Science.gov

Sample records for active late-type stars

  1. Activity in X-ray-selected late-type stars

    NASA Technical Reports Server (NTRS)

    Takalo, Leo O.; Nousek, J. A.

    1988-01-01

    A spectroscopic study has been conducted of nine X-ray bright late-type stars selected from two Einstein X-ray surveys: the Columbia Astrophysical Laboratory Survey (five stars) and the CFA Medium Sensitivity Survey (MSS; four stars). Spectral classes were determined and radial and V sin(i) velocities were measured for the stars. Four of the Columbia Survey stars were found to be new RS CVn-type binaries. The fifth Columbia survey star was found to be an active G dwarf star without evidence for binarity. None of the four MSS stars were found to be either binaries or optically active stars. Activity in these stars was assessed by measuring the excess emission in H-alpha and the Ca II IRT (8498, 8542) lines in comparison with inactive stars of similar spectral types. A correlation was found between X-ray luminosity and V sin(i) and H-alpha line excess. The measured excess line emission in H-alpha was also correlated with V sin(i) but not with the IRT line excess.

  2. Periods of activity cycles in late-type stars

    NASA Technical Reports Server (NTRS)

    Kliorin, N. I.; Ruzmaykin, A. A.; Sokolov, D. D.

    1983-01-01

    The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed.

  3. Chromospheric activity on late-type star LQ Hya

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Pi, Qingfeng; Zhu, Zhongzhong; Zhang, Xiliang; Li, Zhongmu

    2014-10-01

    We present new high-resolution echelle spectra of LQ Hya to study its chromospheric activity. We analyzed our spectroscopic observations including several optical indicators of chromospheric activity (the He ID3 , Na I D1, D2, Hα, and Ca II infrared triplet lines), by means of the spectral subtraction technique. All the chromospheric activity indicators (the Na I D1, D2, Hα, and Ca II IRT lines) confirmed chromospheric emissions. The ratio of EW8542 /EW8498 for LQ Hya is around 1.5, which indicates that there is optically thick emission in a plage-like region. As for the Ca II IRT and Hα lines, it seems that there is also a weak rotation modulation of chromospheric activity in our data, which might be explained by the strong plage or flare. The contemporaneous monitoring of photospheric and chromospheric emissions for LQ Hya indicate chromospheric plages might spatially associated with the spots.

  4. Looking for activity cycles in late-type Kepler stars using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Vida, K.; Oláh, K.; Szabó, R.

    2014-07-01

    We analyse light curves covering four years of 39 fast-rotating (Prot ≲ 1 d) late-type active stars from the Kepler data base. Using time-frequency analysis (short-term Fourier transform), we find hints for activity cycles of 300-900 d at nine targets from the changing typical latitude of the starspots, which with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ≈0.001 for the cycling targets. These results populate the less studied, short-period end of the rotation-cycle length relation.

  5. Outer atmospheres of late-type stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    Recent observational results concerning chromospheres and coronae in late-type stars are described. In particular, it is indicated where in the cool half of the HR diagram chromospheres, transition regions, coronae, and large mass loss occur and what the important parameters determining the energy balance of these layers are. The chromospheric modelling process is summarized and models of the late-type supergiants Beta Dra, Epsilon Gem, and Alpha Ori recently computed by Basri and Linsky (1980) are detailed.

  6. Photometry of late type stars

    NASA Technical Reports Server (NTRS)

    Doherty, L. R.

    1972-01-01

    Broad band filter photometry for 57 bright stars of spectral type A2 discussed with peak instrument responses at 3320, 2980, 2460 and 1910 A. The data include nearly all usable filter observations of G, K and M types. Sampling is nearly complete for A and F giants and supergiants, with the exception of Cepheid variables. The basic results presented are relative digital counting rates obtained with a field-stop aperture of 10 minutes of arc. Characteristics of the four filter-photometer combinations and errors are discussed. Some observations require substantial correction if they are to represent the visually brightest star in the field. These corrections and the effects of interstellar reddening are discussed. The adjusted counts are then used to construct color-color diagrams and are compared to the recent SAO grid of model atmospheres.

  7. Infrared Observations of Late Type Stars

    NASA Technical Reports Server (NTRS)

    Merrill, K. M.

    1977-01-01

    Substantive mass loss resulting in appreciable circumstellar dust envelopes is common in late-type stars. The evolutionary history and physical state of a cool star determine the chemistry within the outer stellar atmosphere mirrored by the molecular and particulate material present in the envelope. The observational consequences of this debris determined by moderate spectral resolution infrared spectrophotometry are reviewed. Significant information is provided by observations of the emergent energy flux of both the cool stellar photosphere and of the circumstellar dust envelope. The observation suggests that mass-loss occurs to some degree throughout late stellar evolutionary phases and that occasional periods of high mass loss are not uncommon.

  8. Convection in Oblate Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2015-08-01

    In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.

  9. Chromospheric activity on late-type star DM UMa using high-resolution spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Zhang, LiYun; Pi, QingFeng; Han, Xianming L.; Chang, Liang; Wang, Daimei

    2016-06-01

    We present new 14 high-resolution echelle spectra to discuss the level of chromospheric activity of DM UMa in {He I} D3, {Na I} D1, D2, Hα, and {Ca II} infrared triplet lines (IRT). It is the first time to discover the emissions above the continuum in the {He I} D3 lines on 2015 February 9 and 10. The emission on February 9 is the strongest one ever detected for DM UMa. We analysed these chromospheric active indicators by employing the spectral subtraction technique. The subtracted spectra reveal weak emissions in the {Na I} D1, D2 lines, strong emission in the Hα line, and clear excess emissions in the {Ca II} IRT lines. Our values for the EW8542/EW8498 ratio are on the low side, in the range of 1.0-1.7. There are also clear phase variations of the level of chromospheric activity in equivalent width (EW) light curves in these chromospheric active lines (especially the Hα line). These phenomena might be explained by flare events or rotational modulations of the level of chromospheric activity.

  10. Observations of nonthermal radiation from late-type stars

    SciTech Connect

    Bookbinder, J.A.

    1985-01-01

    Statistical properties of the x-ray and radioemission from the coronae of a sample of late-type stars were studied. The sample consisted of a large, nearly volume-limited, population of K and M dwarfs. From the analyses, conclusions are drawn regarding stellar dynamos, evolution of low-mass binary systems, and the nature of the coronal heating mechanism in low-mass stars. Statistical behavior of the x-ray emission from the complete Einstein survey 243 late-type stars within 25 pc is first examined, focusing on the stellar age and color dependences. Optically selected, nearly volume limited subsamples reasonably free of known biases are used to show that, relative to the young disk stars, old disk stars have levels of coronal emission almost an order of magnitude smaller. There is also a steady, but small, decrease of coronal activity with decreasing mass. A subset of these stars present in the x-ray survey was selected for observations of radio wavelengths. Combined with previously reported radio observations of M dwarfs and the x-ray data, it is shown that these observations can provide a new characterization of the coronal activity of late-type stars.

  11. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  12. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  13. Star formation in bulgeless late type spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Ramya, S.; Sengupta, C.; Mishra, K.

    We present radio and follow-up optical observations of a sample of bulgeless late type spiral galaxies. We searched for signs of nuclear activity and disk star formation in the sample galaxies. Interaction induced star formation can often trigger bulge formation. We found significant radio emission associated with star formation in two sample galaxies, NGC3445 and NGC4027, both of which are tidally interacting with nearby companions. For the others, the star formation was either absent or limited to only localized regions in the disk. Both galaxies also have oval bars that are possibly pseudobulges that may later evolve into bulges. We did follow up optical Hα imaging and nuclear spectroscopy of NGC3445 and NGC4027 using the Himalayan Chandra Telescope (HCT). The Hα emission is mainly associated with strong spiral arms that have been triggered by the tidal interact1ions. The nuclear spectra of both galaxies indicate ongoing nuclear star formation but do not show signs of AGN activity. We thus conclude that star formation in bulgeless galaxies is generally low but is enhanced when the galaxies interact with nearby companions; this activity may ultimately lead to the formation of bulges in these galaxies.

  14. Spots on the surfaces of late-type stars

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2014-07-01

    The spottedness of two stars characterized by significant photometric variability is studied using published data: the recently discovered variable ASAS 063656-0521.0, whose V variability reaches 0.8 m , and XXTri (HD12545), which is among the most active RSCVn stars (in 1997-1998, the amplitude of its V variability was 0.63 m ). The spots cover up to 44% of the total visible surface S of ASAS 063656-0521.0. The mean estimated spottedness of XX Tri was 32%, and varied from29% to 36%. An analysis of the dependence of the spottedness on the properties of spotted stars, primarily their effective temperatures, is also presented. A modification of a simplifiedmethod for estimating the spottedness S, i.e., the fractional surface area of the spots, is applied to a sample of 48 late-type stars. The dependences of the spottedness on the effective temperature of the stars and the rotational velocity projected onto the line of sight are derived. Two groups of objects can be distinguished. The first contains stars displaying the typical dependence of S on the effective temperature (their maximum value of S is 20-25% for stars with temperatures 4500-5000 K, and S decreases for solar-type stars and cool M dwarfs). The second group is formed of the most active stars, which have temperatures of 3700-5200 K and S values from 25% to 50%. Our preliminary conclusion is that spottedness is not related to the period of the stellar rotation. The previously studied variable V410 Tau is used to consider the shortcomings of the method applied compared to the results of light-curve modeling.

  15. [A late-type star spectra outlier data mining system].

    PubMed

    Cai, Jiang-Hui; Yang, Hai-Feng; Zhao, Xu-Jun; Zhang, Ji-Fu

    2014-05-01

    In M star population, some special objects, which may be of magnetic activity, may be giant stars, or may be of other rare properties, are very important for the follow-up observation and the scientific research on galactic structure and evolution. For local bias of M-type star spectral characteristic lines contained in subspace, a late-type star spectra outlier data mining system is given in the present paper. Firstly, for the sample of M stellar spectral characteristic lines indices, its distribution characteristics in attribute spaces are measured by using the sparse factor and sparsity coefficient, and then this sample is discretized and dimension-reduced to the spectral subspace. Secondly, local outlier subspaces are extracted by PSO (particle swarm optimization) algorithm and identified. Additionally, the effects of sparse coefficient and sparse factor on the number of outliers are discussed by experiments on the sample of SDSS M stellar spectral line index set, and the outliers are compared with spectral type provided by SDSS. In this way, the feasibility and value of this system were validated. PMID:25095451

  16. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Montes, D.; Gálvez-Ortiz, M. C.; Crespo-Chacón, I.; Martínez-Arnáiz, R. M.; Fernández-Figueroa, M. J.; de Castro, E.; Cornide, M.

    2010-05-01

    Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R'_HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the logFHα/Fbol - (V-J) diagram. The dichotomy may be associated with the age of the stars. Based on observations made with the 2.2 m telescope of the German-Spanish Astronomical Centre, Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institute for Astronomy, Heidelberg, and the Spanish

  17. Einstein Observatory coronal temperatures of late-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  18. Mg II 2800 A emission in late type stars

    NASA Technical Reports Server (NTRS)

    Doherty, L. R.

    1972-01-01

    The largest body of data on ultraviolet spectra of late-type stars now available is the series of scans made with the long wavelength spectrometer onboard OAO-2. Some features of selected scans from this series and estimates of Mg II emission fluxes were reported earlier. Since that time, the effects of sky background, scattered light and variable instrumental sensitivity have become better understood. Additional stars are used to define more clearly the transition from Mg II 2800 A absorption to emission with advancing spectral type, and additional scans of alpha Sco provide a better estimate of Mg II emission strength for this supergiant in OAO observations.

  19. Professional-Amateur Collaboration in Late-Type Star Research

    NASA Astrophysics Data System (ADS)

    West, J. D.; Alexander, D. R.

    2000-05-01

    A collaborative research program in late-type stars is currently underway in Wichita, Kansas, between a professional astronomer and an amateur astronomer Doug West. The goal of this program is to gain an understanding of the chemical and physical processes that occur in the atmospheres of late-type giant stars. The project requires spectrophotometric and photometric measurements of K, M, S, & C of stars. These observations are then compared with model stellar atmosphere calculations produced by the Phoenix code (Hauschildt, Allard, Ferguson, Baron, & Alexander, 1999, ApJ, 525, 871). Spectra and photometry are obtained by the amateur astronomer using a Meade LX200 8" telescope, an SBIG ST-8 CCD camera, research grade filters, and a 200 lines/mm transmission grating. Spectra and photometric data are extracted from the CCD images using MIRA 6.0 and custom software. Spectrophotometry to the 8th magnitude and photometry to the 12th magnitude are possible with this system. To date, several dozen spectra and photometric measurements have been completed. Undergraduate students at Wichita State University have been involved in the data reduction process. Long term goals of the project include defining a chemical sequence among AGB stars and describing the atmospheric changes that occur in small amplitude variable stars.

  20. Winds in late-type stars - Mechanisms of mass outflow

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    The four basic mechanisms that have been proposed for explaining the acceleration of winds in late-type stars are thermal pressure gradients, radiation pressure on circumstellar dust grains, momentum addition by Alfven waves, and momentum addition by periodic shock waves. Recent work in applying these mechanisms to stars is reviewed, with consideration given to whether these mechanisms can work, even in principle, and whether they are consistent with recent ultraviolet and X-ray data from the IUE and Einstein spacecraft. It is noted that thermally driven winds are likely important for late-type dwarfs, where the mass loss rates are small, and perhaps also in G giants and supergiants, but they cannot operate alone in the K and M giants and supergiants. It is thought that radiatively driven winds are probably unimportant for all cool stars, even the M supergiants with dusty circumstellar envelopes. In principle, Alfven waves can accelerate winds to high speeds so long as the field lines are initially open or forced open by some mechanism, but detailed calculations are needed. It is noted that, for the Miras and semiregular variable supergiants, periodic shock waves provide a simple way of producing rapid mass loss.

  1. Atmospheric Dynamics of Luminous Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    We present first results of magnetohydrodynamic (MHD) calculations of winds from luminous late-type stars using an existing, 2.5D, non-linear MHD code recently developed by Ofman & Davila (e.g., Ofman & Davila 1997). We assume that the wind is initiated in a hydrostatic atmosphere with an isothermal pressure scale height of 0.072 R* and a ``chromospheric hole'' modeled by a transverse density structure and a radial magnetic field. To ensure that we are accurately assessing the terminal velocity of the wind, we carried out the calculations to a height of 20 stellar radii. We find that in the higher density (low Alfven velocity) regions outside of the ``chromospheric hole'' the Alfven waves are freely propagating. Ponderomotive forces associated with these waves drive radial, compressive motions and contribute to stellar wind acceleration. The compressive motions then excite slow magnetosonic waves which non-linearly steepen into solitary waves that propagate on top of a background flow. This situation is similar to solar coronal hole models. In the lower density ``chromospheric hole'' region the Alfven wave are strongly reflected, and produce a substantial outflow, with both radial and azimuthal velocities approaching the local Alfven speed. Our results are in qualitative agreement with observational signatures of winds in cool, luminous late-type stars.

  2. Lyman alpha initiated winds in late-type stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Van Der Hucht, K. A.; Linsky, J. L.

    1979-01-01

    One of the first major results of the IUE survey of late-type stars was the discovery of a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). This result is especially interesting in view of observational evidence for mass loss from G and K giants and super-giants discussed recently by both Reimers and Stencel. In the present paper models of both hot coronae and cool wind flows are calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a 'supersonic transition locus' in the HR diagram dividing hot coronae from cool winds. It is concluded from these models that the Lyman-alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman-alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is investigated.

  3. Two-Component Winds from Luminous Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Offman, L.; Robinson, R.; Carpenter, K.; Davila, J.

    1998-01-01

    We present the results of a magnetohydrodynamic (MHD) simulation of winds from luminous late-type stars using a 2.5D, non-linear MHD computer code. In this simulation we assume that the wind is generated within a hydrostatic atmosphere with an initial isothermal pressure scale height of 0.072 Rstar and a radial magnetic field. We also assume a transverse density gradient which we we refer to as a ``chromospheric hole''. Tortional Alfven waves are generated at the stellar surface by a forcing function having a single frequency, which is comparable to the turn-over frequency of convective cells in giant stars. To ensure that we are accurately assessing the terminal velocity of the wind, we carried out the calculations to a height of 20 stellar radii and a time period of more than 180 Alfven transit times, which ensures that a steady state has been reached. In the higher density (low Alfven velocity) regions outside of the ``chromospheric hole'' the Alfven waves are freely propagating. Ponderomotive forces associated with these waves drive radial, compressive motions and contribute to stellar wind acceleration. The compressive motions then excite slow magnetosonic waves which non-linearly steepen into solitary waves that propagate on top of a background flow similar to the case of solar coronal holes. This produces a fast (40-80 km/s) and relatively dense component of the wind. In the lower density ``chromospheric hole'' region the Alfven waves are strongly reflected and produce an outflow with both radial and azimuthal velocities which are ~ 10% of the local Alfven speed. This component of the wind is slow ( ~ 10-30 km/s) and less dense than the wind initiated outside of the hole. Depending on the magnetic topology in the atmosphere of a luminous late - type star, we may therefore expect either one (fast) or two components to the wind. Our results are consistent with recent observations of two discrete components to the wind in the K5 III hybrid star gamma Dra. These

  4. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    SciTech Connect

    Haisch, B.M.; Bookbinder, J.A.; Maggio, A.; Vaiana, G.S.; Bennett, J.O. Smithsonian Astrophysical Observatory, Cambridge, MA Osservatorio Astronomico, Palermo Colorado Univ., Boulder )

    1990-10-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram. 67 refs.

  5. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.

    1990-01-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.

  6. Spherically symmetric model atmospheres for late-type giant stars

    NASA Astrophysics Data System (ADS)

    Bennett, Philip Desmond

    The ATHENA computer code was developed to model the extended atmospheres of late-type giant and supergiant stars. The atmospheres are assumed to be static, spherically symmetric and in radiative and hydrostatic equilibrium. Molecular line blanketing (for now) is handled using the simplifying assumption of mean opacity. The complete linearization method of Auer and Mihalas, adapted to spherical geometry, is used to solve the model system. The radiative transfer is solved by using variable Eddington factors to close the system of moment transfer equations, and the entire system of transfer equations plus constraints is solved efficiently by arrangement into the Rybicki block matrix form. The variable Eddington factors are calculated from the full angle-dependent formal solution of the radiative transfer problem using the impact parameter method of Hummer, Kunas. We were guided by the work of Mihalas and Hummer in their development of extended models of O stars, but our method differs in the choice of the independent variable. The radius depth scale used by Mihals and Hummer was found to fail because of the strongly temperature-dependent opacities of late-type atmospheres. Instead, we were able to achieve an exact linearization of the radius. This permitted the use of the numerically well-behaved column mass or optical depth scales. The resulting formulation is analogous to the plane-parallel complete linearization method and reduces to this method in the compact atmosphere limit. Models of M giants were calculated for Teff = 3000K and 3500K with opacities of the CN, TiO, and H2O molecules included, and the results were in general agreement with other published spherical models. These models were calculated assuming radiative equilibrium. The importance of convective energy transport was estimated by calculating the convective flux that would result from the temperature structure of the models. The standard local mixing length theory was used for this purpose

  7. EUVE Right Angle Program Observations of Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Christian, D. J.; Mathioudakis, M.; Drake, J. J.

    1995-12-01

    The EUVE Right Angle Program (RAP) obtains photometric data in four bands centered at ~ 100 Angstroms (Lexan/B), ~ 200 Angstroms (Al/Ti/C), ~ 400 Angstroms (Ti/Sb/Al), and ~ 550 Angstroms (Sn/SiO). RAP observations are up to 20 times more sensitive than the all-sky survey. We present RAP observations of the late-type stars: BD+03 301, BD+05 300, HR 1262, BD+23 635, BD+22 669, Melotte 25 VA 334, Melotte 25 1366, Melotte 25 59, Melotte 25 65, theta (1) Tau, V834 Tau, GJ 2037, BD-21 1074, GJ 205, RE J0532-030, GJ 9287A, HT Vir, BD+46 1944, Proxima Cen, alpha Cen A/B, HR 6094, CPD-48 10901, and HR 8883. We derive fluxes and emission measures from Lexan/B and Al/Ti/C count rates. The time variability of the sources has been examined. Most of the sources show no significant variability at the 99% confidence level. Flares were detected from the K3V star V834 Tau (HD 29697) and the K0 star BD+22 669. The BD+22 669 count rate at the peak of the flare is a factor of 10 higher than the quiescent count rate with a peak Lexan/B luminosity of 7.9 x 10(29) erg s(-1) . The V834 Tau flare was detected in both Lexan/B and Al/Ti/C bands. The peak luminosity of the flare is 1.6 x 10(29) erg s(-1) and 8 x 10(28) ergs s(-1) for Lexan/B and Al/Ti/C, respectively. This is a factor of 4.3 higher than the quiescent luminosity in Lexan/B, and a factor of 4.6 in Al/Ti/C\\@. This work is supported by NASA contract NAS5-29298.

  8. Magnesium emission variability among late-type giant stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.

    1982-01-01

    Profiles of the Mg II h and k emission features in the spectra of 21 late-type giant stars were obtained. Emission strengths were separately measured in the shortward (S) and longward (L) components. Variations in total emission intensity (S + L) can be interpreted as evidence for variations in the rate of mechanical energy deposition in the chromosphere. Mass loss processes in the corona/outer atmosphere may be strong enough to affect the ratio of S/L: thus, rapid mass loss causes S/L to be less than unity. Rapid mass loss is likely caused by deposition of mechanical energy by stellar wind. Variations in S/L are a measure of variations in the rate of mechanical energy deposition in the corona/outer atmosphere. The stellar sample variations were divided into four classes: (1) variations in S/L; (2) variations in the circumstellar absorption components; (3) variations in the total flux; and (4) no evidence for variations found on the time scales used.

  9. Kepler Observations of Starspot Evolution, Differential Rotation, and Flares on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Korhonen, H.; Berdyugina, S.; Walkowicz, L.; Kowalski, A.; Hawley, S.; Neff, J.; Ramsey, L.; Redman, S.; Saar, S.; Furesz, G.; Piskunov, N.; Harper, G.; Ayres, T.; Tofany, B.

    2011-05-01

    The Kepler satellite is providing spectacular optical photometric light-curves of unprecedented precision and duration that routinely allow detailed studies of stellar magnetic activity on late-type stars that were difficult, if not impossible, to attempt previously. Rotational modulation due to starspots is commonly seen in the Kepler light-curves of late-type stars, allowing detailed study of the surface distribution of their photospheric magnetic activity. Kepler is providing multi-year duration light-curves that allow us to investigate how activity phenomena -- such as the growth, migration, and decay of starspots, differential rotation, activity cycles, and flaring -- operate on single and binary stars with a wide range of mass and convection zone depth. We present the first results from detailed starspot modeling using newly-developed light-curve inversion codes for a range of GALEX-selected stars with typical rotation periods of a few days, that we have observed as part of our 200 target Kepler Cycle 1/2 Guest Observer programs. The physical properties of the stars have been measured using high resolution optical spectroscopy, which allows the Kepler results to be placed within the existing framework of knowledge regarding stellar magnetic activity. These results demonstrate the powerful diagnostic capability provided by tracking starspot evolution essentially continuously for more than 16 months. The starspots are clearly sampling the stellar rotation rate at different latitudes, enabling us to measure the differential rotation and starspot lifetimes. As would be expected, stars with few day rotation show frequent flaring that is easily seen as "white-light" flares in Kepler light-curves. We compare the observed flare rates and occurrence with the starspot properties. This work contains results obtained using the NASA Kepler satellite and from the Apache Point Observatory, the MMT (using NOAO community access time), and the Hobby-Eberly Telescope. Funding

  10. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  11. Spectroscopic Orbits for 15 Late-type Stars

    NASA Astrophysics Data System (ADS)

    Willmarth, Daryl W.; Fekel, Francis C.; Abt, Helmut A.; Pourbaix, Dimitri

    2016-08-01

    Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their mass functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.

  12. Observations and theory of mass loss in late-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1981-01-01

    The presented review is mainly concerned with the ubiquitous mass loss which occurs during most of a star's existence as a cool giant or supergiant. Observations of mass loss are considered, taking into account wind components and kinematics, and the temperature structure of cool winds. Theories of mass loss are examined, giving attention to radiation pressure on dust, radiation pressure in Lyman alpha, and magnetic wave-driven winds. It is pointed out that the study of mass loss from late-type stars appears to be entering a promising new phase. In this phase, the behavior of cool giants and supergiants is considered from a solar perspective, a perspective which contains important implications concerning the nature of solar activity.

  13. The winds of high luminosity late-type bright stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Carpenter, K. G.

    1989-01-01

    The occurrence and characteristics of the Fe II line asymmetries were studied to determine the radial dependence of the wind velocity for each star. The dependence of the Fe II profiles on spectral type and luminosity class and thus the variation of the velocity fields with stellar type was also investigated. This allows the generality of the results reported for alpha Ori by Carpenter (1984b) to be judged. In addition, new atomic data was used along with observations of the C II (UV 0.01) multiplet to estimate N(sub e) in the stellar winds. Measures of relative Fe II fluxes can be used in a probability-of-escape model to determine the opacity and hydrogen column density versus height in the chromosphere of each star. Finally, analysis of the fluorescent Fe II lines (pumped by Ly alpha) near 2507 A will yield estimates of the intrinsic stellar Ly alpha flux that cannot be measured directly because of interstellar and circumstellar absorption. One important goal of the effort was to acquire high resolution spectra of the whole 2300 to 3200 A region of 13 luminous K and M stars as a data base that will be enormously valuable in planning observations with the Hubble Space Telescope High Resolution Spectrograph. It is also proposed to follow up the recent discovery of significant variations in the Fe II chromospheric emission line profiles from the M-giant Gamma Cru for the purpose of determining the underlying cause of the variations.

  14. Mg II Spectral Atlas and Flux Catalog for Late-Type Stars in the Hyades Cluster

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2001-01-01

    In the course of a long-running IUE Guest Observer program, UV spectral images were obtained for more than 60 late-type members of the Hyades Cluster in order to investigate their chromospheric emissions. The emission line fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation (IUE Observations of Rapidly Rotating Low-Mass Stars in Young Clusters: The Relation between Chromospheric Activity and Rotation). However, the details of those measurements, including a tabulation of the line fluxes, were never published. The purpose of the investigation summarized here was to extract all of the existing Hyades long-wavelength Mg II spectra in the IUE public archives in order to survey UV chromospheric emission in the cluster, thereby providing a consistent dataset for statistical and correlative studies of the relationship between stellar dynamo activity, rotation, and age over a broad range in mass.

  15. The role of dust in mass loss from late-type stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    It is noted that, in almost all late-type stars with measured mass loss rates, there is sufficient momentum in the radiation to dominate the dynamics. The opacity of the material is sufficiently great to render radiation pressure important; the dust forms close enough to the central star for radiation pressure to account for the observed outflow velocities. Pulsations appear to be important in raising the material far enough above the photosphere for grains to condense.

  16. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  17. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    SciTech Connect

    Schmitt, J.H.M.M.; Snowden, S.L. Wisconsin Univ., Madison )

    1990-09-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. 41 refs.

  18. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  19. The Structure of Nearby Nuclear Star Clusters in Late-Type Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Carson, Daniel; Barth, A. J.; Ho, L. C.; Greene, J. E.; Seth, A.; Cappellari, M.; Neumayer, N.

    2013-01-01

    Hubble Space Telescope imaging surveys have shown that most late-type, bulgeless spiral galaxies contain compact nuclear star clusters. To examine the structure and stellar content of these objects in detail, we have obtained HST WFC3 images of a sample of 10 spiral galaxies containing bright nuclear star clusters, most at distances of less than 5 Mpc. Each galaxy was observed in seven filters spanning the near-UV to near-IR. GALFIT was used to fit parametric models to the surface brightness distribution of each cluster. In most cases, a single Sersic model provides an adequate description of the cluster structure, although some clusters required 2 Sersic components, and one object (NGC 4395) requires an additional pointlike component to represent the active nucleus. This poster will present the measured cluster properties including magnitudes, Sersic indices, effective radii, and surface brightness profiles. The structural parameters measured from these HST images will be used as input to future dynamical models in order to determine cluster masses and to constrain the possible presence of intermediate-mass black holes within the clusters.

  20. The gravity dependence of the H-alpha width in late-type stars

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.

    1985-01-01

    A theoretical gravity-scaling law for the H-alpha absorption width in late-type stars is developed. The derivation is based upon (1) the hydrostatic thickening of stellar chromospheres with decreasing surface gravity, and (2) a dependence of the H-alpha width upon opacity and Doppler width in a region subject to a chromospheric temperature rise. The scaling relation is approximately consistent with the mean gravity dependence deduced from the empirical correlation between H-alpha and Ca II K Wilson-Bappu widths. The calculations suggest that gravity variations in chromospheric-mass column density may, in addition to Doppler velocity enhancements, control the width-luminosity broadening of the H-alpha profile in late-type stars.

  1. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  2. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  3. Broad-band linear polarization in late-type active dwarfs

    NASA Astrophysics Data System (ADS)

    Patel, Manoj K.; Pandey, Jeewan C.; Karmakar, Subhajeet; Srivastava, D. C.; Savanov, Igor S.

    2016-04-01

    We present recent polarimetric results of magnetically active late-type dwarfs. The polarization in these stars is found to be wavelength dependent, decreasing towards the longer wavelength. The average values of degree of polarization in these active dwarfs are found to be 0.16 ± 0.01, 0.080 ± 0.006, 0.056 ± 0.004 and 0.042 ± 0.003 per cent in B, V, R, and I bands, respectively. Present results indicate that polarization in the majority of active dwarfs are primarily due to sum of the polarization by magnetic intensification and scattering. However, supplementary sources of the polarization are also found to be present in some active stars. The correlations between the degree of polarization and various activity parameters like Rossby number, chromospheric activity indicator and coronal activity indicator are found to be stronger in B band and weaker in I band.

  4. Coronal Thermal Structure and Abundance of Super-Metal-Rich Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    This report covers the NASA grant NAG5-9943 for Cycle 1 XMM Guest Observer Program. The project is entitled 'Coronal Thermal Structure and Abundances of Super-Metal-Rich Late-Type Stars.' This observation is for grating spectroscopy of 30 Ari, a late-type star with very high metallicity (about twice solar). The goal is to use extreme cases to help understand how abundances change from the photosphere to the corona. The target was obtained by XMM-Newton on 2001 January 16 for 28000 sec. Data processing could not proceed until last fall because the SAS RGS software did not work. A poster was presented at the conference 'New Visions of the X-ray Universe in the XMM-Newton and Chandra Era,' held in Noordwijk 26-30 November 2001. The paper was entitled,'Coronal Abundances and Thermal Structure of the Super-Metal-Rich Star 30 Ari,'. The poster presented analysis of EPIC and RGS data to determine the individual abundances from the star and the emission measure distribution as a function of temperature. Results were compared with previous results on this star by our team using ASCA data.

  5. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  6. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    SciTech Connect

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2015-02-01

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.

  7. The intrinsic H I Lyman-alpha line profiles of late-type stars

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Landsman, W. B.; Bookbinder, J. A.; Linsky, J. L.

    1990-01-01

    The Lyman-alpha line of neutral hydrogen is probably the most important cooling channel for chromospheric plasma in late-type stars, yet it is also the least studied major line in the far ultraviolet. The scattering of much of the stellar Lyman-alpha flux by interstellar hydrogen, coupled with the geocoronal emission foreground, seriously complicates the analysis of the Lyman-alpha spectra. The influence of the local interstellar medium on the observed profiles was circumvented by observing stars with radial velocities sufficiently high to Doppler shift the center of the stellar emission line out of the interstellar absorption core. There are several stars that have high radial velocities by virtue of their presence in close binary systems. High resolution IUE (International Ultraviolet Explorer) spectra of Ly alpha line of two such eclipsing binary stars, AR Lac and TY Pyx, are obtained, at each orbital quadrature phase, when the projected orbital velocity is a maximum. By combining the spectra from opposite quadratures it is possible to piece together the entire stellar emission profiles. The third star in this study, delta Lep, is a single star with a high space velocity.

  8. A Copernicus survey of Mg II emission in late-type stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Oegerle, W. R.

    1979-01-01

    The behavior of Mg II emission in late-type stars is examined using scan data obtained with the Copernicus satellite. The luminosity in the Mg II k emission line was found to be closely related to stellar absolute magnitude, leading to the suggestion that such correlation may be very useful for future UV observations. The stellar surface flux in the k line was observed to be roughly constant or to decrease slowly with later spectral type, a finding which is then used to show that the pressure at the top of the chromosphere decreases with later spectral type, in agreement with the conclusions by McClintock et al. (1975). An asymmetry in the Mg II k line was noticed to be present in the available data for the stars later than K2-K5.

  9. Infrared dust features of late-type stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Glaccum, W.

    1995-01-01

    The author presents 16-65 micron spectra of late-type stars and proto-planetary nebulae (PPN) obtained with the Goddard 24-channel spectrophotometer from the Kuiper Airborne Observatory (KAO). The spectra of these objects contain most of the 9-13 known dust features, all discovered from the KAO, at wavelengths greater than 22 microns. The 8-100 micron spectra of a few representative objects are modeled with simple grains selected from a wide range of candidate solids. Hot sapphire is the most likely source of the 13 micron feature found in some M and MS star. Likely candidates for other features include ice, sulfides, and crystalline silicates. Also presented is a review of grain candidate materials for which optical properties in the far infrared have been measured, and a list of those for which measurements are needed.

  10. Radial velocities of bright southern stars. III - Late-type standard stars at 12 A/mm

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Nordstrom, B.

    1983-08-01

    An analysis is conducted of radial velocities measured on 51 spectrograms of 14 late type standard stars at a dispersion of 12.4 A/mm. A list of 15 suitable lines and wavelengths for radial velocity determination in late type spectra is established, by means of which the internal and external standard errors for a single plate are found to be 0.25 and 0.66 km/sec. The present velocity system is in good agreement with the standard system, but the results obtained for HD 51250 agree better with the revised velocity proposed by Batten (1982). The variability of the former IAU standard stars HD 35410 and HD 80170 is confirmed.

  11. Circumstellar Carbonaceous Material Associated with Late-Type Dusty WC Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Chiar, J. E.; Tielens, A. G. G. M.

    2001-04-01

    We have studied the 5-8.5 μm infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory. We attribute an absorption feature at 6.2 μm in the spectra of WC stars to amorphous carbon dust. This absorption feature is not detected in the diffuse interstellar medium toward the WR 147, Cyg OB2 No. 12, or the Pistol Star, and therefore we suggest that it is circumstellar in nature. In addition, we detect a broad absorption feature extending from approximately 6.5 to 8 μm. We tentatively attribute this absorption to the CC stretching modes that accompany the 6.2 μm band in aromatic materials. Our analysis of the 6.2 μm absorption profile suggests that the dust grains have to be rather large (~1 μm) and point toward dense clumps as the sites of dust formation. Based on observations made with the Infrared Space Observatory, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  12. Detection of neutral phosphorus in the near-ultraviolet spectra of late-type stars

    SciTech Connect

    Roederer, Ian U.; Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Toller, Elizabeth

    2014-12-10

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive phosphorus abundances or interesting upper limits in 14 late-type stars with metallicities spanning –3.8 < [Fe/H] <–0.1. Previously, phosphorus had only been studied in Galactic stars with –1.0 < [Fe/H] <+0.3. Iron lines reveal abundance offsets between the optical and ultraviolet regions, and we discuss and apply a correction factor to account for this offset. In stars with [Fe/H] >–1.0, the [P/Fe] ratio decreases toward the solar value with increasing metallicity, in agreement with previous observational studies. In stars with [Fe/H] <–1.0, ([P/Fe]) = +0.04 ± 0.10, which overlaps with the [P/Fe] ratios found in several high-redshift damped Lyman-α systems. This behavior hints at a primary origin in massive stars.

  13. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.

  14. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  15. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  16. High-precision spectroscopy of late-type stars with three-dimensional model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Collet, Remo

    2015-08-01

    Classical spectroscopic analyses of late-type stars generally rely on the use of synthetic spectra computed with stationary, one-dimensional (1D), hydrostatic model stellar atmospheres to quantitatively interpret observations. Recent years, however, have seen a rapid development in the field of three-dimensional (3D) hydrodynamical modelling of stellar atmospheres and stellar spectra.In this contribution, I will present results from realistic, time-dependent, hydrodynamical 3D simulations of stellar atmospheres of solar- and late-type stars, covering a wide range of stellar parameters and compositions, from main sequence to red giant branch and with metallicities from [Fe/H]=+0.5 down to [Fe/H]=-4. These 3D model atmospheres have been generated using a custom version of the radiation-magnetohydrodynamics Stagger-Code which implements state-of-the-art input micro-physics, equation of state and opacity data, and a realistic treatment of non-grey radiative transfer.I will describe the main properties of the simulations and discuss the application of 3D model atmospheres to spectral line-formation calculations and high-precision spectroscopy of late-type stars. I will illustrate the main effects of 3D modelling of stellar atmospheres and stellar spectra on the predicted strengths and shapes of spectral lines, highlighting the systematic differences with respect to calculations based on classical, 1D, hydrostatic models.In particular, I will present the results of spectroscopic carbon, nitrogen and oxygen abundance determinations based on the analysis of CH, NH, CN and OH molecular bands with 3D model stellar atmospheres. I will show that the differences with respect to classical analyses based on 1D models can be significant and of the order of 0.5 to 1 dex in terms of logarithmic abundances of these important elements.Finally, I will also discuss the application of 3D models to the analysis and interpretation of data from large-scale space-born and ground

  17. Short time-scale variability of chromospheric Ca II in late-type stars

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Vaughan, A. H.; Hartmann, L.; Liller, W.; Dupree, A. K.

    1981-01-01

    The short time-scale variability of singly ionized calcium chromospheric emission has been investigated in a few late-type stars. Emission-line variations with time scales of a few minutes to hours are seen in Alpha Tau (K5 III), Lambda And (G8 III-IV), and Epsilon Eri (K2 V). The existence of substantial chromospheric flux changes (10 to the 30th to 10 to the 32nd ergs) over short periods of time suggests that the calcium emission arises from a few small, coherent regions. Frequencies present in the data are discussed in the context of acoustic wave predictions and estimated acoustic cutoff frequencies for giants and dwarfs.

  18. Collision-induced absorption of radiation in the atmospheres of late-type stars

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.

