Science.gov

Sample records for active island arc

  1. 16ch high-resolution seismic reflection surveys on the active fault of upper fore-arc slope off Okinawa Island, central Ryukyu Island Arc, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Arai, K.; Inoue, T.; Sato, T.; Tuzino, T.

    2010-12-01

    The Ryukyu Island Arc extends from Kyushu to Taiwan, a distance of 1,200 km, along the Ryukyu Trench where the Philippine Sea Plate is subducting beneath the Eurasian Plate. The Okinawa Trough, a back arc basin has formed behind the Ryukyu Island Arc in late Pliocene to early Pleistocene. The research cruises of GH08 (from 28th July to 29th August 2008) and GH09 (from 16th July to 17th August 2009) were carried out around Okinawa Island, which is located on the central Ryukyu Island Arc. More than 4,500 miles multi channel high-resolution seismic profiles were acquired during these two cruises by the GI-gun (355cu. inch) or the Cluster-gun (30+30 cu. inch) systems with 16ch digital streamer cable. Survey area in the southeast off Okinawa Island is located on the upper fore-arc slope. Seismic reflections of the upper fore-arc slope show a distinct reflector which may represent erosional unconformable surface. The distinct reflector had tilted southeastward and was overlain by the stratified sediments. No obvious deformation such as the fold and faults parallel to the Ryukyu Trench axis was found under the upper slope. In contrast, some active faults which were perpendicular to the Ryukyu Trench axis (NW-SE direction) were observed. The most conspicuous normal fault was found on north off Okinawa Island. The fault with 70-80°dipping toward northeast has been active since the early Pleistocene inferred from seismic stratigraphy and calcareous nannofossil biochronology. The maximum displacement reaches to 0.7 s two way travel time in depth. An average of maximum vertical displace component of the normal fault may reach up to ten cm/1000 years. Seismic profiles indicate that the tilting of Ryukyu Island Arc forward to the Ryukyu Trench plays the important role of formation of the fault in a NW-SE direction.

  2. Interplay between active and past tectonics in the Hellenic Arc (Greece): Geological and geomorphic evidences from Kythira Island

    NASA Astrophysics Data System (ADS)

    Fernández-Blanco, David; de Gelder, Gino; Delorme, Arthur; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The Hellenic Arc undergoes the largest convergence velocity and highest seismic activity among Mediterranean subduction systems. The outer-arc high islands of the Hellenic Arc are thus key to understand the mode of deformation of the crust during subduction and the mechanisms behind vertical motions at the front of overriding plates, here and elsewhere. Kythira Island, located between SW Peloponnese and NE Crete, provides an exceptional opportunity to understand the interaction between past and active tectonics in the Hellenic Arc. The recent uplift of the Kythira Island is marked in its landscape as paleosurfaces, marine terraces, abandon valleys and gorges. Together with the sedimentary record of the island and its geologic structures, we attempt to reconstruct its tectonic evolution since the latest Miocene. Here, we present exceptionally detailed geological and geomorphological maps of the Kythira Island based on fieldwork, Pleiades satellite imagery and 2-m resolution DEM, as well as the analyses of marine terraces and river network morphometrics. Pliocene or younger infill sequences rest atop of Palaeocene or older rocks in several marine basins in the island. In the largest marine basin, we found a stratigraphic sequence with a (tilted) continental conglomerate at the base, passing upwards to a disconformal subhorizontal conglomerate, calcarenites and fine sands, and terminating with a marine conglomerate. This marine conglomerate acts as a "cap rock" that marks the topography and shapes the highermost, and most extensive, low-relief surface. Overall, the infill sequence onlaps basement with the exception of the western margin where normal faults partly controlled the deposition of its lower sector. These faults reactivated older Hellenic fold-and-thrust structures, parallel to the subduction trench, and were not active during the maximum marine transgression that led to the deposition of the subhorizontal part of the infill sequence, including the topmost

  3. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  4. Andaman-Sumatra island arc: II. The December 26, 2004 earthquake as one of the key episodes in seismogenic activation of the arc in the beginning of XXI century

    NASA Astrophysics Data System (ADS)

    Balakina, L. M.; Moskvina, A. G.

    2013-03-01

    The interpretation of the nature and parameters of the source for the earthquake that occurred in Sumatra on December 26, 2004 is suggested. Our study relies on a variety of data on the geological structure of the region, long-term seismicity, spatial distribution of the foreshocks and aftershocks, and focal mechanisms; and the pattern of shaking and tsunami, regularities in the occurrence of the earthquakes, and the genetic relationship between the seismic and geological parameters inherent in various types of seismogenic zones including island arcs. The source of the Sumatran earthquake is a steep reverse fault striking parallel to the island arc and dipping towards the ocean. The length of the fault is ˜450 km, and its probable bedding depth is ˜70-100 km. The magnitude of this seismic event corresponding to the length of its source is 8.9-9.0. The vertical displacement in the source probably reached 9-13 m. The fault is located near the inner boundary of the Aceh Depression between the epicenter of the earthquake and the northern tip of the depression. The strike-slip and strike-slip reverse the faults cutting the island arc form the northern and southern borders of the source. The location and source parameters in the suggested interpretation account quite well for the observed pattern of shaking and tsunami. The Aceh Depression and its environs probably also host other seismic sources in the form of large reverse faults. The Sumatran earthquake, which was the culmination of the seismogenic activation of the Andaman-Sumatra island arc in the beginning of XXI century, is a typical tsunamigenic island-arc earthquake. By its characteristics, this event is an analogue to the M W = 9 Kamchatka earthquake of November 4, 1952. The spatial distribution of the epicenters and the focal mechanisms of the aftershocks indicate that the repeated shocks during the Sumatran event were caused by the activation of a complex system of geological structures in various parts of

  5. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    NASA Astrophysics Data System (ADS)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    The Kyushu-Palau Ridge (KPR) is a 2000km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc system by a series of spreading and rift basins. In this study we present 40Ar/39Ar ages and geochemical data for new samples taken from the entire length of the Kyushu-Palau arc. As such, this data provides the first comprehensive evaluation of temporal and spatial changes that are present in an Eocene-Oligocene island arc. Kyushu-Palau arc geochemistry is evaluated alongside new data from the conjugate arc which is stranded within the IBM fore-arc. Boninitic magmatism gave way to transitional arc suites including high-Mg andesites at c. 45 Ma (Ishizuka et al., 2006). After the transitional 45-41 Ma period, a mature arc system developed through the Eocene-Oligocene time: This volcanism is now preserved as the KPR. Dating results from 33 sites indicate that the KPR was active between 25 and 43 Ma, but the majority of the exposed volcanism occurred in the final phase of this arc, between 25 and 27 Ma. Unlike the IBM, the KPR has only limited systematic along-arc trends and does not include any of the strongly HIMU lavas found to the south of Izu-Bonin. Two components found along the KPR are found to have geochemistry that suggests an origin in the supra-subduction mantle rather than from the descending ocean crust. Firstly, in the south of the arc, EM-2-like lavas are present where the West Philippine Basin was in the final stages of spreading. Secondly, EM-1-like lavas are present in a restricted section of the arc, suggesting a localised heterogeneity. Subduction flux beneath the KPR generally imparted a Pb isotope vector towards low Δ8/4 (<15) and moderate 206Pb/204Pb (>19). This is a similar trend to the Eocene/Oligocene lavas found on the eastern side of the basins which split the arc at 25Ma. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where arc magmatism occurred on pre-existing Daito Ridge crust: a

  6. The magmatic evolution of young island arc crust observed in gabbroic to tonalitic xenoliths from Raoul Island, Kermadec Island Arc

    NASA Astrophysics Data System (ADS)

    Haase, Karsten M.; Lima, Selma; Krumm, Stefan; Garbe-Schönberg, Dieter

    2014-12-01

    We provide new geochemical and O isotope data for minerals and whole rocks of a suite of gabbroic to tonalitic xenoliths from Raoul Island in the Kermadec island arc. The plagioclase, olivine and clinopyroxene compositions are similar to those observed in the Raoul Island lavas supporting a close relationship of the plutonic and volcanic rocks by crystal fractionation. Plagioclase in gabbros is significantly more An-rich than in similar rocks from oceanic spreading axes reflecting higher water contents in the island arc magmas. Incompatible element and O isotope data suggest that the gabbroic rocks formed from accumulation of minerals of the ascending magmas whereas the tonalites represent highly evolved magmas after extreme fractional crystallization. Temperatures of the magmas calculated from O isotope equilibria and pyroxene thermometers range from about 1200 °C in the mafic to 800 °C in felsic rocks. Barometry of the rocks suggests that gabbros formed between 12 and 18 km depth and tonalites shallower which is in agreement with seismic models of island arc crustal layering. The xenolith data from Raoul Island support seismic studies indicating that some portions of the Tonga-Kermadec island arc show similar layering of felsic and mafic rocks to the Izu-Bonin and the fossil Talkeetna island arcs.

  7. Arc segmentation and seismicity in the Solomon Islands arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chu; Frohlich, Cliff; Taylor, Frederick W.; Burr, George; van Ufford, Andrew Quarles

    2011-07-01

    surface trace of the interplate thrust zone defines it adequately. The New Georgia supersegment has smaller arc segments, and more islands due to general late Quaternary forearc uplift very close to the trench where vertical displacement rates tend to be faster; prior to the 2007 earthquake it had much lower rates of seismic activity than the neighboring supersegments. Generally the mean along-arc lateral extent of Solomon arc segments is about 75 km, somewhat smaller than the segments reported in some other island arcs such as Japan (~ 100-260 km), but larger than those of the Tonga (30-80 km) and Central New Hebrides arcs (30-110 km). These differences may be real but it may occur simply because the coral-friendly tropical environment of the South Pacific arcs, numerous emerged forearc islands, and high seismicity rates provide an unusually favorable situation for observing variations in vertical tectonic activity and thus for identifying segment boundaries. Over the past century seismic slip in the Solomons, as indicated by seismic moment release, has corresponded to about half the plate convergence rate; however, there are notable variations along the arc. Even with the 2007 earthquake, the long-term moment release rate in the New Georgia supersegment is relatively low, and this may indicate that large earthquakes are imminent.

  8. Barrier island arcs along abandoned Mississippi River deltas

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.; Boyd, Ron

    1985-01-01

    Generation of transgressive barrier island arcs along the Mississippi River delta plain and preservation of barrier shoreline facies in their retreat paths on the inner shelf is controlled by: (1) shoreface translation; (2) age of the transgression; and (3) the thickness of the barrier island arc sediment package. Barrier island arcs experience an average relative sea level rise of 0.50-1.00 cm yr-1 and shoreface retreat rates range from 5-15 m yr-1. Young barrier island arc sediment packages (Isles Dernieres) are thin and have experienced limited landward retreat of the shoreface. Older barrier island arcs (Chandeleur Islands) are thicker and have experienced significant landward movement of the shoreface because of the greater time available for retreat. If the transgressed barrier shoreline sediment package lies above the advancing ravinement surface, the entire sequence is truncated. A thin reworked sand sheet marks the shoreface retreat path. The base of the transgressive sediment package can lie below the ravinement surface in older barrier shorelines. In this setting, the superstructure of the barrier shoreline is truncated, leaving the basal portion of the transgressive sequence preserved on the inner shelf. A variety of transgressive stratigraphic sequences from sand sheets to truncated barrier islands to sand-filled tidal inlet scars have been identified by high resolution seismic profiling across the shoreface retreat paths of Mississippi delta barrier island arcs. One of these examples, the Isles Dernieres, represents a recently detached barrier island arc in the early stages of transgression. An older example, the Chandeleur Islands, represents a barrier island arc experiencing long-term shoreface retreat. This paper describes the stratigraphic character and preserved transgressive facies for the Isles Dernieres and Chandeleur Islands. ?? 1985.

  9. Progressive Emergence and Warping of Islands in the Active Banda Arc-Continent Collision As Recorded By Uplifted Coral Terraces: Tectonic and Geohazards Implications

    NASA Astrophysics Data System (ADS)

    Harris, R. A.; Cox, N.; Major, J. R.; Merritts, D. J.; Prasetyadi, C.

    2014-12-01

    Uplifted coral terraces throughout the Banda-Sunda Arc transition reveal how strain is distributed over the past thousand to million years in the active arc-continent collision, and are key to identifying hazardous active faults. U-series age analysis of the lowest coral terraces yields surface uplift rates that vary in a non-systematic way along strike from 0.2 to 1.5 mm/a over short wavelengths of a few kms. For example, coral terraces are tilted varying degrees northward in Sumba, SSE in Savu, NNW in Rote and generally south along the north coast of Timor. In all of these cases the tilt is away from zones of active thrusting and folding. In Sumba the forearc is ramping up and over the northern edge of the Scott Plateau along what is likely a north dipping thrust. In Savu the coral terraces rise where the back of the accretionary wedge is ramping up over the forearc basin on the south dipping Savu Thrust. In Rote coral terraces form on the front of the accretionary wedge where it is ramping up over the subducting Australian continental margin. The north coast of East Timor is likely uplifting due to internal thrusting and closure of the Wetar Strait. Localized uplift of circular islands is associated with diapirism. The diapiric island of Kisar is cored by syn-collisional metamorphic rocks. The association of uplift and warping with short wavelength deformational processes argues against the commonly held interpretation that coral terraces in the Banda arc-continent collision manifest the effects of slab tear or some other lithospheric scale process. The pattern of uplift correlates best with proximity to active faults, folds and diapirs. In terms of geohazards, flights of uplifted coral terraces are the smoking gun for sources of large earthquakes and tsunami. Many of the terraces show signs of co-seismic uplift. Tsunami deposits with young corals are found on some of these terraces as high as 20 m above sea level.

  10. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Ishizuka, Osamu; Taylor, Rex N.; Yuasa, Makoto; Ohara, Yasuhiko

    2011-05-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long remnant island arc that is separated from the active Izu-Bonin-Mariana (IBM) arc by a series of spreading and rift basins. We present 40Ar/39Ar ages and geochemical data for the entire length of the Kyushu-Palau arc as well as for the conjugate arc which is stranded within the IBM fore arc. New 40Ar/39Ar ages indicate that the KPR was active between 25 and 48 Ma, but the majority of the exposed volcanism occurred in the final phase, between 25 and 28 Ma. Rifting of the Kyushu-Palau arc to form the Shikoku and Parece Vela basins occurred simultaneously along the length of the arc (circa 25 Ma), and at a similar distance from the trench. Unlike the IBM, the KPR has only limited systematic along-arc geochemical trends. Two geochemical components within the KPR indicate an origin in the suprasubduction mantle. First, EM-1-like lavas are identified in a restricted section of the arc, suggesting a localized heterogeneity. Second, EM-2-like arc volcanoes formed on juvenile West Philippine Basin crust, potentially reflecting ingress of mantle from the then active EM-2 province which lies in the west. Another geochemical heterogeneity is found at the KPR-Daito Ridge intersection where the arc developed on preexisting Cretaceous Daito Ridge crust. The geochemical characteristics at this intersection likely result from the involvement of sub-Daito Ridge lithospheric mantle. Subduction flux beneath the KPR generally matches post-45 Ma Eocene/Oligocene lavas in the IBM fore arc, involving fluids and melts derived from altered igneous crust.

  11. Oceanic island arc stratigraphy in the Caribbean region: don't take it for granite

    NASA Astrophysics Data System (ADS)

    Larue, D. K.; Smith, A. L.; Schellekens, J. H.

    1991-11-01

    reflect arc development on thick oceanic crust (for example, a plateau). Submarine volcanic arc facies associations (OADS II) occur only in the northern Virgin Islands (Water Island Formation) and Bonaire (Washikemba Formation). Typically, great structural thicknesses (5-10 km) of arc-related strata are preserved, although condensed arc sequences built upon accreted terranes are present locally (southwest Puerto Rico, Grenada). On Grenada, the active magmatic platform is underlain by overthrust forearc(?) basin strata, indicating that magmatic platforms may grow by means other than volcanic aggradation.

  12. Seismic Reflection Image Across the Izu-Bonin Island Arc System

    NASA Astrophysics Data System (ADS)

    Park, J.; Tsuru, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.

    2002-12-01

    The Izu-Bonin island arc system occupies almost a northern half of the Izu-Bonin-Island (IBM) arc system extending 2500 km south from near Tokyo, which is one of the largest convergent margins on earth. This Izu-Bonin island arc system is a typical intra-oceanic island arc system involving trench-arc-backarc basin system, i.e., the Izu-Bonin trench, the Izu-Bonin arc, and the backarc Shikoku basin. In order to figure out the past 50 m.y. development history of the entire Izu-Bonin intra-oceanic island arc system, we collected marine multichannel seismic (MCS) reflection data across the island arc system on board the R/V Kairei of the Japan Marine Science and Technology Center (JAMSTEC) in May 2002. We used a ~5-km, 204-channel streamer and a 12,000 cubic inch (~200 L) air-guns array. Receiver spacing was 25-m, yielding 51-fold coverage at 12.5-m CDP spacing. We acquired the MCS data on two different lines: ~560-km-long Line 1 and ~1140-km-long Line 3. The MCS data were migrated in depth domain. Velocity-depth models for the depth migration were iteratively constructed by prestack depth migration velocity analysis. Wide-angle data guided the velocity analysis. In this paper, we show the two MCS profiles and discuss the development process of the Izu-Bonin island arc system from viewpoints of seismic stratigraphy and structure. We identify a clear seismic reflector of the subducting Pacific plate with several horst-and-graben structures, which can be observed beneath the arc more than 60 km landward from the trench axis. Forearc basin is characterized by several buried normal faults and vigorous intra-oceanic sedimentation. In the arc rifting zone, we observe many seismic hyperbolic signatures indicative of active volcanic intrusions, which are related to active magmatism. The topmost sedimentary cover sequences are obviously tilted and cut by many normal faults. It is noticeable that reflectors of the middle crust in the arc-backarc transition zone appear to pinch

  13. Oceanic, island arc, and back-arc remnants into eastern Kamchatka accretionary complexes

    SciTech Connect

    Fedorchuk, A.V.; Vishnevskaya, V.S.; Izvekov, I.N. )

    1990-06-01

    The Kamchatsky Mts. accretionary complex in the Eastern Kamchatka orogenic belt was studied for identification of the oceanic and suprasubduction components into accretionary wedges. That complex is divided into two tectonic units. The Lower unit is formed sedimentary and tectonic melanges containing arc-related components (Late Senonian volcaniclastics and boninitic gabbro) and oceanic fragments (Fe-Ti-tholeiites, ocean island basalts, and pelagic sediments of Valanginian to Turonian age). The Upper unit consists of ductile deformed oceanic cumulates from troctolites to Fe-Ti-gabbro, 151 to 172 Ma, which are intruded MORB-like diabases with suprasubduction characteristics, 122 to 141 Ma, and are overlain by basalts similar to latter. The Lower and Upper units are separated by a SW-dipping thrust, which is related by an ophiolitoclastic olistostrome of Late Campanian to Early Maestrichtian age. Both units are covered by Paleocene authoclastic deposits. They are all thrusted over the early Neogene island arc complex, 16 to 20 Ma. The Lower unit of the Kamchatsky Mys accretionary complex was originated in a shear zone between a Late Cretaceous island arc and an Early Cretaceous oceanic plate. The Upper unit represents a Jurassic oceanic remnant that formed a basement of Early Cretaceous back-arc or fore-arc basin. Both units were superposed in the latest Cretaceous. The Kamchatsky Mys accretionary complex was emplaced into the Eastern Kamchatka orogenic belt during late Neogene by collision of the early Neogene island arc.

  14. Island-arc magmatic processes beneath South Pagan Volcano, Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Trusdell, F. A.; Garcia, M. O.; Pietruszka, A. J.

    2007-12-01

    The island-arc volcanoes that make up the Northern Mariana Islands are among the most historically active stratovolcanoes along the Pacific plate, yet they have been poorly studied due to their remote location and difficult accessibility. One of the least studied areas in the Northern Mariana Islands is Pagan Island, located near the center of the Mariana ridge. Pagan Island consists of two Holocene stratovolcanoes, Mount Pagan and South Pagan. Remarkably little is known about South Pagan including its eruptive history, potential volcanic hazards, and geochemical evolution due to a small population of inhabitants, a short and intermittent recorded history, and few geological studies. There is abundant evidence that eruption of South Pagan could pose significant hazards to both residents of the Northern Mariana Islands and to aircraft flying in the western Pacific. For example, following Mount Pagan's most recent explosive eruption (VEI = 4) in 1981, destructive rain-triggered volcanic debris flows buried large tracts of land, including the site of a village that contained a school, dispensary, church, and power generating buildings. Preliminary field studies in May 2006 by the USGS showed that a full spectrum of hazardous phenomena originated from South Pagan in the past, including pyroclastic flows and surges, caldera collapses, and volcanic debris flows. Two previously unrecognized active fumaroles near the summit of South Pagan were discovered suggesting that potential volcanic hazards currently exist in this area. A majority of the new lava samples are vesicular, clinopyroxene-plagioclase basalts with minor plagioclase xenocrysts and gabbroic xenoliths. The purpose of this study is to understand the compositional history of South Pagan and how it relates to the crustal and mantle magmatic processes beneath the central Northern Mariana Islands. Pb, Sr and Nd isotope ratios, major and trace element abundances, and mineral chemistry were determined and will be

  15. The preliminary results of new submarine caldera on the west of Kume-jima island, Central Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.

    2014-12-01

    The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc

  16. Paleomagnetic Evidence for Significant Rotations Within the Aleutian Island Arc.

    NASA Astrophysics Data System (ADS)

    Stone, D. B.; Krutikov, L.

    2006-12-01

    Present-day motion of the Pacific plate relative to the North American plate changes along the Aleutian arc from normal convergence in the east to transform motion in the west. It was postulated by Geist et al. (Tectonics 7, 327-341, 1988) that strain partitioning could result in tectonic segmentation of the lithosphere, caused by increasing obliquity of plate convergence and characterized by clockwise rotation and westward translation of discrete blocks. Their analysis of the present day morphology and tectonic setting of the western half of the arc suggests the presence of rotated blocks, and implies that the rotation is ongoing. Published high-quality paleomagnetic data from the far western end of the arc show rotations that are compatible with this model. This result is based on rocks of Eocene (Bering and Medny Islands) and Miocene (Shemya Island) age, thus the magnetically observed rotations could have occurred at any time since their origin. New paleomagnetic and geochronologic data from Miocene age volcanic rocks on Amchitka Island also indicate clockwise rotation at some time since the rocks were formed (13.8+/-0.2 Ma). However, two other high-quality paleomagnetic data sets from Eocene/Oligocene aged sediments from the eastern part of the arc (Atka and Umnak Islands) are significantly rotated in the same clockwise sense as the western end. Since plate convergence at these two eastern sites has been roughly normal since mid-Eocene time, strain partitioning related to oblique convergence is unlikely to be the cause of the rotation. Models involving rotation of the entire island arc to explain the similarity in magnitude and sense of the rotations seen in the paleomagnetic data require large relative latitude changes between the two ends of the arc. Though possible, such a model would put serious constraints on scenarios for the tectonic development of the Bering Sea Plate required to accommodate the degree of rotation suggested by the data. The answer may

  17. Eocene to Pleistocene magmatic evolution of the Delarof Islands, Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Schaen, Allen J.; Jicha, Brian R.; Kay, Suzanne M.; Singer, Brad S.; Tibbetts, Ashley

    2016-03-01

    The Delarof Islands in the Aleutian Arc near 179º W record ˜37 million years of discontinuous arc magmatism along a SW-NE cross-arc transect from near the trench to the active volcanic front. Geochemical and geochronologic data from the pre-Pleistocene volcanic record in this region are limited and the 40Ar/39Ar, isotopic, and trace element data presented here are the first from units older than the Pleistocene-Holocene volcanoes (Tanaga, Gareloi). Twenty-two new 40Ar/39Ar ages establish a temporal framework for geochemical data and reveal that magmatism in the Delarof region was coincident with two arc-wide magmatic flare ups in the late Eocene/early Oligocene and latest Miocene/Pliocene. Mafic lavas and plutons in the southern Delarofs give 40Ar/39Ar plateau ages ranging from 36.8 ± 0.2 to 26.9 ± 0.6 Ma on Amatignak Island and 37.0 ± 0.2 to 29.3 ± 1.0 Ma on Ulak Island. To the north 25 km, 40Ar/39Ar ages from the central Delarof Islands, Kavalga, Ogliuga, and Skagul are late Miocene (6.28 ± 0.04 Ma) to Pliocene (4.77 ± 0.18 Ma) with younger ages to the northeast. A significant transition in arc chemistry occurs in the Pleistocene where lavas from active volcanoes Gareloi and Tanaga exhibit higher sediment and hydrous fluid signatures (Th/La, Cs/Ta, La/Sm, LILE abundances) and lower 143Nd/144Nd than older Delarof Island units closer to the trench. Similar findings from Eocene-Miocene lavas from Amchitka to Adak suggest that a previously minor sediment melt component became more pronounced in the Quaternary.

  18. Seismological, Geological and Geomorphic Aspects of Arc Segmentation and Their Relation to Subducting Bathymetric Features in the Solomon Island Arc, SW Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chen, M.; Frohlich, C.; Taylor, F. W.

    2006-12-01

    Arc segmentation partitions forearcs into multiple blocks so that the forearc behaves like a "keyboard on a piano" as each segment potentially interacts with the downgoing plate in a different tectonic style. For example, parts of the forearc of the Solomon Islands arc has undergone hundreds of meters of rapid subsidence and uplift during late Quaternary time. Other parts have undergone only minor late Quaternary movements. We use seismology, geology, and geomorphology to identify arc segments in order to evaluate how bathymetric features on the subducting plate influence seismicity and active tectonics and cause overriding plate segmentation. Seismic rupture areas for large earthquakes, seismicity patterns, seismicity cross sections, focal mechanisms, and seismic moment calculations all reveal that the central arc being underthrust by the Woodlark Basin system of active sea-floor spreading is very different from the northwest and southeast parts of the arc. Woodlark subduction is characterized by sparse seismicity, gentle subduction angle, and thrust faulting with some normal and strike-slip components. Observations from geologic maps, coastal geomorphology, and emerged coral reefs show that the arc segments are undergoing varying amounts and rates of uplift and submergence. Larger islands such as Guadalcanal and San Cristobal have both drowning and emerging coastlines. This information indicates the individual segments have dramatically different histories of vertical tectonics. We identify three supersegments: Bougainville, New Georgia, and Guadalcanal-San Cristobal. Smaller segments subdivide each supersegment. Thus we identify nine major boundaries, seven minor boundaries, and six possible boundaries. The classification of each boundary depends on the strength of evidence supporting its existence and the amount of change in tectonic behavior across the boundary. We speculate that subduction of the young Woodlark Spreading Center with seamounts and ridges on

  19. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  20. Petrologic Evolution of Palau; A Nascent Island Arc

    NASA Astrophysics Data System (ADS)

    Hawkins, J. W.; Ishizuka, O.

    2008-12-01

    Initiation of subduction in intra-oceanic settings requires relative differences in plate thickness and density (i.e., age difference); a major zone of weakness separating the plates, e.g., a fracture zone; and a change in relative vectors of movement to cause convergence. These factors help explain the origin of the southern- most part of the > 2500 km long Kyushu - Palau Ridge (KPR). Palau Islands, at 7 deg 30 ' N, are the only significant emergent feature on KPR. Small islands are mainly uplifted Pliocene and younger reef carbonate. Large islands are mainly volcanic comprising rare boninite; major basalt, basaltic andesite and andesite; and minor dacite. Polymict breccia is abundant; sills, flows, dikes are common; pillows are rare. The same rock types, as well as high-Mg basalt, were dredged from the Palau Trench. Volcanism on Palau began in late Eocene and ended by early Miocene. Rocks are low-K primitive island arc- tholeiite series. None are MORB. REE and HFSE require a depleted mantle source. Zr* and Ti* suggest that melts interacted with OL-PX rocks of upper mantle or deep crust cumulates. Moderate enrichment of LILE and LREE indicate influx of "dehydration fluid." Ce/Ce* and Eu/Eu* show no evidence for subducted sediments or recycling of arc- derived clastics yet there is no accreted sedimentary prism. This paradox may be owing to lack of arc or terrigenous clastics on seafloor formed in open ocean "sterile" equatorial latitudes. Plate reconstructions and paleomagnetic data suggest that the "arc" probably formed on the trace of a transform fault that has migrated northward and rotated clockwise up to 90 deg. since Oligocene time. Episodes of transtension allowed upwelling of relatively fertile hot mantle into depleted mantle and sheared, altered, rocks of the transform. Episodes of transpression may have initiated subduction of seafloor having a thin cover of pelagic sediments (calcareous and radiolarian ooze, chert, chalk, limestone) deposited far from

  1. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    NASA Astrophysics Data System (ADS)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  2. Signs of continental rifting in the southwestern Japanese Island Arc

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. A.; Eroshenko, D. V.

    2016-03-01

    The southwestern margin of the Japan Arc evolved in the geodynamic regime of continental rifting during the Miocene-Pleistocene. This has been verified by broad manifestations of metasomatosis of mantle peridotites that underlie the lithosphere of the Japan Islands and by episodes of deep magmatism (kimberlites and melilitites) in the region. The high enrichment of deep melts in incompatible rare and rare earth elements is partially preserved in melts of regional basalts from smaller depths. In contrast, spreading basalts of the Sea of Japan and subduction basalts from the Nankai trench at the boundary with the Philippine Plate are extremely depleted in rare elements.

  3. Seismic Activity in Northern Izu-Bonin arc by Ocean Bottom Seismograph Observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Sakaguchi, H.

    2006-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Suyehiro et al. (1996) found a thick andesitic middle crust with velocity of 6 km/s in northern Izu arc. Recent active seismic experiments in the Izu-Bonin arc show significant variations of the thickness of the middle crust along the volcanic front (Kodaira et al, 2005). The thickness of the middle crust shows an inverse correlation with the average P-wave crustal velocity and the SiO2 composition of the Quaternary volcanoes along the arc. Crustal evolution in the oceanic island arc is a process including magma evolution in the mantle wedge. To understand the nature of the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations by a temporal ocean bottom seismograph (OBS) network in northern Izu-Bonin arc between Tori-shima and Hachijo-jima (30° to 34°N) to investigate structures of the oceanic island arc crust and the mantle wedge in northern Izu-Bonin arc by seismic tomography. The OBS network consists of 40 pop-up type OBSs with a three-component short-period seismometer. The OBSs were deployed in April 2006 and retrieved in July after about 80-day observations. The OBS data were processed with seismic data recorded at island stations on Hachijo-jima and Aoga-shima. These island stations are operated by National Research Institute for Earth Science and Disaster Prevention. From the preliminary results of the hypocenters, many earthquakes were located along the subducting Pacific plate. Along the volcanic front, shallow earthquake clusters were observed around Tori-shima and Sumisu-Jima islands. Another shallow earthquake cluster was observed near a seamount of echelon chains in the back-arc region of the Izu-Bonin arc. Earthquakes in the fore-arc region show strong attenuation at OBSs in the back-arc region

  4. U-series, SrNdPb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface

    NASA Astrophysics Data System (ADS)

    Hoogewerff, J. A.; Van Bergen, M. J.; Vroon, P. Z.; Hertogen, J.; Wordel, R.; Sneyers, A.; Nasution, A.; Varekamp, J. C.; Moens, H. L. E.; Mouchel, D.

    1997-03-01

    We present U-series, SrNdz.sbnd;Pb isotope and trace-element results of a regional study of geochemical systematics across an island arc-continent collision zone in the East Sunda Arc of Indonesia. Samples from four active volcanoes exhibit a striking compositional range from low-K tholeiitic to ultrapotassic, but all are characterised by high 87Sr/86Sr (0.7053-0.7067), radiogenic lead isotope ratios ( 206Pb/204Pb = 18.99-19.15), low ( 230Th) /( 232Thz) (0.66-0.85), and low 143Nd/144Nd (0.51255-0.51272), except for high 143Nd/144Nd (>0.51286) at the volcanic front. Low ( 230Th) /( 232Th) ratios are also found in terrigenous sediments in front of the arc, which, in combination with Srz.sbnd;Ndz.sbnd;Pb isotopic constraints, indicates that subducted continental material contributes to magma sources in this arc sector. The volcanoes close to the trench show a large excess of 238U over . 230Th (up to 80%) and of 226Ra over 230Th (up to 800%). In addition, they are enriched in elements thought to be mobile in hydrous fluids during slab-wedge transfer, such as Ba, Pb, and Sr. In contrast, Uz.sbnd;Thz.sbnd;Ra systematics are close to equilibrium in the volcanoes behind the front. Abundance patterns of incompatible trace elements in these rocks are similar to those of the terrigenous sediments, so that, in comparison with the arc-front lavas, they possess low Ba/La, Ba/Th, La/Th, Pb/Ce, and Zr/Nb. Higher concentration levels and less interelement fractionation form conspicuous differences with the front volcanics. Our combined isotopic and trace element data are consistent with three-component mixing whereby a slab-derived hydrous fluid and a siliceous melt are both added to the sub-arc mantle source. The hydrous fluid largely controls the input in the shallow part of the subduction zone, whereas the siliceous melt dominates the flux at deeper levels. Sedimentary material is considered to be the primary source of both. The large U-Th-Ra disequilibria at the front

  5. Patterns of seismogenesis for giant plate-boundary earthquakes in island-arc-type subduction systems

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2006-12-01

    The global record of giant earthquake occurrence in subduction zones during the instrumental and historical eras is woefully short; only about 16 events with magnitudes above 8.4 are reasonably well documented since 1700. We find no examples of giant (M > 8.4) interplate thrust events and/or wide-ranging tsunamis sourced in the classic island arcs with fast backarc spreading (Bonin, Marianas, Tonga-Kermadec, Vanuatu, and South Scotia). The Sumatra-Andaman Earthquake of 2004 (SAE) ruptured a sector of the INDIA-BURMA subduction boundary and evidently had no known historical antecedents, suggesting that the return time may be many centuries to millennia and consistent with low convergence rates. Moreover, the persistence of rupture to the north in the weakly volcanic Nicobar/Andaman sector gives one pause to reflect on the assumption that island arcs, especially those with active back-arc spreading such as the Marianas, do not produce great interplate- thrust earthquakes. The Andaman/Nicobar subduction segment is an unusual island arc. Only two arc volcanoes occur between the convergent plate boundary west of the Andamans and the backarc ridge/transform system to the east. Backarc spreading in the Andaman/ Nicobar segment is unusual because the NNW spreading directions are nearly parallel to the trench/deformation-front as do the INDIA-BURMA plate motions across it. This geometry suggests that arc-normal extension, trench migration and associated slab normal motions may not mechanically decouple this subduction system. The Nicobar sector of the rupture for the 2004 event is roughly 200 km wide judging from the aftershock distribution; a distribution that persists to the east under the Nicobar Islands, suggesting that the plate-boundary dip is very shallow in that latitude range. If this is correct, then the down-dip limitation on seismogenic slip set by serpentinized forearc mantle (Hyndman et al., 2003) may not control rupture width as it apparently does for many

  6. The Quaternary adakite distribution of Kyushu Island, Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Takemura, K.

    2011-12-01

    The Quaternary volcanoes are widely distributed in Kyusu Island, Japan. Philippine Sea plate is subducting beneath Kyushu. Clear distribution of deep seismic foci is observed below the Quaternary volcanoes in southern area, but not in northern area. Notsu et al. (1990, JVGR) examined the contribution of subduction to the magma source, and emphasized that no slab derived material is observed in northern area from Sr isotopic compositions. Volcanic activity similar to the within-plate type volcanism has been also emphasized for the magma genesis of this area (e.g. Kita et al, 2001, JVGR). However, we found adakitic rocks, which show high Sr/Y ratios and low Y concentrations (e.g. Defant and Drummond, 1990, Nature) from some Quaternary volcanoes in north Kyushu on the basis of published data (Otha et al, 1990, GANKO; Itoh, 1990, GANKO). Therefore, the magma genesis is still controversial. We studied lateral variations of Sr, Nd and Pb isotopic and trace element compositions for Quaternary volcanics from Kyushu to investigate the magma genesis. From the results, a clear variation of Sr/Y ratio, decreasing from north to south, is observed along the volcanic front. Some of the Sr/Y ratio of the most northern part of Kyusu shows the value >100. The all analyzed Pb isotope compositions show a single liner trend in 208Pb/204Pb v.s. 206Pb/204Pb diagram. The liner trend of Pb isotope ratios can be explained by the binary mixing of the Shikoku Basin basalt and tereginious sediment which might be a constituent of the subducting slab. The similar binary mixing relationships are found in Sr and Nd isotopic systematics. The isotopic characteristics of the Quaternary magma in Kyushu can be explained by the magma generation process of island arc, in spite of the lack of deep seismic foci in northern area. It is considered that high and low Sr/Y ratios suggest the contributions of partial melt in the north and aqueous fluid derived from subducting slab in the south, respectively. If

  7. Seismic velocity variations under island arcs: Examples from the Philippines and Montserrat (Lesser antilles)

    NASA Astrophysics Data System (ADS)

    Sevilla, Winchelle Ian

    Island arcs are geologically active and important structures. From a short-term perspective, they are a major source of seismic and volcanic hazards. From a longer-term perspective, arc processes are most likely a key component in the production of continental lithosphere. They are also the focus of numerous Geoscience investigations. In this thesis I investigate the seismic structure of island arcs at a regional (hundreds of kilometer) and a local (10's of km) scale. My goal in this work is to contribute to our efforts to understand the origin and evolution of these geologically important structures. I focus seismic imaging methods on two regions, the Philippine Island region and the northern Lesser Antilles island of Montserrat. The Philippine Island Arc (PIA) is commonly regarded as a complex structure in which subduction zones border its sides and the intra-arc, sinistral Philippine Fault System transects throughout its length. The arc is seismically active and volcanic activity spans almost the entire arc. While several studies provide a wealth of information on the tectonic and the geodynamic settings of PIA, few have looked carefully into the subsurface because they were limited by the availability of digital seismic data. For this reason, important data gaps exist, in particular the details of the subsurface seismic velocity structure. The recent deployments of relatively dense digital seismic stations offer an opportunity to conduct a detailed study on the arc's velocity structure. Data from this new seismic network are used to determine the three-dimensional (3--D) velocity structure of the PIA by applying the P--wave travel time tomography. A broad distribution of source depths and the arc-wide distribution of seismic stations allow tomographic imaging of structures down to 450 km depth with spatial resolution of about ˜50 km resolution. The prominent features of the tomographic images include the low velocity zones correlating with the overlying

  8. Magma genesis in the lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.; Powell, M.

    1980-12-01

    143Nd/ 144Nd, 87Sr/ 86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [ 2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas. Along the arc 87Sr/ 86Sr ratios range from 0.7037 on St. Kitts, to 0.7041-0.7047 on Dominica, and 0.7039-0.7058 on Grenada [ 5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths. 143Nd/ 144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264-0.51308 on Grenada [ 5], and all these samples have relatively high 87Sr/ 86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and 87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.

  9. Fundamental structure model of island arcs and subducted plates in and around Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained

  10. Altimetry data over trenches and island-arcs and convection in the mantle

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Transfer function techniques were developed to calculate the isostatic component of the geoid signal over trench/island arc/back arc systems. Removal of this isostatic component from geoid profiles determined by GEOS 3 radar altimetry leaves a residual geoid that can be attributed to the effect of mass inhomogeneities below the depth of compensation. Efforts are underway to extend the analysis to all the major trench/island arc systems of the world in order to provide more detailed understanding of the dynamic processes occurring beneath island arcs.

  11. The Halmahera Island Arc, Molucca Sea collision zone, Indonesia: A geochemical survey

    NASA Astrophysics Data System (ADS)

    Morris, J. D.; Jezek, P. A.; Hart, S. R.; Hill, J. B.

    The Halmahera island arc, northeastern Indonesia, is the east flank of the Molucca Sea collision zone which is the site of an active arc-arc collision. One unique aspect of the arc is the vast thickness of marine sediments outboard of the trench, a result of ˜1000-1500 km of closure in the Molucca Sea basin. The Halmahera arc is underlain by a 45° east dipping Benioff zone, which is present to depths of 230 km. The volcanoes form a single front which lies ˜100 km above the top of the slab. The arc can be separated into three regions, on the basis of tectonic setting and chemistry. Most volcanoes are part of the normal calc-alkaline oceanic arc segment. Lavas here are basalts through dacites, with basaltic andesites and andesites dominant. Suites are medium-K and show little to moderate Fe enrichment. Abundances of Al2O3, the alkali elements, compatible elements, and the high field strength elements are typical of calc-alkaline island arc lavas. 87Sr/86Sr ratios are 0.70357-0.70438 the average value for all volcanic centers is almost the same, but most centers show a large range of real variation around that average. Pb isotopic compositions are 206Pb/204Pb = 18.55-18.62, 207Pb/204 = Pb 15.55-15.63, 208Pb/204Pb = 38.48-38.67. On a Pb-Pb diagram, they form a linear cluster of steep slope, between oceanic sediments and the less radiogenic end of the mantle array. Pb and Sr isotopic compositions for the oceanic segment can be used to test models for the origin of arc lavas. Both isotope systems can be satisfied by a three-component mixing model where normal oceanic island basalt-type magma is mixed with MORB and contaminated by heterogeneous sediments. A two-component model, where OIB-type magmas (which are heterogeneous with respect to both Sr contents and 87Sr/86Sr ratios) are contaminated with sediments, can also explain the data. This generates isotopically heterogeneous suites, and much of this heterogeneity is preserved through the eruption process. A

  12. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  13. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-central Alaska

    NASA Astrophysics Data System (ADS)

    Greene, A. R.; Debari, S. M.; Kelemen, P. B.; Clift, P. D.; Blusztajn, J.

    2002-12-01

    The Talkeetna arc section in south-central Alaska is recognized as the exposed upper mantle and crust of an accreted, Late Triassic to Middle Jurassic island arc. Detailed geochemical studies of layered gabbronorite from the middle and lower crust of this arc and a diverse suite of volcanic and plutonic rocks from the middle and upper crust provide crucial data for understanding arc magma evolution. We also present new data on parental magma compositions for the arc. The deepest level of the arc section consists of residual mantle and ultramafic cumulates adjacent to garnet gabbro and basal gabbronorite interlayered with pyroxenite. The middle crust is primarily layered gabbronorite, ranging from anorthosite to pyroxenite in composition, and is the most widespread plutonic lithology. The upper mid crust is a heterogenous assemblage of dioritic to tonalitic rocks mixed with gabbro and intruded by abundant mafic dikes and chilled pillows. The upper crust of the arc is comprised of volcanic rocks of the Talkeetna Formation ranging from basalt to rhyolite. Most of these volcanic rocks have evolved compositions (<5% MgO, Mg# <60) and overlap the composition of intermediate to felsic plutonic rocks (<3.5% MgO, Mg# <45). However, several chilled mafic rocks and one basalt have primitive characteristics (>8% MgO, Mg# >60). Ion microprobe analyses of clinopyroxene in mid-crustal layered gabbronorites have parallel REE patterns with positive-sloping LREE segments (La/Sm(N)=0.05-0.17; mean 0.11) and flat HREE segments (5-25xchondrite; mean 10xchondrite). Liquids in REE equilibrium with the clinopyroxene in these gabbronorite cumulates were calculated in order to constrain parental magmas. These calculated liquids(La/Sm(N)=0.77-1.83; mean 1.26) all fall within the range of dike and volcanic rock(La/Sm(N)=0.78-2.12; mean 1.23) compositions. However, three lavas out of the 44 we have analyzed show strong HREE depletion, which is not observed in any of the liquid compositions

  14. Oxygen isotope constraints on the origin of island arc granitoids

    NASA Astrophysics Data System (ADS)

    Perez, R. J.; Cavosie, A. J.; Valley, J. W.

    2007-12-01

    Granitic intrusions in island arcs constitute additions of juvenile crust from oceanic environs that ultimately get accreted to continents. The genesis of island arc granitoids is thus important to studies of the growth of oceanic and continental crust. Puerto Rico (USA) is a composite island arc terrane that preserves a record of plutonism from 85 Ma to 38 Ma (Cavosie et al., 2007 AGU). Mid-crustal granitoid plutons are exposed (~1 to 500 km2), but their origins are unknown, as no suspected parental magmas associated with the plutons (e.g., gabbro) are exposed. This study uses petrography, WR major elements, and oxygen isotopes of WR and zircon from granitoids and xenoliths to place better constraints on the origin of granitoid in the Greater Antilles island arc. WR δ18O analyses were made with laser fluorination by IRMS at the Univ. of Wisconsin (uncertainties = 0.10 to 0.20‰, 2sd). The main plutons (Caguas, Rio Blanco, San Lorenzo, Utuado, Vieques) yield primitive δ18O(WR) values, ranging from 6.24 to 7.72‰ over a range of wt.% SiO2= 58.03 to 66.54. Smaller stocks (<20 km2) yield higher δ18O(WR) values, ranging from 7.47 to 10.27‰. Qualitative petrographic analysis reveals that granitoids with δ18O(WR) >~7.5‰ are partially to pervasively altered. Zircon preserves magmatic δ18O and is used here to quantitatively evaluate the measured δ18O(WR) values. If δ18O(Zrc) and wt.% SiO2 are known, a comparison of measured vs. predicted δ18O(WR) can be made (Valley et al., 2005, CMP). The measured δ18O(WR) values record variable amounts of alteration, ranging from virtually undetectable, to WR δ18O elevations of ~4‰, indicative of low-T subsolidus alteration. The Δ18O (WR-Zrc) values using calculated δ18O(WR) yield the following fractionations: -1.57 to 1.00‰ for granodiorites (wt.% SiO2=66 to 57); -0.85‰ for diorite (wt.% SiO2=55); and -0.56‰ for the only gabbro analyzed (wt.% SiO2=50). Mafic xenoliths (53-57 wt.% SiO2) from 4 granitoids yield

  15. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former

  16. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific

    NASA Astrophysics Data System (ADS)

    Chadwick, John; Perfit, Michael; McInnes, Brent; Kamenov, George; Plank, Terry; Jonasson, Ian; Chadwick, Claire

    2009-03-01

    The Woodlark Spreading Center (WSC) is subducted at the San Cristobal trench, forming a triple junction at the New Georgia Group (NGG) arc in the Solomon Islands. WSC lavas are N-MORB at > 100 km from the trench, but with decreasing distance they have increasingly arc-like Sr-Nd-Pb isotopic ratios, enrichments in Rb > K > Pb > Sr, and depletions in HFSE and Y. Within 50 km of the trench on the Simbo and Ghizo Ridges, many recovered samples are island arc tholeiites to medium-K calc-alkaline andesites and dacites, and many have the same or similar major and trace element and isotopic characteristics as true arc lavas in the NGG on the other side of the trench. Previous investigations have concluded that these WSC lavas are the result of relic back arc mantle enrichments resulting from subduction of the Pacific plate prior to the late Miocene at the North Solomon trench, > 200 km to the north. However, the high-silica WSC lavas are more arc-like than those recovered from other distal back arcs, and are more voluminous, forming large submarine ridges and stratovolcanoes. We suggest that true arc mantle migrates across the plate boundary from the adjacent NGG arc through slab windows created by the subduction of the WSC. This leads to variable mixing between NGG arc and WSC N-MORB end-members, forming the transitional lavas recovered from the WSC. Lavas with similar arc-like characteristics have previously been recovered on the Chile Rise near where it is subducted at the Chile Trench, raising the possibility that such mantle transfer is a common phenomenon where active spreading centers are subducted. The presence of slab windows may also be responsible for the unusual forearc volcanism in the NGG, and melting of slab window margins may account for the presence of high-silica adakite-like lavas on the WSC.

  17. Displacement Partitioning, Boundary-Parallel Terrane Migration, and Arc-Parallel Extension in the Aleutian Islands Based on Structural Analysis and GPS Geodesy

    NASA Astrophysics Data System (ADS)

    Ave Lallemant, H. G.; Oldow, J. S.; Lewis, D. S.

    2001-12-01

    Structural analysis of the deformed rocks on several Aleutian Islands (Attu, Adak, Atka, and Unalaska) combined with published bathymetric and seismic reflection data support the existence of displacement partitioning along the Aleutian arc. Brittle structures are remarkably consistent among all islands studied and record arc-normal contraction, arc-parallel transcurrent motion, and arc-parallel extension. This process is still active as shown by earthquake-focal mechanisms and a GPS velocity field determined from five Aleutian Islands (Attu, Shemya, Adak, Atka, and Unalaska). GPS site velocities determined from campaigns in 1996, 1998, 1999, and 2000 increase from east to west along the island arc. Primary GPS sites on five islands were occupied for three-weeks each during two to four campaigns. In a North American reference frame the sites show a systematic increase in arc-parallel motion from Unalaska (4 mm/yr) in the east to Shemya (25 mm/yr) and Attu (31 mm/yr) in the west. Velocities for Adak and Atka near the center of the Aleutian arc are 10 mm/yr and 7 mm/yr, respectively and show a greater component of arc-normal displacement than sites at the eastern and western ends of the island chain. Secondary sites occupied for several days during alternating campaigns on Attu, Adak, and Unalaska have velocities consistent with the primary GPS sites for each island. On Atka, secondary site velocities record a significant divergence from the velocity of the primary site and indicate either transtensional deformation within the island or contamination of the primary site velocity by local strain accumulation. These results indicate that convergence between the North American and Pacific plates is partitioned into arc-normal and arc-parallel components. The arc-normal component causes shortening (thrusting and folding) along an axis oriented at a high-angle to the plate boundary and the arc-parallel component causes displacements along several arc

  18. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution. PMID:20545181

  19. Formation of Garnet Granulite in the Lower Crust of a paleo-Island Arc

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Padrón-Navarta, José Alberto; López Sánchez-Vizcaíno, Vicente; Bodinier, Jean-Louis; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly

    2016-04-01

    The Jijal complex (Kohistan paleo-island arc complex, NW Pakistan) is a unique occurrence of high-pressure (HP), mafic, opx-free, garnet granulite formed in the lower crust of an island arc. The upper part of the Jijal Granulitic Gabbro Unit (GGU) records the arrested transformation of hornblende gabbronorite to garnet granulite, involving the coeval breakdown of amphibole and orthopyroxene, and the formation of garnet and quartz. Close to the transformation front (2-3 cm), clinopyroxene from the granulite displays a strong Ca-tschermak zoning with lower Al-contents at rims. REE zoning of clinopyroxene and pseudosection diagrams indicate that only clinopyroxene rims reflect chemical equilibrium with garnet in the reaction front (P = 1.1 ± 0.1 GPa, T = 800 ± 50 °C), whereas the cores retained high-Al contents inherited from precursor gabbronorite clinopyroxene and remained in chemical disequilibrium within a few centimeters of the garnet granulite assemblage. Clinopyroxene of garnet granulites from the Jijal lower GGU are completely re-equilibrated with garnet (P = 1.5 ± 0.1 GPa, T = 800 ± 50 °C). If ferric iron corrections are disregarded, equilibration pressure and temperature are highly overestimated yielding exceedingly high pressures for an island arc setting. The pressure difference between the upper and lower Jijal GGU granulites (~0.4 GPa) and its current thickness (<5 km) implies delamination of the denser parts of Jijal crust. Thermodynamically computed phase diagram sections for upper GGU bulk compositions show that, at the equilibration conditions of Jijal garnet granulite, the equilibrium assemblage is orthopyroxene-free and amphibole-free garnet granulite coexisting with melt or a fluid phase, depending on the water activity at the onset of amphibole breakdown. Pseudosections indicate that hornblende gabbronorite assemblages are highly metastable at lower arc crust depths. The transformation to garnet granulite was therefore substantially

  20. Erosion and deterioration of Isles Dernieres Barrier Island arc, Louisiana: 1842-1988

    SciTech Connect

    McBride, R.A.; Westphal, K.; Penland, S. ); Jaffe, B. ) ); Williams, S.J. )

    1989-09-01

    The Isles Dernieres barrier island arc is the most rapidly eroding coastline in the US. Located on the Mississippi River delta plain in Terrebonne Parish, Louisiana, the Isles Dernieres consists of four smaller islands in a 32-km long chain. From west to east, these islands are known as Raccoon Island, Whiskey Island, Trinity Island, and East Island. The barrier island arc is separated from the mainland by Caillou Bay, Boca Caillou, and Lake Pelto lagoonal systems. The abandonment and transgression of the Bayou Petit Caillou delta (part of the larger Lafourche delta complex) over the last 600 years, along with sea level rise, repeated storm impacts, and rapid shoreface erosion, have led to the formation of the Isles Dernieres. Continued transgressive submergence combined with a diminishing sediment supply are driving the extreme coastal erosion found in the Isles Dernieres.

