous metal fixation data -- usually attributed to pure adsorption in the literature -- with precipitation if the pM{sub t} at the studied pH is lower than that tolerated by pH{sup *} vs pM{sub t} curves. This easily predictable pH{sup *} corresponding to a given pM{sub t} may aid the design of desorptive mobilization experiments for certain metals as well as their adsorptive removal with the purpose of simulating metal adsorption and desorption cycles in real complex environments with changing groundwater pH.

  3. The influence of thoron on instruments measuring radon activity concentration.

    PubMed

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  4. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  5. Controlling epileptiform activity with organic electronic ion pumps.

    PubMed

    Williamson, Adam; Rivnay, Jonathan; Kergoat, Loïg; Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Ferro, Marc; Ivanov, Anton; Sjöström, Theresia Arbring; Simon, Daniel T; Berggren, Magnus; Malliaras, George G; Bernard, Christophe

    2015-05-27

    In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings.

  6. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels.

    PubMed

    Jensen, Kristian Lund; Kristensen, Jesper Toft; Crumrine, Andrew Michael; Andersen, Mathias Bækbo; Bruus, Henrik; Pennathur, Sumita

    2011-05-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this paper, we show that this surface charge is typically dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. Taking the hydronium ions into account, we model the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall and of the electrolyte bulk, parametrized by the dissociation reaction constants. Experimental data with aqueous KCl solutions in 165-nm-high silica nanochannels are described well by our model, both with and without extra hydronium from added HCl.

  7. Effects of sinusoidal magnetic field observed on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines.

    PubMed

    Huang, Lingzhen; Dong, Liang; Chen, Yantian; Qi, Hanshi; Xiao, Dengming

    2006-01-01

    Low frequency magnetic fields have previously been shown to affect cell functions. In this article, the effects of 20 mT, 50 Hz sinusoidal magnetic field on cell proliferation, ion concentration, and osmolarity in two human cancer cell lines (HL-60 and SK-Hep-1) were investigated. Inhibition of cell growth was observed. On the other hand, the exposure also increased the Na+, K+ ion concentration and osmolarity in cell supernatant compared to the control group. To our knowledge, this is the first study on cancer cells where magnetic fields affect osmolarity in cell supernatant. In addition, a model of cells exposed to the oscillating magnetic field is described as well as the characteristics of ions in and out of cells. The experimental data appears to be consistent with the theoretical analysis. The results are also discussed in terms of the relationships among cell growth, ion concentration, and osmolarity. Magnetic field inhibitions of cell growth in vitro may relate to changes in cell ion concentration and osmolarity.

  8. Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2

    NASA Technical Reports Server (NTRS)

    Semkow, K. W.; Haskin, L. A.

    1985-01-01

    The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.

  9. Ion Heating Anisotropy during Dynamo Activity in the MST RFP

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Chapman, J. T.; Craig, D.; Fiksel, G.; Fontana, P. W.

    1999-11-01

    MHD dynamo activity is large in the MST Reversed-Field Pinch during sawtooth crashes, and small otherwise. During a sawtooth crash, ion temperature increases rapidly to a level several times as high as the temperature between sawteeth, which itself can be larger than the electron temperature. Several theories have been developed to explain this ion heating, some indicating a possible asymmetry in perpendicular to parallel heating [C. G. Gimblett, Europhys. Lett. 11, 541 (1990); Z. Yoshida, Nucl. Fusion 31, 386 (1991); N. Mattor, P. W. Terry, and S. C. Prager, Comments Plasma Phys. Controlled Fusion 15, 65 (1992)]. In standard MST discharges, impurity ion temperature measured perpendicular to the magnetic field (T_⊥) is higher than impurity ion temperature parallel to the magnetic field (T_allel) during a sawtooth crash. Throughout the rest of the sawtooth cycle, T_⊥ <= T_allel. This is in contrast to results obtained on the EXTRAP-T2 RFP which showed T_⊥ < T_allel throughout the discharge [K. Sasaki et al., Plasma Phys. Control. Fusion 39, 333 (1997)

  10. Formation of Langmuir Monolayers of Titanium Dioxide Nanoparticles at Air/Aqueous Interfaces by the Addition of Ions to the Subphase: Effect of Ion Concentration and Type.

    PubMed

    Iwafuji, Yuya; McNamee, Cathy E

    2015-09-17

    A Langmuir monolayer of bare, hydrophilic TiO2 nanoparticles (diameter = 75 nm) was formed at an air/pH 5.8 aqueous interface by adding salt to the subphase. The effect of the concentration and type of salt in the subphase on the surface pressure-area per particle isotherms was determined. Increasing the concentration of NaCl from 0 to 3.8 M increased the maximum surface pressure (Πmax) and shifted the isotherms to a larger area per particle. The ion type also affected the area at which the close packing commenced and the value of Πmax. The presence of salt in the subphase also stabilized SiO2 nanoparticles, suggesting that the ions in the subphase interacted with the dioxide groups on the particles. The combination of structure making or borderline ions with structure breaking ions (LiCl, MgCl2, NaCl, and CaCl2) appeared to stabilize the particulate monolayers more than the combination of structure breaking ions (KBr and KCl). These results suggested that the particles were stabilized by a hydrogen bond network between the particles or the formation of a salt bridge between the particles. Attractions between particles at the air/aqueous interface caused the particles to aggregate, resulting in the particles becoming more stable at the air/aqueous interface.

  11. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    SciTech Connect

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.

  12. Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations.

    PubMed

    Saxena, Akansha; García, Angel E

    2015-01-08

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca(2+) and Mg(2+) ions. Saxena and Sept (J. Chem. Theor. Comput. 2013, 9, 3538-3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion-ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg(2+) and Ca(2+)) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations.

  13. Luminescence properties of europium ions-doped yttrium silicate (Y2SiO5:Eu3+) nanocrystalline phosphors: effect of Eu3+ ion concentration and thermal annealing.

    PubMed

    Ko, Yeong Hwan; Lee, Soo Hyun; Yu, Jae Su

    2013-05-01

    The trivalent europium ions-doped yttrium silicate (Y2SiO5:Eu3+) nanocrystalline phosphors were synthesized via a sol-gel method, followed by post thermal annealing. The effects of thermal annealing temperature and doping concentration on the structural and luminescent properties of Y2SiO5:Eu3+ nanocrystalline phosphors were systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence measurements. The nanocrystalline phosphors with a high crystallinity were obtained at an annealing temperature of 1300 degrees C. The luminescent spectra were affected strongly by the Eu3+ ion concentration and annealing temperature. The Eu3+ ion concentration was optimized at 5 mol%, exhibiting excellent red emission (-612 nm) corresponding to the 5D0 --> 7F2 transition of Eu3+ ions at the excitation wavelengths of 262 and 396 nm. For the optimized Y2SiO5:Eu3+ nanocrystalline phosphors, the lifetimes were also estimated from the decay curves under the ultraviolet excitations.

  14. Zinc ions modulate protein tyrosine phosphatase 1B activity.

    PubMed

    Bellomo, Elisa; Massarotti, Alberto; Hogstrand, Christer; Maret, Wolfgang

    2014-07-01

    Protein tyrosine phosphatases (PTPs) are key enzymes in cellular regulation. The 107 human PTPs are regulated by redox signalling, phosphorylation, dimerisation, and proteolysis. Recent findings of very strong inhibition of some PTPs by zinc ions at concentrations relevant in a cellular environment suggest yet another mechanism of regulation. One of the most extensively investigated PTPs is PTP1B (PTPN1). It regulates the insulin and leptin signalling pathway and is implicated in cancer and obesity/diabetes. The development of novel assay conditions to investigate zinc inhibition of PTP1B provides estimates of about 5.6 nM affinity for inhibitory zinc(II) ions. Analysis of three PTP1B 3D structures (PDB id: 2CM2, 3I80 and 1A5Y) identified putative zinc binding sites and supports the kinetic studies in suggesting an inhibitory zinc only in the closed and cysteinyl-phosphate intermediate forms of the enzyme. These observations gain significance with regard to recent findings of regulatory roles of zinc ions released from the endoplasmic reticulum.

  15. Ectoenzyme activity in coastal marine waters: response to temperature and metal ion availability

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, J. K.; Neino, V.; Allison, S. D.; Martiny, A.

    2009-12-01

    Ectoenzymes in the ocean are vital for the breakdown of complex organic substrates and for the uptake of nutrients by marine organisms. The activity levels of these enzymes affect the turnover rate of nutrient pools within the ocean, and thus have a significant impact on global biogeochemical nutrient cycles. This study measured the activity of extracellular enzymes from seawater samples under different environmental conditions. Samples were collected daily from coastal waters in the subtropical North Pacific (Lat.: 33°). Ambient seawater temperatures were between 18° and 20° C for the duration of the study. The activity response of four enzymes (alkaline phosphatase, β-glucosidase, β-N-acetyl glucosaminidase, and leucine aminopeptidase) was measured over a range of temperatures (4° to 40° C). The optimal temperatures of all four enzymes were above the ambient seawater temperature of the samples: optimal temperatures of β-glucosidase, β-N-acetyl glucosaminidase, and leucine aminopeptidase in the seawater samples were between 28° and 34° C, while alkaline phosphatase activity increased with the temperature over the range tested. Enzymatic activity of alkaline phosphatase was further investigated under several metal ion conditions. Activity was highest in the presence of Co2+ ions, while the availability of other ions (Ca2+ and Mg2+/Zn2+) had a lesser effect. The influence of Co2+ on alkaline phosphatase activity indicates the presence of a Co2+-dependent alkaline phosphatase in coastal marine waters. These results suggest that variations in environmental conditions (such as temperature and ion concentration) have discernable effects on enzyme activity, and thus affect turnover rates of nutrient pools in the ocean.

  16. [Effect of potassium ions on the contractile activity of renal artery smooth muscle].

    PubMed

    Orlov, R S; Aĭvar, Iu P

    1979-07-01

    Study of isolated segments of renal arteries in rabbits showed that decrease of potassium ion concentration in the bathing fluid was followed by increase in tension, while its increase from 5 meq/l to 10 meq/l was accompanied by gradual relaxation of vessel muscles and increase of their sensitivity to noradrenalin (NA). This relationship was lacking in segments activated with NA. The ability of NA and angiotensin to activate renal arterial muscles by electromechanic and pharmacomechanic coupling mechanismes was proved experimentally. The paper discussed the role of the cell membrane sodium potassium pump in vascular muscles.

  17. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.

    PubMed

    Park, Edwin J; Brasuel, Murphy; Behrend, Caleb; Philbert, Martin A; Kopelman, Raoul

    2003-08-01

    This paper presents the development and characterization of a highly selective magnesium fluorescent optical nanosensor, made possible by PEBBLE (probe encapsulated by biologically localized embedding) technology. A ratiometric sensor has been developed by co-immobilizing a dye that is sensitive to and highly selective for magnesium, with a reference dye in a matrix. The sensors are prepared via a microemulsion polymerization process, which entraps the sensing components inside a polymer matrix. The resultant spherical sensors are approximately 40 nm in diameter. The Coumarin 343 (C343) dye, which by itself does not enter the cell, when immobilized in a PEBBLE is used as the magnesium-selective agent that provides the high and necessary selectivity over other intracellular ions, such as Ca2+, Na+, and K+. The dynamic range of these sensors was 1-30 mM, with a linear range from 1 to 10 mM, with a response time of <4 s. In contrast to free dye, these nano-optodes are not perturbed by proteins. They are fully reversible and exhibit minimal leaching and photobleaching over extended periods of time. In vitro intracellular changes in Mg2+ concentration were monitored in C6 glioma cells, which remained viable after PEBBLE delivery via gene gun injection. The selectivity for Mg2+ along with the biocompatibility of the matrix provides a new and reliable tool for intracellular magnesium measurements.

  18. Plasma renin activities, angiotensin II concentrations, atrial natriuretic peptide concentrations and cardiopulmonary function values in dogs with severe heartworm disease.

    PubMed

    Kitagawa, H; Kitoh, K; Inoue, H; Ohba, Y; Suzuki, F; Sasaki, Y

    2000-04-01

    Relationships among plasma renin activities (PRA), plasma angiotensin II (ATII) concentrations, atrial natriuretic peptide (ANP) concentrations and cardiopulmonary function values were examined in dogs with ascitic pulmonary heartworm disease and acute- and chronic-vena caval syndrome (CS). PRA, plasma ATII concentration and plasma ANP concentration tended to be higher or were significantly higher in dogs with ascites, acute- and chronic-CS. PRA correlated significantly with plasma ATII concentration, WBC count, ALP activity, plasma concentrations of urea nitrogen, creatinine, sodium, potassium, and chloride, right ventricular endodiastolic pressure and right atrial pressure. Plasma ATII concentration correlated significantly with WBC count, plasma concentrations of urea nitrogen, sodium, and potassium, right ventricular endodiastolic pressure and right atrial pressure. Plasma ANP concentration did not correlate with PRA or ATII concentration, but correlated significantly only with pulmonary arterial pressure.

  19. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    PubMed Central

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  20. Optically active surfaces formed by ion implantation and thermal treatment

    SciTech Connect

    Gea, L.A.; Boatner, L.A.; Evans, H.M.; Zuhr, R.

    1996-08-01

    Embedded VO{sub 2} precipitates have been formed in single-crystal sapphire by the ion co-implantation of vanadium and oxygen and subsequent thermal annealing. The embedded VO{sub 2} particles have been shown to exhibit an optical switching behavior that is comparable to that of continuous thin films. In this work, the mechanisms of formation of these optically active particles are investigated. It is shown that precipitation of the vanadium dioxide phase is favored when the thermal treatment is performed on an ion-damaged but still crystalline (rather than amorphized) Al{sub 2}O{sub 3} substrate. The best optical switching behavior is observed in this case, and this behavior is apparently correlated with a more-favorable dispersion of VO{sub 2} small particles inside the matrix.

  1. What Ion Flow along Ion Channels Can Tell us about Their Functional Activity

    PubMed Central

    Becucci, Lucia; Guidelli, Rolando

    2016-01-01

    The functional activity of channel-forming peptides and proteins is most directly verified by monitoring the flow of physiologically relevant inorganic ions, such as Na+, K+ and Cl−, along the ion channels. Electrical current measurements across bilayer lipid membranes (BLMs) interposed between two aqueous solutions have been widely employed to this end and are still extensively used. However, a major drawback of BLMs is their fragility, high sensitivity toward vibrations and mechanical shocks, and low resistance to electric fields. To overcome this problem, metal-supported tethered BLMs (tBLMs) have been devised, where the BLM is anchored to the metal via a hydrophilic spacer that replaces and mimics the water phase on the metal side. However, only mercury-supported tBLMs can measure and regulate the flow of the above inorganic ions, thanks to mercury liquid state and high hydrogen overpotential. This review summarizes the main results achieved by BLMs incorporating voltage-gated channel-forming peptides, interpreting them on the basis of a kinetic mechanism of nucleation and growth. Hg-supported tBLMs are then described, and their potential for the investigation of voltage-gated and ohmic channels is illustrated by the use of different electrochemical techniques. PMID:27983579

  2. Electrochemical Evidence for Neuroglobin Activity on NO at Physiological Concentrations.

    PubMed

    Trashin, Stanislav; de Jong, Mats; Luyckx, Evi; Dewilde, Sylvia; De Wael, Karolien

    2016-09-02

    The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.

  3. μPIXE for a μBrain: The vinegar fly's brain, antenna, sensilla hairs and eye ion concentrations

    NASA Astrophysics Data System (ADS)

    Reinert, Anja; Barapatre, Nirav; Sachse, Silke; Reinert, Tilo

    2011-10-01

    The vinegar fly Drosophila melanogaster is used as model organism to study a variety of different scientific purposes. Thus, our laboratory studies the olfactory system by neurobiological experiments. These techniques are often disruptive and need to compensate or exchange the body fluid, the lymph, with an artificial Ringer's solution in defined compartments of the fly. The solution mainly contains Na, Cl, K and Ca and is to keep physiological conditions. Therefore, the knowledge about the ion concentrations in the respective Drosophila lymph is required for a correct mixture of the ions. This paper presents the spatially resolved concentrations of P, S, Cl, K, Ca, Fe, Cu and Zn in lyophilised head cryosections of Drosophila by using quantitative μPIXE at the ion beam facility LIPSION in Leipzig. The PIXE maps enable a detailed analysis of particular regions of interest down to a spatial resolution of 0.5 μm. We quantified the ion concentrations especially in the brain, the antenna and its sensilla hairs acting as the olfactory organ of the fly, in the compound eye and in the mouthparts. The averaged element concentrations of these main compartments are (in descending order): P: 90 mM, K: 81 mM, S: 38 mM, Cl: 18 mM, Ca: 4.9 mM, Fe: 1.4 mM, Zn: 1.2 mM, Cu: 0.06 mM. Certain structures or cavities possess a remarkably high concentration of particular elements and might reflect the different functions of the compartments. An example presented in more detail is the composition of the compound eye. Conclusively, our findings on the ion concentrations might be useful for the mixture of the Drosophila Ringer's solution to ensure physiological conditions in experiments.

  4. Determination of perchlorate in drinking water by ion chromatography using macrocycle-based concentration and separation methods.

    PubMed

    Lamb, John D; Simpson, David; Jensen, Bryce D; Gardner, Joseph S; Peterson, Quinn P

    2006-06-16

    Macrocycle-based ion chromatography provides a convenient, reliable method for the determination of perchlorate ion, which is currently of great interest to the environmental community. This study shows that effective perchlorate determinations can be made using standard conductimetric detection by combining an 18-crown-6-based mobile phase with an underivatized reversed-phase mobile phase ion chromatography (MPIC) column. One unique feature of this method is the flexibility in column capacity that is achieved through simple variations in eluent concentrations of 18-crown-6 and KOH, facilitating the separation of target analyte anions such as perchlorate. Using a standard anion exchange column as concentrator makes possible the determination of perchlorate as low as 0.2 ug/L in low ionic strength matrices. Determination of perchlorate at the sub-ug/L level in pure water and in spiked local city hard water samples with high background ion concentrations can be achieved this way. However, like other IC techniques, this method is challenged to achieve analyses at the ug/L level in the demanding high ionic strength matrix described by the United States Environmental Protection Agency (EPA) (1,000 mg/L chloride, sulfate and carbonate). We approached this challenge by use of the Cryptand C1 concentrator column, provided by Dionex Corporation, to effectively preconcentrate perchlorate while reducing background ion concentrations in the high ionic strength matrix. The retention characteristics of the concentrator column were studied in order to maximize its effectiveness for perchlorate determinations. The method makes possible the determination of perchlorate at the 5 ug/L level in the highest ionic strength matrix described by the EPA.