    2016-05-01

    Problems associated with taking into account absorption induced by collisions between hydrogen and helium atoms, helium atoms and hydrogen molecules, and hydrogen molecules, resulting in the formation of short-lived, quasi-molecular complexes are discussed, together with opacity in the atmospheres of late-type stars due to such absorption. There is good agreement between such opacities computed using codes developed by the author and by R. Kurucz. To demonstrate the importance of including collision-induced opacity, theoretical fluxes are compared to the observed spectral energy distribution of the metal-poor L subdwarf SDSS J125637.13-022452.4. The spectral energy distribution of this object can be reproduced with an effective temperature of T eff = 2600 K only if collision-induced absorption is taken into account.

  19. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  20. WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES

    SciTech Connect

    Airapetian, V.; Ofman, L.; Carpenter, K. G.

    2010-11-10

    We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for {alpha} Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  1. Late-Type Stars in M31. II. C-, S-, and M-Star Spectra

    NASA Astrophysics Data System (ADS)

    Brewer, James P.; Richer, Harvey B.; Crabtree, Dennis R.

    1996-08-01

    We present spectra of AGB stars in M31 for which observations had been previously secured using a four-band photometric system (FBPS). The FBPS had been used to identify M-, S-, and carbon-star (C-star) candidates, and we use the spectra to show that the FBPS did an excellent job at identifying C- and M-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^13^C bands (J-stars), 2 have strong Hα emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colors of the Hα stars suggest they may be in the terminal phases of their evolution. The C_2_ and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths and either M_bol_ or (V-I) is found. It is suggested that this lack of correlation is due to an age spread. The spectra of the first confirmed S-star in M31 is presented, and two evolutionary pathways are suggested to account for this star's high luminosity.

  2. Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    2000-01-01

    We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.

  3. Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.

    1997-01-01

    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all

  4. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  5. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Leake, J. E.; Carpenter, Kenneth G.

    2015-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using α Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfvén wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfvé waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by upward propagating non-linear Alfvé waves, are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfvé waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfvé waves becomes significant in the outer chromosphere at 1 stellar radius from the photosphere. The calculated terminal velocity and the mass loss rate are consistent with the observationally derived wind properties in α Tau.

  6. Departures from LTE for neutral Li in late-type stars

    NASA Astrophysics Data System (ADS)

    Lind, K.; Asplund, M.; Barklem, P. S.

    2009-08-01

    We perform non-LTE calculations of lithium in late-type stars for a wide range of stellar parameters, including quantum mechanical cross-sections for collisions with neutral hydrogen and the negative hydrogen ion. Non-LTE abundance corrections for the lithium resonance line at 670.7 nm and the subordinate line at 610.3 nm, are calculated using 1D MARCS model atmospheres spanning a grid T_eff = [4000, 8000] K, log g = [1.0, 5.0], and [Fe/H] = [0.0, -3.0], for lithium abundances in the range A(Li) = [-0.3, 4.2]. The competing effects of ultraviolet over-ionization and photon losses in the resonance line govern the behaviour of the non-LTE effects with stellar parameters and lithium abundance. The size and sign of the non-LTE abundance corrections vary significantly over the grid for the 670.7 nm line, but are typically positive and below 0.15 dex for the 610.3 nm, line. The new collisional data play a significant role in determining the abundance corrections. Complete Tables [see full textsee full textsee full textsee full textsee full text] and [see full textsee full textsee full textsee full textsee full text] are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/503/541

  7. Chromospheric Activity and Orbital Solution of Six New Late-type Spectroscopic Binary Systems

    NASA Astrophysics Data System (ADS)

    Gálvez, M. C.; Montes, D.; Fernández-Figueroa, M. J.; López-Santiago, J.

    2006-08-01

    We present here the results of our high resolution echelle spectroscopic observations of six recently identified spectroscopic binary systems with late-type stellar components (HD 82159 (BD + 11 2052 A); HIP 63322 (BD + 39 2587); HD 160934 (RE J1738 + 611); HD 89959 (BD + 41 2078); HD 143705 (BD + 29 2752); HD 138157 (OX Ser)). The orbital solution has been obtained using precise radial velocities determined by cross-correlation with radial velocity standard stars as well as previous values reported by other authors. These multiwavelength optical observations allow us to study the chromosphere of these active binary systems using the information provided by several optical spectroscopic features (from Ca II H & K to Ca II IRT lines) that are formed at different heights in the chromosphere. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. In addition, we have determined rotational velocities (vsin i), lithium (Li I λ 6707.8 Å) abundance, and kinematic properties (membership in representative young disk stellar kinematic groups).

  8. Rapid, low-level X-ray variability in active late-type dwarfs

    NASA Technical Reports Server (NTRS)

    Ambruster, Carol W.; Sciortino, Salvatore; Golub, L.

    1987-01-01

    A sensitive new statistical analysis method was used to establish certain properties of quiescent X-ray variability in a sample of 19 late-type dwarfs. Sixteen stars proved to be significantly variable. The typical amplitude of the fluctuations was about 30 percent. Variability time scales ranged from about 150 s for 40 Eri C to lower limits as large as 2000 s. Neither the amplitudes nor the time scales of the X-ray variability appeared to depend on position along the main sequence.

  9. Hα imaging of the Herschel Reference Survey. The star formation properties of a volume-limited, K-band-selected sample of nearby late-type galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Fossati, M.; Gavazzi, G.; Ciesla, L.; Buat, V.; Boissier, S.; Hughes, T. M.

    2015-07-01

    We present new Hα+[NII] imaging data of late-type galaxies in the Herschel Reference Survey aimed at studying the star formation properties of a K-band-selected, volume-limited sample of nearby galaxies. The Hα+[NII] data are corrected for [NII] contamination and dust attenuation using different recipes based on the Balmer decrement and the 24 μm luminosities. We show that the Hα luminosities derived with different corrections give consistent results only whenever the uncertainty on the estimate of the Balmer decrement is σ [C(Hβ)] ≤ 0.1. We used these data to derive the star formation rate of the late-type galaxies of the sample and compare these estimates to those determined using independent monochromatic tracers (far-UV, radio continuum) or the output of spectral energy distribution (SED) fitting codes. This comparison suggests that the 24 μm based dust extinction correction for the Hα data might not be universal and that it should be used with caution in all objects with a low star formation activity, where dust heating can be dominated by the old stellar population. Furthermore, because of the sudden truncation of the star formation activity of cluster galaxies occurring after their interaction with the surrounding environment, the stationarity conditions required to transform monochromatic fluxes into star formation rates might not always be satisfied in tracers other than the Hα luminosity. In a similar way, the parametrisation of the star formation history generally used in SED fitting codes might not be adequate for these recently interacting systems. We then use the derived star formation rates to study the star formation rate luminosity distribution and the typical scaling relations of the late-type galaxies of the HRS. We observe a systematic decrease of the specific star formation rate with increasing stellar mass, stellar mass surface density, and metallicity. We also observe an increase of the asymmetry and smoothness parameters measured

  10. Age-rotation relationship for late-type main-sequence stars

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.

    1984-01-01

    With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.

  11. A search for 183-GHz emission from water in late-type stars

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Swanson, P. N.; Dickinson, D. F.; Kuiper, E. N. R.; Zimmerman, P.

    1984-01-01

    A search was made for 183 GHz line emission from water vapor in the direction of twelve Mira and two semiregular variables. Upper limits to the emission are in the range of 2000 to 5000 Jy. It is estimated that thermal emission from the inner regions of late type stellar envelopes will be on the order of ten Jy. Maser emission, according to one model, would be an order of magnitude stronger. From the limited set sampled, the possibility of very strong maser emission at 183 GHz cannot yet be ruled out.

  12. A search for 183 GHz emission from water in late-type stars

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Swanson, P. N.; Rodriguez Kuiper, E. N.; Zimmermann, P.; Dickinson, D. F.

    1984-01-01

    A search was made for 183 GHz line emission from water vapor in the direction of twelve Mira and two semiregular variables. Upper limits to the emission are in the range of 2000 to 5000 Jy. It is estimated that thermal emission from the inner regions of late type stellar envelopes will be on the order of ten Jy. Maser emission, according to one model, would be an order of magnitude stronger. From the limited set sampled, the possibility of very strong maser emission at 183 GHz cannot yet be ruled out.

  13. High Proper Motion Stars. III. Radial Velocities of 24 Late-Type Dwarfs

    NASA Astrophysics Data System (ADS)

    Dawson, P. C.; De Robertis, M. M.

    1998-11-01

    We report 27 radial velocity measurements for 24 stars, all with annual proper motions larger than 1". For 17 of these, no velocities have previously been published. We identify a few stars that may be spectroscopic binaries and a sdK star of spectacularly high space velocity.

  14. Carbon abundances of reference late-type stars from 1D analysis of atomic C I and molecular CH lines

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Mashonkina, L. I.

    2015-10-01

    A comprehensive model atom was constructed for C I using the most up-to-date atomic data. We evaluated non-local thermodynamical equilibrium (NLTE) line formation for neutral carbon in classical one-dimensional (1D) models representing atmospheres of late-type stars, where carbon abundance varies from the solar value down to [C/H] = -3. NLTE leads to stronger C I lines compared with their local thermodynamical equilibrium (LTE) strength and negative NLTE abundance corrections, ΔNLTE. The deviations from LTE are large for the strong lines in the infrared (IR), with ΔNLTE = -0.10 to -0.45 dex, depending on stellar parameters, and minor for the weak lines in the visible spectral range, with |ΔNLTE| ≤ 0.03 dex. The NLTE abundance corrections were found to be dependent on the carbon abundance in the model. As the first application of the treated model atom, carbon NLTE abundances were determined for the Sun and eight late-type stars with well-determined stellar parameters that cover the -2.56 ≤ [Fe/H] ≤ -1.02 metallicity range. Consistent abundances from the visible and IR lines were found for the Sun and the most metal-rich star of our sample, when applying a scaling factor of SH = 0.3 to the Drawinian rates of C+H collisions. Carbon abundances were also derived from the molecular CH lines and agree with those from the atomic C I lines for each star. We present the NLTE abundance corrections for lines of C I in the grid of model atmospheres applicable to carbon-enhanced (CEMP) stars.

  15. Doppler imaging of the young late-type star LO Pegasi (BD+22°4409) in 2003 September

    NASA Astrophysics Data System (ADS)

    Piluso, N.; Lanza, A. F.; Pagano, I.; Lanzafame, A. C.; Donati, J.-F.

    2008-06-01

    A Doppler image of the zero-age main-sequence (ZAMS) late-type rapidly rotating star LO Pegasi, based on spectra acquired between 2003 September 12 and 15 is presented. The least-squares deconvolution technique is applied to enhance the signal-to-noise ratio of the mean rotational broadened line profiles extracted from the observed spectra. In the present application, an unbroadened spectrum is used as a reference, instead of a simple line list, to improve the deconvolution technique applied to extract the mean profiles. The reconstructed image is similar to those previously obtained from observations taken in 1993 and 1998, and shows that LO Peg photospheric activity is dominated by high-latitude spots with a non-uniform polar cap. The latter seems to be a persistent feature as it has been observed since 1993 with little modifications. Small spots, observed between ~10° and ~60° of latitude, appears to be different with respect to those present in the 1993 and 1998 maps. Based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: nicolo.piluso@oact.inaf.it (NP); nuccio.lanza@oact.inaf.it (AFL); isabella.pagano@oact.inaf.it (IP); alessandro.lanzafame@oact.inaf.it (ACL); donati@ast.obs-mip.fr (J-FD)

  16. The Chromosphere/Shock Dilemma of Non-Mira, Late-Type Variable Stars

    NASA Technical Reports Server (NTRS)

    Willson, Lee Anne

    1997-01-01

    An investigation of the atmospheric structure of non-Mira, asymptotic giant branch stars through NLTE radiative transfer modeling applied to hydrodynamic models is discussed. Synthetic spectra resulting from these calculations were compared with IUE observations of these stars to test the validity of the models. The development of the hydrodynamic models is detailed.

  17. IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1981-01-01

    The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.

  18. Chromospheres of late-type active and quiescent dwarfs. III - Variability of CA II H emission profiles

    NASA Astrophysics Data System (ADS)

    Garcia Lopez, R. J.; Crivellari, L.; Beckman, J. E.; Rebolo, R.

    1992-08-01

    We have used high-resolution spectra of the Ca II H resonance line in late-type dwarfs, obtained with high S:N ratios, over a period of four years to widen our understanding of the dynamical behavior of the Ca II emission cores. All of the stars dealt with in this article, which are chromospherically active, show variability both in core emission flux and line width. They also show significant wavelength shifts with time of order hundreds of meters per second in the mean core wavelength, and with lower amplitude in the H3 self-absorption, compared to the photospheric rest wavelength of Ca II H. Comparing the emission core shifts with those observed in the H3 features, we find, for the first time, direct prima facie evidence for vertical chromospheric velocity fields, which show stability in sense over periods of years in a given star, with notable modulation in gradient, and which differ in gradient from star to star. We present evidence to show that the observed effects are almost certainly not due to projected rotational modulation, and offer new prospects, given spectral measurements closely sampled in time, for investigating the vertical velocity structures of chromospheres.

  19. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    SciTech Connect

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H.; Udalski, A.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Rattenbury, N.; Botzler, C. S.; Freeman, M.; Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Fukui, A.; Muraki, Y.; Ohnishi, K.; Saito, To.; Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  20. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Urry, C. Megan; Simmons, Brooke D.; Fortson, Lucy; Kaviraj, Sugata; Keel, William C.; Lintott, Chris J.; Masters, Karen L.; Nichol, Robert C.; Sarzi, Marc; Skibba, Ramin; Treister, Ezequiel; Willett, Kyle W.; Wong, O. Ivy; Yi, Sukyoung K.

    2014-05-01

    We use SDSS+GALEX+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass diagram is not a single transitional state through which most blue galaxies evolve into red galaxies. Rather, an analysis that takes morphology into account makes clear that only a small population of blue early-type galaxies move rapidly across the green valley after the morphologies are transformed from disc to spheroid and star formation is quenched rapidly. In contrast, the majority of blue star-forming galaxies have significant discs, and they retain their late-type morphologies as their star formation rates decline very slowly. We summarize a range of observations that lead to these conclusions, including UV-optical colours and halo masses, which both show a striking dependence on morphological type. We interpret these results in terms of the evolution of cosmic gas supply and gas reservoirs. We conclude that late-type galaxies are consistent with a scenario where the cosmic supply of gas is shut off, perhaps at a critical halo mass, followed by a slow exhaustion of the remaining gas over several Gyr, driven by secular and/or environmental processes. In contrast, early-type galaxies require a scenario where the gas supply and gas reservoir are destroyed virtually instantaneously, with rapid quenching accompanied by a morphological transformation from disc to spheroid. This gas reservoir destruction could be the consequence of a major merger, which in most cases transforms galaxies from disc to elliptical morphology, and mergers could play a role in inducing black hole accretion and possibly active galactic nuclei feedback.

  1. Searching for X-ray sources in nearby late-type galaxies with low-star formation rates

    NASA Astrophysics Data System (ADS)

    Chatterjee, K.; Kaaret, P.; Brorby, M.; Kajava, J. J. E.; Grisé, F.; Farrell, S.; Poutanen, J.

    2016-03-01

    Late-type non-starburst galaxies have been shown to contain X-ray emitting objects, some being ultraluminous X-ray sources. We report on XMM-Newton observations of 11 nearby, late-type galaxies previously observed with the Hubble Space Telescope (HST) in order to find such objects. We found 18 X-ray sources in or near the optical extent of the galaxies, most being point-like. If associated with the corresponding galaxies, the source luminosities range from 2 × 1037 erg s-1 to 6 × 1039 erg s-1. We found one ultraluminous X-ray source, which is in the galaxy IC 5052, and one source coincident with the galaxy IC 4662 with a blackbody temperature of 0.166 ± 0.015 keV that could be a quasi-soft source or a quiescent neutron star X-ray binary in the Milky Way. One X-ray source, XMMU J205206.0-691316, is extended and coincident with a galaxy cluster visible on an HST image. The X-ray spectrum of the cluster reveals a redshift of z = 0.25 ± 0.02 and a temperature of 3.6±0.4 keV. The redshift was mainly determined by a cluster of Fe XXIV lines between the observed energy range 0.8 - 1.0 keV.

  2. CCD photometry of late-type stars in the young open cluster IC 2602

    NASA Astrophysics Data System (ADS)

    Foster, D. C.; Byrne, P. B.; Hawley, S. L.; Rolleston, W. R. J.

    1997-11-01

    We present the results of VRI photometry of the young open cluster IC 2602. Two 15 arcmin times 15 arcmin fields were observed in February and May 1991 using the 1-m Swope telescope at Las Campanas. Using theoretical isochrones obtained from \\cite[D'Antona & Mazzitelli (1994)]{dam94}, and allowing for observational and other uncertainties, we identify 78 primary candidate members with 12stars to be large, >= 50%, as might be expected given its low galactic latitude. We also compare our photometry with that given for the X-ray detected stars of \\cite[Randich et al. (1995)]{ran95}. We present complimentary narrow band H alpha photometry for a subset of the stars.

  3. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    NASA Astrophysics Data System (ADS)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  4. Theoretical basal Ca II and Mg II fluxes for late-type stars: results from acoustic wave spectra with time-dependent ionization and multilevel radiation treatments

    NASA Astrophysics Data System (ADS)

    Fawzy, Diaa E.

    2015-08-01

    Computations of chromospheric models and the resulting spectral line emission fluxes are presented for late-type stars exhibiting very low level of chromospheric activity, referred to as a basal flux stars or low activity stars. The computations are self-consistent, and consider the entire acoustic wave energy spectra generated in the stellar convection zones. We consider multilevel atomic models, take into account departures from local thermodynamic equilibrium and also consider the time-dependent ionization processes of hydrogen. We employ the new finding of the mixing-length parameter α = 1.8. The Ca II H+K and Mg II h+k line fluxes are computed assuming pseudo-partial redistribution. The results show the importance of time-dependent ionization in modelling the middle and high chromospheres. Models without considering time-dependent ionization overestimate the emitted Ca II fluxes by factors between 1.1 and 5.6 for F8V and M0V stars, respectively, while factors between 1.8 for G0V and 17.4 for M0V stars have been obtained for the Mg II fluxes. The theoretically computed basal fluxes in Ca II and Mg II, respectively, follow simple linear formulae depending on the effective temperature log Teff. The obtained results for Ca II fluxes show reasonable agreement with observations.

  5. Pulsations in the late-type B supergiant star HD 202850†

    NASA Astrophysics Data System (ADS)

    Tomić, Sanja; Kraus, Michaela; Oksala, Mary

    2014-02-01

    HD 202850 is a late B-type supergiant. It is known that photospheric lines of such stars vary. Due to macroturbulence the lines are much wider than expected. Macroturbulence has been linked to stellar pulsations. It has been reported that there are several B supergiants that undergo pulsations. In our previous work, we detected a pulsational period of 1.59 hours in this object from data taken with the Ondřejov 2-m telescope. We continued to investigate this object and we took several time series with the DAO 1.2-m telescope. Our new data suggest that there may be some additional pulsational periods in this star. We present our new results in this poster.

  6. Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1996-01-01

    The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.

  7. Stellar model chromospheres. VI - Empirical estimates of the chromospheric radiative losses of late-type stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Ayres, T. R.

    1978-01-01

    A method is developed for estimating the nonradiative heating of stellar chromospheres by measuring the net radiative losses in strong Fraunhofer line cores. This method is applied to observations of the Mg II resonance lines in a sample of 32 stars including the sun. At most a small dependence of chromospheric nonradiative heating on stellar surface gravity is found, which is contrary to the large effect predicted by recent calculations based on acoustic-heating theories.

  8. VizieR Online Data Catalog: Spectroscopy of nearby late-type stars (Maldonado+, 2010)

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnaiz, R. M.; Eiroa, C.; Montes, D.; Montesinos, B.

    2010-06-01

    File table1 contains the name of the observed stars, coordinates, astrometric data, radial velocities and notes. Parallaxes are taken from van Leeuwen (2007, Cat. I/311) and proper motions from (2000, Cat. I/259). Radial velocities were derived from high-resolution spectra taken with the FOCES spectrograph at the Calar Alto observatory (Almeria, Spain) and the SARG spectrograph at the Telescopio Nazionale Galileo in La Palma (Canary Islands, Spain). Additional spectra from the public library "S4N" (Allende Prieto et al., 2004, Cat. J/A+A/420/183) were also used. Radial velocities were measured by cross-correlating the spectra of our programme stars with spectra of radial velocity standard stars taken from Barnes et al. (1986PASP...98..223B), Beavers et al. (1979PASP...91..698B), and Udry et al. (1999ASPC..185..383U, 1999ASPC..185..367U). For known spectroscopic binaries the radial velocity of the centre of mass of the system is given. These values are from Pourbaix et al. (Cat. B/sb9/) or Eker et al. (2008, Cat. V/128 ). Previous radial velocities reported in the literature are also given for comparison. (1 data file).

  9. Spectra of late type dwarf stars of known abundance for stellar population models

    NASA Technical Reports Server (NTRS)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  10. THE KINEMATICS OF LATE-TYPE STARS IN THE SOLAR CYLINDER STUDIED WITH SDSS DATA

    SciTech Connect

    Fuchs, Burkhard; Dettbarn, Christian; Jahreiss, Hartmut; Rix, Hans-Walter; Klement, Rainer; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

    2009-05-15

    We study the velocity distribution of Milky Way disk stars in a kiloparsec-sized region around the Sun, based on {approx}2 million M-type stars from DR7 of SDSS, which have newly re-calibrated absolute proper motions from combining SDSS positions with the USNO-B catalogue. We estimate photometric distances to all stars, accurate to {approx}20%, and combine them with the proper motions to derive tangential velocities for this kinematically unbiased sample of stars. Based on a statistical deprojection method we then derive the vertical profiles (to heights of Z = 800 pc above the disk plane) for the first and second moments of the three-dimensional stellar velocity distribution. We find that (W) = -7 {+-} 1 km s{sup -1} and (U) = -9 {+-} 1 km s{sup -1}, independent of height above the mid-plane, reflecting the Sun's motion with respect to the local standard of rest. In contrast, (V) changes distinctly from -20 {+-} 2 km s{sup -1} in the mid-plane to (V) = -32 km s{sup -1} at Z = 800 pc, reflecting an asymmetric drift of the stellar mean velocity that increases with height. All three components of the M-star velocity dispersion show a strong linear rise away from the mid-plane, most notably {sigma} {sub ZZ}, which grows from 18 km s{sup -1} (Z = 0) to 40 km s{sup -1} (at Z = 800 pc). We determine the orientation of the velocity ellipsoid, and find a significant vertex deviation of 20{sup 0}-25{sup 0}, which decreases only slightly to heights of Z = 800 pc. Away from the mid-plane, our sample exhibits a remarkably large tilt of the velocity ellipsoid toward the Galactic plane, which reaches 20{sup 0} at Z = 800 pc and which is not easily explained. Finally, we determine the ratio {sigma}{sup 2} {sub {phi}}{sub {phi}}/{sigma}{sup 2} {sub RR} near the mid-plane, which in the epicyclic approximation implies an almost perfectly flat rotation curve at the solar radius.

  11. The Kinematics of Late-Type Stars in the Solar Cylinder Studied with SDSS Data

    NASA Astrophysics Data System (ADS)

    Fuchs, Burkhard; Dettbarn, Christian; Rix, Hans-Walter; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Jahreiß, Hartmut; Klement, Rainer; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

    2009-05-01

    We study the velocity distribution of Milky Way disk stars in a kiloparsec-sized region around the Sun, based on ~2 million M-type stars from DR7 of SDSS, which have newly re-calibrated absolute proper motions from combining SDSS positions with the USNO-B catalogue. We estimate photometric distances to all stars, accurate to ~20%, and combine them with the proper motions to derive tangential velocities for this kinematically unbiased sample of stars. Based on a statistical deprojection method we then derive the vertical profiles (to heights of Z = 800 pc above the disk plane) for the first and second moments of the three-dimensional stellar velocity distribution. We find that langWrang = -7 ± 1 km s-1 and langUrang = -9 ± 1 km s-1, independent of height above the mid-plane, reflecting the Sun's motion with respect to the local standard of rest. In contrast, langVrang changes distinctly from -20 ± 2 km s-1 in the mid-plane to langVrang = -32 km s-1 at Z = 800 pc, reflecting an asymmetric drift of the stellar mean velocity that increases with height. All three components of the M-star velocity dispersion show a strong linear rise away from the mid-plane, most notably σ ZZ , which grows from 18 km s-1 (Z = 0) to 40 km s-1 (at Z = 800 pc). We determine the orientation of the velocity ellipsoid, and find a significant vertex deviation of 20°-25°, which decreases only slightly to heights of Z = 800 pc. Away from the mid-plane, our sample exhibits a remarkably large tilt of the velocity ellipsoid toward the Galactic plane, which reaches 20° at Z = 800 pc and which is not easily explained. Finally, we determine the ratio σ2 phiphi/σ2 RR near the mid-plane, which in the epicyclic approximation implies an almost perfectly flat rotation curve at the solar radius.

  12. The chromospheres of late-type stars. II - An atlas of chromospheric lines for selected early-K stars

    NASA Technical Reports Server (NTRS)

    Thatcher, John D.; Robinson, Richard D.

    1993-01-01

    High-resolution spectra of the chromospheric Na I D lines, Ca I 4227, Mg I 4571, 5167, and 5172, the Ca II H and K resonance and IR 8542.144 and 8662.170 lines, and H-alpha and H-beta, all observed simultaneously at the AAT, are presented. These data are presented as the observational basis for the self-consistent, semiempirical modeling of the outer photospheres and chromospheres of the target stars. Stellar activity is found in the low-chromosphere lines as core-filling and, in some stars, as line-broadening. Integrated fluxes are derived from the difference spectra, formed by subtracting quiet from active spectra, in the Ca II H and K resonance and IR 8542 and 8662 lines and in H-alpha, which are presented as chromospheric activity indicators. All the activity indices exhibit strong correlations, with the exception of the equivalent widths of H-alpha and H-beta, which are found to be relatively poor activity discriminators.

  13. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  14. The chromospheres of late-type stars. I - Eridani as a test case of multiline modelling

    NASA Technical Reports Server (NTRS)

    Thatcher, John D.; Robinson, Richard D.; Rees, David E.

    1991-01-01

    A new model of the lower chromosphere of the dwarf K2 star Epsilon Eridani is derived by matching flux profiles of the Ca IR triplet lines 8498 and 8542 A H-alpha and H-beta lines and the Na D lines (all observed simultaneously at the AAT), and the Ca II K line. The coupled non-LTE equations of statistical equilibrium and radiative transfer are solved under the constraint of hydrostatic equilibrium using the Carlsson (1986) code. Within the framework of the model, the Na D lines are an important photospheric diagnostic, and the Ca IR triplet lines can be used to locate the temperature minimum. The computed H-alpha and H-beta depths are highly sensitive constraints on the transition zone gradients and base pressures allowing us to derive a pressure at the base of the transition zone of 0.9 dyn/cm.

  15. Spectral analyses of late-type [WC] central stars of planetary nebulae: more empirical constraints for their evolutionary status

    NASA Astrophysics Data System (ADS)

    Leuenhagen, U.; Hamann, W.-R.

    1998-02-01

    The optical spectra of the five recently observed late-type Wolf-Rayet central stars He2-459 ([WC8]), M2-43 ([WC8]), SwSt1 ([WC9]), PM1-188 and IRAS21282+5050 (both [WC11]) are analyzed by means of spherically expanding model atmospheres. The stellar parameters T_* (effective temperature), v_infty (final velocity of the wind), R_* (stellar radius) and dot {M} (mass loss rate) are determined by NLTE simulations which account for the elements hydrogen, helium, carbon and oxygen. With two exceptions (SwSt1 and IRAS21282) the results presented here fit into the sample of already examined [WCL]-type objects. Altogether 13 out of 17 known [WCL]-CSPN have been analyzed so far. The presence of hydrogen in the atmospheres of [WC11] and [WC12] stars becomes more and more evident. In five out of seven analyzed objects of these subtypes hydrogen emission features of stellar origin can be identified. The spectra of the latest subtypes ([WC11], [WC12]) show rather narrow lines and thus allow to detect features of nitrogen (N II, N III), neon (Ne I) and silicon (Si III, Si IV). For the first time we present model calculations accounting for these elements and perform abundance estimates for the eight narrow-lined stars (all [WC11] and [WC12] plus SwSt1). The obtained surface compositions are discussed in the light of recent evolutionary calculations which account for diffuse mixing during thermal pulses on the Asymptotic Giant Branch. Partly based on observations obtained at the German-Spanish Astronomical Center, Calar Alto, Spain

  16. Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Riddle, Reed L.; Hartkopf, William I.; Law, Nicholas M.; Baranec, Christoph

    2015-04-01

    We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yr and 30 Ari B has a period of 80 yr. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars.

  17. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  18. THE CHROMOSPHERIC ACTIVITY OF [HH97] FS Aur-79: A CLOSE BINARY WITH LATE-TYPE ACTIVE (dK7e+dM3e) COMPONENTS

    SciTech Connect

    Austin, S. J.; Robertson, J. W.; De Souza, T. R.; Tycner, C.; Honeycutt, R. K. E-mail: jrobertson@atu.edu E-mail: c.tycner@cmich.edu

    2011-04-15

    Using Doppler tomography we show that FS Aur-79, a near-contact close binary system with late-type active dK7e+dM3e components, has chromospheric prominences in two distinct emission regions associated with the primary star and a larger amount of chromospheric activity associated with the cooler secondary star. The line profiles, equivalent widths, and equivalent width ratios of the H{alpha} and H{beta} emission lines as a function of orbital phase further support that the majority of the chromospheric emission originates above the secondary star and near the neck region. Analysis of high-resolution spectra using the technique of broadening functions has enabled us to determine the radial velocity of the secondary star near quadratures to be approximately 224 km s{sup -1}. A Wilson-Devinney model of the system fitting the UBV light curves and radial velocities shows that there are star spots near the chromospherically active regions. Finally, the absence of Li I {lambda}6708 in the spectra lets us put a lower limit on the age of this system to at least 500 Myr.

  19. Discrepant asymmetry stars: The role of unsteady magnetic flux loops in the atmospheres of late-type giant stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.

    1982-01-01

    A number of spectroscopic peculiarities of K giants and other stars which lie in a wedge in the HR diagram are discussed. These peculiarities can be understood in terms of unsteady magnetic flux loops emerging into the stellar atmosphere from beneath the surface.

  20. A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Greimel, R.; Korhonen, H.; Guenther, E. W.; Hanslmeier, A.; Lammer, H.; Khodachenko, M. L.

    2014-09-01

    We present a search for stellar activity (flares and mass ejections) in a sample of 28 stars in the young open cluster Blanco-1. We use optical spectra obtained with European Southern Observatory's Visible Multi-Object Spectrograph installed on the Very Large Telescope. From the total observing time of ˜5 h, we find four Hα flares but no distinct indication of coronal mass ejections (CMEs) on the investigated dK-dM stars. Two flares show `dips' in their light curves right before their impulsive phases which are similar to previous discoveries in photometric light curves of active dMe stars. We estimate an upper limit of <4 CMEs per day per star and discuss this result with respect to a empirical estimation of the CME rate of main-sequence stars. We find that we should have detected at least one CME per star with a mass of ≤ 3 × 1017 g depending on the star's X-ray luminosity, but the estimated Hα fluxes associated with these masses are below the detection limit of our observations. We conclude that the parameter which mainly influences the detection of stellar CMEs using the method of Doppler-shifted emission caused by moving plasma is not the spectral resolution/velocity but the flux/mass of the CME.

  1. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  2. Solar and late-type dwarfs

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1982-01-01

    The Einstein Observatory's and the IUE's contributions to knowledge of coronal formation in late-type stars are discussed. The HR diagram of stars seen as X-ray sources by these observatories is presented, and the influence of rotation on X-ray emission is reviewed. Emission from the Alpha Cen system and from active stars with quiescent coronae is examined, and the extent of the contribution of emission from normal stars to the soft X-ray background is addressed. The quiescent and flare emission from Alpha Cen, the temporal variability of X-ray emission from a sample of active chromosphere stars, and the predicted contribution of chromospheric emission to the diffuse soft X-ray background are depicted. Chromospheric indicators of activity are discussed, the connection between surface magnetic fields and X-ray emission in the chromosphere is briefly reviewed, and the quantitative links between X-ray data and magnetic fields is summarily presented.

  3. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  4. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    SciTech Connect

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael; Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R.; Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha; King, David; Parry, Ian R.; Metchev, Stanimir; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi; and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  5. Time variation of the H2O and SiO masers in late-type stars

    NASA Astrophysics Data System (ADS)

    Gomez Balboa, A. M.; Lepine, J. R. D.

    1986-04-01

    The results of six years of monitoring of the 22-GHz H2O maser, and less extensive monitoring of the 43-GHz SiO line, of ten late-type variables (o Cet, R Dor, L2 Pup, VY CMa, R Crt, W Hya, U Her, AH Sco, VX Sgr, R Aql) are presented. The observations were made with the 13.2 m Itapetinga Radiotelescope, Brazil. The variability curves are compared with visual curves from the Association Francaise des Observateurs d'Etoiles Variables. Aperiodic variability of the H2O maser, spanning several cycles of the stellar pulsation (R Crt), or superperiodic behavior with periods equal to multiples of the fundamental period (R Aql, W Hya) have been noted. These results can be understood in terms of the models of Wood (1979) and Willson and Hill (1979) for shock wave propagation into the envelopes.

  6. VizieR Online Data Catalog: Proper Motions of 1160 Late-Type Stars (Fogh Olsen, 1970)

    NASA Astrophysics Data System (ADS)

    Olsen, F. H. J.

    1996-06-01

    Improved proper motions for the 1160 stars contained in the photometric catalog by Dickow et al. (1970A&AS....2....1D, II/38) are presented. Most of the proper motions are from the GC, transferred to the system of FK4. For stars not included in the GC, preliminary AGK or SAO proper motions are given. Olsen (1970A&AS....1..189O) describes the method of improvement. The mean errors of the centennial proper motions increase with increasing magnitude. In Right Ascension, these range from 0.0043/cos(dec) for very bright stars to 0.096/cos(dec) s for the faintest stars. In Declination, the range is from 0.065 to 1.14 arcsec. (1 data file).

  7. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    SciTech Connect

    Maggio, A.; Vaiana, G.S.; Haisch, B.M.; Stern, R.A.; Bookbinder, J. Lockheed Research Laboratories, Palo Alto, CA Joint Institute for Laboratory Astrophysics, Boulder, CO Smithsonian Astrophysical Observatory, Cambridge, MA )

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary. 79 refs.

  8. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  9. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    SciTech Connect

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  10. BANYAN. V. A Systematic All-sky Survey for New Very Late-type Low-mass Stars and Brown Dwarfs in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-01

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ~13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential >=M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr-1. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by >=M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  11. The ultraviolet spectrum of noncoronal late-type stars - The Gamma Crucis (M3.4 III) reference spectrum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Pesce, Joseph E.; Stencel, Robert E.; Brown, Alexander; Johansson, Sveneric

    1988-01-01

    A guide is presented to the UV spectrum of M-type giants and supergiants whose outer atmospheres contain warm chromospheres but not coronae. The M3 giant Gamma Crucis is taken as the archetype of the cooler, oxygen-rich, noncoronal stars. Line identifications and integrated line flux measurements of the chromospheric emission features seen in the 1200-3200 A range of IUE high-resolution spectra are presented. The major fluorescence processes operating in the outer atmosphere of Gamma Crucis, including eight previously unknown pumping processes and 21 new fluorescent line products, are summarized, and the enhancements of selected line strengths by 'line leakage' is discussed. A set of absorption features toward the longer wavelength end of this range is identified which can be used to characterize the radial velocity of the stellar photospheres. The applicability of the results to the spectra of noncoronal stars with different effective temperatures and gravities is discussed.

  12. Obs. of Discr Chromo Em Line Prof Asymm & Var Asymm in UV Spectra of Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Mullan, Dermott J.

    Based on our observing programs dealing with the Mg II chromospheric emission features among cool post-main-sequence stars, we are in a position to continue the search for asymmetry and profile variations among the three kinds of asymmetry variables identified to date: (i) the radical asymmetry variables which exhibit discrepant asymmetries in Mg II K (V/R < 1) relative to Ca II K (V/R > 1); (11) the circumstellar variables which exhibit changes in their circumstellar thickness and velocities along the line of sight; and (iii) the "non-variables" which may in fact be variables over time scales greater than the one year so far spent in any such investigation. Stars in group (i) also show discrepant Wilson-Bappu line-widths. The radical asymmetry variables occur among objects slightly cooler and more luminous than a Magnetic Topology Transition Locus (M.T.T.L.) lying close to, but distinct from, a previously defined transition locus (formerly known as the Supersonic Transition Locus). The MTTL separates solar-type objects which possess static high temperature coronal material and circulation-type asymmetries, from the non-solartype objects which possess lower temperature outer atmospheres, substantial mass loss, and outflow asymmetries. The MTTL segregates stars according to whether the magnetic field topology dominating their outer atmospheres is open or closed. The radical asymmetry variables, lying close to the MTTL, afford our best opportunity to see the interplay between the archetypal magnetic configurations and to understand the physics involved.

  13. SiO and H2O maser emission in OH/IR objects and late-type variable stars

    NASA Technical Reports Server (NTRS)

    Nyman, L.-A.; Johansson, L. E. B.; Booth, R. S.

    1986-01-01

    A four-year search for 86-GHz SiO and H2O maser emission towards about 20 unidentified OH/IR objects and about 35 optically identified variable stars has yielded information on the temporal variations of many of these sources. The SiO maser emission is noted to behave differently in OH/IR objects as compared with Mira variables. An attempt is made to explain the appearance of strong masers in both vibrational states solely at the 43 GHz transition, under the assumption that an intrinsically weak pump mechanism generates weak (v=1, J=2-1) emission.