  1. Island arc picrites from the solomon islands - origin by mantle matrix collapse

    NASA Astrophysics Data System (ADS)

    Rohrbach, A.; Schuth, S.; Münker, C.; Ballhaus, C.

    2003-04-01

    The MgO enrichment in picrites is commonly explained by accumulation of liquidus olivine in a convecting magma chamber. Here we report results from subduction related picrites from the New Georgia archipelago (Solomon Islands) that were examined to derive the parental melt composition and to understand the wide range in MgO contents (13 to 30 wt.%). The New Georgia picrites cannot be explained by a simple cumulate assimilation model. The samples contain up to 40 vol.% olivine, calcic cpx, and chrome spinel as phenocrysts, set in a microcrystalline groundmass. There are two distinct populations of olivine, one with <0.12 wt.% CaO (low--Ca) and one with 0.18 to 0.34 wt.% CaO (high--Ca). The high--Ca olivines (Fo84-92) are considered to be the equilibrium olivine phenocrysts of a basaltic to picritic melt. The low--Ca olivines (Fo90-93.4) zone towards high--Ca compositions towards the rims and were obviously not in equilibrium with the melt at the time of crystal incorporation. Oxygen fugacities of the picrites calculated from Fe3+ in chrome spinel are around FMQ+3.35. At this relative fO_2 the MgO content of the parent melt is constrained to 14.85 wt.% assuming Kolv-liqDFe-Mg equilibrium (0.3) with the high--Ca olivines. The liquidus temperature of the melt [1] based on this MgO content is 1323^oC, 60^oC above the olivine--cpx Ca--exchange temperature [2]. The depth of melting is constrained to less than 60 km by the seismic depth of the Benioff zone. This is also supported by geochemistry [3] and the highly oxidized nature of the parent melt that favour the mantle wedge as the exclusive mantle source. The presence of picrites in the Solomon Islands is confined to the region above the active Woodlark spreading centre that is subducted beneath the arc. This extra heat source caused extensive melting and an eventual collapse of the mantle matrix, represented by the assimilated low--Ca olivines. The range in bulk MgO is almost entirely controlled by assimilation of

  2. Petrogenesis of Late Cretaceous lava flows from a Ceno-Tethyan island arc: The Raskoh arc, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Siddiqui, Rehanul Haq; Qasim Jan, M.; Asif Khan, M.

    2012-10-01

    The Raskoh arc is about 250 km long, 40 km wide and trends in an ENE direction. The oldest rock unit in the Raskoh arc is an accretionary complex (Early to Late Jurassic), which is followed in age by Kuchakki Volcanic Group, the most wide spread unit of the Raskoh arc. The Volcanic Group is mainly composed of basaltic to andesitic lava flows and volcaniclastics, including agglomerate, volcanic conglomerate, breccia and tuff, with subordinate shale, sandstone, limestone and chert. The flows generally form 3-15 m thick lenticular bodies but rarely reach up to 300 m. They are mainly basaltic-andesites with minor basalts and andesites. The main textures exhibited by these rocks are hypocrystalline porphyritic, subcumulophyric and intergranular. The phenocrysts comprise mainly plagioclase (An30-54 in Nok Chah and An56-64 in Bunap). They are embedded in a micro-cryptocrystalline groundmass having the same minerals. Apatite, magnetite, titanomagnetite and hematite occur as accessory minerals. Major, trace and rare earth elements suggest that the volcanics are oceanic island arc tholeiites. Their low Mg # (42-56) and higher FeO (total)/MgO (1.24-2.67) ratios indicate that the parent magma of these rocks was not directly derived from a mantle source but fractionated in an upper level magma chamber. The trace element patterns show enrichment in LILE and depletion in HFSE relative to N-MORB. Their primordial mantle-normalized trace element patterns show marked negative Nb anomalies with positive spikes on K, Ba and Sr which confirm their island arc signatures. Slightly depleted LREE to flat chondrite normalized REE patterns further support this interpretation. The Zr versus Zr/Y and Cr versus Y studies show that their parent magma was generated by 20-30% melting of a depleted mantle source. The trace elements ratios including Zr/Y (1.73-3.10), Ti/Zr (81.59-101.83), Ti/V (12.39-30.34), La/YbN (0.74-2.69), Ta/Yb (0.02-0.05) and Th/Yb (0.11-0.75) of the volcanics are more

  3. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho.

    PubMed

    Jagoutz, Oliver; Behn, Mark D

    2013-12-01

    A long-standing theory for the genesis of continental crust is that it is formed in subduction zones. However, the observed seismic properties of lower crust and upper mantle in oceanic island arcs differ significantly from those in the continental crust. Accordingly, significant modifications of lower arc crust must occur, if continental crust is indeed formed from island arcs. Here we investigate how the seismic characteristics of arc crust are transformed into those of the continental crust by calculating the density and seismic structure of two exposed sections of island arc (Kohistan and Talkeetna). The Kohistan crustal section is negatively buoyant with respect to the underlying depleted upper mantle at depths exceeding 40 kilometres and is characterized by a steady increase in seismic velocity similar to that observed in active arcs. In contrast, the lower Talkeetna crust is density sorted, preserving only relicts (about ten to a hundred metres thick) of rock with density exceeding that of the underlying mantle. Specifically, the foundering of the lower Talkeetna crust resulted in the replacement of dense mafic and ultramafic cumulates by residual upper mantle, producing a sharp seismic discontinuity at depths of around 38 to 42 kilometres, characteristic of the continental Mohorovičić discontinuity (the Moho). Dynamic calculations indicate that foundering is an episodic process that occurs in most arcs with a periodicity of half a million to five million years. Moreover, because foundering will continue after arc magmatism ceases, this process ultimately results in the formation of the continental Moho. PMID:24305163

  4. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W., Jr.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; De Ronde, C. E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  5. Cyclicity in Silurian island-arc carbonates, Alexander terrane, Alaska

    SciTech Connect

    Kittredge, L.E.; Soja, C.M. . Dept. of Geology)

    1993-03-01

    Silurian carbonates from Alaska (Alexander terrane) record the evolution of a submarine platform during waning volcanism in an island arc. A detailed stratigraphic analysis of a 47 meter-thick sequence revealed the existence of cyclically repeated limestones: coral-stromatoporoid wackestones alternate with oncoid packstones and bioturbated, silty lime mudstones. The coral-stromatoporoid deposits are characterized by a low-diversity assemblage of dendroid corals, massive stromatoporoids, Atrypoidea brachiopods, and rare occurrences of biostromes associated with Solenopora, high-spired gastropods, and crinoids. Oncoids typically are 2-6 mm in diameter and form massive, meter-thick units. Coated grains are symmetrically developed, have a shell or algal nucleus, and are also a minor component of coral-stromatoporoid beds. These lithologic units form seven, shallowing-upwards cycles (parasequences) that range in thickness from 3-9 meters. Coral-stomatoporoid wackestones form the base of each cycle and grade upwards into oncoid packstones with silty, lime mudstones at the top. This succession of lithofacies within each cycle reflects an increase in energy levels from relatively deeper water environments to relatively shallower ones. The lack of abrasion in the corals and stromatoporoids suggests predominantly quiet-water conditions in shallow subtidal areas affected by periodic turbulence. Comparison with correlative sections in Alaska and lack of correspondence with global sea level curves suggest that the primary cause of cyclicity was tectonic perturbations with secondary eustatic effects. Cyclic deposition in peri/subtidal sites was terminated by rapid drowning of the carbonate platform during late Silurian orogenesis.

  6. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough

    USGS Publications Warehouse

    Alt, J.C.; Shanks, Wayne C., III; Jackson, M.C.

    1993-01-01

    The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (??34S = 21???) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in 34S (??34S = up to 10.3???, mean = 3.8???) and depleted in S (20-290 ppm, mean = 100 ppm) relative to MORB (850 ppm S, ??34S = 0.1 ?? 0.5???). The back-arc trough basalts contain 200-930 ppm S and have ??34S values of 1.1 ?? 0.5???, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at f{hook}O2 ??? NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of ??34S with 87Sr 86Sr, LILE and LREE contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a 34S-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2. CO2 in the arc and back-arc rocks has ??13C values of -2.1 to -13.1???, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower

  7. Island-arc carbonates: characterization and recognition in the ancient geologic record

    NASA Astrophysics Data System (ADS)

    Soja, C. M.

    1996-10-01

    Carbonates of island-arc origin that are preserved in Paleozoic-Mesozoic terranes of the North American Cordillera exhibit a distinctive suite of paleontologic and lithologic features and share a fundamental similarity with limestones forming in modern volcanic arcs. This study provides the first detailed synthesis of carbonate depositional systems in island arcs and documents primary sedimentary constituents based on facies relationships and faunal communities. Models are developed that show patterns in the long-term evolution of shallow marine organisms and the construction, evolution, and demise of carbonate platforms in island arcs. A suite of criteria is identified that may be used to differentiate island-arc carbonates from limestones that accumulated in other platform settings. Biogeographic isolation, prolonged subsidence, steep submarine slopes and tectonic instability of volcanic edifices contribute to the development of relatively high levels of species endemism, impoverished normal marine faunas, complex provincial affinities, and relict biotas in limestones that are characterized by exceptionally thick platform and periplatform sequences, fringing and barrier reefs at the shelf margin, extensive lagoonal deposits and rapid lateral and vertical facies changes. Although destructive tectonic and geologic processes in island arcs may hinder determining the original size and extent of the carbonate platform, and particular facies types may not be represented (e.g., fringing and barrier reefs may be replaced by sand shoals at the platform, margin), many characteristics have potential value for identifying carbonates of island-arc origin in the ancient rock record. Apart from being associated with calc-alkaline volcanic and volcaniclastic assemblages, the most valuable suite of features for recognizing island-arc carbonates is marine biotas that exhibit elevated levels of endemism and mixed paleobiogeographic affinities, extraordinary thicknesses of platform

  8. 40Ar/39Ar geochronology of subaerial lava flows of Barren Island volcano and the deep crust beneath the Andaman Island Arc, Burma Microplate

    NASA Astrophysics Data System (ADS)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh

    2015-06-01

    Little was known about the nature and origin of the deep crust beneath the Andaman Island Arc in spite of the fact that it formed part of the highly active Indonesian volcanic arc system, one of the important continental crust forming regions in Southeast Asia. This arc, formed as a result of subduction of the Indian Plate beneath the Burma Microplate (a sliver of the Eurasian Plate), contains only one active subaerial magmatic center, Barren Island volcano, whose evolutional timeline had remained uncertain. In this work, we present results of the first successful attempt to date crustal xenoliths and their host lava flows from the island, by incremental heating 40Ar/39Ar method, in an attempt to understand the evolutionary histories of the volcano and its basement. Based on concordant plateau and isochron ages, we establish that the oldest subaerial lava flows of the volcano are 1.58 ± 0.04 (2σ) Ma, and some of the plagioclase xenocrysts have been derived from crustal rocks of 106 ± 3 (2σ) Ma. Mineralogy (anorthite + Cr-rich diopside + minor olivine) and isotopic compositions (87Sr/86Sr < 0.7040; ɛNd > 7.0) of xenoliths not only indicate their derivation from a lower (oceanic) crustal olivine gabbro but also suggest a genetic relationship between the arc crust and the ophiolitic basement of the Andaman accretionary prism. We speculate that the basements of the forearc and volcanic arc of the Andaman subduction zone belong to a single continuous unit that was once attached to the western margin of the Eurasian Plate.

  9. Shallow submarine volcano group in the early stage of island arc development: Geology and petrology of small islands south off Hahajima main island, the Ogasawara Islands

    NASA Astrophysics Data System (ADS)

    Kanayama, Kyoko; Umino, Susumu; Ishizuka, Osamu

    2014-05-01

    Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.

  10. Lode Gold Deposits and Archean Mantle Plume-Island Arc Interaction, Abitibi Subprovince, Canada.

    PubMed

    Wyman; Kerrich; Groves

    1999-11-01

    In combination with seismic interpretations and geochronological constraints, the association of juvenile arc-type low-Ti tholeiitic basalts with komatiites in the southeastern Abitibi subprovince, Canada, supports a history of subduction step back following Late Archean mantle plume-island arc interaction. The resulting paired collision zones preserved abundant komatiites and numerous massive sulphide deposits and established the critical metallogenic features to concentrate the majority of Canada's Precambrian gold resources in a small area of the southern Abitibi subprovince. PMID:10517886

  11. A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific)

    NASA Astrophysics Data System (ADS)

    Merle, O.; Brothelande, E.; Lénat, J.-F.; Bachèlery, P.; Garaébiti, E.

    2013-12-01

    A structural study has been conducted on the resurgent Yenkahe dome (5 km long by 3 km wide) located in the heart of the Siwi caldera of Tanna Island (Vanuatu arc, south Pacific). This spectacular resurgent dome hosts a small caldera and a very active strombolian cinder cone - the Yasur volcano - in the west and exhibits an intriguing graben in its central part. Detailed mapping and structural observations make it possible to unravel the volcano-tectonic history of the dome. It is shown that, following the early formation of a resurgent dome in the west, a complex collapse (caldera plus graben) occurred and this was associated with the recent uplift of the eastern part of the present dome. Eastward migration of the underlying magma related to regional tectonics is proposed to explain this evolution.

  12. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    USGS Publications Warehouse

    ten Brink, U.S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  13. Effect of underlayer on coalescence of silver islands grown byfiltered cathodic arc deposition

    SciTech Connect

    Byon, Eungsun; Anders, Andre

    2003-03-01

    For low-emissivity application on window glass, coalescenceof thin film silver islands is crucial for high transmittance in thevisible andhigh reflectance in the infrared. It is well known that theenergy of ions arriving at the substrate (kinetics) as wells as the typeof underlayer (thermodynamics) affect the nucleation and growth mode.Little is known about coalescence of silver islands synthesized byenergetic condensation, e.g., by filtered cathodic vacuum arc deposition.In this work, the effect of the underlayer on nucleation and growth ofsilver films deposited by filtered cathodic vacuum arc was investigatedby transmission electron microscopy (TEM) and atomic force microscopy(AFM). The results are compared with data obtained on magnetron sputteredfilms. It was found that uncoated and titanium-oxide-coated glass requiremore silver to achieve the same low value of sheet resistance than silveron zinc-oxide-coated glass. This can be associated with the energy ofinteraction between surface and silver atoms. Silver films made bycathodic arc deposition show an earlier onset of island coalescence andformation of short links. It was found that silver islands in energeticdeposition exhibit a reduced aspect ratio compared to evaporation andsputtering. A nominal 0.1 nm niobium underlayer increases the nucleationdensity and promotes coalescence of silver islands, however, a 0.2 nmlayer did not show these features, indicating the need for furtherstudies.

  14. Morphostructural analysis and Cenozoic evolution of Elephant Island, Southern Scotia Arc, Antarctica

    NASA Astrophysics Data System (ADS)

    Mink, S.; Maestro, A.; López-Martínez, J.; Schmid, T.; Galindo-Zaldívar, J.; Trouw, R. A. J.

    2015-04-01

    Elephant Island, located in the vicinity of the present-day active boundary of the South Shetland Block and the Antarctic and Scotia plates, is a region of particular interest for understanding the past and present geodynamic evolution of the southern Scotia Arc. Lineament from different data sources, field-measured fractures and geomorphological evidences have been analysed in this context. The lineaments extracted from aerial photographs (1,624), from a DEM (348) and from RADARSAT-2 satellite data (1,365) indicate four dominant lineament sets with NE-SW, NW-SE, N-S and W-E strikes. All data sources identified similar lineament families, but differences in the frequency distributions and subsequently on the dominant orientations were observed. The measurements direct of fractures were obtained from 23 sites in the field at which 278 planes were measured. Fracture planes indicate main modes trending in the NNE-SSW and NNW-SSE directions and a secondary mode in the E-W. The major trends of the fracture measurements and the lineaments display a good correlation in the E-W direction. However, there is an angular variation in the azimuth values of the NNE-SSE and NNW-SSE fractures with respect to the N-S, NE-SW and NW-SE orientations of the lineaments of approximately 20°. This trend deviation may be due to the fact that mapped lineaments are composed of small fracture sets that may be related to shear fractures that cannot be distinguished at the aerial photograph or radar satellite data scales. Submerged sea-floor morphological feature orientations match the studied morphostructures on the island and the main tectonic structures in this part of the Scotia Arc. A linkage of the main lineament families to the tectonic stages from the Oligocene to the present has been proposed, taking into account the information of the orientation and sense of movement of the fractures and stresses in the Elephant Island region.

  15. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Haldar, Dhanapati

    2006-01-01

    Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ˜2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ˜400 km 3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ˜1.3 km 3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994-1995. A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994-1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb-Ta and enrichments of K-Rb-Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile. BI basalts and basaltic andesites have variable abundances of phenocrystic-microphenocrystic olivine plus Cr-Al-Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of

  16. Active Subduction Beneath The Gibraltar Arc

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.; Malod, J.; Rehault, J.-P.; Contrucci, I.; Klingelhoefer, F.; Spakman, W.; Sismar Scientific Team

    The Gibraltar region features the arcuate Betic - Rif mountain belt with outward di- rected thrusting, surrounding a zone of strong Neogene subsidence and crustal thin- ning in the Western Alboran Sea. Until now its geodynamic interpretation has re- mained controversial. The Gibraltar Arc is located at the eastern end of the Azores- Gibraltar transform, a diffuse transpressional plate boundary between the Iberian and African Plates. Attention has recently been focussed on this plate boundary, while seeking the likely source of the destructive Lisbon great earthquake (M 8.5 - 9) and tsunami of 1755. The SISMAR marine seismic survey conducted in April 2001 ac- quired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), com- pletely spanning the actively deforming region between the margins of Portugal and northwest Morocco. Results from this seismic survey reveal a thick chaotic sedimen- tary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decolle- ment. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives com- pressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered.

  17. Bathymetric gradients within a Paleozoic Island Arc, southeastern Alaska (Alexander Terrane)

    SciTech Connect

    Soja, C.M. )

    1990-05-01

    Early to Late Silurian (Wenlock-Ludlow) limestones belonging to the Heceta Formation reflect bathymetric gradients within the ancient island arc exposed in the Alexander terrane of southeastern Alaska. These rocks record the earliest occurrence of widespread carbonate deposition in the region and represent the earliest foundation for shallow-water platform development within the arc. The excellent preservation of platform, platform margin, and slope deposits contrasts with the poor preservation of many marine sediments that originated within other island arcs. Hence, these limestones provide important insights into the styles, processes, and bathymetry of carbonate deposition in island arcs. Carbonate depositional sites within the arc extended laterally from nearshore intertidal and relatively shallow subtidal zones of a marine platform, to the seaward margins of a rimmed shelf, and into deeper subtidal areas of a slope environment. Fossiliferous deposits that originated on the platform comprise a diversity of shelly benthos, including corals and stromatoporoids in growth position. Dasycladacean algae, oncoids, and Amphipora also indicate shallow-water conditions. Organic buildups and reefs were constructed by cyanobacteria, massive stromatoporoids, corals, and algae at the platform margin. Deposition beyond the seaward edge of the shelf is evident from the carbonate turbidites that consist of skeletal debris of shallow-water derivation and an absence of coarse siliciclastic detritus. Sedimentation and resedimentation along a bathymetric gradient within the arc is especially well illustrated by the carbonate breccias that are enclosed within these deep subtidal sediments. They comprise detached stromatolites and clasts of shallow-water origin that were derived from the platform and its margin during periodic slumping of the shelf edge.

  18. Thrust belt Formation followed by Back-Arc Extension: Mantle Dynamics from central North Island, New Zealand.

    NASA Astrophysics Data System (ADS)

    Stern, T.; Stratford, W.; Salmon, M.; Pulford, A.

    2008-12-01

    In central North Island a useful geological and geophysical data exists to examine the evolution from retro-arc compression to back-arc extension in the Neogene. We show that the switch from compression to extensional deformation is related in space and time with an event that rapidly removed much of the mantle lithosphere beneath central and western North Island at about 5 Ma. The geophysical smoking gun for this removal process is in two parts: a regional surface uplift at about 5 Ma, and a sharp east-west, lithospheric boundary across which there is a 7 km jump in Moho as determined by a common conversion point stack of receiver functions. Also associated with the boundary is sharp change in mantle properties such as seismic P-wave attenuation, isostatic gravity and Pn wave speeds. A cluster of earthquakes in the depth range 20-35 km tightly correlates with the Moho step. Thickening then removal of mantle lithosphere within central and western North Island is consistent with its geological history. About 20 my of compression and fold and thrust development within western North Island built much of the Taranaki (foreland) basin during the Miocene. This 600 km long and 200 km wide basin is now the principal source of hydrocarbons for New Zealand. Up to 100 km of shortening in both crust and mantle is estimated from deep seismic reflection profiling, subsidence curves and plate reconstructions. At the close of the Miocene thrusting ceased and a rapid (post 5 Ma) and regional (400 km wide) exhumation event began. Based on mudstone porosity data, a maximum 2.5 km of rock uplift (1 km of surface uplift) occurred and this gave shape to much of the North Island land mass as we see today. The edge of the foreland basin was exhumed by up to 1.5 km and oil wells drilled in the margin date this event as starting at 5 Ma. After 5 Ma a switch to extension occurred with present day back-arc extension occurring at rates between 8-20 mm/y. This extension is accompanied by

  19. Deformation of island-arc lithosphere due to steady plate subduction

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2016-02-01

    Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction

  20. Tracing the evolution of island-arc volcanism in the Tanna-Futuna transect (New Hebrides)

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Haase, K. M.; Beier, C.

    2014-12-01

    The New Hebrides island arc, located in the southwestern Pacific, is associated with the fast subduction of the Australian Plate under the North Fiji Basin. It extends over 1500 km including the entire Vanuatu archipelago. Several studies dealing with the geochemistry of the most important islands interpret the chemical variability to originate from the heterogeneities in the sub-arc mantle wedge1 and variable addition of the subduction component along the arc2. In order to trace the differences between the source(s) of New Hebrides volcanic arc and back-arc magmatism, five submarine cones (4 of them aligned NE-SW), located in the Futuna Through, were sampled. The lavas range from basalt to andesite with fractionation of olivine being the main magma evolution mechanism until MgO ≈ 6 wt.%. The most primitive lavas have similar fractionation-corrected TiO2 (0.90-1.18 wt.%) and Na2O (2.89-3.41 wt.%) contents suggesting comparable degrees of partial melting. The comparison with published data from adjacent islands shows a more important contribution of the slab closer to the trench (Tanna) where the erupted basalts, basaltic trachyandesites and trachyandesites have considerably higher U/Nb and Ba/Nb ratios. Yet, these lavas display significant negative Sr anomalies (PM-normalized). This could provide evidence of input of continental derived sediments or could reflect the role of plagioclase in the source / evolution of these magmas. The first hypothesis is not supported by published data from the Vanuatu trench3 and the second is not supported by the decoupled behavior of Sr and Eu in normalized-diagrams. On the other hand, island crust samples collected along the northern flank of Futuna Island display strong positive anomalies of Sr and, although more modest, the submarine cones show a similar behavior. Based on source chemical tracers, an increasing depletion of the source is observed from east to west, consistent with progressive mantle flow towards the arc front

  1. The volcanic evolution of Martinique Island: Insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Quidelleur, Xavier; Labanieh, Shasa; Chauvel, Catherine; Lahitte, Pierre

    2011-12-01

    The Lesser Antilles island arc bifurcates into two lines in its northern part, with an old branch to the east and a recent active branch to the west. Martinique is located at the southern tip of the separation. The two arcs diverge northward, and at maximum divergence are separated by a 50 km wide depression. Despite this separation, which suggests a jump in volcanism, activity has been almost continuous in Martinique Island with a slow displacement of the eruptive centers to the west. Considering timing of emplacement, previous authors defined three cycles of activity, the old, intermediate and recent arcs, of Late Oligocene-Early Miocene, Mid Miocene and Late Miocene to present ages, respectively. The present study investigates the timing of emplacement of the volcanic units in Martinique Island in order to constrain the activity of the old and intermediate Lesser Antilles arcs, as recorded on this island. Unspiked K-Ar age determinations on groundmass and plagioclase separates (Cassignol-Gillot technique) were conducted on 20 samples from the old and intermediate volcanic chains. Martinique has evolved as eight distinct volcanic centers: (1) Basal Complex and Sainte Anne Series (24.8 ± 0.4-20.8 ± 0.4 Ma) for the old arc; (2) Vauclin-Pitault Chain (16.1 ± 0.2-8.44 ± 0.12 Ma) and (3) South-western Volcanism (9.18 ± 0.16-7.10 ± 0.10 Ma) for the intermediate arc; and (4) Morne Jacob volcano (5.14 ± 0.07-1.54 ± 0.03 Ma), (5) Trois Ilets Volcanism (2.358 ± 0.034 Ma and 346 ± 27 ka), (6) Carbet Complex (998 ± 14 to 322 ± 6 ka), (7) Mount Conil (543 ± 8 to 127 ± 2 ka) and (8) Mount Pelée (126 ± 2 ka to present) for the recent arc ( Germa et al., 2010, 2011a).We propose migration rates of 1.1-1.4 km/Myr westward, toward the back arc region throughout the whole volcanic history of Martinique Island. These rates, together with geochemical evidence for a more enriched signature in the youngest magmas, are consistent with a geodynamic evolution involving the

  2. Ancient oceanic crust in island arc lower crust: Evidence from oxygen isotopes in zircons from the Tanzawa Tonalitic Pluton

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazue; Kitajima, Kouki; Sawaki, Yusuke; Hattori, Kentaro; Hirata, Takafumi; Maruyama, Shigenori

    2015-07-01

    Knowledge of the lithological variability and genesis of island arc crust is important for understanding continental growth. Although the volcanic architecture of island arcs is comparatively well known, the nature of island arc middle- and lower-crust remains uncertain owing to limited exposure. One of the best targets for deciphering the evolution of an island arc system is the Tanzawa Tonalites (4-9 Ma), in the intra-oceanic Izu-Bonin-Mariana arc. These tonalities which occupied a mid-crustal position were generated by partial melting of lower crust. To constrain protoliths of the plutonic rocks in the island arc lower crust, in-situ O-isotopic analysis using an IMS-1280 Secondary Ion Mass Spectrometer was carried out on 202 zircon grains separated from 4 plutons in the Tanzawa Tonalite. δ18O value of the zircons ranges from 4.1‰ to 5.5‰ and some zircons have δ18O slightly lower than the mantle range. The low zircon δ18O values from the Tanzawa Tonalite suggest that their protoliths involved materials with lower δ18O values than those of the mantle. Hydrothermally altered gabbros in the lower oceanic crust often have lower δ18O values than mantle and can be primary components of arc lower crust. The Tanzawa Tonalite is interpreted to have been formed by partial melting of island arc lower crust. Thus the low δ18O values in zircons from the Tanzawa Tonalites may originate by melting of the hydrothermally altered gabbro. Ancient oceanic crustal material was likely present in the Izu-Bonin-Mariana arc lower crust, at the time of formation of the Tanzawa Tonalites.

  3. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths

    NASA Astrophysics Data System (ADS)

    Kepezhinskas, Pavel; Defant, Marc J.; Drummond, Mark S.

    1996-04-01

    The Pliocene (7 Ma) Nb-enriched arc basalts of the Valovayam Volcanic Field (VVF) in the northern segment of Kamchatka arc (Russia) host abundant xenoliths of spinel peridotites and pyroxenites. Textural and microstructural evidence for the high-temperature, multistage creep-related deformations in spinel peridotites supports a sub-arc mantle derivation. Pyroxenites show re-equilibrated mosaic textures, indicating recrystallization during cooling under the ambient thermal conditions. Three textural groups of clinopyroxenes exhibit progressive enrichment in Na, Al, Sr, La, and Ce accompanied by increase in Sr/Y, La/Yb, and Zr/Sm. Trace elements in various mineral phases and from felsic veins obtained through ion microprobe analysis suggest that the xenoliths have interacted with a siliceous (dacitic) melt completely unlike the host basalt. The suite of xenoliths grade from examples that display little evidence of metasomatic reaction to those containing an assemblage of minerals that have been reproduced experimentally from the reaction of a felsic melt with ultramafic rock, e.g., pargasitic amphibole, albite-rich plagioclase, Al-rich augite, and garnet. The dacitic veins within spinel lherzolite display a strong enrichment in Sr and depletion in Y and the heavy rare earth elements (e.g., Yb). The dacites are comparable to adakites (melts derived from subducted metabasalt), and not typical arc melts. We believe that these potential slab melts were introduced into the mantle beneath this portion of Kamchatka subsequent to partial melting of a relatively young (and hot) subducted crust. Island arc metasomatism by peridotite-slab melt interaction is an important mantle hybridization process responsible for arc-related alkaline magma generation from a veined sub-arc mantle.

  4. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    SciTech Connect

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  5. Morphostructure at the junction between the Beata ridge and the Greater Antilles island arc (offshore Hispaniola southern slope)

    NASA Astrophysics Data System (ADS)

    Granja Bruña, J. L.; Carbó-Gorosabel, A.; Llanes Estrada, P.; Muñoz-Martín, A.; ten Brink, U. S.; Gómez Ballesteros, M.; Druet, M.; Pazos, A.

    2014-03-01

    Oblique convergence between the Caribbean plate's interior and the inactive Greater Antilles island arc has resulted in the collision and impingement of the thickened crust of the Beata ridge into southern Hispaniola Island. Deformation resulting from this convergence changes from a low-angle southward-verging thrust south of eastern Hispaniola, to collision and uplift in south-central Hispaniola, and to left-lateral transpression along the Southern peninsula of Haiti in western Hispaniola. Using new swath bathymetry and a dense seismic reflection grid, we mapped the morphological, structural and sedimentological elements of offshore southern Hispaniola. We have identified four morphotectonic provinces: the Dominican sub-basin, the Muertos margin, the Beata ridge and the Haiti sub-basin. The lower slope of the Muertos margin is occupied by the active Muertos thrust belt, which includes several active out-of-sequence thrust faults that, were they to rupture along their entire length, could generate large-magnitude earthquakes. The interaction of the thrust belt with the Beata ridge yields a huge recess and the imbricate system disappears. The upper slope of the Muertos margin shows thick slope deposits where the extensional tectonics and slumping processes predominate. The northern Beata ridge consists of an asymmetrically uplifted and faulted block of oceanic crust. Our results suggest that the shallower structure and morphology of the northern Beata ridge can be mainly explained by a mechanism of extensional unloading from the Upper Cretaceous onward that is still active residually along the summit of the ridge. The tectonic models for the northern Beata ridge involving active reverse strike-slip faults and transpression caused by the oblique convergence between the Beata ridge and the island arc are not supported by the structural interpretation. The eastern Bahoruco slope an old normal fault that acts as a passive tear fault accommodating the sharp along

  6. Early Proterozoic Bell Island group: initiation of, and extension within, a continental magmatic arc

    SciTech Connect

    Reichenbach, I.G.

    1985-01-01

    The Bell Island Group is the oldest sequence of supracrustal rocks of the Great Bear Magmatic Zone (GBMZ), western Wopmay Orogen, northwestern Canadian Shield. These rocks lie unconformably on a penetratively deformed and metamorphosed sialic basement complex and are unconformably beneath the calc-alkaline LaBine Group, which is interpreted as continental magmatic arc. The supracrustal rocks of the GBMZ are broadly folded about gently plunging, northwest trending axes and cut by transcurrent faults. The lower part of the Bell Island Group comprises 1.5-2 km of poorly sorted arkose and fanglomerate, aphyric mafic to intermediate lavas, block-and-ash flows, a mineralogically zone cooling unit of rhyolite ash-flow tuff, and aphyric to porphyritic rhyolite flows and domes. Structures and lithologies of the sedimentary rocks, as well as physical characteristics of the volcanics, suggest subaerial deposition. Chemical analyses of lavas and ash-flow tuff indicate a predominantly calc-alkaline suite, although minor tholeiitic lavas are present. Conformably overlying the lower subaerial succession is at least 3.5 km of tholeiitic pillow basalts, intercalated sedimentary rocks and breccias, and tholeiitic gabbro sills. The subaerial to subaqueous transition in rocks of the Bell Island Group suggests 2-3.5 km of syn-volcanic subsidence which may have begun during early subaerial volcanism, but if so, continued during the extrusion of the thick tholeiitic pillow basalt pile. Subaerial conditions resumed during eruption and deposition of the overlying calc-alkaline LaBine Group. Therefore, rocks of the Bell Island Group may represent initiation of calc-alkaline magmatism in a continental arc, followed by tholeiitic magmatism related to intra-arc extension.

  7. Heterogeneous stress state of island arc crust in northeastern Japan affected by hot mantle fingers

    NASA Astrophysics Data System (ADS)

    Shibazaki, Bunichiro; Okada, Tomomi; Muto, Jun; Matsumoto, Takumi; Yoshida, Takeyoshi; Yoshida, Keisuke

    2016-04-01

    By considering a thermal structure based on dense geothermal observations, we model the stress state of the crust beneath the northeastern Japan island arc under a compressional tectonic regime using a finite element method with viscoelasticity and elastoplasticity. We consider a three-layer structure (upper crust, lower crust, and uppermost mantle) to define flow properties. Numerical results show that the brittle-viscous transition becomes shallower beneath the Ou Backbone Range compared with areas near the margins of the Pacific Ocean and the Japan Sea. Moreover, several elongate regions with a shallow brittle-viscous transition are oriented transverse to the arc, and these regions correspond to hot fingers (i.e., high-temperature regions in the mantle wedge). The stress level is low in these regions due to viscous deformation. Areas of seismicity roughly correspond to zones of stress accumulation where many intraplate earthquakes occur. Our model produces regions with high uplift rates that largely coincide with regions of high elevation (e.g., the Ou Backbone Range). The stress state, fault development, and uplift around the Ou Backbone Range can all be explained by our model. The results also suggest the existence of low-viscosity regions corresponding to hot fingers in the island arc crust. These low-viscosity regions have possibly affected viscous relaxation processes following the 2011 Tohoku-oki earthquake.

  8. Trace elements and isotopic variation along Java Island, Sunda Arc: an evaluation of slab-derived fluid contribution to arc magmas

    NASA Astrophysics Data System (ADS)

    Handini, E.; Hasenaka, T.; Wibowo, H.; Shibata, T.; Mori, Y.; Harijoko, A.

    2012-12-01

    A compilation of geochemical dataset of lavas from Java island is presented, with the purpose of estimating slab-derived fluid contribution to arc magmas along Java island. Based on volcano distribution and tectonics, we grouped the island into western, central and eastern sections. Along-arc variation of subduction slab influence including both sediment (SED) and altered oceanic crust (AOC) is evaluated by ratios of fluid-mobile elements to high field strength elements/HFSE (e.g. B/Nb, B/Zr, Ba/La). In addition, Sr-Nd-Pb isotopes were determined to estimate contribution of SED and AOC to the source mantle along the island. Typical lava from Java island is characterized by elevated LILE and LREE values, as well as negative anomalies of Nb and Ti. The ratios of Nb/HFSE (e.g. Nb/Ta, Nb/Zr) imply Nb depletion along the island, a characteristic of arc magmas. These Nb/HFSE ratios are uniformly low at volcanic front all along the island. However, they increase from volcanic front toward back arc in central and eastern sections, and evenly low across the western section. The decreasing ratios of B/HFSE and Ba/HFSE from volcanic front toward back arc are observed in the central and eastern sections. However, these ratios only subtly decrease in the western section. The comparison among different sections of the island shows the highest ratios of these trace elements observed in central section. Isotopic ratios of lavas from all sections generally shifted from Indian Ocean MORB field toward higher 87 Sr/86 Sr and lower 143 Nd/144 Nd ratios. The lowest 87 Sr/86 Sr ratios along the island are shown by back-arc lavas from central section, which overlap with mantle array. In contrast, the volcanic front samples of this section overlap with composition of Indian Ocean sediment. Pb isotope ratios show that lavas from all sections are plotted within the Indian Ocean sediment and OIB fields, except Muria samples of central section. The collected lavas from this island indicate

  9. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Carr, M. J.; Herzberg, C. T.; Ozerov, A.

    2013-12-01

    Kamchatka peninsula (Russia) is an island-arc with a complex geological history and structure. It has three distinct volcanic fronts, whose origins are still debated. Moreover, a junction with the Aleutian Arc (at ~56oN) complicates the understanding of geodynamics at the region. The process of magma generation in Kamchatka involves several components: N-MORB mantle wedge (variably depleted), slab fluids and melts, and enriched mantle [Churikova et al. 2001, 2007; Yogodzinsky et al. 2001; Volynets et al. 2010]. Two of these end members (mantle wedge, slab fluids) are well studied [Portnyagin et al. 2007; Duggen et al. 2007]. However, the nature/genesis of the enriched magmas is unclear. In the standard model of arc volcanism depleted mantle peridotite in the mantle wedge partially melts to form parental basalts. However, evidence for pyroxenite melting in the arc environment was reported for the Mexican Volcanic Belt [Straub et al, 2008; Straub et al, 2013] and for Kamchatka [Portnyagin, 2009; Portnyagin, 2011; Bryant et al., 2011; Gavrilenko, 2012]. High precision Ni, Ca, and Mn contents of olivines from Gorely volcano confirm the existence of pyroxenite source in the mantle wedge [Gavrilenko, 2013]. Our forward modeling using Arc Basalt Simulator 4.0 (ABS) by [Kimura et al. 2011]) shows that we have primitive mantle as a source for Gorely volcano, a mantle more enriched than the DMM in the standard model for arc magmatism) REE inverse modeling [after Feigenson et al, 1983] agrees with the ABS forward model, returning the same REE pattern for the source. In contrast, ABS modeling for Mutnovsky volcano (next to Gorely, but closer to the trench) shows standard DMM as the source for the volcano. We conclude that DMM is the composition for the mantle wedge rocks beneath Gorely volcano, but the enrichment of the parental melts at Gorely volcano is caused by reaction of DMM peridotite with slab melts/fluids to produce pyroxenite.

  10. Island arc tectonics of New Zealand manifested in helium isotope ratios

    SciTech Connect

    Sano, Y.; Wakita, H.; Giggenbach, W.F.

    1987-07-01

    Thirty gas samples of various types - volcanic gas, geothermal gas, CH/sub 4/-rich natural gas, and petroleum gas - were collected in and around the North Island, New Zealand. /sup 3/He//sup 4/He and /sup 4/He//sup 20/Ne ratios were measured using a mass spectrometer. The observed /sup 3/He//sup 4/He and /sup 4/He//sup 20/Ne ratios of the samples varied from 0.08 x 10/sup -6/ to 8.75 x 10/sup -6/ and from 4.8 to 2100, respectively. Based on a /sup 3/He//sup 4/He-/sup 4/He//sup 20/Ne diagram, He in the samples can be explained by mixing of a subduction-type magmatic, a radiogenic, and an air component. The geographical distribution of /sup 3/He//sup 4/He ratios over the island indicates a clear contrast between forearc and volcanic arc regions: high in the former and low in the latter. A He boundary can be drawn from the Taupo Volcanic Zone to Egmont Volcano in terms of the /sup 3/He//sup 4/He profile. This boundary agrees well with that of high Q/low Q in the upper mantle as well as with the geographical distribution of terrestrial heat flow values. The high /sup 3/He//sup 4/He ratios in the volcanic arc region are attributed to subduction-type He associated with an uprising magma from the upper mantle and the lower ratios in the forearc region to radiogenic He derived from U and Th in basement and sedimentary rocks. This tendency is very similar to that found in northeast Japan and is understood to be a general signature of the He isotope ratio in an island arc system.

  11. Bivergent thrust wedges surrounding island arcs: Insights from observations and sandbox models of the northeastern Caribbean plate

    NASA Astrophysics Data System (ADS)

    ten Brink, U. S.; Marshak, S.; Granja Bruna, J.

    2008-12-01

    Thrust belts develop on both sides of island arcs at several localities around the world, such as southern Indonesia, Vanuatu, Panama, and the northeastern Caribbean. In all cases, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, an inactive arc (Hispaniola and Puerto Rico) is bordered by a north-verging accretionary prism and the Puerto Rico trench on the north, and by the south-verging Muertos thrust belt and the Muertos trough on the south. There are three models to explain such bivergent thrusting: (1) Bivergent thrusting develops where a reversal of the polarity of subduction is underway and the backarc thrust system overlies an incipient subduction zone; (2) Compression of the backarc region due to trenchward traction, applied at the base of the overriding plate by the subduction process; and (3) The arc and both thrust systems constitute a bivergent thrust wedge, whose development is driven entirely by crustal-level forces applied at a single subduction zone. The third model implies that island arc bivergent thrusting is analogous to that which develops during continent-continent collisions. Observations of deformational features from the Muertos thrust belt together with inferences from regional geometry of island arcs and simple sandbox kinematic models, lead to the conclusion that such island arcs are best explained as crustal bivergent thrust wedges. Modeling suggests, in particular, that an imbricate thrust wedge in the backarc region develops only if the arc behaves as a relatively rigid block that can transmit compressive stresses to the backarc region. In such circumstances, the strike-slip component of oblique convergence is accommodated entirely in the forearc and arc, and the backarc is a frontal (dip-slip) thrust system. The rigid block behavior of the arc may be explained by its mafic composition.

  12. Lithospheric-folding-based understanding on the origin of the back-arc basaltic magmatism beneath Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S.; Shin, Y.; CHOI, K.; Koh, J.; Nakamura, E.; Na, S.

    2012-12-01

    Jeju Island is an intraplate volcanic island located at the eastern margin on the East Asia behind the Ryukyu Trench, the collisional/subduction boundary between the Eurasian plate and Philippine Sea plate. It is a symmetrical shield volcano, having numerous monogenetic cinder cones, over 365, on the Mt. Halla volcanic edifice. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and surface lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on the evidence obtained from volcanic stratigraphy, paleontology, and geochronology, the age of the Jeju basalts ranges from the early Pleistocene to Holocene(Historic). The alkaline and tholeiitic basalts exhibits OIB composition from intraplate volcanism which is not associated with plate subduction, while the basement xenolith contained in the volcanic rock indicates that there were volcanic activities associated with the Mesozoic plate subduction. The Geochemical characteristics have been explained with the plume model, lithospheric mantle origin, and melting of shallow asthenosphere by the rapid change of stress regimes between the collision of the India-Eurasia plates and subduction of the Pacific plate, while there has not been any geophysical investigation to disclose it. Compression near collisional plate boundaries causes lithospheric folding which results in the decrease of pressure beneath the ridge of the fold while the pressure increases beneath trough. The decompression beneath lithosphere is likely to accelerate basaltic magmatism along and below the ridge. We investigate the subsurface structure beneath Jeju volcanic island, South Korea and its vicinity and propose an alternative hypothesis that the basaltic magma beneath the island could be caused by episodic lithospheric folding. Unlike the prevailing hypothesis of the

  13. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    USGS Publications Warehouse

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  14. Geochemistry of southern Pagan Island lavas, Mariana arc: the role of subduction zone processes

    NASA Astrophysics Data System (ADS)

    Marske, Jared P.; Pietruszka, Aaron J.; Trusdell, Frank A.; Garcia, Michael O.

    2011-08-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4 ka) and post-caldera (<9.4 ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  15. The Fundamental Importance of the ''Hidden'' Source of Chemical Erosion in Island Arcs : Guadeloupe and Martinique

    NASA Astrophysics Data System (ADS)

    Rad, S.; Louvat, P.; Allegre, C.

    2005-12-01

    The chemical erosion of island arcs is of fundamental importance for the erosion regime of the earth and fixing the chemical and isotopic composition of the ocean. In previous work, specially Louvat et Allegre (1997, 1998) it has been shown that erosion of basalt and andesit are in the average 10 to 20 times more efficient than granitic type one. In a comprehensive study Dessert et al.(2003) concluded that basalt erosion contributes to 30 to 35 % of the atmospheric CO2 consumed by worldwide weathering. However since this time our group has surmised that island arcs contribution as estimated by the river weathering has been greatly underestimated. The source of error is supposed to be the contribution of water that circulates in island arc underground and goes directly to the ocean. We have then studied two islands of Lesser Antilles: Guadeloupe and Martinique. Guadeloupe and Martinique are characterised by a uniform andesitic lithology. They are located in a tropical climate with high temperature (24 to 28 ° C), high precipitation (they can reach 14000 mm/year), very dense vegetation, sharp relief and very thick soils. On parts of these islands, especially in Martinique, pyroclastic formations are dominant, creating a very porous surface. This allows water transfer through infiltration in more important proportions than through runoff. The proportion of this infiltrated water is 30% to 90% of the precipitation (Folio, 2001) in Reunion, which has a similar torrential regime. From hydrological budget and the chemical composition of underground waters we calculate the chemical weathering rates of infiltrated water: 280 t/km2/year for Guadeloupe and 190 t/km2/year for Martinique. Those values are much higher than the one calculated from the runoff and corrected TDS of different rivers: 120 t/km2/year in Guadeloupe and 100 t/km2/year in Martinique. This could mean that an important part of the chemical weathering process takes place in sub-surface and is not taken into

  16. Island-Arc Collision Dominates Japan's Sediment Flux to the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Codilean, A. T.; Korup, O.; Hayakawa, Y. S.; Matsushi, Y.; Saito, H.; Matsuzaki, H.

    2013-12-01

    Quantifying volumes and rates of delivery of terrestrial sediment to subduction zones is indispensable for refining estimates of the thickness of trench fills that may eventually control the location and timing of submarine landslides and tsunami-generating mega-earthquakes. Despite these motivating insights, knowledge about the rates of erosion and sediment export from the Japanese islands to their Pacific subduction zones has somewhat stagnated despite the increasing availability of highly resolved data on surface deformation, climate, geology, and topography. Traditionally, natural erosion rates across the island arc have been estimated from catchment topographic predictors of reservoir sedimentation rates that were recorded over several years to decades. We correct for a systematic bias in these predictions, and present new estimates of decadal to millennial-scale erosion rates of the Japanese terrestrial inner forearc, drawing on several unprecedented inventories of mass wasting, reservoir sedimentation, and concentrations of cosmogenic 10Be in river sands. Our data reveal that catchments draining Japan's eastern seaboard have distinctly different tectonic, lithological, topographic, and climatic characteristics, underscored by a marked asymmetric pattern of erosion rates along and across the island arc. Erosion rates are highest in the Japanese Alps that mark the collision of two subduction zones, where high topographic relief, hillslope and bedrock-channel steepness foster rapid denudation by mass wasting. Comparable, if slightly lower, rates characterize southwest Japan, most likely due to higher typhoon-driven rainfall totals and variability rather than the similarly high relief and contemporary uplift rates that are linked to subduction earthquake cycles, and outpace long-term Quaternary uplift. In contrast, our estimated erosion and flux rates are lowest in the inner forearc catchments that feed sediment into the Japan Trench. We conclude that

  17. Structure of the collision zone between Bougainville guyot and the accretionary wedge of the New Hebrides island arc, southwest Pacific

    USGS Publications Warehouse

    Fisher, M.A.; Collot, J.-Y.; Geist, E.L.

    1991-01-01

    Multichannel seismic reflection data show the structure that develops within an island arc-guyot collision zone. The contact zone between the arc and the north and east sides of the guyot is marked by discontinuous antiforms. The extent of collision deformation to the arc and guyot depends in part on the contrast in compressibility and viscosity between these features. We propose that the high-drag, subcircular guyot evolves during collision into a more streamlined shape. We draw an analogy between some features of glacial origin and the subducted part of a guyot. -from Authors

  18. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands (Greater Antilles Island Arc): Genetic links with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur

    NASA Astrophysics Data System (ADS)

    Jolly, Wayne T.; Lidiak, Edward G.; Dickin, Alan P.

    2008-07-01

    Bimodal extrusive volcanic rocks in the northeast Greater Antilles Arc consist of two interlayered suites, including (1) a predominantly basaltic suite, dominated by island arc basalts with small proportions of andesite, and (2) a silicic suite, similar in composition to small volume intrusive veins of oceanic plagiogranite commonly recognized in oceanic crustal sequences. The basaltic suite is geochemically characterized by variable enrichment in the more incompatible elements and negative chondrite-normalized HFSE anomalies. Trace element melting and mixing models indicate the magnitude of the subducted sediment component in Antilles arc basalts is highly variable and decreases dramatically from east to west along the arc. In the Virgin Islands, the sediment component ranges between< 0.5 to ˜ 1% in Albian rocks, and between ˜ 1 and 2% in succeeding Cenomanian to Campanian strata. In comparison, sediment proportions in central Puerto Rico range between 0.5 to 1.5% in the Albian to 2 to > 4% during the Cenomanian-Campanian interval. The silicic suite, consisting predominantly of rhyolites, is characterized by depleted Al 2O 3 (average < 16%), low Mg-number (molar Mg/Mg + Fe < 0.5), TiO 2 (< 1.0%), and Sr/Y (< 10), oceanic or arc-like Sr, Nd, and Pb isotope signatures, and by the presence of plagioclase. All of these features are consistent with an anatexic origin in gabbroic sources, of both oceanic and arc-related origin, within the sub-arc basement. The abundance of silicic lavas varies widely along the length of the arc platform. In the Virgin Islands on the east, rhyolites comprise up to 80% of Lower Albian strata (112 to 105 Ma), and about 20% in post-Albian strata (105 to 100 Ma). Farther west, in Puerto Rico, more limited proportions (< 20%) of silicic lavas were erupted. The systematic variation of both sediment flux and abundance of crustally derived silicic lavas are consistent with current tectonic models of Caribbean evolution involving approximately

  19. Microearthquake seismicity in relation to double convergence around the Solomon Islands arc by ocean-bottom seismometer observation

    NASA Astrophysics Data System (ADS)

    Shinohara, Masanao; Suyehiro, Kiyoshi; Murayama, Takayuki

    2003-06-01

    The Solomon Islands arc area is a complex plate convergence zone. At the North Solomon Trench on the northern side of the arc, it is believed that the Pacific Plate was subducting before coming into collision with the Ontong Java Plateau, the world's largest oceanic plateau. After the collision about 5 Ma, northeastward subduction initiated along the southern side of the arc at the San Cristobal Trench, another trench on the south side. GPS observations and crustal seismic structure surveys confirm that convergence occurs at both trenches. Without detailed and accurate seismicity, it is difficult to characterize the plate subduction to reveal the tectonics of such a complex zone where a key mechanism of continental growth may also exist. In 1994, an ocean-bottom seismometer (OBS) experiment was carried out for the first time in the area around the Solomon Islands arc to locate microearthquakes. Observations started in late August and continued until early September. Five digital recording OBSs were deployed around the Russell Islands west of Guadalcanal Island. OBS spacing was about 20 km. All the OBSs were recovered and yielded data with a good signal-to-noise ratio. 40 earthquakes, with magnitudes in the range 1.5-4.4 were located over 8 days. The seismicity clearly images the two subducting plates. Though the seismicity beneath the arc side slope of the San Cristobal Trench is relatively high, we can see the seismicity which is related to the subducting Pacific Plate beneath Santa Isabel Island. In addition, earthquakes occur within the crust beneath the southern part of the New Georgia Basin and the Russell Islands. An aseismic area extending 40 km inward from the San Cristobal trench axis implies initial aseismic slip of the India-Australia Plate at a small dip angle.

  20. On the time-scales of magmatism at island-arc volcanoes.

    PubMed

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less. PMID

  1. Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil

    2015-04-01

    In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated

  2. Characteristics of Mineralized Volcanic Centers in Javanese Sunda Island Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Setijadji, L. D.; Imai, A.; Watanabe, K.

    2007-05-01

    The subduction-related arc magmatism in Java island, Sunda Arc, Indonesia might have started in earliest Tertiary period, but the distinctively recognizable volcanic belts related with Java trench subduction occurred since the Oligocene. We compiled geoinformation on volcanic centers of different epochs, distribution of metallic mineral deposits, petrochemistry of volcanic rocks, geologic structures, and regional gravity image in order to elucidate characteristics of the known mineralized volcanic centers. Metallic deposits are present in various styles from porphyry-related, high-sulfidation, and low-sulfidation epithermal systems; all related with subaerial volcanism and subvolcanic plutonism. Only few and small occurrences of volcanigenic massive sulfides deposits suggest that some mineralization also occurred in a submarine environment. Most locations of mineral deposits can be related with location of Tertiary volcanic centers along the volcanic arcs (i.e. volcanoes whose genetic link with subduction is clear). On the other side there is no mineralization has been identified to occur associated with backarc magmatism whose genetic link with subduction is under debate. There is strong evidence that major metallic deposit districts are located within compressive tectonic regime and bound by coupling major, deep, and old crustal structures (strike-slip faults) that are recognizable from regional gravity anomaly map. So far the most economical deposits and the only existing mines at major industry scale are high-grade epithermal gold deposits which are young (Upper Miocene to Upper Pliocene), concentrated in Bayah dome complex in west Java, and are associated with alkalic magmatism-volcanism. On the other hand, known porphyry Cu-Au deposits are associated with old (Oligocene to Upper Miocene) stocks, and except for one case, all deposits are located in east Java. Petrochemical data suggest a genetic relationship between porphyry mineralization with low- to

  3. Deformational History and Rotation of the Leeward Antilles Island Arc: Results of the BOLIVAR Project

    NASA Astrophysics Data System (ADS)

    Beardsley, A. G.; Avé Lallemant, H. G.