  5. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    PubMed Central

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  6. MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells

    PubMed Central

    Xian, Jieyu; Kang, Min; Li, Xiaolin; Jin, Meifu

    2016-01-01

    A molecular dynamics model of a nanopore-based device, which is similar to the nanopores in a cell membrane, was used to determine the influence of solution concentration on radial ion distribution, screening effects, and the radial potential profile in the nanopore. Results from these simulations indicate that as the solution concentration increases, the density peaks for both the counterion and coion near the charged wall increase at different speeds as screening effects appeared. Consequently, the potential near the charged wall of the nanopore changed from negative to positive during the simulation. The detailed understanding of ion distribution in nanopores is important for controlling the ion permeability and improving the cell transfection and also the design and application of nanofluidic devices. PMID:27446233

  7. The effect of metal ions on the microbial attachment ability of flocculent activate sludge.

    PubMed

    Hao, Wen; Lv, Junping; Li, Yaochen; Chen, Lisha; Zhu, Jianrong

    2016-01-01

    As a kind of biofilm structure, microbial attachment was believed to play an important role in the aggregation and stability of flocculent activated sludge (FAS), and also its translation to aerobic granular activated sludge (AGAS). The aim of this study was to investigate the effect of Ca2+, Mg2+, Cu2+, Fe2+, Zn2+, K+, and Na+, which were frequently found in the biological wastewater-treatment systems on the microbial attachment of FAS, in order to provide a new strategy for the cultivation of FAS and AGAS. The results showed that different metal ions had different effects on the process of microbial attachment of FAS; in particular, Cu2+, Fe2+, and Zn2+ could increase the microbial attachment ability of FAS at appropriate concentrations, and disrupted the process at higher concentrations. Mg2+ would greatly enhance the microbial attachment of FAS at lower concentrations but then the biomass of attachment was fallen down to a level close to that of the control. However, Ca2+), K+, and Na+ always exhibited a positive impact on the microbial attachment of FAS. Besides, the concentration of FAS suspension and the culture time both had an effect on the microbial attachment of FAS. Moreover, the acyl-homoserine-lactones-based quorum-sensing system, the content of EPS, and the relative hydrophobicity of FAS had been greatly influenced by metal ions. As all these parameters had close relationships with microbial attachment process, changes in these parameters may affect the microbial attachment of FAS.

  8. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  9. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides.

    PubMed

    Greber, Katarzyna E; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  10. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides

    PubMed Central

    Greber, Katarzyna E.; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  11. Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons.

    PubMed

    Xiao, B; Thomas, K M

    2005-04-26

    In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content (approximately 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (approximately 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range approximately 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N(2) (77 K) and CO(2) (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M(2+)(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M(2+)(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) < or = 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

  12. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  13. Ion channel activity in lobster skeletal muscle membrane.

    PubMed

    Worden, M K; Rahamimoff, R; Kravitz, E A

    1993-09-01

    Ion channel activity in the sarcolemmal membrane of muscle fibers is critical for regulating the excitability, and therefore the contractility, of muscle. To begin the characterization of the biophysical properties of the sarcolemmal membrane of lobster exoskeletal muscle fibers, recordings were made from excised patches of membrane from enzymatically induced muscle fiber blebs. Blebs formed as evaginations of the muscle sarcolemmal membrane and were sufficiently free of extracellular debris to allow the formation of gigaohm seals. Under simple experimental conditions using bi-ionic symmetrical recording solutions and maintained holding potentials, a variety of single channel types with conductances in the range 32-380 pS were detected. Two of these ion channel species are described in detail, both are cation channels selective for potassium. They can be distinguished from each other on the basis of their single-channel conductance and gating properties. The results suggest that current flows through a large number of ion channels that open spontaneously in bleb membranes in the absence of exogenous metabolites or hormones.

  14. Limiting concentrations of activated mononucleotides necessary for poly(C)-directed elongation of oligoguanylates

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Chang, S.; Alberas, D. J.

    1990-01-01

    Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P-N bond in guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5'-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37 degrees C and 0.36 mM at 1 degrees C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems. We also determined the rate constant of dimerization of 2-MeImpG, k2 = 0.45 +/- 0.06 M-1 h-1 in the absence of poly(C), and 0.45 +/- 0.06 less than or equal to k2 less than or equal to 0.97 +/- 0.13 M-1 h-1 in its presence at 37 degrees C and pH 7.95.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  16. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  17. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  18. Metal concentration and antioxidant activity of edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Kocak, Mehmet Sefa; Uren, Mehmet Cemil

    2015-05-15

    This study presents information on the antioxidant activity and heavy metal concentrations of Polyporus sulphureus, Macrolepiota procera, Lycoperdon perlatum and Gomphus clavatus mushrooms collected from the province of Mugla in the South-Aegean Region of Turkey. Antioxidant activities of mushroom samples were evaluated by four complementary tests. All tests showed L. perlatum and G. clavatus to possess extremely high antioxidant potential. Antioxidant activity of the samples was strongly correlated with total phenolic-flavonoid content. In terms of heavy metal content, L. perlatum exceeded the legal limits for daily intake of Pb, Fe, Mn, Cr, Ni and Co contents (0.461, 738.00, 14.52, 1.27, 1.65, 0.417 mg/day, respectively) by a 60-kg consumer. Co contents of M. procera (0.026 mg/day) and P. sulphureus (0.030 mg/day) and Cd contents of G. clavatus (0.071 mg/day) were also above the legal limits. According to these results, L. perlatum should not be consumed, despite the potentially beneficial antioxidant activity. Additionally, M. procera and G. clavatus should not be consumed daily due to their high levels of Cd and Co.

  19. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  20. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    NASA Astrophysics Data System (ADS)

    Nielsen, Christoffer P.; Bruus, Henrik

    2014-04-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which are in qualitative agreement with experimental results published in the literature. The analytical results are furthermore in agreement with direct numerical simulations. As part of the analysis, we find approximate solutions to the classical problem of pure salt transport across an ion-selective interface. These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide predictions accessible to further experimental tests of the model.

  1. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.

    PubMed

    Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev

    2016-09-01

    We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2)  h(-1) ) and 5.5 (mmol m(-2)  h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2)  h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2)  h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and

  2. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro.

    PubMed

    Bozym, Rebecca A; Chimienti, Fabrice; Giblin, Leonard J; Gross, Gunter W; Korichneva, Irina; Li, Yuan; Libert, Sarah; Maret, Wolfgang; Parviz, Maryam; Frederickson, Christopher J; Thompson, Richard B

    2010-06-01

    The zinc(II) ion has recently been implicated in a number of novel functions and pathologies in loci as diverse as the brain, retina, small intestine, prostate, heart, pancreas, and immune system. Zinc ions are a required nutrient but elevated concentrations are known to kill cells in vitro. Paradoxical observations regarding zinc's effects have appeared frequently in the literature, and often their physiological relevance is unclear. We found that for PC-12, HeLa and HT-29 cell lines as well as primary cultures of cardiac myocytes and neurons in vitro in differing media, approximately 5 nmol/L free zinc (pZn = 8.3, where pZn is defined as--log(10) [free Zn(2+)]) produced apparently healthy cells, but 20-fold higher or (in one case) lower concentrations were usually harmful as judged by multiple criteria. These results indicate that (1) the free zinc ion levels of media should be controlled with a metal ion buffer; (2) adding zinc or strong zinc ligands to an insufficiently buffered medium may lead to unpredictably low or high free zinc levels that are often harmful to cells; and (3) it is generally desirable to measure free zinc ion levels due to the presence of contaminating zinc in many biochemicals and unknown buffering capacity of many media.

  3. The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.1.

    PubMed Central

    Coolbear, T; Whittaker, J M; Daniel, R M

    1992-01-01

    The proteinase from the extremely thermophilic Bacillus strain EA.1 exhibits maximum stability at a pH of approx. 6.5. In the presence of calcium ions the half-life at 95 degrees C of the enzyme at this pH was 17 min, and loss of activity followed first-order decay kinetics. The role of metal ions in the activity and stability of the enzyme was studied using the holoenzyme, the metal-depleted apoenzyme, and a zinc-enriched apoenzyme preparation. Zinc and calcium ions were the preferred bivalent cations for the active site and stabilization site(s) respectively. Stabilization by metal ions was not in itself a highly stringent process, but ions other than calcium which stabilized the enzyme generally had a concomitant inhibitory effect on activity. Inhibition and stabilization of the enzyme by cations were concentration-dependent effects and certain ions activated the apoenzyme but not the holoenzyme. Manganese(II) ions conferred some stability and also activated the enzyme, but in the latter case were not as effective as zinc ions. The results are discussed with reference to the ionic radii, co-ordination number and preferred ligand donors of the ions. Mercury(II) ions severely compromised enzyme activity and stability, and the effects of thiol-reactive agents suggest that thiol groups also have a role in enzyme integrity. PMID:1445196

  4. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  5. A new method to determine trace boron concentration of iron and steel by SIMS direct ion image

    NASA Astrophysics Data System (ADS)

    Kim, JaeNam; Lee, SangUp; Kwun, HyeogDae; Kim, JoonWon; Shin, KwangSoo; Lee, JungJu

    2012-04-01

    Boron is often used as a trace additive in steel in order to control the phase transformation behaviors and improve the interfacial cohesion. The aim of this work is to suggest a method to determine the trace boron concentration of iron and steel by direct ion image. The optimum conditions for direct ion imaging were proposed by means of secondary ion mass spectrometry — resistive anode encorder (SIMS-RAE). A method of quantification was examined using standard reference materials, electrolytic iron, high carbon steel, Cr-V steel and stainless steel. For the best secondary ionization efficiency, O2 + ion bombardment and negative secondary ion collection were used. The cluster ions of 11B16O2 and 56Fe16O were detected and processed to reduce the strong matrix effect. Every pixel, P(i, j) of 50 images was integrated and converted to a retrospective depth profile by calculator and profiler. The calibration curve and relative sensitivity factor (RSF) approach were considered. Furthermore, reproducibility of the SIMS data depending on the analytical mode was examined.

  6. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.

    PubMed

    Li, Dapeng; Qin, Na; Zhang, Longteng; Lv, Jian; Li, Qingzheng; Luo, Yongkang

    2016-11-15

    The impact of different concentrations of Na(+), K(+), Ca(2+), Mg(2+), Fe(2+), and Zn(2+) on the degradation of adenosine triphosphate (ATP) and the influence of these ions on the activity of adenosine monophosphate deaminase (AMP-deaminase) and acid phosphatase (ACP) in common carp fillets (in vivo) during 4°C storage was examined. The content of ATP, inosine monophosphate (IMP), and hypoxanthine (Hx), and the activity of AMP-deaminase and ACP were determined. Results indicated that the effects of different concentrations of six kinds of metal ions on AMP-deaminase and ACP were not the same. Na(+), K(+), Fe(2+), and Zn(2+) enhanced AMP-deaminase activity, which led to the rapid degradation of ATP and to the generation of a large quantity of IMP within a short time. Ca(2+) and Mg(2+) delayed the change in AMP-deaminase and ACP activity in carp and caused a further delay in the degradation of ATP. Fe(2+) and Zn(2+) inhibited ACP activity, which reduced the decomposition of IMP and the formation of Hx.

  7. Concentration Polarization and Nonequilibrium Electro-osmotic Instability at an Ion-Selective Surface Admitting Normal Flow

    NASA Astrophysics Data System (ADS)

    Khair, Aditya

    2011-11-01

    We revisit and build upon on the prototypical problem of ion transport across a flat ideal ion-selective surface. Specifically, we examine the influence of imposed fluid flows on concentration polarization (CP) and electrokinetic instability at over-limiting currents. We consider an ion-selective surface, or membrane, that admits a uniform flow across itself. The membrane contacts an electrolyte, whose concentration is uniform in a well-mixed region at a prescribed distance from the membrane. A voltage across the system drives an ionic current, leading to CP in the ``unstirred layer'' between the membrane and well-mixed bulk. The CP reflects a balance between advection of ions with the ``normal flow'' and diffusion. A Peclet number, Pe, parameterizes their relative importance; note, Pe is signed, as the flow can be toward or away from the membrane. An asymptotic analysis for thin Debye layers reveals a nonlinear CP profile, in contrast to the familiar linear profile at Pe=0. Next, we consider over-limiting currents, wherein a non-equilibrium space-charge layer emerges near the membrane surface. Finally, we examine the instability of the quiescent concentration polarization due to second-kind electro-osmosis in the space-charge layer. A stability analysis shows that the imposed normal flow can enhance or retard the instability, depending on its direction.

  8. Effect of Concentration on the Energetics and Dynamics of Li Ion Transport in Anatase and Amorphous TiO2

    SciTech Connect

    Yildirim, Handan; Greeley, Jeffrey P.; Sankaranarayanan, Subramanian

    2011-08-11

    We report on the energetics and dynamics of Li diffusion in bulk anatase and amorphous TiO2 using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Using MD simulations, for both anatase and amorphous TiO2, diffusion characteristics are first studied for an isolated Li ion, followed by simulations of Li concentrations ranging from 10% to 100% in order to explore the concentration effect on the diffusivity. The isolated Li diffusion mechanism, revealed from the MD simulations, occurs via zigzag hops between the octahedral sites in anatase. The corresponding barrier for this process obtained fromDFT-NEB calculations is 480 meV.MDsimulations also show that isolated Li ion diffusivity is much slower in the amorphous TiO2 than in anatase TiO2. DFT-NEB results for the diffusion in amorphous titania indicate that Li encounters deep energy wells within the amorphous network that are in the electronvolt range, confirming our MD observation of low Li diffusivity. A monotonic decrease in diffusion barriers with increasing Li concentration is observed in the case of amorphous titania whereas a non-monotonic variation is seen in anatase, with the lowest barrier observed at 50% Li concentration. At low Li concentrations (<50%), we find that the barriers in anatase are lower than in amorphous titania. However, at the maximum Li intercalation ratios, which are experimentally known to be 50% for anatase and >75% for amorphous titania, the Li diffusivity in amorphous is found to be much higher than in anatase. Our MD simulations suggest that the underlying reason for these differences is related to changes in diffusion mechanism. Our simulations therefore indicate a strong correlation between Li ion concentration and the observed transport characteristics, offering new insights into ion conduction mechanisms that are of importance to solid-state devices used for energy storage applications.

  9. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation.

    PubMed Central

    Bassi, G S; Murchie, A I; Lilley, D M

    1996-01-01

    The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086

  10. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  11. Estimating the hydrogen ion concentration in concentrated NaCl and Na{sub 2}SO{sub 4} electrolytes

    SciTech Connect

    Rai, D.; Felmy, A.R.; Juracich, S.P.; Rao, F.

    1995-06-01

    Combination glass electrodes were tested for determining H{sup +} concentrations in concentrated pure and mixed NaCl and Na{sub 2}SO{sub 4} solutions, as well as natural brine systems. NaCl, Na{sub 2}SO{sub 4}, and mixtures of NaCl and Na{sub 2}SO{sub 4} solutions were analyzed. Correction factors for estimating pC{sub H}{sup +} (negative logarithm of H{sup +} concentration) were determined from measured/observed pH values. Required Gran-type titrations were done with HCl and/or NaOH. The titration method is described and a step-by-step procedure provided; it has been used previously for determining pC{sub H}{sup +} values of synthetic chloride-dominated brines. Precautions are required to determine correction factors for electrolytes that react with H{sup +} or OH{sup {minus}} [sulfate brines for titration with acid; magnesium brines for titration with base because of precipitation of Mg(OH)2]. Correction factors A (pC{sub H}{sup +} = pH{sub ob} + A) from HCl titrations were similar to those from NaOH titrations where the concentration of free H{sup +} was calculated using a thermodynamic model. These values should be applicable to solns with a very large range in measured pH values (2 to 12). Because a large number of solns were titrated with HCl and the A values are similar for HCl and NaOH titrations, the A values for NaCl and Na2SO4 solns were fit as a function of molality to allow extrapolation. For NaCl solns 0 to 6.0 M, A can be obtained by multiplying the molality by 0.159. For Na2SO4 solns 0 to 2.0 M, the values of A can be obtained from (0.221 {minus} 0.549X + 0.201X{sup 2}), where X is the molality of Na{sub 2}SO{sub 4}. Orion-Ross electrode evaluations indicated that the A values did not differ significantly for different electrodes. Results suggest that the data in this report can be used to estimate A values for different NaCl and Na{sub 2}SO{sub 4} solns even for noncalibrated electrodes.

  12. Nonionic surfactants enhancing bactericidal activity at their critical micelle concentrations.

    PubMed

    Tobe, Seiichi; Majima, Toshiaki; Tadenuma, Hirohiko; Suekuni, Tomonari; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2015-01-01

    Bactericidal activities of benzalkonium chloride [also known as alkyldimethylbenzylammonium chloride (ADBAC)] containing nonionic surfactants such as methyl ester ethoxylates (MEE) with the alkyl group C8-C14 and oxyethylene (EO) group of average adduct number 3-15 were measured against Escherichia coli and Staphylococcus aureus. Sample solutions containing MEE in the vicinity of the critical micelle concentration exhibited a dramatic decrease in viable bacterial counts. MEE with an alkyl group of C12 and an oxyethylene group of lower adduct number exhibited little viable bacterial counts than those having higher EO adduct numbers. MEE with reduced EO adduct numbers increased fluorescence intensity in E. coli using the viability stain SYTO 9. Our results show that MEE molecules with low EO adduct numbers exhibited bactericidal activity by increasing the permeability of the E. coli cell membrane. Sample solution containing ADBAC and MEE molecules with lower EO adduct numbers also displayed higher zeta potentials. Moreover, ADBAC molecules incorporated into micelles of MEE with lower EO adduct numbers were adsorbed onto the surface of E. coli, which augmented bactericidal activity.

  13. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture.

    PubMed

    Nguyen, Hieu T H; Umemura, Kenji; Kawano, Tomonori

    2016-08-01

    Indole-3-acetic acid (IAA) is the major natural auxin involved in the regulation of a variety of growth and developmental processes such as division, elongation, and polarity determination in growing plant cells. It has been shown that dividing and/or elongating plant cells accompanies the generation of reactive oxygen species (ROS) and a number of reports have suggested that hormonal actions can be mediated by ROS through ROS-mediated opening of ion channels. Here, we surveyed the link between the action of IAA, oxidative burst, and calcium channel activation in a transgenic cells of rice expressing aequorin in the cytosol. Application of IAA to the cells induced a rapid and transient generation of superoxide which was followed by a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]c). The IAA-induced [Ca(2+)]c elevation was inhibited by Ca(2+) channel blockers and a Ca(2+) chelator. Furthermore, ROS scavengers effectively blocked the action of IAA on [Ca(2+)]c elevation.

  14. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation

    PubMed Central

    Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad

    2016-01-01

    Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions. PMID:27788249

  15. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation.