  14. A super-jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    SciTech Connect

    Tsapras, Y.; Street, R. A.; Choi, J.-Y.; Han, C.; Bozza, V.; Gould, A.; Dominik, M.; Browne, P.; Horne, K.; Hundertmark, M.; Beaulieu, J.-P.; Udalski, A.; Jørgensen, U. G.; Sumi, T.; Bramich, D. M.; Kains, N.; Ipatov, S.; Alsubai, K. A.; Snodgrass, C.; Steele, I. A.; Collaboration: RoboNet Collaboration; MiNDSTEp Collaboration; OGLE Collaboration; PLANET Collaboration; μFUN Collaboration; MOA Collaboration; and others

    2014-02-10

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M {sub J} planet orbiting a 0.44 ± 0.07 M {sub ☉} early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  15. A Super-Jupiter Orbiting a Late-type Star: A Refined Analysis of Microlensing Event OGLE-2012-BLG-0406

    NASA Astrophysics Data System (ADS)

    Tsapras, Y.; Choi, J.-Y.; Street, R. A.; Han, C.; Bozza, V.; Gould, A.; Dominik, M.; Beaulieu, J.-P.; Udalski, A.; Jørgensen, U. G.; Sumi, T.; Bramich, D. M.; Browne, P.; Horne, K.; Hundertmark, M.; Ipatov, S.; Kains, N.; Snodgrass, C.; Steele, I. A.; RoboNet Collaboration; Alsubai, K. A.; Andersen, J. M.; Calchi Novati, S.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Giannini, E.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Kerins, E.; Korhonen, H.; Liebig, C.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Skottfelt, J.; Southworth, J.; Surdej, J.; Tregloan-Reed, J.; Vilela, C.; Wambsganss, J.; MiNDSTEp Collaboration; Skowron, J.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Szymański, M. K.; Kubiak, M.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Barry, R.; Batista, V.; Bhattacharya, A.; Brillant, S.; Caldwell, J. A. R.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Kubas, D.; Marquette, J.-B.; Menzies, J.; Père, C.; Pollard, K. R.; Zub, M.; PLANET Collaboration; Christie, G.; DePoy, D. L.; Dong, S.; Drummond, J.; Gaudi, B. S.; Henderson, C. B.; Hwang, K. H.; Jung, Y. K.; Kavka, A.; Koo, J.-R.; Lee, C.-U.; Maoz, D.; Monard, L. A. G.; Natusch, T.; Ngan, H.; Park, H.; Pogge, R. W.; Porritt, I.; Shin, I.-G.; Shvartzvald, Y.; Tan, T. G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Fukunaga, D.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Namba, S.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Sweatman, W. L.; Suzuki, D.; Tristram, P. J.; Tsurumi, N.; Wada, K.; Yamai, N.; Yock, P. C. M.; Yonehara, A.; MOA Collaboration

    2014-02-01

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M J planet orbiting a 0.44 ± 0.07 M ⊙ early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  16. Observations of late-type variable stars in the water-vapor radio line. The supergiant VX Sagittarii

    NASA Astrophysics Data System (ADS)

    Pashchenko, M. I.; Rudnitskii, G. M.

    1999-05-01

    Observations of the circumstellar maser emission of the M supergiant VX Sgr in the water-vapor line at 1.35 cm are presented. The observations were carried out from 1981-1998 (JD 2 444 655-2 450 966) on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory of the Astro Space Center of the Lebedev Institute of Physics. Throughout the 17 years of the observations, there were two groups of emission features in the H2O-line profile, which originate in the two oppositely directed lobes of a bipolar outflow from the star. A redistribution of the integrated flux F_int between the two groups of features was noted: in 1981-1987, the group with negative velocities (V_LSR < V_*, where V_* is the stellar velocity) dominated; starting from 1993, F_int for the features with V_LSR > V_* slightly exceeded that for features with V_LSR < V_*. This redistribution of F_int in the H2O-line profile may be associated with a change in the dominant direction for the bipolar outflow due to restructuring of the overall dipolar magnetic field of VX Sgr. A model for the VX Sgr H2O maser source with a circumstellar disk and bipolar outflow in two cones with half-opening angle theta ~ 60deg is discussed. The axis of the bipolar outflow also forms an angle i ~ 60deg to the line of sight. The estimated bipolar-outflow expansion velocity V_0 in the H2O-maser region (R = (1.5-5) x 10^15 cm) is ~10 km/s. The variability of the H2O maser is correlated with the visual light curve of VX Sgr. However, the phase delay delta phi of the F_int(H2O) variations relative to the optical variations changed form 0 to ~1 stellar period (P = 732d) over the time covered by the maser observations. If the variability of the H2O-maser source is the result of periodic impacts of shock waves driven by stellar pulsations, the travel time for the shock from the photosphere to the inner boundary of the H2O maser shell may be as long as (10-15)P.

  17. The Structure of Nuclear Star Clusters in Nearby Late-type Spiral Galaxies from Hubble Space Telescope Wide Field Camera 3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel J.; Barth, Aaron J.; Seth, Anil C.; den Brok, Mark; Cappellari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-05-01

    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from ‑11.2 to ‑15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future

  18. The structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel

    2016-06-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. I present an analysis of the structure and stellar populations of a sample of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured using GALFIT. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. There is also a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks. I developed a Monte Carlo code to fit linear combinations of simple stellar population models to the observed spectral energy distribution (SED) of each NC and assess the uncertainties in the fit parameters. Tests using mock SEDs with known input parameters demonstrate that although the method is susceptible to degeneracies between model SEDs, the code is robust and accurately recovers the total stellar mass for a wide range of NC colors and ages. I present global star formation histories and stellar mass estimates for each cluster, which are in good agreement with previous dynamical studies. The clusters are generally dominated by an old (> 1 Gyr) population, but are best described by multi-age models. The spatially resolved properties of the stellar populations of each NC were also studied by performing SED fits on a pixel-by-pixel basis. These fits reveal radial age gradients in the same NCs that exhibited variation in the effective radius with wavelength. Finally, I present deprojected density profiles and estimates of the central stellar density of each cluster.

  19. The Structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel; Barth, Aaron J.; Seth, Anil; den Brok, Mark; Cappelari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-01-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. We present a detailed analysis of the two-dimensional (2D) structure of of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured by fitting PSF convolved, 2D surface brightness profiles to each image using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from -11.2 mag to -15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. We also find a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks.The stellar populations of the clusters were studied by comparing their observed colors to simple stellar population (SSP) models. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for complex star formation histories. Most of the NCs have integrated colors consistent with the presence of both an old population (> 1 Gyr) and a young population (˜100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.

  20. Multitechnique testing of the viscous decretion disk model. I. The stable and tenuous disk of the late-type Be star β CMi

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.

    2015-12-01

    Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ond

  1. GALEX Observes Nearby Cool Stars: Constraints on Ultraviolet Coronal Activity

    NASA Astrophysics Data System (ADS)

    Wheatley, Jonathan; Welsh, Barry

    2016-01-01

    The GALEX ultraviolet mission (1350-2800A) has detected many late-type dwarf stars. Numerous M-type dwarf stars exhibit flaring and coronal activity; we use GALEX UV photometry to measure the variability of coronal emission in the GALEX NUV and FUV wavebands.

  2. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  3. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-08-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves.We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally- and temporally-averaged 3D STAGGER model atmospheres.

  4. Activity in F stars

    NASA Technical Reports Server (NTRS)

    Wolff, Sidney C.; Boesgaard, Ann Merchant; Simon, Theodore

    1986-01-01

    Measurements of He I 5876 A and IUE measurements of chromospheric and transition region lines in a large sample of F-type stars are presented. The data show that activity is detectable in nearly all early F-type stars and differs in several of its characteristics from that typically seen in cooler stars with slow rotation and fully developed convective zones. The onset of activity occurs near B-V = 0.28, which corresponds approximately to spectral type F0 and T(eff) = 7300 K. There is no correlation between the level of activity and the abundances of lithium and beryllium in F stars hotter than T(eff) = 6600 K. All but one of the stars in the 6600-7300 K temperature interval are active. The levels of activity in these stars are independent of Rossby number.

  5. The Atmospheric Dynamics of Alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for a Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from a Tau can be consistently understood via a model of upward-traveling Alfv6n waves in a gravitationally stratified atmosphere. These waves cause nonthermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  6. The Atmospheric Dynamics of alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for alpha Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These waves cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  7. MIDCOURSE SPACE EXPERIMENT VERSUS IRAS TWO-COLOR DIAGRAMS AND THE CIRCUMSTELLAR ENVELOPE-SEQUENCE OF OXYGEN-RICH LATE-TYPE STARS

    SciTech Connect

    Sjouwerman, Lorant O.; Capen, Stephanie M.; Claussen, Mark J. E-mail: stephanie.m.capen@enc.ed

    2009-11-10

    We present Midcourse Space Experiment (MSX) two-color diagrams that can be used to characterize circumstellar environments of sources with good quality MSX colors in terms of IRAS color regions for oxygen-rich stars. With these diagrams, we aim to provide a new tool that can be used to study circumstellar environments and to improve detection rates for targeted surveys for circumstellar maser emission similar to the IRAS two-color diagram. This new tool is especially useful for regions in the sky where IRAS was confused, in particular in the Galactic plane and bulge region. Unfortunately, using MSX colors alone does not allow one to distinguish between carbon-rich and oxygen-rich objects. An application of this tool on 86 GHz SiO masers shows that for this type of masers an instantaneous detection rate of 60% to 80% can be achieved if target sources are selected according to MSX color (region). Our investigations may have revealed an error in the MSX point source catalog version 2.3. That is, the photometry of the 21.3 mum (MSX E filter) band for most weak 8.28 mum (or MSX A filter) band sources seems off by about a factor 2 (0.5-1 mag too bright).

  8. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  9. Active Longitudes and Flip-Flops in Binary Stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi; Järvinen, Silva P.

    2007-08-01

    In many active stars the spots concentrate on two permanent active longitudes which are 180 degrees apart. In some of these stars the dominant part of the spot activity changes the longitude every few years. This so-called flip-flop phenomenon was first reported in the early 1990's in the single, late type giant FK Com. Since then flip-flops have been reported also on binary stars, young solar type stars and the Sun itself. Even though this phenomenon has been detected on many different kinds of active stars, still less than ten stars are known to exhibit this effect. Therefore no statistically significant correlation between the stellar parameters and the flip-flop phenomenon can be carried out. Here we present results from investigation where we have studied the long-term photometry of several magnetically active RS CVn binaries to see whether or not they show permanent active longitudes and the flip-flop phenomenon. We find that it is very common for the active regions to occur on permanent active longitudes, and some of these stars also show clear flip-flop phenomenon.

  10. Flare Activity on Stars

    NASA Astrophysics Data System (ADS)

    Oskanian, V. S.

    A review of the existing flare data analyses indicates that most probably the flare phenomenon should be considered as one of the manifestation forms of solar-type chromospheric activity on stars and therefore has to be investigated in common with other phenomena specifying this activity. In order to estimate the reliability of such an approach different types of observational data are discussed. It could be shown that most of the phenomena specifying the solar chromospheric activity (BY Dra syndrome, indicating the spottedness of the stellar surface, long-term cyclic variations of emission line intensities, variable local magnetic fields, flares, coronal phenomena, etc.) are observable on a constantly growing number of stars of almost all spectral types and luminosity classes. This fact indicates that the proposed approach could be the right way to solve the problem of the flare phenomenon.

  11. Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes

    2014-08-01

    We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.

  12. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  13. Momentum and energy balance in late-type stellar winds

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1981-01-01

    Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.

  14. The magnetic activity sunlike stars.

    PubMed

    Vaughan, A H

    1984-08-24

    Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general. PMID:17801135

  15. L'-band AGPM vector vortex coronagraph's first light on VLT/NACO. Discovery of a late-type companion at two beamwidths from an F0V star

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Delacroix, C.; Girard, J. H.; Milli, J.; O'Neal, J.; Baudoz, P.; Boccaletti, A.; Bourget, P.; Christiaens, V.; Forsberg, P.; Gonte, F.; Habraken, S.; Hanot, C.; Karlsson, M.; Kasper, M.; Lizon, J.-L.; Muzic, K.; Olivier, R.; Peña, E.; Slusarenko, N.; Tacconi-Garman, L. E.; Surdej, J.

    2013-04-01

    Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation ground-based adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aims: Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L' band. The L' band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher. Methods: An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L' band made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results: Here we present the installation and successful on-sky tests of an L'-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a ΔL' > 7.5 mag contrast from an IWA ≃ 0."09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.

  16. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    SciTech Connect

    Honig, Z. N.; Reid, M. J.

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.

  17. Late-Type Membership of the Open Cluster NGC 2232

    NASA Technical Reports Server (NTRS)

    Orban, Chris; Patten, Brian

    2004-01-01

    NGC 2232 is one of the nearest open clusters (approx.360 pc) with an age of approx.25 Myr. This places it in the unique position to study the transition from T Tauri activity to the Zero Age Main Sequence. In order for those studies to begin, late-type members must be identified for the cluster. X-ray observations combined with ground-based photometry and spectroscopy offers the best way to accomplish this goal. We present photometry in the VRI bands, 2MASS near-infrared measurements in the J, H , Ks bands and spectra for the suspected optical counterparts to the X-ray sources in the field of NGC 2232. 46 candidate members were identified through these efforts ranging from F5 to M5.

  18. BAR EFFECTS ON CENTRAL STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M{sub r} < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  19. Stellar Populations and Chemical Evolution of Late-Type Dwarf Galaxies (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Tosi, M.

    Some aspects of the chemical evolution of late-type dwarf galaxies are reviewed, together with their implications on three issues of cosmological relevance: similarity to primeval galaxies, derivation of the primordial helium abundance, contribution to the excess of faint blue galaxies. A more detailed approach to model their evolution is suggested. The importance of deriving the star formation history in these systems by studying their resolved stellar populations is emphasized.

  20. Magnetic activity of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  1. Activity in A-type Stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2013-12-01

    Kepler photometry shows that most A-type stars have low frequency variations which can be understood in terms of rotational modulation. Indeed, the distribution of equatorial velocities derived from the photometric periods agrees with the distribution of equatorial velocities of A-type stars in the general field. The amplitude of the rotational frequency varies by 20-30 percent as might be expected of star spots. From the light amplitudes we estimate that most spots are considerably larger than typical sunspots but generally smaller than the largest sunspots. The rotation peaks in the periodograms of a significant fraction of A-type stars have a peculiar structure which is not understood. Although peaks corresponding to the rotation frequency can be identified in many δ Scuti stars, the low frequency peaks in these stars are too numerous to be caused by rotational modulation. It thus appears that while the variability of non-pulsating A stars can be explained by rotation, the low-frequency variability in A-type δ Sct stars requires a new pulsation mechanism. We also find several γ Dor stars much hotter than the theoretical hot edge of the instability strip. We find 13 new A-type flare stars, which means that about 1.5 percent of A stars flare. Less dramatic flares may be common in all A-type stars. We show that these superflares cannot be attributed to normal flares on a cool companion. We conclude that A-type stars are active and, like cooler stars, have starspots and flares. Surprisingly, there does not seem to be a drop in activity as the granulation boundary is crossed.

  2. FORMING REALISTIC LATE-TYPE SPIRALS IN A {Lambda}CDM UNIVERSE: THE ERIS SIMULATION

    SciTech Connect

    Guedes, Javiera; Madau, Piero; Callegari, Simone; Mayer, Lucio

    2011-12-01

    Simulations of the formation of late-type spiral galaxies in a cold dark matter ({Lambda}CDM) universe have traditionally failed to yield realistic candidates. Here we report a new cosmological N-body/smooth particle hydrodynamic simulation of extreme dynamic range in which a close analog of a Milky Way disk galaxy arises naturally. Named 'Eris', the simulation follows the assembly of a galaxy halo of mass M{sub vir} = 7.9 Multiplication-Sign 10{sup 11} M{sub Sun} with a total of N = 18.6 million particles (gas + dark matter + stars) within the final virial radius, and a force resolution of 120 pc. It includes radiative cooling, heating from a cosmic UV field and supernova explosions (blastwave feedback), a star formation recipe based on a high gas density threshold (n{sub SF} = 5 atoms cm{sup -3} rather than the canonical n{sub SF} = 0.1 atoms cm{sup -3}), and neglects any feedback from an active galactic nucleus. Artificial images are generated to correctly compare simulations with observations. At the present epoch, the simulated galaxy has an extended rotationally supported disk with a radial scale length R{sub d} = 2.5 kpc, a gently falling rotation curve with circular velocity at 2.2 disk scale lengths of V{sub 2.2} = 214 km s{sup -1}, an i-band bulge-to-disk ratio B/D = 0.35, and a baryonic mass fraction within the virial radius that is 30% below the cosmic value. The disk is thin, has a typical H I-to-stellar mass ratio, is forming stars in the region of the {Sigma}{sub SFR}-{Sigma}{sub HI} plane occupied by spiral galaxies, and falls on the photometric Tully-Fisher and the stellar-mass-halo-virial-mass relations. Hot (T > 3 Multiplication-Sign 10{sup 5} K) X-ray luminous halo gas makes up only 26% of the universal baryon fraction and follows a 'flattened' density profile {proportional_to}r{sup -1.13} out to r = 100 kpc. Eris appears then to be the first cosmological hydrodynamic simulation in which the galaxy structural properties, the mass budget in the

  3. 3-D reconstructions of active stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-03-01

    Stars are usually faint point sources and investigating their surfaces and interiors observationally is very demanding. Here I give a review on the state-of-the-art observing techniques and recent results on studying interiors and surface features of active stars.

  4. Deriving Age-Activity Relations in M Dwarf Stars Using Clusters of Known Ages

    NASA Astrophysics Data System (ADS)

    Andersen, J. M.; West, A. A.; Covey, K. R.; McDonald, M.; Veilleux, S.; Seth, A.

    2011-12-01

    We present preliminary results from a study of M dwarf magnetic activity in clusters of known ages with the ultimate goal of constraining the age-activity relation. The age-activity relation provides clues to the mechanisms generating magnetic dynamos, especially in late-type dwarfs where their stellar interiors become fully convective. Broadband griz photometry was obtained for four clusters with ages ranging from ˜110 Myrs to 4 Gyrs. Narrowband images of each cluster were acquired with the Maryland Magellan Tunable Filter, tuned to the frequency of Hα, including a correction for the cluster's radial velocity, and a nearby, similarly sized bandpass sampling the stellar pseudo-continuum. This permits a "photometric" measurement of the Hα emission for each star, and thus a measure of activity. Cluster membership is determined from broadband photometry and comparison to stellar positions from previous studies. We report on our findings for the cluster NGC 2516. Hα measurements are stronger for cluster stars than for field stars of the same magnitude. A clear correlation is seen between our Hα strengths measured by narrowband imaging and previous spectroscopic activity measurements for stars where spectra have been obtained.

  5. An Imaging Survey of Late-Type Galaxies: Local Benchmarks of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Taylor, V. A.

    2005-12-01

    Nearby (z ˜ 0) irregular, peculiar, and merging galaxies resemble the majority of galaxy types observed at high redshift. Since optical observations of galaxies at high redshift cover their rest-frame ultraviolet emission, imaging of local late-type galaxies in the ultraviolet and optical will provide a necessary basis for understanding high-redshift galaxies and their implications for galaxy formation and evolution. For this purpose, I present an analysis of a unique, panchromatic sample of 199 mostly late-type, irregular, peculiar, and merging nearby galaxies observed in a combination of 10 different pass-bands from the far ultraviolet through the infrared. I first present results of a study of the color gradients of these galaxies. I find that although elliptical through mid-type spiral galaxies are redder in their centers than their outskirts, most late-type spirals, irregular, and merging galaxies are bluer in their centers, becoming increasingly redder at larger radii. This indicates that late-type galaxies have a significant halo or thick disk of older stars, while young UV-bright stars dominate their inner regions. These results are consistent with models of hierarchical galaxy formation. I also present measurements of the concentration, asymmetry, and clumpiness ("CAS") parameters of these galaxies. These fundamental galaxy parameters can be used for galaxy classification, and studying and identifying merging and perturbed galaxies. The dependence of these parameters on wavelength yields a quantitative measure of the "morphological k-correction," which describes how the appearance of a galaxy changes with rest-frame wavelength. I find that the CAS parameters depend on galaxy type, and vary significantly with rest-frame wavelength, especially short-ward of the Balmer break. Galaxies generally become less concentrated and more asymmetric and clumpy at shorter wavelengths. Funded by NASA grants GO-8645.01-A, GO-9124.01-A and GO-9824.01-A, GALEXGI04

  6. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  7. Zeeman-Doppler imaging of active young solar-type stars

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  8. Characterizing Nearby Stars: Age and Activity

    NASA Technical Reports Server (NTRS)

    Soderblom, David

    2001-01-01

    The funds in this grant were used to support costs for observing and data analysis over the past two years. During this time I have been obtaining low-resolution (R-2,000) spectra for about 5,000 solar-type stars (late-F and G dwarfs) that are within 60 parsecs of the Sun. The sample was defined with results from the Hipparcos mission, and the spectra were obtained at Kitt Peak National Observatory, using the Coude Feed telescope, and at Cerro Tololo Interamerican Observatory, using their 1.5 m telescopes for stars below -40 declination. Nearly all the observed spectra have been reduced and analyzed. What is determined is R-prime, an index of the chromospheric emission in the cores of the Ca II H and K lines relative to the nearby continuum, and normalized for the color of the star. Chromospheric emission arises from magnetic activity on the star, and that is turn is driven by rotation. Solar-type stars spin down as they age, and so they get weaker in their chromospheric emission as well. Thus this R-prime index can be used to estimate the ages of stars. A few stars remain to be observed at Kitt Peak, and follow-up high-resolution spectra are being obtained of the most active stars seen, but the majority of the starting sample have been completed. The spectra obtained are also being analyzed to yield an index of overall metallicity for each star, and this will be used to study Galactic evolution questions. These metallicities will form the first large dataset of high and consistent quality. Initial results from this work have been used to define targets for a SIRTF Legacy program, for stars to study for planetary transits, and for SETI efforts. Because of the large number of stars involved, most of the data will be made available on the web, although some specific papers about the results are in preparation. The web database is being constructed.

  9. Magnetic field structure in single late-type giants: β Ceti in 2010-2012

    NASA Astrophysics Data System (ADS)

    Tsvetkova, S.; Petit, P.; Aurière, M.; Konstantinova-Antova, R.; Wade, G. A.; Charbonnel, C.; Decressin, T.; Bogdanovski, R.

    2013-08-01

    Aims: We study the behavior of the magnetic field and the line activity indicators of the single late-type giant β Ceti. Using spectropolarimetric data, we aim to reconstruct the magnetic field structure on the star's surface and to present the first magnetic maps for β Ceti. Methods: The data were obtained using two spectropolarimeters - Narval at the Bernard Lyot Télescope, Pic du Midi, France, and ESPaDOnS at CFHT, Hawaii. Thirty-eight circularly-polarized spectra have been collected in the period June 2010-January 2012. The least square deconvolution method was applied for extracting high signal-to-noise ratio line profiles, from which we measured the surface-averaged longitudinal magnetic field Bl. Chromospheric activity indicators CaII K, Hα, CaII IR (854.2 nm), and radial velocity were simultaneously measured, and their variability was analyzed along with the behavior of Bl. The Zeeman Doppler imaging (ZDI) inversion technique was employed for reconstructing the large-scale magnetic field and two magnetic maps of β Ceti are presented for two periods (June 2010-December 2010 and June 2011-January 2012). Results: The Bl stays with a same positive polarity for the whole observational period and shows significant variations in the interval 0.1-8.2 G. The behavior of the line activity indicators is in good agreement with the Bl variations. Searching for periodic signals in the Stokes V time series, we found a possible rotation period of 215 days. The two ZDI maps show a mainly axisymmetric and poloidal magnetic topology and a simple surface magnetic field configuration dominated by a dipole. Little evolution is observed between the two maps, in spite of a 1 yr interval between both subsets. We also use state-of-the-art stellar evolution models to constrain the evolutionary status of β Ceti. We derive a mass of 3.5 M⊙ and propose that this star is already in the central helium-burning phase. Conclusions: Considering all our results and the evolutionary

  10. Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars

    NASA Astrophysics Data System (ADS)

    da Costa, Jefferson; Castro, Matthieu; Petit, Pascal; do Nascimento, José-Dias, Jr.

    2015-08-01

    It is know that lithium is element easily destroyed in stellar interior, the existence of lithium rich stars means a great challenge in stellar evolution. In this context our observations ravels the serendipitous discovery of an unusually high lithium abundance star. This is a K0III HD 150050, which has strong deepening on lithium line (6707.8 Å) this means lithium abundance of 2.81 0.2 dex, therefore this star belong a rare group called super Li-Rich stars. A possible source of the non-standard episodes required to produce Li-rich stars were identified in magneto-thermohaline mixing accounted by models of extra-mixing induced by magnetic buoyancy. However to better understand this is necessary more observational data. In last three decades several studies has showed that late type red giant stars presents a remarkable modifications in these outer atmosphere layers when they become late type star in HR diagram. These changes are founded through X-ray, Ultraviolet, and Chromospheric activity analyses, and then we can establish the called “Dividing lines”. We made spectropalarimetric observations with ESPaDOnS@CFHT to achieve two main objectives: analyze the influence of magnetic field in the Li-rich giant stars, and understand how works the magnetic field in late type giants and supergiants across the “dividing line”.

  11. Spectroscopic Measurements of Starspot Area and Temperature on Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, D.

    1996-12-01

    I describe spectroscopic techniques for studying starspots on late-type active stars. I develop an empirical spectral synthesis technique that independently measures starspot filling factor and temperature by fitting TiO absorption bands of different temperature sensitivities. Spectra of inactive G and K stars are used as proxies for the unspotted photospheres of the active stars, and spectra of M stars represent the spots. The set of TiO bands beginning at 7055 Angstroms and the band at 8860 Angstroms are most useful for this procedure; the starspots must be cooler than 4000 K. I apply this technique to spectra of seven RS CVn systems and one FK Comae star. Measured spot filling factors range from below the detection threshold ( ~ 8%) to nearly 60%. By comparing our measurements with contemporaneous photometry, we find, for some active stars, that the unspotted brightness of the star is significantly brighter than historical light maximum, and conclude that some starspot coverage has always been present. In some cases we find much higher spot filling factors than measured using other techniques, implying a uniform component to the starspot coverage. I extend this technique into the H band (where starspots contribute much more to the overall stellar spectrum than in the visible) by observing a pair of OH lines near 1.563mu m in three RS CVn systems. In inactive stars the equivalent width of these lines increases approximately linearly as temperature decreases from 5000 K to 3000 K; the OH lines greatly extend the temperature range over which starspots can be studied through molecular absorption features. Also, I apply TiO-band spectroscopy to the problem of Doppler imaging. Doppler imaging better constrains the sizes and shapes of starspots than their temperatures. TiO-band spectroscopy can supply the needed temperature constraint; the Doppler image is made to reproduce the observed depths of the TiO bands as well as the atomic line profiles. For the star II Pegasi

  12. Activity Cycles in Stars with Highly Active Chromospheres

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.

    The extended lifetime of the IUE satellite has provided an unique and unanticipated opportunity to examine the long-term evolution of magnetic activity on active chromospheric stars. We propose to obtain further IUE observations of the highly active RS CVn stars V711 Tauri, lambda Andromedae, II Pegasi, and UX Arietis in conjunction with groundbased optical and radio observations, and possibly ROSAT X-ray observations. In addition we would continue IUE observations of the unusual rapidly rotating early G giant, FK Comae, which, although not in the RS CVn category, shares a similarly high level of magnetic activity. These five stars have the most extensive IUE archival coverage for stars of their type and have almost continuous ground-based photometric coverage from about 1975 onward. We aim to trace the long-term development of magnetic activity on these stars: a detailed study of the UV emission-like fluxes will enable us to follow the variations in chromospheric and transition-region activity over an interval of 12-16 years. Optical observations reveal variations in photospheric (starspot) activity: the starspot regions are large (up to 30% of the stellar surface) and vary significantly with time. The main aim of the proposed research is to examine the relationship between chromospheric, transition-region, and photospheric active regions. Elucidation of the role of white-light faculae vis-a-vis spots in effecting stellar irradiance changes is also desirable.

  13. Far-infrared colours of nearby late-type galaxies in the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Ciesla, L.; Cortese, L.; Buat, V.; Boquien, M.; Bendo, G. J.; Boissier, S.; Eales, S.; Gavazzi, G.; Hughes, T. M.; Pohlen, M.; Smith, M. W. L.; Baes, M.; Bianchi, S.; Clements, D. L.; Cooray, A.; Davies, J.; Gear, W.; Madden, S.; Magrini, L.; Panuzzo, P.; Remy, A.; Spinoglio, L.; Zibetti, S.

    2012-04-01

    We study the far infrared (60-500 μm) colours of late-type galaxies in the Herschel Reference Survey, a K-band selected, volume limited sample of nearby galaxies. The far infrared colours are correlated with each other, with tighter correlations for the indices that are closer in wavelength. We also compare the different colour indices to various tracers of the physical properties of the target galaxies, such as the surface brightness of the ionising and non-ionising stellar radiation, the dust attenuation and the metallicity. The emission properties of the cold dust dominating the far infrared spectral domain are regulated by the properties of the interstellar radiation field. Consistent with that observed in nearby, resolved galaxies, our analysis shows that the ionising and the non-ionising stellar radiation, including that emitted by the most evolved, cold stars, both contribute to the heating of the cold dust component. This work also shows that metallicity is another key parameter characterising the cold dust emission of normal, late-type galaxies. A single modified black body with a grain emissivity index β = 1.5 better fits the observed SPIRE flux density ratios S250/S350 vs. S350/S500 than β = 2, although values of β ≃ 2 are possible in metal rich, high surface brightness galaxies. Values of β ≲ 1.5 better represent metal poor, lowsurface brightness objects. This observational evidence provides strong constraints for dust emission models of normal, late type galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  14. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  15. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-04-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  16. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  17. Chromospherically active stars. I - HD 136905

    NASA Technical Reports Server (NTRS)

    Fekel, F. C.; Hall, D. S.; Africano, J. L.; Gillies, K.; Quigley, R.

    1985-01-01

    The variable star HD 136905, recently designated GX Librae, is a chromospherically active K1 III single-lined spectroscopic binary with a period of 11.1345 days. It has moderate strength Ca II H and K and ultraviolet emission features, while H-alpha is strongly in absorption. The inclination of the system is 58 + or - 17 deg and the unseen secondary is most likely a G or K dwarf. The v sin i of the primary, 32 + or - 2 km/s, results in a minimum radius of 7.0 + or - 0.4 solar radii. Since the star fills a substantial fracture of its Roche lab, the double-peaked limit curve seen by photometric observers is predominantly ellipsoidal in nature. Both the photometry and the spectroscopy yield values for the period and the time of conjunction that are identical within their uncertainties.

  18. Convection and observable properties of late-type giants

    NASA Astrophysics Data System (ADS)

    Kucinskas, A.; Ludwig, H.-G.; Hauschildt, P. H.

    We show that contrary to what is expected from 1D stationary model atmospheres, 3D hydrodynamical modeling predicts a considerable influence of convection on the spectral properties of late-type giants. This is due to the fact that convection overshoots into the formally stable outer atmospheric layers producing a notable granulation pattern in the 3D hydrodynamical models, which has a direct influence on the observable spectra and colors. Within the framework of standard 1D model atmospheres the average thermal stratification of the 3D hydro model can not be reproduced with any reasonable choice of the mixing length parameter and formulation of the turbulent pressure. The differences in individual photometric colors - in terms of 3D versus 1D - reach up to ˜0.2 mag, or Δ T_{eff}˜70 K. We discuss the impact of full 3D hydrodynamical models on the interpretation of observable properties of late-type giants, briefly mentioning problems and challenges which need to be solved for bringing these models to a routine use within the astronomical community in 5-10 years from now.

  19. On the interaction between dust and gas in late-type stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Stencel, R. E.

    1992-01-01

    An assumption inherent to most models of dust-driven winds from cool, evolved stars is that the radiative and collisional drag forces acting on an individual dust grain are in balance throughout the flow. We have checked the validity of this supposition of 'complete momentum coupling' by comparing the grain motion obtained from such a model with that derived from solution of the full grain equation of motion. For physical conditions typical of the circumstellar envelopes of oxygen-rich red giants, we find that silicate grains with initial radii smaller than about 5 x 10 exp -6 cm decouple from the ambient gas near the base of the outflow. The implications of these results for models of dust-driven mass loss from late-type giants and supergiants are discussed.

  20. An imaging survey of late-type galaxies: Local benchmarks of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Taylor, Violet

    The majority of galaxies observed at high redshift display structures and morphologies resembling those of nearby (z ~ 0) irregular, peculiar and merging galaxies. To better understand galaxy assembly and evolution, the properties of such nearby galaxies must be compared with distant ones in the rest-frame ultraviolet (UV), where the highest resolution and deepest observations of high-redshift galaxies were taken. To evaluate the possible dependence of galaxy structure and morphology on rest-frame wavelength, it is necessary to study the nearby galaxies in redder bands as well. For this purpose, a panchromatic imaging survey was conducted in the far-UV through the near- infrared of 199 nearby, mostly late-type, irregular, peculiar, and merging galaxies. An analysis is presented here of the color gradients, and the wavelength- dependent quantitative morphology of this sample. Whereas ellipticals and early- to mid-type spiral galaxies tend to become bluer at larger radial distances from their centers, most late-type spiral, irregular, and merging galaxies become increasingly redder at larger radii. This may indicate that late-type galaxies have a significant halo or thick disk of older stars, while their inner regions are dominated by younger, UV-bright stars. This result is consistent with recent numerical models of hierarchical galaxy assembly. Galaxy morphology is also quantitatively analyzed, as parametrized with measurements of concentration index, asymmetry, and clumpiness (CAS) parameters. These CAS parameters depend on both galaxy type and the wavelength of observation, and can be used to measure the "morphological k-correction", i.e., the change in appearance of a galaxy with rest-frame wavelength. Whereas early-type galaxies (E-S0) appear the same at all wavelengths longward of the Balmer break, there is a significant wavelength-dependence of the CAS parameters for galaxies of types later than S0, which generally become less concentrated and more asymmetric

  1. The RACE-OC project: Rotation and Activity Evolution in Open Clusters

    NASA Astrophysics Data System (ADS)

    Messina, S.; Distefano, E.; Parihar, Padmakar; Busà, I.; Cutispoto, G.; Lanza, A. F.; Lanzafame, A.; Pagano, I.; Biazzo, K.; Leto, G.; Hatzidimitriou, D.; Kim, S.-L.; Koo, J.-R.; Kang, Y. B.

    2009-02-01

    The RACE-OC project, standing for Rotation and Activity Evolution in Open Clusters, is a long-term project aimed at studying the evolution of rotation and magnetic activity of late-type members of stellar open clusters. Magnetic fields play a fundamental role in altering the rotational properties of late-type stars. They are responsible, e.g., for angular momentum loss in the wind or its redistribution in the stellar interior. Magnetic fields in late-type stars and their related phenomena, such as photospheric cool spots and bright faculae, chromospheric plages, and X-ray emission, in turn depend on the stellar rotation which controls the efficiency of the hydromagnetic dynamo. Thus, the evolution of angular momentum and magnetic activity offer complementary approaches to understanding the mechanisms by which rotation and magnetic fields influence each other in late-type stars.

  2. The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    Pović, M.; Huertas-Company, M.; Aguerri, J. A. L.; Márquez, I.; Masegosa, J.; Husillos, C.; Molino, A.; Cristóbal-Hornillos, D.; Perea, J.; Benítez, N.; Olmo, A. del; Fernández-Soto, A.; Jiménez-Teja, Y.; Moles, M.; Alfaro, E.; Aparicio-Villegas, T.; Ascaso, B.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Fernandez Lorenzo, M.; Cerviño, M.; Delgado, R. M. González; Infante, L.; López-Sanjuan, C.; Martínez, V. J.; Matute, I.; Oteo, I.; Pérez-García, A. M.; Prada, F.; Quintana, J. M.

    2013-11-01

    Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) is photometric survey designed to trace the cosmic evolution and cosmic variance. It covers a large area of ˜4 deg2 in eight fields, where seven fields overlap with other surveys, allowing us to have complementary data in other wavelengths. All observations were carried out in 20 continuous, medium band (30 nm width) optical and 3 near-infrared (JHK) bands, providing the precise measurements of photometric redshifts. In addition, morphological classification of galaxies is crucial for any kind of galaxy formation and cosmic evolution studies, providing the information about star formation histories, their environment and interactions, internal perturbations, etc. We present a morphological classification of >40 000 galaxies in the ALHAMBRA survey. We associate to every galaxy a probability to be early type using the automated Bayesian code GALSVM. Despite of the spatial resolution of the ALHAMBRA images (˜1 arcsec), for 22 051 galaxies, we obtained the contamination by other type of less than 10 per cent. Of those, 1640 and 10 322 galaxies are classified as early- (down to redshifts ˜0.5) and late-type (down to redshifts ˜1.0), respectively, with magnitudes F613W ≤ 22.0. In addition, for magnitude range 22.0 < F613W ≤ 23.0, we classified other 10 089 late-type galaxies with redshifts ≤1.3. We show that the classified objects populate the expected regions in the colour-mass and colour-magnitude planes. The presented data set is especially attractive given the homogeneous multiwavelength coverage available in the ALHAMBRA fields, and is intended to be used in a variety of scientific applications. The low-contamination catalogue (<10 per cent) is made publicly available with this paper.

  3. Globular Cluster Populations: Results Including S4G Late-type Galaxies

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis; McCabe, Kelsey; Aravena, Manuel; Athanassoula, E.; Bosma, Albert; Comerón, Sébastien; Courtois, Helene M.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Erroz-Ferrer, Santiago; Gadotti, Dimitri A.; Hinz, Joannah L.; Ho, Luis C.; Holwerda, Benne; Kim, Taehyun; Knapen, Johan H.; Laine, Jarkko; Laurikainen, Eija; Muñoz-Mateos, Juan Carlos; Salo, Heikki; Sheth, Kartik

    2016-02-01

    Using 3.6 and 4.5 μm images of 73 late-type, edge-on galaxies from the S4G survey, we compare the richness of the globular cluster populations of these galaxies to those of early-type galaxies that we measured previously. In general, the galaxies presented here fill in the distribution for galaxies with lower stellar mass, M*, specifically {log}({M}*/{M}⊙ )\\lt 10, overlap the results for early-type galaxies of similar masses, and, by doing so, strengthen the case for a dependence of the number of globular clusters per 109M⊙ of galaxy stellar mass, TN, on M*. For 8.5\\lt {log}({M}*/{M}⊙ )\\lt 10.5 we find the relationship can be satisfactorily described as {T}{{N}}={({M}*/{10}6.7)}-0.56 when M* is expressed in solar masses. The functional form of the relationship is only weakly constrained, and extrapolation outside this range is not advised. Our late-type galaxies, in contrast to our early types, do not show the tendency for low-mass galaxies to split into two TN families. Using these results and a galaxy stellar mass function from the literature, we calculate that, in a volume-limited, local universe sample, clusters are most likely to be found around fairly massive galaxies (M* ˜ 1010.8M⊙) and present a fitting function for the volume number density of clusters as a function of parent-galaxy stellar mass. We find no correlation between TN and large-scale environment, but we do find a tendency for galaxies of fixed M* to have larger TN if they have converted a larger proportion of their baryons into stars.

  4. How effective is harassment on infalling late-type dwarfs?

    NASA Astrophysics Data System (ADS)

    Smith, R.; Davies, J. I.; Nelson, A. H.