    2005-12-01

    The Leeward Antilles island arc is located offshore northern Venezuela and includes Aruba, Curaçao, and Bonaire (ABCs). The ABCs trend WNW-ESE parallel to the obliquely convergent Caribbean-South American plate boundary zone. Field work on the ABCs has provided new structural data supporting a minimum of 90° clockwise rotation of the islands within the diffuse plate boundary zone. Analysis of faulting, bedding, and cleavages suggest three phases of deformation (D1-D3). The oldest phase of deformation, D1, is characterized by northeast trending normal faults, northwest trending fold axes and cleavages, and northeast striking dextral strike-slip faults. East striking sinstral strike-slip faults are rare. The second phase of deformation, D2, is represented by west-northwest trending thrust faults, north-northeast striking normal faults, northwest trending dextral strike-slip faults, and northeast striking sinstral strike-slip faults. Finally, the youngest phase of deformation, D3, is characterized by northeast striking thrust faults, northwest striking normal faults, east-west dextral strike-slip faults, and north-northwest sinstral strike-slip faults. Quartz and calcite veins were also studied on the ABCs. Cross-cutting relationships in outcrop suggest three phases of veining (V1-V3). The oldest veins, V1, trend northeastward; V2 veins trend northward; and the youngest veins, V3, trend northwestward. Additionally, joints were measured on the ABCs. On Bonaire and Curaçao, joints trend approximately northeast while joints on Aruba are almost random with a slight preference for west-northwest. Fluid inclusion analysis of quartz and calcite veins provides additional information about the pressure and temperature conditions of the deformation phases. Preliminary results from the earliest veins (V1) show a single deformational event on Aruba and Bonaire. On Bonaire, they exhibit both hydrostatic and lithostatic pressure conditions. This new data supports three stages of

  4. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main

  5. Hydrothermal mineralization at Kick'em Jenny submarine volcano in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Olsen, R.; Carey, S.; Sigurdsson, H.; Cornell, W. C.

    2011-12-01

    Kick 'em Jenny (KeJ) is an active submarine volcano located in the Lesser Antilles island arc, ~7.5 km northwest of Grenada. Of the twelve eruptions detected since 1939, most have been explosive as evidenced by eyewitness accounts in 1939, 1974, and 1988 and the dominance of explosive eruption products recovered by dredging. In 2003, vigorous hydrothermal activity was observed in the crater of KeJ. Video footage taken by a remotely operated vehicle (ROV) during the cruise RB-03-03 of the R/V Ronald Brown documented the venting of a vapor phase in the form of bubbles that ascended through the water column and a clear fluid phase in the form of shimmering water. The shimmering water generally ascended through the water column but can also been seen flowing down gradient from a fissure at the top of a fine-grained sediment mound. These fine-grained sediment mounds are the only structure associated with hydrothermal venting; spire or chimney structures were not observed. Hydrothermal venting was also observed coming from patches of coarse-grained volcaniclastic sediment on the crater floor and from talus slopes around the perimeter of the crater. Samples were collected from these areas and from areas void of hydrothermal activity. XRD and ICPMS analyses of bulk sediment were carried out to investigate the geochemical relationships between sediment types. Sediment samples from the hydrothermal mound structures are comprised of the same components (plagioclase, amphibole, pyroxene, and scoria) as sediment samples from areas void of hydrothermal activity (primary volcaniclastic sediment) in the 500-63 μm size range. High resolution grain size analyses show that >78% of sediment in the hydrothermal mound samples are between 63-2 μm with 6-20% clay sized (<2 μm) whereas <40% of the primary volcaniclastic sediment is between 63-2 μm with ~2% clay sized. The presence of clay minerals (smectite, illite, talc, and I/S mixed layer) in the hydrothermal mound samples was

  6. Fabric characterization associated with asthenospheric upwelling in the uppermost mantle, back-arc region of the southwest Japan arc: Evidence from peridotite xenoliths, Oki-Dogo Island

    NASA Astrophysics Data System (ADS)

    Satsukawa, Takako; Michibayashi, Katsuyoshi

    2010-05-01

    Oki-Dogo Island is an important site in terms of xenoliths because it makes the most continent ward occurrence of mantle peridotite xenoliths in the back-arc region of the southwest Japan arc. We describe the microstructure of peridotite xenoliths obtained from Oki-Dogo Island with aim of understanding the evolution of the uppermost mantle beneath the back-arc side of the Japan arc. Basement on the island consists of gneissic metamorphic complex. The alkaline basalts that contain the xenoliths were erupted during the Pliocene-Pleistocene after the opening of the Japan Sea which is thought to have occurred during the Oligocene-Miocene as a consequence of back-arc spreading. Peridotite xenoliths found on Oki-Dogo Island are up to 10 cm in size, show granular texture, and are mainly spinel lherzolites, with some harzburgites. Large xenoliths (> 3 cm) contain a foliation defined by compositional banding and aligned spinel grains, and a lineation defined by the long axes of spinel grains. All spinel lherzolites contain spinel with a low Cr# (=Cr/Fr+Al) (< 0.45); this feature, combined with their mineral assemblages and high NiO content in olivine, suggests that they are of residual origin. The Mg# (=Mg/Mg+Fe) of silicate minerals in some spinel lherzolites is lower (e.g. down to Fo86) than that in typical residual peridotites of the upper mantle, indicating that the observed Fe enrichment occurred in mantle rocks during metasomatism. We have measured crystallographic preferred orientations (CPOs) of olivine grains from highly polished thin sections using a scanning electron microscope equipped with an electron backscatter diffraction system. The dominant slip system in olivine, as determined from kink bands and CPO data, was {0kl}[100] slip. Moreover, peridotites with low olivine Mg# tend to show a AG-type ([010]-fiber) CPO pattern. This finding suggests that the peridotites were deformed in the presence of melt and represent various degrees of rock-melt interaction as

  7. Crustal thickness variation from a continental to an island arc terrane: Clues from the gravity signatures of the Central Philippines

    NASA Astrophysics Data System (ADS)

    Manalo, Pearlyn C.; Dimalanta, Carla B.; Faustino-Eslava, Decibel V.; Ramos, Noelynna T.; Queaño, Karlo L.; Yumul, Graciano P.

    2015-05-01

    Offshore and ground gravity data were utilized to estimate crustal thickness across the Central Philippines where a transition from continental to island arc terrane occurs. Significant differences in gravity anomalies were observed between the Palawan Microcontinental Block (PCB) and the Philippine Mobile Belt (PMB), two major terranes that came together through arc-continent collision. Islands of the PCB (Mindoro, Tablas, Romblon, Sibuyan and western Panay), made up of an assortment of continent-derived sedimentary and igneous rocks and slivers of ophiolitic bodies, register lower Bouguer anomalies compared to that displayed by Masbate Island in the PMB. The calculated crustal thickness of this region exhibits a complex Moho topography of non-uniform depth across the collision zone with the thickest parts (∼32 km) corresponding with ophiolitic units emplaced consequent to arc-continent collision. On the other hand, relatively thinner crust (∼21 km) within the collision zone coincides with areas surmised to have undergone attenuation following intra-arc rifting. The same characteristics are observed offshore of western Mindoro and within the Marinduque Basin, areas known to have experienced crustal thinning following regional tectonic rearrangements that triggered riftings and intra-basin openings.

  8. Erosion and deterioration of the Isles Dernieres Barrier Island Arc, Louisiana, U.S.A.: 1853 to 1988

    USGS Publications Warehouse

    McBride, Randolph A.; Penland, Shea; Jaffe, Bruce E.; Williams, S. Jeffress; Sallenger, Asbury H., Jr.; Westphal, Karen A.

    1989-01-01

    Using cartographic and aerial photography data from the years 1853, 1890, 1934, 1956, 1978, 1984, and 1988, shoreline change maps of the Isles Dernieres barrier island arc were constructed. These data were accurately superimposed, using a computer mapping system, which removed projection, datum, scale, and other cartographic inconsistencies. Linear, areal, and perimeter measurements indicate that the Isles Dernieres are suffering rapid rates of coastal erosion, land loss, and breakup. Bayside and gulfside erosion, in combination with sediment shortage and subsidence, have caused the Isles Dernieres to narrow through time. In addition, the core of the barrier island arc does not migrate landward and instead, breaks up in place as a result of inlet breaching and development. This is in contrast to other models of landward barrier island migration during transgression. If these trends continue, the Isles Dernieres will likely evolve into a subaqueous inner-shelf shoal by the early 21st century. Loss of the Isles Dernieres barrier island arc will severely impact the Terrebonne parish estuary, resulting in decreased environmental quality and increased public risk from storms and hurricanes.

  9. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin; Yang, Shu-Feng

    2015-09-01

    The Dongfanghong hornblende gabbro is located in the western part of the Wandashan Orogen and to the east of the Jiamusi Block in NE China. It was emplaced into Early Paleozoic oceanic crust (i.e. Dongfanghong ophiolite) at ~ 275 Ma and both later collided with the eastern margin of the Jiamusi Block. The Dongfanghong gabbro is sub-alkaline with high Na2O contents and is characterized by enrichment in light rare earth elements (LREE), large ion lithosphile elements (LILE), Sr, Eu, and Ba, and depletion in high field strength elements (HFSE). The enriched isotopic signatures (87Sr/86Sri = ~ 0.7065, εNd(t) = ~- 0.5, 208Pb/204Pbi = ~ 38.05, 207Pb/204Pbi = ~ 15.56, 206Pb/204Pbi = ~ 18.20 and zircon εHf(t) = ~+ 5.8) indicate an enriched mantle (EM2) source, with some addition of continental material. It has arc geochemical affinities similar to Permian arc igneous rocks in the eastern margin of the Jiamusi Block, the Yakuno Ophiolite in SW Japan, arc rocks along the western margin of the North America Craton, and also the Gympie Group in eastern Australia. All these features, together with information from tectonic discrimination diagrams, suggest that the Dongfanghong gabbro formed in an immature island arc. The spatial configuration of ~ 290 Ma immature continental arc rocks in the eastern part of the Jiamusi Block and the ~ 275 Ma immature island arc Dongfanghong gabbro in the Wandashan Orogen to the east is best explained by eastward arc retreat and slab roll-back of the Paleo-Pacific Plate. This model is also supported by the Carboniferous-Permian stratigraphic transition in the Jiamusi Block from oceanic carbonate rocks to coal-bearing terrestrial clastic rocks and andesites. We thus suggest that both Paleo-Pacific subduction and roll-back occurred in the Early Permian along the eastern margin of Asia.

  10. Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: implications for the origin of island arc melts

    NASA Astrophysics Data System (ADS)

    Lin, P. N.; Stern, R. J.; Morris, J.; Bloomer, S. H.

    1990-09-01

    Nd- and Sr-isotopic data are reported for lavas from 23 submarine and 3 subaerial volcanoes in the northern Mariana and southern Volcano arcs. Values of ɛNd range from +2.4 to +9.5 whereas 87Sr/86Sr ranges from 0.70319 to 0.70392; these vary systematically between and sometimes within arc segments. The Nd-and Sr-isotopic compositions fall in the field of ocean island basalt (OIB) and extend along the mantle array. Lavas from the Volcano arc, Mariana Central Island Province and the southern part of the Northern Seamount Province have ɛNd to +10 and 87Sr/86Sr=0.7032 to 0.7039. These are often slightly displaced toward higher 87Sr/86Sr at similar ɛNd. In contrast, those lavas from the northern part of the Mariana Northern Seamount Province as far north as Iwo Jima show OIB isotopic characteristics, with ɛNd and 87Sr/86Sr=0.7035 to 0.7039. Plots of 87Sr/86Sr and ɛNd versus Ba/La and (La/Yb)n support a model in which melts from the Mariana and Volcano arcs are derived by mixing of OIB-type mantle (or melts therefrom) and a metasomatized MORB-type mantle (or melts therefrom). An alternate interpretation is that anomalous trends on the plots of Nd- and Sr-isotopic composition versus incompatible-element ratios, found in some S-NSP lavas, suggest that the addition of a sedimentary component may be locally superimposed on the two-component mixing of mantle end-members.

  11. The Marsili Ridge (Southern Tyrrhenian Sea, Italy): An island-arc volcanic complex emplaced on a 'relict' back-arc basin

    NASA Astrophysics Data System (ADS)

    Ventura, G.; Milano, G.; Passaro, S.; Sprovieri, M.

    2013-01-01

    Marsili Seamount (< 1 Ma; Southern Tyrrhenian Sea, Italy) is classically interpreted as the spreading ridge of the about 2 Ma old Marsili oceanic back-arc associated to the Southern Tyrrhenian Sea-Calabrian Arc subduction setting. High resolution bathymetric data show that the ridge extends along a NNE-SSW strike and consists of 4 sectors and 11 major segments. Seafloor failures and central-type activity from an overpressurized sill-like reservoir characterize the central sector, whereas fissural volcanism and passive magma ascent take places at the edges. Cones indicative of high effusion rates concentrate in the axial zone, whereas flat-top shields associated to lower rates are located at the northern tip. Along-axis, lateral magma migration due to a local deepening of the elastic-brittle thickness of the crust develops from the central sector toward the northern tip. The opening of the Marsili back-arc basin vanished from about 1 Ma and the Marsili Ridge formed by passive magma ascent along pre-existing fractures inherited by early spreading activity. The values of the long-term output rate, the ratio between magmatic pressure and tectonic stress, and the morphological features of the lava flows and dikes are consistent with those found in volcanic arc subduction settings. Marsili Ridge represents a volcanic arc edifice emplaced on an older, 'relict' back-arc. The formation of the Marsili Ridge marks the transition from an extensional subduction setting to a compressive one.

  12. The dykes and structural setting of the volcanic front in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    1986-12-01

    The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1 1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the

  13. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Petterson, M. G.; Neal, C. R.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.; Babbs, T. L.; Duncan, R. A.; Tolia, D.; McGrail, B.

    1997-12-01

    The island of Malaita, Solomon Islands, represents the obducted southern margin of the Ontong Java Plateau (OJP). The basement of Malaita formed during the first and possibly largest plateau-building magmatic event at ˜122 ± 3 Ma. It subsequently drifted passively northwards amassing a 1-2 km thickness of pelagic sediment overburden. A major change in OJP tectonics occurred during the Eocene, possibly initiated by the OJP passing over the Samoan or Raratongan hotspot. Extension facilitated increased sedimentation and basin formation (e.g., the Faufaumela basin) and provided readily available deep-crustal pathways for alkali basalt and subsequent Oligocene alnöite magmas, with related hydrothermal activity producing limited Ag + Pb mineralisation. Eocene to Mid-Miocene sediments record the input of arc-derived turbiditic volcaniclastic sediment indicating the relative closeness of the OJP to the Solomon arc. The initial collision of the OJP and Solomon arc at 25-20 Ma was of a 'soft docking' variety and did not result in major compressive deformation on Malaita. South-directed subduction of the Pacific Plate briefly ceased at this time but resumed intermittently on a local scale from ˜15 Ma. Subduction of the Australian Plate beneath the Solomon arc commenced at ˜8-7 Ma. Increased coupling between the Solomon arc and the OJP led to the gradual emergence of the OJP at 6-5 through to 4 Ma. The most intense period of compressive to transpressive deformation recorded on Malaita is stratigraphically bracketed at between 4 and 2 Ma, resulting in estimated crustal shortening of between 24 and 46%, and the inclusion of between 1 and 4 km of basement OJP basalts within the larger anticlines. Basement and cover sequences are deformed together in a coherent geometry and there are no major decollement surfaces; the large asymmetrical fold structures of Malaita are likely to be the tip regions of blind thrusts with detachment surfaces between 1 and 4 km beneath the cover

  14. Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Worthington, Timothy J.; Price, Richard C.; Stewart, Robert B.; Maas, R.

    2006-09-01

    Raoul Volcano in the northern Kermadec arc is typical of volcanoes in oceanic subduction systems in that it is composed mainly of low-K high-Al basalts and basaltic andesite. However, during the last 4 ka Raoul Volcano has produced mainly dacite magma in pyroclastic eruptions associated with caldera formation. The rocks produced in these episodes are almost aphyric containing only sparse crystals of plagioclase, clinopyroxene, orthopyroxene and magnetite. These apparent phenocrysts have chemical compositions that suggest that they did not crystallise from melts with the chemical composition of their host rocks. Rather they are xenocrysts and only their rims show evidence for crystallisation from their host melt. Chemical compositions of samples of the dacites show that each eruption has tapped a distinct magma batch. Compositional variations through the analysed suite cannot be accommodated in any reasonable model of fractional crystallisation from likely parental magma compositions. The hypothesis that best fits the petrology of Raoul Island dacites is one of crustal anatexis. This model requires heating of the lower crust by a magma flux to the point where dehydration melting associated with amphibole breakdown produces magma from a preconditioned source. It is suggested that Raoul is passing through an adolescent stage of development in which siliceous melts are part of an open system in which felsic and mafic magmas coexist.

  15. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  16. Ce isotope systematics of island arc lavas from the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Bellot, Nina; Boyet, Maud; Doucelance, Régis; Pin, Christian; Chauvel, Catherine; Auclair, Delphine

    2015-11-01

    The La-Ce systematics has one of the longest half-lifes (T1/2 = 292.5 Ga) of radioactive decay systems used in isotope geochemistry. Variations of the 138Ce/142Ce ratio are expected to be small and the use of Ce as isotopic tracer requires a very precise measurement. Compared to Sm-Nd studies, the La-Ce decay system can provide additional information about the nature of sediments recycled in subduction zones, because unusually large Ce anomalies relative to the neighboring rare earth elements exist in marine sediments such as fish teeth or hydrothermal deposits. Here, we present a chemical purification technique for Ce, and mass spectrometric technique to perform accurate and reproducible analyses of Ce isotopes of natural samples. We report a large set of Ce isotope data including analysis of 2 Ce reference material solutions (AMES and JMC-304), 2 rock standards (BCR-2 and BHVO-2), 2 chondrites (the carbonaceous chondrite Allende and the enstatite chondrite Sahara 97072), 4 mid-ocean ridge basalts, 30 arc lavas from the Martinique Island and 5 oceanic sediments from DSDP-site 144 drilled on the Demerara rise. The long-term, external precision obtained on the AMES reference material is 80 ppm (2 s.d., 138Ce/142Ce = 0.0225732 ± 18, n = 89). However, we note an evolution of isotopic ratios measured in static mode over the duration of this study (33 months). When the reproducibility is calculated from the AMES reference material measured during the same analytical session, it averages 40 ppm. All the 138Ce/142Ce ratios have been normalized to the AMES value of 0.0225746 (measured in session 7, 2 s.d. = 14 ppm, n = 8), a session during which the chondritic value has been defined and the peak tailing was negligible. The 138Ce/142Ce ratio measured for the JMC-304 Ce reference reagent is 0.0225706 ± 9 (2 s.d. = 38 ppm, n = 10). The analytical precision on natural samples is improved by a factor of about 4 in relation to previous studies on island arcs (Tanaka et al

  17. Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: Implications for the tectonic evolution of South Mongolia

    NASA Astrophysics Data System (ADS)

    Zhu, Mingshuai; Baatar, Munkhtsengel; Miao, Laicheng; Anaad, Chimedtseren; Zhang, Fochin; Yang, Shunhu; Li, Yueming

    2014-12-01

    Numerous small dismembered ophiolite fragments occur in South Mongolia, but they are very poorly studied. The lack of age data and geochemical analysis hampers our understanding of the Paleozoic tectonic evolution of the region. We conducted detailed studies on the Manlay ophiolitic complex and Huree volcanic rocks south of the Main Mongolian Lineament (MML) to provide some constraints on these rocks. The Manlay ophiolite consists of dunite, harzburgite, pyroxenite, gabbro, plagiogranite, basalt and chert, locally with chromite mineralization in dunite. The gabbro and plagiogranite yielded SHRIMP zircon weighted mean 206Pb/238U ages of 509 ± 5 Ma and 482 ± 4 Ma, respectively. The basalt and dolerite samples of this complex show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, and the chrome spinel from the chromitite lens in the dunite is characterized by high Cr# and low TiO2 contents. These features suggest a supra-subduction zone (SSZ) origin for the ophiolitic complex. The Huree volcanic rocks, ranging from basalt to dacite, display enrichment in LREE and LILE, weak Eu anomalies and distinctly negative Nb, Ta and Ti anomalies, consistent with those of typical magmas in a subduction environment. An andesite sample from this arc yielded a SHRIMP 206Pb/238U zircon age of 487 ± 5 Ma, which is the oldest reliable age for an island arc in South Mongolia. Recognition of an Early Paleozoic ophiolitic complex and a coeval island arc indicates that South Mongolia underwent a period of active volcanism during Late Cambrian to Ordovician. Additionally, the tuff overlying the ophiolitic complex and a granite intruding the ophiolite have SHRIMP zircon U-Pb ages of 391 ± 5 Ma and 304 ± 4 Ma, respectively. Combining the available data, we propose that the Early Paleozoic subduction-accretionary complexes likely constitute the basement of the Late-Paleozoic arc formations and correlate with the Lake Zone in western Mongolia.

  18. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  19. Tectonic implications for the occurrence of ocean floor, hotspot, and island arc materials within accretionary prisms: Examples from the Mesozoic-Cenozoic NW Pacific Rim

    NASA Astrophysics Data System (ADS)

    Ogawa, Y.; Hirano, N.; Hirano, N.; Taniguchi, H.; Taniguchi, H.; Taniguchi, H.

    2001-12-01

    both the eastern and western Izu Arc collision zone since the Miocene. The arc/ridge collision caused the incorporation of a particular assemblage of basaltic rocks in this tectonic accretion system which we interpret as an ophiolite. These _gophiolitic_h rocks are composed of various types of basaltic to rhyolitic, effusive and intrusive, dismembered, disrupted, sheared and faulted rocks that are locally associated with some hotspot and island arc igneous rocks and pelagic sedimentary rocks. This ophiolite assemblage is widely distributed particularly in the trench-slope break or within the forearc sliver boundary in the Circum Izu region. Deformation and metamorphism in these settings are weaker at shallower levels than those in the accretionary prisms, other than the Izu Arc collision zone. Based on these examples from Japan, we infer that ocean floor, hotspot, and island arc rocks become accreted into active continental margins either through ordinary subduction-accretion processes in a non-collisional subduction system or by obduction-accretion processes in a collisional island arc system.

  20. Metamorphism of an obducted island arc: Example of the Kohistan sequence (Pakistan) in the Himalayan collided range

    NASA Astrophysics Data System (ADS)

    Bard, Jean Pierre

    1983-10-01

    In northern Pakistan, the extraordinary 40-km-thick Kohistan sequence of metamorphosed mafic, ultramafic and calc-alkaline layered plutonic and volcanic (mainly andesitic to rhyodacitic) rocks has been recently reinterpreted as the only complete vertical section of an intra-oceanic island arc presently exposed anywhere in the world. Plate scale-models have been suggested to explain the origin and the tectonic evolution of this arc in the Himalayan collision range. Despite some noticeable differences in the models, there is general agreement that the Kohistan sequence represents the crust of an arc obducted onto the northern edge of the Indian plate before the Oligocene collision of India against Asia. New data on the tectonometamorphic evolution of the Kohistan sequence have led to the conclusion that a first major D 1 event developed with increasing metamorphic grades oriented downward the Kohistan pile but also toward "ensandwiched" basic-ultrabasic granulitic rocks. Rare geochronological data and petrological evidence indicate that the latter granulites (pyriclasites and various plagiopyrigarnites, pyrigarnites, metatroctolites, metawebsterites, metadunites, etc.) were parts of enormous Lower to Middle Cretaceous layered calc-alkaline plutons emplaced during the arc-building stages. As the D 1 metamorphic event is correlated with the Upper Cretaceous obduction process of the Kohistan onto India, it is proposed that the D 1 thermal structure was strongly controlled by remnant magmatic heat source(s) within the obducted arc. This interpretation fits nicely with recent theoretical thermal models since the obduction of the arc was probably shortly after (10-20 Ma) the emplacement of the former plutonic arc rocks. A blueschist "tectonic mélange" underlying the obducted arc was possibly synchronous to the obduction and not clearly linked to the older subductive process. The Oligocene collision of India against Asia was associated with a Barrovian overprinting

  1. Fluid flow, element migration, and petrotectonic evolution of the Early Mesozoic central Klamath Island arc, northwesternmost California. Progress report

    SciTech Connect

    Ernst, W.G.

    1992-12-11

    Investigations in the central Klamath Mountains (KM) have documented the presence of a polymetamorphosed suite of highly magnesian basaltic rocks, the Yellow Dog greenstones, in the Sawyers Bar (SB) terrane of the western Triassic and Paleozoic belt. The assemblage was laid down, altered and metasomatized during the hypothesized collapse of a Phillipine Sea-type back-arc basin which brought the westerly SB oceanic arc terrane into juxtaposition with the inboard, pre-existing Stuart Fork subduction complex, and more easterly KM terranes in an immature island arc setting. Supporting research has concentrated on elucidating the areal extent and structural/stratigraphic relations of these mafic/ultramafic Yellow Dog metavolcanic units, and has documented the insignificant degree of crustal contamination of the melts by associated terrigenous metasediments. The thermal structure and its evolution in the central KM evidently reflects surfaceward advective transport of magmatic energy derived from the partly fused downgoing oceanic slab, as well as hydrothermal fluid circulation. Clarification of the thermal evolution of this crust-constructional event in the immature basaltic island arc are the goals of the research now underway, emptying both field and geochemical methods. Continuing work is documenting the flow and P-T history of aqueous fluids through the evolving KM arc, utilizing electron microprobe and oxygen isotopic data. The authors have nearly finished a regional reconnaissance map showing the distribution of the lavas throughout the California part of the KM. Application of the terrane concept to the central KM has also been reevaluated in the light of regional petrotectonic relationships. Investigations of the regional and contact metamorphism/metasomatism of the SB metasedimentary pile are in progress.

  2. Insights on the Quaternary Tectonic Evolution of the SE Indonesia Arc-Continent Collision from the Study of Uplifted Coral Terraces on Sumba Island.

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Rigaud, S.; Chiang, H. W.; Djamil, Y. S.; Herdiyanti, T.; Johnny, J.; Ildefonso, S.; Meilano, I.; Bijaksana, S.; Abidin, H. Z.; Tapponnier, P.; Wang, X.

    2015-12-01

    Sumba Island is uniquely positioned within the Sunda-Banda forearc, at the transition between oceanic subduction and arc-continent collision. There, the convergence between the Sunda and Australian plates is accommodated along at least three major structures: the megathrust, the Savu backthrust located south of Sumba and the Flores backthrust located north of the volcanic arc. The incipient collision in the vicinity of Sumba is responsible for coastal vertical movements. Quaternary reefal deposits form spectacular uplifted flights of terraces, which directly overlie Mid Miocene - Early Pliocene deep carbonate and volcaniclastic rocks at elevations exceeding 500m. Although aerial fossil reefs extensively rim the northern and eastern coasts of Sumba, studies have been limited to Cape Laundi where an uplift rate of 0.2-0.5 m/kyr is estimated for the last 400 kyr, partly on the basis of alpha-spectrometric U/Th dating. At the island scale, the relief morphology and the hydrographic network point to a N-S asymmetry, indicating a general tilt toward the north. A subducting seafloor asperity and south-dipping normal faults have been postulated to generate this asymmetry. However as the pattern and kinematics of the deformation remain partially determined, structures and processes capable of driving such deformation and accommodating the nascent collision may be undisclosed. New topographic data coupled with field observations and coral mass-spectrometric U/Th dating allow investigating the morphology, stratigraphy and age of the fossil reef terraces at the island scale. Tectonic structures disrupting the topography are identified and their activities are relatively dated with respect to fossil reef terraces. The deformation pattern of Sumba is characterized, especially in Cape Laundi where the uplift rate is re-evaluated. Through a multi-disciplinary study, we intend to reconstruct the tectonic evolution of Sumba island and, at a larger scale, of the collision in SE

  3. Geochemistry of oceanic igneous rocks - Ridges, islands, and arcs - With emphasis on manganese, scandium, and vanadium

    USGS Publications Warehouse

    Doe, B.R.

    1997-01-01

    increasing Mn is an indication of titanomagnetite removal. Dual compatible and incompatible trends with differentiation are found chiefly for Cu, Sc, and Sr. Distinguishing mid-ocean ridge basalts (MORB), oceanic-island volcanic rocks (OIV), and island-arc volcanic rocks (IAV) may be accomplished by plots of Ce/Yb versus Ba/Ce, where OIV plot to higher values of Ce/Yb than do MORB, and IAV data plot to higher values of Ba/Ce than do those of MORB. These ratios do not seem to be significantly affected by submarine weathering.

  4. Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands Arc

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    1999-09-01

    The Ontong Java Plateau (OJP) is the largest and thickest oceanic plateau on Earth and one of the few oceanic plateaus actively converging on an island arc. We present velocity determinations and geologic interpretation of 2000 km of two-dimensional, multi-channel seismic data from the southwestern Ontong Java Plateau, North Solomon Trench, and northern Solomon Islands. We recognize three megasequences, ranging in age from early Cretaceous to Quaternary, on the basis of distinct interval velocities and seismic stratigraphic facies. Megasequence OJ1 is early Cretaceous, upper igneous crust of the OJP and correlates with basalt outcrops dated at 122-125 Ma on the island of Malaita. The top of the overlying megasequence OJ2, a late Cretaceous mudstone unit, had been identified by previous workers as the top of igneous basement. Seismic facies and correlation to distant Deep Sea Drilling Project/Ocean Drilling Program sites indicate that OJ2 was deposited in a moderately low-energy, marine environment near a fluctuating carbonate compensation depth that resulted in multiple periods of dissolution. OJ2 thins south of the Stewart Arch onto the Solomon Islands where it is correlated with the Kwaraae Mudstone Formation. Megasequence OJ3 is late Cretaceous through Quaternary pelagic cover which caps the Ontong Java Plateau; it thickens into the North Solomon Trench, and seismic facies suggest that OJ3 was deposited in a low-energy marine environment. We use seismic facies analysis, sediment thickness, structural observations, and quantitative plate reconstructions of the position of the OJP and Solomon Islands to propose a tectonic, magmatic, and sedimentary history of the southwestern Ontong Java Plateau. Prior to 125 Ma late Jurassic and early Cretaceous oceanic crust formed. From 125 to 122 Ma, the first mantle plume formed igneous crust (OJ1). Between 122 and 92 Ma, marine mudstone (OJ2 and Kwaraae mudstone of Malaita, Solomon Islands) was deposited on Ontong Java

  5. Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Matsuo, J.; Sayanagi, K.

    2012-04-01

    The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises

  6. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  7. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  8. Petroleum potential of volcanogenic and volcano-sedimentary rocks in ancient and recent island arcs: Caucasus, Komandorskie, and Kuril islands, eastern Kamchatka

    SciTech Connect

    Levin, L.E. )

    1993-09-01

    In the Late Cretaceous-Eocene, subduction of the Tethys oceanic plate under the island arc of the lesser Caucasus contributed to the appearance of the special conditions favorable for petroleum occurrence: (1) tectono-magmatic destruction of the crust of the Transcaucasus median massif and formation of hydrocarbon traps of different types and origins, and (2) high heat flow lasting until the recent epoch. These led flow-intensive generation of hydrocarbons in the shallow-water sediments of the paleoshelf of the Transcaucasus massif and accumulation of hydrocarbons not only in the sedimentary but also in the volcanogenic and volcano-sedimentary reservoirs (Samgori-Patardzeuli, Muradhanly fields, etc.). At the end of the Oligocene, the geodynamic setting in the northwestern margins of the Pacific Ocean was mainly similar to that within the Transcaucasus median massif. At the end of Oligocene-Miocene, such conditions determined the tectono-magmatic destruction of the continental crust and formation of the series of interarc rifts. The main fields of Japan, with accumulations in the volcanogenic and volcano-sedimentary rocks, are concentrated here. Its analog is the rift located in the southern part of a single east Kuril basin, where petroleum occurrence is only inferred. In the separate troughs, the thickness of the volcano-sedimentary cover is 4-6 km. The stratigraphic section of the cover contains the volcanic and volcano-sedimentary sediments of the Neogene-Pleistocene. The studies of the sections of the Komandorskie islands, eastern Kamchatka, Kuril Islands, and western Sakhalin indicate that distribution of reservoirs depends on the stage of evolution of the rifts and adjacent island arcs.

  9. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  10. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kanzaki, Tadao; Ozawa, Takejiro; Okamoto, Makoto; Kakihana, Hidetake

    1982-11-01

    Boron samples from 40 fumarolic condensates from volcanoes in the Ryukyu arc (Satsuma Iwo-jima and Shiratori Iwo-yama) and the North-east Japan arc (Usu-shinzan, Showa-shinzan, Esan and Issaikyo-yama) all have 11B /10B ratios close to 4.07. Higher values, from 4.09 to 4.13, were only observed in condensates from volcanoes in the southernmost end of the North-east Japan arc (Nasu-dake), the northern part of the Izu-Bonin arc (Hakone), and the North Mariana arc (Ogasawara Iwo-jima). These higher values suggest geological interaction of the magmas with sea-water enriched in 11B.

  11. Evolution and geochemistry of the Tertiary calc-alkaline plutons in the Adak Island region of the central Aleutian oceanic island arc

    NASA Astrophysics Data System (ADS)

    Kay, Suzanne; Citron, Gary P.; Kay, Robert W.; Jicha, Brian; Tibbetts, Ashley

    2014-05-01

    Calc-alkaline plutons are major crustal building blocks of continental margin mountain belts like the Mesozoic to Tertiary Andes and the Sierra Nevada, but are rare in oceanic island arcs. Some of the most calc-alkaline I-type island arc plutons are in the Central Aleutians with the most extreme signatures, as indicated by FeO/MgO ratios of < ~2 at 48-70% wt. % SiO2, in the ~10 km wide Oligocene Hidden Bay pluton on southern Adak Island and the 10 km wide Miocene Kagalaska pluton to the north on eastern Adak and the adjacent Kagalaska Island. Although small compared to most continental plutons, similarities in intrusive units, mineralogy and chemistry suggest common formation processes. The Aleutian calc-alkaline plutonic rocks mainly differ from continental plutons in having more oceanic like isotopic (87Sr/86Sr = 0.703-0.7033; Epsilon Nd = 9-7.8) and LIL (e.g., higher K/Rb) ratios. The Adak region plutons differ from Tertiary plutons on Unalaska Island further east in being more K-rich and in having a more oxidized and lower-temperature mineralogy. From a regional perspective, the Adak area plutons intrude Eocene/Oligocene Finger Bay Formation mafic volcanic and sedimentary rocks and postdate the small ~38 Ma tholeiitic Finger Bay pluton. The chemistry of these older magmatic rocks is basically similar to that of young Central Aleutian magmatic rocks with boninites and arc tholeiitic magmas seemingly being absent. The formation of the calc-alkaline plutons seems to require a sufficient crustal thickness, fluid concentration and contractional stress such that magma chambers can stabilize significant amounts of pargasitic hornblende. Seismic receiver function analyses (Janiszewski et al., 2013) indicate the modern Adak crust is ~ 37 km thick. Existing and new hornblende, plagioclase and biotite Ar/Ar ages from 16 Hidden Bay pluton and Gannet Lake stock gabbro, porphyritic diorite, diorite, granodiorite, leucogranodiorite and aplite samples range from 34.6 to 30

  12. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  13. Middle Jurassic strata link Wallowa, Olds Ferry, and Izee terranes in the accreted Blue Mountains island arc, northeastern Oregon

    SciTech Connect

    White, J.D.L. ); Vallier, T. ); Stanley, G.D. Jr. ); Ash, S.R. ); White, D.L.

    1992-08-01

    Middle Jurassic strata atop the Wallowa terrane in northeastern Oregon link the Wallowa, Izee, and Olds Ferry terranes as related elements of a single long-lived and complex oceanic feature, the Blue Mountains island arc. Middle Jurassic strata in the Wallowa terrane include a dacitic ash-flow deposit and contain fossil corals and bivalves of North American affinity. Plant fossils in fluvial sandstones support a Jurassic age and indicate a seasonal temperate climate. Corals in a transgressive sequence traditionally overlying the fluvial units are of Bajocian age and are closely related to endemic varieties of the Western Interior embayment. They are unlike Middle Jurassic corals in other Cordilleran terranes; their presence suggests that the Blue Mountains island arc first approached the North American craton at high paleolatitudes in Middle Jurassic time. The authors consider the Bajocian marine strata and underlying fluvial volcaniclastic units to be a basin-margin equivalent of the Izee terrane, a largely Middle Jurassic (Bajocian) succession of basinal volcaniclastic and volcanic rocks known to overlie the Olds Ferry and Baker terranes.

  14. Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source.

    PubMed

    Schiano, P; Clocchiatti, R; Ottolini, L; Busà, T

    2001-08-30

    Mount Etna lies near the boundary between two regions that exhibit significantly different types of volcanism. To the north, volcanism in the Aeolian island arc is thought to be related to subduction of the Ionian lithosphere. On Sicily itself, however, no chemical or seismological evidence of subduction-related volcanism exists, and so it is thought that the volcanism-including that on Mount Etna itself-stems from the upwelling of mantle material, associated with various surface tectonic processes. But the paucity of geological evidence regarding the primary composition of magma from Mount Etna means that its source characteristics remain controversial. Here we characterize the trace-element composition of a series of lavas emitted by Mount Etna over the past 500 kyr and preserved as melt inclusions inside olivine phenocrysts. We show that the compositional change in primary magmas from Mount Etna reflects a progressive transition from a predominantly mantle-plume source to one with a greater contribution from island-arc (subduction-related) basalts. We suggest that this is associated with southward migration of the Ionian slab, which is becoming juxtaposed with a mantle plume beneath Sicily. This implies that the volcanism of Mount Etna has become more calc-alkaline, and hence more explosive, during its evolution. PMID:11528476

  15. Evolution of Ataúro Island: Temporal constraints on subduction processes beneath the Wetar zone, Banda Arc

    NASA Astrophysics Data System (ADS)

    Ely, Kim S.; Sandiford, Mike; Hawke, Margaret L.; Phillips, David; Quigley, Mark; Reis, Joao Edmundo dos

    2011-06-01

    Ataúro is a key to understanding the late stage volcanic and subduction history of the Banda Arc to the north of Timor. A volcanic history of bi-modal subaqueous volcanism has been established and new whole rock and trace element geochemical data show two compositional groups, basaltic andesite and dacite-rhyolite. 40Ar/ 39Ar geochronology of hornblende from rhyo-dacitic lavas confirms that volcanism continued until 3.3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. Local scale landscape features of the eastern parts of Ataúro are strongly controlled by normal faults. The continuation of arc-related volcanism on Ataúro until at least 3.3 Ma suggests that subduction of Australian lithosphere continued until near this time. This data is consistent with findings from the earthquake record where the extent of the Wetar seismic gap to a depth of 350 km suggests slab breakoff, as a result of collision, commenced at ˜4 Ma, leading to subsequent regional uplift recorded in elevated terraces on Ataúro and neighbouring islands.

  16. Differential timing of vertical-axis block rotations in the northern Ryukyu Arc: Paleomagnetic evidence from the Koshikijima Islands, Japan

    NASA Astrophysics Data System (ADS)

    Tonai, Satoshi; Suganuma, Yusuke; Ashi, Juichiro; Itaya, Tetsumaru; Oiwane, Hisashi; Kiyokawa, Shoichi

    2011-01-01

    Over 300 samples for paleomagnetic analysis and K-Ar dating were collected from 27 sites at NW-SE and NE-SW trending dike swarms (herein, NW dikes and NE dikes, respectively) in the Koshikijima Islands, northern Ryukyu Arc. The NW dikes are Middle Miocene in age and have directions (D = - 37.7 ∘, I = 51.8 ∘, α95 = 9.6 ∘, and κ = 40.8) that are deflected westward relative to the stable eastern Asian continent. Conversely, the NE dikes, of Late Miocene age, have directions (D = 16.1 ∘, I = 57.7 ∘, α95 = 7.1 ∘, and κ = 41.9) that show no such deflection. These differences are interpreted as indicating that the Koshikijima Islands underwent approximately 40 ∘ of counter-clockwise rotation during the Middle to Late Miocene. A synthesis of the paleomagnetic and structural data suggests a three-stage history of extensional deformation: (1) displacement upon normal faults (F 1 faults) without vertical-axis block rotation, (2) strike-slip reactivation of F 1 faults and oblique-normal displacement on NE-SW-trending faults (F 2 faults) with vertical-axis block rotation, and (3) oblique-normal displacement on F 2 faults without vertical-axis block rotation. Regional differences in the timing and amount of counter-clockwise vertical-axis block rotations indicate that the northern Ryukyu Arc rotated as several distinct rigid blocks.

  17. The Island Arcs as a Major Source of Mantellic Sr to the Ocean: Tectonic Control over Seawater Chemistry and Climate

    NASA Astrophysics Data System (ADS)

    Louvat, P.; Allegre, C. J.; Meynadier, L.

    2005-12-01

    The evolution of 87Sr/86Sr in the Cenozoic ocean has been the subject of famous and vivid controversies between the BLAG model1 and Raymo's one2. No clear winner! Recently the question has been worsened because recent estimates of the hydrothermal flux at ridge crest3, 4, 5 and of the low-temperature oceanic crust weathering flux6 have shown that these fluxes are not enough to balance the continental radiogenic input to give 0.70917 (present-day seawater 87Sr/86Sr). We have re-examined this problem using both Sr and Nd isotopic budgets. Seawater 143Nd/144Nd isotopic ratio varies from one ocean to another as a consequence of its short residence time. For each ocean we can calculate the Nd contributions from continental (rivers) and mantellic sources. Since ridge crests cannot be the mantle-like source for Nd, this source is identified as the island arc and OIB weathering, in agreement with the observation by Goldstein and Hemming7. This approach leads us to examine the possibility of the same island arc origin for the missing mantle-like seawater Sr. The classical approach to the budget of water entering the ocean is to consider the river water fluxes as established by hydrological survey statistics. But these fluxes are too small, as they do not include the underground water flows, which are particularly important for volcanic terrains8. A budget calculation based on mean surface area, mean water fluxes and mean Sr concentrations in rivers and springs demonstrates island arc and OIB weathering is a sufficient source of mantellic Sr to the ocean to match the seawater 87Sr/86Sr budget. This result has a fundamental consequence on the explanation of the seawater 87Sr/86Sr evolution during the Cenozoic. Indeed, when a continental collision occurs a large portion of island arcs is eliminated. Thus the increase in the contribution of radiogenic 87Sr/86Sr from continental weathering and the decrease of the mantle contribution via island arc weathering are tectonically and

  18. Petrology and Sm-Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): Insights into deep levels of Neoproterozoic island arcs

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Abd El-Rahman, Yasser M.; Yoshikawa, Masako; Shibata, Tomoyuki; Arai, Shoji; Tamura, Akihiro; Kagami, Hiroo

    2014-06-01

    The deep levels of Neoproterozoic island arcs are poorly known due to limited accessibility. The Genina Gharbia Alaskan-type complex (south Eastern Desert, Egypt) is the remains of a magma chamber that crystallized at the base (crust-mantle boundary) of a mature Neoproterozoic island arc. The rock assemblage comprises hornblende-bearing harzburgite, lherzolite, pyroxenite, norite and gabbro. All lithologies show cumulus texture with evidence of extensive cumulus mineral-melt interactions. Clinopyroxenes from all lithologies have similar rare earth element (REE) patterns with slight medium-rare earth element (MREE) enrichment. Hornblendes are slightly enriched in MREE and light rare earth elements (LREE). Island arc signatures are indicated by high contents of large ion-lithophile elements and low concentration of high field-strength elements. Positive initial εNd (+ 5.7 to + 7.0) and Nd model ages (963 ± 81 Ma) are consistent with the Genina Gharbia magma being extracted from a depleted mantle source. Modeling of estimated parental magma indicates 10% partial melting of a 90% depleted mantle source with a 10% (MORB + sediments)-derived fluid, commencing in the spinel stability field (< 85 km). Relative to Phanerozoic arcs, the Neoproterozoic arcs were more hydrous, had low oxidation states and probably lasted shorter time to build-up. The hydrous nature of the sub-Arabian-Nubian Shield mantle and the long-life of the arcs are among reasons responsible for the vast crustal growth during the Pan-African Orogeny throughout the Gondwana.

  19. Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; Nakamura, Ko-Ichi; Embley, Robert W.; de Ronde, Cornel E. J.; Arculus, Richard J.

    2005-09-01

    The spatial density of hydrothermal venting is strongly correlated with spreading rate on mid-ocean ridges (with the interesting exception of hot spot-affected ridges), evidently because spreading rate is a reliable proxy for the magma budget. This correlation remains untested on spreading ridges in back-arc basins, where the magma budget may be complicated by subduction-induced variations of the melt supply. To address this uncertainty, we conducted hydrothermal plume surveys along slow-spreading (40-60 mm/yr) and arc-proximal (10-60 km distant) sections of the southern Mariana Trough and the Valu Fa Ridge (Lau Basin). On both sections we found multiple plumes overlying ˜15-20% of the total length of each section, a coverage comparable to mid-ocean ridges spreading at similar rates. These conditions contrast with earlier reported results from the two nearest-arc segments of a faster spreading (60-70 mm/yr) back-arc ridge, the East Scotia Ridge, which approaches no closer than 100 km to its arc. There, hydrothermal venting is relatively scarce (˜5% plume coverage) and the ridge characteristics are distinctly slow-spreading: small central volcanic highs bookended by deep median valleys, and axial melt lenses restricted to the volcanic highs. Two factors may contribute to an unexpectedly low hydrothermal budget on these East Scotia Ridge segments: they may lie too far from the adjacent arc to benefit from near-arc sources of melt supply, and subduction-aided migration of mantle from the Bouvet hot spot may reduce hydrothermal circulation by local crustal warming and thickening, analogous to the Reykjanes Ridge. Thus the pattern among these three ridge sections appears to mirror the larger global pattern defined by mid-ocean ridges: a well-defined trend of spreading rate versus hydrothermal activity on most ridge sections, plus a subset of ridge sections where unusual melt delivery conditions diminish the expected hydrothermal activity.

  20. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  1. A structural, petrographic, and isotopic study of the Rapid River area and selected mafic complexes in the northwestern United States: Implications for the evolution of an abrupt island arc-continent boundary

    SciTech Connect

    Aliberti, E.A.

    1988-01-01

    The east side of the Columbia embayment is characterized by an unusually sharp island arc-continent boundary. Detailed mapping, strain analysis, and petrography of three structural levels along portion of this boundary, the Rapid River area, are discussed. From lowest to highest these are the Wallowa terrane, the Rapid River plate (RRP), and the Pollock Mountain plate (PMP). Mineral lineation data indicate that the RRP and the PMP were transported west-northwestward along steeply rooted thrust systems. Sm-Nd and Rb-Sr isotopic studies of three mafic and ultramafic complexes around the periphery of the Columbia embayment indicate that each formed from a separate source area, all within an oceanic environment. Structural, petrographic, and isotopic data support an evolution of the island arc-continent boundary in west-central Idaho characterized by three stages: (1) Initial collision of the amalgamated island arc terrane with the continental margin and the removal of a wedge of material northward along both left- and right-lateral strike-slip faults; (2) Strike-slip faults at the tail end of the wedge merge along a zone of occlusion (ZOO). The strain accommodated by northward removal of the wedge is transferred to compression along this zone resulting in intracontinental subduction and uplift; (3) Thermal weakening of the crust by increased magmatic activity resulted in several tens of kilometers of rapid uplift of material out of the ZOO along steeply rooted thrust faults.

  2. Are arc-type rocks the products of magma crystallisation? Observations from a simple oceanic arc volcano: Raoul Island, Kermadec Arc, SW Pacific

    NASA Astrophysics Data System (ADS)

    Smith, Ian E. M.; Stewart, Robert B.; Price, Richard C.; Worthington, Timothy J.

    2010-02-01

    Raoul Island is the emergent summit of a large intra-oceanic strato-volcano in what is globally one of the simplest of subduction settings. In this simple setting erupted magmas span the compositional range from basalt to dacite but none have the high Mg-numbers and high Ni and Cr expected of primitive mantle-derived melts. The lavas range from aphyric to highly porphyritic and are characterised by phenocryst assemblages dominated by plagioclase accompanied by clinopyroxene, olivine, orthopyroxene and spinel. Phenocryst core compositions and zoning profiles are remarkably uniform irrespective of total phenocryst content or geochemical composition, indicating a decoupling of melt and crystal components in the system. A consistent model for the Raoul magmatic system is that primitive high-Mg magma generated in a melt column within the underlying mantle wedge is transformed into a series of derivative low-Mg magmas by fractional crystallisation within the lower crust. Low-Mg magma accumulates variable quantities of crystal cargo as it ascends toward the surface through a crystal mush zone. These processes are essentially those that characterise continental subduction-related magmatic systems but differ only in the absence of an evolved crustal component.

  3. Intraoceanic Arc Tectonic and Sedimentary Processes: Translation from Modern Activity to Ancient Records

    NASA Astrophysics Data System (ADS)

    Draut, A. E.; Clift, P. D.

    2013-12-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are used to reconstruct paleogeography, plate motion, collision and accretion events, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records after arc-continent collision is complicated by preservation of evidence for some processes and loss of evidence for others. We examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of oceanic subduction zones. Composition of accreted arc terranes differs as a function of arc-continent collision geometry. ';Forward-facing' collision can accrete an oceanic arc onto either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In ';backward-facing' collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern oceanic subduction zones implies that valuable records of arc processes are commonly destroyed even before collision with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest. Collision geometry and tectonic erosion vs. accretion are important controls on the ultimate survival of

  4. Double saloon door tectonics in the Japan Sea, Fossa Magna, and the Japanese Island Arc

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2011-01-01

    A number of criteria considered diagnostic of double saloon door rifting and seafloor spreading are matched by data from the Japanese Arc. These include: a pair of terranes, SW and NE Honshu, which rotated in opposite directions from 22-21 Ma to 14-11 Ma; rotated terranes which comprise a retro-arc fold/thrust belt attached to an accretionary wedge intruded by a magmatic arc; contemporaneous backarc extension from 24 to 21 Ma which is brought to a halt by progressive collision of the Izu-Bonin and Japan Arcs from 15 to 5 Ma; isolation of blocks of thicker continental crust by areas of thin continental or oceanic crust, during backarc rifting; such isolation may be due to simultaneous rifting or to progressively seaward rifts, associated with ridge jumps towards the subduction zone; opposite rotations are accommodated by subduction rollback demonstrated by seaward migration of the volcanic front from 30-26 Ma to 16-15 Ma; concurrent development of a major arc-orthogonal rift, the Fossa Magna, from 23-18 Ma to 14 Ma, which was thereafter inverted from 15 Ma to the Recent; a northeast propagating rift in the northern Japan Basin demonstrated by the relationship of linear magnetic anomalies to the mapped continent ocean boundary. Driving mechanisms for double saloon door tectonics are discussed in relation to various reconstructions of the northwest Pacific. Opposite rotational torques, leading to opposite terrane rotations, may be caused by rollback of a curved trench hingeline, or by the divergent slab sinking forces of the Pacific and Philippine Sea Plates.

  5. Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Robinson, F. A.; Foden, J. D.; Collins, A. S.