    PubMed

    Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad

    2016-01-01

    Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3'4'OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions.

  16. Assessment of thrombogenicity of activated and non-activated prothrombin concentrates in a rat model.

    PubMed Central

    Silberman, S.; Fareed, J.; Walenga, J.

    1986-01-01

    In vitro clotting activity of rats injected with different preparations of prothrombin concentrates was measured. Animals rendered deficient in vitamin K-dependent coagulation factors by early coumadin (warfarin) pretreatment, followed by injections of concentrate preparations were also evaluated. Findings indicate a dose-related response in abnormal coagulation changes demonstrable with each preparation and lack of protection of intravascular coagulation by coumadin anticoagulation. Furthermore, a role for in vivo factor VII activation of haemostasis following concentrate administration could not be elicited. PMID:3091059

  17. Structural and antibacterial activity of hydroxyapatite and fluorohydroxyapatite co-substituted with zirconium-cerium ions

    NASA Astrophysics Data System (ADS)

    Sanyal, Vijayalakshmi; Raja, C. Ramachandra

    2016-02-01

    The effect of zirconium (Zr) and cerium (Ce) ions co-substituted in hydroxyapatite (HA) and fluorohydroxyapatite (FHA), by sol-gel method, is reported in this technical article. Addition of Zr4+ and Ce3+ ions into HA and FHA reportedly transforms t-ZrO2 (tetragonal) to m-ZrO2 (monoclinic) phases resulting in HA/CSZ (Ce-stabilized zirconia) composites which improves the toughness of the materials widely used in biomedical applications. Samples with compositions 5Zr/5Ce-HA, 5Zr/5Ce-FHA, 40Zr/XCe-FHA (where X = 5, 10 and 20 mol% of Ce ions) were prepared and calcined at 800 °C. Incorporation of Ce ion stabilizes the zirconia, and fluorine ion improves thermal stability. Crystallite size, crystallinity and presence of m-ZrO2 and t-ZrO2 phases were analysed by XRD. The FTIR spectrum confirmed the presence of Zr-O stretching band. SEM reveals agglomerated spherical particles of 50-300 nm size, and ionic doping on HA was analysed through EDAX. The TG/DSC curves confirmed the formation of m-ZrO2 and t-ZrO2 phases and thermal stability of the samples. Higher concentrations of Zr and Ce ions in FHA resulted in reduction in crystallite size. The antibacterial activities of the samples were evaluated against the micro-organisms, Staphylococcus aureus and Escherichia coli exhibiting a inhibition zone diameter as 42 and 37 mm, respectively, for 40Zr/20Ce-FHA.

  18. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  19. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  20. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography I. Matrix elimination by ion-exclusion chromatography.

    PubMed

    Vermeiren, Koen

    2005-08-26

    Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.

  1. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged

  2. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-02

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.

  3. Interaction between Calcium Ions and Bacillus thuringiensis Toxin Activity against Sf9 Cells (Spodoptera frugiperda, Lepidoptera)

    PubMed Central

    Monette, R.; Potvin, L.; Baines, D.; Laprade, R.; Schwartz, J. L.

    1997-01-01

    The effects of calcium ions and modulators of calcium movement on Bacillus thuringiensis insecticidal protein toxicity were investigated with Sf9 cells (Spodoptera frugiperda, fall armyworm) by a new B. thuringiensis toxicity assay based on measurement of fluorescence of ethidium homodimer, a high-affinity DNA stain. CryIC toxicity was substantially stimulated by extracellular calcium in a dose-dependent way (in the millimolar range), while toxicity enhancement could not be replicated when calcium was replaced by barium. This incremental toxicity was reduced by cobalt and lanthanum ions, two inorganic-calcium transport inhibitors. Methoxyverapamil, a voltage-dependent calcium channel blocker, and nifedipine, an inhibitor of dihydropyridine-sensitive L-type calcium channels, had no effect on CryIC toxin activity, but BAY K 8644, an L-type calcium channel activator, increased CryIC activity at high concentrations of extracellular calcium. While A23187, a calcium ionophore, and TMB-8, an inhibitor of intracellular-calcium mobilization, did not change CryIC-induced mortality, thapsigargin, an inhibitor of calcium uptake in intracellular stores, and more particularly trifluoperazine, which inhibits calcium-calmodulin-dependent processes, increased CryIC-mediated toxicity. The incremental effect of extracellular calcium on CryIC-induced toxicity was consistent with an increased concentration of intracellular calcium. PMID:16535509

  4. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way to Reversibly Concentrate Functionalized Nanoparticles

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-01-01

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232

  5. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  6. Nuclear pore ion channel activity in live syncytial nuclei.

    PubMed

    Bustamante, Jose Omar

    2002-05-01

    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  7. Ligand-Gated Ion Channels: Permeation and Activation1

    NASA Astrophysics Data System (ADS)

    Lynch, Joseph W.; Barry, Peter H.

    Ligand-gated ion channels (LGICs) are fast-responding channels in which the receptor, which binds the activating molecule (the ligand), and the ion channel are part of the same nanomolecular protein complex. This chapter will describe the properties and functions of the nicotinic acetylcholine LGIC superfamily, which play a critical role in the fast chemical transmission of electrical signals between nerve cells at synapses and between nerve and muscle cells at endplates. All the processing functions of the brain and the resulting behavioral output depend on chemical transmission across such neuronal interconnections. To describe the properties of the channels of this LGIC superfamily,we will mainly use two examples of this family of channels: the excitatory nicotinic acetylcholine receptor (nAChR) and the inhibitory glycine receptor (GlyR) channels. In the chemical transmission of electrical signals, the arrival of an electrical signal at the synaptic terminal of a nerve causes the release of a chemical signal—a neurotransmitter molecule (the ligand, also referred to as the agonist). The neurotransmitter rapidly diffuses across the very narrow 20-40 nm synaptic gap between the cells and binds to the LGIC receptors in the membrane of the target (postsynaptic) cell and generates a new electrical signal in that cell (e.g., Kandel et al., 2000). How this chemical signal is converted into an electrical one depends on the fundamental properties of LGICs and the ionic composition of the postsynaptic cell and its external solution.

  8. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  9. Activation of ion transport systems during cell volume regulation

    SciTech Connect

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K/sup +/ and Cl/sup -/ conductances, a K-Cl cotransport system, or parallel K/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca/sup 2 +/ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na/sup +/-H/sup +/ and Cl/sup -/-HCO/sub 3//sup -/ exchange systems.

  10. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    PubMed

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  11. Accessibility and ion exchange stoichiometry of ionized carboxylic groups in the active layer of FT30 reverse osmosis membrane.

    PubMed

    Coronell, Orlando; Mariñas, Benito I; Cahill, David G

    2009-07-01

    We have experimentally determined the concentration of Ba2+ that associates with the accessible ionized R-COO- groups in the polyamide active layer of the FT30 reverse osmosis membrane in the pH range 3.42-10.30. Ba2+ concentrations in the active layer ([Ba2+]) were measured using the ion-probing/Rutherford backscattering spectrometry procedure reported in our previous work. We found that at all but the lowest experimental pH 3.42, [Ba2+] was lower than the corresponding total concentrations of R-COO- groups; their difference was consistent with steric and charge effects determining the accessibility and association, respectively, of Ba2+ to R-COO- groups. Accordingly, we propose two descriptors, the accessibility ratio (AR) and the neutralization number (NN), to account for the observed difference. AR, the fraction of R-COO- groups accessible to Ba2+ ions, and NN, the average number of R-COO- groups neutralized per Ba2+ ion, were determined experimentally performing Ag(+)-Ba2+ ion-exchange tests. The resulting AR = 0.40 indicated that on average only 40% of ionizable carboxylic groups were accessible to Ba2+. [Ba2+] values calculated using R-COO- concentrations and the AR and NN concepts were in agreement with experimental [Ba2+] results.

  12. Stibonium ions for the fluorescence turn-on sensing of F- in drinking water at parts per million concentrations.

    PubMed

    Ke, Iou-Sheng; Myahkostupov, Mykhaylo; Castellano, Felix N; Gabbaï, François P

    2012-09-19

    The 9-anthryltriphenylstibonium cation, [1](+), has been synthesized and used as a sensor for the toxic fluoride anion in water. This stibonium cation complexes fluoride ions to afford the corresponding fluorostiborane 1-F. This reaction, which occurs at fluoride concentrations in the parts per million range, is accompanied by a drastic fluorescence turn-on response. It is also highly selective and can be used in plain tap water or bottled water to test fluoridation levels.

  13. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations?

    PubMed

    Hammarlund-Udenaes, Margareta

    2010-03-01

    Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.

  14. Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn(II) and Cu(II) ions from water.

    PubMed

    El-Safty, Sherif A; Shenashen, M A; Ismael, M; Khairy, M; Awual, Md R

    2012-11-21

    Optical captor design is necessary for the controlled development of a technique for detecting and removing heavy and toxic metals from drinking water with high flexibility and low capital cost. We designed chemical mesocaptors for optical separation/extraction and monitoring/detection of Cu(II) and Zn(II) ions from water even at trace concentration levels without a preconcentration process. The mesoporous aluminosilica carriers with three-dimensional (3D) structures, high aluminum content, natural surfaces, and active acid sites strongly induced H-bonding and dispersive interactions with organic moieties, thereby leading to the formation of stable captors without chromophore leaching during the removal assays of Cu(II) and Zn(II) ions. Using such a tailored mesocaptor design, the direct immobilization of these hydrophobic ligands (4,5-diamino-6-hydroxy-2-mercaptopyrimidine and diphenylthiocarbazone) into ordered pore-based aluminasilica monoliths enabled the easy generation and transduction of optical colour signals as a response to metal-to-ligand binding events, even at ultra-trace concentrations (~10(-9) mol dm(-3)) of Cu(II) and Zn(II) ions in drinking water, without the need for sophisticated instruments. Theoretical models have been developed to provide insights into the effect of active site surfaces on the enhancement of the optical removal process in terms of long-term stability, reversibility, and selectivity, hence allowing us to understand the role of mesoscopic geometry and nanoscale pore orientation of mesocaptors better. Generally, this ion-capture model enables the development of a simple and effective technique for effective wastewater treatment and management.

  15. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    PubMed

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses.

  16. A procedure for predicting concentrations of dissolved solids and sulfate ion in streams draining areas strip mined for coal

    USGS Publications Warehouse

    Bevans, H.E.

    1980-01-01

    Current trends in increased coal production necessitate the development of techniques to appraise the environmental degradation resulting from strip mining. A procedure is introduced for the prediction of dissolved-solids and sulfate-ion concentrations in streams draining strip-mined areas. Concentrations are a function of the percentage of the drainage area that has been strip mined. These relationships are expressed by regression equations computed from data collected in streams draining strip-mined areas of Cherokee and Crawford Counties in southeast Kansas. High correlation coefficients indicate that the relationships may be useful in the evaluation of present or future strip-mining operations. (USGS)

  17. Concentration polarization and second-kind electrokinetic instability at an ion-selective surface admitting normal flow

    NASA Astrophysics Data System (ADS)

    Khair, Aditya S.

    2011-07-01

    The passage of ionic current across a charge-selective surface has been studied for over a century and is relevant to well-established processes such as electrodialysis, electrodeposition, and electrochromatography. Recent years have witnessed a resurgence of interest in this subject, motivated by experiments demonstrating charge-selective transport of ions and solutes in nanofluidic devices. In this paper, we revisit and build upon the prototypical problem of one-dimensional ion transport across a flat ideally ion-selective surface, by examining the influence of imposed fluid flows on concentration polarization, over-limiting current, and second-kind (non-equilibrium) electro-osmotic instability at the surface. Specifically, we consider a simple model system of a cation-selective surface or membrane that admits a uniform fluid flow across itself. The membrane resides against a binary symmetric electrolyte, whose concentration is uniform in a "well-mixed" region at a prescribed distance from the membrane. A potential difference across the system drives an ionic current, leading to concentration polarization in the "unstirred layer" between the membrane and well-mixed bulk. The concentration polarization profile reflects a balance between advection of ions with the imposed "normal flow" and diffusion. The relative importance of these effects is parameterized by a Pećlet number Pe; notably, Pe is a signed quantity as the flow can be imposed toward or away from the membrane. An asymptotic analysis in the thin-Debye-layer limit reveals a significant impact of normal flow on concentration polarization and the advection-diffusion limiting current across the membrane. In particular, there exists a nonlinear concentration profile in the unstirred layer for non-zero Pe, in contrast to the familiar linear (diffusive) concentration polarization at Pe = 0. Next, we use matched asymptotic expansions to explore the structure of the unstirred layer at over-limiting currents

  18. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    SciTech Connect

    Van Eester, D.; Lerche, E.; Crombé, K.; Jachmich, S.; Bobkov, V.; Maggi, C.; Neu, R.; Pütterich, T.; Czarnecka, A.; Coenen, J. W.; and others

    2014-02-12

    The most recent JET campaign has focused on characterizing operation with the 'ITER-like' wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  19. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare).

    PubMed

    Kotula, Lukasz; Clode, Peta L; Striker, Gustavo G; Pedersen, Ole; Läuchli, André; Shabala, Sergey; Colmer, Timothy D

    2015-12-01

    Oxygen deficiency associated with soil waterlogging adversely impacts root respiration and nutrient acquisition. We investigated the effects of O2 deficiency and salinity (100 mM NaCl) on radial O2 concentrations and cell-specific ion distributions in adventitious roots of barley (Hordeum vulgare). Microelectrode profiling measured O2 concentrations across roots in aerated, aerated saline, stagnant or stagnant saline media. X-ray microanalysis at two positions behind the apex determined the cell-specific elemental concentrations of potassium (K), sodium (Na) and chloride (Cl) across roots. Severe O2 deficiency occurred in the stele and apical regions of roots in stagnant solutions. O2 deficiency in the stele reduced the concentrations of K, Na and Cl in the pericycle and xylem parenchyma cells at the subapical region. Near the root apex, Na declined across the cortex in roots from the aerated saline solution but was relatively high in all cell types in roots from the stagnant saline solution. Oxygen deficiency has a substantial impact on cellular ion concentrations in roots. Both pericycle and xylem parenchyma cells are involved in energy-dependent K loading into the xylem and in controlling radial Na and Cl transport. At root tips, accumulation of Na in the outer cell layers likely contributed to reduction of Na in inner cells of the tips.

  20. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers.

    PubMed

    Chen, Yi; Droge, Steven T J; Hermens, Joop L M

    2012-08-24

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis.

  1. Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Jacquet, P.; Bobkov, V.; Czarnecka, A.; Coenen, J. W.; Colas, L.; Crombé, K.; Graham, M.; Jachmich, S.; Joffrin, E.; Klepper, C. C.; Kiptily, V.; Lehnen, M.; Maggi, C.; Marcotte, F.; Matthews, G.; Mayoral, M.-L.; Mc Cormick, K.; Monakhov, I.; Nave, M. F. F.; Neu, R.; Noble, C.; Ongena, J.; Pütterich, T.; Rimini, F.; Solano, E. R.; van Rooij, G.; JET-EFDA contributors

    2014-02-01

    The most recent JET campaign has focused on characterizing operation with the "ITER-like" wall. One of the questions that needed to be answered is whether the auxiliary heating methods do not lead to unacceptably high levels of impurity influx, preventing fusion-relevant operation. In view of its high single pass absorption, hydrogen minority fundamental cyclotron heating in a deuterium plasma was chosen as the reference wave heating scheme in the ion cyclotron domain of frequencies. The present paper discusses the plasma behavior as a function of the minority concentration X[H] in L-mode with up to 4MW of RF power. It was found that the tungsten concentration decreases by a factor of 4 when the minority concentration is increased from X[H] ≈ 5% to X[H] % 20% and that it remains at a similar level when X[H] is further increased to 30%; a monotonic decrease in Beryllium emission is simultaneously observed. The radiated power drops by a factor of 2 and reaches a minimum at X[H] ≈ 20%. It is discussed that poor single pass absorption at too high minority concentrations ultimately tailors the avoidance of the RF induced impurity influx. The edge density being different for different minority concentrations, it is argued that the impact ICRH has on the fate of heavy ions is not only a result of core (wave and transport) physics but also of edge dynamics and fueling.

  2. Modulation of divalent cation-activated chloride ion currents.

    PubMed

    Scott, R H; McGuirk, S M; Dolphin, A C

    1988-07-01

    1. Voltage-sensitive calcium channel currents carried by Ca2+ (ICa) or Ba2+ (IBa) were followed by tail currents carried by Cl- ions in approximately 45% of cultured dorsal root ganglion neurones. 2. Extracellular application of (-)-baclofen (100 microM) inhibited IBa and ICl(Ba). Bay K 8644 (5 microM) potentiated both currents. 3. Intracellular GTP-gamma-S increased the proportion of neurones in which ICl(Ba) was recorded. In addition, the activation by GTP-gamma-S of a pertussis toxin-sensitive GTP binding (G)-protein resulted in a steady increase in the Cl- tail current with time, despite a concurrent reduction in IBa. 4. Extracellular application of 10mM caffeine selectively reduced ICl(Ba) without significant change in IBa. When Ca2+ was the charge carrier, caffeine had little effect on ICl(Ca), and increased the inactivation of ICa. 5. We conclude that, in addition to being regulated by divalent cation entry through Ca2+ channels, the Cl- current is also regulated by G-protein activation. The mechanism of activation of ICl(Ba) may involve Ca2+ release from intracellular stores.

  3. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-02

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters.

  4. Kinetics of positive ions and electrically neutral active particles in afterglow in neon at low pressure

    SciTech Connect

    Pejović, Milić M. Nešić, Nikola T.; Pejović, Momčilo M.

    2014-04-15

    Kinetics of positive ions and electrically neutral active particles formed during breakdown and successive discharge in neon-filled tube at 6.6 millibars pressure had been analyzed. This analysis was performed on the basis of mean value of electrical breakdown time delay t{sup ¯}{sub d} dependence on afterglow period τ (memory curve). It was shown that positive ions are present in the 1μs < τ < 30 ms interval, which is manifested through t{sup ¯}{sub d} slow increase with the increase of τ. A rapid t{sup ¯}{sub d} increase in the 30 ms < τ < 3 s interval is a consequence of significant decrease of positive ions concentration and dominant role in breakdown initiation have ground state nitrogen atoms, which further release secondary electrons from the cathode by catalytic recombination process. These atoms are formed during discharge by dissociation of ground state nitrogen molecules that are present as impurities in neon. For τ > 3 s, breakdown is initiated by cosmic rays and natural radioactivity. The increase of discharge current leads to decrease of t{sup ¯}{sub d} due to the increase of positive ions concentration in inter electrode gap. The increase of applied voltage also decreases t{sup ¯}{sub d} for τ > 30 ms due to the increase of the probability for initial electron to initiate breakdown. The presence of UV radiation leads to the decrease of t{sup ¯}{sub d} due to the increased electron yield caused by photoelectrons. The influence of photoelectrons on breakdown initiation can be noticed for τ > 0.1 ms, while they dominantly determine t{sup ¯}{sub d} for τ > 30 ms.