    2010-07-01

    A new harassment model is presented that models the complex and dynamical tidal field of a Virgo-like galaxy cluster. The model is applied to small, late-type dwarf disc galaxies (of substantially lower mass than in previous harassment simulations) as they infall into the cluster from the outskirts. These dwarf galaxies are only mildly affected by high-speed tidal encounters with little or no observable consequences; typical stellar losses are <10per cent, producing very low surface brightness streams (magarcsec-2) and a factor of 2 drop in dynamical mass-to-light ratio. Final stellar discs remain disc like, and dominated by rotation although often with tidally induced spiral structure. By means of Monte Carlo simulations, the statistically likely influences of harassment on infalling dwarf galaxies are determined. The effects of harassment are found to be highly dependent on the orbit of the galaxy within the cluster, such that newly accreted dwarf galaxies typically suffer only mild harassment. Strong tidal encounters, that can morphologically transform discs into spheroidals, are rare occurring in <15per cent of dwarf galaxy infalls for typical orbits of substructure within cold dark matter cluster mass haloes. For orbits with small apocentric distances (<250kpc), harassment is significantly stronger resulting is in complete disruption or heavy mass loss (>90per cent dark matter and >50per cent stellar), however, such orbits are expected to be highly improbable for newly infalling galaxies due to the deep potential well of the cluster.

  5. Mechanisms for quenching star formation activities in green valley galaxies and its depends on morphologies

    NASA Astrophysics Data System (ADS)

    Kong, Xu; Pan, Zhizheng; Lian, Jianhui

    2015-08-01

    Galaxies are categorized into two main populations, red quiescent galaxies and blue star-forming galaxies. One of the key questions is which physical mechanisms are responsible for quenching star formation activities in blue galaxies and the resulting transformation? In this talk, we present research on the morphologies, spectra, and environments of "green valley" galaxies in the COSMOS field and low redshift "green valley" galaxies in SDSS. Our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M* < 10^10.0 Msun blue galaxies into red galaxies, especially at z < 0.5. Using image from SDSS and GALEX, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, and investigate how quenching is processing in a galaxy. The early-type "green valley" galaxies (ETGs) have dramatically different radial NUV-r color distributions compared to late-type "green valley" galaxies (LTGs), most of ETGs have blue cores, nearly all LTGs have uniform color profiles that can be well-interpreted as red bulges plus blue disk components. These results suggest that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy; for ETGs, their star formations are centrally concentrated. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI (2013ApJ...776...14P, 2014ApJ...792L...4P, 2015MNRAS.446.1449L).

  6. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  7. Observational evidence for enhanced magnetic activity of superflare stars

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  8. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  9. X-ray sources in regions of star formation. II - The pre-main-sequence G star HDE 283572

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Brown, A.; Linsky, J. L.; Rydgren, A. E.; Vrba, F.

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a 'naked' T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars.

  10. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    SciTech Connect

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.

    1987-03-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references.

  11. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  12. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  13. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    NASA Astrophysics Data System (ADS)

    Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.

    2007-10-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  14. Activity-Induced Radial Velocity Variation of M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Andersen, Jan Marie; Korhonen, Heidi

    2014-04-01

    Stellar magnetic activity manifests itself in a variety of ways including starspots-cool, dark regions on the stellar surface. Starspots can cause variations (`jitter') in spectral line-profiles which can mimic the radial velocity (RV) variations caused by an orbiting planet, or create RV noise that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?

  15. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial...

  16. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  17. Magnetic activity of the star Corot-Exo-2a

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2010-05-01

    Continuous photometric observations of the young active solar-type star Corot-Exo-2a using the “Corot” space telescope obtained over 142 days were used to analyze the star’s surface temperature inhomogeneities and to monitor their continuous evolution. This analysis was based on the iPH code, which reconstructs the distribution of temperature inhomogeneities on the surface of a star based on its light curve in a two-temperature approximation. We identified five time intervals in the positions of active areas, with corresponding flip-flop events, interpreted as activity periods. Their durations were between 55 and 15 days. The time scale for the active-longitude flip-flops of Corot-Exo-2a is a few tens of days, rather than years, as for other stars studied earlier. We detected motions of the active longitudes, possibly indicating differential rotation of the star. The phenomenon of flip-flops in the positions of active longitudes has a complex character. This is the first case apart fromthe Sun where we are able to follow the appearance and development of temperature inhomogeneities on a stellar surface in such detail. We determined typical timescales for variations of the activity parameter of the star in the ranges 17-20, 28-32, 33-38, and 51-55 days, which characterize changes of the brightness variation amplitude, the spotted surface area, positions of active areas, and brightness variations.

  18. Division Iv/v Working Group on Active B Stars

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Jones, Carol E.; Townsend, Richard D.; Fabregat, Juan; Bjorkman, Karen S.; McSwain, M. Virginia; Mennickent, Ronald E.; Neiner, Coralie; Stee, Philippe; Fabregat, Juan

    2010-05-01

    The meeting of the Working Group on Active B Stars consisted of a business session followed by a scientific session containing nine talks. The titles of the talks and their presenters are listed below. We plan to publish a series of articles containing summaries of these talks in Issue No. 40 of the Be Star Newsletter. This report contains an account of the announcements made during the business session, an update on a forthcoming IAU Symposium on active B stars, a report on the status of the Be Star Newsletter, the results of the 2009 election of the SOC for the Working Group for 2009-12, a listing of the Working Group bylaws that were recently adopted, and a list of the scientific talks that we presented at the meeting.

  19. ASYMMETRIC TRANSIT CURVES AS INDICATION OF ORBITAL OBLIQUITY: CLUES FROM THE LATE-TYPE DWARF COMPANION IN KOI-13

    SciTech Connect

    Szabo, Gy. M.; Szabo, R.; Benko, J. M.; Mezo, Gy.; Simon, A. E.; Kovari, Zs.; Hodosan, G.; Regaly, Zs.; Kiss, L. L.; Lehmann, H.

    2011-07-20

    KOI-13.01, a planet-sized companion in an optical double star, was announced as one of the 1235 Kepler planet candidates in 2011 February. The transit curves show significant distortion that was stable over the {approx}130 days time span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (vsin i {approx} 65-70 km s{sup -1}). We identify the host star of KOI-13.01 and conclude that the transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R{sub J} , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.

  20. A quest for activity cycles in low-mass stars

    NASA Astrophysics Data System (ADS)

    Vida, K.; Kriskovics, L.; Oláh, K.

    2013-11-01

    Long-term photometric measurements in a sample of ultrashort-period (P≈0.5 days or less) single and binary stars of different interior structures are analysed. A loose correlation exists between the rotational rate and cycle lengths of active stars, regardless of their evolutionary state and the corresponding physical parameters. The shortest cycles are expected for the fastest rotators of the order of 1-2 years, which is reported in this paper.

  1. The (Phased?) Activity of Stars Hosting Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pillitteri, Ignazio; Wolk, Scott J.; Lopez-Santiago, J.; Sciortino, Salvatore

    2015-01-01

    The activity of stars harboring hot Jupiters could be influenced by their close-in planets. Cases of enhanced chromospheric activity are reported in literature, suggesting magnetic interaction at well determined planetary phases. In X-rays and FUV, we have studied star-planet interaction (SPI) occurring in the system of HD 189733. In X-rays, HD 189733 shows features of high activity that can be ascribed to the influence of the magnetic field of its planetary companion. Through a wavelet analysis of a flare, we inferred a long magnetic loop of 2 R_* to 4 R_*, and a local magnetic field of strength in 40-100 G. The size of the flaring loop suggests a role of the hot Jupiter in triggering this kind of X-ray variability. In FUV, HST-COS spectra of HD 189733 shows temporal variations in intensity and Doppler shifts of Si III and Si IV lines that can be ascribed to plasma flowing from the planetary atmosphere and accreting onto the star under the action of the combined magnetic field of star and planet. The material from the planetary atmosphere can flow onto the parent star as predicted by MHD models. The foot point of the accretion on the stellar surface results in phased variability observed in X-rays and FUV, when the point, comoving with the planet, emerges at the limb of the star.

  2. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  3. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-10

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. PMID:22575961

  4. The Star Formation Activity in the Shapley Supercluster

    NASA Astrophysics Data System (ADS)

    Ho, P.-L.; Chen, L.-W.

    2013-10-01

    The Shapley supercluster (SSC) is the densest region in the local universe (z < 0.1)(Zucca et al. 1993), it hosts a wide variety of environments from massive clusters to filamentary structure. A total of 81 clusters and groups are identified in this region. In this study, a sample of 208 star-forming galaxies (SFGs) are used to study the effects of local galaxy density and cluster dynamic state on galaxy star formation activity. Our results show that the SFG fraction is highly suppressed in denser regions, for early type SFGs, they especially prefer the low density regions. As for the star formation activity in clusters/groups environment, higher SFG fractions are only detected in clusters/groups with velocity dispersion lower than ˜400 km sec-1, no matter the clusters/groups show merging evidence or not. These results may imply that the gas supply for star formation activity in denser and richer cluster/group regions has been removed by some cluster-specific processes, such as strangulation, ram pressure stripping and harassment, and thus the star formation activity is reduced.

  5. 3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2011-12-01

    Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation

  6. AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS

    SciTech Connect

    Shkolnik, Evgenya L.

    2013-03-20

    Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, M{sub p} , or M{sub p} /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8{sigma}) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3{sigma} when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result.

  7. X-ray spectroscopy of late-type stars. [HEAO 2 observations

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; White, N. E.

    1980-01-01

    The solid state spectrometer on the Einstein Observatory determined .4 - 4.5 keV spectra for Capella, Algol and 6 RS CVn binaries. All show evidence for a bimodal distribution of emission measure with temperature with one component approximately 7 million degrees and one approximately 40 million degrees. The spread in values of both luminosity and emission measure is 10 for the low temperature component and approximately 500 for the high temperature component. Line emission due to Fe can be identified in most of them and abundances of Si, S and Fe are consistent with approximately solar values in all cases. Estimates indicate dimensions of the emitting regions are on the order of the stellar size and the binary separation for the low and high temperature components, respectively, unless the pressures are high. Variations in the flux were observed, mostly in the hard component for the RS CVn binaries, in the soft component for Capella. A flare was observed during primary eclipse of Algol. The possibility is discussed that the other variations could all be due to intrinsic variability with a time scale of hours-days rather than eclipse or modulation with photometric phase.

  8. Accurate abundance analysis of late-type stars: advances in atomic physics

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-05-01

    The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

  9. The symbiotic star TX CVn has entered an active state

    NASA Astrophysics Data System (ADS)

    Munari, U.; Castellani, F.; Valisa, P.; Dallaporta, S.; Cherini, G.; Vagnozzi, A.; Righetti, G. L.; Belligoli, R.

    2014-01-01

    After the last active phase that begun in 2003, the symbiotic star TX CVn has now entered a new active phase. In 2003, TX CVn rose to B=10.5 and there it remained until the end of 2007 (Skopal 2007, AN 328, 909), when we started monitoring the variable with various ANS Collaboration telescopes in BVRI bands. Our observations show that the star has spent the following 6 years on a steady decline at a rate of 0.084 mag per year in the B band, that took it from B=10.55 on December 2007 to B=11.02 on September 2013, when the star begun a rapid brightening, reaching B=10.65 by early December 2013.

  10. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity. PMID:25540920

  11. Alfvén wave-driving mechanism of late-type stellar wind

    NASA Astrophysics Data System (ADS)

    Zheng, Young; Xiao-Qing, Li

    1990-05-01

    Because late-type stellar wind has low temperature, massive outflow, and high terminal velocity, theoretical models of thermal pressure or radiation pressure cannot explain the acceleration of late-type stellar wind. Energy damping of Alfvén wave in stellar winds is small, and Alfvén wave is perhaps the driving force of late-type stellar wind if the wave energy-flux is large enough. After theoretical analysis and numerical calculation, we get various velocity distributions by taking various wave energy-fluxes in reliable range, the terminal velocities accord with observations. If late-type stellar winds are driven by thermal pressure, the temperature is higher than acceptable. The results of Alfvén wave driving winds also indicate that massive stellar winds need large energy flux and acceleration is closely related with gravity. In discussion we think that Alfvén wave accelerating late-type stellar wind is feasible and the initial energy-flux, damping of Alfvén wave in stellar winds need further study.

  12. Alfven wave-driving mechanism of late-type stellar wind

    NASA Astrophysics Data System (ADS)

    Yong, Zheng; Li, Xiao-Qing

    1990-05-01

    Because late-type stellar wind has low temperature, massive outflow, and high terminal velocity, theoretical models of thermal pressure or radiation pressure cannot explain the acceleration of late-type stellar wind. Energy damping of Alfven wave in stellar winds is small, and Alfven wave is perhaps the driving force of late-type stellar wind if the wave energy-flux is large enough. After theoretical analysis and numerical calculation, various velocity distributions are obtained by taking various wave energy-fluxes in reliable range, the terminal velocities accord with observations. If late-type stellar winds are driven by thermal pressure, the temperature is higher that acceptable. The results of Alfven wave driving winds also indicate that massive stellar winds need large energy flux and acceleration is closely related with gravity. In discussion, it is thought that Alfven wave accelerating late-type stellar winds is feasible and the initial energy-flux, damping of Alfven wave in stellar winds need further study.

  13. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  14. Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z < 0.02

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Hauschildt, P. H.; Brott, I.; Vansevičius, V.; Lindegren, L.; Tanabé, T.; Allard, F.

    2006-06-01

    We investigate the effects of metallicity on the broad-band photometric colors of late-type giants, and make a comparison of synthetic colors with observed photometric properties of late-type giants over a wide range of effective temperatures (T_eff=3500-4800 K) and gravities (log g=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on the synthetic photometric colors is small at effective temperatures above 3800 K, but the effects grow larger at lower T_eff, due to the changing efficiency of molecule formation which reduces molecular opacities at lower [M/H]. To make a detailed comparison of the synthetic and observed photometric colors of late type giants in the T_eff-color and color-color planes (which is done at two metallicities, [M/H]=-1.0 and -2.0), we derive a set of new T_eff-log g-color relations based on synthetic photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. These relations are based on the T_eff-log g scales that we derive employing literature data for 178 late-type giants in 10 Galactic globular clusters (with metallicities of the individual stars between [M/H]=-0.7 and -2.5), and synthetic colors produced with the PHOENIX, MARCS and ATLAS stellar atmosphere codes. Combined with the T_eff-log g-color relations at [M/H]=0.0 (Kučinskas et al. 2005), the set of new relations covers metallicities [M/H]=0.0dots-2.0 (Δ[M/H]=0.5), effective temperatures T_eff=3500dots4800 K (Δ T_eff=100 K), and gravities log g=-0.5dots3.0. The new T_eff-log g-color relations are in good agreement with published T_eff-color relations based on observed properties of late-type giants, both at [M/H]=-1.0 and -2.0. The differences in all T_eff-color planes are typically well within 100 K. We find, however, that effective temperatures predicted by the scales based on synthetic colors tend to be slightly higher than those resulting from the T_eff-color relations based on observations, with the offsets up to 100 K. This is clearly seen both at [M/H]=-1

  15. The relation between star formation and active nuclei

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.

    1987-01-01

    Three questions relevant to the relation between an active nucleus and surrounding star formation are discussed. The infrared stellar CO absorption bands can be used to identify galaxies with large populations of young, massive stars and thus can identify strong starburst unambiguously, such as in NGC 6240, and can help identify composite active/starburst systems such as Arp 220. An active nucleus is probably not required for LINER spectral characteristics; dusty starburst galaxies, particularly if they are nearly edge-on, can produce LINER spectra through the shock heating of their interstellar media by supernovae combined with the obscuration of their nuclei in the optical. The Galactic Center would be an ideal laboratory for studying the interaction of starbursts and active nuclei, if both could be demonstrated to occur there. Failure to detect a cusp in the stellar distribution raises questions about the presence of an active nucleus, which should be answered by additional observations in the near future.

  16. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  17. On the determination of oxygen abundances in chromospherically active stars

    NASA Astrophysics Data System (ADS)

    Morel, T.; Micela, G.

    2004-08-01

    We discuss oxygen abundances derived from [O I] λ6300s and the O I triplet in stars spanning a wide range in chromospheric activity level, and show that these two indicators yield increasingly discrepant results with higher chromospheric/coronal activity measures. While the forbidden and permitted lines give fairly consistent results for solar-type disk dwarfs, spuriously high O I triplet abundances are observed in young Hyades and Pleiades stars, as well as in individual components of RS CVn binaries (up to 1.8 dex). The distinct behaviour of the [O I]-based abundances which consistently remain near-solar suggests that this phenomenon mostly results from large departures from LTE affecting the O I triplet at high activity level that are currently unaccounted for, but also possibly from a failure to adequately model the atmospheres of K-type stars. These results suggest that some caution should be exercised when interpreting oxygen abundances in active binaries or young open cluster stars. Based on observations collected at the European Southern Observatory, Chile (Proposals 64.L-0249 and 071.D-0260). Table \\ref{tab_data} is only available in electronic form at http://www.edpsciences.org

  18. Doppler Imaging of Stars with Surface Inhomogeneities

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.

    I review recent progress in the field of stellar surface imaging, with particular reference to advanced methods for mapping surface-brightness distributions on magnetically active late-type stars. New signal enhancement techniques, utilising profile information from hundreds or thousands of photospheric lines simultaneously, allows images to be derived for stars several magnitudes fainter than was previously possible. For brighter stars, the same techniques make it possible to map features as small as two or three degrees in extent on the stellar surface. While this opens up whole new areas of research, such as the ability to use starspot tracking to study surface differential rotation patterns on single and binary stars, caution must be exercised in the treatment of ''nuisance parameters'' such as the stellar rotation rate, surface abundances and radial velocity. At the very high S:N levels we now use, the effects of systematic errors in these parameters are easier to identify, isolate and eliminate. This leads to the possibility of measuring precise radial velocity variations (at the few hundred m s-2 level or better) in late-type stars even with equatorial rotation speeds as high as 100 km s-1). This is particularly topical given the recent discovery that one of our prime imaging targets, the young southern K0 dwarf AB Doradus, has an astrometric companion in a highly eccentric orbit with an inferred mass close to the H-burning limit.

  19. Modeling the winds and magnetospheres of active OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, Richard H. D.

    2011-07-01

    After briefly reviewing the theory behind the radiative line-driven winds of OB stars, I examine the processes that can generate structure in them; these include both intrinsic instabilities, and surface perturbations such as pulsation and rotation. I then delve into wind channeling and confinement by magnetic fields as a mechanism for forming longer-lived circumstellar structures. With a narrative that largely follows the historical progression of the field, I introduce the key insights and results that link the first detection of a magnetosphere, over three decades ago, to the recent direct measurement of magnetic braking in a number of active OB stars.

  20. THE ENVIRONMENTAL DEPENDENCE OF THE FRACTION OF 'UNCONVENTIONAL' GALAXIES: RED LATE TYPES AND BLUE EARLY TYPES

    SciTech Connect

    Deng Xinfa; He Jizhou; Wu Ping; Ding Yingping

    2009-07-10

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 6, we construct two volume-limited samples with the luminosity -20.0 {<=} M{sub r} {<=} -18.5 and -22.40 {<=} M{sub r} {<=} -20.16, respectively, to explore the environmental dependence of the fraction of 'unconventional' galaxies: red late types and blue early types. We use the density estimator within the distance to the fifth nearest neighbor, and construct two samples at both extremes of density and perform comparative studies between them for each volume-limited sample. Results of two volume-limited samples show the same conclusions: the fraction of red late-type galaxies rises considerably with increasing local density, and that one of the blue early-type galaxies declines substantially with increasing local density. In addition, we note that bluer galaxies preferentially are late types, but the red galaxies are not dominated by early types.

  1. Photometric study of the active binary star V1430 Aquilae

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.

    2006-05-01

    New BVR light curves and a photometric analysis of the eclipsing binary star V1430 Aql are presented. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2004. The light curves are generally those of detached eclipsing binaries, but there are large asymmetries between maxima. New BVR light curves were analysed with an ILOT procedure. Light curve asymmetries of the system were explained in terms of large dark starspots on the primary component. The primary star shows a long-lived and quasi-poloidal spot distribution with active longitudes in opposite hemispheres. Absolute parameters of the system were derived. We also discuss the evolution of the system: the components are likely to be pre-main sequence stars, but a post-main sequence stage cannot be ruled out. More observations are needed to decide this point.

  2. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  3. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  4. Li abundance in the stars with solar-type activity

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    Li abundances, atmospheric parameters and rotational velocities for 150 dwarfs have been determined from the high resolution, high signal to noise echelle spectra, obtained with the ELODIE spectrograph at the OHP (France). Among them, there are 101 stars with a determined level of activity, a large part of them being of the BY Dra type. The level of chromospheric and coronal activity of the targets has been evaluated through the logR'_HK index and X-ray flux. We examined the Li abundance behavior with T_eff, vsini and level of the activity. Some correlations between the Li abundances, level of the chromospheric activity and rotational velocities vsini are confirmed. The correlation between the Li abundances and index of the chromospheric activity logR'_HK was found, especially for dwarfs with 5700>T_eff> 5200 K. Those correlations mainly demonstrate that measurable values of the lithium content (higher than the upper limit) refer to the stars with large spot areas in their photospheres. Considering the wider set of stars with high activity levels one can affirm that such a conclusion is valid also for the cooler, earlier K dwarfs. Our results confirm that basic factors of formation of detectable Li abundance and high activity are determined principally by smaller age and fast axial rotation, respectively; and apparently by the depth of the convective zone.

  5. Coronal Diagnostics of Intermediate Activity Star XI Boo A

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2005-01-01

    The analysis of Xi Boo A proved difficult to adapt to our line-by-line approach because of the strong wings of the RGS instrumental profile, as has been detailed in earlier reports. While progress was also delayed because of problems in using SAS v4, we succeeded in the past year or so to bring the analysis to conclusion. Abundances have been derived using both EPIC and RGS data, confirming earlier EUVE findings of a mild solar-like FIP effect, though with some evidence of a turn-up in abundances of elements with higher FIP. Plasma densities appear normal for a moderately active stellar corona. Xi Boo A nicely bridges the gap between the very active stars and stars like the Sun, and it indeed does appear that these are the stars in which the solar-like FIP effects begins to change to the "inverse FIP" type of effect seen in the very active stars. Probing this divide was the main goal of the proposal. These results are in the process of being prepared for publication, though we have not decided the target journal as yet.

  6. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  7. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits. PMID:26134708

  8. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  9. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  10. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  11. Star Formation in Isolated LIRGs: Clues to Star-forming Processes at Higher z

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, Isaura; Olguín, Lorenzo; Ambrocio-Cruz, Patricia; Verley, Simon; Rosado, Margarita; Verdes-Montenegro, Lourdes; Repetto, Paolo; Vázquez, Celia; Aguilera, Verónica

    2011-12-01

    Luminous infrared galaxies (LIRGs) are galaxies with LIR > 1011 L⊙. For a star-forming galaxy to emit at a LIRG level, it must have a very high star formation rate (SFR). In the local Universe, the star formation (SF) is primarily triggered by interactions. However, at intermediate redshift, a large fraction of LIRGs are disk galaxies with little sign of recent merger activity. The question arises whether the intermediate redshift LIRGs are ``triggered'' or experiencing ``normal'', if elevated, SF. Understanding these SF processes is important since this type of systems may have contributed to 20% or more of the cosmic SFR in the early Universe. In order to address this issue we study similar systems in the Local Universe, that is isolated late-type galaxies displaying LIRG activity. We use different observational techniques in order to trace the star-forming history of these systems. Here we present preliminary results.

  12. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  13. Dating the Stars Next Door: Ages and Coronal X-Ray Activities of Local K-Type Stars

    NASA Astrophysics Data System (ADS)

    Katynski, Marcus; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    Age is one of the most difficult (but important) basic stellar physical property to determine. One possible means to estimate stellar age is from rotational period; it is known that as cool stars age, they lose angular momentum from magnetic braking and slow-down. Thus, good Rotation-Age relationships exist, which are calibrated with stars possessing reliable ages from: evolutionary tracks and/or memberships in clusters/moving groups or binary star systems. Further, ages of older stars can be estimated from (low) metal abundances and kinematics (high space motions). More recently, age determinations from asteroseismology are also becoming more reliable. Except for the many G, K, M stars in the Kepler/K2 fields, rotational periods are difficult to measure photometrically for older, less active stars since star spots and active regions are smaller & less prominent. Thus measuring the coronal X-ray activity of a star is an appealing alternative. Coronal X-ray emission is generated by the stellar dynamo, and so is directly related to the stars' rotation (and age). Measurement of X-ray fluxes (or upper limits) have been made for most of the nearby stars (within ~20 pc) with data available in the HEASARC archives. During the 1990's the ROSAT X-Ray Satellite carried out an all-sky survey of thousands of X-ray sources, including hundreds of nearby stars, producing a large archival database. Using these and other available X-ray data from XMM-Newton & Chandra, we explore the relation between coronal X-ray activity and stellar age of all stars within 10 pc (32.6 LY), with special emphasis on dK and early dM stars that make up ~85% of the sample. Here we report the progress made in determination the ages these nearby stars. We focused on nearby dK-stars, due to their long lifetimes (>20 Gyr) and habitable zones that lie ~0.5 -1.5 AU from their host stars. They appear to be ideal candidates for hosting potentially habitable planets, making them interesting targets. We present

  14. ACTIVITY ON THE M STAR OF QS Vir

    SciTech Connect

    Ribeiro, T.; Baptista, R.; Kafka, S.; Tappert, C.

    2010-03-15

    We report analysis of VRIJH photometry and phase-resolved optical spectroscopy of the eclipsing DA white dwarf (WD) plus dMe dwarf binary QS Vir. Modeling of the photometric data yields an inclination of i = 74.9 {+-} 0.6 and a mass ratio of q = M {sub 2}/M {sub 1} = 0.50 {+-} 0.05. Our Doppler maps indicate the presence of material in the Roche lobe of the WD, at a location near the M star, likely due to accretion from the stellar wind of the M star (as opposed to Roche-lobe overflow accretion). We also constructed images of the brightness distribution of the M star at different epochs which reveal the location of two stable active regions. Doppler tomography shows that the majority of the hydrogen and Ca II H and K emission originates on the active M dwarf, likely distributed in two preferred activity longitudes, similar to active regions on BY Dra and FK Comae systems.

  15. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    ERIC Educational Resources Information Center

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  16. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  17. The optical flares of active star II Pegasi in 2005

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Kim, Kang Min; Lee, Byeong-Cheol

    2015-08-01

    We observed the active star II Peg using high-resolution spectrographs of 2.16m telescope at Xinglong station of NAOC and 1.8m telescope at BOAO of KASI from November to December, 2005. By means of spectral subtraction technique, the chromospheric activities of II Peg are analyzed at several activity indicators, including CaII IRT, Hα, NaI D1D2 and HeI D3 lines. The results demonstrate that the magnetic activity of II Peg is very strong, and its chromospheric activities show rotational modulations which imply there are active regions in its chromosphere. Two flare events were hunted during the observations, which were identified by HeI D3 line emission above the continuum. The first flare was happened in November 2005, the second one in December 2005, and they were located in different hemisphere of the star. This may indicate the evolution of active regions. Considering the photospheric spot activities, the possible origin of the detected flares is discussed.

  18. PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Brewer, John M.; Gaidos, Eric; Lepine, Sebastien

    2013-02-01

    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful

  19. Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.

    2016-02-01

    Context. Mg is the α element of choice for Galactic population and chemical evolution studies because it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from local thermodynamic equilibrium (LTE) need to be accounted for. Aims: Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used, for example, to correct LTE spectra and abundances. Methods: Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. Results: We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom presented in Paper I. Here we present and describe our results and show some examples of applications of the data. The errors that result from uncertainties in the collisional data are investigated and tabulated. The results for equivalent widths and departure coefficients are made freely available. Conclusions: Giants tend to have negative abundance corrections while dwarfs have positive, though small, corrections. Error analysis results show that uncertainties related to the atomic collision data are typically on the order of 0.01 dex or less, although for few stellar models in specific lines uncertainties can be as large as 0.03 dex. As these errors are less than or on the same order as typical corrections, we expect that we can use these results to extract Mg abundances from high-quality spectra more reliably than from classical LTE analysis. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130

  20. FORMATION OF LATE-TYPE SPIRAL GALAXIES: GAS RETURN FROM STELLAR POPULATIONS REGULATES DISK DESTRUCTION AND BULGE GROWTH

    SciTech Connect

    Martig, Marie; Bournaud, Frederic

    2010-05-10

    Spiral galaxies have most of their stellar mass in a large rotating disk, and only a modest fraction in a central spheroidal bulge. This challenges present models of galaxy formation: galaxies form at the center of dark matter halos through a combination of hierarchical merging and gas accretion along cold streams. Cosmological simulations thus predict that galaxies rapidly grow their bulge through mergers and instabilities and end up with most of their mass in the bulge and an angular momentum much below the observed level, except in dwarf galaxies. We propose that the continuous return of gas by stellar populations over cosmic times could help to solve this issue. A population of stars formed at a given instant typically returns half of its initial mass in the form of gas over 10 billion years, and the process is not dominated by supernovae explosions but by the long-term mass-loss from low- and intermediate-mass stars. Using simulations of galaxy formation, we show that this gas recycling can strongly affect the structural evolution of massive galaxies, potentially solving the bulge fraction issue, as the bulge-to-disk ratio of a massive galaxy can be divided by a factor of 3. The continuous recycling of baryons through star formation and stellar mass loss helps the growth of disks and their survival to interactions and mergers. Instead of forming only early-type, spheroid-dominated galaxies (S0 and ellipticals), the standard cosmological model can successfully account for massive late-type, disk-dominated spiral galaxies (Sb-Sc).

  1. Surface magnetism of cool giant and supergiant stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2014-08-01

    The existence of starspots on late-type giant stars in close binary systems, that exhibit rapid rotation due to tidal locking, has been known for more than five decades. Photometric monitoring spanning decades has allowed studying the long-term magnetic activity in these stars revealing complicated activity cycles. The development of observing and analysis techniques that has occurred during the past two decades has also enabled us to study the detailed starspot and magnetic field configurations on these active giants. In the recent years magnetic fields have also been detected on slowly rotating giants and supergiant stars. In this paper I review what is known of the surface magnetism in the cool giant and supergiant stars.

  2. Cool star X-ray variability

    NASA Astrophysics Data System (ADS)

    Stelzer, B.

    2016-06-01

    Variability is a key characteristic of late-type stars. In analogy to the Sun, late-type stars display a range of magnetic activity phenomena. These comprise strong radiation in the X-ray band emerging from the stellar corona as a result of magnetic heating. The time-scales of the observed X-ray variability associated with magnetic activity range from hours (for flares) to years (for dynamo cycles). Next to these activity-related variability features, in Young Stellar Objects (YSO) the mass accretion from a circumstellar disk and protostellar outflows can induce X-ray emission. The YSO circumstellar environment can give rise to variability either due to intrinsic changes in mass transfer or due to geometric effects as accretion streams or structures in the disk rotate in and out of the line-of-sight. Magnetic interaction between star and disk may play a role as well. I summarize recent developments in this research area and point out some directions for the possible contributions of XMM-Newton in the future.

  3. New X-ray detections of Herbig stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Robrade, J.; Schmitt, J. H. M. M.; Bouvier, J.

    2009-01-01

    Context: The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear whether these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mechanisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed. Aims: The companion hypothesis can be tested by resolving Herbig stars in X-rays from their known visual secondaries. Furthermore, their global X-ray properties (such as detection rate, luminosity, temperature, variability) may give clues to the emission mechanism by comparison to other types of stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but more evolved main-sequence A- and B-type stars, and with respect to model predictions. Methods: In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars where known close visual companions are spatially separated from the primaries. Results: Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three other A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%; i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars. Conclusions: Radiative winds are ruled out as an exclusive emission mechanism on the basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave it open whether the hard X-ray emission

  4. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil; Coppi, Paolo; Cardamone, Carolin N.; Bamford, Steven P.; Treister, Ezequiel; Lintott, Chris J.; Kaviraj, Sugata; Sarzi, Marc; Keel, William C.; Masters, Karen L.; Nichol, Robert C.; Thomas, Daniel; Ross, Nicholas P.; Andreescu, Dan; Murray, Phil; Raddick, M. Jordan; Szalay, Alex S.; Slosar, Anze

    2010-03-01

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram and their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.

  5. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  6. VizieR Online Data Catalog: Late-type giants BVRIJHKL and Teff calibration (Kucinskas+, 2005)

    NASA Astrophysics Data System (ADS)

    Kucinskas, A.; Hauschildt, P. H.; Ludwig, H.-G.; Brott, I.; Vansevicius, V.; Lindegren, L.; Tanabe, T.; Allard, F.

    2005-06-01

    Table 2 contains synthetic broad-band photometric colors of late-type giants in the Johnson-Cousins-Glass photometric system. Colors are based on the synthetic spectra calculated with the PHOENIX stellar model atmosphere code. Photometric filter definitions used are those from Bessell (1990PASP..102.1181B) for the Johnson-Cousins BVRI bands, and from Bessell & Brett (1988PASP..100.1134B) for the Johnson-Glass JHKL bands. (1 data file).

  7. The evolution of star formation activity in galaxy groups

    NASA Astrophysics Data System (ADS)

    Erfanianfar, G.; Popesso, P.; Finoguenov, A.; Wuyts, S.; Wilman, D.; Biviano, A.; Ziparo, F.; Salvato, M.; Nandra, K.; Lutz, D.; Elbaz, D.; Dickinson, M.; Tanaka, M.; Mirkazemi, M.; Balogh, M. L.; Altieri, M. B.; Aussel, H.; Bauer, F.; Berta, S.; Bielby, R. M.; Brandt, N.; Cappelluti, N.; Cimatti, A.; Cooper, M.; Fadda, D.; Ilbert, O.; Le Floch, E.; Magnelli, B.; Mulchaey, J. S.; Nordon, R.; Newman, J. A.; Poglitsch, A.; Pozzi, F.

    2014-12-01

    We study the evolution of the total star formation (SF) activity, total stellar mass (ΣM*) and halo occupation distribution (HOD) in massive haloes by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of star formation rate (SFR) for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from spectral energy distribution (SED) fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high-redshift groups (0.5 < z < 1.1) is higher with respect to the low-redshift (0.15 < z < 0.5) sample at any mass by 0.8 ± 0.12 dex. A milder difference (0.35 ± 0.1 dex) is observed between the low-redshift bin and the groups at z ˜ 0. We show that the level of SF activity is declining more rapidly in the more massive haloes than in the more common lower mass haloes. We do not observe any evolution in the HOD and total stellar mass-halo mass relations in groups. The picture emerging from our findings suggests that the galaxy population in the most massive systems is evolving faster than galaxies in lower mass haloes, consistently with a `halo downsizing' scenario.

  8. Chromospherically active stars. X - Spectroscopy and photometry of HD 212280

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.

    1993-01-01

    The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.

  9. Activity and Brightness Variations of Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2015-08-01

    Long-term observations of variations in Sun-like stars now span a half century. The Mount Wilson Observatory (MWO) HK Project operated from 1966 to 2003, and the Lowell Observatory Solar-Stellar Spectrograph (SSS) project has operated since 1994; together these programs provide a record of chromospheric activity over multiple stellar cycles for more than 100 stars of V < ~7.5. Long-term photometric monitoring of Sun-like stars, including many of the MWO and SSS targets, began in the early 1980s and continues today at the Fairborn Observatory south of Tucson. I will review progress to date in combining and interpreting the spectrosopic and photometric data sets, including some new results from the most recent years of SSS and Fairborn data. I will also review where deficiencies remain in reconciling and combining the major data sets, and will discuss efforts presently underway to remedy this and provide a long-term record for the benefit of the community.

  10. Theoretical studies of the RS Canum Venaticorum stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1982-01-01

    The activity in RS Canum Venaticorum (CVn) is investigated. Models for chromospheric structure are developed and the role of magnetic fields both in the photosphere as well as in the chromosphere and upper atmosphere are examined. T Tau stars are also studied from the same points of view. The properties of magnetic field loops are used to help understand the atmospheric structure in RS CVn stars. The concepts developed in the case of these stars appear to be applicable over a much broader region of the HR diagram. The absence of stable magnetic loops in the atmospheres of late type giant stars suggests that the atmospheres of RS CVn active components are qualitatively distinct from the solar atmosphere.

  11. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  12. Stars of the Big Dipper: A 3-D Vector Activity

    NASA Astrophysics Data System (ADS)

    Kuo, Vince H.; Beichner, Robert J.

    2006-03-01

    Most teachers of introductory physics will agree that many students have difficulty with vectors, so much so that we frequently spend a week at the beginning of the semester presenting material that students should know from previous mathematics courses. This review is often quite abstract, with little or no connection to familiar contexts, and seldom includes any motivation for students to "see it again." In this paper we present a vector activity that attempts to address both these issues using the stars of the Big Dipper, in the constellation Ursa Major, as a memorable context.

  13. In Pursuit of the FIP Effect in Late-Type Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    1999-01-01

    Spectral line data for several coronally active stars, in addition to EUVE Deep Survey light curves, have been analysed under this program. Much difficulty has been encountered in the study that has resulted in fewer stars being analysed than had been hoped. The difficulties stemmed from the analysis of low X-ray spectra taken with the ASCA satellite that produced results that are strongly discrepant with respect to the EUVE results. There is no obvious explanation for this, though it appears that analysis of ASCA data systematically underestimate metal abundance in hot plasmas. Consequently, the final emphasis in our analyses has been on EUVE data. Observed line profiles have being fitted in order to measure their fluxes using IDL software specially developed under this and parallel efforts.The observed line profiles deviate from pure gaussian forms, but we have found the benefits of using additional functional forms in the fitting process to be of only very small value for the lines with highest S/N. The resulting line fluxes have being processed in terms of the coronal EM using new techniques. Resulting EM distribution models are being used to finalize metallicity and abundance estimates for the stars in the program. Special account of the influence of missing lines in the spectral models has been taken.

  14. Radio emission from chemically peculiar stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Drake, Stephen A.; Bastian, T. S.

    1992-01-01

    In five VLA observing runs the initial survey of radio emission from magnetic Bp-Ap stars by Drake et al. is extended to include a total of 16 sources detected at 6 cm out of 61 observed, giving a detection rate of 26 percent. Of these stars, three are also detected at 2 cm, four at 3.6 cm, and five at 20 cm. The 11 new stars detected as radio sources have spectral types B5-A0 and are He-weak and Si-strong. No classical (SrCrEu-type) Ap stars have yet been detected. The 16 detected sources show a wide range of radio luminosities with the early-B He-S stars on average 20 times more radio luminous than the late-B He-W stars and 1000 times more luminous than Theta Aurigae. Multifrequency observations indicate flat spectra in all cases. Four stars have a detectable degree of circular polarization at one or more frequencies. It is argued that the radio-emitting CP (chemically peculiar) stars form a distinct class of radio stars that differs from both the hot star wind sources and the active late-type stars. The observed properties of radio emission from these stars may be understood in terms of optically thick gyrosynchrotron emission from a nonthermal distribution of electrons produced in a current sheet far from the star. In this model the electrons travel along magnetic fields to smaller radii and higher magnetic latitudes where they mirror and radiate microwave radiation.