    2015-04-01

    The Arabian Shield preserves a protracted magmatic record of repeated amalgamation of juvenile subduction terranes that host granite intrusions ranging in age from the early Neoproterozoic to the Cambrian, which were emplaced into convergent and within-plate settings. Geochronology and whole-rock geochemistry of sampled Saudi Arabian granitoids define and distinguish four discrete age groups: 1) ~ 845-700 Ma island arc and synorogenic granitoids (IA + Syn), 2) ~ 640-610 Ma granitoids from the Nabitah and Halaban Suture (NHSG), 3) ~ 610-600 Ma post-orogenic perthitic (hypersolvus) granitoids (POPG), and 4) < 600 Ma anorogenic aegirine-bearing perthitic (hypersolvus) granitoids (AAPG). Groups 1, 2 and 3 include suites ranging from I-S- to A-type granites that have REE signatures typical of volcanic arc settings and show intra-suite variation that could be controlled by a combination of crustal assimilation and fractional crystallisation. Their mafic parental magmas have N-MORB-, or arc-tholeiite-like geochemistry. By contrast, group 4 A-type granites are more enriched in HREE and in incompatible elements such as Nb, Rb, Ga, Nd, Zr and Y and have lower Ce/Yb and higher Y/Nb ratios. These granitoids are interpreted to have been emplaced into within-plate and back-arc settings. Granitoid data also provide evidence that there may be two distinct mantle sources to the mafic parents of the granite suites. These are distinguished as contaminated and enriched mantle using Nb and Y and Nd isotopes. All granitoid suites are isotopically juvenile (ɛNd + 3 to + 6) and fall between the upper field crustal values of the Paleoproterozoic Khida terrane (ɛNd + 1) and contemporary depleted mantle. However, Nd isotopes distinguish contamination in group 1-3 mafic end-members beneath sutures which are interpreted to be derived from the contemporary MORB-type mantle wedge with subsequent crustal assimilation and fractionation to I- and A-type granitoids. The youngest (after 600 Ma) A

  6. 238U 230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Turner, Simon; Hawkesworth, Chris; Rogers, Nick; Bartlett, Jessica; Worthington, Tim; Hergt, Janet; Pearce, Julian; Smith, Ian

    1997-11-01

    The highly depleted intra-oceanic Tonga-Kermadec island arc forms an endmember of arc systems and a unique location in which to isolate the effects of the slab flux. High precision TIMS uranium, thorium, strontium, neodymium, and lead isotopes, along with complete major and trace element data, have been obtained on an extensive sample set comprising fifty-eight lavas along the arc as well as nineteen samples of the subducting sediments at DSDP site 204 just to the east of the Tonga-Kermadec trench. Ca/Ti and Al/Ti ratios extend from values appropriate to an N-MORB source in the southern Kermadecs to very high ratios in Tonga interpreted to reflect increasing degrees of depletion of the mantle wedge due to backarc basalt extraction. The isotope data emphasize the need for four components in the petrogenesis of the lavas: (1) the mantle wedge; (2) a component with elevated 207Pb/ 204Pb towards which the Kermadec and southern Tongan lavas extend; (3) a component characterised by high 206Pb/ 204Pb, Ta/Nd, and low 143Nd/ 144Nd observed only in the northernmost Tongan islands of Tafahi and Niuatoputapu; (4) a fluid component characterised by strong enrichments of Rb, Ba, U, K, Ph, and Sr, relative to Th, Zr, and the REE and producing large 211U excesses (( 230Th/ 238U) = 0.8-0.5) in the more depleted lavas. The mantle wedge (Component 1) is isotopically similar to the source of the Lau BABB. Component 2 is average pelagic sediment on the downgoing Pacific plate as observed at DSDP sites 595/596 and in the upper sections of the sediment pile at DSDP site 204. Mass balance calculations indicate that less than 0.5% is recycled into the arc lavas; essentially all the subducted sediment is returned to the upper mantle (˜0.03 km' yr -1). Exceptionally low concentrations of Ta and Nb relative to Th and the LREE requires that this sediment component is added as a partial melt which was in equilibrium with residual rutile or ilmenite. Component 3 is identified as volcaniclastics

  7. Age, origin, and significance of an unconformity that predates island-arc volcanism in the northern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Varga, Robert J.; Moores, Eldridge M.

    1981-11-01

    The paleogeographic position of rocks of the northern Sierra Nevada relative to North America has long been the topic of debate. A detailed study of the Lakes Basin region of the northern Sierra Nevada substantiates that the Shoo Fly Complex, of early Paleozoic age, was folded and unconformably overlain by an island-arc sequence in late Paleozoic time. Microfossils recovered during the study represent the first in situ fauna ever collected from the Shoo Fly Complex and provide an Ordovician-Silurian lower limit on the early deformation. Late Jurassic (Nevadan) deformation strongly affected all rocks in the region. Regional considerations suggest that mid-Paleozoic deformation may have been widespread in the Sierra Nevada and could indicate an early phase of an eastward-prograding suture that ultimately resulted in emplacement of the Roberts Mountain allochthon of the Great Basin. *Present address: Union Oil Research Center, Box 76, Brea, California 92621

  8. The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific

    NASA Astrophysics Data System (ADS)

    Gamble, J. A.; Smith, I. E. M.; McCulloch, M. T.; Graham, I. J.; Kokelaar, B. P.

    1993-01-01

    Basalts from the Taupo Volcanic Zone (TVZ), New Zealand, the Kermadec Island Arc (KA) and its back-arc basin, the Havre Trough show systematic variations in trace-element and isotope geochemistry which are attributed to differences in tectonic setting and source heterogeneity along a more or less continuous plate boundary. Basalts from the Kermadec Arc are characterised by low abundances of high field strength elements (HFSE) such as Ti, Zr, Nb, Ta and Hf and have high ratios of Ti/Zr and low ratios of Ti/Sc and Ti/V relative to typical MORB. Basalts from TVZ also show low abundances of the HFS elements relative to MORB but show lower Ti/Zr, higher Ti/V and Ti/Sc ratios and generally higher Zr abundances than KA most basalts. The Havre Trough basalt is mildly alkaline (< 1% normative nepheline) like many back-arc basin basalts from the Pacific rim, contrasting with the hypersthene normative TVZ and KA rocks. It has higher Zr than most TVZ basalts and all KA basalts. Ratios such as Ti/V, Ti/Sc and Ti/Zr are within the range of TVZ and MORB basalts but distinct from KA basalts. The depleted (relative to MORB) HFSE characteristics of the KA and TVZ basalts are complemented by high abundances of large ion lithophile elements (LIL), such as Ba, Rb and K, when compared to MORB, yielding the distinctive LIL-enriched pattern of subduction related rocks on a normalised multi-element plot. In contrast, the Havre Trough basalt is MORB-like. Chondrite-normalised Rare Earth Element (REE) patterns for the TVZ basalts show a field overlapping with that defined by the southern KA (Rumble Sea Mounts), with light REE enriched patterns (Ce/Yb n = ˜ 1.8-3) and flat heavy REE (Tb-Lu). Basalts from the northern KA are typically light REE depleted (Ce/Yb n = 0.5) or slightly enriched (Ce/Yb n = 1.5). The REE pattern of the Havre Trough basalt is distinctive from both the KA and TVZ fields, being richer in the heavy REE, yet similar to many basalts from back-arc basins. Sr and Nd

  9. Characterization of magmatic sulfur in the Aegean island arc by means of the δ 34S values of fumarolic H 2S, elemental S, and hydrothermal gypsum from Nisyros and Milos islands

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Gambardella, Barbara; Principe, Claudia; Arias, Alessia; Brombach, Tatjana; Hunziker, Johannes C.

    2002-06-01

    A δ 34S value of +6.3±1.5‰ was estimated for the rhyodacitic degassing magma present underneath the hydrothermal system of Nisyros, based on the S isotope ratios of H 2S in fumarolic vapors. This value was estimated by modeling the irreversible water-rock mass transfers occurring during the generation of the hydrothermal liquid which separates these fumarolic vapors. The S isotope ratio of the rhyodacitic degassing magma of Nisyros is consistent with fractional crystallization of a parent basaltic magma with an initial δ 34S value of +4‰ (±at least 1.5‰). This positive value could be explained by mantle contamination due to by either transference of fluids derived from subducted materials or involvement of altered oceanic crust, whereas contribution of biogenic sulfides from sediments seems to be negligible or nil. This conclusion agrees with the lack of N 2 and CO 2 from thermal decomposition of organic matter contained in subducted sediments, which is a characteristic of the whole Aegean arc system. Since hydrothermal S at Milos and Santorini has isotope ratios similar to those determined at Nisyros, it seems likely that common controlling processes are active throughout the Aegean island arc.

  10. Tectonic evolution of Early Paleozoic island-arc systems and continental crust formation in the Caledonides of Kazakhstan and the North Tien Shan

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.

    2011-01-01

    The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.

  11. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    PubMed

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest. PMID:24860717

  12. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  13. Multi-Hazards Geophysical Monitoring Through the Eastern Caribbean Islands arc: Strategy, Challenges and Future Development

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Lynch, L.; Robertson, R.; Latchman, J.; Mohais, R.; Ramsingh, C.

    2007-05-01

    The Seismic Research Unit (SRU), at the University of the West Indies, St Augustine, Trinidad, W.I., is responsible for monitoring and studying geological hazards in the English and Dutch speaking islands nestled along the ocean-ocean plate convergence zone in the Eastern Caribbean. The Unit operates a multi-hazards monitoring network that spans over 15 islands. Geophysical monitoring techniques include 11 broadband and 44 short period seismic stations, 4 accelerometers, 4 continuous GPS stations (cGPS) and over 50 ground-deformation benchmarks. This seismic network caters for general earthquake surveillance and study as well as for volcano early-warning. As part of the recent trust to improve tsunami surveillance capabilities in the Caribbean the unit has embarked on a program to upgrade a subset of the seismograph network. Near real-time satellite communications will be installed to improve the present network that is built around terrestrial Internet and telephone media. Additional strong motion accelerometers will also be operated alongside the broadband sensors at the upgraded stations to provide the necessary specifications for tsunami detection. Through real- time data exchanged with adjacent and global networks that are involved in the effort to establish a Tsunami Warning System for the Caribbean and adjacent regions, the Unit's capacity to monitor multiple hazard via the seismological method will be significantly improved. The geodetic monitoring program is a hybrid of near real-time data acquisition and static field surveys. It is principally geared towards volcano ground deformation monitoring. The main challenge while monitoring volcano ground deformation in small islands is the limited control on the reference station which are often located within the potential deformation field (versus been ideally outside any volcano related deformation field). As a result, SRU's strategy is to control reference stations in every island by long-baselines processing

  14. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  15. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2*

    PubMed Central

    Sparacino-Watkins, Courtney E.; Tejero, Jesús; Sun, Bin; Gauthier, Marc C.; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A.; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T.

    2014-01-01

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  16. Evidence for activity of the Calabrian arc system and implications for historical seismicity in Eastern Sicily

    NASA Astrophysics Data System (ADS)

    Gallais, F.; Gutscher, M.-A.; Graindorge, D.; Polonia, A.

    2009-04-01

    The Wadati-Benioff zone under Calabria and the Tyrrhenian Sea is located in the centre of the Mediterranean Sea, a region characterized by complex tectonics. The presence of deep earthquakes under the Tyrrhenian Sea to a depth of 500 km, depicting an Ionian slab dipping about 70° towards the NW (Selvaggi and Chiarabba, 95), related with an active volcanic arc (the Aeolian Islands). The Calabrian peninsula is among the most seismically active regions in the Mediterranean area. Several historical seismic events, such as 1169 and 1693 earthquakes, reached MCS intensities of XI and are associated with destructive tsunami (Piatanesi and Tinti, 1998). The source of these two strongest earthquakes has still not been identified with certainty. The 1693 earthquake struck Eastern Sicily (60000 people killed) and generated a 5-10 m high tsunami (Piatanesi and Tinti, 1998). The 1169 earthquake had similar intensities and a comparable isoseismal pattern, suggesting an equivalent source. Because of the tsunami generated in 1693 and because the isoseismals are open to the sea, the source region appears to be offshore. The subduction fault plane would then be a good candidate for the 1693 event. However, a lack of instrumentally recorded thrust earthquakes, characteristic of active subduction zone, suggests that if subduction is active, the fault plane may be locked since the instrumental period. Reported recent GPS motions suggest that the subduction of the Ionian lithosphere beneath the Tyrrhenian basin plays an minor role in controlling the active deformation of the Eurasia-Nubia plate boundary, but may be locally still active in particular in the Calabrian arc (D'Agostino et al., 08). Moreover the offshore accretionary wedge is known to include compressional anticlines and ongoing hydrological activity (mud volcanoes). We present preliminary results from reprocessed 96-channels seismic reflection profiles acquired during the French "Archimede" cruise (1997) crossing the

  17. Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran

    PubMed Central

    Neve, Etienne P. A.; Köfeler, Harald; Hendriks, Delilah F. G.; Nordling, Åsa; Gogvadze, Vladimir; Mkrtchian, Souren; Näslund, Erik; Ingelman-Sundberg, Magnus

    2015-01-01

    Recently two novel enzymes were identified in the outer mitochondrial membrane, mARC1 and mARC2. These molybdenum containing enzymes can reduce a variety of N-hydroxylated compounds, such as N-hydroxy-guanidines and sulfohydroxamic acids, as well as convert nitrite into nitric oxide (NO). However, their endogenous functions remain unknown. Here we demonstrate a specific developmental pattern of expression of these enzymes. mARC1, but not mARC2, was found to be expressed in fetal human liver, whereas both, in particular mARC2, are abundant in adult liver and also expressed in omental and subcutaneous fat. Caloric diet restriction of obese patients caused a decreased expression of mARC2 in liver, similar to that seen in the livers of starved rats. Knock down of mARC2 expression by siRNA in murine adipocytes had statistically significant effect on the level of diglycerides and on the fatty acid composition of some triglycerides, concomitantly a clear trend toward the reduced formation of most of triglyceride and phospholipid species was observed. The involvement of mARC2 in the metabolism of the hepatotoxic drug ximelagatran was evaluated in hepatocytes and adipocytes. Ximelagatran was shown to cause oxidative stress and knock down of mARC2 in adipocytes prevented ximelagatran induced inhibition of mitochondrial respiration. In conclusion, our data indicate that mARC1 and mARC2 have different developmental expression profiles, and that mARC2 is involved in lipogenesis, is regulated by nutritional status and responsible for activation of ximelagatran into a mitotoxic metabolite(s). PMID:26378779

  18. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  19. Vesiculation Characteristics in Pyroclasts of the 3.1 ka Oneraki Eruption, Raoul Island, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Rotella, M. D.; Barker, S. J.; Wilson, C. J.; Wright, I. C.; Houghton, B. F.

    2008-12-01

    Raoul Island is the emergent 30 square km portion of a > 200 cubic km volcanic edifice which rises 900 m from the sea floor along the Kermadec ridge. Although the island is composed mainly of basalt and basaltic andesite, the last 4000 years has seen several dacitic explosive eruptions associated with caldera formation [Lloyd & Nathan, N.Z. Geol. Surv. Bull., 1981; Smith et al., J.Volc. Geotherm. Res. v. 156, 2006]. Fall deposits of the 3.1 ka Oneraki eruption, of possible plinian dispersal, were sampled at five stratigraphic levels. The 16-32 mm size pumice clasts of the lower four levels display narrow, unimodal density ranges. The upper level fall deposit shows a bimodal density distribution, reflecting a change in eruption characteristics as dense, degassed fragments were also ejected, but without other signs of any interaction with external water. For this study, qualitative and quantitative vesicularity data have been collected from 16- 32 mm clasts from three of the stratigraphic levels to provide insights to the various processes involved in vesiculation and fragmentation of this magma. Future work will include comparisons of vesicle textures in this eruption to other dry and wet subaerially erupted Raoul deposits, and to submarine deposits of similar composition at Macauley and Healy volcanoes. By characterizing eruption products from these volcanoes and using constraints provided by the different degrees of interaction with water (and at different water depths in submarine examples) we hope to better understand the dynamics of the violent degassing processes driving these eruptions.

  20. Discovery of Seafloor Massive Sulfides in an Andesite-Dacite Knoll Caldera off Present-Day Volcanic Front, Izu-Ogasawara Island Arc, Japan

    NASA Astrophysics Data System (ADS)

    Iizasa, K.; Asada, A.; Lee, S.; Mizuno, K.; Katase, F.; Kojima, M.; Kurozawa, T.

    2015-12-01

    We report the discovery of sulfide mounds with 20 to 30 m high sulfide chimneys in the Higashi-Aogashima hydrothermal field of a Quaternary andesite-dacite knoll caldera at the frontal arc side off Quaternary volcanic front, Izu-Ogasawara island arc, Japan. The discovery was carried out based on the systematic survey method of geological technique and a developed acoustic device using AUV. The knoll caldera 12 km east of Aogashima volcanic island is the size 10 km to 9 km of its rim and 820 m deep at its deepest caldera floor. According to the results of heavy mineral analysis for caldera sediments by a gravity corer, at least two areas were inferred to sites of potential hydrothermal activity associated with seafloor massive sulfides. After the precise acoustic survey using AUV there are many mound-like structures in the both inferred areas on the floor. Two major hydrothermal fields among them so far, which are a conical sulfide mound on the southeast flank of the central cone and a ridge-like mound on the inferred caldera boundary fault in the southeast, were confirmed based on sulfide samples recovered by a gravity corer during the next survey stage. One of them occurs at the water depth of 760 m to 770 m. It has active sulfide chimneys (ca. 20 m high) on the conical sulfide mound of about 40 m in diameter with 20 m high. Samples from the mound are composed of major sphalerite with moderate galena and barite, and minor chalcopyrite and pyrite. Another mound associated with chimneys at the water depth ranging from 740m to 770m on the southeast caldera boundary fault forms a small, east-west trend ridge-like shape. The ridge sizes more than 100 m long with 10 m wide. Chimneys are more than 30 m high. It is inferred that the mound is composed of major sphalerite and moderate barite based on samples cored at the margin of the mound. These results indicate that more than several sulfide mounds would be confirmed in the caldera floor by ROV surveys this September.

  1. The collision zone between the North d'Entrecasteaux Ridge and the New Hebrides island arc. 2. Structure from multichannel seismic data

    USGS Publications Warehouse

    Fisher, M.A.; Collot, J.-Y.; Geist, E.L.

    1991-01-01

    The d'Entrecasteaux zone (DEZ) collides with the central New Hebrides island arc and consists of two subparallel ridges that strike east-west, stand 1-2 km above the surrounding oceanic plate, and subduct obliquely (15??) northward beneath the arc. Rocks dredged from the north ridge as well as reflections evident in multichannel seismic reflection data indicate that this ridge has a volcanic origin. Seismic reflection data collected over the lower arc slope reveal that mass wasting deposits locally make up most of the accretionary wedge. Mass wasting is thought to occur as the accretionary wedge is uplifted in response to the northward oblique subduction of the north ridge. The toe of the north ridge flank marks an abrupt transition in the lithologies that make up the footwall of the interplate decollement. -from Authors

  2. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  3. Application of Satellite Geodesy in Analyzing the Accelerated Movement of the Back-arc Rifting in the Izu Bonin Islands, Japan

    NASA Astrophysics Data System (ADS)

    Arisa, D.; Heki, K.

    2014-12-01

    The Izu-Bonin islands lies along the convergent boundary between the subducting Pacific plate (PA) and the overriding Philippine Sea plate (PH) in the western Pacific. Nishimura (2011) found that the back-arc rifting goes on behind the Izu arc by studying the horizontal velocities of GNSS stations on the Izu islands. Here we show that this rifting has accelerated in 2004 using GNSS data at Aogashima, Hachijoujima, and Mikurajima stations. The back-arc rifting behind the Izu islands can be seen as the increasing distance between stations in the Izu-Bonin islands and stations located in the stable part of PH. We found that their movement showed clear acceleration around the third quarter of 2004. Obtaining the Euler vector of the PH is necessary to analyzed the movement of each stations relative to the other stations on the same plate. The analyzing of GPS timeseries leads us to one initial conclusion that some accelerated movement started to occur in the third quarter of 2004. This event was closely related to the earthquake on May 29, 2004 in Nankai Trough and September 5, 2004 earthquake near the triple junction of Sagami Trough. The analyzing process help us to understand that this accelerated movement was not the afterslip of any of these earthquakes, but it was triggering these area to move faster and further than it was. We first rule out the best possible cause by constraining the onset time of the accelerated movement, and correlating it with the earthquakes. May 29, 2004 earthquake (M6.5) at the PA-PH boundary clearly lacked the jump which should mark the onset of the eastward slow movement. Moreover, additional velocity vectors do not converge to the epicenter, and onset time that minimizes the post-fit residual is significantly later than May. We therefore conclude that accelerated movement started in 2004 was not due to the afterslip of interplate earthquake in May 29. On the next step we found that the onset time coincides with the occurrence of

  4. Island of Okinawa, Japan

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The island of Okinawa, (26.5N, 128.0E) largest of the Ryukyu Islands, Japan. The Ryukyu island group lies south of the main home islands of Japan in an arc towards the Chinese island Republic of Taiwan. As is typical throughout the Japanese home islands, intense urban development can be observed all over the island in this near vertical view.

  5. Segmented Coastal Uplift Along an Erosional Subduction Margin, Northern Hikurangi Fore Arc, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Litchfield, N. J.; Berryman, K. R.; Clark, K.; Cochran, U. A.

    2013-12-01

    The Hikurangi subduction margin along North Island, New Zealand accommodates oblique convergence of the Pacific plate westward beneath the Australian plate at 45 mm/yr. Along the southern margin, frontal accretion and pronounced forearc uplift occur inboard of the subducting Hikurangi plateau. In the north, subduction erosion and segmented uplift occur inboard of subducting seamounts along the plateau flank. Prior workers have established a robust foundation for coastal terrace studies along the northern Hikurangi margin (e.g., Berryman et al., 1989; Ota et al., 1992; Berryman, 1993; Wilson et al., 2006, 2007; Clark et al., 2010; Litchfield et al, 2007, 2010). New field observations presented here provide additional constraints on terrace uplift along this erosional subduction margin. Along Raukumara Peninsula (north of Poverty Bay), multiple Holocene to late Pleistocene marine and fluvial terraces occur at varying elevations, recording differential uplift across six coastal segments from Gisborne to East Cape (Ota et al., 1992; Wilson et al., 2007). In this study, two to three late Pleistocene terraces were observed on rocky headlands within the first segment (Gisborne to Whangara) at elevations of 80-185 m above msl. Preliminary correlation with OIS 5a-e sea level high stands (80-125 ka) indicates net uplift at 1.2-1.5 m/ky. Uplifted Holocene wavecut platforms occur in steps along the seaward edge of these terraces, consistent with coseismic uplift. At Makorori Point, an uplifted bench occurs along the modern seacliff at 2.3 m above the cliff base. A fossil gastropod shell from paleo-beach gravels on the platform inner edge yielded a calibrated radiocarbon age of 1680 ×110 ybp. At Turihaua Point, a ≥1 m thick deposit of Holocene beach sands overlies an uplifted wavecut platform at ≥1.5 m above mean sea level. Carbonate-cemented beachrock at the base of the sand deposit yields a calibrated radiocarbon age of 2990 ×70 ybp. At Mahia Peninsula (between Poverty

  6. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: Subduction melts sediments and dehydrates serpentine

    NASA Astrophysics Data System (ADS)

    Singer, Brad S.; Jicha, Brian R.; Leeman, William P.; Rogers, Nick W.; Thirlwall, Matthew F.; Ryan, Jeff; Nicolaysen, Kirsten E.

    2007-06-01

    Trace element and Sr-Nd-Pb isotope compositions of basaltic lavas from 11 volcanoes spanning 1300 km of the Aleutian Island arc provide new constraints on the recycling of elements in melts and fluids derived from subducted oceanic crust and sediment. Despite a nearly twofold variation in the flux of sediment subducted along the Aleutians, proxies indicating the presence of sediment melt in the magma source, including Th/La and Th/Nd, do not vary systematically along strike. In contrast, ratios including B/La, B/Nb, B/Be, Cs/La, Pb/Ce, and Li/Y suggest that the quantity or composition of fluid transferred from the slab into the mantle wedge varies an order of magnitude along strike and is apparently correlated with sediment flux. However, the most distinctive fluid addition corresponds spatially with subduction of the Amlia Fracture Zone (AFZ), a likely repository for H2O-rich serpentinite. Sr, Nd, and Pb isotope ratios, together with Th/Nd and B/La ratios, show that the majority of these basalts reflect a common baseline metasomatism of the mantle that accumulated, perhaps over millions of years, via small additions of both slab fluids and partially melted sediment. The paradox of requiring slab surface temperatures high enough to melt a layer of sediment, while lower-temperature dehydration reactions that supply water occur sufficiently deep to flux melting >80 km beneath the volcanoes is reconciled in a four-stage model: (1) as sediment and altered ocean crust is carried to ˜60 km depth and temperatures increase to ˜650°C, metamorphic dehydration reactions release most of the fluid and B to the shallow mantle wedge beneath the fore arc, but some of this mantle is metasomatized and flows downward; (2) the uppermost layer of sediment begins to melt at ˜750°C and >60 km depth; this small volume of melt physically mingles with the overlying metasomatized mantle wedge as it flows further downdip; (3) below the sediment veneer, the uppermost 1 km of ocean crust

  7. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional

  8. Tectonics and petroleum potential of sedimentary basins in the Bering, Okhotsk, Japan seas, and island arcs

    SciTech Connect

    Levin, L.E. )

    1993-09-01

    In this vast region located in the northwestern part of the Pacific rim, basins of two main genetic types possess petroleum potential. These two types are represented by basins of the recent active margin and basins of the transitional zone between analogs of the passive margin and the recent active margin. For basins of the active margin, the mean density of potential resources is estimated at 5000 MT/km[sup 2] or more. The total area of these basins is 324,000 km[sup 2] among which 120,000 km[sup 2] are in the Russian sector. Ultimate resources of hydrocarbons are estimated at 1.62 billing MT of oil equivalent. Basins of the zone, transitional from analogs of the passive margin to the recent active margin, are characterized by a number of factors favorable for petroleum occurrence. One of the important factors is the presence of rift trough and foredeeps that are potential sites for zones of oil and gas accumulation. The age of the rifts varies from the late Cretaceous through the Oligocene-Miocene in the Olyutorsky and Litke basins, to the Neogene in the Okhotsk Sea and Tatar-Japan basins. Only a small area of the rifts has been proven to contain zones of oil and gas accumulation. Based on the structural characteristics, the rifts are subdivided into oil-gas bearing, potentially oil-gas bearing, and nonprospective for hydrocarbon exploration. Potential hydrocarbon resources of basins of this type are estimated to be not less than 15.12 billion MT of oil equivalent including 9.2 billion MT in the Russian sector. New large zones of oil and gas accumulation are expected to be found both on the shallow shelf and in some deep-water basins such as in the Aleutian and Kuril basins.

  9. Geology and geochemistry of the Izu-Bonin fore-arc region: Results from ODP Leg 26 and the Bonin Islands

    SciTech Connect

    Taylor, R.N.; Nesbitt, R.W. )

    1990-06-01

    One of the main aims of ODP Leg 126 was to investigate the origin, composition, and evolution of the Izu-Bonin fore-arc region. To achieve this, three drill sites were targeted in the hitherto uninvestigated intraoceanic fore-arc basin. Of these, Holes 792E and 793B reached basement, the latter being the deepest DSDP or ODP hole to do so. Hole 792E was located on a frontal arc promontory and drilled through a sequence of arc lavas with calc-alkaline affinities. The deep Hole 793B drilled the center of the fore-arc basin and drilled 280 m of volcanic basement overlain by late Oligocene turbidites. The basement consists of intercalated heterolithic/hyaloclastitic breccias and basaltic andesite flows. Geochemically these lavas have boninitic affinities, with low Ti/Zr and Y/Zr ratios akin to the type locality lavas from the Bonin Islands. A comprehensive study of the boninites from Chich Jima, located on the fore-arc high, has revealed that these lavas are geochemically diverse. A wide range of trace element and isotopic compositions are recognized, which represent combinations of variably depleted mantle and incompatible element enriched component(s). It is clear from the Hole 793B basement that these ingredients of depleted source and enriched additions occurred not only in the mantle wedge closest to the trench, but also beneath the region that is now the forearc basin. In addition, the boninitic signature prevailed in the forearc region from the middle Eocene at least through to late Oligocene times.

  10. Active interplay between strike-slip and extensional structures in a Back-Arc environment, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P. M.; Lamarche, G.; Bull, J. M.

    2003-12-01

    Active continental back-arc tectonics associated with the oblique Hikurangi subduction zone, North Island, New Zealand, is characterized by (1) extensional deformation distributed across a 40-50 km-wide zone, but presently concentrated in the east within the 20 km-wide, NE-striking Taupo Fault Belt (TFB) and Whakatane Graben (WG); (2) c. 12mm/yr extension rate at the Bay of Plenty coast; (3) 1-3 mm/yr subsidence in the WG; and (4) a seismogenic zone estimated to be 6-9 km thick. A component of the oblique convergence within the plate boundary is partitioned to the east onto the adjacent North Island Dextral Fault Belt (NIDFB), a large NNE-trending strike-slip fault system traversing the entire North Island. At the Bay of Plenty coast, the NIDFB strikes north, with an estimated strike-slip rate of at least 1 mm/yr. Both normal and strike-slip fault systems extend beneath the continental shelf in the Bay of Plenty, and because of differences in their strike, they converge and interact. Detailed mapping of faults using marine seismic reflection profiles and multibeam bathymetric data reveals the structure of the WG. Tilted basement blocks are associated with large west-dipping faults, numerous antithetic secondary faults, and domino-style fault arrays. Eastward migration of the principal extension zone during the last c. 1 Myrs has resulted in the encroachment and oblique overprinting of the NIDFB by the WG. The structure and geometry of the White Island Fault (WIF), currently the principal fault along the eastern margin of the graben, results from interaction and linkage of the two fault systems. The displacement profile of this fault reveals relatively young NE-striking sections that obliquely link more northerly-striking, inherited components of the NIDFB. Understanding of the fault structure and evolution may have implications for the interpretation of earthquake potential close to urban centres.

  11. Evidence for Hydrous Metasomatism and Slab Melting in the Tabar-Lihir-Tanga-Feni Island Arc, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Watford, A.; Chadwick, J.; Kamenov, G. D.; Foster, N.

    2013-12-01

    The Tabar-Lihir-Tanga-Feni (TLTF) island arc is located 35-75 km from the northeast Pacific coast of New Ireland Island in Papua New Guinea. These volcanoes are in an extending former forearc region of the inactive Manus-Kilinailau subduction zone, at the boundary between the Pacific and Indo-Australian Plates [1]. Volcanism shifted from New Ireland to the TLTF when Pacific Plate subduction stalled there in the Miocene, when the Ontong Java Plateau impinged on the trench [1, 2]. Fresh volcanic rocks dredged from Tubaf seamount near Lihir island in 2000 (Australian CSIRO Project SHAARC) contain abundant ultramafic xenoliths, making it one of the few locations on Earth where they can be found in a subduction setting. Several xenoliths (2-3 cm in size) and their host lavas from two dredges have been analyzed in this geochemical and petrographic study. Host lavas and xenoliths were mechanically separated, and portions of each were examined for bulk major and some trace elements using X-ray fluorescence, a suite of 29 trace elements was analyzed in the host lavas using ICP-MS, and the chemistry of individual xenolith minerals was evaluated using an electron microprobe. Olivine, ortho- and clinopyroxene crystals in the xenoliths are up to 1 mm in size, and these are crosscut by veins containing smaller crystals of pyroxene, phlogopite, and amphibole, as well as glass and open voids. These veins were previously shown to be evidence of dissolution of primary minerals to form the secondary phases via hydrous metasomatism by fluids from the subducted Pacific slab [2, 3]. The primary olivines in xenoliths have homogenous compositions both within and among the samples (e.g. olivine Mg# 80.03 - 82.42; n=22), but pyroxenes show somewhat more variation (e.g. cpx Mg# 84.33 - 89.21; n=23), with low outliers consistently near and within the metasomatic veins. The host lavas are vesicular, alkali-rich trachybasalts and trachyandesites with abundant phlogopite and amphibole

  12. Cold-front driven storm erosion and overwash in the central part of the Isles Dernieres, a Louisiana barrier-island arc

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.

    1990-01-01

    Tropical and extratropical storms produce significant erosion on the barrier islands of Louisiana. Over the past 100 years, such storms have produced at least 2 km of northward beach-face retreat and the loss of 63% of the surface area of the Isles Dernieres, a low-lying barrier-island arc along the central Louisiana coast. Elevations on the islands within the arc are typically less than 2 m above mean sea level. The islands typically have a washover-flat topography with occasional, poorly developed, dune-terrace topography consisting of low-lying and broken dunes. The central part of the arc consists of salt-marsh deposits overlain by washover sands along the Gulf of Mexico shoreline. Sand thicknesses range from zero behind the beach, to less than 2 m under the berm crest, and back to zero in the first nearshore trough. The sand veneer is sufficiently thin that storms can strip all the sand from the beach face, exposing the underlying marsh deposits. The geomorphic changes produced by cold fronts, a type of extratropical storm that commonly affect the Isles Dernieres between late fall and early spring are described. Between August 1986 and September 1987, repeated surveys along eleven shore-normal transects that covered 400 m of shoreline revealed the timing and extent of cold-front-produced beach change along a typical section of the central Isles Dernieres. During the study period, the beach face retreated approximately 20 m during the cold-front season but did not rebuild during the subsequent summer. Because the volume of sand deposited on the backshore (5600 m3) was less than the volume of material lost from the beach face (19,200 m3), approximately 13,600 m3 of material disappeared. Assuming that underlying marsh deposits decrease in volume in direct proportion to the amount of beach-face retreat, an estimate of the mud loss during the study period is 14,000 m3. Thus, the decrease in volume along the profiles can be accounted for without removing any sand

  13. The Neogene Alert Bay Volcanic Belt of northern Vancouver Island, Canada: Descending-plate-edge volcanism in the arc-trench gap

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Muller, J. E.; Harakal, J. E.; Muehlenbachs, K.

    1985-10-01

    The Alert Bay Volcanic Belt trends northeasterly across northern Vancouver Island, coincident with the trace of the subducted Juan de Fuca—Explorer plate edge. Volcanism began in the west, at Brooks Peninsula, about 8 Ma ago, but occurred in most centers 3.5 ± 1 Ma ago. There is a suggestion of eastward migration of activity and shift from basalt to dacite or rhyolite with time. Most of the volcanism was coincident with a time of rapid changes in the geometry of subduction, as inferred from offshore magnetic patterns, and with a hiatus in mainland, Cascade volcanic arc activity. Geometry and chronometry suggest this is a descending-plate-edge volcanic belt, where disruption of steady-state plate-consumption patterns triggered magma genesis. Chemically the rocks are quite variable, with divergent fractionation trends. One trend resembles that of Mull (Hebrides), with a plagiophyric basalt of transitional alkaline-subalkaline, mildly tholeiitic, and aluminous character which differentiated to clinopyroxene andesite, and eventually to tholeiitic rhyolite and mildly tholeiitic calc-alkaline dacite, both of K-poor magma type. The other trend is like the Cascades, with aluminous, aphyric, calc-alkaline basalt, hornblende and/or hypersthene andesite, and K-poor dacite. This divergent character is also evident in Ba, Rb, Nb, and Zr fractionation trends. Major- and trace-element discriminant diagrams generally identify the basalts as within-plate types. The 87Sr/ 86Sr isotope ratio is relatively low, averaging 0.70325, and shows no trend with rock type or differentiation series. Oxygen in the entire suite is relatively heavy, δ 18O averaging 7.1%. Even the basalts are 18O enriched. Oxygen shows no trend with degree of hydration, rock type, or series. These isotopic and chemical data are compatible with minor crustal contamination of mafic primary magmas, followed by fractional crystallization under different oxidation and hydration conditions.

  14. Igneous history of the Koyukuk terrane, western Alaska: constraints on the origin, evolution, and ultimate collision of an accreted island arc terrane

    USGS Publications Warehouse

    Box, S.E.; Patton, W.W., Jr.

    1989-01-01

    The Koyukuk terrane consists of volcanic, volcaniclastic, and plutonic rocks which range from Late Paleozoic to Early Cretaceous in age. The terrane crops out in a U-shaped belt which is roughly paralleled by outer belts of ultramafic rocks, oceanic plate basalts and cherts, and retrograded blueschist facies rocks of continental protolith. These rocks have been interpreted as components of a volcanic arc terrane that collided with the North American continental margin in Early Cretaceous time. The Koyukuk terrane consists of four time-stratigraphic units: (1) pre-Middle Jurassic basalts, (2) Middle and Late Jurassic granitic rocks, (3) lower Lower Cretaceous volcanic rocks, and (4) upper Lower Cretaceous volcanic rocks. Limited chemical data from the basalts of unit 1 indicate that they were erupted in a nonarc tectonic environment, possibly in an oceanic island or back arc setting. Units, 2, 3, and 4 have the characteristics of subduction-related volcanic rocks. -from Authors

  15. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  16. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W., II

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  17. Tertiary volcanic activity at Sonora Pass, CA: arc and non-arc magmatism in the central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Roelofs, A.; Glazner, A. F.; Farmer, G. L.

    2004-12-01

    The volume and composition of Tertiary volcanic rocks in the Sierra Nevada of California changes dramatically near Sonora Pass (latitude 38° N). North of Sonora Pass is a large volume of volcanic rocks petrographically and chemically linked to subduction in the Cascade arc. South of Sonora Pass these calc-alkaline rocks are lacking and the only preserved volcanic rocks are small-volume mafic to intermediate potassic lavas that may have been generated by Pliocene lithospheric delamination (e.g. Farmer et al 2002). We have undertaken geologic mapping and geochemical and isotopic analysis of rocks near Sonora Pass at the boundary between these two magmatic provinces. At Sonora Pass, the 16-10 m.y.-old Relief Peak Formation and its hypabyssal equivalents are dominated by hornblende-phyric andesite lava flows and mudflow breccias (a stratovolcano assemblage) with marked high field-strength element (HFSE) depletions relative to large-ion lithophile elements (LILE), high Sri ( ˜ 0.7056), and low ɛ Nd (-1.4 > ɛ Nd > -2.5). The overlying Stanislaus Group ( ˜10-8 my old) has elevated HFSE and LILE relative to the Relief Peak Formation, anhydrous mineralogy, and similar isotope ratios (Sri ˜ 0.7056, -1.9 > ɛ Nd > -3.4). The overlying Disaster Peak Formation is petrographically similar to the Relief Peak Formation. Lavas of the Relief Peak Formation may have been derived from the hydrated, LILE-rich and HFSE-poor mantle wedge above the subducting Juan de Fuca plate as part of the ancestral Cascade arc. The eruption of the dry, HFSE- and LILE-richer Stanislaus Group from vents near those of the Relief Peak Formation and to the east during an apparent pause in Relief Peak-type activity may represent a temporary shift to a dry, more fertile, isotopically enriched source in the mantle. The shift coincides with the arrival of the subducted Mendocino Fracture Zone (MFZ) beneath Sonora Pass, and the change in plate stress as the MFZ traversed the region may have influenced

  18. Linear volcanic segments in the Sunda Arc, Indonesia: Implications for arc lithosphere control upon volcano distribution

    NASA Astrophysics Data System (ADS)

    Macpherson, C. G.; Pacey, A.; McCaffrey, K. J.

    2012-12-01

    The overall curvature of many subduction zones is immediately apparent and the term island arc betrays the common assumption that subduction zone magmatism occurs in curved zones. This assumption can be expressed by approximating island arcs as segments of small circles on the surface of a sphere. Such treatments predict that the location of arc volcanoes is related to their vertical separation from the slab (in fact, the depth to seismicity in the slab) and require that the primary control on the locus of magmatism lies either within the subducted slab or the mantle wedge that separates the subducted and overriding lithospheric plates. The concept of curved arcs ignores longstanding observations that magmatism in many subduction systems occurs as segments of linearly arranged volcanic centres. Further evidence for this distribution comes from the close relationship between magmatism and large scale, arc-parallel fabrics in some arcs. Similarly, exposures of deep arc crust or mantle often reveal elongation of magmatic intrusions sub-parallel to the inferred trend of the arc. The Sunda Arc forms the Indonesian islands from Sumatra to Alor and provides an important test for models of volcano distribution for several reasons. First, Sunda has hosted abundant historic volcanic activity. Second, with the notable exception of Krakatau, every volcano in the arc is subaerial from base to cone and, therefore, can be readily identified where there is a suitable extent of local mapping that can be used to ground-truth satellite imagery. Third, there are significant changes in the stress regime along the length of the arc, allowing the influence of the upper plate to be evaluated by comparison of different arc segments. Finally, much of the Sunda Arc has proved difficult to accommodate in models that try to relate volcano distribution to the depth to the subducted slab. We apply an objective line-fitting protocol; the Hough Transform, to explore the distribution of volcanoes

  19. Investigation of the Influence of the Amlia Fracture Zone on the Islands of Four Mountains Region of the Aleutian Arc, AK

    NASA Astrophysics Data System (ADS)

    Nicolaysen, K. P.; Myers, J. D.; Weis, D.

    2013-12-01

    Regional isotopic and trace element investigations of the magmatic source characteristics of the Aleutian arc have attributed regional patterns to variations in the contribution of eclogite through slab melting, to increased proportions of sediment melts, and to variation in the amount of fluid derived by progressive metamorphism of the downgoing slab. Currently the Amlia Fracture Zone (AFZ) is located between the islands of Atka and Seguam and marks a prominent boundary between subduction of large quantities of trench sediments to the east versus sediment impoverished subduction to the west of the AFZ. This boundary is not stationary through time. Instead oblique subduction of the Pacific plate moves the AFZ westward along the arc front, causing sequential subduction beneath the islands of Chuginadak, Yunaska and Seguam circa 5, 2.5 and 1 million years ago, respectively. Lavas from Atka Island, which has not yet received the sediment and fluid spike from the AFZ, act as reference compositions. Comparison of bulk rock trace element ratios and Sr, Nd, Hf, and Pb isotopic compositions for lavas from these islands relative to Atka show that contributions from melted subducted sediment are important in the genesis of Holocene and Pleistocene lavas erupted in the Islands of Four Mountains region of the arc. Sr and Pb isotopic compositions for Yunaska and Chuginadak lavas are as high or higher than Seguam values and trend in the direction of sediment values. La/Nb ratios similarly indicate sediment melting is important for all these lavas. Comparison of values for Holocene relative to Pleistocene values indicate that once sediments are introduced to the magma source, they persist in affecting magma compositions. Comparison of higher Mg# lavas (molar Mg#>50) shows that a group of the oldest sampled lavas on Chuginadak have much lower 208Pb/204Pb, 206Pb/204Pb, and 87Sr/86Sr and higher 143Nd/144Nd, Zr/Y and Zn/Mn relative to all sampled Holocene and Pleistocene lavas from

  20. Active Arc-Continent Accretion in Timor-Leste: New Structural Mapping and Quantification of Continental Subduction

    NASA Astrophysics Data System (ADS)

    Tate, G. W.; McQuarrie, N.; Bakker, R.; van Hinsbergen, D. J.; Harris, R. A.

    2010-12-01

    The island of Timor represents the active accretion of the Banda volcanic arc to the Australian continental margin. Arc accretion marks the final closure of an ocean basin in the canonic Wilson tectonic cycle, yet the incipient stages as visible now on Timor are still poorly understood. In particular, ocean closure brings continental material into the subduction zone as part of the down-going plate. The positive buoyancy of this subducting continental crust presents a complex problem in crustal dynamics, with possible effects on overall plate motions, migration and/or reversal of the active subduction zone, and the modes of faulting within the upper crust. New mapping in Timor-Leste has provided a detailed view of the structural repetition of Australian continental sedimentary units structurally below overriding Banda Arc material. The central Dili-Same transect begins in the north with the low-grade metamorphic Aileu Formation of Australian affinity, thrust over the time-equivalent more proximal Maubisse Formation to the south. These in turn are thrust over the Australian intra-continental strata, the Triassic Aitutu and the Permian Cribas Formations. The Aitutu and Cribas Formations are deformed in a series of faulted ENE-striking anticlines exposed along the central axis of Timor. The southern end of the transect reveals a 15-km wide piggyback basin of synorogenic marine clays north of another faulted anticline of Aututu and Cribas on the south coast. The eastern Laclo-Barique transect exposes a deeper erosional level, showing three regional NNE-striking thrust faults with approximately 3 km spacing and 50-75 km along-strike extent, each one repeating the Aitutu and Cribas stratigraphy. The strike of Australian-affinity units in the eastern transect is rotated 50-60 degrees to the north compared to the units in the central transect. The Jurassic Wailuli shales and the Bobonaro tectonic mélange act as the upper décollement between this duplex and the Lolotoi

  1. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    PubMed

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation. PMID:26015994

  2. Geochemical Evidence from the Kohistan Complex for Differentiation of Garnet Granulitic lower Crust in Island Arcs by Dehydration Melting of Amphibole-bearing Plutonics: Implications for the Andesite Model of Continental Crustal Growth

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Bodinier, J.; Burg, J.; Zeilinger, G.; Hussain, S. S.; Dawood, H.; Gervilla, F.

    2005-12-01

    We report a geochemical study of the Jijal and Sarangar complexes constituting the lower crust of the Mesozoic Kohistan paleo-island arc (N. Pakistan). The Jijal complex is composed of basal peridotites topped by a gabbroic section made up of mafic garnet granulite-with minor lenses of garnet hornblendite and granite-grading up section to hornblende gabbronorite. The Sarangar complex is constituted by metagabbro. Sarangar gabbro and Jijal hornblende gabbronorite have melt-like, LREE-enriched REE patterns similar to those of island arc basalts. These rocks and Jijal garnet granulite define altogether negative covariations of LaN, YbN and (La/Sm)N with Eu* (=2xEuN/SmN+GdN; N= chondrite normalized), and positive covariations of (Yb/Gd)N with Eu*. REE modeling indicates that these covariations cannot be accounted for by high-pressure crystal fractionation of hydrous primitive or derivative andesites. They are consistent with formation of garnet granulites as plagioclase-garnet assemblages with variable trapped melt fractions via either high-pressure crystallization of primitive island arc basalts or dehydration melting of hornblende gabbronorite, providing that the amount of segregated or restitic garnet was low (< 5 wt.%). Field, petrographic, geochemical and experimental evidence is more consistent with formation of Jijal garnet granulite by dehydration melting of Jijal hornblende gabbronorite. Similarly, Jijal garnet-bearing hornblendite lenses were most likely generated by coeval dehydration melting of hornblendites. Furthermore, melting models and geochronological data point to intrusive leucogranites in the overlying Metaplutonic complex as the melts generated by dehydration melting of the plutonic protoliths of Jijal garnet-bearing restites. Consistently with the metamorphic evolution of the Kohistan lower arc crust, dehydration melting occurred at the mature stage of this island arc when shallower hornblende-bearing plutonics were buried to depth exceeding 25

  3. Crustal Structure of the Southern Kyushu-Palau Ridge, the Other Half of the Proto Izu-Bonin-Mariana Island Arc

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Kaneda, K.; Katagiri, Y.; Kasahara, J.

    2005-12-01

    The Kyushu-Palau Ridge (KPR) is a bathymetric high extending north-south direction at the center of the Philippine Sea and considered as a remnant of a proto Izu-Bonin-Mariana island arc separated by the backarc spreading of the Shikoku and Parece Vela (Oki-no-Tori-Shima) Basin. We conducted a wide-angle and multi-channel seismic experiment to investigate variation in crustal structures along the KPR. The experiment consisted of four seismic lines that were selected to represent the variations in seafloor topography of the southern KPR. All of the profiles cross the KPR perpendicularly and their profile lengths range from 175 to 375 km. The controlled seismic source was a tuned array of 36 airguns with a total volume of 8,040 inch3. In the wide-angle seismic survey, we shot the airgun array at an interval of 200 m (90 s) for each line. We used 200 ocean bottom seismographs (OBS) at an interval of 5 km as receivers. The travel time and amplitude data obtained by the OBSs were modeled by a tomographic inversion and two-dimensional ray tracing. The maximum crustal thickness beneath the KPR varies from 14 to 20 km according to the profile and the crust is significantly thicker than those of the both sides of each profile, that is, the oceanic crusts of the West Philippine Basin to the west and of the Parece Vela Basin to the east. The thickest crust among the four profiles is found in the region where the KPR connects with the Oki-no-Tori-Shima island. The thicker crust beneath the KPR is mainly due to a fat lower crust. The thick (> 5 km) middle crust with P wave velocity of 6.0-6.3 km/s that characterizes the northern Izu-Bonin island-arc crust does not exist so clearly in our profiles. This may relate to the fact that the southern KPR is deeper in seawater and does not have a mature island arc crust compared with the northern KPR where existence of a 6 km/s layer has been reported previously.

  4. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  5. Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users

    USGS Publications Warehouse

    Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward

    2008-01-01

    Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.

  6. Differential activation of amygdala Arc expression by positive and negatively valenced emotional learning conditions

    PubMed Central

    Young, Erica J.; Williams, Cedric L.

    2013-01-01

    Norepinephrine is released in the amygdala following negatively arousing learning conditions. This event initiates a cascade of changes including the transcription of activity-regulated cytoskeleton-associated protein (Arc) expression, an early-immediate gene associated with memory encoding. Recent evidence suggests that the valence of emotionally laden encounters may generate lateralized, as opposed to symmetric release of this transmitter in the right or left amygdala. It is currently not clear if valence-induced patterns of selective norepinephrine output across hemispheres are also reproduced in downstream pathways of cellular signaling necessary for memory formation. This question was addressed by determining if Arc expression is differentially distributed across the right and left amygdala following exposure to positively or negatively valenced learning conditions respectively. Male Sprague Dawley rats were randomly assigned to groups exposed to the Homecage only, five auditory tones only, or five auditory tones paired with footshock (0.35 mA) during Pavlovian fear conditioning. Western blot analysis revealed that Arc expression in the right amygdala was elevated significantly above that observed in the left amygdala 60 and 90 min following fear conditioning. Similarly, subjects exposed to a negatively valenced outcome consisting of an unexpected reduction in food rewards showed a greater level of Arc expression in only the right, but not left basolateral amygdala. Presenting a positively valenced event involving an unexpected increase in food reward magnitude following bar pressing, resulted in significantly greater Arc expression in the left, but not right basolateral amygdala (p < 0.01). These findings indicate that the valence of emotionally arousing learning conditions is reflected at later stages of synaptic plasticity involving the transcription of immediate early genes such as Arc. PMID:24367308

  7. Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity

    PubMed Central

    Saku, Keita; Kishi, Takuya; Sakamoto, Kazuo; Hosokawa, Kazuya; Sakamoto, Takafumi; Murayama, Yoshinori; Kakino, Takamori; Ikeda, Masataka; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Abstract It has been established that vagal nerve stimulation (VNS) benefits patients and/or animals with heart failure. However, the impact of VNS on sympathetic nerve activity (SNA) remains unknown. In this study, we investigated how vagal afferent stimulation (AVNS) impacts baroreflex control of SNA. In 12 anesthetized Sprague–Dawley rats, we controlled the pressure in isolated bilateral carotid sinuses (CSP), and measured splanchnic SNA and arterial pressure (AP). Under a constant CSP, increasing the voltage of AVNS dose dependently decreased SNA and AP. The averaged maximal inhibition of SNA was ‐28.0 ± 10.3%. To evaluate the dynamic impacts of AVNS on SNA, we performed random AVNS using binary white noise sequences, and identified the transfer function from AVNS to SNA and that from SNA to AP. We also identified transfer functions of the native baroreflex from CSP to SNA (neural arc) and from SNA to AP (peripheral arc). The transfer function from AVNS to SNA strikingly resembled the baroreflex neural arc and the transfer functions of SNA to AP were indistinguishable whether we perturbed ANVS or CSP, indicating that they likely share common central and peripheral neural mechanisms. To examine the impact of AVNS on baroreflex, we changed CSP stepwise and measured SNA and AP responses with or without AVNS. AVNS resets the sigmoidal neural arc downward, but did not affect the linear peripheral arc. In conclusion, AVNS resets the baroreflex neural arc and induces sympathoinhibition in the same manner as the control of SNA and AP by the native baroreflex. PMID:25194023

  8. The Role of Philippine Sea Plate to the Genesis of Quaternary Magmas of Northern Kyushu Island, Japan, Inferred from Along-Arc Geochemical Variations

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Itoh, J.; Ujike, O.; Miyoshi, M.; Takemura, K.