  5. Major-ion, nutrient, and trace-element concentrations in the Steamboat Creek basin, Oregon, 1996

    USGS Publications Warehouse

    Rinella, Frank A.

    1998-01-01

    Bottom-sediment concentrations of antimony, arsenic, cadmium, copper, lead, mercury, zinc, and organic carbon were largest in City Creek. In City Creek and Horse Heaven Creek, concentrations for 11 constituents--antimony, arsenic, cadmium, copper, lead, manganese (Horse Heaven Creek only), mercury, selenium, silver, zinc, and organic carbon (City Creek only)--exceeded concentrations considered to be enriched in streams of the nearby Willamette River Basin, whereas in Steamboat Creek only two trace elements--antimony and nickel--exceeded Willamette River enriched concentrations. Bottom-sediment concentrations for six of these constituents in City Creek and Horse Heaven Creek--arsenic, cadmium, copper, lead, mercury, and zinc--also exceeded interim Canadian threshold effect level (TEL) concentrations established for the protection of aquatic life, whereas only four constituents between Singe Creek and Steamboat Creek--arsenic, chromium, copper (Singe Creek only), and nickel--exceeded the TEL concentrations.

  6. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

    PubMed

    Clementi, Emily A; Marks, Laura R; Roche-Håkansson, Hazeline; Håkansson, Anders P

    2014-02-17

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial

  7. Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes

    PubMed Central

    Roche-Håkansson, Hazeline; Håkansson, Anders P.

    2014-01-01

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca2+, K+, and H+, respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species

  8. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A.

    PubMed

    Lim, Novandy K; Lam, Andy K M; Dutzler, Raimund

    2016-11-01

    The TMEM16 proteins constitute a family of membrane proteins with unusual functional breadth, including lipid scramblases and Cl(-) channels. Members of both these branches are activated by Ca(2+), acting from the intracellular side, and probably share a common architecture, which was defined in the recent structure of the lipid scramblase nhTMEM16. The structural features of subunits and the arrangement of Ca(2+)-binding sites in nhTMEM16 suggest that the dimeric protein harbors two locations for catalysis that are independent with respect to both activation and lipid conduction. Here, we ask whether a similar independence is observed in the Ca(2+)-activated Cl(-) channel TMEM16A. For this purpose, we generated concatenated constructs containing subunits with distinct activation and permeation properties. Our biochemical investigations demonstrate the integrity of concatemers after solubilization and purification. During investigation by patch-clamp electrophysiology, the functional behavior of constructs containing either two wild-type (WT) subunits or one WT subunit paired with a second subunit with compromised activation closely resembles TMEM16A. This resemblance extends to ion selectivity, conductance, and the concentration and voltage dependence of channel activation by Ca(2+) Constructs combining subunits with different potencies for Ca(2+) show a biphasic activation curve that can be described as a linear combination of the properties of its constituents. The functional independence is further supported by mutation of a putative pore-lining residue that changes the conduction properties of the mutated subunit. Our results strongly suggest that TMEM16A contains two ion conduction pores that are independently activated by Ca(2+) binding to sites that are embedded within the transmembrane part of each subunit.

  9. Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    PubMed Central

    Sherman, David M; Collings, Matthew D

    2002-01-01

    Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClm)n-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClm)n-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  10. Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain

    SciTech Connect

    Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F.; Garcia-Tenorio, R.

    2008-08-07

    The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and {sup 210}Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that {sup 234}U/{sup 238}U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer.

  11. Enhancement of Ion Activation and Collision-Induced Dissociation by Simultaneous Dipolar Excitation of Ions in x- and y-Directions in a Linear Ion Trap.

    PubMed

    Dang, Qiankun; Xu, Fuxing; Xie, Xiaodong; Xu, Chongsheng; Dai, Xinhua; Fang, Xiang; Ding, Li; Ding, Chuan-Fan

    2015-06-02

    Collision-induced dissociation (CID) in linear ion traps is usually performed by applying a dipolar alternating current (AC) signal to one pair of electrodes, which results in ion excitation mainly in one direction. In this paper, we report simulation and experimental studies of the ion excitation in two coordinate directions by applying identical dipolar AC signals to two pairs of electrodes simultaneously. Theoretical analysis and simulation results demonstrate that the ion kinetic energy is higher than that using the conventional CID method. Experimental results show that more activation energy (as determined by the intensity ratio of the a4/b4 fragments from the CID of protonated leucine enkephalin) can be deposited into parent ions in this method. The dissociation rate constant in this method was about 3.8 times higher than that in the conventional method under the same experimental condition, at the Mathieu parameter qu (where u = x, y) value of 0.25. The ion fragmentation efficiency is also significantly improved. Compared with the conventional method, the smaller qu value can be used in this method to obtain the same internal energy deposited into ions. Consequently, the "low mass cut-off" is redeemed and more fragment ions can be detected. This excitation method can be implemented easily without changing any experimental parameters.

  12. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  13. Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction

    PubMed Central

    1988-01-01

    There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar- activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na- preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans. PMID:3171536

  14. Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology

    NASA Astrophysics Data System (ADS)

    Xu, Fuxing; Dang, Qiankun; Dai, Xinhua; Fang, Xiang; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2016-08-01

    Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and β are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected β or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the β values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry.

  15. Active ion tracer experiments attempted in conjunction with the ion composition experiment on GEOS-2

    NASA Astrophysics Data System (ADS)

    Young, D. T.

    It is pointed out that to date six ion injection/tracer experiments have been attempted in conjunction with the GEOS-2 Ion Composition Experiment: three rocket borne Ba shaped-charge releases (Porcupine 3 and 4 and Ba-GEOS), one Li release, and two periods of operation of the Xe(+) accelerator on the SCATHA satellite. The characteristics of each of these six releases are outlined, and upper limits are placed on possible ion fluxes reaching GEOS-2. The order of magnitude of ion fluxes to be expected from each release is estimated, and it is shown that three of the experiments had no real chance of succeeding in the first place.

  16. Changes in Concentrations of Plasma ION-Components In Hotspot Driven By Thermodynamic Forces and their Effects on Implosions

    NASA Astrophysics Data System (ADS)

    Ho, D.; Zimmerman, G.; Kagan, G.; Amendt, P.; Rinderknecht, H.; Haan, S.; Perkins, J.; Salmonson, J.

    2016-10-01

    Changes in relative concentrations of plasma ion components driven by gradients of mass concentration, pressure, and temperature gradients, occur during shock flash and subsequent hotspot formation. This is a universal phenomenon in all laboratory implosions with two-ion component fuels, e.g., DT and D3He, occurring in the central region of the hotspot. Concentration differentials lead to noticeable yield reduction in Omega exploding pusher implosions, but not in NIF ``Symcaps'' where radiation-hydrodynamics simulations are in agreement with shot data. For all our ignition capsules designs that use a high-density carbon ablator and DT fuel adiabat α ranging from 1.5 to 4, substantial concentration differentials occur around shock flash but they are relaxed by the time of ignition resulting in no simulated yield degradation. We will provide explanations and present simulation results for this phenomenon. This work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  17. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    PubMed

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine.

  18. Spectrofluorometric determination and chemical speciation of trace concentrations of tungsten species in water using the ion pairing reagent procaine hydrochloride.

    PubMed

    El-Shahawi, M S; Al Khateeb, L A

    2012-01-15

    A highly selective and low cost extractive spectrofluorimetric method was developed for determination of trace concentrations of tungsten (VI) in water. The method was based upon solvent extraction of the developed ion associate [(PQH(+))(2)·WO(4)(2-)] of the fluorescent ion-pairing reagent [2-(diethylamino)ethyl 4 aminobenzoate] hydrochloride namely procaine hydrochloride, PQH(+)·Cl(-) and tungstate (WO(4)(2-)) in aqueous solution of pH 6-7 followed by measuring the resulting fluorescence enhancement in n-hexane at λ(ex/em)=270/320nm. The fluorescence intensity of PQH(+)·Cl(-) increased linearly on increasing tungstate concentration in the range 25-250μgL(-1). The limits of detection (LOD) and quantification (LOQ) of tungsten (VI) were found 7.51 and 24.75μgL(-1), respectively. Chemical composition of the developed ion associate and the molar absorptivity at 270nm were found to be [(PQH(+))(2)·WO(4)(2-)] and 2.7×10(4)Lmol(-1)cm(-1), respectively. Other oxidation states (III, IV, V) of tungsten species could also be determined after oxidation with H(2)O(2) in aqueous solution to tungsten (VI). The method was applied for analysis of tungsten in certified reference material (IAEA Soil-7) and wastewater samples. The results were compared successfully (>95%) with the data of inductively coupled plasma-mass spectrometry (ICP-MS).

  19. The use of the ion probe mass spectrometer in the measurement of hydrogen concentration gradients in Monel K 500

    NASA Technical Reports Server (NTRS)

    Truhan, J. J., Jr.; Hehemann, R. F.

    1974-01-01

    The ion probe mass spectrometer was used to measure hydrogen concentration gradients in cathodically charged Monel K 500. Initial work with the ion probe involved the calibration of the instrument and the establishment of a suitable experimental procedure for this application. Samples of Monel K 500 were cathodically charged in a weak sulfuric acid solution. By varying the current density, different levels of hydrogen were introduced into the samples. Hydrogen concentration gradients were taken by ion sputtering on the surface of these samples and monitoring the behavior of the hydrogen mass peak as a function of time. An attempt was made to determine the relative amounts of hydrogen in the bulk and grain boundaries by analyzing a fresh fracture surface with a higher proportion of grain boundary area. It was found that substantially more hydrogen was detected in the grain boundaries than in the bulk, confirming the predictions of previous workers. A sputter rate determination was made in order to establish the rate of erosion.

  20. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  1. Ion Profiling of Implanted Dopants in Si (001) with Excess Vacancy Concentration

    SciTech Connect

    Dalponte, M.; Boudinov, H.; Goncharova, L. V.; Feng, T.; Garfunkel, E.; Gustafsson, T.

    2007-09-26

    Medium energy ion scattering (MEIS) was used to study the distribution of ion-implanted As and Sb dopants in Si with excess vacancies and SIMOX substrates as well as the effects of thermal treatments. Extra vacancies in Si were generated by N or O pre-implantation at high temperatures. Under these conditions, effects related to the different chemical nature of the pre-implanted species are expected. The annealing behavior and depth distribution of the Sb atoms differed for O compared to N pre-implanted Si. After long annealing times, the oxygen containing samples (SIMOX and O pre-implanted Si) presented higher substitutionality. The nitrogen pre-implanted Si presented the lowest amount of segregated Sb and a more uniform dopant distribution. For both N and O pre-implanted samples a large dopant loss to the atmosphere during annealing was observed.

  2. Decreased Sensitivity to Changes in the Concentration of Metal Ions as the Basis for the Hyperactivity of DtxR(E175K)

    SciTech Connect

    D’Aquino, J. Alejandro; Denninger, Andrew R.; Moulin, Aaron G.; D’Aquino, Katharine E.; Ringe, Dagmar

    2010-01-12

    The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K{sub a} = 7.6 {+-} 0.5 x 10{sup 4}, which is very similar to the reported value for the wild-type repressor, K{sub a} = 6.3 x 10{sup 4}. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex

  3. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-02-16

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO4). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH4-N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu(2+) indicated the loss of cell viability in sludge flocs.

  4. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  5. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.

    PubMed

    da Silva, Cleber Pinto; de Almeida, Thiago E; Zittel, Rosimara; de Oliveira Stremel, Tatiana R; Domingues, Cinthia E; Kordiak, Januário; de Campos, Sandro Xavier

    2016-12-01

    This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

  6. Investigating Sterol and Redox Regulation of the Ion Channel Activity of CLIC1 Using Tethered Bilayer Membranes.

    PubMed

    Al Khamici, Heba; Hossain, Khondher R; Cornell, Bruce A; Valenzuela, Stella M

    2016-12-08

    The Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation. CLIC1 was found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being an aqueous soluble protein into a membrane bound protein have yet to be adequately described. Using tethered bilayer lipid membranes and electrical impedance spectroscopy system, herein we demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1's acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1's membrane structure and function as an ion channel. Furthermore, our impedance spectroscopy results obtained using CLIC1 mutants, suggest that the residue Cys24 is not essential for CLIC1's ion channel function. However Cys24 does appear important for optimal ion channel activity. We also observe differences in conductance between CLIC1 reduced and oxidized forms when added to our tethered membranes. Therefore, we conclude that both membrane sterols and redox play a role in the ion channel activity of CLIC1.

  7. Investigating Sterol and Redox Regulation of the Ion Channel Activity of CLIC1 Using Tethered Bilayer Membranes

    PubMed Central

    Al Khamici, Heba; Hossain, Khondker R.; Cornell, Bruce A.; Valenzuela, Stella M.

    2016-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation. CLIC1 was found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being an aqueous soluble protein into a membrane bound protein have yet to be adequately described. Using tethered bilayer lipid membranes and electrical impedance spectroscopy system, herein we demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1’s acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1’s membrane structure and function as an ion channel. Furthermore, our impedance spectroscopy results obtained using CLIC1 mutants, suggest that the residue Cys24 is not essential for CLIC1’s ion channel function. However Cys24 does appear important for optimal ion channel activity. We also observe differences in conductance between CLIC1 reduced and oxidized forms when added to our tethered membranes. Therefore, we conclude that both membrane sterols and redox play a role in the ion channel activity of CLIC1. PMID:27941637

  8. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution.

    PubMed

    Shim, Gyu-In; Kim, Seong-Hwan; Eom, Hyung-Woo; Kim, Kwang-Mahn; Choi, Se-Young

    2015-05-01

    We investigated the antimicrobial, cytotoxicity, skin irritation, and ion elution behaviors of glass doped with silver ions with respect to its application to electronic equipment such as phones and tablet screens. The microbes tested were Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum. AgNO3 powder was spread on both sides of aluminosilicate glass, and it was heated to 250-280°C for 10min. Under optimized heating conditions (260°C, 10min), the antimicrobial activity of ion-exchanged glass against bacteria and fungi was over 99.9% after 24 weeks. The glass failed to irritate the skin of experimental animals and was considered non-cytotoxic. The maximum amount of Ag ions that were eluted from the ion-exchanged glass into drinking water was measured at 0.037±0.003μgL(-1), an amount which is several orders of magnitude below the standard limit of 0.1mgL(-1) in drinking water. Ag ion-exchanged glass had characteristics suitable for use as a display screen, such as a light transmittance of 90% and a surface roughness of 0.704nm. Our findings suggest that glass doped with silver ions is more hygienic than non-doped glass is, and should be applied to display screens and glassware.

  9. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    PubMed

    Mikhailov, Victor A; Cooper, Helen J

    2009-05-01

    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.

  10. Er, Yb doped yttrium based nanosized phosphors: particle size, "host lattice" and doping ion concentration effects on upconversion efficiency.

    PubMed

    Pires, Ana Maria; Heer, Stephan; Güdel, Hans Ulrich; Serra, Osvaldo Antonio

    2006-05-01

    The upconverter phosphors studied herein have different percentages of Er3+ and Yb3+ as doping ions in different Y3+ matrixes (Y2O3, Y2O2S), and were prepared from different precursors (polymeric resin, oxalate, basic carbonate) and method (combustion). Upconversion emission spectra were recorded at 298 K for all the doped samples in the visible region, for efficiency and Green/Red emission relative intensity comparisons. Therefore, an investigation of the influence of the doping ion concentration, particle size and host lattice on the upconversion process is provided in view of the UPT (Upconverting phosphor technology application). On the basis of the results, it was possible to evaluate the best combination for a specific assay, considering whether it is advantageous to have the greatest contribution from the green or red emissions, or from both in comparable intensities.

  11. Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration

    NASA Astrophysics Data System (ADS)

    Aguilella-Arzo, Marcel; Cervera, Javier; Ramírez, Patricio; Mafé, Salvador

    2006-04-01

    We present a simple physical model to estimate the blocked pore probability of an ion channel that can be blocked by a highly charged drug in solution. The model is inspired by recent experimental work on the blocking of the PA63 channel, involved in the anthrax toxin infection, by a highly charged drug [Karginov PNAS 102, 15075 (2005)]. The drug binding to the pore is highly specific but the strong dependence of blocking on the applied voltage and electrolyte concentration suggests that long range electrostatic interactions are important. Since basic electrostatic concepts rather than detailed molecular models are considered, the microscopic details of the channel blocking are ignored, although the model captures most of the qualitative characteristics of the problem.

  12. The relation of seismic activity and radon concentration

    SciTech Connect

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  13. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb{sup 2+})

    SciTech Connect

    Sukumar, Piruthivi; Beech, David J.

    2010-02-26

    Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca{sup 2+} signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca{sup 2+}-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb{sup 2+}). Intracellular Ca{sup 2+} and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb{sup 2+} stimulated TRPC5 at concentrations greater than 1 {mu}M. Control cells without TRPC5 showed little or no response to Pb{sup 2+} and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 {mu}M Pb{sup 2+}. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb{sup 2+} but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb{sup 2+} is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.

  14. Concentration quenching of praseodymium ions Pr(3+) in BaGd2(MoO4)4 crystals.

    PubMed

    Guan, Ying; Tsuboi, Taiju; Huang, Yanlin; Huang, Wei

    2014-03-07

    The concentration effect on the photoluminescence (PL) of the praseodymium Pr(3+) ion is studied at 298-12 K for barium gadolinium molybdate (BaGd2(MoO4)4, called BGM) crystals with a wide Pr(3+) concentration range of 0.05-25.0 mol%. Three types of concentration dependences are observed for the emissions although all types show PL quenching at high concentrations. The first type (Type A) has the maximum PL intensity at about 10 mol% with a non-zero intensity at high concentrations, which is observed for the (3)P0 emissions except for emission at 621 nm. The second and third types (Type B-1 and B-2) have the maximum at about 1 mol% with a finite residual intensity and nearly zero intensity at high concentrations, respectively, which are observed for the 621 nm emission and all the (1)D2 emissions. It is suggested that the energy migration mechanism is responsible for Type A, while the non-resonant cross-relaxation is responsible for Type B-1 and the resonant cross-relaxation for Type B-2.