  15. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  16. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    NASA Astrophysics Data System (ADS)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  17. High Resolution Spectroscopy of Two FK Comae Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    The FK Comae stars are a class of extremely rapidly rotating G-K giants that exhibit among the brightest UV and X-ray emission seen in late type stars. Previous IUE and optical observations have indicated that the activity (the extreme surface fluxes) in FK Comae may be qualitatively different from that in "normal" late type stars, and that the other four members of the class are far less bizarre than FK Comae itself. A definitive method for determining the structure of the outer atmospheres of these stars, and deciding whether the heating mechanism is normal chromospheric heating or accretion heating is by analysis of high resolution SWP spectra. We propose, in collaboration with S. Rucinski, to obtain 16-20 hour collaborative NASA-ESA SWP-HI spectra of FK Comae, which exhibits Hot and MgII line widths of ˜500 kms^-1, and HD 36705, which appears to be a far less bizarre member of this class. These observations would be the first high dispersion SWP spectra ever obtained of FK Comae stars.

  18. Spots and active longitudes on the star V815 Her

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2009-10-01

    An analysis of photometric observations for the starHD166181 (V815Her) is presented. B and V light curves were used to reconstruct temperature inhomogeneities on the stellar surface. The spots on the surface of V815 Her are concentrated at two preferred longitudes separated by 0.5 in phase (180° in longitude). The positions of more and less active regions quasi-periodically “flip-flop,” on time scales of about 600, 950, and 1250 days. The times of active-longitude switches coincide with the maxima and minima of the light curve and the amplitude of the brightness variations, as well as with the minima and maxima of the star’s spottedness.

  19. Spectroscopic and Photometric Properties of Late-type BIS Catalogue Sources

    NASA Astrophysics Data System (ADS)

    Rossi, C.; Mickaelian, A. M.; Gigoyan, K. S.; Gaudenzi, S.; Nesci, R.

    2016-06-01

    We performed slit spectroscopy to establish a firm spectral classification, and optical photometry for variability check in a subsample of 88/276 stars of the Byurakan Infrared Star (BIS) catalog. We collected also literature data from optical monitoring projects (ROTSE, CSS) and infrared satellites (IRAS, AKARI, WISE). We explored several color-color diagrams as tools for disentangling Carbon stars from Oxigen-rich AGB stars and to check for correlations with the variability type. The spectra showed that 4 out of 84 stars are N carbon stars in the Asymptotic Giant Branch (AGB), the others being M-type stars. No Main Sequence stars were found. Thirty stars are not variable, 46 are irregular or semi-regular variables, only 5 are Mira variable stars. The color-color plots involving the WISE colors are the best to characterize the variability behavior and to distinguish the carbon stars from the other stars of the sample. The bluer stars were found to be generally not variable, but with some exceptions, and Mira stars occupy a limited region in the w1-w2 vs w2-w3 plane.

  20. Chemical Fingerprints of Star Forming Regions and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, Juan-Pablo

    2010-10-01

    This thesis is devoted to the study of the physical conditions of the interstellar medium (ISM) in active galactic nuclei (AGNs) and Galactic star-forming regions, using mostly single-dish millimeter observations. I first study the excitation conditions of dense gas in a group of Seyfert galaxies using radiative transfer models (Chapter 2). I then study the galaxy NGC 1068, and try to distinguish signatures of the contributions from the AGN and the starburst ring by incorporating observations of high-J transitions of dense gas tracers (Chapter 3). Later, I venture into the mid-infrared spectral region to study different aspects of the AGN and starburst components in the galaxy NGC 4945 (Chapter 4). In Chapter 5 I delve into theoretical aspects of the dynamical evolution of gas in an AGN torus. I use a 3D hydrodynamic simulation with chemical abundances driven by X-rays. The aim is to understand the effects of X-ray irradiation by the AGN on the temperature, formation and destruction of the molecular gas. I finally explore a Galactic star-forming region, the Omega Nebula, with high resolution single dish observations, to study the properties of the warm gas and to constrain chemical models (Chapters 6 and 7).

  1. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  2. Active Pixel Sensor Characterization for the STAR Detector

    NASA Astrophysics Data System (ADS)

    King, Jake

    2004-10-01

    The STAR collaboration is studying matter at high temperatures and densities. If a significant improvement to the measurement of particle trajectories can be made, charmed mesons that decay away from the primary collision point could be identified. To achieve this goal, STAR is building a vertex detector consisting of a new technology Â- active pixel sensors. (APS) An APS is an implementation of standard CMOS technology in which each pixel has a photodiode directly above the epitaxial layer. Incident particles produce electron-hole pairs in the epitaxial layer, and these electrons accumulate on the photodiode. Charge from the photodiode is digitized to identify the position of the incident particle. It is important to characterize the signal to noise, readout time, and resolution on several different pixel sizes so that the vertex detector can be optimized for cost and speed. Larger pixels result in a faster data acquisition, while smaller pixels have better resolution. We will present studies of 5, 10, 20 and 30μm square pixel geometries that measure charge distribution and collection. We will also display the results of using a field emission scanning electron microscope with energies from 1 to 30 keV. This tool has the potential to probe regions of the APS integrated circuit and contribute to understanding its properties.

  3. The distribution of early- and late-type galaxies in the Coma cluster

    NASA Technical Reports Server (NTRS)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  4. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  5. Active beam shaping in multiple laser guide stars

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    Adaptive beam shaping is a critical part of multiple Laser Guide Stars (LGS) for Multiple Conjugate Adaptive Optics (MCAO) for ground-based astronomical telescopes. There are two kinds of Laser Guide Stars: Na Laser Guide Stars (at 589 nm and 92 km altitude) and Rayleigh Laser Guide Stars (at 532 nm and 20 km altitude). Multiple Conjugate Adaptive Optics (MCAO) corrects for each "layer" of atmosphere independently. Multiple Laser Guide Stars are being developed to achieve a measure of tilt and increase the isoplanatic patch. Multiple Laser Guide Stars are being combined with Multiple Conjugate Optics in the Large Binocular Telescope (LBT): more than one Laser Guide Star (4-5) and two different wavelengths: 589 nm and 532 nm. Other observatories have multiple Laser Guide Stars but only one wavelength: 589 nm or 532 nm. Because Laser Guide Stars are launched into the atmosphere, adaptive beam shaping will be carried out before the laser is launched and will be different depending on which laser is being used, presumably to effect the tightest beam which can be achieved at the power level which is required to provide the requisite return to gound-based wavefront sensors. A complete range of devices are used. Beam attenuation and divergnece will take place. Multiple Laser Guide Stars of major observatories (SOR, LBT, MMT, ESO VLT and Gemini South) will be evaluated for effective adaptive beam shaping and impact on performance

  6. The evolution of galaxy star formation activity in massive haloes

    NASA Astrophysics Data System (ADS)

    Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Xu, C. K.

    2015-02-01

    Context. There is now a large consensus that the current epoch of the cosmic star formation history (CSFH) is dominated by low mass galaxies while the most active phase, between redshifts 1 and 2, is dominated by more massive galaxies, which evolve more quickly. Aims: Massive galaxies tend to inhabit very massive haloes, such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive haloes, and their galaxy populations, evolve more rapidly than the haloes with lower mass. Methods: We studied the contribution to the CSFH of galaxies inhabiting group-sized haloes. This is done through the study of the evolution of the infra-red (IR) luminosity function of group galaxies from redshift 0 to redshift ~1.6. We used a sample of 39 X-ray-selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel satellite. Results: Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute ≤10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift ≳1, the most IR-luminous galaxies (LIRGs and ULIRGs) are mainly located in groups, and this is consistent with a reversal of the star formation rate (SFR) vs. density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z ~ 1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Conclusions: Our results are consistent with a "halo downsizing" scenario and highlight the

  7. Magnetic field structure in single late-type giants: the effectively single giant V390 Aurigae

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, R.; Aurière, M.; Petit, P.; Charbonnel, C.; Tsvetkova, S.; Lèbre, A.; Bogdanovski, R.

    2012-05-01

    Aims: We have studied the active giant V390 Aur using spectropolarimetry to obtain direct and simultaneous measurements of the magnetic field and the activity indicators to obtain a precise insight of its activity. Methods: We used the spectropolarimeter NARVAL at the Bernard Lyot Telescope (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and Stokes V profiles. Using the least-squares deconvolution (LSD) technique we were able to detect the Zeeman signature of the magnetic field in each of our 13 observations and to measure its longitudinal component. Using the wide wavelength range of the spectra we were able to monitor the CaII K&H and IR triplet, as well as the Hα lines, which are activity indicators. To reconstruct the magnetic field geometry of V390 Aur on the basis of modelling the Stokes V profiles, we applied the Zeeman Doppler imaging (ZDI) inversion method and present a map for the magnetic field. Based on the obtained spectra, we also refined the fundamental parameters of the star and the Li abundance using MARCS model atmospheres. Results: The ZDI revealed a structure in the radial magnetic field consisting of a polar magnetic spot of positive polarity and several negative spots at lower latitude. A high latitude belt is present on the azimuthal field map, indicative of a toroidal field close to the surface. Similar features are observed in some RS CVn and FK Com -type stars. It was found that the photometric period cannot fit the behaviour of the activity indicators formed in the chromosphere. Their behaviour suggests slower rotation compared to the photosphere, but our dataset is too short for us to be able to estimate their exact periods. All these results can be explained in terms of an α - ω dynamo operation, taking into account the stellar structure and rotation properties of V390 Aur that we studied with up-to-date stellar models computed at solar metallicity with the code STAREVOL. The calculated Rossby number also points

  8. A CATALOG OF ROTATION AND ACTIVITY IN EARLY-M STARS

    SciTech Connect

    Reiners, Ansgar; Joshi, Nandan; Goldman, Bertrand

    2012-04-15

    We present a catalog of rotation and chromospheric activity in a sample of 334 M dwarfs of spectral types M0-M4.5 populating the parameter space around the boundary to full convection. We obtain high-resolution optical spectra for 206 targets and determine projected rotational velocity, vsin i, and H{alpha} emission. The data are combined with measurements of vsin i in field stars of the same spectral type from the literature. Our sample adds 157 new rotation measurements to the existing literature and almost doubles the sample of available vsin i. The final sample provides a statistically meaningful picture of rotation and activity at the transition to full convection in the solar neighborhood. We confirm a steep rise in the fraction of active stars at the transition to full convection known from earlier work. In addition, we see a clear rise in rotational velocity in the same stars. In very few stars, no chromospheric activity but a detection of rotational broadening is reported. We argue that all of them are probably spurious detections; we conclude that in our sample all significantly rotating stars are active, and all active stars are significantly rotating. The rotation-activity relation is valid in partially and in fully convective stars. Thus, we do not observe any evidence for a transition from a rotationally dominated dynamo in partially convective stars to a rotation-independent turbulent dynamo in fully convective stars; turbulent dynamos in fully convective stars of spectral types around M4 are still driven by rotation. Finally, we compare projected rotational velocities of 33 stars to rotational periods derived from photometry in the literature and determine inclinations for a few of them.

  9. Investigation of x ray variability in highly active cool stars

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1989-01-01

    Ginga x ray observations of highly active cool star coronae were obtained and analyzed in an effort to better understand the nature of their time variability. The possible types of variability studied included x ray occultations via eclipses in a binary system, rotational modulation of x ray emission, flares, and a search for microflaring. Observation of both sigma(sup 2) CrB and Algol were performed successfully by Ginga. The sigma(sup 2) CrB observations occurred on 27 to 30 June 1988, and the Algol observations on 12 to 14 January 1989. In the sigma(sup 2) CrB observation, simultaneous IUE and Very Large Array (VLA) observations were obtained during part of the Ginga observation. Flaring activity was detected on sigma(sup 2) CrB in the Ginga 1.7 to 11 KeV band and in the IUE microwave region. A large flare on Algol which lasted well over 12 hours was detected, began with a maximum temperature of 65 MK which gradually decayed to 36 MK, and evidence was shown of highly ionized Fe line emission.

  10. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  11. Meridional flow velocities on solar-like stars with known activity cycles

    NASA Astrophysics Data System (ADS)

    Baklanova, Dilyara; Plachinda, Sergei

    2015-02-01

    The direct measurements of the meridional flow velocities on stars are impossible today. To evaluate the meridional flow velocities on solar-like stars with stable activity periods, we supposed that during the stellar Hale cycle the matter on surfaces of stars passes the meridional way equivalent to 2 πR★ . We present here the dependence of the mean meridional flow velocity on Rossby number, which is an effective parameter of the stellar magnetic dynamo.

  12. Rotational Velocities and Chromospheric/Coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602

    NASA Astrophysics Data System (ADS)

    Stauffer, John R.; Hartmann, Lee W.; Prosser, Charles F.; Randich, Sofia; Balachandran, Suchitra; Patten, Brian M.; Simon, Theodore; Giampapa, Mark

    1997-04-01

    coronal activity as is found in several other young open clusters. That is, there is a large spread in coronal activity for stars with v sin i < 25 km s-1, where we assume there is an intrinsic link between increasing rotation and increasing activity superimposed upon which are a variety of observational and physical mechanisms that act to smear out this relation; above v sin i ~ 25 km s-1, all of the low-mass stars have log (LX/Lbol) ~ -3.0, the canonical ``saturation'' limit. Our measurements of the Hα equivalent widths are consistent with a similar relationship holding for chromospheric activity. One and possibly two of our spectra for M dwarf members of the IC clusters show broad wings for the Hα profile, which we attribute to a flare event or to microflares. Since spectra of a small sample of late-type M dwarfs in the Pleiades also showed similarly broad Hα wings, this suggests that flare frequencies for very young M dwarfs may be quite high.

  13. Daybreak Star Preschool Activities Book: A Teacher's "How-to" Book.

    ERIC Educational Resources Information Center

    Patacsil, Sharon; And Others

    The culturally-based educational materials contained in the Daybreak Star Preschool Activities Book are used with the Native American children in the United Indians of All Tribes Foundation's Daybreak Star Preschool. These educational materials reflect the cultures of the children in the Preschool. The Preschool's primary focus is to create a…

  14. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  15. The ESO Nearby Abell Cluster Survey. VI. Spatial distribution and kinematics of early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    de Theije, P. A. M.; Katgert, P.

    1999-01-01

    Analysis of the data obtained in the ESO Nearby Abell Cluster Survey (ENACS) has shown that the space distribution and kinematics of galaxies with detectable emission lines in their spectra differ significantly from those of galaxies without emission lines. This result, and details of the kinematics, were considered as support for the idea that at least the spirals with emission lines are on orbits that are not isotropic. This might indicate that this subset of late-type galaxies either has `first approach'-orbits towards the dense core of their respective clusters, or has orbits that `avoid' the core. The galaxies with emission lines are essentially all late-type galaxies. On the other hand, the emission-line galaxies represent only about a third of the late-type galaxies, the majority of which do not show detectable emission lines. The galaxies without emission lines are therefore a mix of early- and late-type galaxies. In this paper we attempt to separate early- and late-type galaxies, and we study possible differences in distribution and kinematics of the two galaxy classes. For only about 10% of the galaxies in the ENACS, the morphology is known from imaging. Here, we describe our classification on the basis of the ENACS spectrum. The significant information in each spectrum is compressed into 15 Principal Components, which are used as input for an Artificial Neural Network. The latter is `trained' with 150 of the 270 galaxies for which a morphological type is available from Dressler, and subsequently used to classify each galaxy. This yields a classification for two-thirds of the ENACS galaxies. The Artificial Neural Network has two output classes: early-type (E+S0) and late-type (S+I) galaxies. We do not distinguish E and S0 galaxies, because these cannot be separated very robustly on the basis of the spectrum. The success rate of the classification is estimated from the sample of 120 galaxies with Dressler morphologies which were not used to train the ANN

  16. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    NASA Technical Reports Server (NTRS)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  17. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    2007-01-01

    Context: Several late-type stars present activity cycles resembling the Solar one. This fact has been observed mostly in stars ranging from F to K, i.e., in stars with a radiative core and an outer convective layer. Aims: This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. Methods: We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed over 7 years. We discarded the spectra that present flare activity, and analyze the remaining activity levels using four different statistical techniques to look for a period of activity. Results: We find strong evidence of a cyclic activity, with a period of ~442 days. We also estimate that the Ca ~II S index varies around 130% due to activity variations outside of flares.

  18. Late-Type Red Supergiants: Too Cool for the Magellanic Clouds?

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand

    2007-09-01

    We have identified seven red supergiants (RSGs) in the Large Magellanic Cloud (LMC) and four RSGs in the Small Magellanic Cloud (SMC), all of which have spectral types that are considerably later than the average type observed in their parent galaxy. Using moderate-resolution optical spectrophotometry and the MARCS stellar atmosphere models, we determine their physical properties and place them on the H-R diagram for comparison with the predictions of current stellar evolutionary tracks. The radial velocities of these stars suggest that they are likely all members of the Clouds, rather than foreground dwarfs or halo giants. Their locations in the H-R diagram also show us that these stars are cooler than the current evolutionary tracks allow, appearing to the right of the Hayashi limit, a region in which stars are no longer in hydrostatic equilibrium. These stars exhibit considerable variability in their V magnitudes, and three of these stars also show changes in their effective temperatures (and spectral types), with respective variations of over a magnitude and 3%-4% on the timescales of months. One of these stars, [M2002] SMC 055188, was caught in an M4.5 I state, as late as that seen in HV 11423 at its recent extreme: considerably later, and cooler, than any other supergiant in the SMC. In addition, we find evidence of variable extinction due to circumstellar dust and changes in the stars' luminosities, also consistent with our recent findings for HV 11423-when these stars are hotter, they are also dustier and more luminous. We suggest that these stars have unusual properties because they are in an unstable (and short lived) evolutionary phase.

  19. High-contrast Adaptive Optics and a Search for Late-type Companions to Hyades FGK Dwarfs

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    2011-01-01

    The Hyades is an intermediate-age open cluster with hundreds of main-sequence stars and is thus well-suited to stellar formation and evolution studies. Being nearby with high proper motion, it is a choice cluster for direct-imaging surveys. We conduct a high-contrast adaptive optics (AO) search for late-type companions as faint as MH 15 (late-L/early-T) within 5-230 AU around 88 FGK main-sequence Hyades dwarfs. Departures from the ideal point-spread function (PSF) in the image plane are caused by phase and amplitude errors that redistribute stellar light and limit the achievable contrast. An AO system on a ground-based telescope mitigates the phase errors in the pupil, but constructive interference of spatially coherent light causes amplitude spikes in the PSF called speckles. The locally-optimized combination of images (LOCI) algorithm is used to identify and subtract the quasistatic speckles and static PSF structure, allowing imaging of faint point-source companions. We use LOCI on deep near-infrared AO Hyad imaging at Keck and Lick Observatories. Background objects are subsequently ruled out by comparing relative astrometry in two epochs separated by five years. We present our confirmed Hyades companions. Furthermore, we look ahead to AO for exoplanet-imaging wherein a ''dark hole'' in the PSF facilitates high-contrast imaging. The size of the dark hole is set by the highest spatial frequency controllable by the deformable mirror (DM). Decreasing rejection at increasing spatial frequencies reduces the correction efficiency within the high-contrast region, owing to the nature of the MEMS (micro-electro-mechanical systems) DM transfer function. This effect can be mitigated by a dual-DM ''woofer/tweeter'' AO system whereby each DM controls a different spatial frequency regime. We present empirical results on selecting a woofer DM in order to maintain the dark hole for the upcoming Gemini Planet Imager. (Supported by NASA Michelson Fellowship, NSF Center for

  20. Star Formation Activity in a z>4 Protocluster

    NASA Astrophysics Data System (ADS)

    Menéndez-Delmestre, Karín; Capak, Peter; Sheth, Kartik

    2015-08-01

    Local studies show that galaxy properties are linked to the galaxy number density within their local environment. Galaxy clusters represent the most extreme density environments and are ideal laboratories to investigate the interplay between galaxy evolution and the environment. However, to understand the origin of the galaxy-environment relation, one needs to look back at the epoch of galaxy formation (z > 1), where the local high-density environments of well-established, virialized clusters give way to looser large-scale structures (LSS) extending over regions of several megaparsecs in size (protoclusters). Clustering analysis indicate that at z~2 submm-selected galaxies (SMGs) reside in very massive halos, suggesting that these may trace high-density environments that likely evolve into rich clusters of galaxies. Conversely, recent work has suggests that SMGs are tracers of a broader range of environments, including structures with more modest masses caught in highly active periods. This suggests that since galaxies in these structures are likely caught during episodes of peak starbursts, SMGs may be tracers of a wider range of environments beyond the progenitors of today’s very rich clusters, opening a window for a more complete exploration of the details underpinning the process of galaxy evolution in concert with the assembly of LSS. We undertook a large observing program comprising deep narrow-band Ly-alpha imaging and multi-object spectroscopy using the IMACS camera on Magellan (Las Campanas) to probe for the presence of a galaxy overdensity in the vicinity of a 4-member group of SMGs at z>4. With ~100 spectroscopically-confirmed Ly-alpha emitters, we are in a position to gauge the level of galaxy overdensity in this region. Furthermore, we have initiated a detailed follow-up study of these Ly-alpha emitters to obtain star-formation rates based on the IRAC and MIPS Spitzer archives, in an effort to probe for trends in the intra-LSS distribution.

  1. VizieR Online Data Catalog: Palomar/MSU nearby star spectroscopic survey (Hawley+ 1997)

    NASA Astrophysics Data System (ADS)

    Reid, I. N.; Hawley, S. L.; Gizis, J. E.

    1997-05-01

    The Third Catalogue of Nearby Stars (Gliese & Jahreiss, "Preliminary Version of the third Catalogue of Nearby Stars" (CNS3), 1991, catalog ) includes over 1850 stars which lie north of Dec.= -30° and are either identified as spectral type M, or are unclassified but with an absolute visual magnitude estimate MV > +8.0. Although there is no uniformity in selection criteria, and many of the stars lack basic data (radial velocities, spectral types, accurate photometry), the observational properties of these stars underlie most estimates of the fundamental characteristics of the Galactic Disk. We have obtained optical spectroscopy of 1746 of the 1876 stars -- the remaining 130 are binary companions of brighter stars and inaccessible to our observations. These spectra allow us, first, to exclude 61 stars as either degenerates or as misclassified earlier-type (B-K) stars lying beyond the 25 pc limit; to establish radial velocities accurate to ±10km/s for all stars confirmed as late-type dwarfs; to determine spectral types and absolute magnitudes from the TiO bandstrength, allowing more accurate distance estimates for stars with inaccurate (or no) trigonometric parallax measurements; and to identify stars with Hα emission (chromospherically active stars) and with strong CaH absorption (perhaps including some metal-poor disk subdwarfs). We have determined the nearby-star luminosity function from complete samples derived by applying both the distance limits defined by Wielen (1974, Highlights of Astron. 3, 395) and by using limits derived from our own analysis. Spectroscopic data for the southern stars (Dec.<-30°) in the PMSU survey are also presented. The data were combined with the data from paper I to obtain a list of all the magnetically active dMe stars in the survey. (11 data files).

  2. AY Ceti - A flaring, spotted star with a hot companion

    NASA Technical Reports Server (NTRS)

    Simon, T.; Fekel, F. C., Jr.; Gibson, D. M.

    1985-01-01

    AY Ceti is a late-type single-line spectroscopic binary, a bright X-ray source (L/x/ equal to about 1.5 x 10 to the 31st ergs/s), and a spotted star, as evidenced by its prominent photometric wave. In this paper, observations made with the IUE satellite and the VLA radio interferometer are reported. The 1200-2000 A UV spectrum of AY Cet shows a hot stellar continuum and a very broad Ly-alpha absorption line from a previously unobserved white dwarf secondary. The UV spectrum can be matched to the energy distribution of a (T/eff/ = 18,000 K, log g = 8) model atmosphere. Superposed on this hot continuum are high-excitation emission lines typical of chromospheres and transition regions of active late-type stars, e.g., the spotted RS CVn binaries. It is concluded that the bright lines and soft X-ray emission of AY Cet arise from the cool primary star, rather than from mass transfer and accretion onto the secondary as has recently been proposed for the similar system 56 Peg. Two strong radio flares on AY Cet were observed. The second was rapidly variable and left-hand circularly polarized at levels up to pi(c) = 86 + or - 5 percent at 20 cm wavelength. The most likely emission mechanism is an electron-cyclotron maser.

  3. The regulation and function of the striated muscle activator of rho signaling (STARS) protein

    PubMed Central

    Wallace, Marita A.; Lamon, Séverine; Russell, Aaron P.

    2012-01-01

    Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function. PMID:23248604

  4. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro. PMID:15155547

  5. Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol

    1995-01-01

    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.

  6. The quiescent chromospheres and transition regions of active dwarf stars - What are we learning from recent observations and models?

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1983-01-01

    Progress in understanding active dwarf stars based on recent IUE, Einstein, and ground-based observations is reviewed. The extent of magnetic field control over nonflare phenomena in active dwarf stars is considered, and the spatial homogeneity and time variability of active dwarf atmospheres is discussed. The possibility that solar like flux tubes can explain enhanced heating in active dwarf stars in examined, and the roles of systematic flows in active dwarf star atmospheres are considered. The relation between heating rates in different layers of active dwarf stars is summarized, and the mechanism of chromosphere and transition region heating in these stars are discussed. The results of one-component and two-component models of active dwarf stars are addressed.

  7. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour. PMID:24664922

  8. The dustier early-type galaxies deviate from late-type galaxies' scaling relations

    NASA Astrophysics Data System (ADS)

    Lianou, S.; Xilouris, E.; Madden, S. C.; Barmby, P.

    2016-09-01

    Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared Herschel and either H I or CO detection (or both). We derive their star formation rates (SFRs), stellar masses and dust masses via modelling their spectral energy distributions. We combine these with literature information on their atomic and molecular gas properties, in order to relate their star formation, total gas mass and dust mass on global scales. The ETGs deviate from the dust mass-SFR relation and the Schmidt-Kennicutt relation that SDSS star-forming galaxies define: compared to SDSS galaxies, ETGs have more dust at the same SFR, or less SFR at the same dust mass. When placing them in the M⋆-SFR plane, ETGs show a much lower specific SFR as compared to normal star-forming galaxies. ETGs show a large scatter compared to the Schmidt-Kennicutt relation found locally within our Galaxy, extending to lower SFRs and gas mass surface densities. Using an ETG's SFR and the Schmidt-Kennicutt law to predict its gas mass leads to an underestimate. ETGs have similar observed-gas-to-modelled-dust mass ratios to star-forming galaxies of the same stellar mass, as well as they exhibit a similar scatter.

  9. Photometric Variations in Spotted Pleiades Stars as Probes of Long-Term Activity Cycles

    NASA Astrophysics Data System (ADS)

    Bardenett, E.; Milingo, J. B.; Marschall, L. A.; Backman, D. E.

    2004-12-01

    Through the collaborative efforts of undergraduates and faculty at Franklin & Marshall and Gettysburg Colleges, we present new photometric data for 3 K-type stars in the Pleiades. Continuing 8+ years of observations, this data contributes to the long-term study of photometric variations in these stars. These young stars have rotational light curves with V-band amplitudes of a few percent (up to 10% in the most active stars) due to large photospheric active regions or "starspots". Quantifying the level of starspot activity from year to year allows us to look for long-term trends analogous to the solar sunspot cycle. These observations were acquired with the National Undergraduate Research Observatory's (NURO) 31" telescope, which is operated by Lowell Observatory and Northern Arizona University. This work is supported by Franklin & Marshall College, the Delaware Space Grant Consortium, and Arizona Space Grant (NASA Space Grant programs).

  10. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  11. Cool stars, stellar systems, and the sun; Proceedings of the 7th Cambridge Workshop, Tucson, AZ, Oct. 9-12, 1991

    NASA Technical Reports Server (NTRS)

    Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)

    1992-01-01

    Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.

  12. Rotation and activity among solar-type stars of the Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Mayor, Michel

    1993-01-01

    We examine rotation and chromospheric activity among G and K dwarfs recently shown to be members of the Ursa Major Group (UMaG). Rotation periods for UMaG stars are smaller than for stars of the same colors in the Hyades, and by an amount corresponding to the Skumanich relation. Most UMaG stars have about the same level of Ca II and K emission, implying that they also have nearly uniform intrinsic rotation rates. That means that the diversity of rotation rates and levels of activity seen among solar-type stars in the Alpha Persei and Pleiades clusters has largely converged by the age of UMaG (0.3 Gyr).

  13. No first ionization potential fractionation in the active stars AR Piscium and AY Ceti

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Affer, L.; Micela, G.

    2009-10-01

    Context: The comparison of coronal and photospheric abundances in cool stars is an essential question to resolve. In the Sun an enhancement of the elements with low first ionization potential (FIP) is observed in the corona with respect to the photosphere. Stars with high levels of activity seem to show a depletion of elements with low FIP when compared to solar standard values; however, the few cases of active stars in which photospheric values are available for comparison lead to confusing results, and an enlargement of the sample is mandatory for solving this longstanding problem. Aims: We calculate in this paper the photospheric and coronal abundances of two well known active binary systems, AR Psc and AY Cet, to get further insight into the complications of coronal abundances. Methods: Coronal abundances of 9 elements were calculated by means of the reconstruction of a detailed emission measure distribution, using a line-based method that considers the lines from different elements separately. Photospheric abundances of 8 elements were calculated using high-resolution optical spectra of the stars. Results: The results once again show a lack of any FIP-related effect in the coronal abundances of the stars. The presence of metal abundance depletion (MAD) or inverse FIP effects in some stars could stem from a mistaken comparison to solar photospheric values or from a deficient calculation of photospheric abundances in fast-rotating stars. Conclusions: The lack of FIP fractionation seems to confirm that Alfvén waves combined with pondermotive forces are dominant in the corona of active stars. Tables 2 and 3 are only available in electronic form at http://www.aanda.org

  14. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  15. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied

  16. Hydroxyl 1.563 Micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.; Saar, Steven H.; Mines, Jonathan K.

    2001-10-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563 μm. We detect excess OH absorption due to dark, cool starspots on several active stars of the RS CVn and BY Dra classes. Our results for the single-lined spectroscopic binaries II Pegasi, V1762 Cygni, and λ Andromedae augment those from a previous study that used a less sensitive detector. In this study, we were able for the first time to use molecular absorption features to measure starspot properties on double-lined spectroscopic binaries. Measuring the equivalent widths of these OH lines in inactive giant and dwarf stars of spectral types G, K, and M, we find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 to 3000 K. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and nonspot regions of the star.

  17. Star formation activity in spiral galaxy disks and the properties of radio halos: Observational evidence for a direct dependence

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Lisenfeld, Ute; Golla, Gotz

    1995-01-01

    In this article we address observationally the questions: how does star formation (SF) in the disks of galaxies lead to the creation of radio halos, and what minimum energy input into the interstellar medium (ISM) is needed to facilitate this? For the investigation we use a sample of five edge-on galaxies exhibiting radio continuum emmission in their halos and enhanced SF spread over large parts of their disks. In a detailed study of the two galaxies in our sample for which we have the best data, NGC 891 and NGC 4631, we show that the radio halos cut off abruptly at galactocentric radii smaller than those of the underlying thin radio disks. Our most important result is that the halo cutoffs are spatially coincident with the radii where the SF activity in the underlying disks drops sharply. The difference in radius of the emission distributions tracing ongoing SF in the disks (IRAS 50 micrometers, H alpha) versus that of the nonthermal radio continuum thin disks (tracing the distribution of cosmic-ray (CR) electrons) is typically a few kpc. This difference in extent is caused by CR diffusion. We have measured the CR diffusion coefficients in the thin disks of both NGC 891 and NGC 4631. For radial diffusion of CR electrons within the galactic disks the values are D(sub r) = 1.1-2.5 x 10 (exp 29) sq cm/s (NGC 4631) and D(sub r) = 1.2 x 10(exp 29) sq cm/s (NGC 891). For motions in the z-direction in areas within the thin disks where no outflows occur, we derive a firm upper limit of D(sub z) less than or equal to 0.2 x 10(exp 28) sq cm/s for NGC 891. The value for NGC 4631 is D(sub z = 1.4 x 10 (exp 28) sq cm/s. The other three galaxies in our sample, NGC 3044, NGC 4666, and NGC 5775 show (at the sensitivity of our data) less extended, more filamentary radio halos. Isolates spurs or filaments of nonthermal radio continuum emission in their halos are traced only above the most actively star-forming regions in the disks. This, in conjuction with the results obtained for

  18. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.

  19. Red Dwarf Stars: Ages, Rotation, Magnetic Dynamo Activity and the Habitability of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Engle, S. G.; Guinan, E. F.

    2011-12-01

    We report on our continued efforts to understand and delineate the magnetic dynamo-induced behavior/variability of red dwarf (K5 V - M6 V) stars over their long lifetimes. These properties include: rotation, light variations (from star spots), coronal-chromospheric XUV activity and flares. This study is being carried out as part of the NSF-sponsored Living with a Red Dwarf program. The Living with a Red Dwarf program's database of dM stars with photometrically determined rotation rates (from starspot modulations) continues to expand, as does the inventory of archival XUV observations. Recently, the photometric properties of several hundred dM stars from the Kepler database are being analyzed to determine the rotation rates, starspot areal coverage/distributions and stellar flare rates. When all data setsare combined with ages from cluster/population memberships and kinematics, the determination of Age-Rotation-Activity relationships is possible. Such relationships have broad impacts not only on the studies of magnetic dynamo theory and angular momentum loss of low-mass stars with deep convective zones, but also on the suitability of planets hosted by red dwarfs to support life. With intrinsically low luminosities (L< 0.02L⊙), the liquid water habitable zones (HZs) for hosted planets are very close to their host stars - typically at ˜0.1 AU < HZ < 0.4 AU. Planets located close to their host stars risk damage and atmospheric loss from coronal & chromospheric XUV radiation, flares and plasma blasts via strong winds and coronal mass ejections. In addition, our relationships permit the stellar ages to be determined through measures of either the stars' rotation periods (best way) or XUV activity levels. This also permits a determination of the ages of their hosted planets. We illustrate this with examples of age determinations of the exoplanet systems: GJ 581 and HD 85512 (both with large Earth-size planets within the host star's HZ), GJ 1214 (hot, close

  20. OH 1.563 micron Absorption from Starspots on Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Neff, James E.

    1997-03-01

    We present results from a study of starspots on active stars using a pair of vibrational-rotational absorption lines of the OH molecule near 1.563mu m. We detect excess OH absorption due to dark, cool starspots on the RS CVn binaries II Pegasi, V1762 Cygni, and lambda Andromedae. This is the first detection of OH absorption from spots on stars other than the Sun. We have measured absorption equivalent widths of these OH lines (which are blended at the resolution of our observations) in inactive giant and dwarf stars of spectral types G, K, and M. We find that the total equivalent width of the line pair increases approximately linearly as effective temperature decreases from 5000 K to 3000 K. This greatly extends the temperature range over which starspots can be detected through molecular absorption features. We measure starspot filling factors by fitting the spectra of active stars with linear combinations of comparison star spectra representing the spot and non-spot regions of the star. Fitting only one spectral feature, we cannot derive independent constraints on starspot area and temperature. Assuming spot temperatures based on previous analyses, we find (for one epoch) spot filling factors between 35% and 48% for II Peg, 22% and 26% for lambda And, and 27% and 32% for V1762 Cyg.

  1. Activity and cold spots on the surface of G-type superflare stars

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2015-07-01

    Based on the high precision photometric observations of the Kepler space telescope, we have investigated the properties of the active regions (cold spots) on the surface of 279 stars of the spectral class G, for which 1547 superflares with energies in the range of 1033-1036 erg have been revealed. The main conclusion of our study is the quantitative estimation of the increased surface spottedness of superflare stars, which indicates enhancedmagnetic activity of these objects. The increased spottedness on the surfaces of the studied stars was confirmed based on two independent estimations of stellar brightness variations. In addition, it was concluded that superflare stars do not stand out in the common dataset of differential rotation parameters. Based on the data considered, no correlation was found of the spottedness parameters or the differential rotation parameters with the characteristics of these objects—their Rossby numbers and superflare energy. Additionally, the correlation between the superflare energy and the inverse Rossby number was considered. None of these comparisons gave an indication for the presence of any obvious correlation. The results of the analysis of five stars with a few dozen flares registered indicate that for the same star whereas spottedness S variations are small, significant changes in the superflare energy can be achieved. On the example of KIC 10422252, we show that at sixfold S variations, the flare energy varies by orders of magnitude at any given S value.

  2. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  3. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  4. Star formation and black hole accretion activity in rich local clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bianconi, Matteo; Marleau, Francine R.; Fadda, Dario

    2016-04-01

    Context. We present a study of star formation and central black hole accretion activity of galaxies that are hosted in the two nearby (z ~ 0.2) rich galaxy clusters Abell 983 and 1731. Aims: We aim to quantify both the obscured and unobscured star formation rates, as well as the presence of active galactic nuclei (AGN) as a function of the environment in which the galaxy is located. Methods: We targeted the clusters with unprecedented deep infrared Spitzer observations (0.2 mJy at 24 micron), near-IR Palomar imaging and optical WIYN spectroscopy. The extent of our observations (~3 virial radii) covers the vast range of possible environments, from the very dense cluster centre to the very rarefied cluster outskirts and accretion regions. Results: The star-forming members of the two clusters present star formation rates that are comparable with those measured in coeval field galaxies. Analysis of the spatial arrangement of the spectroscopically confirmed members reveals an elongated distribution for A1731 with respect to the more uniform distribution of A983. The emerging picture is compatible with A983 being a fully evolved cluster, in contrast with the still actively accreting A1731. Conclusions: Analysis of the specific star formation rate reveals evidence of ongoing galaxy pre-processing along A1731's filament-like structure. Furthermore, the decrease in the number of star-forming galaxies and AGN towards the cluster cores suggests that the cluster environment is accelerating the ageing process of the galaxies and blocking further accretion of the cold gas that fuels both star formation and black hole accretion activity. The catalogue and the reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A105

  5. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  6. A highly sensitive search for magnetic fields in B, A and F stars

    NASA Astrophysics Data System (ADS)

    Shorlin, S. L. S.; Wade, G. A.; Donati, J.-F.; Landstreet, J. D.; Petit, P.; Sigut, T. A. A.; Strasser, S.