    2013-12-01

    Quaternary volcanoes on Kyushu Island comprise volcanoes Himeshima, Futagoyama, Yufu-Tsurumi, Kuju, Aso, Kirishima and Sakurajima from north to south alongstrike the volcanic front. Adakitic lavas are observed from Yufu-Tsurumi and Kuju volcanoes in northern Kyushu (Kita et al., 2001; Sugimoto et al., 2007), whereas no Quaternary adakites were observed at Aso (e.g., Hunter, 1998) and the volcanoes south of Aso along the entire Ryukyu arc. Sugimoto et al. (2007) suggested that the trace element and Sr, Nd, and Pb isotopic compositions of adakitic magmas from Yufu-Tsurumi volcano indicate derivation of the magmas by partial melting of the subducting PSP. In contrast, Zellmer et al. (2012) suggested that these adakites may have formed by fractional crystallization of mantle-derived mafic magmas within the garnet stability field in the crust. The Honshu-Kyushu arc transition is a particular favorable setting to address these controversial models for the origin of the adakitic lavas, because of the potential relationship between the PSP materials and the alongstrike variation of the lava chemistry. The Palau-Kyushu ridge divides the oceanic crust of the PSP into northeastern and southwestern segments with ages of 26-15 (Shikoku Basin) and 60-40 Ma (West Philippine Basin), respectively (Mahony et al., 2011). Although there are no clear plate images beneath northern Kyushu, the northern extension of the Palau-Kyushu ridge potentially corresponds to the boundary between the SW Japan and Ryukyu arcs. If adakite genesis was related to the subducted slab rather than the overlying crust, then the spatial distribution of Quaternary adakites should correlate with the age of the subducted PSP. In order to test such correlation and elucidate the petrogenesis of the northern Kyushu adakites, we compiled major and trace elements and Sr-Nd-Pb isotope ratios from volcanoes along the arc front that includes the transition from adakitic to non-adakitic arc volcanism. Comprehensive

  9. Imaging an Active Volcano Edifice at Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli

    2008-08-01

    An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  10. Resolving rock exhumation versus surface uplift during arc-continent accretion on the island of Timor by integrating thermochronology and micropaleontology data

    NASA Astrophysics Data System (ADS)

    Tate, G. W.; McQuarrie, N.; Van Hinsbergen, D. J.; Bakker, R.; Reiners, P. W.; Willett, S.

    2012-12-01

    The emergence of the island of Timor is the result of active accretion of the Banda volcanic arc to the Australian continent. Since collision began in the latest Miocene, a mountain range over 2,900 m in elevation has been raised, much of the Indonesian throughflow linking the Pacific and Indian Oceans has been closed, and the final accretion stages of slab breakoff and subduction polarity reversal may have begun. New thermochronologic and micropaleontological data from Timor-Leste reveal a detailed history of both rock and surface uplift in the central portion of Timor Island. Micropaleontological data is taken from synorogenic basins in Viqueque near the southern coast and in Caiaco, 120 km to the west of Viqueque and farther to the hinterland. These data indicate surface uplift from lower bathyal depth between 5.5 and 4.4 Ma to upper-middle bathyal depth around 3.3 Ma. Uplift is further suggested by a facies change around 4.4 Ma from deep-marine chalk deposits to clay, turbiditic sandstone and debris flow deposits with fossil wood remains, showing nearby emergence. The data suggest a phase of uplift in these basins of up to 1.4 km in about 1 Myr with an uplift rate of about 1.4 mm/yr. Uplift rates since 3.3 Ma may have dropped to less than 0.2 mm/yr. In the central mountain belt between these synorogenics, thermochronologic data show that rapid exhumation was concurrent with and continued after the rapid surface uplift recorded in the basins. Along the northern coast of Timor, zircon (U-Th)/He ages are 4.4 Ma in the east (at Hilimanu) and young to about 1.5 Ma in the west (at Liquica and Ermera). Thermal models suggest exhumation that was possibly as fast as 6.4 mm/yr from as deep as 9 km. To the south and east of the higher grade zircon (U-Th)/He data, apatite (U-Th)/He ages indicate notably less exhumation. Apatite (U-Th)/He ages from the northern and southern foothills in the east (Manatuto district) vary from 3.5 to 5.5 Ma while ages cluster around 2.0 Ma in

  11. Compilation of seismic structural models of the Kyushu-Palau Ridge, paleo-island arc in the Philippine Sea plate, at 13-30 N

    NASA Astrophysics Data System (ADS)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.

    2012-12-01

    The Kyushu-Palau Ridge (KPR) is a 2600 km long bathymetric high extending north-south at the center of the Philippine Sea plate. The origin of the KPR is regarded as a remnant of the proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc that was separated by backarc spreading of the Shikoku and Parece Vela Basins in the late Eocene. The extensive seismic explorations were implemented to grasp the spatial distribution of the arc crust of the KPR in 2004-2008 under the Japanese Continental Shelf Survey Project. We carried out 27 seismic reflection and refraction profiles across the ridge between 13 and 30 N and one along the ridge in the northernmost part. We deployed ocean bottom seismographs (OBSs) as a receiver at an average interval of 5 km along each line. A tuned airgun array with a volume of 8,040 cubic inches (132 liters) or a non-tuned airgun array with a volume of 6,000 cubic inches (98 liters) was shot at an interval of 200 m (90 sec) for the wide-angle seismic profiles. Multichannel reflection data using 480 ch. or 240 ch. hydrophone streamer were also collected on the coincident lines. We obtained P-wave velocity models using tomographic inversion, forward modeling with two-dimensional ray tracing and comparison with synthetic seismograms. The maximum crustal thickness for each profile across the KPR varies from 8 to 23 km among the seismic lines. The KPR crusts are roughly thicker in the north than those in the south and are always thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and of the Shikoku and Parece Vela Basins to the east. The thick crust is mainly attributed to the lower crust with P-wave velocity of 6.8-7.2 km/s. Pn velocities just beneath the KPR are less than 8 km/s, often accompanying with rather high Vp of 7.2 km/s at the base of the crust. Reflection signals observed in far offsets along several lines suggest some reflectors exist at the depths 23-40 km beneath the KPR. The crustal

  12. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report AGENCY: Nuclear...) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's...

  13. systematics of island arc crustal amphibolite migmatites from the Asago body of the Yakuno Ophiolite, Japan: a field evaluation of some model predictions

    NASA Astrophysics Data System (ADS)

    Pu, Xiaofei; Brophy, James G.; Tsujimori, Tatsuki

    2014-09-01

    The two most commonly invoked processes for generating silicic magmas in intra-oceanic arc environments are extended fractional crystallization of hydrous island arc basalt magma or dehydration melting of lower crustal amphibolite. Brophy (Contrib Mineral Petrol 156:337-357, 2008) has proposed on theoretical grounds that, for liquids >~65 wt% SiO2, dehydration melting should yield, among other features, a negative correlation between rare earth element (REE) abundances and increasing SiO2, while fractional crystallization should yield a positive correlation. If correct, the REE-SiO2 systematics of natural systems might be used to distinguish between the two processes. The Permian-age Asago body within the Yakuno Ophiolite, Japan, has amphibolite migmatites that contain felsic veins that are believed to have formed from dehydration melting, thus forming an appropriate location for field verification of the proposed REE-SiO2 systematics for such a process. In addition to a negative correlation between liquid SiO2 and REE abundance for liquids in excess of ~65 % SiO2, another important model feature is that, at very high SiO2 contents (75-76 %), all of the REE should have abundances less than that of the host rock. Assuming an initial source amphibolite that is slightly LREE-enriched relative to the host amphibolites, the observed REE abundances in the felsic veins fully support all theoretical predictions.

  14. Late Proterozoic island-arc complexes and tectonic belts in the southern part of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greenwood, William R.; Stoeser, D.B.; Fleck, R.J.; Stacey, J.S.

    1983-01-01

    Sr ratios are not included in the appendix, but all rocks more than 660 m.y. old have initial ratios in the range 0.7021-0.7035, with only two greater than 0.7030. Thus, nothing in the Rb-Sr data suggests involvement of an older continental crust during the evolution of the southern Shield. A lead isotope study of ore minerals and potassium feldspars of the Arabian Shield by Stacey and others (1980) also suggests that no older (Archean to early Proterozoic) evolved continental-type crust underlies the southern Shield. An early summary of mapping (Schmidt and others, 1973) suggests that older sialic basement underlies the late Proterozoic layered rocks in the southern Shield. However, subsequent-mapping and the isotopic studies cited above have established that all of these rocks are of late Proterozoic age and that all rocks of the southern Shield that are more than 660 m.y. old have ensimatic or mantle isotopic characteristics. Figure 2 shows, with only two exceptions, that rocks more than 800 m.y. old are present west of the boundary separating the Tayyah and Khadra belts. The exceptions are two poorly controlled Rb-Sr ages obtained by Fleck (1980) on two quartz diorite plutons in the Malahah region (appendix 1, localities 26 and 27). Preliminary uranium-thorium zircon data of Stacey now suggest that one of these quartz diorite plutons (locality 26) has an age of approximately 640 m.y. Therefore, we prefer to discount the two dates of Fleck until further information is available. As noted earlier and as described below, most of the rocks of the southern Arabian Shield have characteristics typical of those formed in the island-arc environment by subduction-related processes. We shall refer to the group of rocks in the western part of the southern Shield, which formed from 1100 to 800 m.y. ago, as the 'older ensimatic-arc complex' and those in the eastern and northwestern parts, which formed from 800 to 690 m.y. ago, as the 'younger marginal-arc compl

  15. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  16. Relationship of the crustal structure and its deformation from arc to back-arc basin in the eastern Japan Sea deduced from the seismic survey

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi; Sato, Hiroshi

    2015-04-01

    The Japan Sea is a back-arc basin in the northwestern Pacific. Based on geophysical, geological, and petrological results, it is suggested that the opening of the Japan Sea was initiated by crustal rifting and the separation of Japan Island arcs from the Asian continent in the Early Oligocene, followed by the ocean floor spreading in the Late Oligocene (e.g., Tamaki et al., 1992). After 3.5 Ma, the crustal shortening by a strong compression occurred in the eastern margin (e.g., Sato, 1994). In the eastern margin, because of the extension associated with the opening of the Japan Sea and this shortening, the deformation such as active faults and folds formed have developed and large earthquakes with magnitudes-7 class repeatedly occurred (e.g., Okamura et al., 2007). The Japan Sea has a unique setting in terms of the connection between the back-arc basin opening and the crustal deformation. However, we have little information concerning with a crustal structure formed by the back-arc opening in the margin and the deformation. To obtain the information, we have been carrying out active-source seismic surveys using ocean bottom seismographs (OBSs) and multi-channel streamer system (MCS) to cover the eastern margin of the Japan Sea. The obtained results show a difference in crustal structures between the northern and the southern parts of the eastern Japan Sea. In the northern part from the arc to the back-arc basin, the crust is divided into three types; the rifted island arc crust, the thicker oceanic crust and the oceanic crust, based on the comparison of the P-wave velocity distribution and the crustal thickness of a typical oceanic crust (White et al., 1992) and of the northeastern Japan Island arc crust (Iwasaki et al., 2001). On the other hand, the southern part from the arc to the back-arc basin has two crustal types, which are the rifted island arc crust and the thicker oceanic crust. In the northern part, the deformation is distributed in a structural boundary

  17. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  18. Dose assessment activities in the Republic of the Marshall Islands.

    PubMed

    Simon, S L; Graham, J C

    1996-10-01

    Dose assessments, both retrospective and prospective, comprise one important function of a radiological study commissioned by the Republic of the Marshall Islands (RMI) government in late 1989. Estimating past or future exposure requires the synthesis of information from historical data, results from a recently completed field monitoring program, laboratory measurements, and some experimental studies. Most of the activities in the RMI to date have emphasized a pragmatic rather than theoretical approach. In particular, most of the recent effort has been expended on conducting an independent radiological monitoring program to determine the degree of deposition and the geographical extent of weapons test fallout over the nation. Contamination levels on 70% of the land mass of the Marshall Islands were unknown prior to 1994. The environmental radioactivity data play an integral role in both retrospective and prospective assessments. One recent use of dose assessment has been to interpret environmental measurements of radioactivity into annual doses that might be expected at every atoll. A second use for dose assessment has been to determine compliance with a dose action level for the rehabilitation of Rongelap Island. Careful examination of exposure pathways relevant to the island lifestyle has been necessary to accommodate these purposes. Examples of specific issues studied include defining traditional island diets as well as current day variations, sources of drinking water, uses of tropical plants including those consumed for food and for medicinal purposes, the nature and microvariability of plutonium particles in the soil and unusual pathways of exposure, e.g., that which might be associated with cooking and washing outdoors and inadvertent soil ingestion. A study on the prevalence of thyroid disease is also being conducted and the geographic pattern of disease may be useful as a bioindicator of the geographic pattern of exposure to radioiodine. Finally, an

  19. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  20. Active deformations of the Jura arc inferred by GPS and seismotectonics

    NASA Astrophysics Data System (ADS)

    Rabin, Mickael; Sue, Christian; Walpersdorf, Andrea

    2016-04-01

    The Jura Mountain is the most recent expression of the alpine orogeny. At the northern end of the western Alps, its recent deformation is still a matter of debates. GPS data available in the Jura bear witness of disagreement between studies, as interpretations vary from uplifted belt to arc-parallel extension (Walpersdorf, et al., 2006) and very slow horizontal movements. Moreover, the traditionally accepted model of an active collisional activity of the Jura, in the dynamic continuity of the Alps, rises up the matter of its geodynamic origin. Indeed, the European Alps are in a post-collisional regime characterized by isostatic-related extension and uplift driven by interaction between buoyancy forces and erosional dynamics (e.g. Sue et al. 2007; Champagnac, et al., 2007; Vernant, et al., 2013.). We present a reappraisal of published focal mechanisms combined with a new GPS solution over the entire arc and surrounding areas. Although the Jura presents a low seismic activity, 53 focal mechanisms over the Jura have been inverted in order to infer the current stress field. Anyhow, we tested several combinations of f.m. inversions, by structural zones, in order to test the regional stress stability. It appears that the current stress field is very stable all over the arc, and following our different sub-datasets. Indeed, the stress field shows a stable near horizontal NW-SE-oriented s1, associated to a NE-SW-oriented s3. Therefore, the structural arc of the Jura seems to have very low or no impact in terms of current stress. Complementarily, we present preliminary velocity and strain fields from a GPS network composed of 25 permanent stations implemented between 1998 and 2014 all around the Jura arc. Indeed, we also integrated the recent GPS-JURA station (OSU THETA Besançon), but they are still too young to accurately constrain the strain of the belt. Preliminary results exhibit very slow velocities across the arc in term of baselines evolution, with infra

  1. The origin of the 'fluid' component and its implications for U-Th-Pa disequilibria in island arcs

    NASA Astrophysics Data System (ADS)

    Avanzinelli, R.; Skora, S. E.; Blundy, J.; Elliott, T.

    2011-12-01

    Many arc lavas have two discrete slab-derived components evident from their compositional variations. These components have been interpreted to be melts of subducted sediment and a 'fluid' from the mafic oceanic crust. The 'fluid' signature is seen most clearly in depleted samples that contain the smallest fraction of the sediment component. The provenance of this 'fluid' is reliably pinned by its unradiogenic Pb isotope ratios to be from a MORB-like source. The composition of the 'fluid' phase is marked by strong enrichments in the large, divalent cations, notably Ba, Pb and Sr and (238U/230Th)>1. These characteristics have traditionally been explained by the 'mobility' of such elements in an aqueous fluid. Such fluids are anticipated to be generated during prograde, subduction-metamorphism and to flux elements into the mantle wedge. Yet no experimental dataset of solid-aqueous fluid partitioning replicates the full set of elemental enrichments described above. The recent realisation of the pivotal role of accessory phases in controlling the mobility of elements from the slab provides a more consistent explanation of the chemical characteristics of the 'fluid' phase. Notably rutile and allanite retain the 'immobile' HSFE and REE and fractionate Th from U. The enrichments in the 'fluid' thus simply reflect the displacement of homeless elements. However, Ba will not be mobile until its preferred host, phengite, is exhausted at the wet solidus of the mafic crust. Thus the 'fluid' phase transpires to be a wet melt. The dominant control of accessory phases on the composition of the 'fluid' component also helps in understanding the long-standing puzzle of arc lava 235U-231Pa systematics. By analogy with surface aqueous behaviour, many models have assumed that the 'fluid' adds only U to the mantle wedge, generating 238U-230Th and 235U-231Pa excesses. Yet many lavas with strong 'fluid' signatures and large 238U-230Th excesses have 235U-231Pa deficits. This surprising

  2. Early Jurassic Volcanism in the South Lhasa Terrane, Southern Tibet: Record of Back-arc Extension in the Active Continental Margin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.

    2015-12-01

    Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.

  3. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  4. Repeated magmatism at 34 Ma and 23-20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Shuto, Kenji; Nohara-Imanaka, Rikako; Takazawa, Eiichi; Osanai, Yasuhito; Nakano, Nobuhiko

    2014-09-01

    The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5 wt.%), Mg# (67), Ni (232 ppm) and Cr (613 ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60 km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its

  5. Human activity and damaging landslides and floods on Madeira Island

    NASA Astrophysics Data System (ADS)

    Baioni, D.

    2011-11-01

    Over the last few decades, the island of Madeira has become an important offshore tourism and business center, with rapid economic and demographic development that has caused changes to the landscape due to human activity. In Madeira's recent history, there has been an increase over time in the frequency of occurrence of damaging landslide and flood events. As a result, the costs of restoration work due to damage caused by landslide and flood events have become a larger and larger component of Madeira's annual budget. Landslides and floods in Madeira deserve particular attention because they represent the most serious hazard to human life, to property, and to the natural environment and its important heritage value. The work reported on in this paper involved the analysis of historical data regarding damaging landslide and flood events on Madeira (in particular from 1941 to 1991) together with data on geological characteristics, topographic features, and climate, and from field observations. This analysis showed that the main factor triggering the occurrence of damaging landslide and flood events is rainfall, but that the increase in the number of damaging events recorded on Madeira Island, especially in recent times, seems to be related mostly to human activity, specifically to economic development and population growth, rather than to natural factors.

  6. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  7. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island).

    PubMed

    Pillai, Honey U K; Jayaraj, K A; Rafeeq, M; Jayalakshmi, K J; Revichandran, C

    2011-05-01

    The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers. PMID:20717718

  8. Treatment with activated water by GlidArc technology of bacteria producing Biofouling

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Ghita, S.; Sabau, A.; Hnatiuc, M.; Dumitrache, C. L.; Wartel, M.

    2015-02-01

    Corrosion in marine environment is an actual problem, being a complex dynamic process influenced mainly by physical, chemical, microbiological and mechanical parameters. Around 70% of the maintenance costs of a ship are associated with the corrosion protection. Times for maintenance related to this phenomenon are greater than 80% of the total repair. Reducing this cost would be a significant saving, and an effective treatment can reduce times related to ships repairing. Biofouling is a main cause of corrosion and for its reduction different methods could be applied, especially in the first part of its production. The atmospheric pressure non-thermal plasmas have been gaining an ever increasing interest for different biodecontamination applications and present potential utilisation in the control of biofouling and biodeterioration. They have a high efficiency of the antimicrobial treatment, including capacity to eradicate microbial biofilms. The adhesion microbial biofilm is mainly influenced by presence of bacteria from the liquid environment. That is why this work concerns the study of annihilation of maximum amount of bacteria from sea water, by using GlidArc technology that produces non-thermal plasma. Bacteria suspended in sea water are placed in contact with activated water. This water is activated by using GlidArc working in humid air. Experimental results refer to the number of different activated and inactivated marine organisms and their evolution, present in solution at certain time intervals after mixing different amounts of seawater with plasma activated water.

  9. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    PubMed

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region. PMID:17774792

  10. Implications Of Light And Trace Elements Signatures in Melt Inclusions Of St Vincent And Grenada Island On The Lesser Antilles Arc Behavior

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Deloule, E.; Métrich, N.

    2008-12-01

    St. Vincent and Grenada islands are located in the south part of the Lesser Antilles arc, generated by the subduction of the Atlantic plate beneath the Caribbean plate. In the both islands, the erupted high-MgO basalts (MgO > 10.0 wt%) are thought to be representative of the primary magmas and to be generated by the melting of a MORB mantle source enriched by fluids derived from the subducted slab [1]. We present here trace element compositions determined by ion probe in melt inclusions (M.I.) trapped in olivines (Fo84-91) from magnesian scoriae, for which light and volatile elements, as stable isotopes were previously measured [2-3]. Their major elements compositions point out a broad variability, but show the primitive character of these M.I. (SiO2 < 50.0 wt%). Grenada M.I. are enriched in K2O (0.4-2.5 wt%) and MgO (up to 12.5 wt%) compared to St. Vincent M.I. (up to 0.85 wt% and 10.0 wt%, respectively). Their trace element patterns encompass those of whole rocks. Compared to St. Vincent, Grenada M.I. recorded more variable trace element compositions. All M.I. patterns are characteristic of subduction zones, with Ba and Sr enrichments associated with pronounced negative Nb anomalies, implying slab-fluids influence, as also demonstrated by high Cl/F ratios (up tp 10.9) [4]. As a whole, REE patterns are enriched and poorly fractionated compared to MORB. The trace element patterns, combined with light element and isotopic compositions, are interpreted in term of variations of degree of mantle partial melting and slab influence, with variable contributions of aqueous fluids released from altered oceanic crust and from sediments, and of sediment melt. Both St. Vincent and Grenada primary magmas record the influence of aqueous fluids, whereas the addition of sediment melt is only identified in Grenada M.I., as Zr positive anomalies (Zr contents up to 1200 ppm), a rare feature in basaltic melts. Although light trace elements and stable isotopes illustrated mostly

  11. Early hominin biogeography in Island Southeast Asia.

    PubMed

    Larick, Roy; Ciochon, Russell L

    2015-01-01

    Island Southeast Asia covers Eurasia's tropical expanse of continental shelf and active subduction zones. Cutting between island landmasses, Wallace's Line separates Sunda and the Eastern Island Arc (the Arc) into distinct tectonic and faunal provinces. West of the line, on Sunda, Java Island yields many fossils of Homo erectus. East of the line, on the Arc, Flores Island provides one skeleton and isolated remains of Homo floresiensis. Luzon Island in the Philippines has another fossil hominin. Sulawesi preserves early hominin archeology. This insular divergence sets up a unique regional context for early hominin dispersal, isolation, and extinction. The evidence is reviewed across three Pleistocene climate periods. Patterns are discussed in relation to the pulse of global sea-level shifts, as well as regional geo-tectonics, catastrophes, stegodon dispersal, and paleogenomics. Several patterns imply evolutionary processes typical of oceanic islands. Early hominins apparently responded to changing island conditions for a million-and-a-half years, likely becoming extinct during the period in which Homo sapiens colonized the region. PMID:26478140

  12. The collision zone between the North d'Entrecasteaux Ridge and the New Hebrides Island Arc: 1. Sea Beam morphology and shallow structure

    NASA Astrophysics Data System (ADS)

    Collot, Jean-Yves; Fisher, Michael A.

    1991-03-01

    Sea Beam bathymetric data, closely spaced single-channel seismic reflection sections, and geopotential field data were collected aboard the R/V J. Charcot over the collision zone between the North d'Entrecasteaux Ridge (NDR) and the New Hebrides island arc. The NDR trends east at a small angle (14°) to the plate convergence direction so that the ridge creeps northward along the trench at about 2.5 cm/yr, requiring a continual structural adjustment of the accretionary complex. In this report we study the shallow structure, tectonic erosion, and consequent mass wasting of the accretionary complex, all of which were produced by the collision of the NDR in a complex deformational environment. The accretionary complex in this collision zone can be divided into northern, central, and southern parts. The northern part of the collision zone, which lies north of the leading flank of the ridge, shows a lobate lower accretionary complex that is structured by east to southeast dipping thrust and reverse faults and N60°W trending strike-slip faults; a middle accretionary complex that bulges seaward and appears to be rotated 45°E from the regional arc trend; and an upper accretionary complex that is shaped by slumps and a canyon network. The central part of the collision zone, which directly overlies the crest of the ridge, forms a broad shallow protrusion that is bounded on its northern and southern sides by steep scarps. Rocks forming this protrusion have been uplifted, possibly by as much as 1500-2500 m, and tilted to the north, causing northward block sliding along an extensional detachment surface. The southern part of the collision zone, which lies in the wake of the ridge, is deformed by large slumps and normal faults that trend parallel to the ridge axis. Rocks forming this southern part collapse, causing widespread mass wasting. These geophysical data indicate that normal trench convergence has apparently produced only a few trench-parallel structures confined to the

  13. Observations of Seafloor Outcrops in the Oblique Subduction Setting of Adak Canyon: Implications for Understanding the Early History of the Aleutian Island Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G.; Scholl, D.; Jicha, B.; Wyatt, C.; Singer, B.; Kelemen, P.

    2004-12-01

    Submarine canyons in the western Aleutians (west of 177°W) are formed by oblique subduction, which has broken crustal blocks away from the arc massif and rotated them in clockwise sense, resulting in the formation of triangular-shaped summit basins and deep, structurally controlled submarine canyons (Geist et al., Tectonics v7, p327, 1988). A series of dives with the ROV Jason II on July 28-30, 2004 on Adak Canyon has provided the first-ever view of seafloor outcrops in an Aleutian canyon formed by this process. Two dives on the canyon's steep eastern wall revealed extensive exposures of blocky outcrops of volcanic rock at depths of 2900-1500 m. Samples of these units collected by the Jason II are a mixture of dark, pyroxene and plagioclase-phyric lavas and volcaniclastics. Degree of weathering/alteration is highly variable but some samples appear fresh. We anticipate that these rocks are offshore-equivalents of the Finger Bay Volcanics, which represent the earliest phase of Aleutian volcanism exposed on nearby Adak Island (e.g., Coats, 1956, USGS Bull. 1028-C). Exposures of granitic rock in Adak Canyon form low ledges of exfoliating outcrop interspersed with spheroidally weathered, bouldery sub-crop, in the depth range of 1800-1600 meters. Obtaining in-situ samples from these massive and subrounded exposures was not possible with the Jason II, but recovery of large, sub-angular slabs that litter the surface included samples of fresh diorite, fine-grained felsic intrusives and hydrothermally altered volcanic country rock. The stratigraphically highest exposures observed in Adak Canyon are gently dipping, poorly lithified `Middle Series' sedimentary rocks of probable Miocene-Oligocene age. All outcrop surfaces in Adak Canyon are covered with a uniformly dark brown, opaque coating of Mn oxide less than 1mm thick. Well-rounded cobbles and boulders interpreted to be glacial drift are largely free of Mn oxide coatings. Thick pavements of Mn-oxide were not observed

  14. Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Gonzalez-Castillo, L.; Galindo-Zaldivar, J.; de Lacy, M. C.; Borque, M. J.; Martinez-Moreno, F. J.; García-Armenteros, J. A.; Gil, A. J.

    2015-11-01

    The Gibraltar Arc, located in the western Mediterranean Sea, is an arcuate Alpine orogen formed by the Betic and Rif Cordilleras, separated by the Alboran Sea. New continuous GPS data (2008-2013) obtained in the Topo-Iberia stations of the western Betic Cordillera allow us to improve the present-day deformation pattern related to active tectonics in this collision area between the Eurasian and African plates. These data indicate a very consistent westward motion of the Betic Cordillera with respect to the relatively stable Iberian Massif foreland. The displacement in the Betics increases toward the south and west, reaching maximum values in the Gibraltar Strait area (4.27 mm/yr in Ceuta, CEU1, and 4.06 mm/yr in San Fernando, SFER), then progressively decreasing toward the northwestern mountain front. The recent geological structures and seismicity evidence moderate deformation in a roughly NW-SE to WNW-ESE compressional stress setting in the mountain frontal areas, and moderate extension toward the internal part of the cordillera. The mountain front undergoes progressive development of folds affecting at least up to Pliocene deposits, with similar recent geological and geodetical rates. This folded strip helps to accommodate the active deformation with scarce associated seismicity. The displacement pattern is in agreement with the present-day clockwise rotation of the tectonic units in the northern branch of the Gibraltar Arc. Our data support that the westward emplacement of the Betic Cordillera continues to be active in a rollback tectonic scenario.

  15. Giant stellar arcs in the Large Magellanic Cloud: a possible link with past activity of the Milky Way nucleus

    NASA Astrophysics Data System (ADS)

    Efremov, Yuri N.

    2013-02-01

    The origin of the giant stellar arcs in the Large Magellanic Cloud (LMC) remains a controversial issue, one that has been discussed since 1966. No other star/cluster arc is so perfect a segment of a circle; moreover, there is another similar arc nearby. Many hypotheses were advanced to explain these arcs and all but one of these was disproved. It was proposed in 2004 that the origin of these arcs was a bow shock from the jet that is intermittently fired by the Milky Way nucleus; during its last episode of activity the jet was pointed toward the LMC. Quite recently, evidence for such a jet indeed appeared. We suggest that it was once energetic enough to trigger star formation in the LMC, and if the jet opening angle was about 2° then it could push out H i gas from a region of about 2 kpc in size, forming a cavity LMC4, but also squeeze two dense clouds that occurred in the same area, causing the formation of stars along their surfaces facing the core of the Milky Way. As a result, spherical segments of stellar shells might arise, visible now as the arcs named the Quadrant and Sextant, the apexes of which point towards the centre of the Milky Way. The orientation of both arcs could be the key to unlocking their origin. Here we give data that confirm the above hypothesis, amongst which are the radial velocities of stars inside and outside the larger of the LMC arcs. The probability is low that a jet from an active galactic nucleus (AGN) points towards a nearby galaxy and triggers star formation there, but a few other examples are now known or suspected.

  16. Propagation of back-arc extension into the arc lithosphere in the southern New Hebrides volcanic arc

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Collot, J.; Danyushevsky, L.; Fabre, M.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M.; Fournier, M.

    2015-09-01

    New geophysical data acquired during three expeditions of the R/V Southern Surveyor in the southern part of the North Fiji Basin allow us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone, where it bends eastward along the Hunter Ridge. Unlike the northern end of the Tonga subduction zone, on the other side of the North Fiji Basin, the 90° bend does not correspond to the transition from a subduction zone to a transform fault, but it is due to the progressive retreat of the New Hebrides trench. The subduction trench retreat is accommodated in the upper plate by the migration toward the southwest of the New Hebrides arc and toward the south of the Hunter Ridge, so that the direction of convergence remains everywhere orthogonal to the trench. In the back-arc domain, the active deformation is characterized by propagation of the back-arc spreading ridge into the Hunter volcanic arc. The N-S spreading axis propagates southward and penetrates in the arc, where it connects to a sinistral strike-slip zone via an oblique rift. The collision of the Loyalty Ridge with the New Hebrides arc, less than two million years ago, likely initiated this deformation pattern and the fragmentation of the upper plate. In this particular geodynamic setting, with an oceanic lithosphere subducting beneath a highly sheared volcanic arc, a wide range of primitive subduction-related magmas has been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.

  17. Preliminary Geologic Map of Mount Pagan Volcano, Pagan Island, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.

    2006-01-01

    Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaros and form part of the inner arc. The active inner arc extends south from Anatahan, where volcanoes, some of which are active, form seamounts west of the older outer arc. Other volcanic seamounts of the active arc surmount the East Mariana Ridge in the vicinity of Anatahan and Sarigan and north and south of Farallon de Pajaros. Six volcanoes (Farallon de Pajaros, Asuncion, Agrigan, Mount Pagan, Guguan, and Anatahan) in the northern islands

  18. The Epi-continental arc of Southeast China and relevant earthquakes

    NASA Astrophysics Data System (ADS)

    Xu, Jia-Wei

    1996-11-01

    Epi-continental arc system is a series of arcuate structures along coastlines of the mainland and behind the island arc system on the margin of the Northwest peri-Pacific region. Epi-continental arc is similar to the island arc in geometery and kinematics, but it was characterised by an arcuate fracture zone and compensated front-sag, basic volcanic activity, shallow earthquake belt and the latest active tectonics. The eastern China continent is dominated by the coastal epi-continental arc of Southeast China. Its front arc is situated along the coastline of Zhejiang, Fujian and eastern Guangdong provinces which is convex to SE. The left NW-trending flank extended along the NW-trending coast line of northern Jiangsu and traversed Shangdong Peninsula to northern Hebei and Shanxi provinces; and the right E-W trending flank along the western Guangdong, southern Guangxi, northern Hainan coastlines extended to northern Hanoi. This arc controlls activities of the most modern intense earthquakes in eastern China continents. The compressing thrust-type earthquakes occurred along the front arc, especially the “collison belt”, and the strike-slip-type earthquakes along the both flanks sinistral and dextral strike-slip faults respectively. Earthquakes of epi-continental arc type is characterised by segmentation in space and periodicity in time.

  19. Paleomagnetism of the Samar Ophiolite: Implications for the Cretaceous sub-equatorial position of the Philippine island arc

    NASA Astrophysics Data System (ADS)

    Balmater, Hertz G.; Manalo, Pearlyn C.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Dimalanta, Carla B.; Guotana, Juan Miguel R.; Ramos, Noelynna T.; Payot, Betchaida D.; Yumul, Graciano P.

    2015-11-01

    Samar island in the eastern part of Central Philippines is underlain by a complete ophiolite suite, the Samar Ophiolite. We present the first geochronological and paleomagnetic data for the Samar Ophiolite. Whole rock K-Ar dating of two basalt samples yielded an age of 100.2 ± 2.7 Ma and 97.9 ± 2.8 Ma. Thirteen sites in four localities yielded characteristic remanent magnetization with in situ direction of D = 340°, I = - 24°, k = 15, α95 = 11° and tilt-corrected direction of D = 342°, I = - 27°, k = 15, α95 = 11°. These values suggest that the ophiolitic basement rocks of Samar formed in the Late Cretaceous at a paleolatitude of 14°S ± 6°. The paleolatitude is several degrees south of the sub-equatorial positions calculated for the three other Mesozoic ophiolites of the Philippine Mobile Belt (PMB) whose paleomagnetism had been previously studied. The PMB ophiolites in eastern and central Philippines share a common age, geochemistry and paleolatitude with the Halmahera Ophiolite, suggesting that they originated from a Mesozoic supra-subduction zone that spanned a few degrees north of the equator to around 15°S.

  20. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  1. Underground Temperature Measurements as a Tool for Volcanic Activity Monitoring in the Island of Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; Coello, J.; Viñas, R.; Soler, V.; Martin-Luis, M. C.; Farrujia, I.; Quesada, M. L.; de La Nuez, J.

    2008-01-01

    The spatial distribution of groundwater temperatures in the volcanic island of Tenerife, Canary Islands, has been inferred through measurements of water temperatures collected in the vast network of wells and subhorizontal tunnels, locally called “galleries,” which constitutes the main water supply of the island. The spatial coverage of the network of galleries allows us to reach from depth almost any geological feature of the island. The complex spatial distribution of temperatures in the interior of Tenerife is the result of the complex geological evolution of the island. Groundwater temperatures are greatly affected by groundwater flow and are considerably warmer in those galleries located in areas where water circulation is reduced due to the low permeability of materials and/or to the low infiltration rate of cooling meteoric water. In this sense, groundwater temperature should be characterized in quiescent conditions (background level), in order to facilitate monitoring changes in heat flow, such as those induced by ascending gases expected with an increase in volcanic activity.

  2. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  3. Tsunami recurrence in the eastern Alaska-Aleutian arc: A Holocene stratigraphic record from Chirikof Island, Alaska

    USGS Publications Warehouse

    Nelson, Alan R.; Briggs, Richard; Dura, Tina; Engelhart, Simon E.; Gelfenbaum, Guy; Bradley, Lee-Ann; Forman, S.L.; Vane, Christopher H.; Kelley, K.A.

    2015-01-01

    cannot estimate source earthquake locations or magnitudes for most tsunami-deposited beds. We infer that no more than 3 of the 23 possible tsunamis beds at both sites were deposited following upper plate faulting or submarine landslides independent of megathrust earthquakes. If so, the Semidi segment of the Alaska-Aleutian megathrust near Chirikof Island probably sent high tsunamis southward every 180–270 yr for at least the past 3500 yr.                   

  4. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  5. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  6. Darwin : The Third DOE ARM TWP ARCS Site /

    SciTech Connect

    Clements, William E.; Jones, L. A.; Baldwin, T.; Nitschke, K.

    2002-01-01

    The United States Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Program began operations in its Tropical Western Pacific (TWP) locale in October 1996 when the first Atmospheric Radiation and Cloud Station (ARCS) began collecting data on Manus Island in Papua New Guinea (PNG). Two years later, in November 1998, a second ARCS began operations on the island of Nauru in the Central Pacific. Now a third ARCS has begun collecting data in Darwin, Australia. The Manus, Nauru, and Darwin sites are operated through collaborative agreements with the PNG National Weather Service, The Nauru Department of Industry and Economic Development (IED), and the Australian Bureau of Meteorology's (BOM) Special Services Unit (SSU) respectively. All ARM TWP activities in the region are coordinated with the South Pacific Regional Environment Programme (SPREP) based in Apia, Samoa. The Darwin ARM site and its role in the ARM TWP Program are discussed.

  7. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  8. Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2012-04-01

    Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on

  9. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    USGS Publications Warehouse

    Schermer, E.R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  10. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    PubMed

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction. PMID:25095400

  11. A juvenile oceanic island arc origin for the Archean (ca. 2.97 Ga) Fiskenæsset anorthosite complex, southwestern Greenland: Evidence from oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Longstaffe, Fred J.

    2014-06-01

    The Archean (ca. 2.97 Ga) Fiskenæsset layered intrusion, southwestern Greenland, consists of an association of anorthosite, leucogabbro, gabbro, hornblendite, pyroxenite, peridotite and dunite. The intrusion is characterized by well-preserved igneous layering, cumulate texture and primary igneous minerals including olivine, pyroxene, plagioclase, hornblende and chromite. We use new whole-rock (n=36) and mineral (n=32) oxygen isotopic data for all major lithologic units from the best preserved stratigraphic section of the Fiskenæsset Complex at Majorqap qâva to revisit geodynamic and petrogenetic hypotheses proposed for the origin of Archean terranes. The Fiskenæsset Complex has modern mantle-like whole-rock O-isotope compositions (δO18=5.8±0.5‰). Average δO18 values increase from peridotite (δO18=5.0‰), through hornblendite (δO18=5.7‰), gabbro (δO18=5.8‰), pyroxene hornblendite (δO18=6.0‰) and leucogabbro (δO18=6.3‰), to anorthosite (δO18=6.3‰). These whole-rock isotopic compositions reflect the approximate modal abundances of olivine (average δO18=4.9‰), hornblende (average δO18=5.7‰), clinopyroxene (average δO18=6.4‰) and plagioclase (average δO18=6.4‰) in each rock type, as a consequence of mineral fractionation in the magma chamber(s). Field relationships and the absence of crustal contamination suggest that the Fiskenæsset Complex formed in an oceanic setting. Subduction zone-like whole-rock trace element signatures and mantle-like δO18 and initial εNd values are consistent with formation of these rocks in a juvenile oceanic island arc setting. Field and geochemical data from the Fiskenæsset region and adjacent terranes suggest that the origin of Archean crust in southwestern Greenland is consistent with Phanerozoic-like plate tectonic processes rather than density-driven sinking, delamination and diapiric processes requiring formation of greenstone belts and anorthosite complexes on pre-existing continental crust

  12. Record Of Both Tectonic Related Vertical Motions and Global Sea Level Rise by Marine Terraces along an Active Arc Volcano. Example of Basse-Terre, Lesser Antilles (French West-Indies).

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Moysan, M.; Graindorge, D.; Jean-Frederic, L.; Philippon, M. M.; Marcaillou, B.; Léticée, J. L.

    2015-12-01

    Volcano-tectonic history of the Caribbean plate provides direct insight onto the dynamic of the North American Plate westward subduction. Basse-Terre Island is a volcanic chain that belongs to the Lesser Antilles active volcanic arc with a southward decreasing age of volcanism from 3 Ma to present day.We investigate records of vertical motion along Basse-Terre through a morphostructural analysis of the Pleistocene-Holocene shallow-water carbonate platforms and associated terraces that surround Basse-Terre Island. This study is based on new high-resolution bathymetric and dense seismic data acquired during the GEOTREF oceanographic survey (2015, February). Our bathymetric and topographic Digital Terrain Model together with the "Litto3D" Lidar data (IGN/SHOM) images the island topography and the platform bathymetry to a depth of 200m with horizontal and vertical resolutions of 5m and ~cm respectively. This detailed study highlights the morphostructure of terraces built during the last transgression in order to identify and quantify their vertical motions. We analyze inherited morphology and structures of the forearc that affect the platform to discuss effects of the regional tectonics context. A particular emphasis is put on the influence of the NW-SE arc parallel transtensive Montserrat-Bouillante fault system onto the platform geometry. At last, the distribution of Basse-Terre terraces is compared with terraces distribution around other Lesser Antilles island and the Bahamas stable margin platform. We aim at discriminating the influence of the Pleistocene global sea-level rise from the one of tectonic vertical deformations.

  13. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  14. The Occupation of Alcatraz Island: Roots of American Indian Activism.

    ERIC Educational Resources Information Center

    Johnson, Troy

    1994-01-01

    Attempts to place in historical perspective the 19-month American Indian occupation of Alcatraz Island, which began in November 1969. Discusses societywide and specifically Native American events leading to occupation; occupation itself and responses by the Bureau of Indian Affairs and Nixon Administration; and other Indian activist actions during…

  15. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    PubMed

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively. PMID:26956730

  16. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    SciTech Connect

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.; Foucher, J.P. ); von Stackelberg, U.; Wiedicke, M. ); Erzinger, J. ); Herzig, P. ); Muhe, R. ); Soakai, S. ); Whitechurch, H. )

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all for areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  17. Towards Understanding the Sunda and Banda Arcs

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2014-12-01

    The present change from oceanic subduction beneath the Sunda Arc to arc-continent collision east of Sumba is merely the latest stage in a complex collision history that began more than 20 million years ago. Understanding present-day tectonics requires restoring the pre-collisional margins and unravelling the history of the entire Sunda-Banda Arc, not just a segment centred on Sumba. Seismic tomography displays a single folded slab beneath the Banda Arc around which mantle has flowed. Above this is a wide actively deforming zone of complex geology. Australian crust was first added to the Sunda margin in the Cretaceous. Early Miocene closure of the oceanic gap north of Australia led to further additions of continental crust during collision of the Sula Spur. Few microcontinental fragments were sliced from New Guinea as commonly interpreted. Most are parts of the Sula Spur fragmented by extension and strike-slip faulting during development of subduction zones and rollback into the Banda embayment. Many metamorphic 'basement' rocks are significantly younger than expected. They were metamorphosed during multiple episodes of extension which also exhumed the sub-lithospheric mantle, melted the deep continental crust, created new ocean basins, and dispersed continental crust throughout the inner and outer arc, and forearc, so that in places Australian crust is colliding with Australian crust. Thus, many of the arc volcanoes are built on continental not oceanic crust, and sediment eroded from recently emergent islands is compositionally different to subducted sediment that contributed to arc magmas. The published literature is inadequate. New fieldwork and data are required, particularly in remote areas, with integration of information from a variety of sources (e.g. industry seismic and multibeam bathymetry, remotely acquired imagery) and sub-disciplines (e.g. geochronology, geochemistry, seismology, modelling). No single methodology can provide a complete solution.

  18. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  19. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-01

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts. PMID:8662469

  20. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m‑2 d‑1) up to 457 g m‑2 d‑1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d‑1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m‑2 d‑1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d‑1, value slightly higher that the background CO2 emission estimated at 422 t

  1. Case of correlation between Rn anomalies and seismic activity on a volcano (Vulcano Island, Southern Tyrrhenian Sea)

    SciTech Connect

    Del Pezzo, E.; Gasparini, P.; Mantovani, M.S.M.; Martini, M.; Capaldi, G.; Gomes, Y.T.; Pece, R.

    1981-09-01

    A factor of 10 increase in the Rn concentration in a shallow aquifer forefunning a shallow seismic swarm was observed at the island of Vulcano (Aeolian island arc). The peak of Rn anomaly preceded by about one month the seismic swarm, which had a cumulative magnitude of 2.1. The time lag between the two phenomena is much longer than expected, given the small energy released by the swarm. The observed phenomena may not have a direct cause-effect relationship, but they both can be a consequence of volcanic phenomena.

  2. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  3. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  4. Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system

    NASA Astrophysics Data System (ADS)

    Picard, Michel; Schneider, Jean-Luc; Boudon, Georges

    2006-12-01

    Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.

  5. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  6. A Neuronal Activity-Dependent Dual Function Chromatin-Modifying Complex Regulates Arc Expression1,2,3

    PubMed Central

    Oey, Nicodemus E.; Leung, How Wing; Ezhilarasan, Rajaram; Zhou, Lei; Beuerman, Roger W.; VanDongen, Hendrika M.A.

    2015-01-01

    Abstract Chromatin modification is an important epigenetic mechanism underlying neuroplasticity. Histone methylation and acetylation have both been shown to modulate gene expression, but the machinery responsible for mediating these changes in neurons has remained elusive. Here we identify a chromatin-modifying complex containing the histone demethylase PHF8 and the acetyltransferase TIP60 as a key regulator of the activity-induced expression of Arc, an important mediator of synaptic plasticity. Clinically, mutations in PHF8 cause X-linked mental retardation while TIP60 has been implicated in the pathogenesis of Alzheimer’s disease. Within minutes of increased synaptic activity, this dual function complex is rapidly recruited to the Arc promoter, where it specifically counteracts the transcriptionally repressive histone mark H3K9me2 to facilitate the formation of the transcriptionally permissive H3K9acS10P, thereby favoring transcriptional activation. Consequently, gain-of-function of the PHF8−TIP60 complex in primary rat hippocampal neurons has a positive effect on early activity-induced Arc gene expression, whereas interfering with the function of this complex abrogates it. A global proteomics screen revealed that the majority of common interactors of PHF8 and TIP60 were involved in mRNA processing, including PSF, an important molecule involved in neuronal gene regulation. Finally, we proceeded to show, using super-resolution microscopy, that PHF8 and TIP60 interact at the single molecule level with PSF, thereby situating this chromatin modifying complex at the crossroads of transcriptional activation. These findings point toward a mechanism by which an epigenetic pathway can regulate neuronal activity-dependent gene transcription, which has implications in the development of novel therapeutics for disorders of learning and memory. PMID:26464965

  7. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  8. Assessment of the Role of MAP Kinase in Mediating Activity-Dependent Transcriptional Activation of the Immediate Early Gene "Arc/Arg3.1" in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Chotiner, Jennifer K.; Nielson, Jessica; Farris, Shannon; Lewandowski, Gail; Huang, Fen; Banos, Karla; de Leon, Ray; Steward, Oswald

    2010-01-01

    Different physiological and behavioral events activate transcription of "Arc/Arg3.1" in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of "Arc/Arg3.1" transcription in dentate granule cells in vivo and activation of…

  9. Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation

    NASA Astrophysics Data System (ADS)

    Faramarzi, Narges Sadat; Amini, Sadraddin; Schmitt, Axel Karl; Hassanzadeh, Jamshid; Borg, Gregor; McKeegan, Kevin; Razavi, Seyed Mohammad Hosein; Mortazavi, Seyed Mohsen

    2015-11-01

    Hormuz Island, a salt-gypsum dome in the Persian Gulf in southern Iran, is a complex halotectonic melange comprising evaporites, carbonates, volcanic and volcaniclastic rocks, as well as low-grade metamorphic and sedimentary rocks. Based on trace element (including rare earth elements REE) compositions of whole rocks and zircon, Hormuz rhyolites are inferred to have formed from subduction-related magmas generated in an active continental margin setting. Ion microprobe analyses of zircon crystals yielded concordant U-Pb ages with weighted mean 206Pb/238U age of 558 ± 7 Ma (juvenile zircons in contrast to those from previous magmatic episodes or xenocrysts) along with younger and older discordant ages which likely represent Pb loss and the presence of xenocrystic domains, respectively. Trace element ratios and in particular REE patterns of juvenile zircon from Hormuz rhyolites indicate crystallization from continental crustal source rocks typical for subduction environments. The concordant 206Pb/238U zircon age agrees with ages obtained from most other structural zones of Iran which indicate regional consolidation of igneous basement during the Neoproterozoic to Early Cambrian. Furthermore, Hormuz rhyolite ages and compositions correlate with counterparts that co-evolved along the northern margin of Gondwana, and are now preserved along the southern coast of the Persian Gulf. Hormuz rhyolites erupted synchronously with the deposition of carbonates and evaporites, suggesting that volcanism occupied an extensional backarc or retroarc setting. Such depositional environments predominated in the northern Gondwana continental margin where convergent (Proto-Tethyan) and extensional (Najd) tectonic regimes coexisted.

  10. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  11. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  12. Seismic Velocity structures in Northern Izu-Bonin arc derived from passive OBS observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Takahashi, T.; Tamura, Y.; Sakaguchi, H.

    2007-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Recent active seismic surveys in the Izu-Bonin arc show significant variations in thickness of the middle crust along the volcanic front [Kodaira et al, 2007]. To understand the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations to investigate structure variations in northern Izu-Bonin arc using natural earthquakes. A temporal ocean bottom seismograph (OBS) network consists of 40 pop-up type OBSs was deployed in April 2006 between Tori-shima and Hachijo-jima islands. These OBSs were retrieved in July after about 80-day observations. We used continuous seismic data at 36 OBSs and three F-net and Hi-net seismic stations on Hachijo-jima and Aoga-shima islands operated by National Research Institute for Earth Science and Disaster Prevention. During the OBS observations, about 1600 earthquakes were located. These earthquakes clearly show double seismic zone along the subducting Pacific plate. We estimated 1D and 3D P- and S-wave seismic velocity structure using arrival time data of these earthquakes. The 1D velocity model shows that a layer with low Poisson's ratio of 0.24 and high Poisson's ratio of 0.28 corresponds to middle and lower crust, respectively. The low Poisson's ratio layer suggests the granitic middle crust with Vp of ~6km/s. The high Poisson's ratio layer agrees with the gabbroic lower crust as suggested by Kodaira et al. [2007]. Three-dimensional Vp and Vs structures were estimated by 3D tomographic inversion method by Kamiyra and Kobayashi [2000] using the 1D model as an initial model. The estimated 3D model shows structure variations along the volcanic front. We will discuss relationships between the seismic velocity variations and the island arc crust structures in northern Izu- Bonin arc.

  13. Monitoring of geological activity on astronomical sites of the Canary Islands, Hawaii, and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, Antonio; Garcia-Lorenzo, Begoña; Rodriguez-Losada, Jose A.; Hernández-Gutiérrez, Luis E.; de la Nuez, Julio; Romero-Ruiz, Maria C.

    2009-09-01

    Future large and extremely large ground-based telescopes will demand stable geological settings.Remote sensing could be an unvaluable tool to analyse the impact of geological activity at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile; the candidate site of Cerro Ventarrones, Chile). In this sense, the extent of lava flows, eruptive clouds or ground deformation associated to seismic and/or volcanic activity could be analysed and characterised through remote sensing.

  14. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  15. Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines): additional evidence for a Paleozoic age of a metamorphic complex in the Philippine island arc

    SciTech Connect

    Knittel, U.; Daniels, U.

    1987-02-01

    The Sr-isotopic composition of marbles from the Puerto Galera area (Mindoro, Philippines) is compatible with either a Tertiary or a Paleozoic age. The former is considered as unlikely because nonmetamorphic sediments of that age overlie the metamorphic complex. This implies that the metamorphic complex does not represent the basement of the Philippine arc but is an accreted terrane.

  16. Geochemical components in a Cretaceous island arc: The Th/La-(Ce/Ce*)Nd diagram and implications for subduction initiation in the inter-American region

    NASA Astrophysics Data System (ADS)

    Hastie, Alan R.; Mitchell, Simon F.; Treloar, Peter J.; Kerr, Andrew C.; Neill, Iain; Barfod, Dan N.

    2013-03-01

    Tectonic models of the evolution of the inter-American region show that induced subduction initiation/polarity reversal is required in order to isolate the Caribbean as a separate plate. However, the timing and mechanism of this subduction initiation/reversal are still controversial. In order to shed light on this issue we investigate the geochemistry of arc-derived, ~ 80 Ma, basic to acidic igneous rocks from the Main Ridge Formation (MRF) in central Jamaica. The affinity of the mantle component in the MRF arc rocks can help increase our understanding of the initiation of any new subduction zone in the inter-American region. Trace element geochemistry demonstrates that the MRF mantle source component was N-MORB-like. Conversely, younger circum-Caribbean arc rocks (≤ 75 Ma) have a more enriched plume-like mantle component. Unfortunately, when considering the slab component, some of the most useful trace elements that can be used to identify the affinity of a slab flux in arc lavas (e.g., Ba) have been mobilised by subsolidus alteration processes in the MRF. Consequently, the immobile element Th/La-(Ce/Ce*)Nd discrimination diagram is proposed as a method of determining the affinity of slab components from altered igneous rocks. This diagram identifies sedimentary slab components that have potentially contaminated an arc source region, e.g., continental detritus, volcanic detritus, hydrogenous Fe-Mn oxides, fish debris-rich clay and hydrothermal sediments. In this study, the Th/La-(Ce/Ce*)Nd diagram suggests that the slab component in most of the MRF samples has a composition similar to continental detritus/GLOSS II. Additionally, several MRF samples are derived from a source region that has been fluxed with a subduction component, in part, composed of fish debris and hydrothermal sediments. These results help constrain the timing and mechanism of Cretaceous subduction initiation in the inter-American region. The geochemical components recognised in the MRF rocks

  17. Magnetic anomalies over the Andaman Islands and their geological significance

    NASA Astrophysics Data System (ADS)

    Subba Rao, P. B. V.; Radhakrishna, M.; Haripriya, K.; Rao, B. Someswara; Chandrasekharam, D.