  15. Influence of prolactin and calcium gluconate concentration on permeation and intestinal absorption of Ca(II) ions.

    PubMed

    Ryszka, Florian; Klimas, Rimantas; Dolinska, Barbara; Lopata, Katarzyna

    2012-08-01

    The in vitro permeation and absorption of calcium ions across the small intestine were measured at different concentrations of calcium gluconate solutions (1.0, 10.0 and 20.0 mM) with or without prolactin. The calcium ions permeated through the small intestine from a donor environment to an acceptor environment that mimicked the conditions in the stomach to ileum segment of the digestive tract. The permeation and absorption of calcium were directly dependent on the calcium concentration of the solutions. At 10 and 20 mM permeation was significantly higher than that at 1.0 mM (p < 0.05). In the presence of prolactin both permeation and absorption increase considerably. At the lowest concentration (1.0 mM) simulating calcium deficiency, there was compensation by the small intestine, suggesting that such deficiency stimulates its mobilization from intestinal tissue. Prolactin enhances the calcium mobilization process even at sufficient calcium intakes. It is suggested that prolactin takes part in regulation of calcium homeostasis in the organism.

  16. Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme.

    PubMed Central

    Hermann, T; Auffinger, P; Scott, W G; Westhof, E

    1997-01-01

    In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA. PMID:9254698

  17. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms.

    PubMed

    Scudieri, Paolo; Caci, Emanuela; Venturini, Arianna; Sondo, Elvira; Pianigiani, Giulia; Marchetti, Carla; Ravazzolo, Roberto; Pagani, Franco; Galietta, Luis J V

    2015-09-01

    TMEM16F is a membrane protein with possible dual function as an ion channel and a phospholipid scramblase. The properties of ion channels associated with TMEM16F and the link between ion channel and scramblase activity are a matter of debate. We studied the properties of four isoforms of TMEM16F generated by alternative splicing. Upregulation of three TMEM16F isoforms or silencing of endogenous TMEM16F increased and decreased, respectively, both scramblase and channel activities. Introduction of an activating mutation in TMEM16F sequence caused a marked increase in phosphatidylserine scrambling and in ion transport indicating direct involvement of the protein in both functions. TMEM16F, also known as ANO6, is a membrane protein that has been associated with phospholipid scramblase and ion channel activity. However, the characteristics of TMEM16F-dependent channels, particularly the ion selectivity, are a matter of debate. Furthermore, the direct involvement of TMEM16F in phospholipid scrambling has been questioned. We studied the properties of different TMEM16F variants generated by alternative splicing. Using whole-cell patch-clamp recordings, we found that V1, V2 and V5 variants generated membrane currents activated by very high (micromolar) intracellular Ca(2+) concentrations and positive membrane potentials. These variants showed different degrees of Ca(2+) sensitivity and kinetics of activation but similar ion permeability, characterized by a slight selectivity for Cl(-) over Na(+) . A fourth variant (V3) showing a unique carboxy-terminus was devoid of activity, in agreement with its intracellular localization. We also measured scramblase activity using the binding of annexin V to detect phosphatidylserine on the cell surface. V1, V2 and V5 variants were associated with calcium-dependent phosphatidylserine externalization. Interestingly, introduction of an activating mutation, D409G, produced a marked increase in the apparent Ca(2+) sensitivity of TMEM16F

  18. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, Ganesh; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-10-01

    Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 1011 ions/cm2 to 1 × 1013 ions/cm2. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  19. Measurements of lithium-ion concentration equilibration processes inside graphite electrodes

    NASA Astrophysics Data System (ADS)

    Kindermann, Frank M.; Osswald, Patrick J.; Klink, Stefan; Ehlert, Günter; Schuster, Jörg; Noel, Andreas; Erhard, Simon V.; Schuhmann, Wolfgang; Jossen, Andreas

    2017-02-01

    Methods for estimating inner states in a lithium-ion cell require steady state conditions or accurate models of the dynamic processes. Besides often used inner states such as state-of-charge, state-of-health or state-of-function, relaxation processes strongly influence the mentioned states. Inhomogeneous utilization of electrodes and consequent limitations in the operating conditions have recently been brought to attention. Relaxation measurements after an inhomogeneous current distribution through the thickness of an electrode have not been addressed so far. By using a previously developed laboratory cell, we are able to show an inhomogeneous retrieval of lithium-ions from a graphite electrode through the layer with spatial resolution. After this inhomogeneity caused by a constant current operation, equilibration processes are recorded and can be assigned to two different effects. One effect is an equilibration inside the particles (intra-particle) from surface to bulk and vice versa. The other effect is an assimilation between the particles (inter-particle) to reach a homogeneous state-of-charge in each particle throughout the electrode layer. While intra-particle relaxation is observed to be finished within 4 h, inter-particle relaxation through the layer takes more than 40 h. The overall time for both equilibration processes shows to be in the order of 48 h.

  20. Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.

    PubMed

    Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk

    2015-10-14

    The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.

  1. Measurement of Atmospheric Isoprene Concentrations using an Automated Cylindrical Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Edwards, G. D.; Shepson, P. B.; Grossenbacher, J. W.; Wells, J. M.; Patterson, G.; Barkett, D. J.

    2005-12-01

    Volatile organic compounds (VOCs) released from the biosphere have been shown to substantially influence both ozone and aerosol chemistry. However, field instruments for the detection of these trace gases are often limited by instrument portability and the ability to distinguish compounds of interest from background or other interfering compounds. We have developed an automated sampling system that is coupled to a lightweight, low power cylindrical ion trap mass spectrometer. This instrument was used for high frequency isoprene measurements at a recent field campaign at the University of Michigan Biological Station PROPHET lab. The inlet uses a sample loop and 6-port valves to trap ambient air samples without the aid of cryogens. VOCs are preconcentrated by sampling directly into a pre-cooled capillary column that is then heated by moving the column to a pre-heated region to obtain rapid separation of isoprene from other species. Isoprene eluting from the end of the column is then introduced to the mass spectrometer. The commercially available cylindrical ion trap (Minotaur 400) interfaced with our preconcentrator yields limits of detection of <80 ppt. The data obtained during the PROPHET 2005 campaign suggest the new inlet system, when coupled with the Minotaur 400 detector provides a feasible field instrument for the fast and accurate evaluation of trace gases over a variety of atmospheric conditions.

  2. Effects of low-dose carbon ion irradiation on the proliferation of splenocytes and the concentration of interferon in mice

    NASA Astrophysics Data System (ADS)

    Li, Ning

    AIM: To investigate the changes in the proliferation response of splenic lymphocytes and the concentration of serum interferon (IFN-γ) in mice induced by low doses carbon ion irradiation. METHODS: The experiment was carried out in the laboratory of physical medicine, Institute of Modern Physics, Chinese Academy of Sciences in November 2006. 1. Thirty Kunming mice were randomly divided into five groups with six animals in each group and irradiated with 0, 0.01, 0.03, 0.05 and 0.10 Gy carbon ion at Heavy Ion Research Facility Laboratory of Lanzhou. Twenty-four hours after irradiation, the eyeballs of mice were taken out under anesthesia and blood was harvested. 2. The concentration of IFN-γ in serum was detected by ELISA kit. After the mice were executed, the spleen was harvested under sterile condition to prepare spleen mononuclear cell suspension. The effects of concanavalin A(ConA) and lipopolysaccharide(LPS) on the proliferations of mononuclear cells was tested by MTT assay. RESULTS: All thirty mice were involved in the result analysis. 1. The concentration of IFN-γ in serum remarkably increased after irradiation with 0.01 Gy and 0.03 Gy compared with that in controls (p<0.05). However, the concentration of IFN-γ decreased after irradiation with 0.05 Gy and 0.1 Gy. 2. Compared with control group, the proliferation of T lymphocytes induced by ConA and B lymphocytes induced by LPS remarkably increased after irradiation with 0.01 Gy (p<0.001) and the effect was of significant difference compared with that of 0.03 Gy (p<0.01). The irradiation with 0.05 Gy presented an inhibition to the proliferation of splenic lymphocytes. This inhibition was also obvious when irradiated with 0.10 Gy. CONCLUSION: 0.01 Gy and 0.03 Gy carbon ion irradiation can stimulate the proliferation of splenocytes, induce the secretion of IFN-γ and, in consequence, enhance the immune function.

  3. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions.

    PubMed

    Burt, Ryan; Breitsprecher, Konrad; Daffos, Barbara; Taberna, Pierre-Louis; Simon, Patrice; Birkett, Greg; Zhao, X S; Holm, Christian; Salanne, Mathieu

    2016-10-06

    Nanoporous carbon-based supercapacitors store electricity through adsorption of ions from the electrolyte at the surface of the electrodes. Room temperature ionic liquids, which show the largest ion concentrations among organic liquid electrolytes, should in principle yield larger capacitances. Here, we show by using electrochemical measurements that the capacitance is not significantly affected when switching from a pure ionic liquid to a conventional organic electrolyte using the same ionic species. By performing additional molecular dynamics simulations, we interpret this result as an increasing difficulty of separating ions of opposite charges when they are more concentrated, that is, in the absence of a solvent that screens the Coulombic interactions. The charging mechanism consistently changes with ion concentration, switching from counterion adsorption in the diluted organic electrolyte to ion exchange in the pure ionic liquid. Contrarily to the capacitance, in-pore diffusion coefficients largely depend on the composition, with a noticeable slowing of the dynamics in the pure ionic liquid.

  4. The active titration method for measuring local hydroxyl radical concentration

    NASA Technical Reports Server (NTRS)

    Sprengnether, Michele; Prinn, Ronald G.

    1994-01-01

    We are developing a method for measuring ambient OH by monitoring its rate of reaction with a chemical species. Our technique involves the local, instantaneous release of a mixture of saturated cyclic hydrocarbons (titrants) and perfluorocarbons (dispersants). These species must not normally be present in ambient air above the part per trillion concentration. We then track the mixture downwind using a real-time portable ECD tracer instrument. We collect air samples in canisters every few minutes for roughly one hour. We then return to the laboratory and analyze our air samples to determine the ratios of the titrant to dispersant concentrations. The trends in these ratios give us the ambient OH concentration from the relation: dlnR/dt = -k(OH). A successful measurement of OH requires that the trends in these ratios be measureable. We must not perturb ambient OH concentrations. The titrant to dispersant ratio must be spatially invariant. Finally, heterogeneous reactions of our titrant and dispersant species must be negligible relative to the titrant reaction with OH. We have conducted laboratory studies of our ability to measure the titrant to dispersant ratios as a function of concentration down to the few part per trillion concentration. We have subsequently used these results in a gaussian puff model to estimate our expected uncertainty in a field measurement of OH. Our results indicate that under a range of atmospheric conditions we expect to be able to measure OH with a sensitivity of 3x10(exp 5) cm(exp -3). In our most optimistic scenarios, we obtain a sensitivity of 1x10(exp 5) cm(exp -3). These sensitivity values reflect our anticipated ability to measure the ratio trends. However, because we are also using a rate constant to obtain our (OH) from this ratio trend, our accuracy cannot be better than that of the rate constant, which we expect to be about 20 percent.

  5. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  6. Ion mobility spectrometry as a simple and rapid method to measure the plasma propofol concentrations for intravenous anaesthesia monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhou, Qinghua; Jiang, Dandan; Gong, Yulei; Li, Enyou; Li, Haiyang

    2016-11-01

    The plasma propofol concentration is important information for anaesthetists to monitor and adjust the anaesthesia depth for patients during a surgery operation. In this paper, a stand-alone ion mobility spectrometer (IMS) was constructed for the rapid measurement of the plasma propofol concentrations. Without any sample pre-treatment, the plasma samples were dropped on a piece of glass microfiber paper and then introduced into the IMS cell by the thermal desorption directly. Each individual measurement could be accomplished within 1 min. For the plasma propofol concentrations from 1 to 12 μg mL‑1, the IMS response was linear with a correlation coefficient R2 of 0.998, while the limit of detection was evaluated to be 0.1 μg mL‑1. These measurement results did meet the clinical application requirements. Furthermore, other clinically-often-used drugs, including remifentanil, flurbiprofen and atracurium, were found no significant interference with the qualitative and quantitative analysis of the plasma propofol. The plasma propofol concentrations measured by IMS were correlated well with those measured by the high performance liquid chromatography (HPLC). The results confirmed an excellent agreement between these two methods. Finally, this method was applied to monitor the plasma propofol concentrations for a patient undergoing surgery, demonstrating its capability of anaesthesia monitoring in real clinical environments.

  7. Iontophoretic transdermal delivery of glycyrrhizin: effects of pH, drug concentration, co-ions, current intensity, and chemical enhancers.

    PubMed

    Yamamoto, Rie; Takasuga, Shinri; Kominami, Katsuya; Sutoh, Chiyo; Kinoshita, Mine; Kanamura, Kiyoshi; Takayama, Kozo

    2013-01-01

    The aim of the present study was to evaluate the feasibility of transdermal delivery of glycyrrhizin, an agent used in the treatment of chronic hepatitis C, by cathodal iontophoresis using Ag/AgCl electrodes in vitro. The effects of donor pH (pH 4-7), concentration of drug (0.025-0.2% (w/v)), concentration of external chloride ions (Cl(-)) (0-133 mM), current strength (0-0.5 mA/cm(2)), and permeation enhancers (urea and Tween 80) on the skin permeability of glycyrrhizin were examined in in vitro skin permeation studies using porcine ear skin as the membrane. The cumulative amount of permeated glycyrrhizin and the steady-state skin permeation flux of glycyrrhizin across porcine skin increased in a pH-dependent manner. The skin permeability of glycyrrhizin was independent of the concentration of drug and competed only with a high external Cl(-) concentration. The skin permeation flux of glycyrrhizin increased with the current (R(2)=0.8955). The combination of iontophoresis and enhancers provided an additive or synergistic effect, and a skin permeation flux of about 60 µg/h/cm(2) was achieved. The plasma concentration of glycyrrhizin in humans, extrapolated from the in vitro steady-state permeation flux across porcine skin, was within the therapeutic level. These results suggest that cathodal iontophoresis can be used as a transdermal drug delivery system for glycyrrhizin using reasonable patch sizes and acceptable levels of current intensity.

  8. Ion mobility spectrometry as a simple and rapid method to measure the plasma propofol concentrations for intravenous anaesthesia monitoring

    PubMed Central

    Wang, Xin; Zhou, Qinghua; Jiang, Dandan; Gong, Yulei; Li, Enyou; Li, Haiyang

    2016-01-01

    The plasma propofol concentration is important information for anaesthetists to monitor and adjust the anaesthesia depth for patients during a surgery operation. In this paper, a stand-alone ion mobility spectrometer (IMS) was constructed for the rapid measurement of the plasma propofol concentrations. Without any sample pre-treatment, the plasma samples were dropped on a piece of glass microfiber paper and then introduced into the IMS cell by the thermal desorption directly. Each individual measurement could be accomplished within 1 min. For the plasma propofol concentrations from 1 to 12 μg mL−1, the IMS response was linear with a correlation coefficient R2 of 0.998, while the limit of detection was evaluated to be 0.1 μg mL−1. These measurement results did meet the clinical application requirements. Furthermore, other clinically-often-used drugs, including remifentanil, flurbiprofen and atracurium, were found no significant interference with the qualitative and quantitative analysis of the plasma propofol. The plasma propofol concentrations measured by IMS were correlated well with those measured by the high performance liquid chromatography (HPLC). The results confirmed an excellent agreement between these two methods. Finally, this method was applied to monitor the plasma propofol concentrations for a patient undergoing surgery, demonstrating its capability of anaesthesia monitoring in real clinical environments. PMID:27869199

  9. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    PubMed Central

    Kozawa, Takahiro; Naito, Makio

    2015-01-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. PMID:27877756

  10. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.

    PubMed

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g(-1), the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  11. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors

    PubMed Central

    2014-01-01

    Background The use of autologous blood concentrates, such as activated, concentrated platelets, in orthopaedic clinical applications has had mixed results. Research on this topic has focused on growth factors and cytokines, with little directed towards matrix metalloproteinases (MMPs) which are involved in post-wound tissue remodeling. Methods In this study, the authors measured the levels of MMP-2, MMP-9 and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), in activated platelets derived from blood of healthy, male volunteers (n = 92), 19 to 60 years old. The levels of the natural inhibitors of these proteases, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2 and TIMP-4 were also assessed. Results Notably, there was no significant change in concentration with age in four of six targets tested. However, TIMP-2 and TIMP-4 demonstrated a statistically significant increase in concentration for subjects older than 30 years of age compared to those 30 years and younger (P = 0.04 and P = 0.04, respectively). Conclusion TIMP-2 and TIMP-4 are global inhibitors of MMPs, including MMP-2 (Gelatinase A). MMP-2 targets native collagens, gelatin and elastin to remodel the extracellular matrix during wound healing. A decreased availability of pharmacologically active MMP-2 may diminish the effectiveness of the use of activated, concentrated platelets from older patients, and may also contribute to longer healing times in this population. PMID:24766991

  12. Ion beam methods to determine trace heavy metals concentrations and sources in urban airsheds

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Stelcer, Ed; Garton, David

    2002-05-01

    Unique data for Australia on the concentration of selected metals in fine particle ambient air pollution is presented for urban, industrial and rural sites along 300 km section of the eastern coast line of Australia around Sydney. IBA techniques were used to determine over 25 different chemical species in the air including, H, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Se and Pb. This included many trace metals at concentrations around 1 ng/m 3 of air sampled.

  13. Molecular dynamics simulation study of distribution and dynamics of aqueous solutions of uranyl ions: the effect of varying temperature and concentration.

    PubMed

    Chopra, Manish; Choudhury, Niharendu

    2015-11-07

    Investigating the characteristics of actinyl ions has been of great interest due to their direct relevance in the nuclear fuel cycle. All-atom molecular dynamics simulations have been employed to study the orientational structure and dynamics of aqueous solutions of uranyl ions of various concentrations. The orientational structure of water around a uranyl ion has been thoroughly investigated by calculating different orientational probability distributions corresponding to different molecular axes of water. The orientational distribution of water molecules in the first coordination shell of a uranyl ion is found to be markedly different from that in bulk water. Analysis of counterion distribution around the uranyl ion reveals the presence of nitrate ions along with water molecules in the first solvation shell. From the comparison of the number of coordinated water and nitrate ions at various uranyl nitrate concentrations, it is evident that these two species compete for occupying the first solvation shell of the uranyl ion. Orientational dynamics of water molecules about different molecular axes of water in the vicinity of uranyl ions have also been investigated and decreasing orientational mobility of water with increasing uranyl concentration has been found. However, it is observed that the orientational dynamics remains more or less the same whether we consider all the water molecules in the aqueous solution or only the solvation shell water molecules. The effect of temperature on the translational and orientational characteristics of the aqueous uranyl solutions has also been studied in detail.

  14. Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion

    NASA Astrophysics Data System (ADS)

    Fontananova, E.; Messana, D.; Tufa, R. A.; Nicotera, I.; Kosma, V.; Curcio, E.; van Baak, W.; Drioli, E.; Di Profio, G.