    2002-09-01

    Circular spectropolarimetric observations of 74 stars were obtained in an attempt to detect magnetic fields via the longitudinal Zeeman effect in their spectral lines. The sample observed includes 22 normal B, A and F stars, four emission-line B and A stars, 25 Am stars, 10 HgMn stars, two lambda Boo stars and 11 magnetic Ap stars. Using the Least-Squares Deconvolution multi-line analysis approach (Donati et al. \\cite{donati97etal}), high precision Stokes I and V mean signatures were extracted from each spectrum. We find absolutely no evidence for magnetic fields in the normal, Am and HgMn stars, with upper limits on longitudinal field measurements usually considerably smaller than any previously obtained for these objects. We conclude that if any magnetic fields exist in the photospheres of these stars, these fields are not ordered as in the magnetic Ap stars, nor do they resemble the fields of active late-type stars. We also detect for the first time a field in the A2pSr star HD 108945 and make new precise measurements of longitudinal fields in five previously known magnetic Ap stars, but do not detect fields in five other stars classified as Ap SrCrEu. We also report new results for several binary systems, including a new vsin i for the rapidly rotating secondary of the Am-delta Del SB2 HD 110951. Based on observations obtained using the MuSiCoS spectropolarimeter on the Bernard Lyot telescope, l'Observatoire du Pic du Midi, France.

  7. A Mid-infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    NASA Astrophysics Data System (ADS)

    Dunham, Miranda K.; Robitaille, Thomas P.; Evans, Neal J., II; Schlingman, Wayne M.; Cyganowski, Claudia J.; Urquhart, James

    2011-04-01

    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3712 of 8358) of the BGPS sources contain at least one mid-IR source, including 2457 of 5067 (49%) within the area where all surveys overlap (10° < ell < 65°). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects and Red MSX Sources make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H2 column density also increase with probability of star formation activity.

  8. Chromospherically active stars. II - HD 82558, a young single BY Draconis variable

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

    1986-01-01

    It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

  9. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    Several late-type stars (stars with a radiative core and an outer convective layer) present activity cycles resembling the Solar one. This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We analize the activity levels to look for a period of activity. We find strong evidence of a cyclic activity, with a period of ˜442 days. We also estimated that the Ca II S index varies around 130% due to activity variations outside of flares.

  10. Modelling of Hot Jupiter thermospheres and ionospheres under irradiation from active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J.; Galand, M.; Unruh, Y.; Koskinen, T.; Sanz-Forcada, J.

    2014-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in atmospheric escape. The composition and structure of the thermosphere and ionosphere of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Hot Jupiter planets orbiting K and M dwarf stars. As an example, XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the thermosphere of hypothetical, Hot Jupiters orbiting these stars are then obtained from a fluid model of the upper atmosphere, incorporating atmospheric chemistry and taking atmospheric escape into account. Using these models of both the host star and the planetary atmosphere, we have derived a method to scale the X-ray and EUV regions of the solar spectrum to produce a very similar outcome in terms of the planet's neutral thermosphere as using a detailed coronal model of the host star. We also calculate ion production rates and densities in the ionospheres of such planets, considering ionisation through both photo-ionisation and electronimpact processes. We find that in planets subjected to radiation from more active stars, the transition to a regime of hydrodynamic escape from the top of the atmosphere occurs at larger orbital distances. A greater X-ray to EUV flux ratio in these stars compared with the solar case also produces ionospheres that extend to lower altitudes and are significantly more pronounced.

  11. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    NASA Astrophysics Data System (ADS)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  12. Identification of Galactic Bulge Survey X-Ray Sources with Tycho-2 Stars

    NASA Astrophysics Data System (ADS)

    Hynes, Robert I.; Wright, N. J.; Maccarone, T. J.; Jonker, P. G.; Greiss, S.; Steeghs, D.; Torres, M. A. P.; Britt, C. T.; Nelemans, G.

    2012-12-01

    We identify 69 X-ray sources discovered by the Galactic Bulge Survey (GBS) that are coincident with or very close to bright stars in the Tycho-2 catalog. Additionally, two other GBS sources are resolved binary companions to Tycho-2 stars where both components are separately detected in X-rays. Most of these are likely to be real matches, but we identify nine objects with large and significant X-ray-to-optical offsets as either detections of resolved binary companions or chance alignments. We collate known spectral types for these objects, and also examine Two Micron All Sky Survey colors, variability information from the All-Sky Automated Survey, and X-ray hardness ratios for the brightest objects. Nearly a third of the stars are found to be optically variable, divided roughly evenly between irregular variations and periodic modulations. All fall among the softest objects identified by the GBS. The sample forms a very mixed selection, ranging in spectral class from O9 to M3. In some cases, the X-ray emission appears consistent with normal coronal emission from late-type stars, or wind emission from early-types, but the sample also includes one known Algol, one W UMa system, two Be stars, and several X-ray bright objects likely to be coronally active stars or binaries. Surprisingly, a substantial fraction of the spectroscopically classified, non-coincidental sample (12 out of 38 objects) have late B or A type counterparts. Many of these exhibit redder near-IR colors than expected for their spectral type and/or variability, and it is likely that the X-rays originate from a late-type companion star in most or all of these objects.

  13. IDENTIFICATION OF GALACTIC BULGE SURVEY X-RAY SOURCES WITH TYCHO-2 STARS

    SciTech Connect

    Hynes, Robert I.; Britt, C. T.; Wright, N. J.; Jonker, P. G.; Steeghs, D.; Torres, M. A. P.; Maccarone, T. J.; Greiss, S.; Nelemans, G.

    2012-12-20

    We identify 69 X-ray sources discovered by the Galactic Bulge Survey (GBS) that are coincident with or very close to bright stars in the Tycho-2 catalog. Additionally, two other GBS sources are resolved binary companions to Tycho-2 stars where both components are separately detected in X-rays. Most of these are likely to be real matches, but we identify nine objects with large and significant X-ray-to-optical offsets as either detections of resolved binary companions or chance alignments. We collate known spectral types for these objects, and also examine Two Micron All Sky Survey colors, variability information from the All-Sky Automated Survey, and X-ray hardness ratios for the brightest objects. Nearly a third of the stars are found to be optically variable, divided roughly evenly between irregular variations and periodic modulations. All fall among the softest objects identified by the GBS. The sample forms a very mixed selection, ranging in spectral class from O9 to M3. In some cases, the X-ray emission appears consistent with normal coronal emission from late-type stars, or wind emission from early-types, but the sample also includes one known Algol, one W UMa system, two Be stars, and several X-ray bright objects likely to be coronally active stars or binaries. Surprisingly, a substantial fraction of the spectroscopically classified, non-coincidental sample (12 out of 38 objects) have late B or A type counterparts. Many of these exhibit redder near-IR colors than expected for their spectral type and/or variability, and it is likely that the X-rays originate from a late-type companion star in most or all of these objects.

  14. FIP, FIT or MAD? Analysis of High Signal-to-Noise ASCA Spectra of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2002-01-01

    ASCA (Advanced Satellite for Cosmology and Astrophysics) and EUVE (Extreme Ultraviolet Explorer) spectra of active late-type stars imply that Fe and other medium-Z elements may be 2-10 times less abundant in the coronae of these stars than in their photo-spheres (the MAD effect). These deficiencies may be related to the solar FIP (First Ionization Potential) effect, in which Fe and other low First Ionization Potential elements appear enriched in the solar corona over their photospheric values. The FIP effect is time variable. As part of this proposal, the K0-2 III star, 29 Draconis, was observed in X rays with the ASCA spacecraft in order to measure the coronal abundances of this star at three different stellar longitudes over its 31-day rotation cycle. The goal of the observations was to learn whether coronal abundances, and hence coronal magnetic structure, vary across the surface of 29 Draconis in phase with the motion of dark star-spots across its disk. A second task included in this project was a systematic reanalysis of 18-20 deep exposures of active coronal stars, which were extracted from the ASCA public archives. New thermal models were computed for each spectrum in order to derive coronal metal abundances for each star. The goal of this survey was to search for possible trends in coronal abundance with various stellar parameters such as rotation, chromospheric activity levels at ultraviolet and optical wavelengths, or evolutionary stage.

  15. CHROMOSPHERIC ACTIVITY OF SOUTHERN STARS FROM THE MAGELLAN PLANET SEARCH PROGRAM

    SciTech Connect

    Arriagada, Pamela

    2011-06-10

    I present chromospheric-activity measurements of {approx}670 F, G, K, and M main-sequence stars in the Southern Hemisphere, from {approx}8000 archival high-resolution echelle spectra taken at Las Campanas Observatory since 2004. These stars were targets from the Old Magellan Planet Search, and are now potential targets for the New Magellan Planet Search that will look for rocky and habitable planets. Activity indices (S values) are derived from Ca II H and K line cores and then converted to the Mount Wilson system. From these measurements, chromospheric (log R'{sub HK}) indices are derived, which are then used as indicators of the level of radial-velocity jitter, age, and rotation periods these stars present.

  16. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  17. What do the star formation histories of galaxies tell us about the Starburst-AGN connection?

    NASA Astrophysics Data System (ADS)

    Torres-Papaqui, J. P.; Coziol, R.; Plauchu-Frayn, I.; Andernach, H.; Ortega-Minakata, R. A.

    2013-10-01

    We have determined the normal star formation histories (SFHs) for narrow emission line galaxies classified as star forming galaxies (SFGs), transition type objects (TOs), Seyfert 2s (Sy2s) and LINERs. The SFH varied with the activity type, following the mass of the galaxies and the importance of their bulge: LINERs reside in massive early-type galaxies, Sy2s and TOs in intermediate mass galaxies with intermediate morphological types, and SFGs are hosted in lower mass late-type spirals. Also, the maximum star formation rate in the past was found to increase with the virial mass within the aperture (VMA). This correlation suggests that the bulges and the supermassive black holes at the center of galaxies grow in parallel, in good agreement with the M_{BH}-σ_* relation.

  18. The Life Cycles of Stars: An Information and Activity Booklet, Grades 9-12, 1997-1998. Imagine the Universe! Probing the Structure & Evaluation of the Cosmos.

    ERIC Educational Resources Information Center

    Whitlock, Laura A.; Granger, Kara C.

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for grade 9 through grade 12 classrooms. Background information about star birth and life, black dwarfs, supernovae, white dwarfs, neutron stars, black holes, and the electromagnetic spectrum is included. The seven activities focus on star mass,…

  19. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyn’s star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets—Kapteyn b (P = 48 days)—resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn’s star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of “planet b,” and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  20. MK Classification and Dynamical Masses for Late-Type Visual Binaries

    NASA Astrophysics Data System (ADS)

    Tamazian, Vakhtang S.; Docobo, José A.; Melikian, Norair D.; Karapetian, Arthur A.

    2006-06-01

    On the basis of slit spectra obtained with the SCORPIO spectral camera attached to the 2.6 m telescope of the V. Ambartsumian Byurakan Astrophysical Observatory (Armenia), MK classifications for 30 visual binaries comprising mostly late K and M type stars are presented. Comparison with other determinations shows that this configuration provides a reliable MK classification. Dynamical masses for 25 systems are computed. Using standard mass-luminosity calibrations, individual mass sums for 11 pairs consisting of virtually single, nonvariable dwarfs are calculated, showing a good agreement with corresponding dynamical masses. The dynamical parallax of HIP 112354 is closer to the trigonometric parallax given in the Yale General Catalogue of Trigonometric Stellar Parallaxes (van Altena et al.) than to the Hipparcos parallax.

  1. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  2. A connection between star formation activity and cosmic rays in the starburst galaxy M82

    NASA Astrophysics Data System (ADS)

    VERITAS Collaboration; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Dickherber, R.; Duke, C.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lebohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-12-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250eVcm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  3. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  4. LITHIUM ABUNDANCE IN SOLAR-TYPE STARS WITH LOW CHROMOSPHERIC ACTIVITY: APPLICATION TO THE SEARCH FOR MAUNDER MINIMUM ANALOGS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-10

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'{sub HK} {<=} -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  5. Magnetic fields and activity of the sun and stars - An overview

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    Recent work on the observation and theory of solar and stellar magnetic field activity and its relation to stellar activity is reviewed, emphasizing those aspects relevant to the problem of activity of red dwarf stars. New observational facts relevant to understanding the root cause of stellar surface activity are summarized and theoretical questions concerning the underlying physical basis for the observed correlations between stellar activity, rotation, and magnetic fields are addressed. These include dyanamo theory and the rotation-activity connection as well as flux tube dynamics and plasma heating.

  6. Star Power: Providing for the Gifted & Talented. Module 5. Enrichment Activities for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Gilman, Sharlene

    The document presents Module 5, enrichment activities for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  7. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    NASA Astrophysics Data System (ADS)

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  8. X-ray cycles and magnetic activity of solar-like stars

    NASA Astrophysics Data System (ADS)

    Robrade, J.

    2016-06-01

    Since the beginning of its operation XMM-Newton carries out a monitoring program to study coronal cyclic behavior in stars similar to our Sun. I present highlights and recent results from the X-ray monitoring campaign, that observes neighboring stellar systems like Alpha Centauri and 61 Cygni. Cyclic activity phenomena and coronal properties are discussed and put into context of X-ray emission from the Sun and solar-type stars. As an outlook, future perspectives of stellar X-ray studies with a focus on the eROSITA all-sky survey are presented.

  9. Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2009-08-01

    We aim to constrain the Hα, CaII H and CaII K profiles from quiescent and active regions on active dM1e stars. A preliminary analysis of all the data available for dM1e stars shows that the Hα/CaII equivalent width (EW) ratio varies by up to a factor of 7 for different stars in our sample. We find that spectroscopic binaries have a significantly smaller ratio than single dM1e stars. We also find that the pre-main-sequence stars Gl 616.2, GJ 1264 and Gl 803 have a ratio lower than main-sequence single dM1e stars. These differences imply that different chromospheric structures are present on different stars, notably the temperature minimum must decrease with an increasing Hα/CaII EW ratio. For these reasons, it is impossible to reproduce all observations with only one grid of model chromospheres. We show that the grid of model chromospheres of Paper VI is adequate to describe the physical conditions that prevail in the chromospheres of spectroscopic binaries and pre-main-sequence M1e stars, but not for the conditions in single dM1e stars. One or more additional grids of model chromospheres will be necessary to reproduce all observations. We use the method developed in Paper XI in this series, in order to build two-component model chromospheres for five M1e field stars: FF And A, FF And B, GJ 1264, AU Mic and Gl 815A. Our solutions provide an exact match of the Hα and the mean CaII H & K EWs within measurement uncertainties. We compare the theoretical profiles and the observed profiles of Hα and the CaII H & K resonance lines. On the one hand, our fits to the CaII lines are reasonably good. On the other hand, our models tend to produce Hα profiles with a central absorption that is too deep. This suggests that the column mass at the transition region for plages is underestimated, but this would imply that the contrast factor between quiescent and active regions in the CaII lines is larger than 5. We find that, except in the cases of FF And A and AU Mic, the total

  10. FREQUENCY OF MAUNDER MINIMUM EVENTS IN SOLAR-TYPE STARS INFERRED FROM ACTIVITY AND METALLICITY OBSERVATIONS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2012-03-10

    We consider the common proposition that the fraction of chromospherically very inactive stars in a solar-type sample is analogous to the fraction of the Sun's main-sequence lifetime spent in a grand minimum state. In a new approach to this proposition, we examine chromospheric activity log R'{sub HK} in a stellar sample having Hipparcos parallax measurements, and having spectroscopically determined metallicity close to solar (-0.1 {<=} [Fe/H] {<=} 0.1). We evaluate height above the Hipparcos main sequence, and estimate age using isochrones, to identify the most Sun-like stars in this sample. As a threshold below which a star is labeled very inactive, we use the peak of the HK activity distribution mapped over the quiet Sun during the 1968 epoch. We estimate the fraction of Maunder Minimum (MM) analog candidates in our sample at 11.1%. Given the 70 yr duration of the historical MM, this suggests that in any given year there is a 1/630 chance of entering a similar grand minimum. There are three important cautions with this type of estimate. First, recent investigation using actual activity and photometric time series has suggested that very low activity may not be a necessary criterion for identifying a non-cycling MM analog candidate. Second, this type of estimate depends very strongly on the choice of very low activity threshold. Third, in instantaneous measurements of log R'{sub HK}, it is not always clear whether a star is a viable MM analog candidate or merely an older star nearing the end of its main-sequence lifetime.

  11. A maximum entropy approach to detect close-in giant planets around active stars

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Hébrard, E.; Morin, J.; Folsom, C. P.; Böhm, T.; Boisse, I.; Borgniet, S.; Bouvier, J.; Delfosse, X.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Barnes, J. R.

    2015-12-01

    Context. The high spot coverage of young active stars is responsible for distortions of spectral lines that hamper the detection of close-in planets through radial velocity methods. Aims: We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler imaging in radial velocity measurements. Methods: We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Results: Using a simulated time series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km s-1, in most cases we are able to recover the radial velocity amplitude, orbital phase, and orbital period of an artificial planet down to a radial velocity semi-amplitude of the order of the radial velocity scatter due to the photon noise alone (about 50 m s-1 in our case). One noticeable exception occurs when the planetary orbit is close to co-rotation, in which case significant biases are observed in the reconstructed radial velocity amplitude, while the orbital period and phase remain robustly recovered. Conclusions: The present method constitutes a very simple way to extract orbital parameters from heavily distorted line profiles of active stars, when more classical radial velocity detection methods generally fail. It is easily adaptable to most existing Doppler imaging codes, paving the way towards a systematic search for close-in planets orbiting young, rapidly

  12. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  13. Cosmic web and star formation activity in galaxies at z ∼ 1

    SciTech Connect

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  14. Multiwavelength study of the magnetically active T Tauri star HD 283447

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Welty, Alan D.; Imhoff, Catherine; Hall, Jeffrey C.; Etzel, Paul B.; Phillips, Robert B.; Lonsdale, Colin J.

    1994-01-01

    We observed the luminous T Tauri star HD 283447 = V773 Tauri simultaneously at X-ray, ultraviolet, optical photometric and spectroscopic, and radio wavelengths for several hours on UT 1992 September 11. ROSAT, IUE, Very Large Array (VLA) and an intercontinental Very Long Baseline Interferometry (VLBI) network, and three optical observatories participated in the campaign. The star is known for its unusually high and variable nonthermal radio continuum emission. High levels of soft X-ray and Mg II line emission are discovered, with luminosity L(sub x) = 5.5 x 10(exp 30) ergs/s (0.2 - 2 keV) and L(sub Mg II) = 1 x 10(exp 29) ergs/s, respectively. Optically, the spectrum exhibits rather weak characteristics of `classical' T Tauri stars. A faint, broad emission line component, probably due to a collimated wind or infall, is present. During the campaign, the radio luminosity decreased by a factor of 4, while optical/UV lines and X-ray emission remained strong but constant. The large gyrosynchrotron-emitting regions are therefore decoupled from the chromospheric and coronal emission. Five models for the magnetic geometry around the star are discussed; solar-type activity, dipole magnetosphere, star-disk magnetic coupling, disk magnetic fields, and close binary interaction. The data suggest that two magnetic geometries are simultaneously present: complex multipolar fields like those on the Sun, and a large-scale field possibly associated with the circumstellar disk.

  15. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  16. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats

    PubMed Central

    Vasant, Rupal A.

    2014-01-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress. PMID:26109886

  17. Spots and activity cycles of the star FKCom—2013-2015 data analysis

    NASA Astrophysics Data System (ADS)

    Puzin, V. B.; Savanov, I. S.; Dmitrienko, E. S.; Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.; Burdanov, A. Yu.

    2016-04-01

    We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014-2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength < B z >, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the < B z > parameter starting from 2014.

  18. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  19. Scaling Laws for Dark Matter Halos in Late-Type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2015-04-01

    Dark matter (DM) halos of Sc-Im galaxies satisfy structural scaling laws analogous to the fundamental plane relations for elliptical galaxies. Halos in less luminous galaxies have smaller core radii rc , higher central densities ρ^, and smaller central velocity dispersions σ. If dwarf spheroidal (dSph) and dwarf Magellanic irregular (dIm) galaxies lie on the extrapolations of these correlations, then we can estimate their baryon loss relative to that of Sc-Im galaxies. We find that, if there had been no enhanced baryon loss relative to Sc-Im galaxies, typical dSph and dIm galaxies would be brighter by ΔMB ~= -4.0 mag and ΔMB ~= -3.5 mag, respectively. Instead, the galaxies lost or retained as gas (in dIm galaxies) baryons that could have formed stars. Also, dSph and dIm galaxies have DM halos that are more massive than we thought, with σ ~ 30 km s-1 or circular-orbit rotation velocities V circ ~ 42 km s-1. Comparison of DM and visible matter parameter correlations confirms that, at MV >~ -18, dSph and dIm galaxies form a sequence of decreasing baryon-to-DM mass ratios in smaller dwarfs. We show explicitly that galaxy baryon content goes to (almost) zero at V circ <~ 42 +/- 4 km s-1, in agreement with V circ as found from our estimate of baryon depletion. Our results suggest that there may be a large population of DM halos that are dark and undiscovered. This helps to solve the problem that the initial fluctuation spectrum of cold dark matter predicts more dwarf galaxies than we observe.

  20. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  1. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  2. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  3. Monitoring the Stellar Activity of Transit-Hosting Stars II: supporting HST exoplanet atmosphere observations

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Evans, Tom; Sing, David K.; Aigrain, Suzanne

    2012-02-01

    We propose to use the CTIO 1.3m telescope with ANDICAM to monitor 5 bright stars that host transiting exoplanets in an effort to characterise their activity. These observations will provide critical ground-based support for our large HST program that has been granted 124 orbits to perform a survey of UV-optical atmospheric transmission spectra for 8 hot Jupiters using the STIS instrument (Cycle 19, Prog 12473, PI D Sing). They are required because active stellar regions inevitably contaminate measured planetary light curves by causing the apparent planet-to-star radius to vary in a wavelength dependent manner. Regular ground-based photometric monitoring performed using the CTIO 1.3m telescope will allow us to determine the spot activity at the time of the HST observations, so that the stellar baseline flux can be accurately normalised for every transit observed, enabling transmission spectra from multiple visits to be combined.

  4. Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Huélamo, N.; Micela, G.; Hubrig, S.

    2006-06-01

    Context: .The X-ray emission from B-type main-sequence stars is a longstanding mystery in stellar coronal research. Since there is no theory at hand that explains intrinsic X-ray emission from intermediate-mass main-sequence stars, the observations have often been interpreted in terms of (unknown) late-type magnetically active companion stars. Aims: .Resolving the hypothesized companions requires high spatial resolution observations in the infrared and in X-rays. We use Chandra imaging observations to spatially resolve a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. Methods: .Our strategy is to search for X-ray emission at the position of both the B-type primary and the faint companion. Results: .We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, cannot be discarded. An appropriate scenario would be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.

  5. Discovery of three X-ray luminous pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Kriss, G. A.

    1981-01-01

    Three X-ray sources found serendipitously in Einstein images of the Taurus-Auriga cloud complex were observed at the McGraw-Hill Observatory and are found to be associated with stars of approximately 12 mag with weak H-alpha emission. The stars lie on the edges of dark clouds and are spectroscopically similar to the least active emission-line pre-main-sequence stars. Although they lie well above the ZAMS in the H-R diagram, they do not exhibit ultraviolet excess, strong optical variability, or evidence for mass outflow/inflow characteristics of the more active T Tauri stars. Their only unusual property is high X-ray luminosity (approximately 10 to the 30th ergs/s). It is suggested that the X-ray emission from pre-main-sequence stars is not closely linked to the conditions giving rise to their unusual spectroscopic properties. The emission may instead represent an enhanced form of the coronal activity producing X-rays observed in late-type main-sequence stars.

  6. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    NASA Astrophysics Data System (ADS)

    Roettenbacher, R. M.; Monnier, J. D.; Korhonen, H.; Aarnio, A. N.; Baron, F.; Che, X.; Harmon, R. O.; Kővári, Zs.; Kraus, S.; Schaefer, G. H.; Torres, G.; Zhao, M.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.

    2016-05-01

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north–south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north–south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  7. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    PubMed

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos. PMID:27144357

  8. How Environment Affects Star Formation: Tracing Activity in High Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, A.; Brodwin, M.; Atlee, D. W.; Lin, Y.; Chary, R.; Dey, A.; Eisenhardt, P. R.; Gettings, D.; Gonzalez, A. H.; Jannuzi, B.; Mancone, C.; Moustakas, J.; Snyder, G. F.; Stanford, S. A.; Stern, D.; Weiner, B. J.; Zeimann, G.

    2014-01-01

    The emerging picture of the evolution of cluster galaxies indicates that the epoch of z>1 is a crucial period of active star formation and mass assembly in clusters. In this dissertation, I leverage a uniformly-selected cluster sample from the IRAC Shallow Cluster Survey (ISCS) with Herschel imaging to analyse the star formation (SF) activity in cluster galaxies over the past ten billion years. This analysis is two-fold: 1) using 274 clusters across the 9 square degree Bootes field, I perform a stacking analysis of mass-limited samples of cluster and field galaxies using wide-field Herschel observations over a long redshift baseline, z=0.3-1.5. I find that the average SF activity in cluster galaxies is evolving faster than in the field, with field-like SF in the cluster cores and enhanced SF activity in the cluster outskirts at z>1.2. By further breaking down my analysis by galaxy mass and type, I determine which mechanisms are capable of driving this evolution. 2) I use unique, deep Herschel imaging of 11 spectroscopically-confirmed clusters from z=1.1-1.8 to study the properties of individual infrared bright cluster galaxies as a function of redshift and cluster-centric radius. Combined with ancillary data, I determine the star formation, dust, and AGN properties of the most active cluster galaxies and tie the evolution of these properties back to the environment by comparing to field populations. By combining these two approaches, I constrain cluster galaxy properties during a pivotal epoch of dust-obscured star formation activity and mass assembly in some of the most extreme structures in the Universe.

  9. COMPUTING INTRINSIC LY{alpha} FLUXES OF F5 V TO M5 V STARS

    SciTech Connect

    Linsky, Jeffrey L.; France, Kevin; Ayres, Tom

    2013-04-01

    The Ly{alpha} emission line dominates the far-ultraviolet spectra of late-type stars and is a major source for photodissociation of important molecules including H{sub 2}O, CH{sub 4}, and CO{sub 2} in exoplanet atmospheres. The incident flux in this line illuminating an exoplanet's atmosphere cannot be measured directly as neutral hydrogen in the interstellar medium (ISM) attenuates most of the flux reaching the Earth. Reconstruction of the intrinsic Ly{alpha} line has been accomplished for a limited number of nearby stars, but is not feasible for distant or faint host stars. We identify correlations connecting the intrinsic Ly{alpha} flux with the flux in other emission lines formed in the stellar chromosphere, and find that these correlations depend only gradually on the flux in the other lines. These correlations, which are based on Hubble Space Telescope spectra, reconstructed Ly{alpha} line fluxes, and irradiance spectra of the quiet and active Sun, are required for photochemical models of exoplanet atmospheres when intrinsic Ly{alpha} fluxes are not available. We find a tight correlation of the intrinsic Ly{alpha} flux with stellar X-ray flux for F5 V to K5 V stars, but much larger dispersion for M stars. We also show that knowledge of the stellar effective temperature and rotation rate can provide reasonably accurate estimates of the Ly{alpha} flux for G and K stars, and less accurate estimates for cooler stars.

  10. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  11. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002star formation and thus the process of galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  12. [Structure and biological activity of glycosphingolipids from starfish and feather stars].

    PubMed

    Inagaki, Masanori

    2008-08-01

    Glycosphingolipids (GSLs) are contained in a various cell membranes and have recently been implicated in many physiologic functions. They are classified based on their sugar moieties into ceramides, cerebrosides, sulfatides, ceramide-oligohexosides, globosides, and gangliosides. A number of GSLs have been obtained from marine invertebrates such as echinoderms, poriferans, and mollusks and have unique biological activities. During the course of our search for biologically active GSLs from echinoderms, we conducted the isolation and structural elucidation of GSLs from starfish and feather stars and found numerous GSLs, some of which have unique structures. In particular, gangliosides from feather stars were unique in that the sialic acids bind to inositol-phosphoceramide. We also found that the GSLs from starfish and feather stars possess neuritogenic activity toward the rat pheochromocytoma cell line PC12, antihyperglycemic effects against type 2 diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice, and antiosteoporosis effects toward the osteoporosis model mice (OVX mice). These biological activities are thought to be related to dementia, osteoporosis, and diabetes, which are becoming social problems, and are expected to become the seeds of preventive or therapeutic drugs for these illness. PMID:18670184

  13. Signatures of Young Star Formation Activity within Two Parsecs of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Sewilo, M.; Roberts, D. A.; Smith, I.; Arendt, R.; Cotton, W.; Lacy, J.; Martin, S.; Pound, M. W.; Rickert, M.; Royster, M.

    2015-07-01

    We present radio and infrared observations indicating ongoing star formation activity inside the ˜2-5 pc circumnuclear ring at the Galactic center. Collectively these measurements suggest a continued disk-based mode of ongoing star formation has taken place near Sgr A* over the last few million years. First, Very Large Array observations with spatial resolution 2.″17 × 0.″81 reveal 13 water masers, several of which have multiple velocity components. The presence of interstellar water masers suggests gas densities that are sufficient for self-gravity to overcome the tidal shear of the 4× {10}6 {M}⊙ black hole. Second, spectral energy distribution modeling of stellar sources indicates massive young stellar object (YSO) candidates interior to the molecular ring, supporting in situ star formation near Sgr A* and appear to show a distribution similar to that of the counter-rotating disks of ˜100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS 5) have bow shock structures, suggesting that they have gaseous disks that are phototoevaporated and photoionized by the strong radiation field. Third, we detect clumps of SiO (2-1) and (5-4) line emission in the ring based on Combined Array for Research in Millimeter-wave Astronomy and Sub-Millimeter Array observations. The FWHM and luminosity of the SiO emission is consistent with shocked protostellar outflows. Fourth, two linear ionized features with an extent of ˜0.8 pc show blue and redshifted velocities between +50 and -40 km s-1, suggesting protostellar jet driven outflows with mass-loss rates of ˜ 5× {10}-5 {M}⊙ yr-1. Finally, we present the imprint of radio dark clouds at 44 GHz, representing a reservoir of molecular gas that feeds star formation activity close to Sgr A*.

  14. An active M star with X-ray double flares disguised as an ultra-luminous X-ray source

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Ji-Feng; Wang, Song; Wu, Yue; Qin, Yu-Xiang

    2016-02-01

    Here we present research on an ultra-luminous X-ray source (ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star. More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray (0.3-11.0 keV) flux of the first peak was derived from the two-temperature APEC model as ˜ 1.1 ± 0.1 × 10-12 erg cm-2 s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences. By optical spectral fitting, it is confirmed to be a late type dMe2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ˜ 133.4 ± 14.2 pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.

  15. Star-formation Activity in the Neighborhood of W–R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ˜4 × 1037 erg s‑1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ˜18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ˜9.2 × 1022 cm‑2 and A V ˜ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (˜1–2 Myr) and a typical age of WN7 W–R star (˜4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  16. Star-formation Activity in the Neighborhood of W–R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 1037 erg s‑1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ∼9.2 × 1022 cm‑2 and A V ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  17. Kinematics and Velocity Ellipsoid Parameters of Stellar Groups and Open Star Clusters: II Cool Stars

    NASA Astrophysics Data System (ADS)

    Elsanhoury, W. H.

    2016-06-01

    Based on the galactic space velocity components (U, V, W) and with aid of the vector and matrix analyses, we computed the velocity ellipsoid parameters for 790 late-type stars from CoRoT (Convection, Rotation and Transits) observations and 290 L dwarf stars. We ran the calculations for spectral types F, G, and K for late-type stars and L0, L1, L2, and L3 for L dwarf stars. We found that the ratio of the middle to the major axis in the galaxy ranged from 0.35 to 0.73. The vertex deviation from the galactic center was very small for the samples under investigation, which agrees well with earlier calculations.

  18. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  19. Star Formation and AGN Activity in Luminous and Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan

    2015-08-01

    In the local universe, Ultraluminous Infrared Galaxies (ULIRGs, L_IR > 10^12 L⊙) are all interacting and merging systems. We explore the evolution of the morphological and nuclear properties of (U)LIRGs over cosmic time using a large sample of galaxies from Her- schel observations of the CANDELS fields (including GOODS, COSMOS, and UDS). In particular, we investigate whether the role of galaxy mergers has changed between z ˜ 2 and now using the extensive visual classification catalogs produced by the CANDELS team. The combination of a selection from Herschel, near the peak of IR emission, and rest-frame optical morphologies from CANDELS, provides the ideal comparison to nearby (U)LIRGs. We also use rest-frame optical emission line diagnostics, X-ray luminosity, and MIR colors to separate AGN from star-formation dominated galaxies. We then study the how role of galaxy mergers and the presence of AGN activity correspond to the galaxy’s position in the star formation rate - stellar mass plane. Are galaxies that have specific star formation rates elevated above the main sequence more likely to be mergers? We investigate how AGN identified with different methods correspond to different morphologies and merger stages as well as position on the star formation rate - stellar mass plane.

  20. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    SciTech Connect

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv; Hopp, Ulrich; Noll, Stefan; Saglia, Roberto P.; Bender, Ralf; Goranova, Yuliana; Strazzullo, Veronica

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx} 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the

  1. A Hard X-Ray Study of the Normal Star-forming Galaxy M83 with NuSTAR

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Zezas, A.; Antoniou, V.; Maccarone, T. J.; Replicon, V.; Tyler, J. B.; Venters, T.; Argo, M. K.; Bechtol, K.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C.; Harrison, F.; Krivonos, R.; Kuntz, K.; Stern, D.; Zhang, W. W.

    2016-06-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E\\gt 10 keV) X-ray emission of this galaxy. The nuclear region and ˜20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of ≲1038 erg s‑1 (10–30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s‑1 may be a low-luminosity AGN but is more consistent with being an X-ray binary.

  2. A Hard X-Ray Study of the Normal Star-forming Galaxy M83 with NuSTAR

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Zezas, A.; Antoniou, V.; Maccarone, T. J.; Replicon, V.; Tyler, J. B.; Venters, T.; Argo, M. K.; Bechtol, K.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C.; Harrison, F.; Krivonos, R.; Kuntz, K.; Stern, D.; Zhang, W. W.

    2016-06-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E\\gt 10 keV) X-ray emission of this galaxy. The nuclear region and ∼20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of ≲1038 erg s‑1 (10–30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s‑1 may be a low-luminosity AGN but is more consistent with being an X-ray binary.

  3. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  4. STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS

    SciTech Connect

    Greissl, Julia; Meyer, Michael R.; Christopher, Micol H.; Scoville, Nick Z.

    2010-02-20

    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of {approx}90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

  5. Measurements of Starspot Area and Temperature on Five Active, Evolved Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Saar, Steven H.; Neff, James E.

    1996-06-01

    We resent results from a study of starspot areas and temperatures on active stars using the 7055 and 8860 Å bands of the titanium oxide molecule. Because the two bands have different temperature sensitivities, the ratio of their strengths provides a measure of the spot temperature, while their absolute strengths are a function of total starspot area. We have analyzed the TiO bands of four active, evolved, single-lined spectroscopic binaries (EI Eridani, σ Geminorum, V1762 Cygni, and II Pegasi) and of the FK Comae star V1794 Cygni. Where possible, we compare our results with contemporaneous photometry, which is used to refine our estimate of the nonspotted photospheric temperature. We find that, over multiple epochs of observation, the spot filling factor ranges from below our detection threshold (≍8%) to just under 60%. In some cases, we find that significant starspot coverage was likely present at historical light maxima. Our results suggest a possible correlation between increasing surface gravity and the temperature difference between the spotted and nonspotted photosphere. This might result from smaller starspot magnetic field strengths on active stars of lower gravity and the corresponding decrease in the pressure and temperature contrast between the photosphere and the umbra.

  6. A Method for Measuring Active Region Filling Factors on Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark Steven; Andretta, Vincenzo; Beeck, Benjamin; Reiners, Ansgar; Schussler, Manfred

    2015-04-01

    Radiative diagnostics of “activity” in the Sun and solar-type stars are spatially associated with sites of emergent magnetic flux. The magnetic fields themselves are widely regarded as the surface manifestations of a dynamo mechanism. The further development of both dynamo theory and models of the non-radiative heating of outer stellar atmospheres requires a knowledge of stellar magnetic field properties. In this context, it becomes important to determine the surface distribution, or at least the fractional coverage of, magnetic active regions as one critical constraint for dynamo models. But, while information on the spatial distribution of activity on stellar surfaces can be gathered in some special cases (mostly rapid rotators), such measurements have always been elusive in more solar-like stars. We discuss the challenges and results obtained from a method that relies on the non-linear response of the two principal He I triplet lines (at 1083 nm and 587.6 nm) to infer useful constraints on the fractional area coverage of magnetic active regions on solar-type stars.

  7. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.

    2015-10-01

    Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.

  8. Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable Star Classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John

    2012-01-01

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  9. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  10. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    SciTech Connect

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J.; Brink, Henrik; Long, James P.; Rice, John

    2012-01-10

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL-where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up-is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  11. Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    NASA Astrophysics Data System (ADS)

    Bitsakis, T.; Dultzin, D.; Ciesla, L.; Díaz-Santos, T.; Appleton, P. N.; Charmandaris, V.; Krongold, Y.; Guillard, P.; Alatalo, K.; Zezas, A.; González, J.; Lanz, L.

    2016-06-01

    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multiwavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01 < z < 0.23. To derive the physical properties of the galaxies, we rely on ultraviolet (UV)-to-infrared spectral energy distribution modelling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3 to 10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colours are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals to early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.

  12. Modelling the photosphere of active stars for planet detection and characterization

    NASA Astrophysics Data System (ADS)

    Herrero, Enrique; Ribas, Ignasi; Jordi, Carme; Morales, Juan Carlos; Perger, Manuel; Rosich, Albert

    2016-02-01

    Context. Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes in the measurements obtained from photometric and spectroscopic time series observations. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Aims: Accurate simulations of the stellar photosphere based on the most recent available models for main-sequence stars can provide synthetic photometric and spectroscopic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales (defined by the passbands of given instruments or space missions) to design strategies to remove or minimize them. Methods: We present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. The resulting synthetic time series data generated with this simulator were used to characterize the effects of activity jitter in extrasolar planet measurements from photometric and spectroscopic observations. Results: Several cases of synthetic data series for Sun-like stars are presented to illustrate the capabilities of the methodology. A specific application for characterizing and modelling the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low-temperature contrasts of spots. Synthetic multi-band photometry and radial velocity time series are modelled for HD 189733 by adopting the known system parameters and fitting for the

  13. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  14. Detection of EUV emission from the low activity dwarf HD 4628: Evidence for a cool corona

    NASA Technical Reports Server (NTRS)

    Mathioudakis, M.; Drake, J. J.; Vedder, P. W.; Schmitt, J. H. M. M.; Bowyer, S

    1994-01-01

    We present observations of low activity late-type stars obtained with the Extreme Ultraviolet Explorer (EUVE). These stars are the slowest rotators, and acoustic heating may dominate their outer atmospheric heating process. We report detection of EUV emission from the low acitivity K dwarf HD 4628 during the EUVE Deep Survey in the Lexan/boran band. This detection, in conjunction with the non-detection of this object in the ROSAT Position Sensitive Proportional Counter (PSPC) all-sky survey, suggests the existence of a cool corona with a characteristic temperature of less than 10(exp 6) K. The flux and spectral signature are consistent with current theories of acoustic heating.