    2016-03-01

    The Andaman Islands form part of the outer-arc accretionary sedimentary complex belonging to the Andaman-Sumatra active subduction zone. The islands are characterized by thick cover of Neogene sediments along with exposed ophiolite rocks at few places. A regional magnetic survey was carried out for the first time over the Andaman Islands with a view to understand the correlation of anomaly signatures with surface geology of the islands. The residual total field magnetic anomaly maps have revealed distinct magnetic anomalies having intermediate to high amplitude magnetic signatures and correlate with the areas over/close to the exposed ophiolite rocks along the east coast of north, middle and the south Andaman Islands. The 2D modelling of magnetic anomalies along selected E-W profiles across the islands indicate that the ophiolite bodies extend to a depth of about 5-8 km and spatially correlate with the mapped fault/thrust zones.

  18. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2.

    PubMed

    Slootweg, Erik J; Spiridon, Laurentiu N; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska

    2013-07-01

    Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins. PMID:23660837

  19. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  20. The global relevance of the Scotia Arc: An introduction

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.

    2015-02-01

    The Scotia Arc, situated between South America and Antarctica, is one of the Earth's most important ocean gateways and former land bridges. Understanding its structure and development is critical for the knowledge of tectonic, paleoenvironmental and biological processes in the southern oceans and Antarctica. It extends from the Drake Passage in the west, where the Shackleton Fracture Zone forms a prominent, but discontinuous, bathymetric ridge between the southern South American continent and the northern tip of the Antarctic Peninsula to the active intra-oceanic volcanic arc forming the South Sandwich Island in the east. The tectonic arc comprises the NSR to the north and to the south the South Scotia Ridge, both transcurrent plate margins that respectively include the South Georgia and South Orkney microcontinents. The Scotia and Sandwich tectonic plates form the major basin within these margins. As the basins opened, formation of first shallow sea ways and then deep ocean connections controlled the initiation and development of the Antarctic Circumpolar Current, which is widely thought to have been important in providing the climatic conditions for formation of the polar ice-sheets. The evolution of the Scotia Arc is therefore of global palaeoclimatic significance. The Scotia Arc has been the focus of increasing international research interest. Many recent studies have stressed the links and interactions between the solid Earth, oceanographic, paleoenvironmental and biological processes in the area. This special issue presents new works that summarize significant recent research results and synthesize the current state of knowledge for the Scotia Arc.

  1. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Holm, Robert J.; Spandler, Carl; Richards, Simon W.

    2013-09-01

    Understanding the evolution of the mid-Cenozoic Melanesian arc is critical for our knowledge of the regional tectonic development of the Australian-Pacific plate margin, yet there have been no recent studies to constrain the nature and timing of magmatic activity in this arc segment. In particular, there are currently no robust absolute age constraints at the plate margin related to either the initiation or cessation of subduction and arc magmatism. We present the first combined U-Pb zircon geochronology and geochemical investigation into the evolution of the Melanesian arc utilizing a comprehensive sample suite from the Simuku Igneous Complex of West New Britain, Papua New Guinea. Development of the embryonic island arc from at least 40 Ma and progressive arc growth was punctuated by distant collision of the Ontong Java Plateau and subduction cessation from 26 Ma. This change in subduction dynamics is represented in the Melanesian arc magmatic record by emplacement of the Simuku Porphyry Complex between 24 and 20 Ma. Petrological and geochemical affinities highlight genetic differences between 'normal' arc volcanics and adakite-like signatures of Cu-Mo mineralized porphyritic intrusives. The contemporaneous emplacement of both 'normal' arc volcanics and adakite-like porphyry intrusives may provide avenues for future research into the origin of diverse styles of arc volcanism. Not only is this one of few studies into the geology of the Melanesian arc, it is also among the first to address the distant tectono-magmatic effects of major arc/forearc collision events and subduction cessation on magmatic arcs, and also offers insight into the tectonic context of porphyry formation in island arc settings.

  2. Rock magnetic and petrographical-mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc

    NASA Astrophysics Data System (ADS)

    Rashidov, V. A.; Pilipenko, O. V.; Petrova, V. V.

    2016-07-01

    The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.

  3. Contribution of Egr1/zif268 to Activity-Dependent Arc/Arg3.1 Transcription in the Dentate Gyrus and Area CA1 of the Hippocampus

    PubMed Central

    Penke, Zsuzsa; Chagneau, Carine; Laroche, Serge

    2011-01-01

    Egr1, a member of the Egr family of transcription factors, and Arc are immediate early genes known to play major roles in synaptic plasticity and memory. Despite evidence that Egr family members can control Arc transcriptional regulation, demonstration of a selective role of Egr1 alone is lacking. We investigated the extent to which activity-dependent Arc expression is dependent on Egr1 by analyzing Arc mRNA expression using fluorescence in situ hybridization in the dorsal dentate gyrus and CA1 of wild-type (WT) and Egr1 knockout mice. Following electroconvulsive shock, we found biphasic expression of Arc in area CA1 in mice, consisting in a rapid (30 min) and transient wave followed by a second late-phase of expression (8 h), and a single but prolonged wave of expression in the dentate gyrus. Egr1 deficiency abolished the latest, but not the early wave of Arc expression in CA1, and curtailed that of the dentate gyrus. Since the early wave of Arc expression was not affected in Egr1 mutant mice, we next analyzed behaviorally induced Arc expression patterns as an index of neural ensemble activation in the dentate gyrus and area CA1 of WT and Egr1 mutant mice. Spatial exploration of novel or familiar environments induced in mice a single early and transient wave of Arc expression in the dentate gyrus and area CA1, which were not affected in Egr1 mutant mice. Analyses of Arc-expressing cells revealed that exploration recruits similar size dentate gyrus and CA1 neural ensembles in WT and Egr1 knockout mice. These findings suggest that hippocampal neural ensembles are normally activated immediately following spatial exploration in Egr1 knockout mice, indicating normal hippocampal encoding of information. They also provide evidence that in condition of strong activation Egr1 alone can control late-phases of activity-dependent Arc transcription in the dentate gyrus and area CA1 of the hippocampus. PMID:21887136

  4. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel

  5. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Castillo-Carrión, Mercedes; Pérez-Estaún, Andrés

    2014-05-01

    The Lower Cretaceous Puerto Plata ophiolitic complex (PPC) occurs west of the main collisional suture between the Caribbean and North American plates in the northern Dominican Republic, and imposes important constraints on the geochemical and tectonic processes associated with the birth of the Caribbean island-arc. The PPC exposes a tectonically dismembered 3.0-km-thick section of upper mantle harzburgites, lower crustal cumulate gabbroic rocks and upper crustal basaltic pillow lavas, volcanic breccias and pelagic sediments. The harzburgites exhibit a highly depleted signature in terms of their modal compositions, mineral chemistry and whole rock major and trace element contents, suggesting that they are residues after high-degrees of partial melting. Melt modeling suggests that they were similar in trace element characteristics to a boninite. In the crustal sequence, three magmatic episodes have been recognized based on field, mineral and geochemical data. The first phase is composed of the lower layered gabbronorites, which are variably deformed and recrystallized at high-temperature conditions. Trace element modeling suggests that the gabbronorites crystallized from LREE-depleted island-arc tholeiitic (IAT) melts. The second phase is composed of the intermediate layered troctolites (126 Ma), which are undeformed and preserve igneous cumulate textures. Modeling indicates that the troctolites crystallized from boninitic melts. The gabronorite-troctolite substrate was intruded by a third, supra-subduction zone tholeiitic magmatic phase at < 126 Ma, which formed the upper olivine gabbros and gabbronorites. These gabbroic rocks formed from melts similar in composition to the IAT basalts and basaltic andesites of the overlying Los Caños Fm. Contemporaneous Aptian to lower Albian mafic volcanic rocks of the Los Ranchos Fm and Cacheal complex have comparable IAT geochemical and isotopic signatures, suggesting that all of them may have erupted over a single piece of the

  6. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression.

    PubMed

    Mandel-Brehm, Caleigh; Salogiannis, John; Dhamne, Sameer C; Rotenberg, Alexander; Greenberg, Michael E

    2015-04-21

    Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder. PMID:25848016

  7. Origin of primitive ultra-calcic arc melts at crustal conditions - Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Di Carlo, Ida; Pichavant, Michel; Rotolo, Silvio G.; Scaillet, Bruno

    2016-07-01

    To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O-CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encountered include clinopyroxene, olivine, plagioclase and Fe-oxide. Clinopyroxene is slightly earlier than olivine in the crystallization sequence. It is the liquidus phase at 150 MPa, being joined by olivine on the liquidus between 44 and 88 MPa. Plagioclase is the third phase to appear in the crystallization sequence and orthopyroxene was not found. Experimental clinopyroxenes (Fs7-16) and olivines (Fo78-92) partially reproduce the natural phenocryst compositions (respectively Fs5-7 and Fo87-91). Upon progressive crystallization, experimental liquids shift towards higher SiO2 (up to ~ 55 wt.%), Al2O3 (up to ~ 18 wt.%) and K2O (up to ~ 5.5 wt.%) and lower CaO, MgO and CaO/Al2O3. Experimental glasses and natural whole-rock compositions overlap, indicating that progressive crystallization of Som-1 type melts can generate differentiated compositions such as those encountered at Vulcano. The low pressure cotectic experimental glasses reproduce glass inclusions in La Sommata clinopyroxene but contrast with glass inclusions in olivine which preserve basaltic melts more primitive than Som-1. Phase relations for the La Sommata basalt are identical in all critical aspects to those obtained previously on a synthetic ultra-calcic arc composition. In particular, clinopyroxene + olivine co-saturation occurs at very low

  8. Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators

    SciTech Connect

    Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

    2010-06-14

    Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

  9. Preliminary results of trace elements mobility in soils and plants from the active hydrothermal area of Nisyros island (Greece)

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; Calabrese, Sergio; Milazzo, Silvia; Brusca, Lorenzo; D'Alessandro, Walter; Kyriakopoulos, Konstantinos; Tassi, Franco; Parello, Francesco

    2014-05-01

    Trace elements, i.e. chemical constituents of rocks with concentration <1000 ppm, play a structural role in the organisms and use proteins as a carrier to their target site. Their toxicity depends on their concentration, speciation and reactions with other elements. In volcanic environments, significant amounts of trace elements discharged from gas emissions, contribute to produce air particulate. Nisyros Island is a stratovolcano located at the South Aegean active Volcanic Arc. Intense hydrothermal activity characterise the Lakki caldera. In particular, the fumaroles located in the craters of Stefanos, Kaminakia, Lofos Dome and the area comprising Phlegeton, Polyvotes Micros and Polyvotes Megalos discharge hydrothermal fluids rich in H2O (91- 99%), SO2 and H2S. Their temperatures are almost 100o C and H2S is highly abundant accounting for 8-26 % of the released dry gas phase. On June 2013, during a multidisciplinary field trip on Nisyros island, 39 samples of top soils and 31 of endemic plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected in the caldera area, with the aim to investigate the distribution of concentrations of trace elements related to the contribution of deep originated fluids. Moreover, one sample of plant and soil was collected outside the caldera as local background, for comparison. All the soil samples were powdered avoiding metal contamination and they were extracted twice, using HNO3 + HCl for one extraction (closed microwave digestion) and ultrapure de- ionized water for the other one (leaching extraction). The leaves of plants were gently isolated, dried and powdered for acid microwave extraction (HNO3 + H2O2). All the solutions were analysed for major and trace elements contents by using ionic chromatography (IC) and inductively plasma spectrometry (ICP-MS and ICP-OES). The preliminary results showed high enrichment of many trace elements both in plant and soils respect to the local background, in

  10. Opening of the Grenada back-arc Basin and evolution of the Caribbean plate during the Mesozoic and early Paleogene

    NASA Astrophysics Data System (ADS)

    Bouysse, Philippe

    1988-06-01

    Geological and geophysical data indicate that the Grenada Basin was presumably created, during the Paleocene, by sundering of a proto-Eastern Caribbean arc into a remnant arc to the west (Aves Swell) and an active arc to the east (Lesser Antilles Ridge). Grenada Basin spreading is thought to have been penecontemporaneous with the creation of the Yucatan Basin located at the opposite side of the Caribbean Sea. I suggest that a continuous Mesozoic Caribbean Arc (M.C.A.), including the Greater Antilles, the Aves-Lesser Antilles system, and the Aruba-Blanquilla Chain (Netherland-Venezuelan Antilles), was initiated in the Pacific, probably about 130-120 Ma ago. Its arrival in front of, and its subsequent motion inside the Central Atlantic ("Tethyan") seaway caused the opening of both Yucatan and Grenada basins which occurred at the two initial points of contact with the North and South American cratons. In contrast to the style of many other island arcs, this back-arc spreading event occurred only once in the long history of the M.C.A. The Lesser Antilles appear to be the oldest currently active intra-oceanic island arc.

  11. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  12. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  13. Three-Dimensional Seismic Attenuation Structure in the Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Komatsu, M.; Takenaka, H.

    2015-12-01

    Tomographic studies have been conducted to retrieve 3D seismic attenuation structure around Japan Arc since 1980s. However, in the Ryukyu Arc, 3D attenuation structures has never been estimated. It is important to estimate the 3D attenuation structure in this region, since there are highly active volcanos and seismicity between the Okinawa Trough and the Ryukyu Trench. In this study, we estimate 3D seismic attenuation structure in the Ryukyu Arc. We use seismic waveform data recorded by seismic observation networks of NIED, JMA and Kagoshima University, from 2004/06 to 2014/05. We select seismic events of more than 4,500. Since the Ryukyu Arc region are so wide, we separate it into three subregions: Sakishima Islands, Okinawa Islands and Amami Islands subregions. Before calculating the attenuation quantity t*, the corner frequency of the source spectrum for each event is estimated by using an omega square model. The t* is estimated from the amplitude decay rate from the source-corrected spectra. We then invert the t* data to the attenuation structure by a 3D tomographic technique using the non-negative least squares method. Our estimated attenuation structure has the remarkable features: in Sakishima Islands subregion, high attenuation zone exists beneath northern Ishigaki Island. This region corresponds to the Okinawa Trough. High attenuation zone also exists beneath Hateruma Island in upper crust. It corresponds to the accretionary prism formed by subducting Philippine Sea Plate. In Amami Islands subregion, high attenuation zone is located along volcanic front. Low attenuation zone spreads over subducting Philippine Sea slab in all subregions.Acknowledgements: We used JMA Unified Hypocenter Catalogs and seismic waveform data recorded by NIED, JMA and Kagoshima University. We also used a computer program by Zhao et al. (1992, JGR) for the tomographic analysis.

  14. A Comparison of Health Education and Physical Activity Practice in Four Regions of the Hawaiian Island of Oahu

    ERIC Educational Resources Information Center

    Chun, Donna; Eburne, Norman; Donnelly, Joseph

    2005-01-01

    The purpose of this study was to compare four distinct Hawaiian districts on the island of Oahu regarding their efforts in presenting quality health education and physical activity. The ethnic groups represented in this study included Hawaiian, Pacific Islander, Asian and Caucasian. Questionnaires based on the Action for Healthy Kids Healthy…

  15. Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2. Public information report

    SciTech Connect

    Not Available

    1980-09-01

    The document presents answers to frequently asked questions about plans for cleanup and decontamination activities at Three Mile Island, Unit 2. Answers to the questions asked are based on information in the NRC 'Draft Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident, Three Mile Island Nuclear Station, Unit 2,' NUREG-0683.

  16. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    NASA Astrophysics Data System (ADS)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  17. Generation of active entities by the pulsed arc electrohydraulic discharge system and application to removal of atrazine.

    PubMed

    Karpel Vel Leitner, N; Syoen, G; Romat, H; Urashima, K; Chang, J-S

    2005-11-01

    Reactions induced by the pulsed arc electrohydraulic discharge (PAED) system in aqueous solutions were studied. PAED was generated by a spark gap type power supply (0.5 kJ/pulse) with rod-to-rod type electrodes in water. The measurements of physical parameters showed that the discharge is characterized by a sudden drop of the voltage while a peak of current occurs. The pressure waveform is composed of a positive pressure wave (shock wave) followed by negative pressure waves (expansion waves with a multiple wall reflection wave). The optical emission arc spectrum covers the UV-B, UV-A and visible zone with a maximum intensity in the range 380-425 nm. Peaks were representative of OH() radicals and atomic hydrogen emission lines. The identification of typical by-products from the removal of selected compounds in aqueous solution showed that PAED is the origin of photolysis, oxidation and reduction reactions. The impact of scavengers for OH() radicals or solvated electrons on the removal of atrazine and the concentration of the by-product deethylatrazine allowed the study of the combined and separate effects of the active entities. The energy efficiency of the PAED system can be improved by varying the gap of the electrodes in water. PMID:16256168

  18. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tsai, H. L.

    2001-06-01

    This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.

  19. What drives centuries-long polygenetic scoria cone activity at Barren Island volcano?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu

    2014-12-01

    Barren Island in the Andaman Sea is an active mafic stratovolcano, which had explosive and effusive eruptions, followed by caldera formation, in prehistoric time (poorly dated). A scoria cone within the caldera, marking volcanic resurgence, was active periodically from 1787 to 1832 (the historic eruptions). Since 1991, the same scoria cone has produced six eruptions, commonly including lava flows. Links between Barren Island's eruptions and giant earthquakes (such as the 26 December 2004 Great Sumatra megathrust earthquake) have been suggested, though there is no general correlation between them. The ≥ 227-year-long activity of the scoria cone, named here Shanku ("cone"), is normally driven by purely magmatic processes. I present a "source to surface" model for Barren Island and Shanku, including the source region, deeper and shallow magma chambers, volcanotectonics, dyking from magma chambers, and eruptions and eruptive style as controlled by crustal stresses, composition and volatile content. Calculations show that dykes ~ 0.5 m thick and a few hundred meters long, originating from shallow-level magma chambers (~ 5 km deep), are suitable feeders of the Shanku eruptions. Shanku, a polygenetic scoria cone (at least 13 eruptions since 1787), has three excellent analogues, namely Anak Krakatau (40 eruptions since 1927), Cerro Negro (23 eruptions since 1850), and Yasur (persistent activity for the past hundreds of years). This is an important category of volcanoes, gradational between small "monogenetic" scoria cones and larger "polygenetic" volcanoes.

  20. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Ishii, T.

    2006-12-01

    Arc volcanism in the Izu-Ogasawara arc is separated into first and latter term at the separate of Shikoku Basin. Middle to late Eocene early arc volcanism formed a vast terrane of boninites and island arc tholeiites that is unlike active arc systems. A following modern-style arc volcanism was active during the Oligocene, along which intense tholeiitic and calc-alkaline volcanism continued until 29Ma, before spreading of the back- arc basin. The recent arc volcanism in the Izu-Ogasawara arc have started in the middle Miocene, and it is assumed that arc volcanism were decline during spreading of back-arc basin. In the northern Kyushu-Palau Ridge, submarine bottom materials were dredged during the KT95-9 and KT97-8 cruise by the R/V Tansei-maru, Ocean Research Institute, university of Tokyo, and basaltic to andesitic volcanic rocks were recovered during both cruise except for Komahashi-Daini Seamount where recovered acidic plutonic rocks. Komahashi-Daini Seamount tonalite show 37.5Ma of K-Ar dating, and this age indicates early stage of normal arc volcanism. These volcanic rocks are mainly cpx basalt to andesite. Two pyroxene basalt and andesite are only found from Miyazaki Seamount, northern end of the Kyushu-Palau Ridge. Volcanic rocks show different characteristics from first term volcanism in the Izu-Ogasawara forearc rise and recent arc volcanism. The most characteristic is high content of incompatible elements, that is, these volcanics show two to three times content of incompatible elements to Komahashi-Daini Seamount tonalite and former normal arc volcanism in the Izu outer arc (ODP Leg126), and higher content than recent Izu arc volcanism. This characteristic is similar to some volcanics at the ODP Leg59 Site448 in the central Kyushu- Palau Ridge. Site448 volcanic rocks show 32-33Ma of Ar-Ar ages, which considered beginning of activity of Parece Vela Basin. It is considered that the dredged volcanic rocks are uppermost part of volcanism before spreading of

  1. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Leat, Philip T.; Day, Simon J.; Tate, Alex J.; Martin, Tara J.; Owen, Matthew J.; Tappin, David R.

    2013-09-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that the volcanic arc has a simple structure composed of large volcanoes which form a well-defined volcanic front, but with three parallel cross-cutting seamount chains extending 38-60 km from near the volcanic front into the rear-arc. There is no evidence for intra-arc rifting or extinct volcanic lines. Topographic evidence for faulting is generally absent, except near the northern and southern plate boundaries. Most of the volcanic arc appears to be built on ocean crust formed at the associated back-arc spreading centre, as previously proposed from magnetic data, but the southern part of the arc appears to be underlain by older arc or continental crust whose west-facing rifted margin facing the back-arc basin is defined by the new bathymetry. The new survey shows nine main volcanic edifices along the volcanic front and ca. 20 main seamounts. The main volcanoes form largely glaciated islands with summits 3.0-3.5 km above base levels which are 2500-3000 m deep in the north and shallower at 2000-2500 m deep in the south. Some of the component seamounts are interpreted to have been active since the last glacial maximum, and so are approximately contemporaneous with the volcanic front volcanism. Seven calderas, all either submarine or ice-filled, have been identified: Adventure volcano, a newly discovered submarine volcanic front caldera volcano is described for the first time. All but one of the calderas are situated on summits of large volcanoes in the southern part of the arc, and

  2. Arc-parallel extrusion of the Timor sector of the Banda arc-continent collision

    NASA Astrophysics Data System (ADS)

    Duffy, Brendan; Quigley, Mark; Harris, Ron; Ring, Uwe

    2013-06-01

    studies of synorogenic basins in Timor using field and remote sensing techniques provide new structural and geomorphic evidence for syn-collisional extension in the converging plate boundary zone between the Australian Plate and Banda Arc. Fault mapping and kinematic analysis at scales ranging from outcrop (<1 m2) to the dimensions of the active orogen in East Timor (~100 km2) identify a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20 km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of NE-directed extension across the Timor orogen based on reconstructions of fault-dismembered massifs. Major orogen-parallel ENE-oriented faults on the northern and southern sides of Timor exhibit normal-sinistral and normal-dextral kinematics, respectively. The overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, before pronounced rapid uplift of the orogen. We link this to progressive coupling of the fore-arc to an underthrust plateau on the Australian Plate and subduction of its ocean crust. Our results enable us to track the structural evolution of the upper crust during dramatic plate-boundary reorganizations accompanying the transition from subduction to collision. The deformation structures that we document suggest that both upper and lower plate deformation during incipient island arc-continent collision was largely controlled by the geometry and topography of the lower plate.

  3. Hydrothermal activity in the Lau back arc basin: Plumes and hot fluids chemistry

    SciTech Connect

    Charlou, J.L.; Donval, J.P.; Caprais, M.P.; Fouquet, Y. ); Erzinger, J. ); Von Stackelberg, U. )

    1990-06-01

    During the French-German cruise Nautile(April-May 1989), 22 dives have been completed to understand the processes of seafloor arc formation associated with hydrothermal circulation along the volcanic Valu FA ridge. The CTD recordings, obtained in real time inside the Nautile, show the narrow relation between the geological structure and the temperature anomalies. The anomalies' amplitude and intensity permit the precise localization of hot hydrothermal discharges (Vai Lili site), diffuse (Hine Hina field) and nonperceptible inputs. Buoyant plumes producing entrainment and vertical transport up to 200 m above the seafloor are clearly identified with high CH{sub 4} (up to 4.4 {mu}l/L) and Mn (up to 90 {mu}mol/Kg) concentrations. For the first time, black smokers (240{degree} to 334{degree}C) were collected in a back arc environment. The samples (more than 90% pure hydrothermal fluid) have end member pH (1.8), among the lowest ever measured in oceanic hydrothermal fluids. The calculated end-member concentrations are enriched for Cl(0.65-0.75 mol/kg), Na (0.52-0.58 mol/Kg), Ca (30 mmol/Kg), K (55-67 mmol/Kg), Sr (123 {mu}mol/Kg), Rb (72-92 {mu}mol/kg), Li (690 {mu}mol/Kg). Compared with other hydrothermal waters, Si is slightly depleted (12-14 mmol/Kg), Fe (1.12.5 mmol/Kg), Mn (5.8-6.9 mmol/Kg), Cu (16-43 {mu}mol/Kg), Zn (1.2- 3 mmol/Kg) concentrations are high. The Vai Lili site fluid concentrations in B (twice seawater), Ba (up to 40 {mu}mol/Kg), Zn (up to 3 mmol/Kg), Pb (up to 7 {mu}mol/kg). As (up to 11 {mu}mol/Kg) as well as the molar Cs/Rb and Fe/Mn ratios of respectively 0.024 and 0.2 are unexpected.

  4. Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia: Combined subduction and assimilation of continental material

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; van Bergen, M. J.; White, W. M.; Varekamp, J. C.

    1993-12-01

    We present Sr, Nd, and Pb isotope results and SiO2, Rb, Sr, Sm, Nd, U, Th, and Pb data for six active volcanoes and one extinct volcanic island distributed over the whole length of the Banda Arc. Rock types range from low-K tholeiitic in the NE to high-K calc-alkaline in the SW. The volcanoes in the NE have 'normal' arc signatures, whereas those in the SW have extreme values. Serua, situated in the central part, is the most anomalous volcano with regard to its Sr and Nd isotopic composition but not with regard to Pb isotopes. The inactive island of Romang in the SW overlaps the Serua trends. The volcanoes display variable within-suite ranges in Sr-87/Sr-86 and Nd-143/Nd-144. Large ranges (e.g., at Nila) are consistent with assimilation (10-20%) of carbonate-bearing sediments from the arc crust. Despite the evidence for assimilation, it cannot explain all of the Sr-Nd isotopic trends found, and Banda Arc magmas must have already obtained a 'continental' signature at depth before they reached the arc crust. Within-suit trends of Pb isotopes are virtually absent. We found an extreme range in the volcanics along the arc which coincide with a similar trend in sediments in front of the arc and consider this as strong evidence for the contribution of subducted continent-derived material to magma sources.

  5. Combined mantle plume-island arc model for the formation of the 2.9 Ga sumozero-kenozero greenstone belt, SE baltic shield: Isotope and trace element constraints

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Hofmann, A. W.; Amelin, Yu. V.; Garbe-Schönberg, C.-D.; Samsonov, A. V.; Shchipansky, A. A.

    1999-11-01

    The Sumozero-Kenozero greenstone belt in the SE Baltic Shield is ˜400 km long and up to 50 km wide and includes two main units with a total thickness of ˜5 km. The lower unit consists of oceanic plateau-type submarine mafic-ultramafic lavas. The upper unit is made up of island arc-type volcanic BADR (basalt-andesite-dacite-rhyolite)-series rocks and adakite-series subvolcanic rhyolites. Both units are separated by major thrust zones from the 3.2 Ga TTG-gneisses of the Vodla Block microcontinent. Komatiites of the lower unit were derived from a liquid containing ˜30% MgO that erupted at a temperature of ˜1570°C. The komatiite liquid began melting at depths of 300-400 km in a mantle plume. The plume was 250°C hotter than the ambient mantle and had the thermal potential to produce oceanic crust with an average thickness of ˜35 km, which was at least in part unsubductable. The lower unit mafic-ultramafic lavas have high ɛNd(T) of +2.7 ± 0.3, relatively unradiogenic Pb isotope compositions (μ 1 = 8.73 ± 0.20), are depleted in highly incompatible elements, and show Nb-maxima (Nb/Nb∗ = 1.2 ± 0.2, Nb/U = 43 ± 6). These parameters are similar to those found in a number of early Precambrian uncontaminated greenstones and in recent Pacific oceanic flood basalts (OFB). They are regarded as plume source characteristics. The BADR-series mafic-intermediate to felsic volcanic rocks and subvolcanic adakitic-series rhyolites from the upper unit have island arc geochemical signatures (enrichment in highly incompatible elements, large negative HFSE-anomalies, Nb/Nb∗ = 0.32 ± 0.10, Nb/U = 8.8 ± 2.5), but are characterized by high positive ɛNd(T) values of +2.4 ± 1.2, indistinguishable from the lower unit mafic-ultramafic sequences. They represent mantle wedge-derived and slab-derived melts, respectively, erupted in the inner and frontal parts of an intraoceanic island arc. U-Pb zircon age of 2875 ± 2 Ma for the upper unit BADR-series felsic volcanic rocks, and Pb

  6. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the

  7. Hydrothermal activity in the Lau back-arc basin:Sulfides and water chemistry

    NASA Astrophysics Data System (ADS)

    Fouquet, Yves; von Stackelberg, Ulrich; Charlou, Jean Luc; Donval, Jean Pierre; Foucher, Jean Paul; Erzinger, Jorg; Herzig, Peter; Mühe, Richard; Wiedicke, Michael; Soakai, Sione; Whitechurch, Hubert

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga- Kermadec trench. The four diving areas, between lat 21°25‧S and 22°40‧S in water ˜2000 m deep, were selected on the basis of results from cruises of the R/V JeanCharcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity—in all four areas, over more than 100 km—as indicated by the widespread occurrence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in the water chemistry of the hydrothermal fluid (pH = 2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  8. Changing conditions of mantle wedge melting across arc as illustrated by changing iron isotopes compositions

    NASA Astrophysics Data System (ADS)

    Foden, J. D.; Halverson, G. P.; Sossi, P.; Elburg, M. A.

    2009-12-01

    Active volcanoes in the eastern Sunda Arc , Indonesia are distributed across a wide range of position above the active Benioff Zone. These include the near fore-arc tholeiite suite from Ija volcano on Flores Island which is about 100 Km above the slab. Then at successively greater depths are the archetypal calcalkaline suites of Rinjani and Batur volcanoes on Lombok and Bali and then the rear arc alkalic suites from Tambora, Sangeang Api and Batu Tara. The latter approaching 200km above the slab. The fore-arc volcano Ija is clearly influenced by hydrous fluid flux from the slab, having high Ba/Th and U/Nb ratios. The strongly undersaturated alkalic suites from Tambora and Batu Tara are highly enriched in LIL incompatible elements, but do not have sufficiently anomalously high 87Sr/86Sr or Pb isotopic ratios or low 143Nd/144Nd ratios to explain this anomaly as entirely due to significantly larger components of subducted sediment. This implies that these rear arc volcanoes are the product of smaller percentage melting of the supra-slab mantle wedge. This is also consistent with the determined lower water content of Tambora basalts compared with Ija fore-arc basalts. δ56Fe values were determined and show a systematic increase across the arc that is equivalent to that determined by other workers between some global MORB and OIB suites the bulk earth. This is like across arc variation described elsewhere (New Britain; Dauphas et al., 2009). It appears that this stable isotope fractionation results from the changed mode of melt percolation and extraction from the deeper, rear arc mantle wedge domains compared to the shallow fore-arc.

  9. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  10. Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Xue, Chunji; Symons, David T. A.; Zhang, Zhaochong; Wang, Honggang

    2014-05-01

    The successful exploration for porphyry copper deposit in western Tianshan, Xinjiang, faces great challenge. Tulasu basin is an important epithermal gold ore cluster in western Tianshan, which was formed in a southwest-Pacific-type island-arc setting during the late Paleozoic by the southward subduction of the North Tianshan ocean beneath the Yili plate. Porphyry Cu-Au deposits are possibly to be found at depth or adjacent to these epithermal gold deposits. Some sulfide-mineralized microgranular enclaves of monzonite porphyry and microdiorite were found in andesites of the Tawuerbieke gold district, Tulasu basin. The enclaves are randomly distributed, with generally round or subangular shape and commonly clearly defined within their host andesite, and have a chilled surrounding margin of andesite. The monzonite porphyry enclaves (MPE) exhibit porphyritic texture with the phenocrysts of plagioclase and K-feldspar. The microdiorite enclaves (MDE) are mainly composed of plagioclase and hornblende with an aplitic texture and massive structure. The host andesites show porphyritic texture, with the phenocrysts major of plagioclase, minor of hornblende and clinopyroxene. The groundmass consists of short-column plagioclase and minor clinopyroxene with a hyalopilitic texture. Zircon grains from a MPE sample yield a weighted 206Pb/238U age of 356.2 ± 4.3 Ma (n = 13, MSWD = 1.11), which is effectively coincident with the 360.5 ± 3.4 Ma (n = 20, MSWD = 0.61) of an andesite sample within analytical error, indicating that they were coeval. In addition, the MPE, MDE and the andesite samples share similar normalized incompatible element and rare earth element patterns that are characterized by a pronounced enrichment of large ion lithophile elements and a deficit of high field strength elements. Moreover, the samples show similar Nd isotope compositions to the contemporary andesites and basaltic andesites. Detailed petrology, geochronology and geochemistry studies suggest that

  11. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  12. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    PubMed

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy. PMID:20364316

  13. A Structural Explanation for the Antithrombotic Activity of ARC1172, a DNA Aptamer that Binds von Willebrand Factor Domain A1

    PubMed Central

    Huang, Ren-Huai; Fremont, Daved H.; Diener, John L.; Schaub, Robert G.; Sadler, J. Evan

    2013-01-01

    Summary ARC1172 is a 41-mer DNA aptamer selected to bind the A1 domain of von Willebrand factor (VWF). A derivative of ARC1172 with modifications to increase intravascular survival inhibits carotid artery thrombosis in a Cynomolgus macaque model and inhibits VWF-dependent platelet aggregation in humans, suggesting that such aptamers may be useful to prevent or treat thrombosis. In the crystal structure of a VWF A1-ARC1172 complex, the aptamer adopts a three-stem structure of mainly B-form DNA with three noncanonical base pairs and 9 unpaired residues, 6 of which are stabilized by base-base or base-deoxyribose stacking interactions. The aptamer-protein interface is characterized by cation-π interactions involving Arg, Lys and Gln residues, often stabilized by H-bonds with adjacent bases. The ARC1172 binding site on the A1 domain overlaps with that of botrocetin and clashes with glycoprotein Ibα binding at an adjacent site, which accounts for the antithrombotic activity of ARC1172 and related aptamers. PMID:19913482

  14. Continuous, Long-term, Cyclic, Varied Eruptive Activity Observed at NW Rota-1 Submarine Volcano, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Dziak, R. P.; Baker, E. T.; Cashman, K. V.; Embley, R. W.; Ferrini, V.; de Ronde, C. E.; Butterfield, D. A.; Deardorff, N.; Haxel, J. H.; Matsumoto, H.; Fowler, M. J.; Walker, S. L.; Bobbitt, A. M.; Merle, S. G.

    2009-12-01

    NW Rota-1 is a conical, basaltic-andesite submarine volcano in the Mariana arc with a summit depth of 520 m. Eruptive activity was first witnessed here during remotely operated vehicle (ROV) dives in 2004, and was also observed during all four subsequent ROV expeditions in 2005, 2006, and 2009. Cyclic explosive bursts were documented by a portable hydrophone during the 2006 ROV dives. More recently, a year of instrumental monitoring data from a moored hydrophone and plume sensor show that the volcano was continuously active from February 2008 to February 2009, and that the cyclic character of the eruptions occurred with variable intensity and periodicity. The 2008-2009 hydrophone record includes explosive bursts every 1-2 minutes, with high acoustic amplitudes in the first half of the year and lower more variable amplitudes in the second half. In contrast, the moored turbidity sensor recorded major eruptive plumes on a time scale of every few days to weeks, and at approximately the same frequency throughout the year. This apparent disparity may be explained by the most recent ROV and portable hydrophone observations at NW Rota-1 in April 2009, which confirmed continuous and diverse eruptive activity with cyclicity over several time scales, from minutes to days. Visual observations at the eruptive vent provided new insight into the process of very slow lava extrusion on the seafloor. During slow extrusion (at rates of 1-2 m3/hr), lava spines rose in the eruptive vent, then gradually disintegrated into angular blocks as they cooled and were shoved aside by the next lava to emerge. Freshly erupted lava blocks periodically tumbled down the sides of a growing cone (40-m high and 300-m wide) that had been constructed by this process since the last visit in 2006. Thus auto-brecciation during slow lava extrusion underwater produces primary deposits that could easily be mistaken as secondary, and can construct substantial landforms on submarine arc volcanoes. Even during

  15. Impact of Island-Induced Clouds on Surface Measurements: Analysis of the ARM Nauru Island Effect Study Data

    SciTech Connect

    McFarlane, Sally A.; Long, Charles N.; Flynn, Donna M.

    2005-07-01

    The Department of Energy's second Atmospheric Radiation and Cloud Station (ARCS) site in the tropical western Pacific (TWP) region was established on the island of Nauru as part of the Atmospheric Radiation Measurement (ARM) Program. Analysis of data taken during the Nauru99 intensive field experiment indicated that the cloud and radiation measurements at the ARCS site were being affected by a cloud plume, which was induced by the island due to diurnal heating relative to the ocean and the predominantly easterly flow of the tradewinds. The Nauru Island Effects Study (NIES) was developed to identify times when the island cloud effect occurs and to quantify the effect on the ARCS measurements. The Nauru cloud plume is found to be highly correlated with surface wind direction. During suppressed conditions the plume heading is predominantly to the west because of the consistency of the easterly trade winds. During El Nino conditions, the cloud plume can occur with almost any heading due to the variability of the surface winds. During suppressed conditions the cloud plume was observed in 60% of the visible satellite images after 10:30 LST. During active conditions, the plume was observed in only 25% of the satellite images and only half of the observed plumes were downwind of the ARCS site. This study indicates that the absolute increase in low cloud frequency due to the cloud plume is on the order of 10% and the effect of the cloud plume on the average daily surface radiation is around 50-60 wm. By installing a simple measurement platform consisting of surface meteorological instruments and a global shortwave radiometer at a site on the opposite side of the island, the effect of the cloud plume on the radiation field at the ARCS site can be quantified on a long term basis.

  16. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  17. Estimation of phytochemicals and antioxidant activity of underutilized fruits of Andaman Islands (India).

    PubMed

    Singh, D R; Singh, Shrawan; Salim, K M; Srivastava, R C

    2012-06-01

    The present study aimed to determine the antioxidant activity and phytochemical contents in 10 underutilized fruits of Andaman Islands (India) namely Malpighia glabra L., Mangifera andamanica L., Morinda citrifolia L., Syzygium aqueum (Burm.f) Alst., Annona squamosa L., Averrhoa carambola L., Averrhoa bilimbi L., Dillenia indica L., Annona muricata L. and Ficus racemosa L. The antioxidant activity varied from 74.27% to 98.77%, and the methanol extract of M. glabra showed the highest antioxidant activity (98.77%; inhibitory concentration, IC(50) = 262.46 μg/ml). Methanol was found to be a better solvent than acetone and aqueous for estimating the antioxidant activity. M. glabra was found to be rich in phytochemicals viz. polyphenol (355.74 mg/100 g), anthocyanin (91.31 mg/100 g), carotenoids (109.16 mg/100 g), tannin (24.39 mg/100 g) and ascorbic acid (394.23 mg/100 g). Carbohydrate content was estimated to be highest in M. glabra (548 mg/100 g). Phenols, tannins, anthocyanins and carotenoids contents showed positive correlation (r² = 0.846, r² = 0.864, r² = 0.915 and r² = 0.806, respectively) with antioxidant activity. The information generated in present study will be useful for bioprospecting of underutilized fruits of Andaman Islands. PMID:22080844

  18. Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition.

    PubMed

    Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa

    2015-07-28

    The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles. PMID:26118789

  19. Impacts Of Radiatively-Active Aerosols On Mars’ Current Climate: Simulation Results With The NASA ARC Mars GCM

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Herin, B.; Laamoumi, F.; Wilson, R. J.; Schaeffer, J.

    2010-10-01

    Recent upgrades to the NASA Ames Research Center (ARC) Mars general circulation model (GCM) include a fundamentally new and modernized radiative transfer package which permits radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and their mutual interactions) to influence the net diabatic heating rate within the atmosphere. Such aerosols are critically important in determining the nature of atmospheric thermal structure and hence the overall climate of the planet. Our Mars GCM simulations indicate that radiatively-active water ice clouds profoundly affect the seasonal and annual mean climate in a variety of ways. In particular, preliminary results suggest that the bulk thermal structure and resultant (i.e., balanced) circulation patterns are strongly modified near the surface and aloft. Generally speaking, we find a bulk warming of the atmosphere in upper layers, a cooling of the atmosphere in the lower and near-surface regions, and, increases in the mean pole-to-equator temperature contrasts (i.e., stronger mean polar vortices). A variety of results from our baseline and control simulations (i.e., where the radiative/physical effects are examined in isolation and when combined) will be presented. Comparisons with MGS/TES and MRO/MCS measurements indicate better agreement between the model's simulated climate compared to that observed. Using a state-of-the-art Mars GCM, these results highlight important effects radiatively-active aerosols have on physical and dynamical processes active in the current climate of Mars.

  20. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and ... is now quite weak and on meeting the undisturbed air it can rise again slightly - possibly assisting in the formation of new small cumulus ...

  1. Palynological Evidence for Climatic Change and Human Activity during the Holocene on Minorca (Balearic Islands)

    NASA Astrophysics Data System (ADS)

    Yll, Errikarta-Imanol; Perez-Obiol, Ramon; Pantaleon-Cano, Jose; Roure, Joan Maria

    1997-11-01

    Four pollen diagrams from Minorca (Balearic Islands) have been correlated with other previously studied sequences from Majorca and Minorca to define a Holocene landscape sequence for the region from 8000 yr B.P. to the present. The lower part of the pollen diagrams reflects a climatic phase with more rain and less-marked seasonality than today. Significant quantities of Corylus, Buxus,and mesophilous taxa are found. In the middle part, between 5000 and 4000 yr B.P., a strong change is recorded in composition and structure of the vegetational landscape, with vegetation appearing that was adapted to Mediterranean conditions. This episode coincided with the first human colonization of the island and also with a widespread climatic change in the western Mediterranean region. The change in taxa was complex and some sclerophyllous taxa such Oleaplayed an important role in the transformation of the landscape physiognomy from the mid-Holocene until the present. Although human activities have removed much of the Mediterranean vegetation on the Balearic Islands, it seems clear that the changes have been brought about, in part, by increasing dryness.

  2. Let's Move for Pacific Islander Communities: an Evidence-Based Intervention to Increase Physical Activity.

    PubMed

    LaBreche, Mandy; Cheri, Ashley; Custodio, Harold; Fex, Cleo Carlos; Foo, Mary Anne; Lepule, Jonathan Tana; May, Vanessa Tui'one; Orne, Annette; Pang, Jane Ka'ala; Pang, Victor Kaiwi; Sablan-Santos, Lola; Schmidt-Vaivao, Dorothy; Surani, Zul; Talavou, Melevesi Fifita; Toilolo, Tupou; Palmer, Paula Healani; Tanjasiri, Sora Park

    2016-06-01

    Pacific Islander (PI) populations of Southern California experience high obesity and low physical activity levels. Given PI's rich cultural ties, efforts to increase physical activity using a community-tailored strategy may motivate members in a more sustainable manner. In this paper, we (1) detail the program adaptation methodology that was utilized to develop the Weaving an Islander Network for Cancer Awareness, Research and Training (WINCART) Center's PI Let's Move Program, a culturally tailored program aimed to increase physical activity levels among members of PI organizations in Southern California, and (2) share the program's pilot evaluation results on individual and organizational changes. The WINCART Center applied the National Cancer Institute's program adaptation guidelines to tailor the evidence-based Instant Recess program to fit the needs of PIs. The end product, the PI Let's Move Program, was piloted in 2012 with eight PI organizations, reaching 106 PI adults. At baseline, 52 % of participants reported that they were not physically active, with the average number of days engaged in medium-intensity physical activity at 2.09 days/week. After the 2-month program, participants increased the number of days that they engaged in medium-intensity physical activity from 2.09 to 2.90 days/week. Post-pilot results found that 82 % of participants reported intentions to engage in physical activity for at least the next 6 months. At baseline, only one organization was currently implementing a physical activity program, and none had implemented an evidence-based physical activity program tailored for PIs. After the 2-month timeframe, despite varying levels of capacity, all eight organizations were able to successfully implement the program. In conclusion, results from our program provide evidence that disparity populations, such as PIs, can be successfully reached through programs that are culturally tailored to both individuals and their community

  3. Geochemistry of the Chagai-Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary

    NASA Astrophysics Data System (ADS)

    Nicholson, K. N.; Khan, M.; Mahmood, K.

    2010-08-01

    The Chagai-Raskoh arc is located in western Pakistan and extends into Iran and Afghanistan. The arc forms an elongate body trending EW and is roughly 500 km long by 150 km wide. Activity along the arc began in the Late Cretaceous and continued through into the Quaternary. The oldest volcanic rocks in the arc belong to the Sinjrani and Kuchakki Formations. These rocks are primarily basalts and andesites which form both pillow sequences and massive flows. Geochemically these units are very similar. They are tholeiitic lavas with typical island arc characteristics and an N-MORB source. For example when normalized to N-MORB they are large ion lithophile element (LILE) enriched, high field strength element (HFSE) depleted, and have negative Nb and Ti anomalies. Also within the Sinjrani Formation are a sequence of Senonian basalt-dacite lavas that were generated from an N-MORB type mantle source, and although they are initially tholeiitic the more evolved lavas are calc-alkaline. Trace element data indicates these lavas have a very minor continental affiliation. The generation of these lavas may mark the increasing proximity of the Afghan continental block. The youngest units in this study belong to the Quaternary Koh-e-Sultan and the Miocene Koh-e-Dalil. These units have a calc-alkaline fractionation trend and contain more silicic lavas, including dacites, than the older lavas. Chemically these units are very similar; they both contain continental arc signatures and were generated from low degrees of partial melting of an enriched source. Current theories to explain the multiple phases of volcanism in the Chagai-Raskoh arc propose that these lavas are the result of intra-oceanic convergence in the Neo-Tethys. Our data supports this model in that the initial phases of volcanism are entirely formed in an oceanic arc. However the increasing proximity of the Afghan Block, ca. 65 Ma, is evidenced by increasing continental signatures in the lavas, followed by much younger

  4. Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Fernández-Ros, A.; Prates, G.; García, A.; Kraus, S.

    2016-01-01

    The South Shetland Islands archipelago is dynamically complex due to its tectonic surroundings. Most islands are part of a formerly active volcanic arc, although Deception, Penguin and Bridgeman Islands, as well as several submarine volcanoes, are characterized by active back-arc volcanism. Geodetic benchmarks were deployed and the movement of the lithosphere to which they were fixed measured to provide geodynamic insight for the South Shetland Islands, Bransfield Basin and Antarctic Peninsula area based on surface deformation. These benchmarks' data add spatial and temporal coverage to previous results. The results reveal two different geodynamic patterns, each confined to a distinct part of the South Shetland Islands archipelago. The inferred absolute horizontal velocity vectors for the benchmarks in the northeastern part of the archipelago are consistent with the opening of the Bransfield Basin, while benchmark vectors in the southwestern part of the archipelago are similar to those of the benchmarks on the Antarctic Peninsula. In between, Snow, Deception and Livingston Islands represent a transition zone. In this area, the horizontal velocity vectors relative to the Antarctic plate shift northeastwards from N to NW. Furthermore, the South Shetland Islands benchmarks, except for that at Gibbs (Elephant) Islands, indicate subsidence, which might be a consequence of the slab roll-back at the South Shetland Trench. In contrast, the uplift revealed by the Antarctic Peninsula benchmarks suggests glacial isostatic adjustment after the Larson B ice-shelf breakup.

  5. Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole

    PubMed Central

    Ruan, Yi; Rezelj, Saša; Bedina Zavec, Apolonija; Anderluh, Gregor; Scheuring, Simon

    2016-01-01

    Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context. PMID:27104344

  6. Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole.

    PubMed

    Ruan, Yi; Rezelj, Saša; Bedina Zavec, Apolonija; Anderluh, Gregor; Scheuring, Simon

    2016-04-01

    Listeriolysin-O (LLO) plays a crucial role during infection by Listeria monocytogenes. It enables escape of bacteria from phagocytic vacuole, which is the basis for its spread to other cells and tissues. It is not clear how LLO acts at phagosomal membranes to allow bacterial escape. The mechanism of action of LLO remains poorly understood, probably due to unavailability of suitable experimental tools that could monitor LLO membrane disruptive activity in real time. Here, we used high-speed atomic force microscopy (HS-AFM) featuring high spatio-temporal resolution on model membranes and optical microscopy on giant unilamellar vesicles (GUVs) to investigate LLO activity. We analyze the assembly kinetics of toxin oligomers, the prepore-to-pore transition dynamics and the membrane disruption in real time. We reveal that LLO toxin efficiency and mode of action as a membrane-disrupting agent varies strongly depending on the membrane cholesterol concentration and the environmental pH. We discovered that LLO is able to form arc pores as well as damage lipid membranes as a lineactant, and this leads to large-scale membrane defects. These results altogether provide a mechanistic basis of how large-scale membrane disruption leads to release of Listeria from the phagocytic vacuole in the cellular context. PMID:27104344

  7. Effects of human activity of breeding American Oystercatchers, Cumberland Island National Seashore, Georgia, USA

    USGS Publications Warehouse

    Sabine, J.B.; Meyers, J.M.; Moore, C.T.; Schweitzer, Sara H.

    2008-01-01

    Abstract.-Increased human use of coastal areas threatens the United States population of American Oystercatchers (Haematopus palliatus), a species of special concern. Biologists often attribute its low numbers and reproductive success to human disturbance, but the mechanism by which human presence reduces reproductive success is not well understood. During the 2003 and 2004 breeding seasons, 32 nesting attempts of American Oystercatchers were studied on Cumberland Island National Seashore (CINS). Behavior was examined with and without human activity in the area to determine how human activity affected behavior. The oystercatchers' behavioral responses (proportion time) were analyzed with and without human or intraspecific disturbances using mixed models regression analysis. Proportions of time human activities were present (137 m and vehicular activity should be minimized at current levels or less.

  8. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  9. Historical changes in the Mississippi-Alabama barrier islands and the roles of extreme storms, sea level, and human activities

    USGS Publications Warehouse

    Morton, Robert A.

    2007-01-01

    westward sediment transport by alongshore currents, and Cat Island is being reshaped as it adjusts to post-formation changes in wave and current patterns associated with deposition of the St. Bernard lobe of the Mississippi delta. The principal causes of barrier island land loss are frequent intense storms, a relative rise in sea level, and a deficit in the sediment budget. The only factor that has a historical trend that coincides with the progressive increase in rates of land loss is the progressive reduction in sand supply associated with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. Neither rates of relative sea level rise nor storm parameters have long-term historical rends that match the increased rates of land loss since the mid 1800s. The historical rates of relative sea level rise in the northern Gulf of Mexico have been relatively constant and storm frequencies and intensities occur in multidecal cycles. However, the most recent land loss accelerations likely related to the increased storm activity since 1995. Considering the predicted trends for storms and sea level related to global warming, it is clear that the barrier islands will continue to lose land area at a rapid rate without a reversal in trend of at least one of the causal factors. The reduction in sand supply related to disruption of the alongshore sediment transport system is the only factor contributing to land loss that can be managed directly. This can be accomplished by placing dredged material so that the adjacent barrier island shores revive it for island nourishment and rebuilding.

  10. Arc of opportunity.

    PubMed

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia. PMID:21878026

  11. Safety enhancement of oil trunk pipeline crossing active faults on Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Tishkina, E.; Antropova, N.; Korotchenko, T.

    2015-11-01

    The article explores the issues concerning safety enhancement of pipeline active fault crossing on Sakhalin Island. Based on the complexity and analysis results, all the faults crossed by pipeline system are classified into five categories - from very simple faults to extremely complex ones. The pipeline fault crossing design is developed in accordance with the fault category. To enhance pipeline safety at fault crossing, a set of methods should be applied: use of pipes of different safety classes and special trench design in accordance with soil permeability characteristics.