    2017-02-01

    The electrochemical properties of ion exchange membranes (IEMs) applied for salinity-gradient power (SGP) harvesting, are usually measured using diluited NaCl aqueous solutions because of the prevalence of its constituents ions in natural solutions (e.g. seawater). However, in real applications, the IEMs come in contact with other ionic species than Na+ and Cl- that can have a relevant effect on their properties. As a consequence, the obtained results in many cases are not really representative. The aim of the present study was to investigate the effect of solution concentration and compositions on permselectivity, membrane and interface resistance, for both anion and cation exchange membranes (AEMs and CEMs). Special attention was paid to the influence of the most common multivalent ions in seawater (Mg2+, Ca2+ and SO42-) on the electrochemical properties of the AEM and the CEM. It was possible to discriminate the impact on the AEM from that on the CEM. The results highlighted a strong negative effect of Mg2+ on the CEM (relevant increase of ionic resistance and permselectivity) and, at minor extent, on the AEM (moderate reduction of permselectivity).

  15. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl(-) ions.

    PubMed

    Ahn, Hyangsig; Jo, Ho Young; Ryu, Ji-Hun; Koh, Yong-Kwon

    2017-02-01

    Zero-valent iron (ZVI) is commonly used as a medium in permeable reactive barriers (PRBs) because of its high reducing ability. The generation of H2 gas in PRBs, however, can decrease the permeability of PRBs and reduce the contact area between the PRB and contaminated groundwater. This study investigated the effect of the initial Cr(VI) concentration ([Cr(VI)init]) in aqueous solutions containing Cl(-) ions on the generation of H2 gas. ZVI chips were reacted in reactors with 0.5-M NaCl solutions with [Cr(VI)init] ranging between 51 and 303 mg/L. The initial pH was set at 3. The oxidation of ZVI chips by Cr(VI) in aqueous solutions containing Cl(-) ions produced H2 gas and particles (Fe(III)-Cr(III)(oxy)hydroxides). The Cr(VI) removal from aqueous solutions increased as the [Cr(VI)init] increased, as did H2 gas generation. The positive effect of [Cr(VI)init] on H2 gas generation might be due to an increase in the redox potential gradient as [Cr(VI)init] increases. This increased gradient would enhance H(+) ion penetration through the passive film (Fe(III)-Cr(III)(oxy)hydroxides), which formed on the ZVI surface, by diffusion from the solution to pits beneath the passive film.

  16. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  17. Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.

    2006-11-01

    Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.

  18. Study of electron-vibrational interaction and concentration quenching effect of Cu+ ions in lithium based sulphate phosphors

    NASA Astrophysics Data System (ADS)

    Bhoyar, Priyanka D.; Choithrani, Renu; Dhoble, S. J.

    2016-07-01

    The objective of this work is to study electron-vibrational interaction (EVI) and concentration quenching and their manifestation in experimental photoluminescence spectra of Cu+ ion in various lithium based phosphors namely, Li2SO4, LiNaSO4 and LiKSO4. The main parameters of EVI, such as the Stokes shift, Huang-Rhys factor and zero-phonon line positions, were estimated. The studied systems shows strong electron lattice coupling. The validity of results was established by modeling the shape of the emission spectra, which was found to be in good agreement with experimental photoluminescence spectra. The concentration quenching study is also carried out for these compounds. The studied systems correspond to the nearest neighbor energy transfer mechanism.

  19. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  20. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    PubMed

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  1. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  2. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations.

    PubMed

    Lewis, Tyler L; Heglund, Patricia J; Lindberg, Mark S; Schmutz, Joel A; Schmidt, Joshua H; Dubour, Adam J; Rover, Jennifer; Bertram, Mark R

    2016-06-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  3. Trophic dynamics of shrinking Subarctic lakes: naturally eutrophic waters impart resilience to rising nutrient and major ion concentrations

    USGS Publications Warehouse

    Lewis, Tyler; Lindberg, Mark S.; Heglund, Patricia J.; Schmutz, Joel A.; Schmidt, Joshua H.; Dubour, Adam J.; Rover, Jennifer R.; Bertram, Mark R.

    2016-01-01

    Shrinking lakes were recently observed for several Arctic and Subarctic regions due to increased evaporation and permafrost degradation. Along with lake drawdown, these processes often boost aquatic chemical concentrations, potentially impacting trophic dynamics. In particular, elevated chemical levels may impact primary productivity, which may in turn influence populations of primary and secondary consumers. We examined trophic dynamics of 18 shrinking lakes of the Yukon Flats, Alaska, that had experienced pronounced increases in nutrient (>200 % total nitrogen, >100 % total phosphorus) and ion concentrations (>100 % for four major ions combined) from 1985-1989 to 2010-2012, versus 37 stable lakes with relatively little chemical change over the same period. We found that phytoplankton stocks, as indexed by chlorophyll concentrations, remained unchanged in both shrinking and stable lakes from the 1980s to 2010s. Moving up the trophic ladder, we found significant changes in invertebrate abundance across decades, including decreased abundance of five of six groups examined. However, these decadal losses in invertebrate abundance were not limited to shrinking lakes, occurring in lakes with stable surface areas as well. At the top of the food web, we observed that probabilities of lake occupancy for ten waterbird species, including adults and chicks, remained unchanged from the period 1985-1989 to 2010-2012. Overall, our study lakes displayed a high degree of resilience to multi-trophic cascades caused by rising chemical concentrations. This resilience was likely due to their naturally high fertility, such that further nutrient inputs had little impact on waters already near peak production.

  4. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003

    NASA Astrophysics Data System (ADS)

    Aas, Wenche; Shao, Min; Jin, Lei; Larssen, Thorjørn; Zhao, Dawei; Xiang, Renjun; Zhang, Jinhong; Xiao, Jinsong; Duan, Lei

    Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO 2 ranging from 0.5 to above 40 μg S m -3. The main components in the airborne particles are (NH 4) 2SO 4 and CaSO 4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l -1 at the most rural site (LGS) to about 200 μeq l -1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l -1, while the total nitrogen concentration is between 30 and 150 μeq l -1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.

  5. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGES

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010more » of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  6. Laser ion source activities at Brookhaven National Laboratory

    SciTech Connect

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010 of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.

  7. Strontium ions concentration dependent modifications on structural and optical features of Li4Sr(BO3)3 glass

    NASA Astrophysics Data System (ADS)

    Obayes, Hayder Khudhair; Wagiran, H.; Hussin, R.; Saeed, M. A.

    2016-05-01

    Composition optimization is essential for achieving improved properties of strontium (Sr2+) doped lithium borate (LSBO) glass. Glasses with compositions (85-x)H3BO3+15Li2CO3+xSrCO3, where x = 0.5-2.5 mol% are synthesized via melt quenching technique. Glasses are characterized to determine Sr2+ ions concentration dependent improvements in the structural, physical, and optical properties. XRD patterns verifies the amorphous nature, FESEM images reveals transmitting surface morphology, stable glasses with Hurby parameter ∼0.5 are achieved. FTIR spectra revealed three fundamental peaks around 700.55-930.68 and 1072.07 cm-1, which corresponded to the trigonal and tetrahedral stretching vibrations of BO3 and BO4 units. These peaks are shifted with the increase of modifier concentration. Energy for Urbach tail, direct and indirect optical gaps are calculated. The increasing glass refractive index from 2.34 to 3.00 is ascribed to the conversion of BO4 into BO3 units. Emission spectra exhibit three peaks centered at 492.65, 536 and 549 nm, corresponding to the transitions from the 1D2, 3D3 and 3D2 levels to ground state 1S0 respectively, and accompanied by a slight blueshift attributed to the formation of new complexes. Effects of strontium ion contents on the structural and optical properties are demonstrated. Our observation may contribute towards the development of LSBO based glass photonics.

  8. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

  9. Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail

    SciTech Connect

    Daglis, I.A.; Axford, I.A.

    1996-03-01

    The authors look at the question of the ionosphere feeding ions into the magnetosphere/magnetotail, in response to magnetic storm activity, or coupling of the solar wind into the system. They are concerned with fast response, not the question of whether the ionosphere feeds ions in general. The dynamics which results in the inner magnetosphere in response to the input of cold ions from the ionosphere is of interest to the authors. They review recent and older data which has shed light on this question. They look at outflow data, and heating mechanisms for these cold ions, as well as the impact such ions may have on the dynamics of magnetic storms. They observe that fast feeding of ions out of the ionosphere may leave the inner magnetosphere heavily populated with heavy ions such as O{sup +}, which can have a definite impact on the dynamic development of the magnetosphere.

  10. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis.

    PubMed

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Castaño-Rodriguez, Carlos; Aguilella, Vicente M; Enjuanes, Luis

    2015-07-03

    Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.

  11. An electrochemical method for decreasing the concentration of sulfate and molybdenum ions in industrial wastewater.

    PubMed

    Panayotova, M; Panayotov, V

    2004-01-01

    An electrochemical method is proposed for decreasing the concentration of sulfate and molybdenum species in industrial wastewater. The method is based on electromigration, electroosmosis, electrolysis, and subsequent secondary processes. The treatment has been carried out in electrolytic cells with graphite electrodes and anodic and cathodic compartments separated by a special ceramic membrane. Influence of the equipment design and working conditions on the treatment effectiveness has been studied. The concentrations of sulfate and molybdenum were decreased from 2000-2200 mg/L to 900-1100 mg/L and 1.9-2.2 mg/L to 0.8-1.2 mg/L, correspondingly. The pH of the treated water was 8.0-8.5, no additional chemicals were introduced and voluminous sludge was not formed. The method proposed is environmentally friendly and seems to be economically feasible for treating wastewater with large flow.

  12. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    SciTech Connect

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  13. Parameterization and Estimation of Surrogate Critical Surface Concentration in Lithium-Ion Batteries (PREPRINT)

    DTIC Science & Technology

    2011-03-01

    1993), Modeling of Galvanostatic Charge and Discharge of the Lithium/ Polymer /Insertion Cell , Journal of Electrochemical Society, Vol.140, pp.1526-1533. P... Fuel Cells . Part I: Model Development, Journal of Electrochemical Society, Vol.145, pp.3407-3417. W. Gu, C. Wang, (2000), Thermal and Electrochemical...and the solid- electrolyte interface concentration of a surrogate single particle for each cell electrode. Equally-spaced radially-discretized diffusion

  14. Ion-pairing molecular recognition in water: aggregation at low concentrations that is entropy-driven.

    PubMed

    Rekharsky, Mikhail; Inoue, Yoshihisa; Tobey, Suzanne; Metzger, Axel; Anslyn, Eric

    2002-12-18

    Investigations into the thermodynamic parameters that characterize the binding of citrate to tris-guanidinium host 1 in water are reported. The parameters K(a), DeltaH degrees, DeltaS degrees, and DeltaG degrees for the binding event were quantified using isothermal titration calorimetry (ITC) techniques. The 1:1 binding stoichiometry was verified by a Job plot derived from NMR data, and the microcalorimetry data was collected for solutions of 1 and citrate ranging from 1 to 100 mM using phosphate buffer concentrations of 5 and 103 mM. At low buffer concentrations (low ionic strength) complexes with greater than 1:1 stoichiometries were observed by ITC, and K(1) was determined to range from 2.0 x 10(3) to 3.0 x 10(3) M(-1). At higher buffer concentrations (high ionic strength) the higher-order complexes were not detected, and K(1) was determined to be 409 M(-1). The 1:1 association of host 1 and citrate is characterized by a large favorable entropy component and negative enthalpy. However, the complexes with higher-order stoichiometry arise from desolvation processes that result from the association of polyions in aqueous media and is entirely entropy driven. This leads to an unusual observation: the dilution of one component of the host/guest complex leads to the formation of the higher-order complexes. The reason for this observation is discussed.

  15. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  16. Tricolor Emission of a Fluorescent Heteroditopic Ligand over a Concentration Gradient of Zinc(II) Ions

    PubMed Central

    Sreenath, Kesavapillai; Clark, Ronald J.

    2012-01-01

    The internal charge transfer (ICT) type fluoroionophore arylvinyl-bipy (bipy = 2,2′-bipyridyl) is covalently tethered to the spirolactam form of rhodamine to afford fluorescent heteroditopic ligand 4. Compound 4 can be excited in the visible region, the emission of which undergoes sequential bathochromic shifts over an increasing concentration gradient of Zn(ClO4)2 in acetonitrile. Coordination of Zn2+ stabilizes the ICT excited state of the arylvinyl-bipy component of 4, leading to the first emission color shift from blue to green. At sufficiently high concentrations of Zn(ClO4)2, the non-fluorescent spirolactam component of 4 is transformed to the fluorescent rhodamine, which turns the emission color from green to orange via intramolecular fluorescence resonance energy transfer (FRET) from the Zn2+-bound arylvinyl-bipy fluorophore to rhodamine. While this work offers a new design of ratiometric chemosensors, in which sequential analyte-induced emission band shifts result in the sampling of multiple colors at different concentration ranges (i.e. from blue to green to orange as [Zn2+] increases in the current case), it also reveals the nuances of rhodamine spirolactam chemistry that have not been sufficiently addressed in the published literature. These issues include the ability of rhodamine spirolactam as a fluorescence quencher via electron transfer, and the slow kinetics of spirolactam ring-opening effected by Zn2+ coordination. PMID:22924325

  17. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Z A E M A M I P O U R , D I E G O C E V A L L O S , A N D M A R K J . R O O D * Department of Civil & Environmental Engineering, University of...such as granular activated carbon (GAC) have been used as biofilter packing material on which biofilm was grown to assist with buffering of the...efficiencies were attributed to the thickness of the biofilm on the GAC. GAC was also used in a separate vessel to dampen the fluctuations of the

  18. Low Concentration of Silver Nanoparticles Not Only Enhances the Activity of Horseradish Peroxidase but Alter the Structure Also

    PubMed Central

    Karim, Zoheb; Adnan, Rohana; Ansari, Mohd Saquib

    2012-01-01

    Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, “low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also”, we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06–0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure. PMID:22848490

  19. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  20. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2014-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  1. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2013-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  2. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland

    PubMed Central

    Wychowanski, Piotr

    2017-01-01

    Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α = 0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution. PMID:28197416

  3. Evaluation of Metal Ion Concentration in Hard Tissues of Teeth in Residents of Central Poland.

    PubMed

    Wychowanski, Piotr; Malkiewicz, Konrad

    2017-01-01

    Objectives. The aim of the study was an assessment of the content of trace elements in enamel and dentin of teeth extracted in patients residing in urban and agricultural areas of Poland. Methods. The study included 30 generally healthy patients with retained third molars. 65 samples of enamel and dentin from individuals living in urban areas and 85 samples of enamel and dentin from individuals living in agricultural areas were prepared. The content of manganese, lead, cadmium, and chromium in the studied enamel and dentin samples from retained teeth was determined by Graphite Furnace Atomic Absorption Spectrometry. In the process of statistical hypothesis testing, the level of significance was assumed at α = 0.05. Results. A comparative analysis of the data showed that enamel and dentin of inhabitants of industrialized areas contain significantly higher amounts of lead and cadmium than hard tissues of teeth in residents of agricultural areas and comparable amounts of manganese and chromium. Significance. It appears that hard tissues of retained teeth may constitute valuable material for assessment of long-term environmental exposure to metal ions. The study confirms that the risk of exposure to heavy metals depends on the place of residence and environmental pollution.

  4. Impacts of anthropogenic emissions and cold air pools on urban to montane gradients of snowpack ion concentrations in the Wasatch Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.

    2014-12-01

    Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means

  5. Exposure to Environmentally Relevant Concentrations of Genistein during Activation Does Not Affect Sperm Motility in the Fighting Fish Betta splendens

    PubMed Central

    Clotfelter, Ethan D.; Gendelman, Hannah K.

    2014-01-01

    Sperm collected from male fighting fish Betta splendens were activated in control water, water containing the ion-channel blocker gadolinium (a putative positive control), or water containing the isoflavone phytoestrogen genistein to determine the effects of acute genistein exposure on male reproductive function. Computer-assisted sperm analysis was used to quantify the proportion of sperm that were motile and the swimming velocity of those sperm. The highest concentration of gadolinium (100 μM) tested was effective at reducing sperm motility and velocity, but neither concentration of genistein tested (3.7 nM or 3.7 μM) significantly affected these sperm parameters. Our findings suggest that acute exposure to waterborne phytoestrogens during activation does not reduce the motility of fish sperm. PMID:24516856

  6. Exposure to environmentally relevant concentrations of genistein during activation does not affect sperm motility in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; Gendelman, Hannah K

    2014-01-01

    Sperm collected from male fighting fish Betta splendens were activated in control water, water containing the ion-channel blocker gadolinium (a putative positive control), or water containing the isoflavone phytoestrogen genistein to determine the effects of acute genistein exposure on male reproductive function. Computer-assisted sperm analysis was used to quantify the proportion of sperm that were motile and the swimming velocity of those sperm. The highest concentration of gadolinium (100 μ M) tested was effective at reducing sperm motility and velocity, but neither concentration of genistein tested (3.7 nM or 3.7 μ M) significantly affected these sperm parameters. Our findings suggest that acute exposure to waterborne phytoestrogens during activation does not reduce the motility of fish sperm.

  7. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  8. Concentrations and sources of aerosol ions and trace elements during ANTCI-2003

    NASA Astrophysics Data System (ADS)

    Arimoto, R.; Zeng, T.; Davis, D.; Wang, Y.; Khaing, H.; Nesbit, C.; Huey, G.

    As part of the Antarctic Tropospheric Chemistry Investigation (ANTCI), bulk aerosol-particle samples collected at the South Pole were analyzed for nitrate, sulfate, methanesulfonate (MSA), selected trace elements and radionuclides. The samples were collected in the same manner as in the Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) campaigns of 1998 and 2000. The ANTCI mean sulfate (124 ng m -3) and MSA (9.1 ng m -3) concentrations were comparable to those during ISCAT, but high MSA and sodium and high MSA/sulfate in late November/early December indicated pervasive maritime influences during that time. Trajectory analyses indicate that the Weddell Sea and the Southern Ocean near Wilkes Land were probable sources for the ocean-derived sulfate. The transport of marine air occurs mainly in the buffer layer or free troposphere, and the rapid oxidation of biogenic sulfur to SO 2 appears to be the basis for the observed low MSA/sulfate ratios. Elements typically associated with mineral dust (Al, Fe, K) and other elements with continental sources (Pb, Sb, Zn) had higher concentrations during ANTCI than ISCAT. The mean filterable nitrate (f-NO 3-) concentration (280 ng m -3) also was conspicuously higher than during ISCAT (39 and 150 ng m -3). Several peaks in f-NO 3- were synchronous with those for MSA and sulfate, but some samples had high f-NO 3- but neither high MSA nor sulfate. While there is some evidence that nitrate or nitric acid is transported to SP from distant sources, local emissions of nitrogen oxides from the snow are a far more important source overall.