  15. EPISODIC STAR FORMATION COUPLED TO REIGNITION OF RADIO ACTIVITY IN 3C 236

    SciTech Connect

    Tremblay, Grant R.; O'Dea, Christopher P.; Baum, Stefi A.; Koekemoer, Anton M.; Sparks, William B.; De Bruyn, Ger; Schoenmakers, Arno P.

    2010-05-20

    We present Hubble Space Telescope Advanced Camera for Surveys and STIS FUV/NUV/optical imaging of the radio galaxy 3C 236, whose relic {approx}4 Mpc radio jet lobes and inner 2 kpc compact steep spectrum (CSS) radio source are evidence of multiple epochs of active galactic nucleus (AGN) activity. Consistent with previous results, our data confirm the presence of four bright knots of FUV emission in an arc along the edge of the inner circumnuclear dust disk in the galaxy's nucleus, as well as FUV emission cospatial with the nucleus itself. We interpret these to be sites of recent or ongoing star formation. We present photometry of these knots, as well as an estimate for the internal extinction in the source using line ratios from archival ground-based spectroscopy. We estimate the ages of the knots by comparing our extinction-corrected photometry with stellar population synthesis models. We find the four knots cospatial with the dusty disk to be young, of order {approx}10{sup 7} yr old. The FUV emission in the nucleus, to which we do not expect scattered light from the AGN to contribute significantly, is likely due to an episode of star formation triggered {approx}10{sup 9} yr ago. We argue that the young {approx}10{sup 7} yr old knots stem from an episode of star formation that was roughly coeval with the event resulting in reignition of radio activity, creating the CSS source. The {approx}10{sup 9} yr old stars in the nucleus may be associated with the previous epoch of radio activity that generated the 4 Mpc relic source, before being cut off by exhaustion or interruption. The ages of the knots, considered in the context of both the disturbed morphology of the nuclear dust and the double-double morphology of the 'old' and 'young' radio sources, present evidence for an AGN/starburst connection that is possibly episodic in nature. We suggest that the AGN fuel supply was interrupted for {approx}10{sup 7} yr due to a minor merger event and has now been restored. The

  16. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  17. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  18. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers.

    PubMed

    Wong, Edgar H H; Khin, Mya Mya; Ravikumar, Vikashini; Si, Zhangyong; Rice, Scott A; Chan-Park, Mary B

    2016-03-14

    The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10 000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases. PMID:26859230

  19. EChO spectra and stellar activity II. The case of dM stars

    NASA Astrophysics Data System (ADS)

    Scandariato, Gaetano; Micela, Giuseppina

    2015-12-01

    EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magneticvariability has to be taken into account in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm.

  20. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths

    NASA Astrophysics Data System (ADS)

    Feltre, A.; Charlot, S.; Gutkin, J.

    2016-03-01

    In the context of observations of the rest-frame ultraviolet and optical emission from distant galaxies, we explore the emission-line properties of photoionization models of active and inactive galaxies. Our aim is to identify new line-ratio diagnostics to discriminate between gas photoionization by active galactic nuclei (AGN) and star formation. We use a standard photoionization code to compute the emission from AGN narrow-line regions and compare this with calculations of the nebular emission from star-forming galaxies achieved using the same code. We confirm the appropriateness of widely used optical spectral diagnostics of nuclear activity versus star formation and explore new diagnostics at ultraviolet wavelengths. We find that combinations of a collisionally excited metal line or line multiplet, such as C IV λλ1548, 1551, O III] λλ1661, 1666, N III] λ1750, [Si III] λ1883+Si III] λ1892 and [C III] λ1907+C III] λ1909, with the He II λ1640 recombination line are individually good discriminants of the nature of the ionizing source. Diagrams involving at least three of these lines allow an even more stringent distinction between active and inactive galaxies, as well as valuable constraints on interstellar gas parameters and the shape of the ionizing radiation. Several line ratios involving Ne-based emission lines, such as [Ne IV] λ2424, [Ne III] λ3343 and [Ne V] λ3426, are also good diagnostics of nuclear activity. Our results provide a comprehensive framework to identify the sources of photoionization and physical conditions of the ionized gas from the ultraviolet and optical nebular emission from galaxies. This will be particularly useful to interpret observations of high-redshift galaxies with future facilities, such as the James Webb Space Telescope and extremely large ground-based telescopes.

  1. Follow-On OBS of W Ursae Majoris Stars

    NASA Astrophysics Data System (ADS)

    Eaton, Joel A.

    Recent ultraviolet observations have shown that chromospheric and transitionregion emission, which is roughly directly proportional to total radiative luminosity, is produced by practically all the W UMa binaries. This emission extends to earlier spectral type than it does for single stars. Further observations are needed to investigate the cutoff of this activity at early spectral type and to provide a better comparison between the binaries of spectral type A-F and those of type G-K. Other observations are needed to give ultraviolet (2000-3000K) light curves to be used to investigate the surface brightness distributions of both early and late-type W UMa binaries. These observations will provide the means to determine the gravity darkening and temperature difference between the components of several more systems in the way Eaton, Wu, and Rucinski did recently for W UMa with ANS data.

  2. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  3. New Insights on Late-A and Early-F Star Activity

    NASA Astrophysics Data System (ADS)

    Freire Ferrero, R.; Catalano, S.; Marilli, E.; Gouttebroze, P.; Talavera, A.; Bruhweiler, F.

    The onset of chromospheric activity in late-A and early-F stars is here discussed. The detection of Ly- emission core in several A and F atars with the IUE satellite, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0m.19 (Marilli et al., 1996). Semiempirical chromospheric models for Altair allowed us (Freire Ferrero et al., 1995) to explain the observed emission profiles taking into account normal H I interstellar (IS) absorption. However, due to the very high rotational velocity, we analysed alternative hypotheses to explain the observed emissions: (1) circumstellar or shell matter; (2) co-rotating expanding optically thin wind. We ruled out these hypotheses because their effects are negligible and as a consequence, this result reinforces the chromospheric origin of the observed Ly- core in Altair. The stars of our sample, having observed Ly- profilies similar to Altair's and similar stellar and IS properties, should reproduce similar chromospheric behaviour. Here we discuss several important questions that are raised by these results.

  4. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  5. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E.; Altieri, B.; Coia, D.; Charmandaris, V.; Daddi, E.; Le Floc'h, E.; Leiton, R.; Dasyra, K.; Dickinson, M.; Kartaltepe, J.; Hickox, R. C.; Ivison, R. J.; Magnelli, B.; Popesso, P.; Rosario, D.; and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  6. Application of active controls technology to the NASA Jet Star airplane

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.

    1975-01-01

    The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.

  7. THE EFFECT OF MAGNETIC ACTIVITY ON LOW-MASS STARS IN ECLIPSING BINARIES

    SciTech Connect

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Baraffe, Isabelle; Chabrier, Gilles

    2010-07-20

    In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed from models are {approx}5%-10% lower and {approx}3%-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when mainly distributed over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when {approx}35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of {approx}3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to the explanation of the differences seen in some of the systems with shorter orbital periods.

  8. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  9. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    SciTech Connect

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Trevisan, M.; Ponman, T. J.; Raychaudhury, S.; Mamon, G. A.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  10. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds

    NASA Astrophysics Data System (ADS)

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  11. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  12. Super-massive planets around late-type stars—the case of OGLE-2012-BLG-0406Lb

    SciTech Connect

    Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Szymański, Michał K.; Soszyński, Igor; Kubiak, Marcin; Pietrzyński, Grzegorz; Kozłowski, Szymon; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Jan; Wyrzykowski, Łukasz; Dong, Subo

    2014-02-10

    Super-Jupiter-mass planets should form only beyond the snow line of host stars. However, the core accretion theory of planetary formation does not predict super-Jupiters forming around low-mass hosts. We present a discovery of a 3.9 ± 1.2 M {sub Jup} mass planet orbiting the 0.59 ± 0.17 M {sub ☉} star using the gravitational microlensing method. During the event, the projected separation of the planet and the star is 3.9 ± 1.0 AU, i.e., the planet is significantly further from the host star than the snow line. This is the fourth such planet discovered using the microlensing technique and challenges the core accretion theory.

  13. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  14. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-11-20

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F{sub 1.4{sub GHz}} {approx}> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z {approx}< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  15. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  16. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  17. A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2013-06-20

    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.

  18. The Evolution of Accretion and Activity Signatures in Young A Stars

    NASA Astrophysics Data System (ADS)

    Williger, G. M.; Grady, C. A.; Hamaguchi, K.; Hubrig, S.; Bouret, J.-C.; Roberge, A.; Sahu, M.; Woodgate, B.; Kimble, R.

    2005-12-01

    FUV spectroscopy obtained with FUSE reveals excess continuum light in 12 lightly reddened Herbig Ae stars, as well as the routine presence of emission in a range of ionization stages sampling material from neutral atomic gas to transition region temperature plasma. The FUV excess light is correlated with the near IR colors of the stars which has previously been noted as a tracer of mass accretion rate. In several cases, sufficient data exist to demonstrate that FUV continuum variability is present and is correlated with changes in the FUV emission lines, particularly red-shifted material. Combining the FUV spectra with disk inclination data, we find that the red-shifted C III 1176 emission is seen for inclinations between 0 and 60 degrees with no dependence upon inclination in that range, as expected for funneled accretion scenarios. The FUV excess light and X-ray luminosity show the same evolutionary trend, dropping gradually over the 1st 10 Myr as long as the star is accreting material from the disk. Centrally-cleared A debris disk systems have X-ray luminosities which are at least 3 orders of magnitude fainter than the Herbig Ae stars, demonstrating that the X-ray emission is related to accretion and not to more conventional stellar activity. Plasma at transition region and chromospheric temperatures persists longer, at least in some systems. Recent magnetic field detections for 5 of the FUSE Herbig Ae stars and Beta Pictoris indicate that magnetic fields with typical field strengths of 50 to several hundred Gauss are present over the entire age range where the accretion signatures are seen. This study is based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. Data included in this study were obtained under FUSE GO Programs C126, D065, and the FUSE Legacy program E510. HST observations of HD 163296 and HD 104237 were obtained under HST

  19. Warm dust and aromatic bands as quantitative probes of star-formation activity

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Roussel, H.; Sauvage, M.; Charmandaris, V.

    2004-05-01

    We combine samples of spiral galaxies and starburst systems observed with ISOCAM on board ISO to investigate the reliability of mid-infrared dust emission as a quantitative tracer of star formation activity. The total sample covers very diverse galactic environments and probes a much wider dynamic range in star formation rate density than previous similar studies. We find that both the monochromatic 15 μm continuum and the 5-8.5 μm emission constitute excellent indicators of the star formation rate as quantified by the Lyman continuum luminosity LLyc, within specified validity limits which are different for the two tracers. Normalized to projected surface area, the 15 μm continuum luminosity Σ15 μm,ct is directly proportional to ΣLyc over several orders of magnitude. Two regimes are distinguished from the relative offsets in the observed relationship: the proportionality factor increases by a factor of ≈5 between quiescent disks in spiral galaxies, and moderate to extreme star-forming environments in circumnuclear regions of spirals and in starburst systems. The transition occurs near ΣLyc ˜ 102 L⊙ pc-2 and is interpreted as due to very small dust grains starting to dominate the emission at 15 μm over aromatic species above this threshold. The 5-8.5 μm luminosity per unit projected area is also directly proportional to the Lyman continuum luminosity, with a single conversion factor from the most quiescent objects included in the sample up to ΣLyc ˜ 104 L⊙ pc-2, where the relationship then flattens. The turnover is attributed to depletion of aromatic band carriers in the harsher conditions prevailing in extreme starburst environments. The observed relationships provide empirical calibrations useful for estimating star formation rates from mid-infrared observations, much less affected by extinction than optical and near-infrared tracers in deeply embedded H II regions and obscured starbursts, as well as for theoretical predictions from evolutionary

  20. An Evolutionary Model for Collapsing Molecular Clouds and their Star Formation Activity. II. Mass Dependence of the Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M max <~ 104 M ⊙) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ~104 M ⊙ Myr-1, although their time-averaged SFR is only langSFRrang ~ 102 M ⊙ Myr-1. The corresponding efficiencies are SFEfinal <~ 60% and langSFErang <~ 1%. For more massive clouds (M max >~ 105 M ⊙), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, langSFRrang and langSFErang are well represented by the fits langSFRrang ≈ 100(1 + M max/1.4 × 105 M ⊙)1.68 M ⊙ Myr-1 and langSFErang ≈ 0.03(M max/2.5 × 105 M ⊙)0.33, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao & Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  1. Chromospheric activity and lithium line variations in the spectra of the spotted star LQ Hydrae

    NASA Astrophysics Data System (ADS)

    Flores Soriano, M.; Strassmeier, K. G.; Weber, M.

    2015-03-01

    Context. Although the relationship between lithium abundance in stars and their magnetic activity is commonly accepted, it is still unclear how the different phenomena related to it can increase the amount of Li, reduce its depletion, or be a source of bias for the measurements. Aims: We study the rotational modulation of chromospheric and photospheric parameters of the young, active, single K2 dwarf LQ Hya and their connection with the variability of the Li i 6708 Å line. Methods: A total of 199 high-resolution STELLA spectra and quasi-simultaneous photometry were used to compute effective temperature, gravity, and chromospheric activity indicators such as Hα and Hβ emission, Balmer decrement, and chromospheric electron density, as a function of the rotational phase. The variation of the Li i 6708 Å line was characterized in terms of equivalent width, abundance, and of 6Li/7Li isotopic ratio in the form of line shifts. Results: Photospheric and chromospheric parameters show clear rotational modulation. Effective temperatures and continuum variations reveal a higher concentration of cool spots on the side of the star on which we also detect stronger chromospheric activity. Increased electron densities and the modulation of the He i D3 line suggest that the source of this activity can be a combination of plages and repeated low-intensity flares. The Li line and other temperature-sensitive lines are clearly enhanced by the spots located on the most active side of the star. Li abundances calculated taking into account the temperature variations simultaneously show, although with high dispersion, a small overabundance of this element that correlates well with the surface magnetic activity. In addition, the Li line center is more intensely redshifted than in the other hemisphere, which might be interpreted as a weak enrichment of 6Li. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Vienna

  2. Hide and Seek: Radial-Velocity Searches for Planets around Active Stars

    NASA Astrophysics Data System (ADS)

    Haywood, Raphaëlle Dawn

    2015-11-01

    The detection of low-mass extra-solar planets through radial-velocity searches is currently limited by the intrinsic magnetic activity of the host stars. The correlated noise that arises from their natural radial-velocity variability can easily mimic or conceal the orbital signals of super-Earth and Earth-mass extra-solar planets. I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the photometric variations of the star, thus allowing me to determine precise and reliable planetary masses. I applied this technique to three recently discovered planetary systems: CoRoT-7, Kepler-78 and Kepler-10. I determined the masses of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be 4.73 ± 0.95 M⊕ and 13.56 ± 1.08 M⊕, respectively. The density of CoRoT-7b is 6.61 ± 1.72 g.cm-3, which is compatible with a rocky composition. I carried out Bayesian model selection to assess the nature of a previously identified signal at 9 days, and found that it is best interpreted as stellar activity. Despite the high levels of activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to be 1.76 ± 0.18 M⊕. With a density of 6.2(+1.8:-1.4) g.cm-3, it is also a rocky planet. I found the masses of Kepler-10b and Kepler-10c to be 3.31 ± 0.32 M⊕ and 16.25 ± 3.66 M⊕, respectively. Their densities, of 6.4(+1.1:-0.7) g.cm-3 and 8.1 ± 1.8 g.cm-3, imply that they are both of rocky composition - even the 2 Earth-radius planet Kepler-10c! In parallel, I deepened our understanding of the physical origin of stellar radial-velocity variability through the study of the Sun, which is the only star whose surface can be imaged at high resolution. I found that the full-disc magnetic flux is an excellent proxy for activity-induced radial-velocity variations; this result may become key to breaking the activity barrier in coming

  3. HATS-2b: A transiting extrasolar planet orbiting a K-type star showing starspot activity

    NASA Astrophysics Data System (ADS)

    Mohler-Fischer, M.; Mancini, L.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Bayliss, D.; Jordán, A.; Csubry, Z.; Zhou, G.; Rabus, M.; Nikolov, N.; Brahm, R.; Espinoza, N.; Buchhave, L. A.; Béky, B.; Suc, V.; Csák, B.; Henning, T.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Schmidt, B.; Noyes, R. W.; Papp, I.; Lázár, J.; Sári, P.; Conroy, P.

    2013-10-01

    We report the discovery of HATS-2b, the second transiting extrasolar planet detected by the HATSouth survey. HATS-2b is moving on a circular orbit around a V = 13.6 mag, K-type dwarf star (GSC 6665-00236), at a separation of 0.0230 ± 0.0003 AU and with a period of 1.3541 days. The planetary parameters have been robustly determined using a simultaneous fit of the HATSouth, MPG/ESO 2.2 m/GROND, Faulkes Telescope South/Spectral transit photometry, and MPG/ESO 2.2 m/FEROS, Euler 1.2 m/CORALIE, AAT 3.9 m/CYCLOPS radial-velocity measurements. HATS-2b has a mass of 1.37 ± 0.16 MJ, a radius of 1.14 ± 0.03 RJ, and an equilibrium temperature of 1567 ± 30 K. The host star has a mass of 0.88 ± 0.04 M⊙ and a radius of 0.89 ± 0.02 R⊙, and it shows starspot activity. We characterized the stellar activity by analyzing two photometric follow-up transit light curves taken with the GROND instrument, both obtained simultaneously in four optical bands (covering the wavelength range of 3860-9520 Å). The two light curves contain anomalies compatible with starspots on the photosphere of the host star along the same transit chord. Tables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A55

  4. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  5. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  6. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Endl, Michael; Cochran, William D.; Meschiari, Stefano; Robertson, Paul; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Hatzes, Artie P.; Ramírez, Ivan; Wittenmyer, Robert A.

    2016-04-01

    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca ii SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M{sin}i\\gt 0.36{M}J at 12 years (corresponding to the orbital period of Jupiter) and M{sin}i\\gt 0.72{M}J at a period of 16.4 years (assuming a circular orbit for an outer companion).

  7. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  8. How similar is the stellar structure of low-mass late-type galaxies to that of early-type dwarfs?

    NASA Astrophysics Data System (ADS)

    Janz, J.; Laurikainen, E.; Laine, J.; Salo, H.; Lisker, T.

    2016-09-01

    We analyse structural decompositions of 500 late-type galaxies (Hubble T-type ≥6) from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Salo et al.), spanning stellar mass range of about 107 to a few times 1010 M⊙. Their decomposition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of 2 larger than in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low- and high-density environmental bins, it is noticeable that both the inner and outer components of late types in the high local density galaxies are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late- and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.

  9. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  10. Mid- to far-infrared properties of star-forming galaxies and active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Magdis, G. E.; Rigopoulou, D.; Helou, G.; Farrah, D.; Hurley, P.; Alonso-Herrero, A.; Bock, J.; Burgarella, D.; Chapman, S.; Charmandaris, V.; Cooray, A.; Dai, Y. Sophia; Dale, D.; Elbaz, D.; Feltre, A.; Hatziminaoglou, E.; Huang, J.-S.; Morrison, G.; Oliver, S.; Page, M.; Scott, D.; Shi, Y.

    2013-10-01

    We study the mid- to far-IR properties of a 24 μm-selected flux-limited sample (S24> 5 mJy) of 154 intermediate redshift (⟨ z ⟩ ~ 0.15), infrared luminous galaxies, drawn from the 5 Milli-Jansky Unbiased Spitzer Extragalactic Survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the Herschel Multi-tiered Extragalactic Survey, we derived robust total infrared luminosity (LIR) and dust mass (Mdust) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total (8-1000 μm) infrared emission of galaxies with weak 6.2 μm PAH emission (EW6.2 ≤ 0.2 μm) is dominated by AGN activity, while for galaxies with EW6.2> 0.2 μm more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500 μm Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8 μm luminosity ratio, IR8 ≡ LIR/L8 and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHsemission, and not by variations in the 5-15 μm mid-IR continuum emission. Using the [Ne iii]/[Ne ii] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Mdust), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument

  11. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  12. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-age, Late-type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  13. LONG-TERM CHROMOSPHERIC ACTIVITY IN SOUTHERN M DWARFS: Gl 229 A AND Gl 752 A

    SciTech Connect

    Buccino, Andrea P.; Luoni, MarIa Luisa; Abrevaya, Ximena C.; Mauas, Pablo J. D.; DIaz, Rodrigo F.

    2011-02-15

    Several late-type stars present activity cycles similar to that of the Sun. However, these cycles have been mostly studied in F to K stars. Due to their small intrinsic brightness, M dwarfs are not usually the targets of long-term observational studies of stellar activity, and their long-term variability is generally not known. In this work, we study the long-term activity of two M dwarf stars: Gl 229 A (M1/2) and Gl 752 A (M2.5). We employ medium-resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO between 2000 and 2010, and photometric observations obtained from the ASAS database. We analyze Ca II K line-core fluxes and the mean V magnitude with the Lomb-Scargle periodogram, and we obtain possible activity cycles of {approx}4 yr for Gl 229 A and {approx}7 yr for Gl 752 A.

  14. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  15. VizieR Online Data Catalog: Stellar activity and kinematics of FGK stars (Murgas+, 2013)

    NASA Astrophysics Data System (ADS)

    Murgas, F.; Jenkins, J. S.; Rojo, P.; Jones, H. R. A.; Pinfield, D. J.

    2013-02-01

    We present a compilation of stellar activity catalogs combined with galactic velocity information of 2529 F, G, and K stars. The stellar activity catalogs use in this work are: Jenkins et al. 2011 (Cat. J/A+A/531/A8); Gray et al. 2003 (Cat. J/AJ/126/2048), 2006 (Cat. J/AJ/132/161); Henry et al 1996 (Cat. J/A+A/111/439); Wright et al. 2004 (Cat. J/ApJS/152/261); Duncan et al. (1991ApJS...76..383D, Cat. III/159). The galactic velocities are taken from the Jenkins et al. 2011 (Cat. J/A+A/531/A8) and the Geneva-Copenhaguen Survey (GCS) Nordstrom et al. (2004A&A...418..989N, Cat. V/117). (1 data file).

  16. A NEW MULTI-BAND RADIAL VELOCITY TECHNIQUE FOR DETECTING EXOPLANETS AROUND ACTIVE STARS

    SciTech Connect

    Ma Bo; Ge Jian E-mail: jge@astrto.ufl.edu

    2012-05-10

    The radial velocity (RV) technique is one of the most efficient ways of detecting exoplanets. However, large RV jitters induced by starspots on an active star can inhibit detection of any exoplanet present or even lead to a false positive detection. This paper presents a new multi-band RV technique capable of substantially reducing starspot-induced RV jitters from stellar RV measurements to allow efficient and accurate extraction of RV signals caused by exoplanets. It takes full advantage of the correlation of RV jitters at different spectral bands and the independence of exoplanet signals at the corresponding bands. Simulations with a single-spot model and a multi-spot model have been conducted to investigate the RV jitter reduction capability of this method. The results show that this method can reduce the RV jitter amplitude by at least an order of magnitude, allowing detection of weaker exoplanet signals without significantly increasing RV observation time and cadence. This method can greatly reduce the observation time required to detect Earth-like planets around solar type stars with {approx}0.1 m s{sup -1} long term Doppler precision if spot-induced jitter is the dominant astrophysical noise source for RV measurements. This method can work efficiently for RV jitter removal if: (1) all the spots on a target star have approximately the same temperature during RV observations; (2) the RV jitter amplitude changes with wavelength, i.e., the RV jitter amplitude ratio, {alpha}, between two different spectral bands is not close to one; (3) the spot-induced RV jitter dominates the RV measurement error.

  17. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  18. Detection of a Molecular Disk Orbiting the Nearby, "old," Classical T Tauri Star MP Muscae

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Hily-Blant, Pierry; Sacco, G. G.; Forveille, Thierry; Zuckerman, B.

    2010-11-01

    We have used the Atacama Pathfinder Experiment 12 m telescope to detect circumstellar CO emission from MP Muscae (MP Mus; K1 IVe), a nearby (D ~ 100 pc), actively accreting, ~7 Myr old pre-main-sequence (pre-MS) star. The CO emission line profile measured for MP Mus is indicative of an orbiting disk with radius ~120 AU, assuming that the central star mass is 1.2 M sun and the disk inclination is i ~ 30°. The inferred disk molecular gas mass is ~3 M ⊕. MP Mus thereby joins TW Hya and V4046 Sgr as the only late-type (low-mass), pre-MS star systems within ~100 pc of Earth that are known to retain orbiting, molecular disks. We also report the nondetection (with the Institut de Radio Astronomie Millimetrique 30 m telescope) of CO emission from another 10 nearby (D <~ 100 pc), dusty, young (age ~10-100 Myr) field stars of spectral type A-G. We discuss the implications of these results for the timescales for stellar and Jovian planet accretion from, and dissipation of, molecular disks around young stars. This research is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, proposal number 385.C-0143, with the Atacama Pathfinder Experiment (APEX).

  19. DETECTION OF A MOLECULAR DISK ORBITING THE NEARBY, 'OLD', CLASSICAL T TAURI STAR MP MUSCAE

    SciTech Connect

    Kastner, Joel H.; Sacco, G. G.; Hily-Blant, Pierry; Forveille, Thierry; Zuckerman, B.

    2010-11-10

    We have used the Atacama Pathfinder Experiment 12 m telescope to detect circumstellar CO emission from MP Muscae (MP Mus; K1 IVe), a nearby (D {approx} 100 pc), actively accreting, {approx}7 Myr old pre-main-sequence (pre-MS) star. The CO emission line profile measured for MP Mus is indicative of an orbiting disk with radius {approx}120 AU, assuming that the central star mass is 1.2 M {sub sun} and the disk inclination is i {approx} 30{sup 0}. The inferred disk molecular gas mass is {approx}3 M {sub +}. MP Mus thereby joins TW Hya and V4046 Sgr as the only late-type (low-mass), pre-MS star systems within {approx}100 pc of Earth that are known to retain orbiting, molecular disks. We also report the nondetection (with the Institut de Radio Astronomie Millimetrique 30 m telescope) of CO emission from another 10 nearby (D {approx_lt} 100 pc), dusty, young (age {approx}10-100 Myr) field stars of spectral type A-G. We discuss the implications of these results for the timescales for stellar and Jovian planet accretion from, and dissipation of, molecular disks around young stars.

  20. Magnetic fields in A-type stars associated with X-ray emission

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-06-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars.

  1. Magnetic fields in X-ray emitting A-type stars

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-04-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this hypothesis can be shown to be correct in some cases, there is also evidence suggesting that low-mass companions cannot be the proper cause for the observed X-ray activity in all cases. Babel and Montmerle (1997) presented a theoretical framework to explain the X-ray emission from magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. We test whether this theoretical model is capable of explaining the observed X-ray emissions. We present observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS 1. Although the emission of those objects with magnetic fields does fit the prediction of the Babel & Montmerle model, not all X-ray detections are related to the presence of a magnetic field. Additionally, the strengths of magnetic fields do not correlate with the X-ray luminosity and thus the magnetically-confined wind shock model cannot explain the X-ray emission from all investigated stars.

  2. Serendipitous Chandra X-ray Spectroscopy of GALEX Nearby Young-Star Survey (GALNYSS) Candidates

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Baum, N.; Principe, D.; Rodriguez, D.

    2014-01-01

    More than 2000 candidate young (age 10-100 Myr) low-mass stars within ~100 pc of Earth have been identified by the Galex Nearby Young-Star Survey (GALNYSS), via the combination of ultraviolet (Galex) and near-IR (WISE and 2MASS) photometry and kinematic data. Among these candidates, we find more than a dozen objects for which serendipitous archival Chandra X-ray observations are available. The spectral types for these objects, if stellar, range from early- to mid-M. Hence, this serendipitously observed subsample affords the opportunity to study the X-ray emission characteristics of young stars at the low-mass end of the stellar mass spectrum. We present preliminary results of spectral analysis, including estimates of plasma temperature, intervening absorption, and intrinsic X-ray luminosities, for these Chandra X-ray counterparts to GALNYSS candidates. These results will be used both to confirm young, late-type star status and to investigate the evolution of magnetic (coronal) activity in stars whose masses potentially range from a few tenths of a solar mass down to near the H-burning limit. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile.

  3. Photospheric Activity in Selected Be STARS: lambda Eri and gamma Cas

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1994-01-01

    Recent observations of rapid variations in optical He I lines, X-rays, and FUV wavelengths in the prototypical classical Be stars lambda Eri and star gamma Cas hint that the violent processes occur on the surfaces of these stars almost all the time. We suggest that of these phenomena show greater similarities with magnetic flaring than any other process through to occur on stars.

  4. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  5. MHD seismology as a tool to diagnose the coronae of X-ray active sun-like flaring stars

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Lalitha, Sairam

    It is now well accepted that the detection of impulsively generated multiple MHD modes are potentially used in diagnosing the local plasma conditions of the solar corona. Analogously, such analyses can also be significantly used in diagnosing the coronae of X-ray active Sun-like stars. In the present paper, we briefly review the detection of MHD modes in coronae of some X-ray active Sun-like stars, e.g. Proxima Centauri, ξ-Boo etc using XMM-Newton observations, and discuss the implications in deriving physical information about their localized magnetic atmosphere. We conclude that the refinement in the MHD seismology of solar corona is also providing the best analogy to develop the stellar seismology of magnetically active and flaring Sun-like stars to deduce the local physical conditions of their coronae.

  6. Star formation activity in the southern Galactic H II region G351.63-1.25

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.

    2014-06-01

    The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.

  7. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Davies, R. I.

    2013-08-01

    Galactic gas-gas collisions involving a turbulent multiphase interstellar medium (ISM) share common ISM properties: dense extraplanar gas visible in CO, large linewidths (≳50 km s-1), strong mid-infrared H2 line emission, low star formation activity, and strong radio continuum emission. Gas-gas collisions can occur in the form of ram pressure stripping caused by the rapid motion of a spiral galaxy within the intracluster medium, galaxy head-on collisions, compression of the intragroup gas and/or galaxy ISM by an intruder galaxy which flies through the galaxy group at a high velocity, or external gas accretion on an existing gas torus in a galactic center. We suggest that the common theme of all these gas-gas interactions is adiabatic compression of the ISM leading to an increase of the turbulent velocity dispersion of the gas. The turbulent gas clouds are then overpressured and star formation is quenched. Within this scenario we developed a model for turbulent clumpy gas disks where the energy to drive turbulence is supplied by external infall or the gain of potential energy by radial gas accretion within the disk. The cloud size is determined by the size of a continuous (C-type) shock propagating in dense molecular clouds with a low ionization fraction at a given velocity dispersion. We give expressions for the expected volume and area filling factors, mass, density, column density, and velocity dispersion of the clouds. The latter is based on scaling relations of intermittent turbulence whose open parameters are estimated for the circumnuclear disk in the Galactic center. The properties of the model gas clouds (~0.1 pc, ~100 M⊙, Δv ≳ 6 km s-1) and the external mass accretion rate necessary for the quenching of the star formation rate due to adiabatic compression (Ṁ ~ 1-10 M⊙ yr-1) are consistent with those derived from high-resolution H2 2.12 μm line observations. Based on these findings, a scenario for the evolution of gas tori in galactic centers is

  8. Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    NASA Astrophysics Data System (ADS)

    Buccino, A. P.; Mauas, P. J. D.

    2009-02-01

    Context: The IUE database provides several UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims: Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22 468 (V711 Tau, HR 1099, K1IV+G5V), HD 21 242 (UX Ari, K0IV+G5V), and HD 224 085 (II Peg, K2IV). Methods: We first obtained the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we used the Lomb-Scargle periodogram to analyse the mean annual index < S> and the amplitude of the rotational modulation of the index S. Results: For HD 22 468 (V711 Tau, HR 1099), we find a possible chromospheric cycle with a period of ~18 years and a shorter cycle with a period of ~3 years, which could be associated to a chromospheric “flip-flop” cycle. The data of HD 224 085 (II Peg) also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~7 years for HD 21 242 (UX Ari).

  9. A Re-Analysis of Einstein SSS Spectra of Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; White, N. E.

    1992-12-01

    We have re-analyzed the highest signal-to-noise spectra that were obtained by the Einstein Solid State Spectrometer (SSS) of active RS CVn binary stars. We compare our results with those obtained by Swank et al. (1981, ApJ, 246, 208) who also analyzed these same data. The new analysis incorporates several improvements over the original: (i) it makes use of the improved understanding of the SSS instrument response matrix and of how to correct the observed spectrum for the affect of the ice build-up on the detector window; (ii) it uses the simultaneously obtained Einstein Monitor Proportional Counter (MPC) data to constrain more tightly the high-temperature thermal emission component; and (iii) it uses modern versions of the Mewe and Gronenschild and Raymond and Smith plasma codes to model the data. We discuss in some detail the X-ray spectrum of the nearby giant binary system Capella which is anomalously soft compared to the other binary stars, and for which the fit to the data of a two-component thermal emission model is by far the worst. In addition, we analyze the Exosat Transmission Grating Spectrometer spectrum of Capella and contrast the best-fit model to these data with the best-fit model to the SSS spectrum.

  10. Rotational modulation of the chromospheric activity in the young solar-type star, X-1 Orionis

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Simon, T.

    1982-01-01

    The IUE satellite was used to observe one of the youngest G stars (GO V) for which Duncan (1981) derives an age of 6 x 10 to the 8th power years from the Li abundance. Rotational modulation was looked for in the emission flux in the chromospheric and transition region lines of this star. Variations in the Ca 11 K-lines profile were studied with the CHF telescope at Mauna Kea. Results show that the same modulation of the emission flux of Ca 11 due to stellar rotation is present in the transition region feature of C IV and probably of He II. For other UV lines the modulation is not apparent, due to a more complex surface distribution of the active areas or supergranulation network, or a shorter lifetime of the conditions which give rise to these features, or to the uncertainities in the measured line strengths. The Mg II emission flux is constant to within + or - 3.4% implying a rather uniform distribution of Mg II emission areas. The Ca II emission not only shows a measurable variation in intensity but also variations in detailed line profile shape when observed at high resolution.

  11. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  12. Activity-brightness Correlations For The Sun And Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Preminger, D.; Chapman, G.; Cookson, A.

    2011-05-01

    We examine the effects of active regions on the relative brightness of the solar disk at three different wavelengths. Our study is based on photometric parameters derived from images taken at the San Fernando Observatory, and examines daily data for two full solar cycles. We measure the contrast of solar features on broadband red and blue images, and on Ca II K-line images, which allows us to compute the net brightness variations due to solar activity. We show that while the Ca II K-line variability is directly correlated with the solar activity cycle, variability in the red and blue continuum is anti-correlated with solar activity, on solar cycle timescales. Our blue and red continuum filters are quite similar to the Stromgren b and y filters used to measure stellar photometric variability. Sun-like stars whose continuum brightness varies inversely with activity are therefore revealed to be similar to the Sun. This work has been supported in part by NASA LWS Grant NNX07AT19G and NSF Grant ATM-0848518.

  13. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  14. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  15. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    SciTech Connect

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de E-mail: akniazev@saao.ac.za

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the

  16. Coronal and transition-region Doppler shifts of an active region 3D-MHD model as indicator for the magnetic activity cycle of solar-like stars

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe A.

    2015-08-01

    For the Sun and solar-like stars, Doppler blueshifts are observed in the hot corona, while in average redshifts are seen in the cooler transition region layer below the corona. This clearly contradicts the idea of a continuous flow-equilibrium starting from a star's atmosphere and forming the stellar wind. To explain this, we implement a 3D-MHD model of the solar corona above an observed active region and use an atomic database to obtain the emission from the million Kelvin hot plasma. The generated EUV-bright loops system from the model compares well to the observed coronal loops. Therefore, we have access to realistic plasma parameters, including the flow dynamics within the active region core, and can derive total spectra as if we look the Sun as a star. We compare the model spectra to actual statistical observations of the Sun taken at different magnetic activity levels. We find characteristic Doppler-shift statistics that can be used to identify the magnetic activity state of the Sun and solar-like stars. This should help to model the variability of such stars by inferring their activity level from total spectra of coronal and transition-region emission lines.

  17. The photometric variability of the chromospherically active binary star HD 80715

    NASA Technical Reports Server (NTRS)

    Strassmeier, Klaus G.; Hooten, James T.; Hall, Douglas S.; Fekel, Francis C.

    1989-01-01

    Differential UBVRI photometry of the double-lined BY Dra system HD 80715 (K3 V + K3 V) obtained in December 1987 is presented. The star is found to be a variable with a full amplitude of 0.06 mag in V and a period similar or equal to the orbital period of 3.804 days. The mechanism of the variability is interpreted as rotational modulation due to dark starspots. In an attempt to detect chromospheric activity, high-resolution CCD spectra were obtained at Ca II H and K and at Fe I 6430 A and Ca I 6439 A, the photospheric lines normally used for Doppler imaging. HD 80715 shows double H and K emission features at a constant flux level for each component.

  18. A Search for Hard X-ray Emission from Active Stars Using CGRO/BATSE

    NASA Astrophysics Data System (ADS)

    White, S. M.; Harmon, B. A.; Lim, J.; Kundu, M. R.

    We report the results of a search for > 20 keV photons from active stars using CGRO/BATSE Earth-occultation observations. Twelve of the "usual suspects" together with 12 "placebo" locations have been analyzed using the BATSE software for occultation analysis developed at NASA/MSFC. There are four detections at the nominal 5sigma level, and eight at the 3sigma level. However the strongest detection (that of AB Dor) shows clear evidence for contamination from the nearby strong source LMC X-4. 18 of the 24 fields yield positive fluxes, indicating a clear bias in the results, and possibly indicating the presence of weak background hard X-ray sources detectable by BATSE in long-term studies.

  19. Chromospheric activity in Delta Scuti stars - The suspected variable Tau Cygni

    NASA Technical Reports Server (NTRS)

    Fracassini, M.; Pasinetti Fracassini, L. E.; Mariani, A.; Pastori, L.; Teays, T. J.