  12. Research and development activities on Three Mile Island Unit Two. Annual report for 1985

    SciTech Connect

    Not Available

    1986-04-01

    The year 1985 was significant in the cleanup of Three Mile Island Unit 2 (TMI-2). Major milestones in the project included lifting the plenum assembly from the reactor vessel and the start of operations to remove the damaged fuel from the reactor. This report summarizes these milestones and other TMI-2 related cleanup, research, and development activities. Other major topics include the following: waste immobilization and management; fuel shipping cask delivery and testing; sample acquisition and evaluation; and decontamination and dose reduction. 26 figs.

  13. The Denham Caldera on Raoul Volcano: dacitic volcanism in the Tonga Kermadec arc

    NASA Astrophysics Data System (ADS)

    Worthington, Tim J.; Gregory, Murray R.; Bondarenko, Vladislav

    1999-05-01

    Denham Caldera, on Raoul Volcano in the Tonga-Kermadec arc, is a simple collapse structure. It is 6.5×4 km 2 across, >0.3 km deep, represents an erupted magma volume of 8-16 km 3, and is considerably larger than previously estimated. Caldera formation was contemporaneous with an eruption of homogeneous dacitic magma at 2.2 ka. Tephra from this event is preserved as a pumice fall and pyroclastic flow sequence up to 120 m thick on Raoul Island. Offshore, this sequence forms a submarine deposit diminishing in thickness from 120 m near the northern caldera rim to 80 m at a distance of 3.5 km, where it rests upon an erosional planation surface of 17-20 ka age incised into older volcaniclastic rocks. Both the caldera volume and ejecta distribution of the 2.2 ka eruption are comparable to the caldera volume and ejecta distribution of the 1883 Krakatau eruption. Resurgent volcanism has built at least six submarine pyroclastic cones along a north-northeast trending lineament crossing Denham Caldera. Redistribution of pumiceous dacite from these cones, including ephemeral islands that emerged during the 1814 and 1870 eruptions, has contributed to recent shoaling in Denham Bay. A smaller eruption occurred in 1964-65, and hydrothermal activity persists at several sites along the lineament. Voluminous felsic volcanism at intra-oceanic arcs is usually associated with crustal extension, and was unexpected in the Tonga-Kermadec arc. However, because the tectonic fabric within the active back-arc Havre Trough is oblique to the Kermadec arc, rifts within the trough apparently propagate to the volcanic front and transfer extensional strain to the arc, thereby promoting the ascent of felsic magma. The orientation of Denham Caldera, as well as that of Macauley Caldera 110 km further south, thus reflect the stress field of the Havre Trough and not the predominant field of the arc.

  14. Fore- and Back-Arc Structures Along the Hikurangi-Kermadec Subduction Zone

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Kopp, H.; Flueh, E. R.; Henrys, S. A.; Sutherland, R.

    2009-04-01

    The Hikurangi-Kermadec subduction zone northeast of New Zealand represents an ideal target to study lateral variations of subduction zone processes. The incoming Pacific plate changes from being a large igneous province, called the Hikurangi Plateau, in the south to normal oceanic plate north of the Rapuhia Scarp. The overriding Australian plate is continental in the south, forming the North Island of New Zealand, and changes to an island arc in the north. Further lateral variability exists in changes in volcanic and hydro-thermal activity, transitions from accretion to subduction erosion, backarc spreading and rifting, and is accompanied by northward increasing seismicity. As part of the MANGO project (Marine Geoscientific Investigations on the Input and Output of the Kermadec Subduction Zone), four marine geophysical transects of largely seismic reflection and refraction data provide constraints on the upper lithospheric structures across the Hikurangi-Kermadec Trench between 29-38 degrees South. On MANGO profile 1 in the south, the initially shallow subduction of the incoming plateau coincides with crustal underplating beneath the East Cape ridge. To the west lies the 100 km wide and over 10 km deep Raukumara Basin. Seismic velocities of the upper arc mantle are around 8 km/s and are considered normal. In contrast, on MANGO profile 4, about 1000 km to the north around the volcanically active Raoul Island, the incoming oceanic crust appears to bend considerably steeper and thus causes a 50 km narrower forearc with a smaller forearc basin. Furthermore, the upper mantle velocities in both plates are relatively low (7.4-7.7 km/s), likely indicating strong bending related deformation of the incoming plate and thermal activity within the arc possibly due to spreading. Here, arc volcanism is relatively active, with many large volcanoes directly on the ridge. The central two transects MANGO 2 and 3, though without data coverage of the structure of the incoming plate

  15. Diffuse CO 2 soil degassing and CO 2 and H 2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy)

    NASA Astrophysics Data System (ADS)

    Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.

    2011-10-01

    La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.

  16. Deformation of the Calabrian Arc subduction complex and its relation to STEP activity at depth.

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Wortel, Rinus; Nijholt, Nicolai; Govers, Rob; Torelli, Luigi

    2015-04-01

    Propagating tear faults at the edge of subducted slabs ("Subduction transform edge propagator", STEP) are an intrinsic part of lithospheric plate dynamics. The surface expression of a STEP is generally not known yet, and is expected to vary significantly from one region to the other. We choose the Sicily -Calabria-Ionian Sea region, of which the lithosphere-upper mantle structure has the characteristics of a STEP zone, as a study area. The area has a very prominent accretionary wedge, the formation and subsequent deformation of which presumably were affected by the STEP activity at depth. In this contribution, we use seismic data on the near surface structure and deformation in combination with numerical model results to investigate the relation between deep STEP activity and near surface expression. Prominent features in the surface tectonics are the Malta escarpment (with predominantly normal faulting), the newly identified Ionian Fault and Alfeo-Etna fault system, and a distinct longitudinal division of the wedge into a western and an eastern lobe (Polonia et al., Tectonics, 2011). The two lobes are characterized by different structural style, deformation rates and basal detachment depths. Numerical model results indicate that the regional lithospheric structure, such as the orientation of the eastern passive (albeit subsequently activated) margin of Sicily relative to the Calabrian subduction zone, has a profound effect on possible fault activity along the Malta escarpment. Fault activity along the above primary fault structures may have varied in time, implying the possibility of intermittent activity. Interpreting seismicity in the context of a possible STEP, and the accompanying deformation zone at or near the surface, is not (yet) straightforward. Although direct evidence for recognizing all aspects of STEP activity is - as usual - lacking, a comparison with two well-known STEP regions, the northern part of the Tonga subduction zone and southern part of the

  17. Carbon-14 ages of the past 20 ka of eruptive activity of Teide volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Guillou, H.; Paterne, M.; Pérez Torrado, F. J.; Paris, R.; Badiola, E. R.

    2003-04-01

    Teide volcano, the highest volcano on earth (3718 m a.s.l., >7 Km high) after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the Island of Tenerife. Its most recent eruptive activity (last 20 Ka) is associated with the very active NW branch of the 120º triple rift system of the island. Most of the eruptions of Tenerife during the past 20 ka have occurred along this volcanic feature, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon-14 ages, obtained via coupled mass spectrometer, and others in process, provide important time constraints on the evolution of Teide's volcanic system, the frequency and distribution of its eruptions, and the associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1240 ± 60 years BP, but to the Pico Viejo volcano (17570 ± 150 years BP), flank parasitic vents (Mña. Abejera upper vent, 5170 ± 110 years BP; Mña. Abejera lower vent, 4790 ± 70 years BP; Mancha Ruana, 2420 ± 70 years BP; Mña. La Angostura, 2010 ± 60 years BP and Roques Blancos, 1790 ± 60 years BP) and the NW rift (Mña. Chío, 3620 ± 70 years BP). Although the volcanic activity during the past 20 ka included the involvement of at least 7 voluminous phonolitic flank vents in the northern, more unstable slopes of the Teide, it took place without any apparent response of the volcano; on the contrary, these eruptions seemed to progressively buttress and

  18. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  19. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  20. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  1. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar. PMID:15212272

  2. Finding Active Faults in a Glaciated and Forested Landscape: the Southern Whidbey Island Fault, Washington

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Wells, R. E.; Weaver, C. S.

    2004-12-01

    The Puget Lowland, Washington, lies within the Cascadia forearc and is underlain by at least six seismically active and regionally significant crustal faults that together accommodate several mm/yr of net north-south shortening. The surface expression of pre-15-ka slip on Puget Lowland faults has been largely scoured away or covered by glacial deposits, and younger fault geomorphology is often concealed by vegetation and urban development. High-resolution aeromagnetic and lidar surveys, followed by geologic site investigations, have identified and confirmed late Holocene deformation on each of these mostly concealed but potentially hazardous faults. Most geomorphic features identified in lidar data are closely associated with linear magnetic anomalies that reflect the underlying basement structure of the fault and help map its full extent. The southern Whidbey Island fault (SWIF) is a case in point. The northwest-striking SWIF was mapped previously using borehole data and potential-field anomalies on Whidbey Island and marine seismic-reflection surveys beneath surrounding waterways. Gravity inversions and aeromagnetic mapping suggest that the SWIF extends at least 50 km southeast, from Vancouver Island to the Washington mainland, and transitions along its length from northeast-side-down beneath Puget Sound to northeast-side-up on the mainland. Abrupt subsidence at a coastal marsh on south-central Whidbey Island suggests that the SWIF experienced a MW 6.5 to 7.0 earthquake about 3 ka. Southeast of Whidbey Island, a hypothesized southeastward projection of the SWIF makes landfall between the cities of Seattle and Everett. Linear, northwest-striking magnetic anomalies in this mainland region do coincide with this hypothesized projection, are low in amplitude, and are best illuminated in residual magnetic fields. The most prominent of the residual magnetic anomalies extends at least 16 km, lies approximately on strike with the SWIF on Whidbey Island, and passes within

  3. Detection and characterization of transient forcing episodes affecting earthquake activity in the Aleutian Arc system

    NASA Astrophysics Data System (ADS)

    Reverso, T.; Marsan, D.; Helmstetter, A.

    2015-02-01

    Crustal, slow deformation transients can be caused by fluid or magmatic intrusions, and by slow slip on faults. They can affect earthquake dynamics, if they occur close to or within seismically active zones. We here further develop, and test, a statistical method for detecting and characterizing seismicity anomalies that is only based on earthquake occurrence times and locations. We make use of this method to analyze the 2004-2013 seismicity at mc = 3.5 in the Aleutian subduction system, to find six statistically significant anomalies, with typical 1 day duration and 30 to 50 km size, that are likely related to slow deformation transients. They tend to be located in zones characterized by intermediate seismic coupling, and to mark the termination of past large to mega-thrust earthquakes. These anomalies account for a non-negligible (9%) part of the total activity, proving that non-stationary aseismic loading plays an important role in the dynamics of crustal deformation.

  4. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  5. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    PubMed

    Malkki, Hemi A I; Mertens, Paul E C; Lankelma, Jan V; Vinck, Martin; van Schalkwijk, Frank J; van Mourik-Donga, Laura B; Battaglia, Francesco P; Mahlke, Claudia; Kuhl, Dietmar; Pennartz, Cyriel M A

    2016-05-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages. PMID:27038743

  6. Crustal structure of the Caribbean-northeastern South America arc-continent collision zone

    NASA Astrophysics Data System (ADS)

    Christeson, Gail L.; Mann, Paul; Escalona, Alejandro; Aitken, Trevor J.

    2008-08-01

    We present the results of a 568-km-long regional wide-angle seismic profile conducted in the southeastern Caribbean that crosses an active island arc, a remnant arc, two basins possibly floored by oceanic crust, an allochthonous terrane of forearc affinity, and the passive margin of northern South America. The velocity structures of the Late Cretaceous Aves Ridge remnant arc and Miocene and younger Lesser Antilles arc are remarkably similar, which implies that magmatic processes have remained moderately steady over time. Crustal thickness is ˜26 km at the Aves Ridge and ˜24 km at the Lesser Antilles arc. In comparison to the Izu-Bonin and Aleutian arcs, the Lesser Antilles arc is thinner and has no evidence for a lower crustal cumulate layer, which is consistent with the estimated low magma production rates of the Lesser Antilles arc. Crustal thickness beneath the Grenada and Tobago basins is 4-10 km, and the velocity structure suggests that these basins could be floored by oceanic crust. A decrease of ˜1 km/s in average seismic velocity of the upper crust is observed from NW to SE across the North Coast fault zone; we argue that this marks the suture between the far-traveled Caribbean arc and the passive margin of the South American continent. Current strike-slip motion between the Caribbean and South American plates is located ˜30 km to the south, and thus material originally deposited on the South American passive margin has now been transferred to the Caribbean plate.

  7. Immobilization of Enzymes to Silver Island Films for Enhanced Enzymatic Activity

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    Hypothesis The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. Experiments Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550 to 10000 Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. Findings No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP. PMID:24267340

  8. Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America

    USGS Publications Warehouse

    Clift, P.D.; Pavlis, T.; DeBari, S.M.; Draut, A.E.; Rioux, M.; Kelemen, P.B.

    2005-01-01

    The Jurassic Talkeetna volcanic arc of south-central Alaska is an oceanic island arc that formed far from the North American margin. Geochronological, geochemical, and structural data indicate that the arc formed above a north-dipping subduction zone after ca. 201 Ma. Magmatism migrated northward into the region of the Talkeetna Mountains ca. 180 Ma. We interpret this magmatism as the product of removal of the original forearc while the arc was active, mainly by tectonic erosion. Rapid exhumation of the arc after ca. 160 Ma coincided with the sedimentation of the coarse clastic Naknek Formation. This exhumation event is interpreted to reffect collision of the Talkeetna arc with either the active margin of North America or the Wrangellia composite terrane to the north along a second north-dipping subduction zone. The juxtaposition of accreted trench sedimentary rocks (Chugach terrane) against the base of the Talkeetna arc sequence requires a change from a state of tectonic erosion to accretion, probably during the Late Jurassic (before 150 Ma), and definitely before the Early Cretaceous (ca. 125 Ma). The change from erosion to accretion probably reflects increasing sediment flux to the trench due to collision ca. 160 Ma. ?? 2005 Geological Society of America.

  9. The Impact of Anthropogenic Activities on Ecosystems of Long Island Sound, N.Y.

    NASA Astrophysics Data System (ADS)

    Lauture, E.; McHugh, C. M.; Nitsche, F. O.; Kenna, T. C.

    2015-12-01

    Long Island Sound (LIS) is a tide-dominated estuary located along heavily populated regions on the eastern coast of the US. Western LIS has been impacted by heavy metals and is susceptible to hypoxic and anoxic conditions since the 1900's. As part of the Long Island Sound Cable Fund and the National Science Foundation programs, we surveyed the western and central regions of LIS in 2006 and 2013, respectively. From the R/V Hugh Sharp and the R/V Seawolf, we collected high-resolution subbottom profiles, multibeam bathymetry, sediment cores, and grabs in distinct sedimentary environments such as channels, terraces, and river mouths. The goal was to evaluate the impact of anthropogenic activities as they relate to physical processes and populated regions. Along western LIS, total organic carbon (TOC) and heavy metal concentrations are higher from the 1850s to the present, especially along locations of known high organic waste. Pre-industrial concentrations of TOC average 2.22% with maximum values of 4.75%. A similar trend is observed with heavy metals. For example, lead (Pb) increased from background levels of ~10 to 20 ppm to over 200 ppm. Benthic foraminifers seem to be influenced by these trends with changes in ecosystems. The dominant assemblage, Elphidium excavatum clavatum remains dominant with a slight decrease in their abundance during anthropogenic times. From ~1850's to the present Ammonia beccarii becomes more abundant. These shifts in foraminifer species to assemblages that tolerate low oxygen conditions reflect the increasing hypoxic conditions. In central LIS, surface sediments average TOC of 1.34% with highest values of 5.21% near the Housatonic River that drains industrialized portions of Connecticut, and lowest values of 0.073% near the Long Island coastline. Understanding the evolution of hypoxia as well as the sources of heavy metals can lead to important implications for restoration of marine ecosystems.

  10. Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony

    2016-04-01

    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products - like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980's that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano. In July of 2007 a network of ocean-bottom-seismometers (OBS) and hydrophones was deployed and recovered at the end of January 2008. The instruments were located just to the east of Monowai between latitude 25°45'S and 27°30'S. The 23 OBS were placed over the fore-arc and on the incoming subducting plate to obtain local seismicity associated with plate bending and coupling of the subduction megathrust. However, we recognized additional non-seismic sleuths in the recordings. Events were best seen in 1 Hz high-pass filtered hydrophone records and were identified as T-waves. The term T-wave is generally used for waves travelling through the SOFAR channel over large distances. In our case, however, they were also detected on station down to ~8000 m, suggesting that waves on the sea-bed station were direct waves caused by explosive

  11. Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge

    USGS Publications Warehouse

    Geist, E.L.; Childs, J. R.; Scholl, D. W.

    1987-01-01

    Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2-5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins. Two groups of normal faults occur: major boundary faults common to both basins and 'intra-basin' faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates. Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive

  12. Microearthquake activity around Kueishantao island, offshore northeastern Taiwan: Insights into the volcano-tectonic interactions at the tip of the southern Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.; Pan, C.-Y.; Lin, C.-H.

    2013-05-01

    Kueishantao is a volcanic island located offshore the northeastern coast of Taiwan and lies at the tip of the southern Okinawa Trough which is the back-arc basin of the Ryukyu subduction zone. Its last eruption occurred during the Holocene (~ 7 ka), hence Kueishantao can be considered as an active volcano. In an effort to better understand how magmatic processes may interact with the regional tectonics, a seismic network was installed in the area during early January 2008. This network consisted of 16 three-component seismometers located both on Kueishantao and the coast of northeastern Taiwan. One year of data was analyzed yielding 425 earthquakes whose P and S arrival times were manually picked and each event was located using a nonlinear probabilistic location method. In order to improve the location accuracy, the minimum 1-D velocity model for this dataset was derived and all earthquakes were relocated using this model. The results show a tight cluster of events near Kueishantao while the remaining earthquakes are scattered between the island and mainland Taiwan. The majority of hypocentral depths range between 2.5 and 10 km where the former depth coincides with the bottom of the shallow sedimentary layer and the latter with the ductile lower crust. Waveforms of the three largest events were also inverted for the determination of their deviatoric and full moment tensor. No statistically significant isotropic component was found, while two of the events can be explained by a double-couple source. The third event exhibited a low frequency content (< 10 Hz) and a large non-double-couple component suggesting fluid involvement at its source. A stress inversion of all available focal mechanisms in the area shows that fluid circulation in the upper crust generates a local stress field around Kueishantao facilitating the opening of cracks along the NW-SE direction of regional extension.

  13. Tectonic Evolution of the Banda Arc-Continent Collision in the Timor Region

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    Recent detailed studies of the active Banda arc-continent collision reveal many new features about its tectonic evolution, such as (1) when collision initiated, (2) conditions and age of metamorphism, (3) timing of island emergence and exhumation, (4) how the arc is affected by collision, (5) differences between rock and surface uplift rates, (6) the temporal distribution of strain and (7) natural hazards. (1) The youngest Australian continental margin material incorporated into the Banda orogen is 7-8 Ma in East Timor and 6 Ma in West Timor. (2) Collision-related metamorphic rocks in East Timor yield max. temperatures of 850 °C and pressures of 12 kb. The age of the metamorphism is constrained by zircon U/Pb ages of 6.7 Ma. (3) Island emergence and erosional exhumation is constrained by foraminifera depth vs. age estimates of the transition from deep marine chalk to distal turbidite deposition at 4.2 Ma in East Timor and younger to the east and west. Exhumation of metamorphic rocks is constrained by amphibole with Ar/Ar cooling ages of ~6 Ma (~525°C), zircons with U/He ages of 4.5 Ma (215°C), and apatite with U/He ages of 3.5 Ma (90°C). Younger exhumation ages are found to the south. (4) Contamination of the volcanic arc by subducted continental material is first detected in eroded arc islands near East Timor at 5 Ma. The age of contamination youngs both east and west in less eroded, active arc islands. The main arc edifice north of East Timor is abandoned at 1-3 Ma and is shifted 30 km to the north by the Wetar backarc thrust. A new volcanic center emerges further north. (5) Coral terraces encrust the rising islands and yield highly variable uplift rates, with some as high as 1.5 mm/a. The highest rates correspond with active thrust faults and diapirs. Rock uplift rates associated with exhumation of the schist belt are as high as 8 mm/a. (6) GPS velocities in the most advanced part of the collision (central Timor) show that 70% of the 70 mm/a convergence

  14. Geologic map of Mount Gareloi, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2012-01-01

    As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.

  15. Holocene glacier activity on Kerguelen Island: preliminary results from a novel proglacial lake sediment record

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Bakke, Jostein; Arnaud, Fabien; Poulenard, Jérôme; Fanget, Bernard; Malet, Emmanuel; Sabatier, Pierre

    2016-04-01

    The Polar-regions are changing rapidly as greenhouse warming is continuing with huge impact on e.g. sea ice extent and snow cover. This change triggers teleconnections to low latitude areas challenging societies and human activity. We have, however, very little quantitative information of past climate in the Polar-regions that can be used to evaluate the potential responses and the response patterns to forcing changes and changes in boundary conditions. Whatever anthropogenic changes may occur in the future, they will be superimposed on, and interact with, natural climate variations due to all the forcing we are aware of. This means we need to better document past climate/environmental variability of the Polar-regions. Especially in the Southern Ocean there are few time series recording past climate due to few suitable land areas and the few Sub-Antarctic Islands is remote and has cumbersome logistics. Continuous terrestrial records from this region are therefore urgently needed for constraining future scenarios from earth system models. Glaciers and ice caps are still ubiquitous in the Polar-regions, although they are rapidly shrinking due to the on-going warming. The continuous sedimentary records produced by glaciers, which are stored in downstream lakes, represent supreme archives of past variability wherefrom quantitative information of key climate system components can be extracted. Kerguelen Island is located within the Antarctic Circumpolar Current and the Southern Westerly wind belt and contains several glaciers and smaller ice caps. Terrestrial archives recording past history of the glaciers at Kerguelen thus have a unique potential to record past changes in oceanic and atmospheric circulation patterns from southern mid-latitudes. Here we present preliminary results from the first distal glacier-fed lake that is sampled from Kerguelen Island. A 2.8 m long sediment core was obtained from Lac Guynemer (121masl.) located at the Peninsule Loranchet at the

  16. Application of a cross correlation-based picking algorithm to active seismic signals from experiments in Tenerife Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Granados, M.; Garcia, L.; Benitez, C.; De la Torre, A.; Alvarez, I.; Diaz, A.; Ibañez, J.

    2013-12-01

    The detection of the arrival time of seismic waves or picking is of great importance in many seismology applications. Traditionally, picking has been carried out by human operators. This process is not systematic and relies completely on the expertise and judgment of the analysts. The limitations of manual picking and the increasing amount of data daily stored in the seismic networks worldwide distributed led to the development of automatic picking algorithms. The accuracy of conventional 'short-term average over long-term average' (STA/LTA) algorithm, the recently developed 'Adaptive Multiband Picking Algorithm' (AMPA) and the proposed cross correlation-based picking algorithm have been assessed using a huge data set composed by active seismic signals from experiments in Tenerife Island (Canary Islands, Spain). The experiment consisted of the deployment of a dense seismic network on Tenerife Island (125 seismometers in total) and the shooting of air-guns around the island with the Spanish Oceanographic Vessel Hespérides (6459 air shots in total). Thus, more than 800.000 signals were recorded and subsequently manually picked. Since the sources and receivers locations are known and considering that the ship travelled a small distance between two consecutive shots, a picking algorithm based on cross-correlation has been proposed. The main advantage of this approach is that the algorithm does not require to set up sophisticated parameters, in contrast to other automatic algorithms. This work was supported in part by the CEI BioTic Granada project (COD55), the Spanish mineco project APASVO (TEC2012-31551), the Spanish micinn project EPHESTOS (CGL2011-29499-C02-01) and the EU project MED-SUV.

  17. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  18. Magmatic activity at Islas Marias Archipelago, Gulf of California: Oceanic lithosphere with gabbroic sills versus Jurassic-Cretaceous arc components.

    NASA Astrophysics Data System (ADS)

    Schaaf, P. E. G.; Solis-Pichardo, G.; Hernandez-Trevino, T.; Villanueva, D.; Arrieta, G. F.; Rochin, H.; Rodriguez, L. F.; Bohnel, H.; Weber, B.

    2015-12-01

    Islas Marias Archipelago consists of four islands located in the mouth of the Gulf of California. Lithologically three of them (Maria Madre, San Juanito, and Maria Cleofas) are quite similar with a 165-170 Ma metamorphic basement, 75-85 Ma intrusive and extrusive rocks, and a sedimentary sandstone cover, which according to its foraminiferous content recorded multiple uplift and subsidence events related to the opening of the Gulf. However, these units are absent on Maria Magdalena island which is positioned between the other islands. Here, instead, oceanic lithosphere with pillow lavas and gabbroic sills, intercalated with sandstones form the dominant outcrops. Their geochemical and isotopic characteristics are similar to N-MORB with epsilon Nd values around +10 and 87Sr/86Sr of 0.70290. The gabbros are not older than 22 Ma. Magdalena island was obviously uplifted separately from the other islands of the archipelago, probably along a now hidden transform fault system along the East Pacific Rise. Metamorphic and igneous rocks of the other islands can be correlated to lithologically similar units in the Los Cabos Block, Baja California, or to the continental margin units in Sinaloa, Nayarit and Jalisco states when looking at their geochemical and geochronological signatures. Paleomagnetic studies on 35 sampling sites from all 4 islands give evidence for relatively small scale tectonic movements.

  19. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  20. The tectonic emplacement of Sumba in the Sunda-Banda Arc: paleomagnetic and geochemical evidence from the early Miocene Jawila volcanics

    NASA Astrophysics Data System (ADS)

    Wensink, Hans; van Bergen, Manfred J.

    1995-11-01

    The island of Sumba is a continental fragment in the fore-arc region near the transition between the Sunda Arc and Banda Arc in southeastern Indonesia. Paleomagnetic and geochemical evidence from the early Miocene volcanics of the Jawila Formation in western Sumba constrain the final drift stage and tectonic emplacement of the island. The lavas range from predominantly andesites to dacites, and display textural evidence for a weak metamorphism. Rock magnetic and mineral chemical data point to pseudo-single- to multi-domain (titano)magnetite (Fe 2.5-3Ti 0.5-0O 3), with grain sizes up to 10 μm, as the main carrier of remanence. The Jawila Formation reveals a ChRM direction with declination = 4.6°, inclination = - 19.2°, α95 = 9.9° and a paleolatitude of 9.9°S, which corroborates earlier results (Chamalaun and Sunata, 1982). Taking paleomagnetic evidence from other formations on the island into account, we conclude that the Sumba fragment has occupied approximately its present position since the Miocene. The calc-alkaline affinity and trace-element signatures of the lavas point to an origin in an arc environment. This occurrence of subduction-related volcanic activity in the early Miocene on Sumba implies that a volcanic arc existed south of the present-day East Sunda Arc, or that the island was located within the latter arc between Sumbawa and eastern Flores, and still had a minor southward drift to cover.

  1. Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2

    SciTech Connect

    Not Available

    1984-03-01

    This question-and-answer report provides answers in nontechnical language to frequently asked questions about the status of cleanup activities at Three Mile Island, Unit 2. The answers update information first prepared in 1981, shortly after the cleanup got under way. Since then, a variety of important developments in the cleanup has occurred. The information in the report should be read in conjunction with NUREG 1060, a discussion of increased occupational exposure estimates for the cleanup. The questions and answers in this report cover purpose and community involvement, decontamination of water and reactor, fuel removal, radwaste transport, environmental impact, social and economic effects, worker exposures and safety, radiation monitoring, potential for accidents, and schedule and funding.

  2. The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Islands Region

    NASA Astrophysics Data System (ADS)

    Baranov, B. V.; Ivashchenko, A. I.; Dozorova, K. A.

    2015-12-01

    We present a structural study of the Central Kuril Islands forearc region, where the great megathrust tsunamigenic earthquake ( M w 8.3) occurred on November 15, 2006. Based on new bathymetry and seismic profiles obtained during two research cruises of R/V Akademik Lavrentiev in 2005 and 2006, ten crustal segments with along-arc length ranging from 30 to 100 km, separated by NS- and NW-trending transcurrent faults were identified within the forearc region. The transcurrent faults may serve as barriers impeding stress transfer between the neighboring segments, so that stress accumulated within separate forearc segments is usually released by earthquakes of moderate-to-strong magnitudes. However, the great November 15, 2006 earthquake ruptured seven of the crustal segments probably following a 226-year gap since the last great earthquake in 1780. The geographic extent of earthquake rupture zones, aftershock areas and earthquake clusters correlate well with forearc crustal segments identified using the geophysical data. Based on segmented structure of the Central Kuril Islands forearc region, we consider and discuss three scenarios of a great earthquake occurrence within this area. Although the margin is segmented, we suggest that a rupture could occupy the entire seismic gap with a total length of about 500 km. In such a case, the earthquake magnitude M w might exceed 8.5, and such an event might generate tsunami waves significantly exceeding in height to those produced by the great 2006-2007 Kuril earthquakes.

  3. Pb isotopes in the Sunda-Banda arc (Indonesia) as tracers of input from slab, sediment and continental crust

    NASA Astrophysics Data System (ADS)

    Elburg, M. A.; van Bergen, M. J.; Foden, J. D.

    2003-04-01

    Pb isotopic arrays in Quaternary volcanics from the Sunda-Banda arc have previously been interpreted as representing mixing between sub-arc mantle and subducted continental material. The mantle component in the non-collisional section of the arc appears to resemble Indian Ocean-type Mid Ocean Ridge basalt (I-MORB). In the eastern portion of the arc, where the Australian continent collides with the arc, the mantle component has been inferred to have Pb isotopic characteristics similar to Indian Ocean Island Basalt (I-OIB). Compilation of existing Pb and He isotope data on the active arc and combination with new Pb data on the inactive section shows that all volcanoes from the collisional section, independent of their depth to the Benioff zone, have high 208Pb/204Pb for their 207Pb/204Pb ratios, characteristic of I-OIB. However, there is no a-priori physical explanation why an OIB-type source would be tapped at the very moment that continental collision sets in. It is more likely that the Pb isotopic arrays in both the collisional and non-collisional section represent mixing of two subducted components. In the collisional section, this would be Australian upper and lower crust; in the non-collisional section, oceanic crust and entrained sediment. Within the non-collisional section, the Quaternary potassic volcanoes on the island of Sumbawa form a Pb isotopic array in a 208Pb/204Pb versus 207Pb/204Pb diagram that lies in between that of the lower-K non-collisional volcanics, and the samples from the collisional section. This contrasts with 2-4 Ma low-K volcanics from the island, that fall within the field for other low-K volcanoes. The sudden change to potassic volcanism with this particular Pb isotopic signature is thought to represent subduction of oceanic crust with more OIB-type characteristics, perhaps similar to material seen near Christmas Island. Samples from Romang, Wetar, Lirang and south Alor within the extinct section of the arc are characterised by

  4. Potential landslide activity affecting the archaeological site of Orongo (Easter Island-Chile): preliminary analysis

    NASA Astrophysics Data System (ADS)

    Margottini, C.; Delmonaco, G.; Spizzichino, D.; Pandolfi, O.; Crisostomo, R.; Nohe, S.

    2009-04-01

    Easter Island forms part of the Easter Line, a continuous latitudinal chain of volcanic seamounts and islands in the Pacific Sea. The island's roughly triangular shape is determined by the merging of lava flows produced by its three main volcanoes (Rano Kau, Terevaka, Poike) which form its main mass. The Rano Kau volcano, sited in the SW vertex of the island, is made up of numerous basaltic lava flows and has been reduced in size by faulting and marine erosion. Its crater (1.4 km wide) is a small caldera that collapsed after a late, large explosive phase, as attested by the presence of breccia deposits around the eastern rim of the crater. The archaeological stone village of Orongo is located above the inner wall of the crater at an altitude of ca. 300m a.s.l. Prominent historical remains are the numerous petroglyphs that represent the ancient ceremonial of the birdman cult (tangata manu). Rano Kau is mainly composed of sequences of basaltic and intermediate lavas and pyroclastics. Most of the of the original caldera area, especially in the southern flank, has been disrupted by marine erosion. This has caused a dramatic change of the original morphology, resulting in a sub-vertical cliff and steep slopes, especially in the middle-low portions. In the upper part of the slopes weathered soils and regolith are outcropping. Topographical and geomorphological analysis of the area conducted by a direct field surveys in January and July 2008 have provided clear evidences of slope instability along the southern external flank of the caldera. Different landslide areas have been detected. The most active area is located at east of the village in correspondence of the crest zone of Rano Kau where a debris slide/fall has recently occurred. The analysis of photos taken in Nov. 2007 in the same area evidences that the landslide crown area was originated at an elevation of ca. 200m a.s.l. along a probable contact between basaltic layers on the top and weathered lava. Other minor

  5. Os and S isotope studies of ultramafic rocks in the Duke Island Complex, Alaska: variable degrees of crustal contamination of magmas in an arc setting and implications for Ni-Cu-PGE sulfide mineralization

    NASA Astrophysics Data System (ADS)

    Stifter, Eric C.; Ripley, Edward M.; Li, Chusi

    2016-03-01

    The Duke Island Complex is one of the several "Ural-Alaskan" intrusions of Cretaceous age that occur along the coast of SE Alaska. Significant quantities of magmatic Ni-Cu-PGE sulfide mineralization are locally found in the complex, primarily within olivine clinopyroxenites. Sulfide mineralization is Ni-poor, consistent with petrologic evidence which indicates that sulfide saturation was reached after extensive olivine crystallization. Olivine clinopyroxenites were intruded by magmas that produced sulfide-poor, adcumulate dunites. As part of a study to investigate the potential for Ni-rich sulfide mineralization in association with the dunites, a Re-Os and S isotope study of the dunites, as well as sulfide mineralization in the olivine clinopyroxenites, was initiated. Importantly, recent drilling in the complex identified the presence of sulfidic and carbonaceous country rocks that may have been involved in the contamination of magmas and generation of sulfide mineralization. γOs (110 Ma) values of two sulfidic country rocks are 1022 and 2011. δ34S values of the country rocks range from -2.6 to -16.1 ‰. 187Os/188Os ratios of sulfide minerals in the mineralization hosted by olivine clinopyroxenites are variable and high, with γOs (110 Ma) values between 151 and 2059. Extensive interaction with Re-rich sedimentary country rocks is indicated. In contrast, γOs (110 Ma) values of the dunites are significantly lower, ranging between 2 and 16. 187Os/188Os ratios increase with decreasing Os concentration. This inverse relation is similar to that shown by ultramafic rocks from several arc settings, as well as altered abyssal dunites and peridotites. The relation may be indicative of magma derivation from a sub-arc mantle that had experienced metasomatism via slab-derived fluids. Alternatively, the relation may be indicative of minor contamination of magma by crustal rocks with low Os concentrations but high 187Os/188Os ratios. A third alternative is that the low Os

  6. Comparative Analysis of Gravity Wave Activity at Wallops Island and San Juan

    NASA Astrophysics Data System (ADS)

    Negrea, Catalin; Zabotin, Nikolay; Bullett, Terrence

    2014-05-01

    There are numerous gravity wave detection schemes currently in use, based on various data acquisition schemes and instrumentation types. We developed one such method based on dynasonde data, which include both electron density and electron density gradients. The results described in this work extend a range of 150-250 km in altitude, while being essentially continuous in time. In addition to this, we can fully diagnose the gravity wave field, simultaneously determining spatial and temporal characteristics. This paper describes a comparative analysis of wave activity at two locations: Wallops Island, Virginia, U.S.A. and San Juan, Puerto Rico. At both locations, we show cases of Traveling Ionospheric Disturbances (TID's) clearly caused by gravity wave activity. The dominant frequency is sometimes obvious, but generally we have a superposition of several waves, each with an associated bandwidth. We extract the frequency, amplitude, wavelength and direction of propagation for each mode detected, independent of all other modes present. The wave spectra can drastically change with altitude, time, season, geographical location, etc. The same is true for the other wave characteristics listed above, and this becomes even more complex when we consider waves propagating along the two horizontal axes separately. All these aspects are discussed in our work, separating effects due to these various factors. Finally, we describe how our work will be extended be adding several other stations to provide a global characterization of wave activity in the thermosphere-ionosphere system.

  7. The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999-2009)

    NASA Astrophysics Data System (ADS)

    Bourscheidt, Vandoir; Pinto, Osmar; Naccarato, Kleber P.

    2016-05-01

    Eleven years of lightning data from the Brazilian Integrated National Lightning Detection Network were used to analyze the effects of the urban heat island (UHI) of Sao Paulo on lightning activity, extending the investigation of previous works. Cloud-to-ground lightning data were analyzed in both spatial and temporal perspectives, using different approaches: flash density, flash rate, thunderstorm hours (TH), and the cell initiation technique (CIT), which aims to identify the onset of thunderstorms. Land surface temperature (LST) from MODIS (Moderate Resolution Imaging Spectroradiometer) was used to analyze the UHI evolution over the years. MODIS data were validated using ground stations, distributed within the urban area. Different time intervals (seasonal and intraday) were used in an attempt to separate local convective systems from synoptic-scale events. The results indicate significant effects of the UHI (using LST) on THs and CIT. The CIT showed a nearly ring pattern, especially during the afternoon (14:00-18:00 LT) of summer months, reinforcing temperature contrast as a condition for storm initiation. The results also suggest an amplification of the UHI effects on thunderstorm activity by local factors (sea and country breeze, synoptic events, and terrain). Higher flash rates were also observed throughout the urban region, which influences the lightning density. Temporal analysis indicates that minimum temperature and lightning activity increase in wintertime. In summary, the results agree with previous studies about the UHI and indicate its importance on lightning occurrence, especially by increasing the temperature contrast and the instability in these regions.

  8. Investigating correlation of lighting activity and precipitation in an Eastern Mediterranean island

    NASA Astrophysics Data System (ADS)

    Iordanidou, Vasiliki; Koutroulis, Aristeidis; Tsanis, Ioannis

    2015-04-01

    This study examines conditions under which lightning activity and precipitation events can be correlated in an Eastern Mediterranean island climate. As a first step, the activity within a predefined area of 50km radius around the gauge station is examined, given the temporal evolution of rain accumulation at an hourly time step. Then the lightning activity is grouped in time-space clusters and for each lightning-cluster precipitation recordings of 10 minutes time step from nearby gauges are searched in an area of variable radius ranging from 10 to 100km. The number of clusters is decided according to the g-means algorithm in which the number of clusters is increasing until the data of all clusters follow the Gaussian distribution. For different durations, number of lightning events and radius the proportion of the corresponding precipitation events for the given radius around the lightning-clusters is investigated. The methods are tested in the case study of the island of Crete. Precipitation data from 22 gauging stations over Crete and lightning data from the Global Lightning Network (GLN) are examined for the investigation of possible associations in a period of almost two years (09/2012-07/2014). For the first approach, for half of the stations rain accumulations over 10mm/h (90th percentile of rain) are recorded up to a day after lightning activity occurrence. According to the second approach, lightning-clusters of smaller duration (up to 5 hours) and more lightning flashes (more than 100) are highly associated with rain events. The optimal radius from the center of the lightning-cluster, according to the proportion of rain events, is found to be 30km. The results establish a better understanding of the relations between lightning and precipitation and could provide valuable information to the now-casting of flash flood events triggered by severe thunderstorms. The research reported in this study effort was fully supported by the "ARISTEIA II" Action

  9. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  10. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  11. Prioritising weed management activities in a data deficient environment: the Pilbara islands, Western Australia.

    PubMed

    Lohr, Cheryl; Passeretto, Kellie; Lohr, Michael; Keighery, Greg

    2015-12-01

    Along the Pilbara coast of Western Australia (WA) there are approximately 598 islands with a total area of around 500 km(2). Budget limitations and logistical complexities mean the management of these islands tends to be opportunistic. Until now there has been no review of the establishment and impacts of weeds on Pilbara islands or any attempt to prioritise island weed management. In many instances only weed occurrence has been documented, creating a data deficient environment for management decision making. The purpose of this research was to develop a database of weed occurrences on WA islands and to create a prioritisation process that will generate a ranked list of island-weed combinations using currently available data. Here, we describe a model using the pairwise comparison formulae in the Analytical Hierarchy Process (AHP), four metrics describing the logistical difficulty of working on each island (island size, ruggedness, travel time, and tenure), and two well established measures of conservation value of an island (maximum representation and effective maximum rarity of eight features). We present the sensitivity of the island-weed rankings to changes in weights applied to each decision criteria using Kendall's tau statistics. We also present the top 20 ranked island-weed combinations for four modelling scenarios. Many conservation prioritisation tools exist. However, many of these tools require extrapolation to fill data gaps and require specific management objectives and dedicated budgets. To our knowledge, this study is one of a few attempts to prioritise conservation actions using data that are currently available in an environment where management may be opportunistic and spasmodic due to budgetary restrictions. PMID:27441230

  12. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    The volcanic activity of Anatahan that began in 2003 has declined such as faint emission of volcanic gas from the crater and scarcity of volcanic tremor in 2009. Our team carried out geological, geodetic and seismological observation repeatedly till mid-2009 from the beginning of the eruption. The early phase of the eruption (2003-2004) can be characterized by magmatic and phreatomagmatic explosions, contrasting to mainly phreatic nature in the later phase (2005-2008). The active crater (Eastern Crater) was widened and deepened (much below the sea level) as the eruption progressed. Dominant products of phreatic explosions comprise of thick accumulation of thin layers of fine ash. A rough estimate of the total volume during these 5 years is as much as 1 km3, close to the volume of materials lost by enlargement of the active crater. Seismic observation was carried out during mid-2008 and mid-2009 by settling 5 temporary stations covering the whole of the island, each of which includes a 3 components short-period seismometer with corner frequency of 1Hz and a low-power consumption digital data recorder with 24-bits AD resolutions. GPS campaign observation was repeated in the same station during this period. VT and LP event were observed, though very low in occurrence in this period. Hypocenters of VT and LP events show all events occurred at the depth of less than 8km around the eastern crater. Among them, LP events occurred in the shallower (less than 3km) region. The error in the depth may be not more than a few kilometers, but that in the epicenter should be smaller than 1km because the most events are located inside of the seismic network. Moreover, the tremors observed in the 2008 summer continued for about 3 weeks. The amplitude increased gradually, kept at the maximum, and stopped abruptly. During the maximum amplitude period, ash emission was observed by VAAC. Estimated reduced displacement at the maximum is about 1 cm2, typical of a hydro-magmatic eruption

  13. Combined Active and Passive Seismology to Study Continental Collision; Central South Island of New Zealand

    NASA Astrophysics Data System (ADS)

    Stern, T.; Okaya, D.; Baldock, G.; Scherwath, M.

    2005-12-01

    Central South Island of New Zealand is a continental region that has undergone both collision and strike-slip shear in the late Tertiary. From a tectonics, or rock-mechanics, view-point there is an interest in how the crust and mantle have been both thickened and sheared. The South Island Geophysical Transect (SIGHT) and the Southern Alps Passive Seismic Experiment (SAPSE) - both jointly funded US-NZ programs - studied these processes. Some of the most important findings came about by merging data from passive and active seismology. Three specific examples will be discussed: 1. Teleseismic P-wave delays from earthquakes in the Western Pacific are used to map a ~ 0.8-1 s speed-up in the mantle right beneath the region of thickest crust and highest topography of the collision zone. Forward modeling of this velocity anomaly shows that the amplitude of the anomaly can be explained by a 100 km-thick body that has a 7% in increase in P-wave speed. From the spatial pattern of the P-wave residuals we can also show that the high-speed body is about 80-100 km wide and roughly vertically disposed beneath the crustal root. The shape and position of the high-speed body beneath the seismically determined crustal root is consistent with it being thickened, and therefore cold, mantle lithosphere that has uniformly strained into a roughly symmetric root beneath the collision zone. 2. Pn anisotropy measurements from our onshore-offshore seismic shooting program allowed us to make mutually perpendicular determinations of Pn wave speeds at three localities. P-wave anisotropies of up to 11 ± 3%, 6.5 ± 2.5% and 0 ± 3%, were measured, depending on the distance of the measurement from the surface trace of the plate boundary (the Alpine Fault). These are necessarily minimum anisotropy values because it assumes that the two axes of measurement are those of minimum and maximum wave speed. Combining these results with SKS splitting values of ~ 2 s from passive seismology allowed us to make

  14. Language, Aid and Literacy: An Outline of Activities in the Solomon Islands.

    ERIC Educational Resources Information Center

    Moseley, Lesley

    1994-01-01

    Problems facing the literacy movement in the Solomon Islands are related to communication, economic, and linguistic barriers. The island is linguistically diverse. English is the official language, but a national literacy committee found that only 26% of people could speak English. Improving primary education is a government priority. Training of…

  15. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  16. Comprehensive study of the seismotectonics of the eastern Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Jacob, K.H.; Davies, J.N.; House, L.

    1981-01-01

    Refined hypocenter locations beneath the Shumagin Islands seismic network of the eastern Aleutian arc, Alaska, provide for the first time conclusive evidence for a double-sheeted dipping seismic (Benioff) zone in this arc. This refined seismicity structure was obtained in the arc section centered on the Shumagin seismic gap. A thorough review of three seismic gaps in the eastern Aleutian arc shows a high potential for great earthquakes within the next one to two decades in the Shumagin and Yakataga seismic gaps, and a less certain potential for a large or great earthquake in the possible Unalaska gap. A tilt reversal was geodetically observed to have occurred in 1978/79 in the forearc region of the Shumagin gap and could indicate the onset of a precursory strain relief episode prior to a great quake. A comparative study of the Pavlof volcano seismicity with that of other recently active volcanoes (i.e., Mt. St. Helens) indicates that island-arc (explosive-type) volcanoes respond to small ambient, periodic stress changes (i.e., tides). Stress drop measurements from earthquakes on the main thrust zone indicate high stress drops within the seismic gap regions of the Aleutian arc and low stress drops outside the gap region.

  17. Structural Determinants at the Interface of the ARC2 and Leucine-Rich Repeat Domains Control the Activation of the Plant Immune Receptors Rx1 and Gpa21[C][W][OA

    PubMed Central

    Slootweg, Erik J.; Spiridon, Laurentiu N.; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska

    2013-01-01

    Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins. PMID:23660837

  18. Subduction evolution and mantle dynamics at a continental margin: Central North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Stratford, W. R.; Salmon, M. L.

    2006-12-01

    Central North Island, New Zealand, provides an unusually complete geological and geophysical record of the onset and evolution of subduction at a continental margin. Whereas most subduction zones are innately two-dimensional, North Island of New Zealand displays a distinct three-dimensional character in the back-arc regions. Specifically, we observe "Mariana-type" subduction in the back-arc areas of central North Island in the sense of back-arc extension, high heat flow, prolific volcanism, geothermal activity, and active doming and exhumation of the solid surface. Evidence for emplacement of a significant percent of new lithosphere beneath the central North Island comes from heat flux of 25 MW/km of strike (of volcanic zone) and thinned crust underlain by rocks with a seismic wave speed consistent with underplated new crust. Seismic attenuation (Qp-1) is high (˜240), and rhyolitic and andesitic volcanism are widespread. Almost complete removal of mantle lithosphere is inferred here in Pliocene times on the basis of the rock uplift history and upper mantle seismic velocities as low as 7.4 ± 0.1 km/s. In contrast, southwestern North Island exhibits "Chilean-type" back-arc activity in the sense of compressive tectonics, reverse faulting, low-heat-flow, thickened lithosphere, and strong coupling between the subducted and overriding plates. This rapid switch from Mariana-type to Chilean-type subduction occurs despite the age of the subducted plate being constant under North Island. Moreover, stratigraphic evidence shows that processes that define the extensional back-arc area (the Central Volcanic Region) are advancing southward into the compressional system (Wanganui Basin) at about 10 mm/yr. We link the progression from one system to another to a gradual and viscous removal of thickened mantle lithosphere in the back-arc regions. Thickening occurred during the Miocene within the Taranaki Fault Zone. The process of thickening and convective removal is time- and

  19. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. Zooplankton biomass and electron transport system activity around the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Herrera, A.; Gómez, M.; Packard, T. T.; Fernández de Puelles, M. L.

    2014-03-01

    Measuring electron transport system (ETS) activity in zooplankton provides an index of respiration, theoretically, the potential respiration rate. We apply the ETS technique to estimate potential respiration and carbon demand from the zooplankton community in the upper 200 m of the water column near the Balearic Islands. The investigation was focused on two areas with different oceanographic conditions: the Balearic and Algerian subbasins. It compared the biomass, potential respiration and specific potential respiration of different size fractions (53-200, 200-500, > 500 μm) in both areas. In these regions the largest contribution to respiration was found in the larger sizes. The specific respiration (per unit biomass) was greater in smaller fractions, indicating that they have a more active metabolism. Both biomass and potential respiration increased in the Algerian subbasin and for both regions biomass and potential respiration were greater in shallow waters over the continental shelf (< 200 m). Using Kleiber's law as a tool to investigate the relationships between these two variables, we found that the exponential relation coefficient (b) was less than 0.75, indicating that the respiration was depressed (shifted down). In cultures and in eutrophic ocean waters (upwelling areas) b normally is greater than 0.75, consequently we intuit that the low value of b over the Balearic and Algerian subbasins indicates that the zooplankton is not well fed and that they are living under oligotrophic stress.

  1. Investigating the relationship of lightning activity and rainfall: A case study for Crete Island

    NASA Astrophysics Data System (ADS)

    Iordanidou, V.; Koutroulis, A. G.; Tsanis, I. K.

    2016-05-01

    The relationship of lightning activity and rainfall is investigated for rain events of variable intensity. Rain data from 22 gauging stations over the island of Crete and lightning activity from the Global Lightning Network including both cloud-to-ground and some cloud flashes are analyzed for the period September 2012 to June 2014. Local thunderstorms' characteristics are investigated both individually as well as in groups according to the results of k-means clustering algorithm in 3 dimensions (space (x, y) and time (t)) in which the number of clusters is decided by G-means algorithm. Correlation of non-zero pairs of rain intensity and number of flashes is examined at various time intervals, time lags and effective radii. Also, correlation of flash count within 50 km radius around the stations is examined for the rain events of maximum hourly intensity for each gauging station. The highest coincidence of lightning clusters with intense rain events reaches 60% when gauges are 25-30 km from the cluster center. Maximum correlation within non-zero pairs of rain intensity and flashes number is obtained for more intense rain (99th percentile) and for increased flash count within the searching area (more than 10 flashes). Also, correlation is stronger for shorter time windows. The findings of this study improve the understanding of thunderstorm events and could provide staple information for the improvement of forecasting extreme events.

  2. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data

    NASA Astrophysics Data System (ADS)

    GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.

    2012-09-01

    We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.

  3. Development and recent activity of the San Andrés landslide on El Hierro, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Klimeš, Jan; Yepes, Jorge; Becerril, Laura; Kusák, Michal; Galindo, Inés; Blahut, Jan

    2016-05-01

    Extremely voluminous landslides with a long run-out (also known as megalandslides) on oceanic volcanic islands are infrequent denudational processes on such islands. At the same time, they represent a major geological hazard that must be looked into to avoid negative consequences for the inhabitants of these islands. Their occurrence can be related to periods of intense seismo-volcanic activity, similar to that which occurred on El Hierro Island over 2011-2012. Landslides on volcanic islands are studied using onshore and offshore geological, geophysical and geomorphological records, considering their unique triggering conditions (e.g. lava intrusions, eruptive vents, magma chamber collapses). Previous work has pointed out similarities between specific cases of landslides on volcanic islands and deep-seated gravitational slope deformations (DSGSDs) which are typical in high mountain settings. Nevertheless, the methodological approaches and concepts used to investigate DSGSDs are not commonly applied on volcanic islands studies, even though their use may provide new information about the development stage, recent movements and future hazards. Therefore, this approach for studying the San Andrés landslide (SAL) on El Hierro (Canary Islands) has been developed applying a detailed morphological field mapping, an interpretation of digital elevation models, structural measurements, kinematic testing, and a precise movement monitoring system. The acquired information revealed a strong structural influence on the landslide morphology and the presence of sets of weakened planes acting as the sliding surfaces of the SAL or secondary landslides within its body. The presence of secondary landslides, deep erosive gullies, coastal cliffs and high on-shore relative relief also suggests a high susceptibility to future landslide movement. Direct monitoring on the landslide scarps and the slip plane, performed between February 2013 and July 2014, using an automated optical

  4. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  5. Geodetic Constraints From The Volcanic Arc Of The Andaman - Nicobar Subduction Zone

    NASA Astrophysics Data System (ADS)

    Earnest, A.; Krishnan, R.; Mayandi, S.; Sringeri, S. T.; Jade, S.