  9. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments.

    PubMed

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  10. Sodium Concentration Measurement during Hemodialysis through Ion-Exchange Resin and Conductivity Measure Approach: In Vitro Experiments

    PubMed Central

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some “mixed samples”, i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis. PMID:23844253

  11. Competitive ion-exchange adsorption of proteins: competitive isotherms with controlled competitor concentration.

    PubMed

    Cano, Tony; Offringa, Natalie D; Willson, Richard C

    2005-06-24

    The competitive adsorption processes inevitably present in chromatographic separations of complex mixtures have not been extensively studied. This is partly due to the difficulty of measuring true competitive isotherms, in which all system parameters (including competitor concentrations) are held constant. We report a novel approach to determining competitive protein adsorption isotherms in which the competitor concentration is held constant across the entire isotherm. By using the heme prosthetic group in cytochrome b5 as a quantitative spectrophotometric label, competitive isotherms between cytochrome b5 and alpha-lactalbumin can be constructed. Similarly, manganese-substituted protoporphyrin IX heme replacement allows the non-perturbing labeling of individual cytochrome b5 conservative surface charge mutants by replacement of a single atom in the interior of the protein. This labeling allows the study of competition between cytochrome b5 charge mutants of identical size and shape, which differ only in charge arrangement. Using these techniques, the effect of competing species on equilibrium behavior and the apparent heterogeneity of anion-exchange adsorbents in the presence of competitors can be quantitatively studied by fitting the data to two popular single-component binding models, the Temkin and the Langmuir-Freundlich (L-F) isotherms.

  12. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  13. Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH

    NASA Astrophysics Data System (ADS)

    Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.

  14. Russian Activities in Space Photovoltaic Power Modules with Concentrators

    NASA Technical Reports Server (NTRS)

    Andreev, Vyacheslav M.; Rumyantsev, Valeri D.

    2004-01-01

    Space concentrator modules with point-and line-focus Fresnel lenses and with reflective parabolic troughs have been developed recently at Ioffe Physico-Technical Institute. PV receivers for these modules are based: on the single junction LPE and MOCVD AlGaAs/GaAs solar cells characterized by AM0 efficiencies of 23.5 - 24% at 20 - 50 suns and 24 - 24.75 at 50 - 200 suns; on the mechanically stacked tandem AlGaAs/GaAs-GaSb cells with efficiency of 27 - 28 at 20 - 100 suns. MOCVD AlGaAs/GaAs cells with internal Bragg reflector have shown a higher radiation resistance as compared to a traditional structure. Monolithic two-terminal tandems AlGaAs (top)-GaAs (bottom) for space application and GaSb (top) - InGaAsSb (bottom) for TRV application are under development as well.

  15. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons.

    PubMed

    Balasubramanian, S; Lynch, J W; Barry, P H

    1997-09-01

    The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 microM) of adenosine 3',5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that PCl/PNa approximately 0. However, at low external NaCl concentrations (< or = 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

  16. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  17. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China

    NASA Astrophysics Data System (ADS)

    Meng, C. C.; Wang, L. T.; Zhang, F. F.; Wei, Z.; Ma, S. M.; Ma, X.; Yang, J.

    2016-05-01

    In order to explore the spatial, temporal, and chemical characteristics of fine particulate matter (PM2.5) pollution in Handan city, China, a comprehensive dataset including continuous online observations at four air quality monitoring stations in 2013 and 2014, and the concentrations of water-soluble inorganic ions (WSII) (NO3-, SO42 -, NH4+, Cl-, Na+, Mg2 +, K+, Ca2 +) in PM2.5 samples collected in four representative seasons in 2013 and 2014 are analyzed in this study. And the principal component analysis (PCA) method is applied to identify the source of WSII in Handan. Our results indicate that PM2.5 concentration decreased from 139.4 μg/m3 in 2013 to 116.0 μg/m3 in 2014 on annual average. Spatial variations of PM2.5 mass are not pronounced, indicating that PM2.5 is nearly evenly spread over the study area. The seasonal variations of PM2.5 concentration are significant, normally with 1.7 to 2.4 times higher in winter than in summer. The concentrations of TWSII (total water-soluble inorganic ions) remain relatively stable in two years, with annual averages of 63.1 μg/m3 in 2013 and 57.2 μg/m3 in 2014. SNA (SO42 -, NO3-, NH4+) dominates in the TWSII, accounting for ~ 87% of the TWSII. Similar to PM2.5, WSII exhibits obvious seasonal variations with higher concentrations in autumn and winter, lower in spring and summer. PM2.5 samples are acidic in spring, summer and autumn of 2013, while in winter of 2013 and all seasons of 2014, they are alkaline. SO42 -, NO3- are formed mainly through homogeneous reactions, heterogeneous reactions also exist in winter. Finally, the major sources of WSII in Handan are identified as the mixture of secondary origin, coal combustion, biomass burning (46.1%), dust sources (25.8%), and motor vehicle (12.3%).

  18. Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo.

    PubMed

    Kovac, Suzana; Loh, Su-Wen; Lachal, Shamilah; Shulkes, Arthur; Baldwin, Graham S

    2012-02-15

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated gastrins in vitro and in vivo. Bi3+ ions also bind to glycine-extended gastrin17 (Ggly), but inhibit Ggly-induced cell proliferation and migration in gastrointestinal cell lines in vitro. The aims of the present study were firstly, to establish the mechanism by which Bi3+ ions inhibit the binding of Fe3+ ions to Ggly, and secondly, to test the effect of Bi3+ ions on the activity of non-amidated gastrins in vivo. The interaction between Bi3+ ions, Fe3+ ions and Ggly was investigated by ultraviolet spectroscopy. The effect of Bi3+ ions on colorectal mucosal proliferation was measured in three animal models. In vitro in the presence of Bi3+ ions the affinity of Fe3+ ions for Ggly was substantially reduced; the data was better fitted by a mixed, rather than a competitive, inhibition model. In rats treated with Ggly alone proliferation in the rectal mucosa was increased by 318%, but was reduced to control values (p < 0.001) in animals receiving oral bismuth plus Ggly. Proliferation in the colonic mucosa of mice overexpressing Ggly or progastrin was significantly greater than in wild-type mice, but was no greater than control (p < 0.01) in animals receiving oral bismuth. Thus a reduction in the binding of Fe3+ ions to Ggly and progastrin in the presence of Bi3+ ions is a likely explanation for the ability of oral bismuth to block the biological activity of non-amidated gastrins in vivo.

  19. Biosorption of lead (II) ions by NaOH-activated apple (Malus domestica) juice residue

    NASA Astrophysics Data System (ADS)

    Arimurti, Devita Dwi; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research studied the removal of Pb(II) ions from aqueous solutions using NaOH-activated apple (Malus domestica) juice residue. Biosorbent was characterized with Fourier Transform Infrared Spectrophotometer (FTIR), and Surface Area Analyzer (SAA). The effects of biosorbent dosage, pH, contact time and initial metal ion concentration had been investigated in batch-adsorption method. The biosorption kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetics model. Freundlich and Langmuir's isotherm were used to describe the biosorption process. The optimum conditions of Pb(II) adsorption was observed at 60 min of contact time, pH 4, and 0.1 g biosorbent dosage in 25 ml solution. The biosorption kinetics followed the pseudo-second-order kinetic model, resulted biosorption constant rate of 0.184 g.mg-1.min-1. The Langmuir isotherm model exhibited the best fit to experimental data. The maximum biosorption capacity of Pb(II) determined according to the Langmuir model was 90.90 mg.g-1 at 302 K, with the adsorption energy of 26.429 kJ.mol-1.

  20. Resonance activation and collision-induced-dissociation of ions using rectangular wave dipolar potentials in a digital ion trap mass spectrometer.

    PubMed

    Xu, Fuxing; Wang, Liang; Dai, Xinhua; Fang, Xiang; Ding, Chuan-Fan

    2014-04-01

    Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods.

  1. Recovery and concentration of metal ions. 4: Uphill transport of Zn(II) in a multimembrane hybrid system

    SciTech Connect

    Wodzki, R.; Sionkowski, G.; Pozniak, G.

    1999-02-01

    A study has been made on the uphill transport of zinc cations across a multimembrane hybrid system (MHS) composed of two ion-exchange membranes (IEM) separated by a bulk liquid membrane (BLM). The fluxes of the Zn(II)/H countertransport were investigated as dependent on the composition and structure of ion-exchange polymer membranes (i), the solvent of a liquid membrane (II), the feed and strip membrane area ratio (iii), and the pH of the feed solution (iv). The IEMs of various ionogenic groups (sulfonic acid, carboxylic acid, quaternized amine) and of various structure (clustered, gelatinous, porous) were examined in the MHS containing the BLM with di(2-ethylhexyl)phosphoric acid as a carrier of Zn(II) cations. It has been found that the Zn(II) fluxes are dependent on the properties of both the BLM and polymer membranes, i.e., on the BLM solvent viscosity (i), the nature and concentration of the IEM ion-exchange sites (ii), and the IEM thickness (iii). The best results were obtained when using hexane as the BLM solvent and the Nafion-117 membrane (perfluorinated polymer, sulfonic acid groups) as the cation-exchange membrane (CEM). The influence of the area ratio (feed-to-strip interface) has been checked for A{sub f}/A{sub g} equal to 3:1, 1:1, and 1:3. It was found that the asymmetry of the system leads mainly to some changes in the accumulation of transported species in a liquid membrane phase.

  2. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  3. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution

    PubMed Central

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-01-01

    Four self-assembled monolayer surfaces terminated with –COOH, –OH, –NH2 and –CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca2+ concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On −COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On −OH and −NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged −COOH surface facilitates the direct formation of calcites, and the −OH and −NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on −CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  4. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-03-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment.

  5. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry

    PubMed Central

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-01-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment. PMID:26975333

  6. Ion chromatographic determination of lithium at trace level concentrations. Application to a tracer experiment in a high-mountain lake.

    PubMed

    Nickus, U; Thies, H

    2001-06-22

    The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 microg l(-1) to about 3 microg l(-1) immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 microg l(-1).

  7. Non-ionic surfactant concentration profiles in undamaged and damaged hair fibres determined by scanning ion beam nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Clough, A. S.; Keddie, J. L.; Lu, J. R.; Meredith, P.

    1997-12-01

    Nuclear Reaction Analysis (NRA) was used with a scanning MeV 3He ion microbeam to determine the extent of permeation and segregation of a deuterated non-ionic surfactant (dC 12E 5) into virgin (undamaged) and alkalinic perm damaged hair fibres. 2-D concentration maps show an accumulation of deuterated surfactant in the cortex and medulla of both the virgin and damaged hair. By normalising to the matrix carbon, surfactant levels in the damaged hair were found to be three times higher than in the undamaged hair. This is the first reported direct spatial evidence of the penetration of surfactant into the centre of hair fibres. Furthermore it is the first application of NRA to this type of complex biological matrix.

  8. EFFECTS OF CALCIUM ION CONCENTRATION ON THE DEGENERATION OF AMPUTATED AXONS IN TISSUE CULTURE

    PubMed Central

    Schlaepfer, W. W.; Bunge, R. P.

    1973-01-01

    Light and electron microscope studies were conducted on the nature of the degenerative changes in amputated nerve fibers of cultured rat sensory ganglia and on the effects of media with differing calcium concentrations upon these changes. With glucose-enriched Eagle's media (MEM) containing 1.6 mM calcium, the amputated myelinated and unmyelinated axons undergo a progressive granular disintegration of their axoplasm with collapse and fragmentation of myelin sheaths between 6 and 24 h after transection. With MEM containing only 25–50 µM calcium, the granular axoplasmic degeneration does not occur in transected fibers and they retain their longitudinal continuity and segmental myelin ensheathment for at least 48 h. Addition of 6 mM EGTA to MEM (reducing the estimated Ca++ below 0.3 µM) results in the structural preservation of both microtubules and neurofilaments within transected axons. A transient focal swelling of amputated axons occurs, however, in cultures with normal and reduced calcium. These observations suggest that an alteration in the permeability of the axolemma is a crucial initiating event leading to axonal degenerative changes distal to nerve transection. The loss of microtubules and neurofilaments and the associated granular alterations of the axoplasm in transected fibers appears to result from the influx of calcium into the axoplasm. PMID:4805010

  9. In vitro studies of the loss of antibacterial activity of oxytetracycline in presence of Ca(II) or Mg(II) ions.

    PubMed

    Naz, S; Khan, K A; Zubairi, S A

    1996-07-01

    The results of a comparative study, which evaluated the in vitro effect on the antibacterial activity of oxytetracycline (OTC, CAS 79-57-2) in presence of Ca(II)/Mg(II) ions suggest that susceptibility of Staphylococcus aureus, Bacillus pumilis and Bacillus subtilis to OTC is reduced in presence of Ca(II)/Mg(II) ions. As the ratio of concentration of Ca(II)/Mg(II) to OTC was increased, antibacterial activity of OTC declined. In addition to the difference observed between the antibacterial effect of pure OTC and its Ca(II)/Mg(II) complexes, it was found that decline in antibacterial activity is greater for Mg(II)-OTC complex than Ca(II)-OTC complex for the same concentration of Ca(II)/Mg(II) ions.

  10. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems

    NASA Astrophysics Data System (ADS)

    Icaza, Juan C.; Guduru, Ramesh K.

    2016-12-01

    Carbon based electrochemical double layer capacitors (EDLCs) are known for high power density, but their energy density is limited due to surface characteristics of the electrode materials as well as the size and charge of the ions used in the electrolyte. Therefore, considering the current demand for enhanced energy density devices, we investigated the use of multivalent electrolytes to increase the capacitance of activated carbon (AC) based EDLCs. As part of these studies, we examined the effect of the charge of the multivalent ions on the capacitive behavior of microporous AC electrodes and compared with the univalent Li+ system. We performed impedance and cyclic voltammetry measurements on AC electrodes in a symmetric two electrode configuration to determine the impedance and capacitance with respect to varying charge and concentration of the ions in the aqueous nitrate electrolytes. These studies clearly demonstrated an increased capacitance with Mg2+ and Al3+ implying the possible effects of ion mobility and electrolyte conductivity in addition to the multivalent charge. These preliminary observations clearly point to the importance of selection of electrolyte ions with more charge, conductivity, and suitable size with respect to the pore size of the electrodes in order to increase the capacitance of EDLCs.

  11. Efficient continuous biosynthesis of silver nanoparticles by activated sludge micromycetes with enhanced tolerance to metal ion toxicity.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Baurina, Marina M; Yakubovich, Liubov M; Morozov, Alexander N; Zakalyukin, Ruslan M; Sorokin, Vladimir V; Skladnev, Dmitry A

    2016-12-01

    The method for producing AgNPs by granules of activated sludge micromycetes with enhanced tolerance to metal ion toxicity - Penicillium glabrum, Fusarium nivale and Fusarium oxysporum has been developed; the optimum conditions for AgNP biosynthesis being found: the Ag(+) ion concentration, duration of the contact of microbial cells with silver ions, a growth phase of microorganisms, medium composition, a рН value, mixing conditions, and also lighting intensity. The effect of Cl(-), SO4(2-) and HPO4(2-) ions binding Ag(+) ions was eliminated, that brought to significant increase of the yield of NPs. Under batch conditions, silver particles of 60-110 nanometers in size were formed with a 65% yield. It was established that the nanoparticles were covered with microbial cell membrane proteins composed up to 70% by weight of the NPs that prevented their aggregation. In addition, it was the first time stable AgNPs had been formed by continuous AgNP biosynthesis by living cells of F. oxysporum with an 80% yield for a long time.

  12. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements.

  13. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  14. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Matsumoto, H.; Kojima, H.; Mukai, T.; Saito, Y.; Yamamoto, T.

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  15. Effect of Spatial Density Variation and O+ Concentration on the Growth and Evolution of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Jordanova, V.; Fraser, B. J.

    2014-12-01

    We simulate electromagnetic ion cyclotron (EMIC) waves, which were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. First we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least in certain regions. We simulate the EMIC wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low density plasmatrough outside the plasmapause. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency, and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory may not be valid.

  16. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    SciTech Connect

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  17. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    SciTech Connect

    Takemura, T.; Sato, F.; Saga, K.; Suzuki, Y.; Sato, K. )

    1991-02-01

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; an initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.

  18. Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Ibrahim, Muhammad H. C.; Shaharun, Maizatul S.; Chong, F. K.

    2012-09-01

    The study of rice husk-based activated carbon as a potential low-cost adsorbent for the removal of Zn(II) ion from aqueous solution was investigated. Rice husk, an agricultural waste, is a good alternative source for cheap precursor of activated carbon due to its abundance and constant availability. In this work, rice husk-based activated carbon was prepared via chemical treatment using NaOH as an activation agent prior the carbonization process. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon carbonized at 650°C, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). Other analyses were also conducted on these samples using fourier transmitter infrared spectroscopy (FTIR), CHN elemental analyzer and X-ray diffraction (XRD) for characterization study. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were found to be 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Zn(II) ion from aqueous solution were carried out as a function of varied contact time at room temperature. The concentration of Zn(II) ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Zn(II) ion from aqueous solution.

  19. Features of the planetary distribution of ion precipitation at different levels of magnetic activity

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.; Antonova, E. E.

    2015-09-01

    Observations from DMSP F6 and F7 spacecraft were used to examine the features of the planetary distribution of ion precipitation. Ion characteristics were defined within the boundaries of different types of auroral electron precipitation, which in accordance with the conclusions from (Starkov et al., 2002) were divided into a structured precipitation of an auroral oval (AOP) and zones of diffuse precipitation DAZ and SDP located equatorward and poleward of AOP, respectively. Analogous to electron precipitation, ion precipitation did not demonstrate dependences of the average energy and the average energy flux of precipitating particles on the Dst index value. In the diffuse precipitation zone (DAZ) equatorward of the auroral oval, ion energies clearly peaked in the sector of 1500-1800 MLT. The average energy value grows as magnetic activity increases from ~12 keV at AL =-1000 nT to ~18 keV at AL =-1000 nT. In the region of structured precipitation (AOP), the minimum of the average ion energy is observed in the dawn sector of 0600-0900 MLT. Ion energy fluxes ( F i ) are maximal in the nighttime MLT sectors. In the zone of soft diffuse precipitation (SDP) poleward of AOP, the highest ion energy fluxes are observed in the daytime sector, while the nightside F i values are insignificant. Ion energy fluxes in the SDP zone show an anticorrelation with the average ion energy in the same MLT sector. An ion precipitation model was created which yields a global distribution of both the average ion energies and the ion energy fluxes depending on the magnetic activity expressed by AL and Dst indices. Comparison of this model with the model of electron precipitation shows that the planetary power of ion precipitation at low magnetic activity (| AL| = 100 nT) is ~12% of the electron precipitation power and exponentially decreases to ~4% at | AL| > 1000 nT. The ion precipitation model was used to calculate the plasma pressure at the ionospheric altitudes. The planetary

  20. Strong Relationships in Acid-Base Chemistry – Modeling Protons Based on Predictable Concentrations of Strong Ions, Total Weak Acid Concentrations, and pCO2

    PubMed Central

    Kellum, John A.