    1991-01-01

    High-resolution IUE spectra of the suspected variable Tau Cyg were obtained to search for a possible variability of the Mg II h, k double-peaked emission. The observations, spanning an interval of about 6.3 h, have shown flux excursions within or just near 15 percent, a value suggested as the detection limit of actual variations with IUE spectra. A variability, difficult to explain, could be present in the ratios Fk2v/Fk2r. The emission fluxes seem to be higher than those of the Delta Scuti variables Rho Pup and Beta Cas. This comparison could give some insights on the possible role of the convection on the pulsational and chromospheric activities of Tau Cyg. A positive correlation between the total emission fluxes and the rotational velocities of these stars was found.

  20. Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Pozzi, F.; Zamorani, G.; Vignali, C.

    2011-09-01

    We present a new backward evolution model for galaxies and active galactic nuclei (AGNs) in the infrared (IR). What is new in this model is the separate study of the evolutionary properties of different IR populations (i.e. spiral galaxies, starburst galaxies, low-luminosity AGNs, 'unobscured' type 1 AGNs and 'obscured' type 2 AGNs) defined through a detailed analysis of the spectral energy distributions (SEDs) of large samples of IR-selected sources. The evolutionary parameters have been constrained by means of all the available observables from surveys in the mid- and far-IR (source counts, redshift and luminosity distributions, luminosity functions). By decomposing the SEDs representative of the three AGN classes into three distinct components (a stellar component emitting most of its power in the optical/near-IR, an AGN component due to the hot dust heated by the central black hole peaking in the mid-IR, and a starburst component dominating the far-IR spectrum), we have disentangled the AGN contribution to the monochromatic and total IR luminosity emitted by different populations considered in our model from that due to star formation activity. We have then obtained an estimate of the total IR luminosity density [and star formation density (SFD) produced by IR galaxies] and the first ever estimate of the black hole mass accretion density (BHAR) from the IR. The derived evolution of the BHAR is in agreement with estimates from X-rays, though the BHAR values we derive from the IR are slightly higher than the X-ray ones. Finally, we have simulated source counts, redshift distributions, and SFD and BHAR that we expect to obtain with the future cosmological surveys in the mid-/far-IR that will be performed with the JWST-MIRI and SPICA-SAFARI. Outputs of the model are available online.1

  1. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  2. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    SciTech Connect

    Esquej, P.; Alonso-Herrero, A.; Hernán-Caballero, A.; González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M.; Roche, P.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  3. Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Esquej, P.; Alonso-Herrero, A.; González-Martín, O.; Hönig, S. F.; Hernán-Caballero, A.; Roche, P.; Ramos Almeida, C.; Mason, R. E.; Díaz-Santos, T.; Levenson, N. A.; Aretxaga, I.; Rodríguez Espinosa, J. M.; Packham, C.

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, \\dot{M}_BH) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (~0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ~65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M ⊙ yr-1 kpc-2) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ~65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and \\dot{M}_BH and showed that numerical simulations reproduce our observed relation fairly well.

  4. The 2006/2007 photometric activity of three chromospherically active stars: V2075 Cyg, FG UMa and BM CVn

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Soydugan, E.; Bakış, H.; Doğru, D.; Doğru, S. S.; Tüysüz, M.; Kaçar, Y.; Dönmez, A.; Soydugan, F.

    2009-08-01

    We present new multiband CCD photometric observations of three chromospherically active stars with long periods (V2075 Cyg, FG UMa and BM CVn). The observations were made at the Çanakkale Onsekiz Mart University Observatory in 2006 and 2007. We analyzed BVRI (Bessell) CCD observations of these three RS CVn-type SB1 binaries with the following three steps: (i) Photometric rotation periods were obtained by analyzing their light variations with a differential corrections method and a Fourier transform technique. (ii) Light variations, observed over three or more consecutive orbital cycles, were investigated by using dark (cool) spot models with the program SPOT. (iii) Surface differential rotation coefficients for the primary components of these binaries were derived using our own photometric periods together with orbital periods taken from the literature.

  5. Constraints on Feedback in the Local Universe: The Relation between Star Formation and AGN Activity in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi A.; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2016-02-01

    We address the relation between star formation and active galactic nucleus (AGN) activity in a sample of 231 nearby (0.0002 < z < 0.0358) early-type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR, and radio. Our results indicate that early-type galaxies in the current epoch are rarely powerful AGNs, with P\\lt {10}22 {{WHz}}-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The star formation rate (SFR) of these galaxies is less than 0.1 M⊙ yr-1. They also tend to be radio faint (P\\lt {10}22 {{WHz}}-1). There is a nearly equal fraction of star-forming galaxies in radio faint (P\\lt {10}22 {{WHz}}-1) and radio bright galaxies (P≥slant {10}22 {{WHz}}-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  6. Stars and star systems

    NASA Astrophysics Data System (ADS)

    Martynov, D. Ia.

    Topics examined include close binary systems, supernovae and their remnants, variable stars, young star groups (e.g., clusters and associations), spherical star clusters, and planetary nebulae. Also considered are the interstellar medium and star formation, systems of galaxies, and current problems in cosmology.

  7. Stellar activity and coronal heating: an overview of recent results.

    PubMed

    Testa, Paola; Saar, Steven H; Drake, Jeremy J

    2015-05-28

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  8. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  9. WZ Cephei: A Dynamically Active W UMa-Type Binary Star

    NASA Astrophysics Data System (ADS)

    Jeong, Jang-Hae; Kim, Chun-Hwey

    2011-09-01

    An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of -9.d97 × 10-8 y-1, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of -6.d72 × 10-8 y-1 due to AML contributes about 67% to the observed period decrease. The mass flow of about 5.16 × 10-8 M⊙ y-1 from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an 11.y8 period with amplitude of 0.d0054 and a 41.y3 period with amplitude of 0.d0178. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of 0.30 M⊙ for the shorter period and 0.49 M⊙ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical

  10. Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, R.; Maldonado, J.; Montes, D.; Eiroa, C.; Montesinos, B.

    2010-09-01

    Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca ii H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF echelle package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity

  11. ENVIRONMENTAL EFFECTS ON STAR FORMATION ACTIVITY AT z {approx} 0.9 IN THE COSMOS FIELD

    SciTech Connect

    Kajisawa, M.; Shioya, Y.; Taniguchi, Y.; Nagao, T.; Matsubayashi, K.; Riguccini, L.; Aida, Y.; Ideue, Y.; Murayama, T.

    2013-05-01

    We investigated the fraction of [O II] emitters in galaxies at z {approx} 0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 deg{sup 2} field. [O II] emitters are selected by the narrowband excess technique with the NB711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z-selected galaxies with M{sub U3500} < -19.31 at z = 0.901 - 0.920, which includes 195 [O II] emitters, to directly compare the results with our previous study at z {approx} 1.2. We found that the fraction is almost constant at 0.3 Mpc{sup -2} < {Sigma}{sub 10th} < 10 Mpc{sup -2}. We also checked the fraction of galaxies with blue rest-frame colors of NUV - R < 2 in our photo-z-selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z {approx} 0.9 decreases with increasing projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [O II] emitters decreases from {approx}60% at z {approx} 1.2 to {approx}30% at z {approx} 0.9 independent of galaxy environment. The decrease of the [O II] emitter fraction could be explained mainly by the rapid decrease of star formation activity in the universe from z {approx} 1.2 to z {approx} 0.9.

  12. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  13. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  14. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Santerne, A.; Almenara, J.-M.; Anderson, D. R.; Collier-Cameron, A.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Udry, S.; Van Grootel, V.; West, R. G.

    2016-06-01

    We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body.

  15. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. PMID:25002267

  16. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices

    NASA Astrophysics Data System (ADS)

    Gomes da Silva, J.; Santos, N. C.; Bonfils, X.; Delfosse, X.; Forveille, T.; Udry, S.

    2011-10-01

    Context. The search for extra-solar planets similar to Earth is becoming a reality, but as the level of the measured radial-velocity reaches the sub-m s-1, stellar intrinsic sources of noise capable of hiding the signal of these planets from scrutiny become more important. Aims: Other stars are known to have magnetic cycles similar to that of the Sun. The relationship between these activity variations and the observed radial-velocity is still not satisfactorily understood. Following our previous work, which studied the correlation between activity cycles and long-term velocity variations for K dwarfs, we now expand it to the lower end of the main sequence. In this first paper our aim is to assess the long-term activity variations in the low end of the main sequence, having in mind a planetary search perspective. Methods: We used a sample of 30 M0-M5.5 stars from the HARPS M-dwarf planet search program with a median timespan of observations of 5.2 years. We computed chromospheric activity indicators based on the Ca ii H and K, Hα, He i D3, and Na i D1 and D2 lines. All data were binned to average out undesired effects such as rotationally modulated atmospheric inhomogeneities. We searched for long-term variability of each index and determined the correlations between them. Results: While the SCa II, Hα, and Na i indices showed significant variability for a fraction of our stellar sample (39%, 33%, and 37%, respectively), only 10% of our stars presented significant variability in the He i index. We therefore conclude that this index is a poor activity indicator at least for this type of stars. Although the Hα shows good correlation with SCa II for the most active stars, the correlation is lost when the activity level decreases. This result appears to indicate that the Ca ii - Hα correlation is dependent on the activity level of the star. The Na i lines correlate very well with the SCa II index for the stars with low activity levels we used, and are thus a good

  17. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  18. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    PubMed

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  19. Reliable Radii for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Mann, Andrew; Feiden, Gregory A.; Gaidos, Eric

    2015-01-01

    Precise and accurate parameters for late-type (late K and M) dwarf stars are critical for characterizing their planets. A deluge of planets discovered by Kepler has driven the need for even more precise stellar radii. We present our efforts to better constrain the luminosity-radius and Teff-radius relations for late-type (K5-M6) stars, taking advantage of improved techniques to calculate bolometric fluxes and [Fe/H] for M dwarfs. We determine effective temperatures for these stars by comparing observed spectra to atmospheric models, and confirm the accuracy of these temperatures using stars with temperatures determined from long-baseline optical interferometry. Using the Stefan-Boltzmann law we can empirically determine radii for these stars to better than 5%. We find the Teff-radius relation depends strongly on [Fe/H], which was missed in earlier studies that used smaller samples or less precise methods. We expect our empirical relations to be increasingly useful with the arrival of Gaia parallaxes in the near future.

  20. FUV Spectra of Evolved Late-K and M Stars: Mass Loss Revisited and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2002-01-01

    This is the final report for the FUSE Cycle 1 program A100: FUV Spectra of Evolved Late-K and M Stars: Mass Loss revisited and Stellar Activity. Targets alpha TrA (K3 II) and gamma Cru (M3 III) were originally assigned 25 ksec each, to be observed in the medium aperture. Once the in-flight performance and telescope alignment problems were known, the observations were reprogrammed to optimized the scientific return of the program. Alpha TrA was scheduled for 25 ksec observations in both the medium and large apertures. The principle aim of this program was to measure the stellar FUV line and continuum emission, in order to estimate the photoionization radiation field and to determine the level of stellar activity through the fluxes in the collisionally excited high temperature diagnostics: C III 977Angstroms and O VI 1032,1038Angstrom doublet. The medium aperture observations were obtained successfully while the large aperture observations were thought by Johns Hopkins University (JHU)to be lost to satellite problems. There was insufficient signal-to- noise in the medium aperture short wavelength Sic channels to do quantitative science.

  1. A study of star formation in the disks of Sa galaxies

    SciTech Connect

    Caldwell, N.; Kennicutt, R.; Phillips, A.C.; Schommer, R.A. Steward Observatory, Tucson, AZ Washington Univ., Seattle Rutgers Univ., Piscataway, NJ )

    1991-04-01

    This paper compares the luminosity functions of the H II regions in several Sa galaxies with those of later-type galaxies. Broad UV measurements confirm expectations that the knots associated with the regions are very blue; the converse is also true. The H II region luminosity functions are very steep. The total H-alpha luminosities for the galaxies are computed and used to derive the current star-formation rates. It is found that, in contrast to the late-type galaxies, the current star-formation rates in Sa disks are less than one-tenth of the average rate over the last 15 Gyr. The formal depletion times of gas through star formation are longer than a Hubble time. If the star formation in late-type galaxies takes on the character of that currently seen in the Sas, star formation in such galaxies could continue for much longer than the usual estimate of 5 Gyr. 35 refs.

  2. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    SciTech Connect

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-10-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, {Sigma}, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, {Sigma}{sub r} and {Sigma}{sub b}, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, {Sigma}{sub K}, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of {Sigma}{sub r} and {Sigma}{sub K}. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  3. Activity-brightness Correlations for the Sun and Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-10-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σr and Σb, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, ΣK, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σr and ΣK. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Strömgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  4. Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-07-01

    Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high-resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (ɛ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields M~F1.15+/-0.20X. The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars suggests that mass loss decreases with time. We infer a power-law relation of M~t-2.00+/-0.52. This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Star formation in NGC 4449: MAMA-detector UV imagery and Fabry-Perot Balmer-line imagery

    NASA Technical Reports Server (NTRS)

    Hill, Robert S.; Home, Allen T.; Smith, Andrew M.; Bruhweiler, Fred C.; Cheng, K.P.; Hintzen, Paul M. N.; Oliversen, Ronald J.

    1994-01-01

    Using far-ultraviolet (FUV) and Balmer-line imagery, we investigate the star formation history of 22 large OB complexes in the Magellanic irregular galaxy NGC 4449. The FUV luminosity of NGC 4449 is comparable to those of late-type spirals and is greater than that of the LMC by approximately 2.4 mag, indicating substantial star formation in the last 10(exp 8) yr. FUV data were taken using a sounding-rocket telescope with a Multianode Microchannel Array (MAMA) detector, and Balmer-line data were taken using the Goddard Fabry-Perot Imager. The resulting imagery shows bright, roughly coincident FUV and H alpha sources throughout the extent of the visible galaxy. We model these sources using cluster-evolution codes. Although all sources are a few Myr old, clear age differences are found. In particular, several of the most recently active star formation regions are located together in the galaxy's northern periphery, which is apparently coincident with a large H I reservoir. The brightest and most massive OB complexes are found along the northeast-southwest surface brightness ridgeline (the 'bar'). Over the entire galaxy, star formation rates are consistent on timescales of 10(exp 6), 10(exp 8), and 10(exp 9) yr. A history of recent star formation is suggested with two main episodes, one predominantly in the bar ending approximately 5 Myr ago, and an ongoing one associated with an observed H I cloud.

  6. POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES AT z approx 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 mum-to-11.3 mum feature ratio, are strongly correlated with the star formation diagnostics D{sub n} (4000) and Halpha equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 mum emission. A hard radiation field as measured by [O{sub III}]/Hbeta and [Ne{sub III}]{sub 15.6m}u{sub m}/[Ne{sub II}]{sub 12.8m}u{sub m} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  7. The Palomar/MSU Nearby-Star Spectroscopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics

    NASA Astrophysics Data System (ADS)

    Reid, I. Neill; Hawley, Suzanne L.; Gizis, John E.

    1995-10-01

    The Third Catalogue of Nearby Stars (Gliese & Jahreiss Preliminary Version of the third Catalogue of Nearby Stars, 1991) includes over 1850 stars which lie north of δ 30° and are either identified as spectral type M, or are unclassified but with an absolute visual magnitude estimate MV>+8.O. Although there is no uniformity in selection criteria, and many of the stars lack basic data (radial velocities, spectral types, accurate photometry), the observational properties of these stars underlie most estimates of the fundamental characteristics of the Galactic Disk. We have obtained optical spectroscopy of 1746 of the 1876 stars-the remaining 130 are binary companions of brighter stars and inaccessible to our observations. These spectra allow us, first, to exclude 61 stars as either degenerates or as misclassified earlier-type (B - K) stars lying beyond the 25 pc limit; to establish radial velocities accurate to ±10 km s-1 for all stars confirmed as late-type dwarfs; to determine spectral types and absolute magnitudes from the TiO bandstrength, allowing more accurate distance estimates for stars with inaccurate (or no) trigonometric parallax measurements; and to identify stars with Ha emission (chromospherically active stars) and with strong CaH absorption (perhaps including some metal-poor disk subdwarfs). We have determined the nearby-star luminosity function from complete samples derived by applying both the distance limits defined by Wielen (1974) and by using limits derived from our own analysis. In both cases, we find good agreement with Wielen's results to MV ˜+11, but lower densities at the maximum (MV˜+12). The latter analysis results in a luminosity function, ΦCNS, which closely matches photometric parallax analyses for MV<+11 and MV>+14 -- we do not recover the apparent excess of low-luminosity stars inferred from analysis of the 5 pc sample. However, ΦCNS does lie below Φphot at the peak (MV˜12), and we suggest that this offset is caused by the

  8. FU Orionis: A Binary Star?

    NASA Astrophysics Data System (ADS)

    Wang, Hongchi; Apai, Dániel; Henning, Thomas; Pascucci, Ilaria

    2004-01-01

    By using the Adaptive Optics with a Laser for Astronomy system at the 3.6 m telescope of the Calar Alto Observatory, we detected a faint red star in the apparent vicinity of FU Ori, the prototype of the FUor outburst stars. Independent confirmation of the detection is obtained from archival Probing the Universe with Enhanced Optics/Canada-France-Hawaii Telescope images. The separation between the companion candidate and FU Ori is 0.50", and their brightness contrast is around 4 mag. We discuss the possible nature of the newly detected star based on near-infrared photometry and its proper motion relative to FU Ori. The photometric data are consistent with a nearby late-type main-sequence star, a background giant star, and a pre-main-sequence star. On the basis of the proper motion and the stellar surface density in the direction toward FU Ori, we argue that the probabilities of the first two options are very low.

  9. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from the BIMA Survey of Nearby Galaxies, the Sloan Digital Sky Survey and the Spectrographic Areal Unit for Research on Optical Nebulae. Our analysis illustrates that NGC 1068 is a gravitationally unstable `monster'. Its starburst disc is subject to unusually powerful instabilities. Several processes, including feedback from the active galactic nucleus and starburst activity, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability `wins' because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  10. The HARPS search for southern extra-solar planets. XX. Planets around the active star BD -08°2823

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Udry, S.; Lo Curto, G.; Robichon, N.; Naef, D.; Ehrenreich, D.; Benz, W.; Bouchy, F.; Lecavelier Des Etangs, A.; Lovis, C.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Ségransan, D.

    2010-03-01

    We report the detection of a planetary system around BD -08°2823 that includes at least one Uranus-mass planet and one Saturn-mass planet. This discovery serendipitously originates from a search for planetary transits in the Hipparcos photometry database. This program preferentially selected active stars and did not allow the detection of new transiting planets. It allowed however the identification of the K3V star BD -08°2823 as a target harboring a multiplanet system, which we secured and characterized thanks to an intensive monitoring with the HARPS spectrograph at the 3.6-m ESO telescope in La Silla. The stellar activity level of BD -08°2823 complicates the analysis but does not prohibit the detection of two planets around this star. BD -08°2823b has a minimum mass of 14.4±2.1 M⊕ and an orbital period of 5.60 days, whereas BD -08°2823c has a minimum mass of 0.33±0.03 MJup and an orbital period of 237.6 days. This new system strengthens the observation that low-mass planets are preferentially found in multiplanetary systems, but not around high-metallicity stars as is the case for massive planets. It also supports the belief that active stars should not be neglected in exoplanet searches even when searching for low-mass planets. Based on observations made with HARPS spectrograph on the 3.6-m ESO telescope at La Silla Observatory, Chile, under the programs ID 072.C-0488, 074.C-0364 and 078.C-0044. The full version of Table 1 (HARPS measurements of BD -08°2823) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/512/A46

  11. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  12. Tomography of Accretion Flows in Binary Stars and Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Livio, Mario

    2001-01-01

    Under this project, a variety of accretion problems have been studied, with two in particular. In the first, astrophysical jets are observed in many objects ranging from young stars to Active Galactic Nuclei. A major unsolved problem is how do these jets originate from accretion disks. In a series of works, I have examined the launching of outflows from magnetized disks, the extraction of energy from black holes, and the formation of jets in systems like Cataclysmic Variables and supermassive accreting black holes. The results of these works were published in a number of papers. In the second, I examined the potential role of vortices in accretion disks around Young Stellar Objects, for the formation of planets and for angular momentum transport. I showed that vortices are surprisingly stable, and that they are able to concentrate dust in their cores. I also examined the development of spiral shocks in disks. Finally, I studied the evolution of magnetically layered protoplanetary disks, and showed that they exhibit outbursts which could 'pump' the jets that are observed in Herbig-Haro objects. The results of these works were published in a number of papers as well. Additional information on the published papers is contained in the original abstract.

  13. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  14. Water vapour masers in long-period variable stars. I. RX Bootis and SV Pegasi

    NASA Astrophysics Data System (ADS)

    Winnberg, A.; Engels, D.; Brand, J.; Baldacci, L.; Walmsley, C. M.

    2008-05-01

    Context: Water vapour maser emission from late-type stars characterises them as asymptotic-giant-branch stars with oxygen-rich chemistry that are losing mass at a substantial rate. Further conclusions on the properties of the stars, however, are hampered by the strong variability of the emission. Aims: We wish to understand the reasons for the strong variability of H2O masers in circumstellar shells of late-type stars. In this paper we study RX Bootis and SV Pegasi as representatives of semiregular variable stars (SRVs). Methods: We monitored RX Boo and SV Peg in the 22-GHz maser line of water vapour with single-dish telescopes. The monitoring period covered two decades for RX Boo (1987-2007) and 12 years for SV Peg (1990-1995, 2000-2007). In addition, maps were obtained of RX Boo with the Very Large Array over several years. Results: We find that most of the emission in the circumstellar shell of RX Boo is located in an incomplete ring with an inner radius of 91 mas (15 AU). A velocity gradient is found in a NW-SE direction. The maser region can be modelled as a shell with a thickness of 22 AU, which is only partially filled. The gas crossing time is 16.5 years. The ring-like structure and the velocity gradient remained stable for at least 11 years, while the maser line profiles varied strongly. This suggests that the spatial asymmetry is not accidental, so that either the mass loss process or the maser excitation conditions in RX Boo are not spherically symmetric. The strong variability of the maser spectral features is mainly due to incoherent intensity fluctuations of maser emission spots, which have lifetimes of the order of 1 year. We found no correlation between the optical and the maser variability in either star. The variability properties of the SV Peg masers do not differ substantially from those of RX Boo. There were fewer spectral features present, and the range of variations was narrower. The maser was active on the >10-Jy level only 1990-1992 and

  15. Stellar coronal magnetic fields and star-planet interaction

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.

    2009-10-01

    Context: Evidence of magnetic interaction between late-type stars and close-in giant planets is provided by the observations of stellar hot spots rotating synchronously with the planets and showing an enhancement of chromospheric and X-ray fluxes. Possible photospheric signatures of such an interaction have also been reported. Aims: We investigate star-planet interaction in the framework of a magnetic field model of a stellar corona, considering the interaction between the coronal field and that of a planetary magnetosphere moving through the corona. This is motivated, among other reasons, by the difficulty of accounting for the energy budgets of the interaction phenomena with previous models. Methods: A linear force-free model is applied to describe the coronal field and study the evolution of its total magnetic energy and relative helicity according to the boundary conditions at the stellar surface and the effects related to the planetary motion through the corona. Results: The energy budget of the star-planet interaction is discussed, assuming that the planet may trigger a release of the energy of the coronal field by decreasing its relative helicity. The observed intermittent character of the star-planet interaction is explained by a topological change in the stellar coronal field, induced by a variation in its relative helicity. The model predicts the formation of many prominence-like structures in the case of highly active stars owing to the accumulation of matter evaporated from the planet inside an azimuthal flux rope in the outer corona. Moreover, the model can explain why stars accompanied by close-in planets have a higher X-ray luminosity than those with distant planets. It predicts that the best conditions for detecting radio emission from the exoplanets and their host stars are achieved when the field topology is characterized by field lines connected to the surface of the star, leading to a chromospheric hot spot rotating synchronously with the planet

  16. Magnetic Field Structure and Activity of the He-burning Giant 37 Comae

    NASA Astrophysics Data System (ADS)

    Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Charbonnel, C.; Drake, N. A.

    2014-08-01

    We present the first magnetic map of the late-type giant 37 Com. The Least Squares Deconvolution (LSD) method and Zeeman Doppler Imaging (ZDI) inversion technique were applied. The chromospheric activity indicators Hα, S-index, Ca ii IRT and the radial velocity were also measured. The evolutionary status of the star has been studied on the basis of state-of-the-art stellar evolutionary models and chemical abundance analysis. 37 Com appears to be in the core Helium-burning phase.

  17. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Vulcani, Benedetta; Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia; Fritz, Jacopo; Calvi, Rosa; Paccagnella, Angela

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  18. Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Morgenthaler, A.; Salabert, D.; Petit, P.; Ballot, J.; Régulo, C.; Catala, C.

    2013-02-01

    Context. Stellar activity cycles are the manifestation of dynamo process running in the stellar interiors. They have been observed from years to decades thanks to the measurement of stellar magnetic proxies on the surface of the stars, such as the chromospheric and X-ray emissions, and to the measurement of the magnetic field with spectropolarimetry. However, all of these measurements rely on external features that cannot be visible during, for example, a Maunder-type minimum. With the advent of long observations provided by space asteroseismic missions, it has been possible to penetrate the stars and study their properties. Moreover, the acoustic-mode properties are also perturbed by the presence of these dynamos. Aims: We track the temporal variations of the amplitudes and frequencies of acoustic modes allowing us to search for signature of magnetic activity cycles, as has already been done in the Sun and in the CoRoT target HD 49933. Methods: We used asteroseimic tools and more classical spectroscopic measurements performed with the NARVAL spectropolarimeter to check that there are hints of any activity cycle in three solar-like stars observed continuously for more than 117 days by the CoRoT satellite: HD 49385, HD 181420, and HD 52265. To consider that we have found a hint of magnetic activity in a star we require finding a change in the amplitude of the p modes that should be anti-correlated with a change in their frequency shifts, as well as a change in the spectroscopic observations in the same direction as the asteroseismic data. Results: Our analysis gives very small variation in the seismic parameters preventing us from detecting any magnetic modulation. However, we are able to provide a lower limit of any magnetic-activity change in the three stars that should be longer than 120 days, which is the length of the time series. Moreover we computed the upper limit for the line-of-sight magnetic field component being 1, 3, and 0.6 G for HD 49385, HD 181420

  19. The effect of local and large-scale environments on nuclear activity and star formation

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Shen, S.; Sabater, J.; Duarte Puertas, S.; Verley, S.; Yang, X.

    2016-07-01

    Context. Active galactic nuclei (AGN) are one of the main drivers for the transition from star-forming disk to passive spheroidal galaxies, however, the role of large-scale environment versus one-on-one interactions in triggering different types of AGN is still uncertain. We present a statistical study of the prevalence of the nuclear activity in isolated galaxies and physically bound isolated pairs. Aims: For the purpose of this study we considered optically and radio selected nuclear activity types. We aim to assess the effect of one-on-one interaction on the fraction of AGN and the role of their large-scale environment. Methods: To study the effect of one-on-one interaction on the fraction of AGN in isolated galaxy pairs, we compare these AGN with a sample of isolated galaxies homogeneously selected under the same isolation criterion. We examine the effect of the large-scale environment by comparing isolated systems with control samples of single galaxies and galaxy pairs. We use the tidal strength parameter to quantify the effects of local and large-scale environments. Results: In general we found no difference in the prevalence of optical AGN for the considered samples. For massive galaxies, the fraction of optical AGN in isolated galaxies is slightly higher than that in the control samples. Also, the fraction of passives in high mass isolated galaxies is smaller than in any other sample. Generally, there is no dependence on optical nuclear activity with local environment. On the other hand, we found evidence that radio AGN are strongly affected by the local environment. Conclusions: The optical AGN phenomenon is related to cold gas accretion, while radio AGN are related to hot gas accretion. In this context, there is more cold gas, fuelling the central optical AGN, in isolated systems. Our results are in agreement with a scenario where cold gas accretion by secular evolution is the main driver of optical AGN, while hot gas accretion and one

  20. Photometric activity of UX orionis stars and related objects in the near infrared and optical: CO Ori, RR Tau, UX Ori, and VV Ser

    NASA Astrophysics Data System (ADS)

    Shenavrin, V. I.; Rostopchina-Shakhovskaya, A. N.; Grinin, V. P.; Demidova, T. V.; Shakhovskoi, D. N.; Belan, S. P.

    2016-08-01

    This paper continues a study of the photometric activity of UX Ori stars in the optical and near-infrared ( JHKLM bands) initiated in 2000. For comparison, the list of program stars contains two Herbig Ae stars that are photometrically quiet in the optical: MWC480 andHD179218. Fadings ofUXOri stars in the optical ( V band) due to sporadic increases of the circumstellar extinction are also observed in the infrared (IR), but with decreasing amplitude. Two stars, RR Tau and UX Ori, displayed photometric events when V -band fadings were accompanied by an increase in IR fluxes. Among the two Herbig Ae stars that are photometrically quiet in the optical, MWC 480 proved to be fairly active in the IR. Unlike the UX Ori stars, the variation amplitude of MWC 480 increases from the J band to the M band. In the course of the observations, no deep fadings in the IR bands were detected. This indicates that eclipses of the program stars have a local nature, and are due to extinction variations in the innermost regions of the circumstellar disks. The results presented testify to an important role of the alignment of the circumstellar disks relative to the direction towards the observer in determining the observed IR variability of young stars.

  1. Theoretical evolution of Rossby number for solar analog stars

    NASA Astrophysics Data System (ADS)

    Castro, Matthieu; Duarte, Tharcísyo; do Nascimento, José Dias

    2014-08-01

    Magnetic fields of late-type stars are presumably generated by a dynamo mechanism at the interface layer between the radiative interior and the outer convective zone. The Rossby number, which is related to the dynamo process, shows an observational correlation with activity. It represents the ratio between the rotation period of the star and the local convective turnover time. The former is well determined from observations but the latter is estimated by an empirical iterated function depending on the color index (B-V) and the mixing-length parameter. We computed the theoretical Rossby number of stellar models with the TGEC code, and analyze its evolution with time during the main sequence. We estimated a function for the local convective turnover time corresponding to a mixing-length parameter inferred from a solar model, and compare our results to the estimated Rossby number of 33 solar analogs and twins, observed with the spectropolarimeters ESPaDOnS@CFHT and Narval@LBT.

  2. An Activity-Rotation Relationship and Kinematic Analysis of Nearby M Dwarfs

    NASA Astrophysics Data System (ADS)

    Weisenburger, Kolby; West, A. A.; Irwin, J.; Charbonneau, D.; Berta, Z. K.; Dittmann, J.; Newton, E. R.

    2013-01-01

    Using spectroscopic observations and photometric light curves of 298 nearby M dwarfs from the MEarth transit survey, we examine the relationships between magnetic activity (quantified by H-alpha emission), rotation period, and stellar age (derived from three-dimensional space velocities). Although we have known for decades that a large fraction of mid-late-type M dwarfs are magnetically active, it was not clear what role rotation played in the magnetic field generation (and subsequent chromospheric heating). Previous attempts to investigate the relationship between magnetic activity and rotation in mid-late-type M dwarfs were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that vsini measurements only probe rapid rotation). However, the photometric data from the MEarth survey allows us to probe a wide range of rotation periods for M dwarf stars (<1-150 days). Over all M spectral types we find that magnetic activity decreases with longer rotation periods. We note the most magnetically active (and hence, most rapidly rotating) stars to be consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population. We acknowledge MEarth funding from the Packard Fellowship for Science and Engineering, the NSF (AST-0807690 and AST-1109273) and the Boston University UROP Program.

  3. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  4. Star formation and accretion in the circumnuclear disks of active galaxies

    NASA Astrophysics Data System (ADS)

    Wutschik, Stephanie; Schleicher, Dominik R. G.; Palmer, Thomas S.

    2013-12-01

    Aims: We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. Methods: A system of equations describing star formation, black hole accretion and angular momentum transport in the disk was solved self-consistently for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu & Wada (2008, ApJ, 681, 73), by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk. Results: We find that current data provide no strong constraint on the star formation recipe, and can in particular not distinguish between models entirely regulated by the surface density, and models including a dependence on the turbulent velocity. The evolution of the black hole mass, on the other hand, strongly depends on the applied star formation law, as well as the mass supply from the host galaxy. We suggest to explore the star formation process in local AGN with high-resolution ALMA observations to break the degeneracy between different star formation models.

  5. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  6. Constraints on Feedback in the Local Universe: The Relation Between Star Formation and AGN Activity in Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi Alison

    2016-01-01

    We address the relation between star formation and AGN activity in a sample of 231 nearby (0.0002 < z < 0.0358) early type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR and radio. Our results indicate that early type galaxies in the current epoch are rarely powerful AGNs, with P < 1022 WHz-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The SFR of these galaxies is less than 0.1 M⊙yr-1. They also tend to be radio faint (P < 1022 WHz-1). There is a nearly equal fraction of star forming galaxies in radio faint (P < 1022 WHz-1) and radio bright galaxies (P ≥ 1022 WHz-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies (BCGs) follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  7. Magnetic activity cycles in solar-like stars: The cross-correlation technique of p-mode frequency shifts

    NASA Astrophysics Data System (ADS)

    Régulo, C.; García, R. A.; Ballot, J.

    2016-04-01

    Aims: We set out to study the use of cross-correlation techniques to infer the frequency shifts that are induced by changing magnetic fields in p-mode frequencies and to provide a precise estimation of error bars. Methods: This technique and the calculation of the associated errors is first tested and validated on the Sun where p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546, observed by Kepler. Results: We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three stars analyzed, we confirm the presence of a magnetic activity cycle in HD 49933 with this methodology and we unveil the seismic signature of ongoing magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.

  8. THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS?

    SciTech Connect

    Lutz, D.; Shao, L.; Foerster Schreiber, N. M.; Genzel, R.; Mainieri, V.; Rafferty, D.; Brandt, W. N.; Hasinger, G.; Weiss, A.; Menten, K. M.; Walter, F.; Greve, T. R.; Smail, I.; Coppin, K.; Alexander, D. M.; Chapman, S.; Gawiser, E.; Kurczynski, P.; Ivison, R. J.; Koekemoer, A. M.

    2010-04-01

    We study the co-existence of star formation and active galactic nucleus (AGN) activity in Chandra X-ray-selected AGN by analyzing stacked 870 {mu}m submillimeter emission from a deep and wide map of the Extended Chandra Deep Field South (ECDFS), obtained with the LABOCA instrument at the APEX telescope. The total X-ray sample of 895 sources with median redshift z {approx} 1 drawn from the combined (E)CDFS X-ray catalogs is detected at >11sigma significance at a mean submillimeter flux of 0.49 +- 0.04 mJy, corresponding to a typical star formation rate (SFR) around 30 M{sub sun} yr{sup -1} for a T = 35 K, beta = 1.5 graybody far-infrared spectral energy distribution. The good signal-to-noise ratio permits stacking analyses for major subgroups, splitting the sample by redshift, intrinsic luminosity, and AGN obscuration properties. We observe a trend of SFR increasing with redshift. An increase of SFR with AGN luminosity is indicated at the highest L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1} luminosities only. Increasing trends with X-ray obscuration as expected in some AGN evolutionary scenarios are not observed for the bulk of the X-ray AGN sample but may be present for the highest intrinsic luminosity objects with L{sub 2-10{sub keV}} {approx}> 10{sup 44} erg s{sup -1}. This behavior suggests a transition between two modes in the co-existence of AGN activity and star formation. For the bulk of the sample, the X-ray luminosity and obscuration of the AGN are not intimately linked to the global SFR of their hosts. The hosts are likely massive and forming stars secularly, at rates similar to the pervasive star formation seen in massive galaxies without an AGN at similar redshifts. In these systems, star formation is not linked to a specific state of the AGN and the period of moderately luminous AGN activity may not highlight a major evolutionary transition of the galaxy. The change indicated toward more intense star formation, and a more pronounced increase

  9. 3D view on Virgo and field dwarf elliptical galaxies: late-type origin and environmental transformations

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2015-03-01

    In our contribution we show the effects of environmental evolution on cluster and field dwarf elliptical galaxies (dEs), presenting the first large-scale integral-field spectroscopic data for this galaxy class. Our sample con sists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradient s in line-strength maps: from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfills these requirements, still, the exact impact of the two is not yet understood. We further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population parameters. The combined knowledge of the dynamical properties and star-formation histories, together with model predictions for different formation mechanisms, will be used to quant itatively determine the actual transformation paths for these galaxies.

  10. Water in stars: expected and unexpected

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Aoki, W.; Ohnaka, K.

    1999-03-01

    We have confirmed the presence of water in the early M giant α Cet (M1.5III) and supergiant KK Per (M2Iab) by the highest resolution grating mode of SWS, but this result is quite unexpected from present model atmospheres. In late M giant and supergiant stars, water observed originates partly in the photosphere as expected by the model atmospheres, but ISO SWS has revealed that the 2.7 mic\\ absorption bands appear to be somewhat stronger than predicted while 6.5 mic\\ bands weaker, indicating the contamination by an emission component. In the mid-infrared region extending to 45 mic, pure rotation lines of hho\\ appear as distinct emission on the high resolution SWS spectra of 30g Her (M7III) and S Per (M4-7Ia), along with the dust emission at 10, 13, 20 mic\\ and a new unidentified feature at 30 mic. Thus, together with the dust, water contributes to the thermal balance of the outer atmosphere already in the mid-infrared. The excitation temperature of hho\\ gas is estimated to be 500 - 1000 K. In view of this result for late M (super)giants, unexpected water observed in early M (super)giants should also be of non-photospheric in origin. Thus, ISO has finally established the presence of a new component of the outer atmosphere - a warm molecular envelope - in red giant and supergiant stars from early to late types. Such a rather warm molecular envelope will be a site of various activities such as chemical reactions, dust formation, mass-outflow etc.

  11. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  12. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger; Scott, Douglas; Magnelli, Benjamin; Popesso, Paola; Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan; Dannerbauer, Helmut; Dickinson, Mark; Kartaltepe, Jeyhan; Magdis, Georgios

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  13. Radio wavelength observations of magnetic fields on active dwarf M, RS CVn and magnetic stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The dwarf M stars, YZ Canis Minoris and AD Leonis, exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars, AD Leonis and Wolf 424, emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. They are attributed to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic gyrofrequency, the coronal magnetic field strength equals 250 G or 167 G, and constraints on the plasma frequency imply an electron density of 6 x 10 to the 9th/cu cm. Radio spikes from AD Leonis and Wolf 424 have rise times less than or equal to 5 ms, indicating a linear size of less than or equal to 1.5 x 10 to the 8th cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour.

  14. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of mole