    2012-12-01

    We report first ever GPS derived surface deformation rates in the Barren and Narcondum volcanic islands east of Andaman-Nicobar archipelago which lies in the Bay of Bengal, a zone that generates frequent earthquakes, and coincides with the eastern plate boundary of India. The tectonics of this region is predominantly driven by the subduction of the Indian plate under the Burma plate. Andaman sea region hosts few volcanoes which lies on the inner arc extending between Sumatra and Myanmar with the sub-aerial expressions at Barren and Narcondum Islands. Barren Island, about 135 km ENE of Port Blair, is presently active with frequent eruptive histories whereas Narcondum is believed to be dormant. We initiated precise geodetic campaign mode measurements at Barren Island between 2007 to 2012 and one year (2011-2012) continuous measurements at Narcondum island. Preliminary results from this study forms a unique data set, being the first geodetic estimate from the volcanic arc of this subducting margin. Our analysis indicates horizontal convergence of the Barren benchmark to south-westward (SW) direction towards the Andaman accretionary fore-arc wedge where as the Narcondum benchmark recorded northeast (NE) motion. West of the Andaman fore-arc there is NE oriented subduction of the Indian plate which is moving at the rate of ~5 cm/yr. Convergence rates for the Indian plate from the Nuvel 1A model also show oblique convergence towards N23°E at 5.4 cm/yr. GPS derived inter seismic motion of Andaman islands prior to 2004 Sumatra earthquake is ~4.5 cm/yr NE. The marginal sea basin east of Barren Island at the Andaman spreading ridge has a NNW orienting opening of the sea-floor at 3.6 cm/yr. However the recent post seismic measurements of Andaman islands indicate rotation of displacement vectors from SW to NNE during 2005 to 2012. In this tectonic backdrop, the estimated rate of displacement of the volcanic islands probably represents a composite signal of tectonic as well as

  6. Geochronologic and isotopic study of the La Désirade island basement complex: Jurassic oceanic crust in the Lesser Antilles?

    NASA Astrophysics Data System (ADS)

    Mattinson, James M.; Fink, L. Kenneth; Hopson, Clifford A.

    1980-01-01

    Désirade complex to be an uplifted segment of oceanic crust that represents the basement on which the later island arcs grew: first the Aves Ridge, an arc that was active in middle to late Cretaceous time (but whose exact mode of origin is enigmatic, and is considered in four alternate tectonic models), then the Eocene to Recent Lesser Antilles arc.

  7. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan C. C.; Schaefer, Carlos Ernesto G. R.; Fernandes, Raphael B. A.; Pereira, Thiago T. C.; Nieuwendam, Alexandre; Pereira, Antônio Batista

    2014-11-01

    Climate change impacts the biotic and abiotic components of polar ecosystems, affecting the stability of permafrost, active layer thickness, vegetation, and soil. This paper describes the active layer thermal regimes of two adjacent shallow boreholes, under the same soil but with two different vegetations. The study is location in Lions Rump, at King George Island, Maritime Antarctic, one of the most sensitive regions to climate change, located near the climatic limit of Antarctic permafrost. Both sites are a Turbic Cambic Cryosol formed on andesitic basalt, one under moss vegetation (Andreaea gainii, at 85 m a.s.l.) and another under lichen (Usnea sp., at 86 m a.s.l.), located 10 m apart. Ground temperature at same depths (10, 30 and 80 cm), water content at 80 cm depth and air temperature were recorded hourly between March 2009 and February 2011. The two sites showed significant differences in mean annual ground temperature for all depths. The lichen site showed a higher soil temperature amplitude compared to the moss site, with ground surface (10 cm) showing the highest daily temperature in January 2011 (7.3 °C) and the lowest daily temperature in August (- 16.5 °C). The soil temperature at the lichen site closely followed the air temperature trend. The moss site showed a higher water content at the bottommost layer, consistent with the water-saturated, low landscape position. The observed thermal buffering effect under mosses is primarily associated with higher moisture onsite, but a longer duration of the snowpack (not monitored) may also have influenced the results. Active layer thickness was approximately 150 cm at low-lying moss site, and 120 cm at well-drained lichen site. This allows to classify these soils as Cryosols (WRB) or Gelisols (Soil Taxonomy), with evident turbic features.

  8. The Fractionation of Sulfur Isotopes during Arc Initiation - Preliminary Data

    NASA Astrophysics Data System (ADS)

    Brandl, P. A.; Ireland, T. R.; O'Neill, H. S.

    2014-12-01

    The "Stable Isotope Sensitive High-Resolution Ion Microprobe" (SHRIMP-SI) at the ANU in Canberra provides a powerful tool for in-situ analyses of light isotopes. Recently, we developed a technique to analyze the sulfur isotope composition (δ34S) of volcanic glasses. Since no interlaboratory reference material is available for this purpose, we carried out piston cylinder experiments to create artificial glasses of known sulfur isotope composition. We used natural sulfides mixed with CaO-Al2O3-SiO2 (with PtO2 in 5 mm Pt capsule) and high-Ti Mare basalt powder (graphite capsule inside the Pt capsule). Experimental conditions were set to 1400°C, 5 kbar and 4 hours. We used these artificial glasses to survey sulfur isotope fractionation during our experimental runs and for use as standard material with calibrated δ34S. Additionally, natural standards Juan de Fuca basalt (VG-2), Makaopuhi basalt (VG-A99; Hawai'i), SEIR MORB (NMNH 113716), and one rhyolite (VG-568) were analyzed repeatedly to provide sulfur isotope data of commonly used natural glass standards. IODP expedition 351 to the Amami-Sankaku Basin adjacent to the Kyushu-Palau Ridge in June-July 2014 recovered a variety of rocks related to the history of the Izu-Bonin Mariana (IBM) Arc. Basalts of the oceanic igneous crust underlying the IBM arc give us information of the basement prior to arc initiation and volcaniclastic rocks eroded from active volcanoes of the IBM arc record its evolution from inception in the Eocene through Oligocene and Miocene. Ash layers intercalated in hemipelagic sediments record the evolution of the IBM and Ryukyu arcs during the Neogene. The aim of this study is to track changes in the oxidation state of island arc magmas and the mantle wedge during the time of arc initiation. Experimental results as well as preliminary data from IODP Exp. 351 will be presented by the time of the conference.

  9. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  10. Mantle Melting as a Function of Water Content in Arcs

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.; Plank, T.; Newman, S.; Stolper, E.; Grove, T. L.; Parman, S.; Hauri, E.

    2003-12-01

    Subduction zone magmas are characterized by high concentrations of dissolved H2O, presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Almost ten years ago, Stolper and Newman (EPSL, 1994) illustrated a linear relationship between the concentration of water (H2Oo) and the fraction of melting (F) in the mantle beneath the Mariana back-arc. Here we report new major element and volatile data for olivine-hosted melt inclusions from the Mariana Islands to test this relationship for melting beneath an arc. Basaltic melt inclusions from the Mariana arc have water contents (2.3-6.1 wt% H2O) significantly higher than all basaltic glasses or melt inclusions from the Mariana back-arc (0.2-2.2 wt% H2O). We use TiO2 as a proxy for F, after correcting for crystal fractionation, and evaluate the Ti source composition with a model based on Ti/Y variations in mid-ocean ridge basalts (MORBs). Each calculated F thus represents the amount of mantle melting for a single melting episode. Even after accounting for mantle depletion, the TiO2 concentrations in Mariana arc magmas record higher extents of mantle melting (F = 10-30%) than recorded in back-arc magmas (F = 5-24%). As a whole, the Mariana arc broadly extends the linear H2Oo-F array defined by the back-arc, although in detail the islands show important differences. Two islands from the Mariana arc (Guguan and Pagan) define a H2Oo-F slope similar to the Mariana back-arc, suggesting similar mantle potential temperature beneath the arc and back-arc ( ˜1360 +/- 20° C). Melts from Agrigan island, however, indicate a steeper slope suggestive both of cooler mantle beneath Agrigan and of along-strike thermal variations beneath the Mariana Islands. Both the arc and back-arc arrays project to finite F at zero water in the mantle, providing evidence for decompression melting in both settings. These relationships may be extended globally to other back-arc and arc systems

  11. Heat stress control in the TMI-2 (Three Mile Island Unit 2) defueling and decontamination activities

    SciTech Connect

    Schork, J.S.; Parfitt, B.A.

    1988-01-01

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintain the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully.

  12. Forest harvesting is associated with increased landslide activity during an extreme rainstorm on Vancouver Island, Canada

    NASA Astrophysics Data System (ADS)

    Goetz, J. N.; Guthrie, R. H.; Brenning, A.

    2015-06-01

    Safe operations of forest practices in mountainous regions require effective development planning to mitigate hazards posed by landslides. British Columbia, Canada, has for the past 2 decades implemented landslide risk management policies aimed at reducing the impacts of the forestry industry on landslides. Consequently, it is required that timber harvesting sites be evaluated for their potential or existing impacts on terrain stability. Statistical landslide susceptibility modelling can enhance this evaluation by geographically highlighting potential hazardous areas. In addition, these statistical models can also improve our understanding of regional landslide controlling factors. The purpose of this research was to explore the regional effects of forest harvesting activities, topography, precipitation and geology on landslides initiated during an extreme rainfall event in November 2006 on Vancouver Island, British Columbia. These effects were analyzed with a nonparametric statistical method, the generalized additive model (GAM). Although topography was the strongest predictor of landslide initiation, low density forest interpreted as regrowth areas and proximity to forest service roads were jointly associated with a 6- to 9-fold increase in the odds of landslide initiation, while accounting for other environmental confounders. This result highlights the importance of continuing proper landslide risk management to control the effects of forest practices on landslide initiation.

  13. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Berger, J.; Burg, J.-P.

    2012-04-01

    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F <10 %) near the solidus produces trondhjemitic melt and garnet granulites residue. The latter has composition very close to that of igneous precursors but is characterized by contrasted physical properties (density: 3.2-3.3, Vp: 6.9-7.4 km/s). Higher partial melting degrees (F: 10-20 %) lead to the formation of anorthositic melts in equilibrium with garnet-clinopyroxene-rutile residues (density: up to 3.45, Vp: up to 7.7 km/s). These melts are rich in

  14. Transient crustal movement in the northern Izu-Bonin arc starting in 2004: A large slow slip event or a slow back-arc rifting event?

    NASA Astrophysics Data System (ADS)

    Arisa, Deasy; Heki, Kosuke

    2016-07-01

    The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. Horizontal velocities of continuous Global Navigation Satellite System stations on the Izu Islands move eastward by up to ~ 1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. Here, we report that such eastward movements transiently accelerated in the middle of 2004 resulting in ~ 3 cm extra movements in 3 years. We compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. By comparing crustal movements in different regions, the first possibility can be shown unlikely. It is difficult to rule out the second possibility, but current evidence support the third possibility, i.e. a large slow slip event with moment magnitude of ~ 7.5 may have occurred there.

  15. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  16. Emergent Dead Vegetation and Paired Cosmogenic Isotope Constraints on Ice Cap Activity, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Pendleton, S.; Miller, G. H.

    2014-12-01

    Recent summer warming has now raised the equilibrium line above almost all ice caps on Baffin Island, resulting in surface lowering and marginal recession everywhere. As cold-based ice recedes it frequently exposes in situ tundra plants that were living at the time ice expanded across the site. Radiocarbon dates for each plant records when cold summers dropped regional snowline below the site, killing the plants, and snowline remained below the site until the collection date. The kill dates also represent the last time that the climate was warm enough to expose the sampling location. Seventy-six vegetation samples collected in 2013 from the Penny Ice Cap region have been dated, with significant age populations at ~0.5, 1.8, 2.3, and 3.6 ka. The absence of ages around ~1, 2, 3, 4.5, and 5.5 ka suggest periods of either no snowline depression or stability. Sixteen vegetation samples returned ages of >45 ka (2 revisited sites from 2010, 14 new). It is postulated that these radiocarbon dead samples were last exposed during the last interglaciation (~120 ka), the last time climate was as warm as present. In addition to plant collections, bedrock exposures at the ice margins were sampled for 26Al/10Be cosmogenic nuclide dating. Seven samples from and around the Penny Ice cap have returned maximum exposure ages from ~ 0.6-0.9 ma and total histories of ~0.6-1.5 ma. In general, samples from the larger Penny Ice Cap exhibited lower amounts of exposure (~20% of total history) than those samples from smaller, localized ice caps (~55%). Radiocarbon dead sites north of the Penny Ice cap experienced significantly more exposure over their lifetimes than their counterparts east of the Penny Ice cap, suggesting significant differences in local and regional land ice fluctuations over the last 2 million years. Utilizing both the method of in situ moss and 26Al/10Be dating provides new insight into both the recent activity and long-term evolution of ice on Baffin Island. In particular

  17. Recent seismic activity at Cephalonia island (Greece): a study through candidate electromagnetic precursors in terms of nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Potirakis, S. M.; Contoyiannis, Y.; Melis, N. S.; Kopanas, J.; Antonopoulos, G.; Balasis, G.; Kontoes, C.; Nomicos, C.; Eftaxias, K.

    2015-12-01

    The preparation process of two recent earthquakes (EQs) occurred in Cephalonia (Kefalonia) island, Greece, (38.22° N, 20.53° E), 26 January 2014, Mw =6.0, depth =21 km, and (38.25° N, 20.39° E), 3 February 2014, Mw =5.9, depth =10 km, respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EME) recorded by two stations in locations near the epicenters of these two EQs. It is worth noting that both, the MHz EME recorded by the telemetric stations on the island of Cephalonia and the neighboring island of Zante (Zakynthos), reached simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each one of these events. Importantly, the revealed critical process seems to be focused on the area corresponding to the west Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  18. Comparative analysis of the impact of geological activity on the structural design of telescope facilities in the Canary Islands, Hawaii and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; García-Lorenzo, B.; Rodriguez-Losada, J. A.; de La Nuez, J.; Hernández-Gutiérrez, L. E.; Romero-Ruiz, M. C.

    2010-09-01

    An analysis of the impact of seismic and volcanic activity has been carried out at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile), and the candidate site of Cerro Ventarrones (Chile). Hazard associated with volcanic activity is low or negligible at all sites, whereas seismic hazard is very high in Chile and Hawaii. The lowest geological hazard in both seismic and volcanic activity is found at Roque de los Muchachos observatory, on the island of La Palma.

  19. Hydrothermal Helium Plumes over Submarine Volcanoes of the Marianas Arc

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Baker, E. T.; Embley, R. W.; Resing, J. E.; Massoth, G. J.; Nakamura, K.; Greene, R.; Walker, S.; Lebon, G.

    2003-12-01

    During February-March, 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, the R/V T.G. Thompson conducted a comprehensive survey of hydrothermal activity along 1200 km of the Mariana Arc from 13.5° N to 22.5° N [see Embley et al., EOS Trans. AGU, 2003]. Plume surveys were conducted in the water-column above ~50 submarine volcanoes using a CTD/rosette system. A total of 70 CTD casts were completed, and discrete water samples were collected for analysis of a variety of hydrothermal tracers, including 3He, CH4, CO2, H2S, Fe, Mn, pH, and suspended particles. Although shorebased analysis of the samples is still underway, preliminary results indicate that about 11 of the 50 submarine volcanoes surveyed are hydrothermally active. Because many of the Marianas Arc volcanoes rise to within 500 m of the sea surface, hydrothermal plume signals such as light attenuation (suspended particles) and temperature anomaly have limited utility due to masking by near surface effects. For this reason 3He, an unambiguous hydrothermal tracer, has been particularly useful for identifying which of the shallow arc volcanoes are hydrothermally active. Our expectation was that the water-column helium signal might be reduced at shallow depths due to ventilation into the atmosphere. However, we observed very high 3He enrichments at shallow depths both at Maug Islands and at NW Rota #1 (14° 36'N; 144° 46.5'E). The 3He enrichments were strongly correlated with changes in pH, Mn, and other hydrothermal tracers. The three Maug Islands mark the perimeter of a caldera formed by an explosive eruption, and a single hydrocast in the center of the caldera detected a robust helium plume at 120-200 m depth with δ 3He reaching a maximum of 250% at 150m depth. Analysis of the co-variation of [3He] vs. [4He] at Maug gave R/Ra = 6.6 for an estimate of the end-member helium isotope ratio (R = 3He/4He and Ra = Rair). This value falls well within the range of R

  20. Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Arculus, R. J.; Sossi, P. A.; Jenner, F. E.; Whan, T. H. E.

    2013-11-01

    observations suggest sub-arc convective flow transports melt-exhausted and metasomatized wedge mantle into deeper mantle regions. Reciprocally, asthenospheric, fertile mantle may supply back-arc ridges distal to the trench by shallow, lateral mantle ingress, insinuating initial wedge mantle depletion in its back-arc region. Here we show that light Fe isotope compositions of the Central Lau Spreading Centre located in the Lau back-arc basin on the farside of the Tonga-Kermadec arc are indicative for derivation from a modified arc-front mantle with elemental and Nd-isotopic memory of former slab fluid addition. We propose that this shallow wedge material has been transported from the sub-arc mantle to the back-arc either convectively or in a buoyant diapir. This implies that melt-depleted mantle in subduction zones is, at least in parts, recycled in a resurfacing loop. This can explain the depletion in back-arc regions, and the progressively depleted nature of island arc sources in maturing arc systems.

  1. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  2. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan

    PubMed Central

    Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H.

    2002-01-01

    Significant anomalous changes in the ultra low frequency range (≈0.01 Hz) were observed in both geoelectric and geomagnetic fields before the major volcano-seismic activity in the Izu Island region, Japan. The spectral intensity of the geoelectric potential difference between some electrodes on Niijima Island and the third principal component of geomagnetic field variations at an array network in Izu Peninsula started to increase from a few months before the onset of the volcano-seismic activity, culminating immediately before nearby magnitude 6 class earthquakes. Appearance of similar changes in two different measurements conducted at two far apart sites seems to provide information supporting the reality of preseismic electromagnetic signals. PMID:12032286

  3. Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Le Friant, Anne; Komorowski, Jean-Christophe; Deplus, Christine; Semet, Michel P.

    2007-08-01

    The 1997 Boxing Day collapse, a remarkable feature of the ongoing eruption of Soufrière Hills on Montserrat, has prompted new interest in the study of volcano stability in the Lesser Antilles. Building on a few cases documented in the literature, we have now identified at least 47 flank collapse events on volcanoes of the Caribbean arc where this type of behavior is characteristic and repetitive. About 15 events occurred on active volcanoes within the last 12,000 years. In the northern part of the arc, flank collapses are repetitive, do not exceed 1 km3 in volume, occur in all directions, and are promoted by intense hydrothermal alteration and well-developed fracturing of the summit part of the edifices. In contrast, infrequent but large sector collapses, with volumes up to tens of km3, are typical of the southern volcanoes. They are always directed to the west as a result of the high overall slopes of the islands toward the deep back-arc Grenada Basin. Because Caribbean islands are small, a large part of the resulting debris avalanches have flowed into the sea thus contributing voluminous and sudden inputs of volcaniclastic sediments to the Grenada Basin. Deposits from such submarine flows have been identified during the recent AGUADOMAR and CARAVAL oceanographic cruises and traced to their source structures on land. Edifice collapses have a major influence on subsequent volcanic activity but also are of high concern because of their tsunamigenic potential.

  4. Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications

    USGS Publications Warehouse

    Vallier, T.L.; Jenner, G.A.; Frey, F.A.; Gill, J.B.; Davis, A.S.; Volpe, A.M.; Hawkins, J.W.; Morris, J.D.; Cawood, Peter A.; Morton, J.L.; Scholl, D. W.; Rautenschlein, M.; White, W.M.; Williams, Ross W.; Stevenson, A.J.; White, L.D.

    1991-01-01

    Tholeiitic andesite was dredged from two sites on Valu Fa Ridge (VFR), a back-arc spreading center in Lau Basin. Valu Fa Ridge, at least 200 km long, is located 40-50 km west of the active Tofua Volcanic Arc (TVA) axis and lies about 150 km above the subducted oceanic plate. One or more magma chambers, traced discontinuously for about 100 km along the ridge axis, lie 3-4 km beneath the ridge. The mostly aphyric and glassy lavas had high volatile contents, as shown by the abundance and large sizes of vesicles. An extensive fractionation history is inferred from the high SiO2 contents and FeO* MgO ratios. Chemical data show that the VFR lavas have both volcanic arc and back-arc basin affinities. The volcanic arc characteristics are: (1) relatively high abundances of most alkali and alkaline earth elements; (2) low abundances of high field strength elements Nb and Ta; (3) high U/Th ratios; (4) similar radiogenic isotope ratios in VFR and TVA lavas, in particular the enrichment of 87Sr 86Sr relative to 206Pb 204Pb; (5) high 238U 230Th, 230Th 232Th, and 226Ra 230Th activity ratios; and (6) high ratios of Rb/Cs, Ba/Nb, and Ba/La. Other chemical characteristics suggest that the VFR lavas are related to MORB-type back-arc basin lavas. For example, VFR lavas have (1) lower 87Sr 86Sr ratios and higher 143Nd 144Nd ratios than most lavas from the TVA, except samples from Ata Island, and are similar to many Lau Basin lavas; (2) lower Sr/REE, Rb/Zr, and Ba/Zr ratios than in arc lavas; and (3) higher Ti, Fe, and V, and higher Ti/V ratios than arc lavas generally and TVA lavas specifically. Most characteristics of VFR lavas can be explained by mixing depleted mantle with either small amounts of sediment and fluids from the subducting slab and/or an older fragment of volcanic arc lithosphere. The eruption of subalkaline andesite with some arc affinities along a back-arc spreading ridge is not unique. Collision of the Louisville and Tonga ridges probably activated back-arc extension

  5. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  6. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  7. Sedimentary architecture of a Plio-Pleistocene proto-back-arc basin: Wanganui Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Proust, Jean-Noël; Lamarche, Geoffroy; Nodder, Scott; Kamp, Peter J. J.

    2005-11-01

    The sedimentary architecture of active margin basins, including back-arc basins, is known only from a few end-members that barely illustrate the natural diversity of such basins. Documenting more of these basins types is the key to refining our understanding of the tectonic evolution of continental margins. This paper documents the sedimentary architecture of an incipient back-arc basin 200 km behind the active Hikurangi subduction margin, North Island, New Zealand. The Wanganui Basin (WB) is a rapidly subsiding, Plio-Pleistocene sedimentary basin located at the southern termination of the extensional back-arc basin of the active Central Volcanic Region (TVZ). The WB is asymmetric with a steep, thrust-faulted, outer (arc-ward) margin and a gentle inner (craton-ward) margin. It contains a 4-km-thick succession of Plio-Pleistocene sediments, mostly lying offshore, composed of shelf platform sediments. It lacks the late molasse-like deposits derived from erosion of a subaerial volcanic arc and basement observed in classical back-arc basins. Detailed seismic stratigraphic interpretations from an extensive offshore seismic reflection data grid show that the sediment fill comprises two basin-scale mega-sequences: (1) a Pliocene (3.8 to 1.35 Ma), sub-parallel, regressive "pre-growth" sequence that overtops the uplifted craton-ward margin above the reverse Taranaki Fault, and (2) a Pleistocene (1.35 Ma to present), divergent, transgressive, "syn-growth" sequence that onlaps: (i) the craton-ward high to the west, and (ii) uplifted basement blocks associated with the high-angle reverse faults of the arc-ward margin to the east. Along strike, the sediments offlap first progressively southward (mega-sequence 1) and then southeastward (mega-sequence 2), with sediment transport funnelled between the craton- and arc-ward highs, towards the Hikurangi Trough through the Cook Strait. The change in offlap direction corresponds to the onset of arc-ward thrust faulting and the rise of

  8. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  9. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  10. Geology and tectonics of Japanese islands: A review - The key to understanding the geology of Asia

    NASA Astrophysics Data System (ADS)

    Wakita, Koji

    2013-08-01

    complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous-Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1-2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc-arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc-arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.

  11. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  12. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  13. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression

    PubMed Central

    Li, Yan; Pehrson, Alan L.; Waller, Jessica A.; Dale, Elena; Sanchez, Connie; Gulinello, Maria

    2015-01-01

    Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level. PMID:26321903

  14. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  15. An introduction to the Sangihe arc: Volcanism accompanying arc—Arc collision in the Molucca Sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Morrice, M. G.; Jezek, P. A.; Gill, J. B.; Whitford, D. J.; Monoarfa, M.

    1983-11-01

    In the Molucca Sea region of northeastern Indonesia, the Sangihe and Halmahera arcs are presently in the process of colliding, the earth's only example of a collision between facing volcanic arcs. The collision event is more advanced in the northern Molucca Sea where back-arc thrusting occurs along the Cotobato and Philippine trenches and volcanic centers are inactive and dissected. This paper describes the Sangihe arc, the western arc of the collision. The Sangihe are is approximately 500 km in length extending from the NE tip of Sulawesi to Mindanao, Philippines. The arc comprises over 25 Quaternary volcanic centers, the eight presently active volcanoes being confined to the southern half of the arc. The active volcanic front lies 100-110 km above the top of the west-dipping Benioff zone and volcanoes extend up to 70 km behind the front, thereby defining a volcanic arc overlying earthquakes 100 to 180 km deep. Rock types range from basalt to rhyolite, andesites are dominant. Pyroxene-andesites are common on Sulawesi and at or near the volcanic front from Ruang to Buhias-Pahepa and Buang to Mamanuk. Hornblende-andesites are common at the volcanic front between Mahengetang and Sangihe Island and in centers located well behind the volcanic front. Tholeiitic (TH) suites, defined on the basis of relative degrees of iron enrichment, are confined to the southern volcanic front, lack hornblende, are low-K (K 55 < 1.05), have low Rb/Zr ratios (0.10-0.17), low Ba/Y ratios (3.4-4.9), low Rb/Cs ratios (8-14) and have the highest 87Sr/ 86Sr ratios (0.7039-0.7042). Calcalkaline (CA) suites occur throughout the arc, are low- to high-K (K 55 ≅ 0.6-2.0), have variable Rb/Zr ratios (0.15-0.65) and Ba/Y ratios (4.2-12.4), high Rb/Cs ratios (14-82) and low 87Sr/ 86Sr ratios (0.7035-0.7040). Zr and Y distribution coefficients are lower in TH suites ( DZr = 0.0, DY = 0.2-0.5) than in CA suites ( DZr = 0.0-0.8, DY = 0.3-1.2). Ti initially increases with increasing SiO 2 in some TH

  16. In situ derivation of sulfur activated TiO{sub 2} nano porous layers through pulse-micro arc oxidation technology

    SciTech Connect

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, Roya

    2011-10-15

    Highlights: {yields} S-TiO{sub 2} layers were grown by MAO technique under pulse current for the first time. {yields} Effect of growth parameters on chemical composition, topography, and morphology of the layers was studied. {yields} A correlation between photocatalytic performance and growth conditions was proposed. -- Abstract: Micro arc oxidation technique, as a facile and efficient process, was employed to grow sulfur doped titania porous layers. This research sheds light on the photocatalytic performance of the micro arc oxidized S-TiO{sub 2} nano-porous layers fabricated under pulse current. Morphological and topographical studies, performed by SEM and AFM techniques, revealed that increasing the frequency and/or decreasing the duty cycle resulted in formation of finer pores and smoother surfaces. XRD and XPS results showed that the layers consisted of anatase and rutile phases whose fraction was observed to change depending on the synthesis conditions. The highest anatase relative content was obtained at the frequency of 500 Hz and the duty cycle of 5%. Furthermore, photocatalytic activity of the layers was examined by measuring the decomposition rate of methylene blue under both ultraviolet and visible photo irradiations. Maximum photodegradation reaction rate constants over the pulse-grown S-TiO{sub 2} layers were respectively measured as 0.0202 and 0.0110 min{sup -1} for ultraviolet and visible irradiations.

  17. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  18. [Arc welder's lung].

    PubMed

    Molinari, Luciana; Alvarez, Clarisa; Semeniuk, Guillermo B

    2010-01-01

    Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ. PMID:21163741

  19. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  20. The geomorphology of the Chandeleur Island Wetlands

    SciTech Connect

    Debusschere, K.; Penland, S.; Westphal, K. ); Handley, L. ); Michot, T. ); Reed, D.; Seal, R.

    1990-09-01

    The Chandeleur Islands represent the largest and oldest transgressive barrier island arc in the northern Gulf of Mexico. Generated by the transgressive submergence of the St. Bernard delta complex, the Chandeleur Islands form the protective geologic framework for one of the richest areas of salt marsh and seagrass flats in Louisiana. The Chandeleur barrier island arc is 60 km long and consists of five individual islands backed by a linear, multiple bar system enclosing a shallow basin floored by extensive seagrass flats. The northern part of the Chandeleur chain is the highest in relief, elevation, width, and habitat diversity. Nonstorm morphology is predominantly a combination of continuous dunes and dune terraces. Numerous washover channels and large washover fans extend into the backbarrier environment. Further south, the island width decreases and washover flats and terraces dominate the shoreline morphology In the southernmost section, the island arc is fragmented into a series of small islands and shoals separated by tidal inlets. Between 1984 and 1989, aerial videotape, aerial photographic, and bathymetric surveys were used to map and monitor the geomorphic changes occurring along the shoreline and in backbarrier areas. The aerial videotape mapping surveys focused on the impacts of hurricanes Danny, Elena, and Juan on the geomorphology of the islands. Videotape imagery was acquired in July 1984 and in July (prestorm), August (post-Danny), September (post-Elena), and November (post-Juan) 1985. A coastal geomorphic classification was developed to map the spatial and temporal landscape changes between surveys.

  1. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  2. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  3. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  4. Flowsheet development studies for the decontamination of high-activity-level water at Three Mile Island Unit 2

    SciTech Connect

    Collins, E.D.; Bigelow, J.E.; Campbell, D.O.; King, L.J.; Knauer, J.B.

    1980-01-01

    Several chemical processing flowsheets were considered for the decontamination of high-activity-level water at the Three Mile Island (TMI) Unit 2. A zeolite ion exchange process was evaluated and recommended for absorption of the bulk of the highly radioactive cesium and strontium. Standard organic ion-exchange resins were selected to remove the remaining traces of radioactive nuclides (except tritium which cannot be removed by any practical process). Process conditions were evaluated using both synthetic, tracer-level solutions and samples of actual, high-activity level water from TMI Unit 2.

  5. Detailed bathymetry and magnetic anomaly inthe Central Ryukyu Arc, Japan: implications for a westward shift of the volcanic front after ~2.1 Ma

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, H.; Ishizuka, O.; Arai, K.

    2014-12-01

    Detailed bathymetry and magnetic anomalies in the southern part of the Central Ryukyu Arc reveal recent volcanic structures in a southwestward extension of the active volcanic front of the Ryukyu Arc. A line of bathymetric highs running subparallel to this recent volcanic front was observed ~20 km to the east. A set of small, sharply defined magnetic anomalies extends southward from this line of bathymetric highs to the islands Kume-jima and Aguni-jima, suggesting the former existence of an ancient volcanic front. The ages of volcanic rocks from these islands indicate that magmatic activity along the ancient volcanic front continued until at least ~2.1 Ma. The presence of magnetic anomalies between the two volcanic fronts suggests that the volcanic front has moved gradually westward. This shift can be explained by the termination of asthenospheric upwelling and/or the rapid retreat of the Ryukyu Trench after its change in subduction direction.

  6. Detailed bathymetry and magnetic anomaly in the Central Ryukyu Arc, Japan: implications for a westward shift of the volcanic front after approximately 2.1 Ma

    NASA Astrophysics Data System (ADS)

    Sato, Taichi; Oda, Hirokuni; Ishizuka, Osamu; Arai, Kohsaku

    2014-12-01

    Detailed bathymetry and magnetic anomalies in the southern part of the Central Ryukyu Arc reveal recent volcanic structures in a southwestward extension of the active volcanic front of the Ryukyu Arc. A line of bathymetric highs running subparallel to this recent volcanic front was observed approximately 20 km to the east. A set of small, sharply defined magnetic anomalies extends southward from this line of bathymetric highs to the islands Kume-jima and Aguni-jima, suggesting the former existence of an ancient volcanic front. The ages of volcanic rocks from these islands indicate that magmatic activity along the ancient volcanic front continued until at least approximately 2.1 Ma. The presence of magnetic anomalies between the two volcanic fronts suggests that the volcanic front has moved gradually westward. This shift can be explained by the termination of asthenospheric upwelling and/or the rapid retreat of the Ryukyu Trench after its change in subduction direction.

  7. Back to Treasure Island

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    In this article, the author presents the Treasure Island problem and some inquiry activities derived from the problem. Trying to find where pirates buried a treasure leads to a surprising answer, multiple solutions, and a discussion of problem solving. The Treasure Island problem is an example of an inquiry activity that can be implemented in…

  8. Magnesium isotope geochemistry in arc volcanism

    PubMed Central

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  9. Magnesium isotope geochemistry in arc volcanism.

    PubMed

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  10. Magnesium isotope geochemistry in arc volcanism

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from ‑0.25 to ‑0.10, in contrast to the narrow range that characterizes the mantle (‑0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid‑mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  11. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  12. The southern Whidbey Island fault: An active structure in the Puget Lowland, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.; Miller, J.J.; Finn, C.; Weaver, C.S.

    1996-01-01

    Information from seismic-reflection profiles, outcrops, boreholes, and potential field surveys is used to interpret the structure and history of the southern Whidbey Island fault in the Puget Lowland of western Washington. This northwest-trending fault comprises a broad (as wide as 6-11 km), steep, northeast-dipping zone that includes several splays with inferred strike-slip, reverse, and thrust displacement. Transpressional deformation along the southern Whidbey Island fault is indicated by alongstrike variations in structural style and geometry, positive flower structure, local unconformities, out-of-plane displacements, and juxtaposition of correlative sedimentary units with different histories. The southern Whidbey Island fault represents a segment of a boundary between two major crustal blocks. The Cascade block to the northeast is floored by diverse assemblages of pre-Tertiary rocks; the Coast Range block to the southwest is floored by lower Eocene marine basaltic rocks of the Crescent Formation. The fault probably originated during the early Eocene as a dextral strike-slip fault along the eastern side of a continental-margin rift. Bending of the fault and transpressional deformation began during the late middle Eocene and continues to the present. Oblique convergence and clockwise rotation along the continental margin are the inferred driving forces for ongoing deformation. Evidence for Quaternary movement on the southern Whidbey Island fault includes (1) offset and disrupted upper Quaternary strata imaged on seismic-reflection profiles; (2) borehole data that suggests as much as 420 m of structural relief on the Tertiary-Quaternary boundary in the fault zone; (3) several meters of displacement along exposed faults in upper Quaternary sediments; (4) late Quaternary folds with limb dips of as much as ???9??; (5) large-scale liquefaction features in upper Quaternary sediments within the fault zone; and (6) minor historical seismicity. The southern Whidbey

  13. Monitoring the evolution of Deception Island volcano from magnetic anomaly data (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Catalán, Manuel; Martos, Yasmina M.; Galindo-Zaldívar, Jesús; Funaki, Minoru

    2014-12-01

    Deception Island is a young and active volcano located in the south-western part of Bransfield back-arc basin. During the last twenty years the Royal Observatory of the Spanish Navy has carried out geophysical surveys in the area. In addition, an unmanned aerial vehicle flight was conducted in 2011 at 800 m height on the northern half of Deception Island. Analysing and comparing magnetic grids obtained in different periods and tie point readings allow us to detect temporal changes and isolate signals of volcanic origin. Magnetic survey cruises performed in Deception Island's inner bay (1988, 1999 and 2008), and the study of its outer area's magnetic anomaly changes, point to a period of high variations concentrated between December 1989 and December 1999 that may be related to the two main recent periods of seismic activity (1992 and January 1999). From December 1999 to December 2008, there were no significant changes in seismic activity; nevertheless, our data show some magnetic alterations, which might signal the slow progress of a volcanic environment towards equilibrium. Interpreting these magnetic changes called for the construction of several forward models. Additionally, we put forth this kind of study as a suitable, economical and easy method for monitoring an active volcanic system whenever it is possible to measure the magnetic field with accurate positioning, and if the external field components are removed correctly.

  14. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  15. Submarine Arc Volcanism in the Southern Mariana Arc: Results of Recent ROV studies

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Tamura, Y.; Stern, R. J.; Embley, R. W.; Hein, J. R.; Jordan, E.; Ribeiro, J. M.; Sica, N.; Kohut, E. J.; Whattam, S. A.; Hirahara, Y.; Senda, R.; Nunokawa, A.

    2009-12-01

    The submarine Diamante cross-arc volcanoes (~16°N) and the Sarigan-Zealandia Bank Multi-Volcano Complex (SZBMVC; ~16°45’N), north and south, respectively, of Anatahan Island in the southern Mariana Arc, were studied during several dives in June 2009 using the ROV Hyper-Dolphin, cruise NT09-08 (R/V Natsushima); neither has been studied in detail before. The data collected provide a new perspective on how the subduction factory operates to complement previous studies on other cross-arc volcanic chains in the Izu-Bonin-Mariana Arc. The Diamante complex consists of three major edifices, two cones (West and Central Diamante) and a more complex caldera-like edifice at the volcanic front (East Diamante). West and Central Diamante are basaltic volcanoes but East Diamante has a more complex history. Our studies indicate initial construction of a basaltic volcano. Magmatic evolution led to a violent caldera-forming and quieter dome-building events. Post-caldera quiescence allowed a carbonate platform to grow, now preserved on the eastern caldera wall. Felsic magma or hot rock provides a heat source for an active hydrothermal field associated with felsic domes in the caldera, which NOAA investigators discovered in 2004. A new type of hydrothermal deposit was discovered in the hydrothermal field, consisting of large sulfide-sulfate mounds topped by bulbous constructions of low-temperature Fe and Mn oxides. Vents on the mounds were observed to emit shimmering water. The SZBMVC consists of six closely spaced edifices whose loci are aligned along two parallel trends, one along the volcanic front (Zealandia Bank, Sarigan and South Sarigan), and one about 15 km west towards the rear-arc (Northwest Zealandia, West Zealandia and West Sarigan). Zealandia Bank dives revealed that, as with East Diamante, initial activity was basaltic and became more evolved with time. The western half of Zealandia Bank is dominated by felsic lavas centered on a small (~2 km diameter) caldera and

  16. Back-arc with frontal-arc component origin of Triassic Karmutsen basalt, British Columbia, Canada

    USGS Publications Warehouse

    Barker, F.; Sutherland, Brown A.; Budahn, J.R.; Plafker, G.

    1989-01-01

    The largely basaltic, ???4.5-6.2-km-thick, Middle to Upper Triassic Karmutsen Formation is a prominent part of the Wrangellian sequence. Twelve analyses of major and minor elements of representative samples of pillowed and massive basalt flows and sills from Queen Charlotte and Vancouver Islands are ferrotholeiites that show a range of 10.2-3.8% MgO (as normalized, H2O- and CO2-free) and related increases in TiO2 (1.0-2.5%), Zr (43-147 ppm) and Nb (5-16 ppm). Other elemental abundances are not related simply to MgO: distinct groupings are evident in Al2O3, Na2O and Cr, but considerable scatter is present in FeO* (FeO + 0.9Fe2O3) and CaO. Some of the variation is attributed to alteration during low-rank metamorphism or by seawater - including variation of Ba, Rb, Sr and Cu, but high-field-strength elements (Sc, Ti, Y, Zr and Nb) as well as Cr, Ni, Cu and rare-earth elements (REE's) were relatively immobile. REE's show chondrite-normalized patterns ranging from light-REE depleted to moderately light-REE enriched. On eleven discriminant plots these analyses fall largely into or across fields of within-plate basalt (WIP), normal or enriched mid-ocean-ridge tholeiite (MORB) and island-arc tholeiite (IAT). Karmutsen basalts are chemically identical to the stratigraphically equivalent Nikolai Greenstone of southern Alaska and Yukon Territory. These data and the fact that the Karmutsen rests on Sicker Group island-arc rocks of Paleozoic age suggest to us that: 1. (1) the basal arc, after minor carbonate-shale deposition, underwent near-axial back-arc rifting (as, e.g., the Mariana arc rifted at different times); 2. (2) the Karmutsen basalts were erupted along this rift or basin as "arc-rift" tholeiitite; and 3. (3) after subsequent deposition of carbonates and other rocks, and Jurassic magmatism, a large fragment of this basalt-sediment-covered island arc was accreted to North America as Wrangellia. The major- and minor-elemental abundances of Karmutsen basalt is modeled

  17. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  18. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  19. Monitoring ARC services with GangliARC

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Karpenko, D.

    2012-12-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  20. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation

    PubMed Central

    Lillemeier, Björn F; Mörtelmaier, Manuel A; Forstner, Martin B; Huppa, Johannes B; Groves, Jay T; Davis, Mark M

    2010-01-01

    The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane–associated signal transduction. PMID:20010844

  1. Environmental systems and management activities on the Kennedy Space Center, Merritt Island, Florida: results of a modeling workshop

    USGS Publications Warehouse

    Hamilton, David B.; Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Farmer, Adrian H.; Roelle, James E.

    1985-01-01

    In the early 1960's, the National Aeronautics and Space Administration (NASA) began purchasing 140,000 acres on Merritt Island, Florida, in order to develop a center for space exploration. Most of this land was acquired to provide a safety and security buffer around NASA facilities. NASA, as the managing agency for the Kennedy Space Center (KSC), is responsible for preventing or controlling environmental pollution from the Federal facilities and activities at the Space Center and is committed to use all practicable means to protect and enhance the quality of the surrounding environment. The Merritt Island National Wildlife Refuge was established in 1963 when management authority for undeveloped lands at KSC was transferred to the U.S. Fish and Wildlife Service. In addition to manage for 11 Federally-listed threatened and endangered species and other resident and migratory fish and wildlife populations, the Refuge has comanagement responsibility for 19,000 acres of mosquito control impoundments and 2,500 acres of citrus groves. The Canaveral National Seashore was developed in 1975 when management of a portion of the coastal lands was transferred from NASA to the National Park Service. This multiagency jurisdiction on Merritt Island has resulted in a complex management environment. The modeling workshop described in this report was conducted May 21-25, 1984, at the Kennedy Space Center to: (1) enhance communication among the agencies with management responsibilities on Merritt Island; (2) integrate available information concerning the development, management, and ecology of Merritt Island; and (3) identify key research and monitoring needs associated with the management and use of the island's resources. The workshop was structured around the formulation of a model that would simulate primary management and use activities on Merritt Island and their effects on upland, impoundment, and estuarine vegetation and associated wildlife. The simulation model is composed of

  2. Tectonic evolution of Late Cenozoic arc-continent collision in Taiwan

    SciTech Connect

    Teng, L.S. )

    1990-06-01

    The island of Taiwan is an active orogen formed by the collision between the Luzon arc and the Asian continent. The kinematic progression of the arc-continent collision can be reconstructed by superimposing the restored paleopositions of Luzon arc upon the precollisional Asian continental margin. The geological history of the collision can be interpreted from the rock records of the mountain ranges of Taiwan. By incorporating geological information into plate kinematics, the collision can be attributed to the northwesterly impingement of the Luzon arc upon the continental margin in the last 12 million years. During the initial stage of the collision, some of the continental materials might have been metamorphosed in the deep subduction zone, but no distinct effects can be perceived in the sedimentary record. In the Mio-Pliocene time (about 5 Ma), the accretionary wedge grew large enough to become a sediment source for the Luzon forearc basin and to induce foreland subsidence on the continental margin. In the early late Pliocene (about 3 Ma), drastic collision caused rapid uplift of the collision orogen that shed voluminous orogenic sediments into the forearc and foreland basins. Continued collision progressively accreted the forearc and foreland basins to the collision orogen from north to south to the present configuration.

  3. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  4. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  5. The importance of methanotrophic activity in geothermal soils of Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Gagliano, Antonina Lisa; Quatrini, Paola; Parello, Francesco

    2013-04-01

    Methane is a major contributor to the greenhouse effect, its atmospheric concentration being more than doubled since the XIX century. Every year 22 Tg of methane are released to the atmosphere from several natural and anthropogenic sources. Natural sources include geothermal/volcanic areas but the estimation of the total methane emission from these areas is currently not well defined since the balance between emission through degassing and microbial oxidation within the soils is not well known. Microbial oxidation in soils contributes globally for about 3-9% to the removal of methane from the atmosphere and recent studies evidenced methanotrophic activity also in soils of volcanic/geothermal areas despite their harsh environmental conditions (high temperatures, low pH and high concentrations of H2S and NH3). Methanotrophs are a diverse group of bacteria that are able to metabolize methane as their only source of carbon and energy and are found within the Alpha and Gamma classes of Proteobacteria and within the phylum Verrucomicrobia. Our purpose was to study the interaction between methanotrophic communities and the methane emitted from the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission has been previously estimated in about 2.5 t/a. Laboratory incubation experiments with soil samples from Favara Grande showed methane consumption values of up to 9500 ng g-1 dry soil per hour while soils collected outside the geothermal area consume less than 6 ng g-1 h-1. The maximum consumption was measured in the shallowest part of the soil profile (1-3 cm) and high values (>100 ng g-1 h-1) were maintained up to a depht of 15 cm. Furthermore, the highest consumption was measured at 37°C, and a still recognizable consumption (>20 ng g-1 h-1) at 80°C, with positive correlation with the methane concentration in the incubation atmosphere. These results can be considered a clear evidence of the presence of methanotrophs that

  6. Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, Brian L.; Blakely, Richard J.; Weaver, Craig S.; Kelsey, Harvey M.; Barnett, Elizabeth; Liberty, Lee; Meagher, Karen L.; Pape, Kristin

    2008-05-01

    The southern Whidbey Island fault zone (SWIF), as previously mapped using borehole data, potential field anomalies, and marine seismic reflection surveys, consists of three subparallel, northwest trending strands extending ˜100 km from near Vancouver Island to the northern Puget Lowland. East of Puget Sound, the SWIF makes landfall between the cities of Seattle and Everett but is concealed beneath a thick mantle of young glacial deposits and vegetation. A ˜20-km-wide, northwest trending swath of subparallel, low-amplitude aeromagnetic anomalies crosses this region of the Puget Lowland and is on strike with the SWIF. The most prominent aeromagnetic anomaly, the Cottage Lake lineament, extends at least 18 km and lies approximately on strike with the SWIF on Whidbey Island. Subtle scarps and topographic lineaments on Pleistocene surfaces, visible on high-resolution lidar topography at a number of locations along the SWIF, lie on or near these magnetic anomalies. In the field, scarps exhibit northeast-side-up and vertical relief of 1 to 5 m. Excavations across several lidar scarps lying on or near magnetic anomalies show evidence for multiple folding and faulting events since deglaciation, most likely above buried reverse/oblique faults. Excavations in areas away from magnetic anomalies do not show evidence of tectonic deformation. In total, paleoseismological evidence suggests that the SWIF produced at least four earthquakes since deglaciation about 16,400 years ago, the most recent less than 2700 years ago.

  7. Steady rotation of the Cascade arc

    USGS Publications Warehouse

    Wells, Ray E.; McCaffrey, Robert

    2013-01-01

    Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.

  8. Crustal thickening drives arc front migration

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Lee, Cin-Ty; Manga, Michael

    2014-05-01

    The location of volcanic arcs, relative to the trench evolves over time. Arc front migration has been observed in relic (Sierra Nevada, Andes) as well as active (Cascades) arcs, sometimes with cycles of retreat and return of the front towards the trench over millions of years. Other arcs, particularly where back-arc extension dominates, migrate more slowly, if at all. Coupled with arc migration there are systematic changes in the geochemistry of magmas such as the ratio of trace elements La/Yb and 87Sr/86Sr isotopes (e.g., Haschke et al., 2002). The position of active volcanic arcs relative to the trench is controlled by the location where melt is generated in the mantle wedge, in turn controlled by the geometry of subduction, and the processes that focus rising melt. Arc front migration is commonly attributed to variation in dip angle of the downgoing slab, delamination of overthickened crust, or to subduction erosion. Here we present an alternative hypothesis. Assuming mantle wedge melting is a largely temperature-dependant process, the maximum isotherm in the wedge sets arc front location. Isotherm location depends on slab angle, subduction velocity and wedge thermal diffusivity (England and Katz, 2010). It also depends on crustal thickness, which evolves as melt is transferred from the wedge to the crust. Arc front migration can thus occur purely through magmatic thickening of crust and lithosphere. Thickening rate is determined by the mantle melt flux into the crust, modulated by tectonics and surface erosion. It is not steady in time, as crustal thickening progressively truncates the mantle melt column and eventually shuts it off. Thus slab angle need not change, and in the absence of other contribution processes front location and crustal thickness have long-time steady state values. We develop a quantitative model for arc front migration that is consistent with published arc front data, and explains why arc fronts do not move when there is extension, such

  9. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  10. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation.

    PubMed

    Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E

    2010-06-01

    Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. PMID:20298714

  11. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  12. Application of a cross correlation-based picking algorithm to an active seismic experiment in Sicily and Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Diaz, Alejandro; Álvarez, Isaac; De la Torre, Ángel; García, Luz; Benítez, Ma Carmen; Cortés, Guillermo

    2014-05-01

    The detection of the arrival time of seismic waves or picking is of great importance in many seismology applications. Traditionally, picking has been carried out by human operators. This process is not systematic and relies completely on the expertise and judgment of the analysts. The limitations of manual picking and the increasing amount of data daily stored in the seismic networks worldwide distributed and in active seismic experiments lead to the development of automatic picking algorithms. Current conventional algorithms work with single signals, such as the "short-term average over long-term average" (STA/LTA) algorithm, autoregressive methods or the recently developed "Adaptive Multiband Picking Algorithm" (AMPA). This work proposes a correlation-based picking algorithm, whose main advantage is the fact of using the information of a set of signals, improving the signal to noise ratio and therefore the picking accuracy. The main advantage of this approach is that the algorithm does not require to set up sophisticated parameters, in contrast to other automatic algorithms. The accuracy of the conventional STA/LTA algorithm, the recently developed AMPA algorithm, an autoregressive method, and a preliminary version of the cross correlation-based picking algorithm were assessed using a huge data set composed by active seismic signals from experiments in Tenerife Island (January 2007, Spain). The experiment consisted of the deployment of a dense seismic network on Tenerife Island (125 seismometers in total) and the shooting of air-guns around the island with the Spanish oceanographic vessel Hespérides (6459 air shots in total). Only 110937 signals (13.74% of the total) had the signal to noise ratio enough to be manually picked. Results showed that the use of the cross correlation-based picking algorithm significantly increases the number of signals that can be considered in the tomography. A new active seismic experiment will cover Sicily and Aeolian Islands (TOMO

  13. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  14. Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin?

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Ji, Wei-Qiang; Wang, Jian-Gang

    2014-02-01

    granitic rocks also have positive ɛHf(t) values of ˜+12.6 to +15.2, implying their derivation from a juvenile lower crust. Therefore, we proposed that the basalts in the Zedong terrane were formed through partial melting of the mantle wedge metasomatized by slab-released fluids/melts. A part of hydrous basalts were underplated in the thickened lower crust beneath the Zedong terrane, which gave rise to the cumulate and granitic rocks. By comparison, magmatic rocks in the Zedong terrane show compositional similarities with the Jurassic rocks exposed in the Gangdese arc. This suggests that the Zedong terrane represents a slice of the active continental margin developed on the southern margin of the Lhasa terrane as a result of the northward subduction of the Neo-Tethys Ocean during the Late Jurassic, rather than the vestige of an intra-oceanic arc.

  15. Island Natural Science School.

    ERIC Educational Resources Information Center

    Toronto Board of Education (Ontario).

    Prepared for students in grade six attending the Island Natural Science School, Toronto, Ontario, Canada, this booklet offers information and suggests activities in the areas of ecology, conservation, natural resources, and outdoor recreation. Introductory material describes island lore, its formation and significant features, followed by units of…

  16. A Synthesis of Multibeam Bathymetry and Backscatter, and Sidescan Sonar of the Mariana Submarine Magmatic Arc, Western Pacific

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Chadwick, W. W.; Stern, R. J.; Merle, S. G.; Bloomer, S. H.; Nakamura, K.; Tamura, Y.

    2006-12-01

    A series of expeditions funded by the NSF MARGINS Program, the NOAA Ocean Exploration Program and JAMSTEC from 2001 to 2006 have collected a larg