    2016-01-01

    Understanding acid-base regulation is often reduced to pigeonholing clinical states into categories of disorders based on arterial blood sampling. An earlier ambition to quantitatively explain disorders by measuring production and elimination of acid has not become standard clinical practice. Seeking back to classical physical chemistry we propose that in any compartment, the requirement of electroneutrality leads to a strong relationship between charged moieties. This relationship is derived in the form of a general equation stating charge balance, making it possible to calculate [H+] and pH based on all other charged moieties. Therefore, to validate this construct we investigated a large number of blood samples from intensive care patients, where both data and pathology is plentiful, by comparing the measured pH to the modeled pH. We were able to predict both the mean pattern and the individual fluctuation in pH based on all other measured charges with a correlation of approximately 90% in individual patient series. However, there was a shift in pH so that fitted pH in general is overestimated (95% confidence interval -0.072–0.210) and we examine some explanations for this shift. Having confirmed the relationship between charged species we then examine some of the classical and recent literature concerning the importance of charge balance. We conclude that focusing on the charges which are predictable such as strong ions and total concentrations of weak acids leads to new insights with important implications for medicine and physiology. Importantly this construct should pave the way for quantitative acid-base models looking into the underlying mechanisms of disorders rather than just classifying them. PMID:27631369

  1. Evolution in the concentration of activities in lithography

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2016-03-01

    From a perusal of the proceedings of the SPIE Advanced Lithography Symposium, the progression of new concepts in lithographic technology can be seen. A new idea first appears in a few papers, and over time, there is an increase in the number of papers on the same topic. Eventually the method becomes commonplace, and the number of papers on the topic declines, as the idea becomes part of our industry's working knowledge. For example, one or two papers on resolution enhancement techniques (RETs) appeared in the proceedings of the Optical Microlithography Conference in 1989 and 1990. By 1994, the total number of papers had increased to 35. Early lithographers focused on practical issues, such as adhesion promotion and resist edge bead. The introduction of simulation software brought on the next era of lithography. This was followed by a period of time in which RETs were developed and brought to maturity. The introduction of optical proximity corrections (OPC) initiated the next major era of lithography. The traditional path for scaling by using shorter wavelengths, decreasing k1 and increasing numerical aperture has given way to the current era of optical multiple patterning and lithography-design co-optimization. There has been sufficient activity in EUV lithography R and D to justify a separate EUV Lithography Conference as part of the annual Advanced Lithography Symposium. Each era builds on the cumulative knowledge gained previously. Over time, there have been parallel developments in optics, exposure tools, resist, metrology and mask technology, many of which were associated with changes in the wavelength of light used for leading-edge lithography.

  2. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  3. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions

    SciTech Connect

    Fowler, T.A.; Crundwell, F.K.

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

  4. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  5. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Osborne, Emily B.; Thunell, Robert C.; Marshall, Brittney J.; Holm, Jessica A.; Tappa, Eric J.; Benitez-Nelson, Claudia; Cai, Wei-Jun; Chen, Baoshan

    2016-08-01

    Planktonic foraminiferal calcification intensity, reflected by shell wall thickness, has been hypothesized to covary with the carbonate chemistry of seawater. Here we use both sediment trap and box core samples from the Santa Barbara Basin to evaluate the relationship between the calcification intensity of the planktonic foraminifera species Globigerina bulloides, measured by area density (µg/µm2), and the carbonate ion concentration of seawater ([CO32-]). We also evaluate the influence of both temperature and nutrient concentration ([PO43-]) on foraminiferal calcification and growth. The presence of two G. bulloides morphospecies with systematically different calcification properties and offset stable isotopic compositions was identified within sampling populations using distinguishing morphometric characteristics. The calcification temperature and by extension calcification depth of the more abundant "normal" G. bulloides morphospecies was determined using δ18O temperature estimates. Calcification depths vary seasonally with upwelling and were used to select the appropriate [CO32-], temperature, and [PO43-] depth measurements for comparison with area density. Seasonal upwelling in the study region also results in collinearity between independent variables complicating a straightforward statistical analysis. To address this issue, we use additional statistical diagnostics and a down core record to disentangle the respective roles of each parameter on G. bulloides calcification. Our results indicate that [CO32-] is the primary variable controlling calcification intensity while temperature influences shell size. We report a modern calibration for the normal G. bulloides morphospecies that can be used in down core studies of well-preserved sediments to estimate past [CO32-].

  6. Anomalous ion effects on rupture and lifetime of aqueous foam films from monovalent salt solutions up to saturation concentration

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Nguyen, P. T.; Tsekov, R.; Hampton, M. A.; Nguyen, A. V.

    2008-09-01

    We report the effects of ions on rupture and lifetime of aqueous foam films formed from sodium chloride (NaCl), lithium chloride (LiCl), sodium acetate (NaAc), and sodium chlorate (NaClO 3) using microinterferometry. In the case of NaCl and LiCl, the foam films prepared from the salt solutions below 0.1 M were unstable they thinned until rupturing. The film lifetime measured from the first interferogram (appearing at a film thickness on the order of 500 nm) until the film rupture was only a second or so. However, relatively long lasting and nondraining films prepared from salt solutions above 0.1 M were observed. The film lifetime was significantly longer by 1 to 2 orders of magnitude, i.e., from 10 to 100 s. Importantly, both the film lifetime and the (average) thickness of the nondraining films increased with increasing salt concentration. This effect has not been observed with foam films stabilized by surfactants. The film lifetime and thickness also increased with increasing film radius. The films exhibited significant surface corrugations. The films with large radii often contained standing dimples. There was a critical film radius below which the films thinned until rupturing. In the cases of NaAc and NaClO 3, the films were unstable at all radii and salt concentrations they thinned until rupturing, ruling out the effect of solution viscosity on stabilizing the films.

  7. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  8. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity.

    PubMed

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL(1) and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL(2) derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML((1-2)2) have been synthesized, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mnactivity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu>Mn>Ni>Co>Zn.

  9. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  10. Spectrofluorimetric method for measuring the activity of the enzyme alpha-L-fucosidase using the ion associate of 2-chloro-4-nitro phenol-rhodamine-B.

    PubMed

    El-Shahawi, M S; Othman, A M; El-Houseini, M E; Nashed, B; Elsofy, M S

    2009-11-15

    A low cost and accurate method for the detection and analytical determination of the activity of the enzyme alpha-L-fucosidase (AFU) was developed. The method was based upon measuring the fluorescence intensity of the complex ion associate of the ion associate of rhodamine-B and the compound 2-chloro-4-nitrophenol (RB(+)CNP(-)) at 580 nm in phosphate buffer (pH 5) against the reagent blank. The influence of the different parameters, e.g. pH, incubation time, temperature, 2-chloro-4-nitrophenol concentration, foreign ions and surfactants that control the fluorescence intensity of the produced ion associate was critically investigated. The correlation between the fluorescence activity of the enzyme AFU by the developed procedures and the standard method was positive and highly significant in patients and controls (r(2)=0.99, p<0.001). The developed method is simple and proceeds without practical artifacts compared to the standard method.

  11. Variability of Near-stream, Sub-surface Major-ion and Tracer Concentrations in an Acid Mine Drainage Environment

    NASA Astrophysics Data System (ADS)

    Bencala, K. E.; Kimball, B. A.; Runkel, R. L.

    2006-12-01

    In acid mine drainage environments, tracer-injection and synoptic sampling approaches provide tools for making operational estimates of solute loading within a stream segment. Identifying sub-surface contaminant sources remains a challenge both for characterization of in-stream metal loading and hydrological process research. There is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along these flow paths crossing the sediment-water interface. Complicating the identification of inflows is the mixing of solute sources which may occur in the `near-stream' subsurface areas and specifically along hyporheic exchange flows (HEFs). In Mineral Creek (Silverton, Colorado), major-ion (SO42-, Cl-, Na+, Ca2+, Mg2+) meter-scale sampling shows that subsurface inflows and likely HEFs occur in a hydro- geochemical setting of significant, one order-of-magnitude, spatial variation in the solute concentrations. Transient Storage Models (TSMs) are a tool for interpreting the in-stream responses of solute transport in streams influenced by hyporheic exchange flows. Simulations using the USGS TSM code OTIS are interpreted as suggesting that in Mineral Creek the strong concentration `tailing' of bromide following the tracer injection occurred, at least in part, from HEFs in a hydro - solute transport setting of likely multiple, dispersed and mixed sources of water along a 64 m sub-reach of the nominally gaining stream. In acid mine drainage environments, the ability to distinguish between local and deep solute sources is critical in modeling reactive transport along the stream, as well as in identifying the geochemical evolution of dispersed, subsurface inflows thorough the catchment.

  12. Quantitative characterization of capsaicin-induced TRPV1 ion channel activation in HEK293 cells by impedance spectroscopy.

    PubMed

    Weyer, Maxi; Jahnke, Heinz-Georg; Krinke, Dana; Zitzmann, Franziska D; Hill, Kerstin; Schaefer, Michael; Robitzki, Andrea A

    2016-11-01

    The analysis of receptor activity, especially in its native cellular environment, has always been of great interest to evaluate its intrinsic but also downstream biological activity. An important group of cellular receptors are ion channels. Since they are involved in a broad range of crucial cell functions, they represent important therapeutic targets. Thus, novel analytical techniques for the quantitative monitoring and screening of biological receptor activity are of great interest. In this context, we developed an impedance spectroscopy-based label-free and non-invasive monitoring system that enabled us to analyze the activation of the transient receptor potential channel Vanilloid 1 (TRPV1) in detail. TRPV1 channel activation by capsaicin resulted in a reproducible impedance decrease. Moreover, concentration response curves with an EC50 value of 0.9 μM could be determined. Control experiments with non TRPV1 channel expressing HEK cells as well as experiments with the TRPV1 channel blocker ruthenium red validated the specificity of the observed impedance decrease. More strikingly, through correlative studies with a cytoskeleton restructuring inhibitor mixture and equivalent circuit analysis of the acquired impedance spectra, we could quantitatively discriminate between the direct TRPV1 channel activation and downstream-induced biological effects. In summary, we developed a quantitative impedimetric monitoring system for the analysis of TRPV1 channel activity as well as downstream-induced biological activity in living cells. It has the capabilities to identify novel ion channel activators as well as inhibitors for the TRPV1 channel but could also easily be applied to other ion channel-based receptors.

  13. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion.

    PubMed

    Jiang, Xiaoxuan; Wu, Yanlin; Wang, Peng; Li, Hongjing; Dong, Wenbo

    2013-07-01

    Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4(-·)), which was generated by the activation of persulfate (S2O8(2-)) with ferrous ion (Fe(2+)). S2O8(2-) was activated by Fe(2+) to produce SO4(-·), and iron powder (Fe(0)) was used as a slow-releasing source of dissolved Fe(2+). The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8(2-) or Fe(2+) concentrations and then decreased with excess Fe(2+) concentration. The adding mode of Fe(2+) had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97% with sequential addition of Fe(2+), while complete degradation was observed with continuous diffusion of Fe(2+), and the latter achieved higher TOC removal rate. When Fe(0) was employed as a slow-releasing source of dissolved Fe(2+), 100% of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85%) was obtained within 2 h. In the Fe(0)-S2O8(2-) system, Fe(0) as the activator of S2O8(2-) could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe(0)-S2O8(2-) system has perspective for future works.

  14. Measurement of the Silver Ion Concentration in Wound Fluids after Implantation of Silver-Coated Megaprostheses: Correlation with the Clinical Outcome

    PubMed Central

    Hussmann, B.; Johann, I.; Kauther, M. D.; Landgraeber, S.; Jäger, Marcus; Lendemans, S.

    2013-01-01

    Background. Tumor patients and patients after traumas are endangered by a reduced immune defense, and a silver coating on their megaprostheses may reduce their risks of infection. The aim of this study was to determine the silver ion concentration directly measured from the periprosthetic tissue and the influence on the clinical outcome. Material and Methods. Silver ions were evaluated in 5 mL wound fluids two days postoperatively and in blood patients 7 and 14 days after surgery using inductively coupled plasma emission spectrometry in 18 patients who underwent total joint replacement with a silver-coated megaendoprosthesis. Results. The concentration of silver ions averaged 0.08 parts per million. Patients who showed an increased silver concentration in the blood postoperatively presented a lower silver concentration in the wound fluids and a delayed decrease in C-reactive protein levels. There were significantly fewer reinfections and shorter hospitalization in comparison with a group that did not receive a silver-coated megaprosthesis. Conclusion. An increased concentration of silver in the immediate surroundings of silver-coated prostheses was demonstrated for the first time in cohorts of patients with trauma or tumors. An elevated concentration of silver ions in the direct periprosthetic tissue may have reduced the infection rate. PMID:23819120

  15. Elevated blood active ghrelin and normal total ghrelin and obestatin concentrations in uterine leiomyoma.

    PubMed

    Markowska, A; Ziolkowska, A; Nowinka, K; Malendowicz, L K

    2009-01-01

    Ghrelin and obestatin originate from the same peptide precursor, preproghrelin. Both peptides are secreted in the blood. We investigated serum active and total ghrelin and obestatin concentrations in women with uterine myomatosis. Serum concentrations of active ghrelin in uterine leiomyoma were significantly higher compared to women in the control group (86 +/- 3 vs 56 +/- 9 pg/ml, respectively; p < 0.02). On the other hand, serum concentrations of total ghrelin and obestatin in uterine leiomyoma did not differ from those in the control group. In the control group the ratio of active to total ghrelin concentrations amounted to 0.62, while in women with uterine myoma it was 0.95, pointing to a prevalence of the active form of ghrelin in women with uterine myoma. Also the ratio of active ghrelin concentration to obestatin concentration was higher in the latter group while the ratio of total circulating ghrelin to obestatin concentrations was similar in the two groups. The data may suggest a role of active ghrelin in the development of a myoma. Moreover, the results indicate that increased blood ratios of active to total ghrelin and to obestatin concentrations are not specific for cachexia.

  16. Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas

    NASA Astrophysics Data System (ADS)

    Binet, S.; Spadini, L.; Bertrand, C.; Guglielmi, Y.; Mudry, J.; Scavia, C.

    2009-12-01

    Water chemical analysis of 100 springs from the Orco and the Tinée valleys (Western Italy and Southern France) and a 7 year groundwater chemistry monitoring of the 5 main springs were performed. All these springs drain from crystalline rock slopes. Some of these drain from currently active gravitational slope deformations. All groundwaters flowing through presently unstable slopes show anomalies in the sulfate concentrations compared to stable aquifers. Particularly, an increase of sulfate concentrations was observed repeatedly after each of five consecutive landslides on the La Clapière slope, thus attesting to the mechanical deformations are at the origin of this concentration change. Significant changes in the water chemistry are produced even from slow (mm/year) and low magnitude deformations of the geological settings. Pyrite nuclei in open fractures were found to be coated by iron oxides. This suggests that the increase of dissolved sulfate relates to oxidative dissolution of Pyrite. Speciation calculations of Pyrite versus Gypsum confirmed that observed changes in the sulfate concentrations is predominantly provided from Pyrite. Calculated amounts of dissolved minerals in the springs water was obtained through inverse modelling of the major ion water analysis data. It is shown that the concentration ratio of calculated dissolved Pyrite versus calculated dissolved gneiss rock allows us to unambiguously distinguish water from stable and unstable areas. This result opens an interesting perspective for the follow-up of sliding or friction dynamic in landslides or in (a) seismic faults.

  17. Theorization on ion-exchange equilibria: activity of species in 2-D phases.

    PubMed

    Tamura, Hiroki

    2004-11-01

    the same as that in wide nanopores, but the suppression is smaller because of the absence oe of the absence of the across-pore interaction. Finally, this paper attempts a formulation of activity coefficients of exchanging sites and adsorbed ion-site pairs and compares the proposed activity coefficients of interphase species with that of solution species given by the Debye-Hückel equation.

  18. Application of the Principle of Linked Functions to ATP-Driven Ion Pumps: Kinetics of Activation by ATP

    NASA Astrophysics Data System (ADS)

    Reynolds, Jacqueline A.; Johnson, Edward A.; Tanford, Charles

    1985-06-01

    If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct partitipant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center.

  19. Effect of chloroquine phosphate and toxic concentrations of lead acetate on Ca2+-ATPase activity in isolates and clones of Plasmodium falciparum.

    PubMed

    Bolaji, O M; Happi, T C; Oduola, A M J; Babafunmi, E A

    2011-12-20

    The basal activity of Ca2+-ATPase in two isolates (NL56, UNC) and two clones (D6, W2) of P.falciparum was assessed. The effects of various concentrations of chloroquine phosphate and toxic concentrations of lead acetate were also evaluated in the clones and strains of P.falciparum. The Ca2+-ATPase activity was measured by monitoring the rate of release of inorganic phosphate from the gamma-position of ATP on spectrophotometer at 820nm wavelength. The various concentrations of chloroquine (3, 6, 9, 12, 18µg/ml) and lead acetate (5, 10, 20, 30, 40µg/ml) on Ca2+-ATPase activity were measured respectively. Chloroquine phosphate inhibited Ca2+-ATPase activity in both the isolates and the cloned strains of P.falciparum in concentration dependent manner. Median Inhibitory concentration of chloroquine (MIC50) estimated from the plot of activity against chloroquine concentration was found to be 2.6mg/ml at pH 7.4 for both the isolates and cloned strains examined. Lead acetate at concentrations 5-20µg/ml inhibited Ca2+-ATPase activity in concentration dependent manner in clone W2 (Chloroquine resistant strain) while the same range of concentrations of lead acetate stimulated the activity of the enzyme in clone D6 (Chloroquine sensitive strain).The inhibitory effect of lead acetate on the enzyme in clone D6 was observed at concentrations above 20µg/ml. The result also suggests that lead ions could modulate and moderate calcium ion homeostasis in P. falciparum via its effect on Ca2+-ATPase activity. Also sufficient influx of lead ions into P. falciparum may transform the biochemical or bioenergetics nature of chloroquine sensitive strain of P. falciparum (D6) to that similar to chloroquine resistant strain (W2). In conclusion, inhibition of Ca2+-ATPase activity of P.falciparum may be part of the mechanism of action of chloroquine in its use as chemotherapy for malaria. The study implies that populations simultaneously exposed to lead pollution and malaria infection may

  20. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory