Science.gov

Sample records for active late-type stars

  1. Chromospheric activity of evolved late-type stars - Chromospheric activity in evolved stars

    NASA Astrophysics Data System (ADS)

    Pasquini, L.; Brocato, E.; Pallavicini, R.

    1990-08-01

    Ca II K emission in a homogeneous sample of late-type giants and supergiants is analyzed. The Wilson-Bappu relationship and color-temperature scales are used to construct an H-R diagram which is compared with theoretical evolutionary tracks. It is shown that in spite of the errors involved in the determination of the fundamental stellar parameters, a clear relationship between chromospheric surface activity and stellar mass is present. 5-10 solar mass stars in He burning phase show the highest levels of activity; on the other hand, less massive stars ascending along the Red Giant Branch are extremely quiet. A correlation between surface activity and rotation is found, and it is shown that a knowledge of the stellar evolutionary history is essential for understanding chromospheric emission from evolved stars.

  2. Periods of activity cycles in late-type stars

    NASA Technical Reports Server (NTRS)

    Kliorin, N. I.; Ruzmaykin, A. A.; Sokolov, D. D.

    1983-01-01

    The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed.

  3. Outer atmospheres of late-type stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    Recent observational results concerning chromospheres and coronae in late-type stars are described. In particular, it is indicated where in the cool half of the HR diagram chromospheres, transition regions, coronae, and large mass loss occur and what the important parameters determining the energy balance of these layers are. The chromospheric modelling process is summarized and models of the late-type supergiants Beta Dra, Epsilon Gem, and Alpha Ori recently computed by Basri and Linsky (1980) are detailed.

  4. Photometry of late type stars

    NASA Technical Reports Server (NTRS)

    Doherty, L. R.

    1972-01-01

    Broad band filter photometry for 57 bright stars of spectral type A2 discussed with peak instrument responses at 3320, 2980, 2460 and 1910 A. The data include nearly all usable filter observations of G, K and M types. Sampling is nearly complete for A and F giants and supergiants, with the exception of Cepheid variables. The basic results presented are relative digital counting rates obtained with a field-stop aperture of 10 minutes of arc. Characteristics of the four filter-photometer combinations and errors are discussed. Some observations require substantial correction if they are to represent the visually brightest star in the field. These corrections and the effects of interstellar reddening are discussed. The adjusted counts are then used to construct color-color diagrams and are compared to the recent SAO grid of model atmospheres.

  5. Convection in Oblate Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2015-08-01

    In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.

  6. Chromospheric activity on late-type star DM UMa using high-resolution spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Zhang, LiYun; Pi, QingFeng; Han, Xianming L.; Chang, Liang; Wang, Daimei

    2016-06-01

    We present new 14 high-resolution echelle spectra to discuss the level of chromospheric activity of DM UMa in {He I} D3, {Na I} D1, D2, Hα, and {Ca II} infrared triplet lines (IRT). It is the first time to discover the emissions above the continuum in the {He I} D3 lines on 2015 February 9 and 10. The emission on February 9 is the strongest one ever detected for DM UMa. We analysed these chromospheric active indicators by employing the spectral subtraction technique. The subtracted spectra reveal weak emissions in the {Na I} D1, D2 lines, strong emission in the Hα line, and clear excess emissions in the {Ca II} IRT lines. Our values for the EW8542/EW8498 ratio are on the low side, in the range of 1.0-1.7. There are also clear phase variations of the level of chromospheric activity in equivalent width (EW) light curves in these chromospheric active lines (especially the Hα line). These phenomena might be explained by flare events or rotational modulations of the level of chromospheric activity.

  7. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  8. [A late-type star spectra outlier data mining system].

    PubMed

    Cai, Jiang-Hui; Yang, Hai-Feng; Zhao, Xu-Jun; Zhang, Ji-Fu

    2014-05-01

    In M star population, some special objects, which may be of magnetic activity, may be giant stars, or may be of other rare properties, are very important for the follow-up observation and the scientific research on galactic structure and evolution. For local bias of M-type star spectral characteristic lines contained in subspace, a late-type star spectra outlier data mining system is given in the present paper. Firstly, for the sample of M stellar spectral characteristic lines indices, its distribution characteristics in attribute spaces are measured by using the sparse factor and sparsity coefficient, and then this sample is discretized and dimension-reduced to the spectral subspace. Secondly, local outlier subspaces are extracted by PSO (particle swarm optimization) algorithm and identified. Additionally, the effects of sparse coefficient and sparse factor on the number of outliers are discussed by experiments on the sample of SDSS M stellar spectral line index set, and the outliers are compared with spectral type provided by SDSS. In this way, the feasibility and value of this system were validated. PMID:25095451

  9. A high-resolution spectroscopic survey of late-type stars: chromospheric activity, rotation, kinematics, and age

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Montes, D.; Gálvez-Ortiz, M. C.; Crespo-Chacón, I.; Martínez-Arnáiz, R. M.; Fernández-Figueroa, M. J.; de Castro, E.; Cornide, M.

    2010-05-01

    Aims: We present a compilation of spectroscopic data from a survey of 144 chromospherically active young stars in the solar neighborhood, which may be used to investigate different aspects of its formation and evolution in terms of kinematics and stellar formation history. The data have already been used by us in several studies. With this paper, we make all these data accessible to the scientific community for future studies on different topics. Methods: We performed spectroscopic observations with echelle spectrographs to cover the entirety of the optical spectral range simultaneously. Standard data reduction was performed with the IRAF echelle package. We applied the spectral subtraction technique to reveal chromospheric emission in the stars of the sample. The equivalent width of chromospheric emission lines was measured in the subtracted spectra and then converted to fluxes using equivalent width-flux relationships. Radial and rotational velocities were determined by the cross-correlation technique. Kinematics, equivalent widths of the lithium line λ6707.8 Å and spectral types were also determined. Results: A catalog of spectroscopic data is compiled: radial and rotational velocities, space motion, equivalent widths of optical chromospheric activity indicators from Ca II H & K to the calcium infrared triplet and the lithium line in λ6708 Å. Fluxes in the chromospheric emission lines and R'_HK are also determined for each observation of a star in the sample. We used these data to investigate the emission levels of our stars. The study of the Hα emission line revealed two different populations of chromospheric emitters in the sample, clearly separated in the logFHα/Fbol - (V-J) diagram. The dichotomy may be associated with the age of the stars. Based on observations made with the 2.2 m telescope of the German-Spanish Astronomical Centre, Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institute for Astronomy, Heidelberg, and the Spanish

  10. Einstein Observatory coronal temperatures of late-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  11. Mg II 2800 A emission in late type stars

    NASA Technical Reports Server (NTRS)

    Doherty, L. R.

    1972-01-01

    The largest body of data on ultraviolet spectra of late-type stars now available is the series of scans made with the long wavelength spectrometer onboard OAO-2. Some features of selected scans from this series and estimates of Mg II emission fluxes were reported earlier. Since that time, the effects of sky background, scattered light and variable instrumental sensitivity have become better understood. Additional stars are used to define more clearly the transition from Mg II 2800 A absorption to emission with advancing spectral type, and additional scans of alpha Sco provide a better estimate of Mg II emission strength for this supergiant in OAO observations.

  12. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  13. Lyman alpha initiated winds in late-type stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Van Der Hucht, K. A.; Linsky, J. L.

    1979-01-01

    One of the first major results of the IUE survey of late-type stars was the discovery of a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). This result is especially interesting in view of observational evidence for mass loss from G and K giants and super-giants discussed recently by both Reimers and Stencel. In the present paper models of both hot coronae and cool wind flows are calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a 'supersonic transition locus' in the HR diagram dividing hot coronae from cool winds. It is concluded from these models that the Lyman-alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman-alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is investigated.

  14. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.

    1990-01-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.

  15. The Hα Galaxy survey. V. The star formation history of late-type galaxies

    NASA Astrophysics Data System (ADS)

    James, P. A.; Prescott, M.; Baldry, I. K.

    2008-06-01

    Aims: This study of 117 low-redshift Im and Sm galaxies investigates the star formation rates of late-type galaxies, to determine whether they are quasi-continuous or dominated by bursts with quiescent interludes. Methods: We analyse the distribution of star formation timescales (stellar masses/star formation rates) for the entire sample, and of gas depletion timescales for those galaxies with gas mass measurements. Results: We find that, on average, the late-type galaxies studied could have produced their total stellar masses by an extrapolation of their current star formation activity over a period of just under a Hubble time. This is not the case for a comparison sample of earlier-type galaxies, even those with disk-dominated morphologies and similar total stellar masses to the late-type galaxies. The earlier-type galaxies are on average forming their stars more slowly at present than the average rate over their past histories. No totally quiescent Im or Sm galaxies are found, and although some evidence of intrinsic variation in the star formation rate with time is found, this is typically less than a factor of 2 increase or decrease relative to the mean level. The Im and Sm galaxies have extensive gas reservoirs and can maintain star formation at the current rate for more than another Hubble time. The average spatial distribution of star formation in the Im galaxies, and to a lesser extent the Sm galaxies, is very similar to that of the older stellar population traced by the red light. Conclusions: Late type, bulge-free galaxies have a predominantly continuous mode of star formation, and could have assembled their stellar masses through continued star formation over a Hubble time with the currently-observed rate and spatial distribution. There is little evidence in this sample of predominantly isolated field galaxies of significant star formation through brief but intense starburst phases. Based on observations made with the Jacobus Kapteyn Telescope operated

  16. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  17. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  18. Magnetic cycles and rotation periods of late-type stars from photometric time series

    NASA Astrophysics Data System (ADS)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  19. Spectroscopic Orbits for 15 Late-type Stars

    NASA Astrophysics Data System (ADS)

    Willmarth, Daryl W.; Fekel, Francis C.; Abt, Helmut A.; Pourbaix, Dimitri

    2016-08-01

    Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their mass functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.

  20. Observations and theory of mass loss in late-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1981-01-01

    The presented review is mainly concerned with the ubiquitous mass loss which occurs during most of a star's existence as a cool giant or supergiant. Observations of mass loss are considered, taking into account wind components and kinematics, and the temperature structure of cool winds. Theories of mass loss are examined, giving attention to radiation pressure on dust, radiation pressure in Lyman alpha, and magnetic wave-driven winds. It is pointed out that the study of mass loss from late-type stars appears to be entering a promising new phase. In this phase, the behavior of cool giants and supergiants is considered from a solar perspective, a perspective which contains important implications concerning the nature of solar activity.

  1. The winds of high luminosity late-type bright stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Carpenter, K. G.

    1989-01-01

    The occurrence and characteristics of the Fe II line asymmetries were studied to determine the radial dependence of the wind velocity for each star. The dependence of the Fe II profiles on spectral type and luminosity class and thus the variation of the velocity fields with stellar type was also investigated. This allows the generality of the results reported for alpha Ori by Carpenter (1984b) to be judged. In addition, new atomic data was used along with observations of the C II (UV 0.01) multiplet to estimate N(sub e) in the stellar winds. Measures of relative Fe II fluxes can be used in a probability-of-escape model to determine the opacity and hydrogen column density versus height in the chromosphere of each star. Finally, analysis of the fluorescent Fe II lines (pumped by Ly alpha) near 2507 A will yield estimates of the intrinsic stellar Ly alpha flux that cannot be measured directly because of interstellar and circumstellar absorption. One important goal of the effort was to acquire high resolution spectra of the whole 2300 to 3200 A region of 13 luminous K and M stars as a data base that will be enormously valuable in planning observations with the Hubble Space Telescope High Resolution Spectrograph. It is also proposed to follow up the recent discovery of significant variations in the Fe II chromospheric emission line profiles from the M-giant Gamma Cru for the purpose of determining the underlying cause of the variations.

  2. Mg II Spectral Atlas and Flux Catalog for Late-Type Stars in the Hyades Cluster

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2001-01-01

    In the course of a long-running IUE Guest Observer program, UV spectral images were obtained for more than 60 late-type members of the Hyades Cluster in order to investigate their chromospheric emissions. The emission line fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation (IUE Observations of Rapidly Rotating Low-Mass Stars in Young Clusters: The Relation between Chromospheric Activity and Rotation). However, the details of those measurements, including a tabulation of the line fluxes, were never published. The purpose of the investigation summarized here was to extract all of the existing Hyades long-wavelength Mg II spectra in the IUE public archives in order to survey UV chromospheric emission in the cluster, thereby providing a consistent dataset for statistical and correlative studies of the relationship between stellar dynamo activity, rotation, and age over a broad range in mass.

  3. CO fundamental bands in late-type stars. II - Spectrum simulations for F-K stars

    NASA Technical Reports Server (NTRS)

    Wiedemann, Guenter; Ayres, Thomas R.

    1991-01-01

    The procedure of Ayres and Wiedemann (1989) was applied to a range of stellar-atmosphere models to study the CO Delta-v = 1 spectrum and to establish its use as a remote sensor of thermal conditions in late-type stars. Spectra were computed to examine the sensitivity of the CO Delta-v = 1 to fundamental stellar parameters and to assess the errors introduced into the spectrum intepretation by uncertain input parameters and non-LTE effects. Results of the sensitivity study demonstrate that CO fundamental spectra are useful probes for the temperature structure of the outer layers of cool stellar atmospheres, but that their value is limited by the uncertainties introduced by non-LTE effects. However, in stars with surface gravities of log g of about 1.5 and greater, the values of these uncertainties are reasonably small.

  4. The Wolf-Rayet stars in M 31. I. Analysis of the late-type WN stars

    NASA Astrophysics Data System (ADS)

    Sander, A.; Todt, H.; Hainich, R.; Hamann, W.-R.

    2014-03-01

    Context. Comprehensive studies of Wolf-Rayet stars were performed in the past for the Galactic and the LMC population. The results revealed significant differences, but also unexpected similarities between the WR populations of these different galaxies. Analyzing the WR stars in M 31 will extend our understanding of these objects in different galactic environments. Aims: The present study aims at the late-type WN stars in M 31. The stellar and wind parameters will tell about the formation of WR stars in other galaxies with different metallicity and star formation histories. The obtained parameters will provide constraints to the evolution of massive stars in the environment of M 31. Methods: We used the latest version of the Potsdam Wolf-Rayet model atmosphere code to analyze the stars via fitting optical spectra and photometric data. To account for the relatively low temperatures of the late WN10 and WN11 subtypes, our WN models have been extended into this temperature regime. Results: Stellar and atmospheric parameters are derived for all known late-type WN stars in M 31 with available spectra. All of these stars still have hydrogen in their outer envelopes, some of them up to 50% by mass. The stars are located on the cool side of the zero age main sequence in the Hertzsprung-Russell diagram, while their luminosities range from 105 to 106 L⊙. It is remarkable that no star exceeds 106 L⊙. Conclusions: If formed via single-star evolution, the late-type WN stars in M 31 stem from an initial mass range between 20 and 60 M⊙. From the very late-type WN9-11 stars, only one star is located in the S Doradus instability strip. We do not find any late-type WN stars with the high luminosities known in the Milky Way. Appendices are available in electronic form at http://www.aanda.org

  5. Chromospheric activity on the late-type star V1355 Ori using Lijiang 1.8-m and 2.4-m telescopes

    NASA Astrophysics Data System (ADS)

    Pi, Qing-Feng; Zhang, Li-Yun; Chang, Liang; Han, Xian-Ming; Lu, Hong-Peng; Zhang, Xi-Liang; Wang, Dai-Mei

    2016-10-01

    We obtained new high-resolution spectra using the Lijiang 1.8-m and 2.4-m telescopes to investigate the chromospheric activities of V1355 Ori as indicated in the behaviors of Ca ii H&K, Hδ, Hγ, Hβ, Na i D1, D2, Hα and Ca ii infrared triplet (IRT) lines. The observed spectra show obvious emissions above the continuum in Ca ii H&K lines, absorptions in the Hδ, Hγ, Hβ and Na i D1, D2 lines, variable behavior (filled-in absorption, partial emission with a core absorption component or emission above the continuum) in the Hα line, and weak self-reversal emissions in the strong filled-in absorptions of the Ca ii IRT lines. We used a spectral subtraction technique to analyze our data. The results show no excess emission in the Hδ and Hγ lines, very weak excess emissions in the Na i D1, D2 lines, excess emission in the Hβ line, clear excess emission in the Hα line, and excess emissions in the Ca ii IRT lines. The value of the ratio of EW8542/EW8498 is in the range 0.9 to 1.7, which implies that chromospheric activity might have been caused by plage events. The value of the ratio E Hα/E Hβ is above 3, indicating that the Balmer lines would arise from prominence-like material. We also found time variations in light curves associated with equivalent widths of chromospheric activity lines in the Na i D1, D2, Ca ii IRT and Hα lines in particular. These phenomena can be explained by plage events, which are consistent with the behavior of chromospheric activity indicators.

  6. The role of dust in mass loss from late-type stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    It is noted that, in almost all late-type stars with measured mass loss rates, there is sufficient momentum in the radiation to dominate the dynamics. The opacity of the material is sufficiently great to render radiation pressure important; the dust forms close enough to the central star for radiation pressure to account for the observed outflow velocities. Pulsations appear to be important in raising the material far enough above the photosphere for grains to condense.

  7. A Far Ultraviolet Spectroscopic Explorer Survey of Late-Type Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, Jeffrey L.; Ake, Thomas B.; Ayres, Thomas R.; Dupree, A. K.; Robinson, Richard D.; Wood, Brian E.; Young, Peter R.

    2002-12-01

    We describe the 910-1180 Å spectra of seven late-type dwarf stars obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The stars include Altair (A7 IV), Procyon (F5 IV-V), α Cen A (G2 V), AB Dor (K1 V), α Cen B (K2 V), ɛ Eri (K2 V), and AU Mic (M0 V). We present line identifications, fluxes, Doppler shifts, and widths. Doppler shifts are measured with respect to heliocentric wavelength scales determined from interstellar absorption lines, and are compared with transition region line shifts seen in Hubble Space Telescope (HST) ultraviolet spectra. For the warmer stars the O VI lines extend the trend of increasing redshift with line formation temperature, but for the cooler stars the O VI line redshifts are essentially zero. The C III and O VI lines of most stars in the sample are best fit with two Gaussians, and we confirm the correlation of increasing importance of the broad component with increasing stellar activity. The nonthermal velocities of the narrow component are subsonic and exhibit a trend toward larger velocities with decreasing surface gravity, while the nonthermal velocities of the broad components show no obvious trend with stellar gravity. The C III and O VI lines of Altair show unique broad horned profiles. Two flares were observed on AU Mic. One shows increasing continuum flux to shorter wavelengths, which we interpret as free-free emission from hot plasma, and relatively narrow, redshifted C III and O VI emission. The other shows very broad line profiles.

  8. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  9. The gravity dependence of the H-alpha width in late-type stars

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.

    1985-01-01

    A theoretical gravity-scaling law for the H-alpha absorption width in late-type stars is developed. The derivation is based upon (1) the hydrostatic thickening of stellar chromospheres with decreasing surface gravity, and (2) a dependence of the H-alpha width upon opacity and Doppler width in a region subject to a chromospheric temperature rise. The scaling relation is approximately consistent with the mean gravity dependence deduced from the empirical correlation between H-alpha and Ca II K Wilson-Bappu widths. The calculations suggest that gravity variations in chromospheric-mass column density may, in addition to Doppler velocity enhancements, control the width-luminosity broadening of the H-alpha profile in late-type stars.

  10. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  11. Coronal Thermal Structure and Abundance of Super-Metal-Rich Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    This report covers the NASA grant NAG5-9943 for Cycle 1 XMM Guest Observer Program. The project is entitled 'Coronal Thermal Structure and Abundances of Super-Metal-Rich Late-Type Stars.' This observation is for grating spectroscopy of 30 Ari, a late-type star with very high metallicity (about twice solar). The goal is to use extreme cases to help understand how abundances change from the photosphere to the corona. The target was obtained by XMM-Newton on 2001 January 16 for 28000 sec. Data processing could not proceed until last fall because the SAS RGS software did not work. A poster was presented at the conference 'New Visions of the X-ray Universe in the XMM-Newton and Chandra Era,' held in Noordwijk 26-30 November 2001. The paper was entitled,'Coronal Abundances and Thermal Structure of the Super-Metal-Rich Star 30 Ari,'. The poster presented analysis of EPIC and RGS data to determine the individual abundances from the star and the emission measure distribution as a function of temperature. Results were compared with previous results on this star by our team using ASCA data.

  12. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  13. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    SciTech Connect

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2015-02-01

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines of sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.

  14. MSX And IRAS Two-Color Diagrams For Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Capen, Stephanie; Sjouwerman, L.; Claussen, M.

    2009-01-01

    We present the results of a statistical study of late-type, oxygen-rich, asymptotic giant branch (AGB) stars and their circumstellar envelopes (CSEs) using color-color diagrams based on data from the Infrared Astronomical Satellite (IRAS) and the Midcourse Space Experiment (MSX). The study of the two-color diagram of CSEs using data from the IRAS survey (van der Veen and Habing 1988, A & A, 194, 125) was a revolutionary step in the understanding and characterization of late-type star CSEs, their mass-loss properties, and their evolution. We outline the steps of cross-identification, selection, and definition of distinct regions in MSX color-color diagrams in relation to those in the IRAS diagrams, and demonstrate that an MSX color-color diagram is a useful and sound translation for the IRAS diagram in the study of oxygen-rich AGB CSEs. This is a favorable result as it allows the selection of stars, based only on MSX data, for further studies, such as surveys for masers in circumstellar shells and in regions where IRAS was confused. This research was supported by the Research Experience for Undergraduate Program of the National Science Foundation, and was completed at the National Radio Astronomy Observatory in Socorro, New Mexico.

  15. Orbits of six late-type active-chromosphere binaries

    NASA Astrophysics Data System (ADS)

    Griffin, R. F.; Filiz Ak, N.

    2010-11-01

    We present spectroscopic orbits for the active stars HD 82159 (GS Leo), HD 89959, BD +39° 2587 (a visual companion to HD 112733), HD 138157 (OX Ser), HD 143705, and HD 160934. This paper is a sequel to one published in this journal in 2006, with similar avowed intention, by Gálvez et al. They showed only graphs, and gave no data, and no orbital elements apart from the periods (only two of which were correct) and in some cases the eccentricities. Here we provide full information and reliable orbital elements for all the stars apart from HD 160934, which has not completed a cycle since it was first observed for radial velocity.

  16. The intrinsic H I Lyman-alpha line profiles of late-type stars

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Landsman, W. B.; Bookbinder, J. A.; Linsky, J. L.

    1990-01-01

    The Lyman-alpha line of neutral hydrogen is probably the most important cooling channel for chromospheric plasma in late-type stars, yet it is also the least studied major line in the far ultraviolet. The scattering of much of the stellar Lyman-alpha flux by interstellar hydrogen, coupled with the geocoronal emission foreground, seriously complicates the analysis of the Lyman-alpha spectra. The influence of the local interstellar medium on the observed profiles was circumvented by observing stars with radial velocities sufficiently high to Doppler shift the center of the stellar emission line out of the interstellar absorption core. There are several stars that have high radial velocities by virtue of their presence in close binary systems. High resolution IUE (International Ultraviolet Explorer) spectra of Ly alpha line of two such eclipsing binary stars, AR Lac and TY Pyx, are obtained, at each orbital quadrature phase, when the projected orbital velocity is a maximum. By combining the spectra from opposite quadratures it is possible to piece together the entire stellar emission profiles. The third star in this study, delta Lep, is a single star with a high space velocity.

  17. A Copernicus survey of Mg II emission in late-type stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Oegerle, W. R.

    1979-01-01

    The behavior of Mg II emission in late-type stars is examined using scan data obtained with the Copernicus satellite. The luminosity in the Mg II k emission line was found to be closely related to stellar absolute magnitude, leading to the suggestion that such correlation may be very useful for future UV observations. The stellar surface flux in the k line was observed to be roughly constant or to decrease slowly with later spectral type, a finding which is then used to show that the pressure at the top of the chromosphere decreases with later spectral type, in agreement with the conclusions by McClintock et al. (1975). An asymmetry in the Mg II k line was noticed to be present in the available data for the stars later than K2-K5.

  18. Circumstellar Carbonaceous Material Associated with Late-Type Dusty WC Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Chiar, J. E.; Tielens, A. G. G. M.

    2001-04-01

    We have studied the 5-8.5 μm infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory. We attribute an absorption feature at 6.2 μm in the spectra of WC stars to amorphous carbon dust. This absorption feature is not detected in the diffuse interstellar medium toward the WR 147, Cyg OB2 No. 12, or the Pistol Star, and therefore we suggest that it is circumstellar in nature. In addition, we detect a broad absorption feature extending from approximately 6.5 to 8 μm. We tentatively attribute this absorption to the CC stretching modes that accompany the 6.2 μm band in aromatic materials. Our analysis of the 6.2 μm absorption profile suggests that the dust grains have to be rather large (~1 μm) and point toward dense clumps as the sites of dust formation. Based on observations made with the Infrared Space Observatory, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  19. Detection of neutral phosphorus in the near-ultraviolet spectra of late-type stars

    SciTech Connect

    Roederer, Ian U.; Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Toller, Elizabeth

    2014-12-10

    We report the detection of several absorption lines of neutral phosphorus (P, Z = 15) in archival near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive phosphorus abundances or interesting upper limits in 14 late-type stars with metallicities spanning –3.8 < [Fe/H] <–0.1. Previously, phosphorus had only been studied in Galactic stars with –1.0 < [Fe/H] <+0.3. Iron lines reveal abundance offsets between the optical and ultraviolet regions, and we discuss and apply a correction factor to account for this offset. In stars with [Fe/H] >–1.0, the [P/Fe] ratio decreases toward the solar value with increasing metallicity, in agreement with previous observational studies. In stars with [Fe/H] <–1.0, ([P/Fe]) = +0.04 ± 0.10, which overlaps with the [P/Fe] ratios found in several high-redshift damped Lyman-α systems. This behavior hints at a primary origin in massive stars.

  20. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.

  1. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  2. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  3. Coronal Thermal Structure and Abundance of Super-Metal-Rich Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Brickhouse, N.; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    This observation is for grating spectroscopy of 30 Ari, a late-type star with very high metallicity. The goal is to use extreme cases to help understand how abundances change from the photosphere to the corona. The only progress is to report to date is preparation for the analysis of the data. The SAO team has produced spectral model predictions for comparison with the observed spectra. The target was obtained by X-ray Multimirror Mission (XMM)-Newton on 2001 January 16 for 28000 sec. Pipeline processing is difficult and the data have not yet been available. Furthermore, we have been cautioned that the data cannot be correctly processed until at least September of this year, as there are problems with the RGS software to extract the spectrum. We have attended two workshops this summer in which results from XMM on late-type stellar coronae were presented including SMM results from GT team members. We noted that only members of the instrument teams are in a position to analyze XMM data.

  4. Short time-scale variability of chromospheric Ca II in late-type stars

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Vaughan, A. H.; Hartmann, L.; Liller, W.; Dupree, A. K.

    1981-01-01

    The short time-scale variability of singly ionized calcium chromospheric emission has been investigated in a few late-type stars. Emission-line variations with time scales of a few minutes to hours are seen in Alpha Tau (K5 III), Lambda And (G8 III-IV), and Epsilon Eri (K2 V). The existence of substantial chromospheric flux changes (10 to the 30th to 10 to the 32nd ergs) over short periods of time suggests that the calcium emission arises from a few small, coherent regions. Frequencies present in the data are discussed in the context of acoustic wave predictions and estimated acoustic cutoff frequencies for giants and dwarfs.

  5. Collision-induced absorption of radiation in the atmospheres of late-type stars

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.

    2016-05-01

    Problems associated with taking into account absorption induced by collisions between hydrogen and helium atoms, helium atoms and hydrogen molecules, and hydrogen molecules, resulting in the formation of short-lived, quasi-molecular complexes are discussed, together with opacity in the atmospheres of late-type stars due to such absorption. There is good agreement between such opacities computed using codes developed by the author and by R. Kurucz. To demonstrate the importance of including collision-induced opacity, theoretical fluxes are compared to the observed spectral energy distribution of the metal-poor L subdwarf SDSS J125637.13-022452.4. The spectral energy distribution of this object can be reproduced with an effective temperature of T eff = 2600 K only if collision-induced absorption is taken into account.

  6. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  7. Late-Type Stars in M31. II. C-, S-, and M-Star Spectra

    NASA Astrophysics Data System (ADS)

    Brewer, James P.; Richer, Harvey B.; Crabtree, Dennis R.

    1996-08-01

    We present spectra of AGB stars in M31 for which observations had been previously secured using a four-band photometric system (FBPS). The FBPS had been used to identify M-, S-, and carbon-star (C-star) candidates, and we use the spectra to show that the FBPS did an excellent job at identifying C- and M-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^13^C bands (J-stars), 2 have strong Hα emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colors of the Hα stars suggest they may be in the terminal phases of their evolution. The C_2_ and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths and either M_bol_ or (V-I) is found. It is suggested that this lack of correlation is due to an age spread. The spectra of the first confirmed S-star in M31 is presented, and two evolutionary pathways are suggested to account for this star's high luminosity.

  8. Circumstellar shells of late-type stars - a study at millimeter and infrared wavelengths

    SciTech Connect

    Sahai, R.

    1985-01-01

    An investigation (in two parts) of mass-loss envelopes around late-type stars is described concentrating on the high mass loss, carbon rich star IRC + 10216. The first part is a multi-transition study of the SiS rotational spectrum from the IRC + 10216 envelope. A numerical model to calculate the excitation of molecular rotation and vibration-rotation lines in circumstellar envelopes is developed. From fitting the observations, the author finds the (SiS)/(H/sub 2/) abundance in the inner regions of the envelope to be approx.2.4 x 10/sup -7/, roughly 100 times smaller than predicted by chemical models. The second part is an investigation of the inner (r approx. 2'') envelope of IRC + 10216, employing an annular aperture (size 2-3.45'') to measure extended emission due to resonant-scattered photons in the 4.6 ..mu..m CO vibration-rotation band. An analytical model is developed to calculate the excitation of P and R branch lines due to radiative pumping by thermal emission from dust, to fit the observations. The kinetic temperature at envelope radius r = 2'' was found to be approx.250 K, roughly twice the extrapolation of a thermodynamic model.

  9. Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    2000-01-01

    We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.

  10. Evaluating Possible Heating Mechanisms Using the Transition Region Line Profiles of Late-Type Stars

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.; Ayres, Thomas R.

    1997-01-01

    Our analysis of high-resolution Goddard High-Resolution Spectrograph (GHRS) spectra of late-type stars shows that the Si IV and C IV lines formed near 10(exp 5) K can be decomposed into the sum of two Gaussians, a broad component and a narrow component. We find that the flux contribution of the broad components is correlated with both the C IV and X-ray surface fluxes. For main-sequence stars, the widths of the narrow components suggest subsonic nonthermal velocities, and there appears to be a tight correlation between these nonthermal velocities and stellar surface gravity [xi(sub nc) varies as g(sup (-.68 +/-.07))]. For evolved stars with lower surface gravities, the nonthermal velocities suggested by the narrow components are at or just above the sound speed. Nonthermal velocities computed from the widths of the broad components are always highly supersonic. We propose that the broad components are diagnostics for microflare heating. Turbulent dissipation and Alfven waves are both viable candidates for the narrow component heating mechanism. A solar analog for the broad components might be the 'explosive events' detected by the High-Resolution Telescope and Spectrograph (HRTS) experiment. The broad component we observe for the Si IV lambda 1394 line of alpha Cen A, a star that is nearly identical to the Sun, has a FWHM of 109 +/- 10 km/s and is blueshifted by 9 +/- 3 km/s relative to the narrow component. Both of these properties are consistent with the properties of the solar explosive events. However, the alpha Cen A broad component accounts for 25% +/- 4% of the total Si IV line flux, while solar explosive events are currently thought to account for no more than 5% of the Sun's total transition region emission. This discrepancy must be resolved before the connection between broad components and explosive events can be positively established. In addition to our analysis of the Si IV and C IV lines of many stars, we also provide a more thorough analysis of all

  11. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  12. A Far Ultraviolet Spectroscopic Explorer Survey of Coronal Forbidden Lines in Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Ayres, Thomas R.; Linsky, Jeffrey L.; Ake, Thomas B.; Dupree, A. K.; Robinson, Richard D.; Young, Peter R.

    2003-03-01

    We present a survey of coronal forbidden lines detected in Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of nearby stars. Two strong coronal features, Fe XVIII λ974 and Fe XIX λ1118, are observed in 10 of the 26 stars in our sample. Various other coronal forbidden lines, observed in solar flares, also were sought but not detected. The Fe XVIII feature, formed at logT=6.8 K, appears to be free of blends, whereas the Fe XIX line can be corrupted by a C I multiplet. FUSE observations of these forbidden iron lines at spectral resolution λ/Δλ~15,000 provides the opportunity to study dynamics of hot coronal plasmas. We find that the velocity centroid of the Fe XVIII feature deviates little from the stellar rest frame, confirming that the hot coronal plasma is confined. The observed line widths generally are consistent with thermal broadening at the high temperatures of formation and show little indication of additional turbulent broadening. The fastest rotating stars, 31 Com, α Aur Ab, and AB Dor, show evidence for excess broadening beyond the thermal component and the photospheric vsini. The anomalously large widths in these fast-rotating targets may be evidence for enhanced rotational broadening, consistent with emission from coronal regions extending an additional ΔR~0.4-1.3R* above the stellar photosphere, or represent the turbulent broadening caused by flows along magnetic loop structures. For the stars in which Fe XVIII is detected, there is an excellent correlation between the observed Röntgensatellit (ROSAT) 0.2-2.0 keV soft X-ray flux and the coronal forbidden line flux. As a result, Fe XVIII is a powerful new diagnostic of coronal thermal conditions and dynamics that can be utilized to study high-temperature plasma processes in late-type stars. In particular, FUSE provides the opportunity to obtain observations of important transition region lines in the far-UV, as well as simultaneous measurements of soft X-ray coronal emission, using the Fe

  13. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Leake, J. E.; Carpenter, Kenneth G.

    2015-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using α Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfvén wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfvé waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by upward propagating non-linear Alfvé waves, are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfvé waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfvé waves becomes significant in the outer chromosphere at 1 stellar radius from the photosphere. The calculated terminal velocity and the mass loss rate are consistent with the observationally derived wind properties in α Tau.

  14. Departures from LTE for neutral Li in late-type stars

    NASA Astrophysics Data System (ADS)

    Lind, K.; Asplund, M.; Barklem, P. S.

    2009-08-01

    We perform non-LTE calculations of lithium in late-type stars for a wide range of stellar parameters, including quantum mechanical cross-sections for collisions with neutral hydrogen and the negative hydrogen ion. Non-LTE abundance corrections for the lithium resonance line at 670.7 nm and the subordinate line at 610.3 nm, are calculated using 1D MARCS model atmospheres spanning a grid T_eff = [4000, 8000] K, log g = [1.0, 5.0], and [Fe/H] = [0.0, -3.0], for lithium abundances in the range A(Li) = [-0.3, 4.2]. The competing effects of ultraviolet over-ionization and photon losses in the resonance line govern the behaviour of the non-LTE effects with stellar parameters and lithium abundance. The size and sign of the non-LTE abundance corrections vary significantly over the grid for the 670.7 nm line, but are typically positive and below 0.15 dex for the 610.3 nm, line. The new collisional data play a significant role in determining the abundance corrections. Complete Tables [see full textsee full textsee full textsee full textsee full text] and [see full textsee full textsee full textsee full textsee full text] are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/503/541

  15. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties

    NASA Astrophysics Data System (ADS)

    Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U. G.; Nordlund, Å.; Plez, B.

    2008-08-01

    Context: In analyses of stellar spectra and colours, and for the analysis of integrated light from galaxies, a homogeneous grid of model atmospheres of late-type stars and corresponding flux spectra is needed. Aims: We construct an extensive grid of spherically-symmetric models (supplemented with plane-parallel ones for the highest surface gravities), built on up-to-date atomic and molecular data, and make it available for public use. Methods: The most recent version of the MARCS program is used. Results: We present a grid of about 104 model atmospheres for stars with 2500 K ≤ T_eff ≤ 8000 K, -1 ≤ log g = log (GM/R^2) ≤ 5 (cgs) with various masses and radii, -5 ≤ [Me/H] ≤ +1, with [ α/Fe] = 0.0 and 0.4 and different choices of C and N abundances. This includes “CN-cycled” models with C/N = 4.07 (solar), 1.5 and 0.5, C/O ranging from 0.09 to (normally) 5.0 to also represent stars of spectral types R, S and N, and with 1.0 ≤ ξt ≤ 5 km s-1. We also list thermodynamic quantities (T, P_g, P_e, ρ, partial pressures of molecules, etc.) and provide them on the World Wide Web, as well as calculated fluxes in approximately 108 000 wavelength points. Underlying assumptions in addition to 1D stratification (spherical or plane-parallel) include hydrostatic equilibrium, mixing-length convection and local thermodynamic equilibrium. We discuss a number of general properties of the models, in particular in relation to the effects of changing abundances, of blanketing, and of sphericity. We illustrate positive and negative feedbacks between sphericity and molecular blanketing. We compare the models with those of other available grids and find excellent agreement with plane-parallel models of Castelli & Kurucz (if convection is treated consistently) within the overlapping parameter range. Although there are considerable departures from the spherically-symmetric NextGen models, the agreement with more recent PHOENIX models is gratifying. Conclusions: The models

  16. Chromospheric Activity and Orbital Solution of Six New Late-type Spectroscopic Binary Systems

    NASA Astrophysics Data System (ADS)

    Gálvez, M. C.; Montes, D.; Fernández-Figueroa, M. J.; López-Santiago, J.

    2006-08-01

    We present here the results of our high resolution echelle spectroscopic observations of six recently identified spectroscopic binary systems with late-type stellar components (HD 82159 (BD + 11 2052 A); HIP 63322 (BD + 39 2587); HD 160934 (RE J1738 + 611); HD 89959 (BD + 41 2078); HD 143705 (BD + 29 2752); HD 138157 (OX Ser)). The orbital solution has been obtained using precise radial velocities determined by cross-correlation with radial velocity standard stars as well as previous values reported by other authors. These multiwavelength optical observations allow us to study the chromosphere of these active binary systems using the information provided by several optical spectroscopic features (from Ca II H & K to Ca II IRT lines) that are formed at different heights in the chromosphere. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. In addition, we have determined rotational velocities (vsin i), lithium (Li I λ 6707.8 Å) abundance, and kinematic properties (membership in representative young disk stellar kinematic groups).

  17. Hα imaging of the Herschel Reference Survey. The star formation properties of a volume-limited, K-band-selected sample of nearby late-type galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Fossati, M.; Gavazzi, G.; Ciesla, L.; Buat, V.; Boissier, S.; Hughes, T. M.

    2015-07-01

    We present new Hα+[NII] imaging data of late-type galaxies in the Herschel Reference Survey aimed at studying the star formation properties of a K-band-selected, volume-limited sample of nearby galaxies. The Hα+[NII] data are corrected for [NII] contamination and dust attenuation using different recipes based on the Balmer decrement and the 24 μm luminosities. We show that the Hα luminosities derived with different corrections give consistent results only whenever the uncertainty on the estimate of the Balmer decrement is σ [C(Hβ)] ≤ 0.1. We used these data to derive the star formation rate of the late-type galaxies of the sample and compare these estimates to those determined using independent monochromatic tracers (far-UV, radio continuum) or the output of spectral energy distribution (SED) fitting codes. This comparison suggests that the 24 μm based dust extinction correction for the Hα data might not be universal and that it should be used with caution in all objects with a low star formation activity, where dust heating can be dominated by the old stellar population. Furthermore, because of the sudden truncation of the star formation activity of cluster galaxies occurring after their interaction with the surrounding environment, the stationarity conditions required to transform monochromatic fluxes into star formation rates might not always be satisfied in tracers other than the Hα luminosity. In a similar way, the parametrisation of the star formation history generally used in SED fitting codes might not be adequate for these recently interacting systems. We then use the derived star formation rates to study the star formation rate luminosity distribution and the typical scaling relations of the late-type galaxies of the HRS. We observe a systematic decrease of the specific star formation rate with increasing stellar mass, stellar mass surface density, and metallicity. We also observe an increase of the asymmetry and smoothness parameters measured

  18. Age-rotation relationship for late-type main-sequence stars

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.

    1984-01-01

    With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.

  19. Atomic lines in multiwavelength spectral analysis of late-type stars

    NASA Astrophysics Data System (ADS)

    Jones, Hugh

    2015-08-01

    We make a multiwavelength analysis of strong/average atomic features which can be used in late-type dwarfs investigations. Quantative analysis of Na, Mg, Al, K, Ca, Sc, Ti, Mn, Fe across the optical and infrared was carried out. Stellar spectra in these wave regions are governed by different molecular species, so precise data of atomic features help not only to determine the fundamental parameters of cooldwarfs, but specify the accuracy of molecular line lists. We show the number of atomic features which are visible in the wide range of wavelengths and temperature regimes and should be seen in spectra of late type dwarfs. We discuss the accuracy of the atomic feature profiles modelling depending on the synthetic spectra parameters, e.g efffective temperature, gravity, metallicity, etc. and show that deviations whithin the model parameters step are only a few percent. We apply our analysis to the spectra modelling from M to T dwarfs.

  20. Rapid, low-level X-ray variability in active late-type dwarfs

    NASA Technical Reports Server (NTRS)

    Ambruster, Carol W.; Sciortino, Salvatore; Golub, L.

    1987-01-01

    A sensitive new statistical analysis method was used to establish certain properties of quiescent X-ray variability in a sample of 19 late-type dwarfs. Sixteen stars proved to be significantly variable. The typical amplitude of the fluctuations was about 30 percent. Variability time scales ranged from about 150 s for 40 Eri C to lower limits as large as 2000 s. Neither the amplitudes nor the time scales of the X-ray variability appeared to depend on position along the main sequence.

  1. Doppler imaging of the young late-type star LO Pegasi (BD+22°4409) in 2003 September

    NASA Astrophysics Data System (ADS)

    Piluso, N.; Lanza, A. F.; Pagano, I.; Lanzafame, A. C.; Donati, J.-F.

    2008-06-01

    A Doppler image of the zero-age main-sequence (ZAMS) late-type rapidly rotating star LO Pegasi, based on spectra acquired between 2003 September 12 and 15 is presented. The least-squares deconvolution technique is applied to enhance the signal-to-noise ratio of the mean rotational broadened line profiles extracted from the observed spectra. In the present application, an unbroadened spectrum is used as a reference, instead of a simple line list, to improve the deconvolution technique applied to extract the mean profiles. The reconstructed image is similar to those previously obtained from observations taken in 1993 and 1998, and shows that LO Peg photospheric activity is dominated by high-latitude spots with a non-uniform polar cap. The latter seems to be a persistent feature as it has been observed since 1993 with little modifications. Small spots, observed between ~10° and ~60° of latitude, appears to be different with respect to those present in the 1993 and 1998 maps. Based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: nicolo.piluso@oact.inaf.it (NP); nuccio.lanza@oact.inaf.it (AFL); isabella.pagano@oact.inaf.it (IP); alessandro.lanzafame@oact.inaf.it (ACL); donati@ast.obs-mip.fr (J-FD)

  2. Mg II Spectra of Late Type Stars Used to Probe the LISM

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Crivellari, L.; Franco, M.; Molaro, P.; Vladilo, G.

    1984-01-01

    IUE spectra of Mg II h and k in late type dwarfs and giants were used to detect and measure absorption components due to the LISM. This technique gives a method of probing the awkward range from d = 3 pc to d = 80 pc from the Sun. In spite of interpretational uncertainties the HI component of the LISM can be plotted well enough to confirm it as a cloud some 20 to 30 pc in extent, peaking sharply in density towards l(II)-25 deg., moving towards the Sun from l(II)-25 deg, b(II) = + 10 deg., at 28 Km/sec. The hole towards l(II) = 150 deg is confirmed, suggesting a solar position close to the cloud's edge in this direction.

  3. The Chromosphere/Shock Dilemma of Non-Mira, Late-Type Variable Stars

    NASA Technical Reports Server (NTRS)

    Willson, Lee Anne

    1997-01-01

    An investigation of the atmospheric structure of non-Mira, asymptotic giant branch stars through NLTE radiative transfer modeling applied to hydrodynamic models is discussed. Synthetic spectra resulting from these calculations were compared with IUE observations of these stars to test the validity of the models. The development of the hydrodynamic models is detailed.

  4. IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1981-01-01

    The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.

  5. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  6. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Urry, C. Megan; Simmons, Brooke D.; Fortson, Lucy; Kaviraj, Sugata; Keel, William C.; Lintott, Chris J.; Masters, Karen L.; Nichol, Robert C.; Sarzi, Marc; Skibba, Ramin; Treister, Ezequiel; Willett, Kyle W.; Wong, O. Ivy; Yi, Sukyoung K.

    2014-05-01

    We use SDSS+GALEX+Galaxy Zoo data to study the quenching of star formation in low-redshift galaxies. We show that the green valley between the blue cloud of star-forming galaxies and the red sequence of quiescent galaxies in the colour-mass diagram is not a single transitional state through which most blue galaxies evolve into red galaxies. Rather, an analysis that takes morphology into account makes clear that only a small population of blue early-type galaxies move rapidly across the green valley after the morphologies are transformed from disc to spheroid and star formation is quenched rapidly. In contrast, the majority of blue star-forming galaxies have significant discs, and they retain their late-type morphologies as their star formation rates decline very slowly. We summarize a range of observations that lead to these conclusions, including UV-optical colours and halo masses, which both show a striking dependence on morphological type. We interpret these results in terms of the evolution of cosmic gas supply and gas reservoirs. We conclude that late-type galaxies are consistent with a scenario where the cosmic supply of gas is shut off, perhaps at a critical halo mass, followed by a slow exhaustion of the remaining gas over several Gyr, driven by secular and/or environmental processes. In contrast, early-type galaxies require a scenario where the gas supply and gas reservoir are destroyed virtually instantaneously, with rapid quenching accompanied by a morphological transformation from disc to spheroid. This gas reservoir destruction could be the consequence of a major merger, which in most cases transforms galaxies from disc to elliptical morphology, and mergers could play a role in inducing black hole accretion and possibly active galactic nuclei feedback.

  7. Searching for X-ray sources in nearby late-type galaxies with low-star formation rates

    NASA Astrophysics Data System (ADS)

    Chatterjee, K.; Kaaret, P.; Brorby, M.; Kajava, J. J. E.; Grisé, F.; Farrell, S.; Poutanen, J.

    2016-03-01

    Late-type non-starburst galaxies have been shown to contain X-ray emitting objects, some being ultraluminous X-ray sources. We report on XMM-Newton observations of 11 nearby, late-type galaxies previously observed with the Hubble Space Telescope (HST) in order to find such objects. We found 18 X-ray sources in or near the optical extent of the galaxies, most being point-like. If associated with the corresponding galaxies, the source luminosities range from 2 × 1037 erg s-1 to 6 × 1039 erg s-1. We found one ultraluminous X-ray source, which is in the galaxy IC 5052, and one source coincident with the galaxy IC 4662 with a blackbody temperature of 0.166 ± 0.015 keV that could be a quasi-soft source or a quiescent neutron star X-ray binary in the Milky Way. One X-ray source, XMMU J205206.0-691316, is extended and coincident with a galaxy cluster visible on an HST image. The X-ray spectrum of the cluster reveals a redshift of z = 0.25 ± 0.02 and a temperature of 3.6±0.4 keV. The redshift was mainly determined by a cluster of Fe XXIV lines between the observed energy range 0.8 - 1.0 keV.

  8. Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1996-01-01

    The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.

  9. On the relationship between coronae and mass loss in late-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Dupree, A. K.; Raymond, J. C.

    1981-01-01

    High-dispersion spectra taken with the IUE are used to examine the temperature stratification of the wind of the hybrid atmosphere star Alpha TrA (K4 II). C IV emission is shown to have a line width of 150-200 km/s, with Si III and C III exhibiting 100 km/s widths. It is suggested that the line widths reflect wind expansion, with C IV formed in an extended region flowing near the wind terminal velocity of 85 km/s. It is shown that the observed line widths can be accounted for by the stellar wind theory of Hartmann and MacGregor, in which the schematic dissipation of Alfven waves drives the outflow in addition to heating the wind. The observations of the warm expanding corona in Alpha TrA suggest a continuous progression between the high temperature low-mass-flux solar wind and the winds of luminous cool stars.

  10. Spectra of late type dwarf stars of known abundance for stellar population models

    NASA Technical Reports Server (NTRS)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  11. VizieR Online Data Catalog: Spectroscopy of nearby late-type stars (Maldonado+, 2010)

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnaiz, R. M.; Eiroa, C.; Montes, D.; Montesinos, B.

    2010-06-01

    File table1 contains the name of the observed stars, coordinates, astrometric data, radial velocities and notes. Parallaxes are taken from van Leeuwen (2007, Cat. I/311) and proper motions from (2000, Cat. I/259). Radial velocities were derived from high-resolution spectra taken with the FOCES spectrograph at the Calar Alto observatory (Almeria, Spain) and the SARG spectrograph at the Telescopio Nazionale Galileo in La Palma (Canary Islands, Spain). Additional spectra from the public library "S4N" (Allende Prieto et al., 2004, Cat. J/A+A/420/183) were also used. Radial velocities were measured by cross-correlating the spectra of our programme stars with spectra of radial velocity standard stars taken from Barnes et al. (1986PASP...98..223B), Beavers et al. (1979PASP...91..698B), and Udry et al. (1999ASPC..185..383U, 1999ASPC..185..367U). For known spectroscopic binaries the radial velocity of the centre of mass of the system is given. These values are from Pourbaix et al. (Cat. B/sb9/) or Eker et al. (2008, Cat. V/128 ). Previous radial velocities reported in the literature are also given for comparison. (1 data file).

  12. The Kinematics of Late-Type Stars in the Solar Cylinder Studied with SDSS Data

    NASA Astrophysics Data System (ADS)

    Fuchs, Burkhard; Dettbarn, Christian; Rix, Hans-Walter; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Jahreiß, Hartmut; Klement, Rainer; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

    2009-05-01

    We study the velocity distribution of Milky Way disk stars in a kiloparsec-sized region around the Sun, based on ~2 million M-type stars from DR7 of SDSS, which have newly re-calibrated absolute proper motions from combining SDSS positions with the USNO-B catalogue. We estimate photometric distances to all stars, accurate to ~20%, and combine them with the proper motions to derive tangential velocities for this kinematically unbiased sample of stars. Based on a statistical deprojection method we then derive the vertical profiles (to heights of Z = 800 pc above the disk plane) for the first and second moments of the three-dimensional stellar velocity distribution. We find that langWrang = -7 ± 1 km s-1 and langUrang = -9 ± 1 km s-1, independent of height above the mid-plane, reflecting the Sun's motion with respect to the local standard of rest. In contrast, langVrang changes distinctly from -20 ± 2 km s-1 in the mid-plane to langVrang = -32 km s-1 at Z = 800 pc, reflecting an asymmetric drift of the stellar mean velocity that increases with height. All three components of the M-star velocity dispersion show a strong linear rise away from the mid-plane, most notably σ ZZ , which grows from 18 km s-1 (Z = 0) to 40 km s-1 (at Z = 800 pc). We determine the orientation of the velocity ellipsoid, and find a significant vertex deviation of 20°-25°, which decreases only slightly to heights of Z = 800 pc. Away from the mid-plane, our sample exhibits a remarkably large tilt of the velocity ellipsoid toward the Galactic plane, which reaches 20° at Z = 800 pc and which is not easily explained. Finally, we determine the ratio σ2 phiphi/σ2 RR near the mid-plane, which in the epicyclic approximation implies an almost perfectly flat rotation curve at the solar radius.

  13. THE KINEMATICS OF LATE-TYPE STARS IN THE SOLAR CYLINDER STUDIED WITH SDSS DATA

    SciTech Connect

    Fuchs, Burkhard; Dettbarn, Christian; Jahreiss, Hartmut; Rix, Hans-Walter; Klement, Rainer; Beers, Timothy C.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

    2009-05-15

    We study the velocity distribution of Milky Way disk stars in a kiloparsec-sized region around the Sun, based on {approx}2 million M-type stars from DR7 of SDSS, which have newly re-calibrated absolute proper motions from combining SDSS positions with the USNO-B catalogue. We estimate photometric distances to all stars, accurate to {approx}20%, and combine them with the proper motions to derive tangential velocities for this kinematically unbiased sample of stars. Based on a statistical deprojection method we then derive the vertical profiles (to heights of Z = 800 pc above the disk plane) for the first and second moments of the three-dimensional stellar velocity distribution. We find that (W) = -7 {+-} 1 km s{sup -1} and (U) = -9 {+-} 1 km s{sup -1}, independent of height above the mid-plane, reflecting the Sun's motion with respect to the local standard of rest. In contrast, (V) changes distinctly from -20 {+-} 2 km s{sup -1} in the mid-plane to (V) = -32 km s{sup -1} at Z = 800 pc, reflecting an asymmetric drift of the stellar mean velocity that increases with height. All three components of the M-star velocity dispersion show a strong linear rise away from the mid-plane, most notably {sigma} {sub ZZ}, which grows from 18 km s{sup -1} (Z = 0) to 40 km s{sup -1} (at Z = 800 pc). We determine the orientation of the velocity ellipsoid, and find a significant vertex deviation of 20{sup 0}-25{sup 0}, which decreases only slightly to heights of Z = 800 pc. Away from the mid-plane, our sample exhibits a remarkably large tilt of the velocity ellipsoid toward the Galactic plane, which reaches 20{sup 0} at Z = 800 pc and which is not easily explained. Finally, we determine the ratio {sigma}{sup 2} {sub {phi}}{sub {phi}}/{sigma}{sup 2} {sub RR} near the mid-plane, which in the epicyclic approximation implies an almost perfectly flat rotation curve at the solar radius.

  14. The chromospheres of late-type stars. II - An atlas of chromospheric lines for selected early-K stars

    NASA Technical Reports Server (NTRS)

    Thatcher, John D.; Robinson, Richard D.

    1993-01-01

    High-resolution spectra of the chromospheric Na I D lines, Ca I 4227, Mg I 4571, 5167, and 5172, the Ca II H and K resonance and IR 8542.144 and 8662.170 lines, and H-alpha and H-beta, all observed simultaneously at the AAT, are presented. These data are presented as the observational basis for the self-consistent, semiempirical modeling of the outer photospheres and chromospheres of the target stars. Stellar activity is found in the low-chromosphere lines as core-filling and, in some stars, as line-broadening. Integrated fluxes are derived from the difference spectra, formed by subtracting quiet from active spectra, in the Ca II H and K resonance and IR 8542 and 8662 lines and in H-alpha, which are presented as chromospheric activity indicators. All the activity indices exhibit strong correlations, with the exception of the equivalent widths of H-alpha and H-beta, which are found to be relatively poor activity discriminators.

  15. High-resolution X-ray spectroscopy of late-type stars with CHANDRA

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Raassen, A. J. J.; Kaastra, J. S.; van der Meer, R. L. J.; Brinkman, A. C.

    We have analyzed high-resolution (Δλ ≅ 0.06 Å) X-ray spectra in the region 6-180 Å of the coronae of the cool stars Capella, Procyon, and α Centauri. These stars were observed with the the CHANDRA Low Energy Transmission Grating Spectrometer (LETGS) between Sep. and Dec. 1999. Temperatures are derived from line ratios of helium-like lines and long-wavelength iron lines. Electron densities are obtained for the relatively cooler (few MK) and more tenuous (⪅ 10 11 cm -3) plasma components from the forbidden to intercombination line ratios in the helium-like triplets of O, N, and C and for the hotter (⪆ 5 MK) and denser (⪆ 10 12 cm -3) components (such as occur in Capella) from the helium-like triplets of Mg and Si and the ratios of Fe XIX-Fe XXII 2ℓ-2ℓ' lines above 90 Å. The implications of these results for the coronal structure are discussed.

  16. The chromospheres of late-type stars. I - Eridani as a test case of multiline modelling

    NASA Technical Reports Server (NTRS)

    Thatcher, John D.; Robinson, Richard D.; Rees, David E.

    1991-01-01

    A new model of the lower chromosphere of the dwarf K2 star Epsilon Eridani is derived by matching flux profiles of the Ca IR triplet lines 8498 and 8542 A H-alpha and H-beta lines and the Na D lines (all observed simultaneously at the AAT), and the Ca II K line. The coupled non-LTE equations of statistical equilibrium and radiative transfer are solved under the constraint of hydrostatic equilibrium using the Carlsson (1986) code. Within the framework of the model, the Na D lines are an important photospheric diagnostic, and the Ca IR triplet lines can be used to locate the temperature minimum. The computed H-alpha and H-beta depths are highly sensitive constraints on the transition zone gradients and base pressures allowing us to derive a pressure at the base of the transition zone of 0.9 dyn/cm.

  17. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  18. VizieR Online Data Catalog: Spectroscopic orbits for 15 late-type stars (Willmarth+, 2016)

    NASA Astrophysics Data System (ADS)

    Willmarth, D. W.; Fekel, F. C.; Abt, H. A.; Pourbaix, D.

    2016-09-01

    The radial velocities used here are mainly from four sources: those obtained during the aforementioned work of Abt & Willmarth 2006 (Cat. J/ApJS/162/207), an earlier survey of solar-type stars (1986-1990, Julian Days 2546708-2550885) reported in Abt & Willmarth (1992ASPC...32...82A), subsequent observations by the first author (DW) using the same spectrograph, and observations by the second author (FF) that were acquired at Fairborn Observatory (Fekel et al. 2009AJ....137.3900F). The observations of Abt & Willmarth 2006 (Cat. J/ApJS/162/207) were obtained with the Kitt Peak National Observatory (KPNO) 0.9m auxillary coude feed telescope and the coude spectrograph, which was originally built for the KPNO 2.1m telescope. The observations reported in Abt & Willmarth (1992ASPC...32...82A) employed the same equipment, except the "B" grating was used yielding approximately half the resolution used in Abt & Willmarth 2006 (Cat. J/ApJS/162/207). Subsequent observations obtained by DW used either the "A" grating as in Abt & Willmarth 2006 (Cat. J/ApJS/162/207) or a 31.6grooves/mm echelle grating cross-dispersed by grisms. The latter combination yields a resolving power λ/Δλ=72000 for 2 pixels. Spectroscopic observations with the 2m Tennessee State University telescope and fiber-fed echelle spectrograph at Fairborn Observatory in southeast Arizona were described in detail in Fekel et al. 2015 (Cat. J/AJ/149/63), and provide the majority of the more recent radial velocities. (3 data files).

  19. Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Tokovinin, Andrei; Mason, Brian D.; Riddle, Reed L.; Hartkopf, William I.; Law, Nicholas M.; Baranec, Christoph

    2015-04-01

    We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yr and 30 Ari B has a period of 80 yr. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars.

  20. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  1. Discrepant asymmetry stars: The role of unsteady magnetic flux loops in the atmospheres of late-type giant stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.

    1982-01-01

    A number of spectroscopic peculiarities of K giants and other stars which lie in a wedge in the HR diagram are discussed. These peculiarities can be understood in terms of unsteady magnetic flux loops emerging into the stellar atmosphere from beneath the surface.

  2. THE CHROMOSPHERIC ACTIVITY OF [HH97] FS Aur-79: A CLOSE BINARY WITH LATE-TYPE ACTIVE (dK7e+dM3e) COMPONENTS

    SciTech Connect

    Austin, S. J.; Robertson, J. W.; De Souza, T. R.; Tycner, C.; Honeycutt, R. K. E-mail: jrobertson@atu.edu E-mail: c.tycner@cmich.edu

    2011-04-15

    Using Doppler tomography we show that FS Aur-79, a near-contact close binary system with late-type active dK7e+dM3e components, has chromospheric prominences in two distinct emission regions associated with the primary star and a larger amount of chromospheric activity associated with the cooler secondary star. The line profiles, equivalent widths, and equivalent width ratios of the H{alpha} and H{beta} emission lines as a function of orbital phase further support that the majority of the chromospheric emission originates above the secondary star and near the neck region. Analysis of high-resolution spectra using the technique of broadening functions has enabled us to determine the radial velocity of the secondary star near quadratures to be approximately 224 km s{sup -1}. A Wilson-Devinney model of the system fitting the UBV light curves and radial velocities shows that there are star spots near the chromospherically active regions. Finally, the absence of Li I {lambda}6708 in the spectra lets us put a lower limit on the age of this system to at least 500 Myr.

  3. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  4. Solar and late-type dwarfs

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1982-01-01

    The Einstein Observatory's and the IUE's contributions to knowledge of coronal formation in late-type stars are discussed. The HR diagram of stars seen as X-ray sources by these observatories is presented, and the influence of rotation on X-ray emission is reviewed. Emission from the Alpha Cen system and from active stars with quiescent coronae is examined, and the extent of the contribution of emission from normal stars to the soft X-ray background is addressed. The quiescent and flare emission from Alpha Cen, the temporal variability of X-ray emission from a sample of active chromosphere stars, and the predicted contribution of chromospheric emission to the diffuse soft X-ray background are depicted. Chromospheric indicators of activity are discussed, the connection between surface magnetic fields and X-ray emission in the chromosphere is briefly reviewed, and the quantitative links between X-ray data and magnetic fields is summarily presented.

  5. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    SciTech Connect

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael; Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R.; Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha; King, David; Parry, Ian R.; Metchev, Stanimir; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi; and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  6. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  7. MOST Detects g-Modes in the Late-Type Be Star β Canis Minoris (B8 Ve)

    NASA Astrophysics Data System (ADS)

    Saio, H.; Cameron, C.; Kuschnig, R.; Walker, G. A. H.; Matthews, J. M.; Rowe, J. F.; Lee, U.; Huber, D.; Weiss, W. W.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.

    2007-01-01

    The Microvariability and Oscillations of Stars (MOST) satellite has detected low-amplitude light variations (Δm~1 mmag) in the Be star β CMi (B8 Ve). The observations lasted 41 days and the variations have typical periods ~0.3 days. We demonstrate that the dominant frequencies are consistent with prograde high-order g-modes of m=-1 excited by the Fe bump of opacity in an intermediate-mass (~3.5 Msolar) star with a nearly critical rotation period of 0.38 days. This is the first detection of nonradial g-mode pulsations in a Be star later than B6 leading to the possibility that pulsations are excited in all classical Be stars. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia with the assistance of the University of Vienna.

  8. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  9. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    SciTech Connect

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Van der Wel, Arjen

    2012-04-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U - V versus V - J diagram (i.e., the UVJ diagram) using a sample at 0.6 < z < 0.9 that reaches a low stellar mass limit (log M/M{sub Sun} >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sersic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sersic indices. Interestingly, most UVJ-selected SFGs with high Sersic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]{lambda}3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  10. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    SciTech Connect

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  11. The ultraviolet spectrum of noncoronal late-type stars - The Gamma Crucis (M3.4 III) reference spectrum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Pesce, Joseph E.; Stencel, Robert E.; Brown, Alexander; Johansson, Sveneric

    1988-01-01

    A guide is presented to the UV spectrum of M-type giants and supergiants whose outer atmospheres contain warm chromospheres but not coronae. The M3 giant Gamma Crucis is taken as the archetype of the cooler, oxygen-rich, noncoronal stars. Line identifications and integrated line flux measurements of the chromospheric emission features seen in the 1200-3200 A range of IUE high-resolution spectra are presented. The major fluorescence processes operating in the outer atmosphere of Gamma Crucis, including eight previously unknown pumping processes and 21 new fluorescent line products, are summarized, and the enhancements of selected line strengths by 'line leakage' is discussed. A set of absorption features toward the longer wavelength end of this range is identified which can be used to characterize the radial velocity of the stellar photospheres. The applicability of the results to the spectra of noncoronal stars with different effective temperatures and gravities is discussed.

  12. SiO and H2O maser emission in OH/IR objects and late-type variable stars

    NASA Technical Reports Server (NTRS)

    Nyman, L.-A.; Johansson, L. E. B.; Booth, R. S.

    1986-01-01

    A four-year search for 86-GHz SiO and H2O maser emission towards about 20 unidentified OH/IR objects and about 35 optically identified variable stars has yielded information on the temporal variations of many of these sources. The SiO maser emission is noted to behave differently in OH/IR objects as compared with Mira variables. An attempt is made to explain the appearance of strong masers in both vibrational states solely at the 43 GHz transition, under the assumption that an intrinsically weak pump mechanism generates weak (v=1, J=2-1) emission.

  13. A super-jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    SciTech Connect

    Tsapras, Y.; Street, R. A.; Choi, J.-Y.; Han, C.; Bozza, V.; Gould, A.; Dominik, M.; Browne, P.; Horne, K.; Hundertmark, M.; Beaulieu, J.-P.; Udalski, A.; Jørgensen, U. G.; Sumi, T.; Bramich, D. M.; Kains, N.; Ipatov, S.; Alsubai, K. A.; Snodgrass, C.; Steele, I. A.; Collaboration: RoboNet Collaboration; MiNDSTEp Collaboration; OGLE Collaboration; PLANET Collaboration; μFUN Collaboration; MOA Collaboration; and others

    2014-02-10

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M {sub J} planet orbiting a 0.44 ± 0.07 M {sub ☉} early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  14. Observations of late-type variable stars in the water-vapor radio line. The supergiant VX Sagittarii

    NASA Astrophysics Data System (ADS)

    Pashchenko, M. I.; Rudnitskii, G. M.

    1999-05-01

    Observations of the circumstellar maser emission of the M supergiant VX Sgr in the water-vapor line at 1.35 cm are presented. The observations were carried out from 1981-1998 (JD 2 444 655-2 450 966) on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory of the Astro Space Center of the Lebedev Institute of Physics. Throughout the 17 years of the observations, there were two groups of emission features in the H2O-line profile, which originate in the two oppositely directed lobes of a bipolar outflow from the star. A redistribution of the integrated flux F_int between the two groups of features was noted: in 1981-1987, the group with negative velocities (V_LSR < V_*, where V_* is the stellar velocity) dominated; starting from 1993, F_int for the features with V_LSR > V_* slightly exceeded that for features with V_LSR < V_*. This redistribution of F_int in the H2O-line profile may be associated with a change in the dominant direction for the bipolar outflow due to restructuring of the overall dipolar magnetic field of VX Sgr. A model for the VX Sgr H2O maser source with a circumstellar disk and bipolar outflow in two cones with half-opening angle theta ~ 60deg is discussed. The axis of the bipolar outflow also forms an angle i ~ 60deg to the line of sight. The estimated bipolar-outflow expansion velocity V_0 in the H2O-maser region (R = (1.5-5) x 10^15 cm) is ~10 km/s. The variability of the H2O maser is correlated with the visual light curve of VX Sgr. However, the phase delay delta phi of the F_int(H2O) variations relative to the optical variations changed form 0 to ~1 stellar period (P = 732d) over the time covered by the maser observations. If the variability of the H2O-maser source is the result of periodic impacts of shock waves driven by stellar pulsations, the travel time for the shock from the photosphere to the inner boundary of the H2O maser shell may be as long as (10-15)P.

  15. THE STRUCTURE OF NUCLEAR STAR CLUSTERS IN NEARBY LATE-TYPE SPIRAL GALAXIES FROM HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING

    SciTech Connect

    Carson, Daniel J.; Barth, Aaron J.; Seth, Anil C.; Brok, Mark den; Cappellari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-05-15

    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from −11.2 to −15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future

  16. The Structure of Nuclear Star Clusters in Nearby Late-type Spiral Galaxies from Hubble Space Telescope Wide Field Camera 3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel J.; Barth, Aaron J.; Seth, Anil C.; den Brok, Mark; Cappellari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-05-01

    We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters (NCs) residing in late-type spiral galaxies, in seven bands that span the near-UV to the near-IR. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from ‑11.2 to ‑15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For 6 of the 10 clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population that is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of NCs in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color–color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (>1 Gyr) and a young population (∼100–300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only. The surface brightness profiles presented in this work will be used for future

  17. The Structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel; Barth, Aaron J.; Seth, Anil; den Brok, Mark; Cappelari, Michele; Greene, Jenny E.; Ho, Luis C.; Neumayer, Nadine

    2015-01-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. We present a detailed analysis of the two-dimensional (2D) structure of of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured by fitting PSF convolved, 2D surface brightness profiles to each image using GALFIT. The clusters exhibit a wide range of structural properties, with F814W absolute magnitudes that range from -11.2 mag to -15.1 mag and F814W effective radii that range from 1.4 to 8.3 pc. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. We also find a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks.The stellar populations of the clusters were studied by comparing their observed colors to simple stellar population (SSP) models. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for complex star formation histories. Most of the NCs have integrated colors consistent with the presence of both an old population (> 1 Gyr) and a young population (˜100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.

  18. The structure and Stellar Populations of Nuclear Star Clusters in Late-type Spiral Galaxies From HST/WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Carson, Daniel

    2016-06-01

    Luminous, compact stellar systems known as nuclear clusters (NCs) are commonly found in the centers of galaxies across the entire Hubble sequence. I present an analysis of the structure and stellar populations of a sample of ten of the nearest and brightest NCs residing in late-type spiral galaxies, using imaging data from Hubble Space Telescope Wide Field Camera 3 in seven bands that span the near-ultraviolet to the near-infrared. The intrinsic shapes and sizes of the NCs, disentangled from the effects of point spread function (PSF) blurring, were measured using GALFIT. For six of the ten NCs in our sample, we find changes in the effective radius with wavelength, which suggests that many NCs contain radially varying stellar populations. There is also a general trend of increasing roundness of the NCs at longer wavelengths, suggesting that the youngest stars in NCs typically form in disks. I developed a Monte Carlo code to fit linear combinations of simple stellar population models to the observed spectral energy distribution (SED) of each NC and assess the uncertainties in the fit parameters. Tests using mock SEDs with known input parameters demonstrate that although the method is susceptible to degeneracies between model SEDs, the code is robust and accurately recovers the total stellar mass for a wide range of NC colors and ages. I present global star formation histories and stellar mass estimates for each cluster, which are in good agreement with previous dynamical studies. The clusters are generally dominated by an old (> 1 Gyr) population, but are best described by multi-age models. The spatially resolved properties of the stellar populations of each NC were also studied by performing SED fits on a pixel-by-pixel basis. These fits reveal radial age gradients in the same NCs that exhibited variation in the effective radius with wavelength. Finally, I present deprojected density profiles and estimates of the central stellar density of each cluster.

  19. Multitechnique testing of the viscous decretion disk model. I. The stable and tenuous disk of the late-type Be star β CMi

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.

    2015-12-01

    Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ond

  20. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-08-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves.We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally- and temporally-averaged 3D STAGGER model atmospheres.

  1. Saturated Activity: Very Close, Detached Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.

    It is proposed to obtain EUVE spectra of 4 close, synchronized, late-type binary stars with orbital/rotational periods shorter than 1.2 day, to study stellar coronal activity at very high, saturated levels. Among stars of spectral types between late-F to mid-K, only components of very close binary systems (and very rare young stars) can have such short rotational periods. Together with the EGO-1 and EGO-2 results for DH Leo and TZ CrB obtained by others, the spectra will be utilized in a comprehensive discussion of the saturated stellar activity, in relation to and in contrast with, the previously obtained by us spectra of the single, rapidly-rotating young star, AB Dor (P=0.51 day, EGO-1) and of two contact binary systems, 44i Boo (P=0.27 day) and VW Cep (P=0.28 day, EGO-2).

  2. The Atmospheric Dynamics of alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for alpha Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These waves cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  3. The Atmospheric Dynamics of Alpha Tau (K5 III) - Clues to Understanding the Magnetic Dynamo in Late-Type Giant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Airapetian, Vladimir

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for a Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from a Tau can be consistently understood via a model of upward-traveling Alfv6n waves in a gravitationally stratified atmosphere. These waves cause nonthermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant Alfven wave heating.

  4. Active Longitudes and Flip-Flops in Binary Stars

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi; Järvinen, Silva P.

    2007-08-01

    In many active stars the spots concentrate on two permanent active longitudes which are 180 degrees apart. In some of these stars the dominant part of the spot activity changes the longitude every few years. This so-called flip-flop phenomenon was first reported in the early 1990's in the single, late type giant FK Com. Since then flip-flops have been reported also on binary stars, young solar type stars and the Sun itself. Even though this phenomenon has been detected on many different kinds of active stars, still less than ten stars are known to exhibit this effect. Therefore no statistically significant correlation between the stellar parameters and the flip-flop phenomenon can be carried out. Here we present results from investigation where we have studied the long-term photometry of several magnetically active RS CVn binaries to see whether or not they show permanent active longitudes and the flip-flop phenomenon. We find that it is very common for the active regions to occur on permanent active longitudes, and some of these stars also show clear flip-flop phenomenon.

  5. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    SciTech Connect

    West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan; Charbonneau, David; Dittmann, Jason; Berta-Thompson, Zachory K.; Pineda, J. Sebastian

    2015-10-10

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.

  6. Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes

    2014-08-01

    We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.

  7. Observations of active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Africano, J. L.; Klimke, A.; Stencel, R. E.; Noah, P. V.; Bopp, B. W.

    1983-01-01

    It is pointed out that spectroscopic signatures of stellar chromospheric activity are readily observable. The present study is concerned with new photometric and spectroscopic observations of active-chromosphere RS CVn, BY Dra, and FK Com stars. Attention is given to the first results of a synoptic monitoring program of many active chromosphere stars. During the time from 1980 to 1982, photometric and spectroscopic observations of 10 known or suspected active-chromosphere objects were made. The results regarding the individual stars are discussed. Seven stars observed with the International Ultraviolet Explorer (IUE) are all spectroscopic binaries.

  8. Chromospheres of Coronal Stars

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.

    1996-01-01

    We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.

  9. The magnetic activity sunlike stars.

    PubMed

    Vaughan, A H

    1984-08-24

    Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general. PMID:17801135

  10. The magnetic activity sunlike stars.

    PubMed

    Vaughan, A H

    1984-08-24

    Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general.

  11. Momentum and energy balance in late-type stellar winds

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1981-01-01

    Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.

  12. Radial velocity measurements of the chromospherically-active stars (2): HD 28591 = V492 Per

    NASA Technical Reports Server (NTRS)

    Dadonas, V.; Sperauskas, J.; Fekel, F. C.; Morton, M. D.

    1994-01-01

    From two sets of the spectroscopic observations covering a ten year period we have obtained 59 radial velocities of the chromospherically-active star HD 28591 = V492 Per. It is a G9III single-lined spectroscopic binary with a period of 21.2910 days and a circular orbit. The upsilon sin i of 24.6 km/sec, results in a minimum radius 10.3 solar radii. We estimate a distance of 165 +/- 40 pc and an orbital inclination of 65 +/- 25 degrees. The secondary is probably a mid to late-type K dwarf. The star is brighter than the limiting magnitude of the Bright Star Catalogue. The mean photometric and the orbital periods are identical within their uncertainties. Since the star fills a significant fraction of its Roche lobe, about 62%, the photometric light curve may be the result of starspots and a modest ellipticity effect.

  13. L'-band AGPM vector vortex coronagraph's first light on VLT/NACO. Discovery of a late-type companion at two beamwidths from an F0V star

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Delacroix, C.; Girard, J. H.; Milli, J.; O'Neal, J.; Baudoz, P.; Boccaletti, A.; Bourget, P.; Christiaens, V.; Forsberg, P.; Gonte, F.; Habraken, S.; Hanot, C.; Karlsson, M.; Kasper, M.; Lizon, J.-L.; Muzic, K.; Olivier, R.; Peña, E.; Slusarenko, N.; Tacconi-Garman, L. E.; Surdej, J.

    2013-04-01

    Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation ground-based adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aims: Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L' band. The L' band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher. Methods: An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L' band made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results: Here we present the installation and successful on-sky tests of an L'-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a ΔL' > 7.5 mag contrast from an IWA ≃ 0."09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.

  14. Momentum and energy deposition in late-type stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Macgregor, K. B.

    1980-01-01

    The present study calculates the response of the outer atmospheres of cool low-gravity stars to the passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and Alfven waves. It is shown that Alfven waves are efficient in generating outflow, and can account for the order of magnitude of observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo some dissipation within several stellar radii of the surface, the predicted terminal velocities of the resulting stellar winds are far too high. Alfven wave dissipation should give rise to extended warm chromospheres in low-gravity late-type stars, a prediction which can be observationally tested.

  15. Local and Global Magnetic Fields of Late-Type Dwarfs OT Ser and YZ CMi

    NASA Astrophysics Data System (ADS)

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.; Panferov, A. A.

    2015-04-01

    Differential rotation is the primary energy source for generation of local magnetic fields in the atmospheres of late-type stars (Moss et al. 1995). Moreover, the colder a star, the greater the effect, which was confirmed by observations. For instance, Saar (1988) measured the surface magnetic fields of late-type stars using the integral method Robinson (1980) and drew attention to the fact that the average magnetic field in the spots reaches the values of 1500 G for the G-type dwarfs, 2500 G for the K dwarfs, and 3500 G for the M-dwarf stars. The fraction of the surface of a star covered by spots also increases towards the latest spectral types. These well-known observational facts were explained by theoretical models, such as the α2 mechanism, for instance (Moss et al. 1995). Late-type dwarfs exhibit periodic eruptions resulting from the field line reconnection of newly generated local magnetic fields. This feature is observed in G, K, and M dwarfs, constituting 95%of all the stars in our Galaxy. The most prominent are the field reconnections in the so-called flare stars, which are the M dwarfs. This is understandable, since the peak flux of M dwarfs is placed in the red and infrared regions of the spectrum, whereas a flash has the maximum emission in the violet spectral region. Analysis of long-term photometric observations revealed that, on the average, energy of flares was found constant over a long time period for each flare star. That is to say, this conclusion implies that the power of the local magnetic field generator remains constant at this stage of evolution of stars.

  16. On the rarity of FK Com stars

    NASA Technical Reports Server (NTRS)

    Hagen, W.; Stencel, R. E.

    1985-01-01

    Very high-dispersion spectra (2.5 A/mm) were obtained of 31 southern late-type stars, predominantly early G giants, in an effort to find new rapidly rotating, active stars which would be FK Com-like. Measurements of linewidths and the strength of chromospheric Ca II K-line emission are presented, but no new star could be added to the class of 'rapid rotators'. Space densities and evolutionary lifetimes for FK Com stars are discussed.

  17. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  18. Magnetic activity of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  19. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    SciTech Connect

    Honig, Z. N.; Reid, M. J.

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.

  20. Late-Type Membership of the Open Cluster NGC 2232

    NASA Technical Reports Server (NTRS)

    Orban, Chris; Patten, Brian

    2004-01-01

    NGC 2232 is one of the nearest open clusters (approx.360 pc) with an age of approx.25 Myr. This places it in the unique position to study the transition from T Tauri activity to the Zero Age Main Sequence. In order for those studies to begin, late-type members must be identified for the cluster. X-ray observations combined with ground-based photometry and spectroscopy offers the best way to accomplish this goal. We present photometry in the VRI bands, 2MASS near-infrared measurements in the J, H , Ks bands and spectra for the suspected optical counterparts to the X-ray sources in the field of NGC 2232. 46 candidate members were identified through these efforts ranging from F5 to M5.

  1. FORMING REALISTIC LATE-TYPE SPIRALS IN A {Lambda}CDM UNIVERSE: THE ERIS SIMULATION

    SciTech Connect

    Guedes, Javiera; Madau, Piero; Callegari, Simone; Mayer, Lucio

    2011-12-01

    Simulations of the formation of late-type spiral galaxies in a cold dark matter ({Lambda}CDM) universe have traditionally failed to yield realistic candidates. Here we report a new cosmological N-body/smooth particle hydrodynamic simulation of extreme dynamic range in which a close analog of a Milky Way disk galaxy arises naturally. Named 'Eris', the simulation follows the assembly of a galaxy halo of mass M{sub vir} = 7.9 Multiplication-Sign 10{sup 11} M{sub Sun} with a total of N = 18.6 million particles (gas + dark matter + stars) within the final virial radius, and a force resolution of 120 pc. It includes radiative cooling, heating from a cosmic UV field and supernova explosions (blastwave feedback), a star formation recipe based on a high gas density threshold (n{sub SF} = 5 atoms cm{sup -3} rather than the canonical n{sub SF} = 0.1 atoms cm{sup -3}), and neglects any feedback from an active galactic nucleus. Artificial images are generated to correctly compare simulations with observations. At the present epoch, the simulated galaxy has an extended rotationally supported disk with a radial scale length R{sub d} = 2.5 kpc, a gently falling rotation curve with circular velocity at 2.2 disk scale lengths of V{sub 2.2} = 214 km s{sup -1}, an i-band bulge-to-disk ratio B/D = 0.35, and a baryonic mass fraction within the virial radius that is 30% below the cosmic value. The disk is thin, has a typical H I-to-stellar mass ratio, is forming stars in the region of the {Sigma}{sub SFR}-{Sigma}{sub HI} plane occupied by spiral galaxies, and falls on the photometric Tully-Fisher and the stellar-mass-halo-virial-mass relations. Hot (T > 3 Multiplication-Sign 10{sup 5} K) X-ray luminous halo gas makes up only 26% of the universal baryon fraction and follows a 'flattened' density profile {proportional_to}r{sup -1.13} out to r = 100 kpc. Eris appears then to be the first cosmological hydrodynamic simulation in which the galaxy structural properties, the mass budget in the

  2. Chromospherically Active Stars in the RAVE Survey

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.

    2014-01-01

    We present a qualitative characterization of activity levels of a large database of ~44,000 candidate RAVE stars (unbiased, magnitude limited medium resolution survey) that show chromospheric emission in the Ca II infrared triplet and this vastly enlarges previously known samples. Our main motivation to study these stars is the anti-correlation of chromospheric activity and stellar ages that could be calibrated using stellar clusters with known ages. Locally linear embedding used for a morphological classification of spectra revealed 53,347 cases with a suggested emission component in the calcium lines. We analyzed a subsample of ~44,000 stars with S/N>20 using a spectral subtraction technique where observed reference spectra of inactive stars were used as templates instead of synthetic ones. Both the equivalent width of the excess emission for each calcium line and their sum is derived for all candidate active stars with no respect to the origin of their emission flux. ~17,800 spectra show a detectable chromospheric flux with at least 2 σ confidence level. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with inactive stars and the second with the pre-main-sequence cases.

  3. Zeeman-Doppler imaging of active young solar-type stars

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  4. Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars

    NASA Astrophysics Data System (ADS)

    da Costa, Jefferson; Castro, Matthieu; Petit, Pascal; do Nascimento, José-Dias, Jr.

    2015-08-01

    It is know that lithium is element easily destroyed in stellar interior, the existence of lithium rich stars means a great challenge in stellar evolution. In this context our observations ravels the serendipitous discovery of an unusually high lithium abundance star. This is a K0III HD 150050, which has strong deepening on lithium line (6707.8 Å) this means lithium abundance of 2.81 0.2 dex, therefore this star belong a rare group called super Li-Rich stars. A possible source of the non-standard episodes required to produce Li-rich stars were identified in magneto-thermohaline mixing accounted by models of extra-mixing induced by magnetic buoyancy. However to better understand this is necessary more observational data. In last three decades several studies has showed that late type red giant stars presents a remarkable modifications in these outer atmosphere layers when they become late type star in HR diagram. These changes are founded through X-ray, Ultraviolet, and Chromospheric activity analyses, and then we can establish the called “Dividing lines”. We made spectropalarimetric observations with ESPaDOnS@CFHT to achieve two main objectives: analyze the influence of magnetic field in the Li-rich giant stars, and understand how works the magnetic field in late type giants and supergiants across the “dividing line”.

  5. Line profile asymmetries in chromospherically active stars

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Bopp, Bernard W.; Strassmeier, Klaus G.; Granados, Arno F.; Henry, Gregory W.; Hall, Douglas S.

    1992-01-01

    A powerful, new probe of chromospheric activity, cross-correlation, has been developed and applied to a variety of stars. In this particular application, an entire CCD spectrum of an active star is correlated with the spectrum of a narrow-line, inactive star of similar spectral type and luminosity class. Using a number of strong lines in this manner enables the detection of absorption profile asymmetries at moderate resolution (lambda/Delta lambda about 40,000) and S/N 150:1. This technique has been applied to 14 systems mostly RS CVn's, with 10 not greater than nu sin i not greater than 50 km/s and P not less than 7 d. Distortions were detected for the first time in five systems: Sigma Gem, IM Peg, GX Lib, UV Crb, and Zeta And. Detailed modeling, incorporating both spectral line profiles and broad-band photometry, is applied to Sigma Gem. Profile asymmetries for this star are fitted by two high-latitude spots covering 5 percent of the stellar surface. The derived spot temperature of 3400 K is lower than found in previous studies. In addition, two well-known systems have been studied: HD 199178 and V711 Tau. Polar spots are found on both.

  6. Active Star Architectures For Fiber Optics Ethernet

    NASA Astrophysics Data System (ADS)

    Linde, Yoseph L.

    1988-12-01

    Ethernet, and the closely related IEEE 802.3 CSMA/CD standard (Carrier Sense Multiple Access with Collision Detection), is probably the widest used method for high speed Local Area Networks (LANs). The original Ethernet medium was baseband coax but the wide acceptance of the system necessitated the ability to use Ethernet on a variety of media. So far the use of Ethernet on Thin Coax (CheaperNet), Twisted Pair (StarLan) and Broadband Coax has been standardized. Recently, an increased interest in Fiber Optic based LANs resulted in a formation of an IEEE group whose charter is to recommend approaches for Active and Passive Fiber Optic Ethernet systems. The various approaches which are being considered are described in this paper with an emphasis on Active Star based systems.

  7. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙activity regimes: fast rotators clearly show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr, h Per is therefore the youngest cluster showing activity-rotation regimes analogous to those of MS stars, indicating that at this age, magnetic field production is most likely regulated by the αΩ type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the

  8. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  9. Challenges to Understand Stellar Chromospheres and Stellar Activity: The Limit Case of Late-A and Early-F Stars

    NASA Astrophysics Data System (ADS)

    Freire Ferrero, R.; Gouttebroze, P.

    The onset of chromospheric activity appears at late-A and early-F stars where theories predict atmospheres in radiative equilibrium and shallow or non-existent convective zones. The detection of Ly-α emission cores in several A and F stars, first with the IUE satellite and then with the HST, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0. ^m19 (Catalano et al. [CITE]). Semiempirical chromospheric models for Altair allowed us (Freire et al. [CITE]) to explain the observed emission profiles taking into account normal HI IS absorption. However, due to the very high rotational velocity we analyzed alternative hypotheses like the formation of Ly-α emissions into a corotating expanding wind, but we ruled out this alternative because we obtained inconsistent results. In addition, X-ray emission (originated surely in a corona) strengthen the presence of a chromosphere. Here we place the problem of chromospheric activity of late-A and early-F stars in the general context of the formation of over-photospheric stellar layers, comparing them with late-type star and solar cases.

  10. Chromospherically active stars. I - HD 136905

    NASA Technical Reports Server (NTRS)

    Fekel, F. C.; Hall, D. S.; Africano, J. L.; Gillies, K.; Quigley, R.

    1985-01-01

    The variable star HD 136905, recently designated GX Librae, is a chromospherically active K1 III single-lined spectroscopic binary with a period of 11.1345 days. It has moderate strength Ca II H and K and ultraviolet emission features, while H-alpha is strongly in absorption. The inclination of the system is 58 + or - 17 deg and the unseen secondary is most likely a G or K dwarf. The v sin i of the primary, 32 + or - 2 km/s, results in a minimum radius of 7.0 + or - 0.4 solar radii. Since the star fills a substantial fracture of its Roche lab, the double-peaked limit curve seen by photometric observers is predominantly ellipsoidal in nature. Both the photometry and the spectroscopy yield values for the period and the time of conjunction that are identical within their uncertainties.

  11. Discussion - Winds and magnetic fields of active OB stars

    NASA Astrophysics Data System (ADS)

    Bouret, Jean-Claude; Cidale, Lydia

    2011-07-01

    The discussion on winds and magnetic fields of active OB stars was carried out by S. Owoki, G. Wade, M. Cantiello, O. Kochukhov, M. Smith, C. Neiner, T. Rivinius, H. Henrichs and R. Townsend. The topics were the ability to detect small and large scale magnetic fields in massive stars and the need to consider limits on photometric variability of the star surface brightness.

  12. Permanent active longitudes and activity cycles on RS CVn stars

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Tuominen, Ilkka

    1998-08-01

    A new analysis of the published long-term photometric observations has revealed permanent active-longitude structures in four RS CVn stars: EI Eri, II Peg, sigma Gem, and HR 7275. Two active longitudes separated by half of the period are found to dominate on the surface during all available seasons. The positions of the longitudes on three stars (EI Eri, II Peg, HR 7275) are migrating in the orbital reference frame, and there is no preferred orientation with respect to the line of centres in the binaries. The rate of migration is approximately constant. In case of sigma Gem the active longitude migration is synchronized with the orbital motion in the direction of the line of centres in the binary. The active region lifetimes can be longer than the time span of the observations (>=15 yr). The periods of the active longitude rotation are determined: for EI Eri 1fd 9510, for II Peg 6fd 7066, for sigma Gem 19fd 604, for HR 7275 28fd 263. Long-term activity cycles of the stars are discovered from the analysis of the relative contribution of the two longitudes to the photometric variability. One longitude is found to be usually more active than the other at a given moment, and the change of the activity level between the longitudes is cyclic with periods of years. The switch of the activity takes a much shorter time, about a few months, similar to the ``flip-flop'' phenomenon found for FK Com stars. Moments of switching are regarded as new tracers of the activity, and total cycles, which return activity to the same longitude, are found to be for EI Eri 9.0 yr, for II Peg 9.3 yr, for sigma Gem 14.9 yr, for HR 7275 17.5 yr.

  13. Spectroscopic Properties of Cool Stars in the Sloan Digital Sky Survey: An Analysis of Magnetic Activity and a Search for Subdwarfs

    NASA Astrophysics Data System (ADS)

    West, Andrew A.; Hawley, Suzanne L.; Walkowicz, Lucianne M.; Covey, Kevin R.; Silvestri, Nicole M.; Raymond, Sean N.; Harris, Hugh C.; Munn, Jeffrey A.; McGehee, Peregrine M.; Ivezić, Željko; Brinkmann, J.

    2004-07-01

    We present a spectroscopic analysis of nearly 8000 late-type dwarfs in the Sloan Digital Sky Survey. Using the Hα emission line as an activity indicator, we investigate the fraction of active stars as a function of spectral type and find a peak near type M8, confirming previous results. In contrast to past findings, we find that not all M7-M8 stars are active. We show that this may be a selection effect of the distance distributions of previous samples, since the active stars appear to be concentrated near the Galactic plane. We also examine the activity strength (ratio of the luminosity emitted in Hα to the bolometric luminosity) for each star and find that the mean activity strength is constant over the range M0-M5 and declines at later types. The decline begins at a slightly earlier spectral type than previously found. We explore the effect that activity has on the broadband photometric colors and find no significant differences between active and inactive stars. We also carry out a search for subdwarfs using spectroscopic metallicity indicators and find 60 subdwarf candidates. Several of these candidates are near the extreme subdwarf boundary. The spectroscopic subdwarf candidates are redder by ~0.2 mag in g-r compared with disk dwarfs at the same r-i color.

  14. Jupiter analogues and planets of active stars

    NASA Astrophysics Data System (ADS)

    Kürster, M.; Zechmeister, M.; Endl, M.; Lo Curto, G.; Hartman, H.; Nilsson, H.; Henning, T.; Hatzes, A. P.; Cochran, W. D.

    2013-04-01

    Combined results are now available from a 15 year long search for Jupiter analogues around solar-type stars using the ESO CAT + CES, ESO 3.6 m + CES, and ESO 3.6 m + HARPS instruments. They comprise planet (co-)discoveries (ι Hor and HR 506) and confirmations (three planets in HR 3259) as well as non-confirmations of planets (HR 4523 and ɛ Eri) announced elsewhere. A long-term trend in ɛ Ind found by our survey is probably attributable to a Jovian planet with a period >30 yr, but we cannot fully exclude stellar activity effects as the cause. A 3.8 year periodic variation in HR 8323 can be attributed to stellar activity.

  15. Investigating magnetic activity of F stars with the Kepler mission

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Ballot, J.; Ceillier, T.; Salabert, D.; Metcalfe, T. S.; Régulo, C.; Jiménez, A.; Bloemen, S.

    2014-08-01

    The dynamo process is believed to drive the magnetic activity of stars like the Sun that have an outer convection zone. Large spectroscopic surveys showed that there is a relation between the rotation periods and the cycle periods: the longer the rotation period is, the longer the magnetic activity cycle period will be. We present the analysis of F stars observed by Kepler for which individual p modes have been measure and with surface rotation periods shorter than 12 days. We defined magnetic indicators and proxies based on photometric observations to help characterise the activity levels of the stars. With the Kepler data, we investigate the existence of stars with cycles (regular or not), stars with a modulation that could be related to magnetic activity, and stars that seem to show a flat behaviour.

  16. Mechanisms for quenching star formation activities in green valley galaxies and its depends on morphologies

    NASA Astrophysics Data System (ADS)

    Kong, Xu; Pan, Zhizheng; Lian, Jianhui

    2015-08-01

    Galaxies are categorized into two main populations, red quiescent galaxies and blue star-forming galaxies. One of the key questions is which physical mechanisms are responsible for quenching star formation activities in blue galaxies and the resulting transformation? In this talk, we present research on the morphologies, spectra, and environments of "green valley" galaxies in the COSMOS field and low redshift "green valley" galaxies in SDSS. Our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M* < 10^10.0 Msun blue galaxies into red galaxies, especially at z < 0.5. Using image from SDSS and GALEX, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, and investigate how quenching is processing in a galaxy. The early-type "green valley" galaxies (ETGs) have dramatically different radial NUV-r color distributions compared to late-type "green valley" galaxies (LTGs), most of ETGs have blue cores, nearly all LTGs have uniform color profiles that can be well-interpreted as red bulges plus blue disk components. These results suggest that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy; for ETGs, their star formations are centrally concentrated. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI (2013ApJ...776...14P, 2014ApJ...792L...4P, 2015MNRAS.446.1449L).

  17. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2004-06-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  18. UBV photometry of ten southern hemisphere active-chromosphere stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.; Africano, John; Quigley, Robert

    1986-01-01

    High-precision UBV photometry of ten southern hemisphere active-chromosphere stars with strong Ca II H and K and/or H-alpha emission has been obtained. Eight of these stars showed variability during June 1985. Complete or partial light curves are presented for the stars, and these data, as well as mean V magnitudes and colors, are compared with the results of other investigators. In a number of cases, significant changes in photometric amplitude are found, which may serve to track the formation and evolution of active regions on these stars.

  19. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  20. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  1. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  2. Observational evidence for enhanced magnetic activity of superflare stars

    NASA Astrophysics Data System (ADS)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  3. X-ray sources in regions of star formation. II - The pre-main-sequence G star HDE 283572

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Brown, A.; Linsky, J. L.; Rydgren, A. E.; Vrba, F.

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a 'naked' T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars.

  4. Late-Type Red Supergiants: Too Cool for the Clouds?

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.; Massey, P.; Olsen, K. A.; Plez, B.

    2006-12-01

    It has long been known that the median spectral types of red supergiants change from M2 I in the Milky Way to M1 I in the Large Magellanic Cloud (LMC) and to K5-7 I in the Small Magellanic Cloud (SMC) (Elias et al 1985, Massey & Olsen 2002). This is now understood in terms of the shifting of the evolutionary tracks to warmer temperatures with decreasing metallicity. Stars falling below the temperatures of these tracks would no longer be in hydrostatic equilibrium. This region of the H-R diagram is known as the Hayashi "forbidden zone". Early work identified supergiants no later than M2 I in the SMC, while in the Milky Way supergiants of spectral class M4 I and later abound. However, our work has identified seven red supergiants in the LMC and four red supergiants in the SMC, all of which have spectral types that are considerably later than the average type observed in their parent galaxy. We find that these stars have radial velocities which are consistent with membership in the Clouds. By fitting our moderate-resolution spectrophotometry of these stars with MARCS stellar atmosphere models of the appropriate metallicities, we also determine their physical parameters and place them on the H-R diagram for comparison with the predictions of current stellar evolutionary tracks. We find that these stars are colder and more luminous than allowed by the predictions of stellar evolutionary theory at these low metallicities. Unsurprisingly, these stars also exhibit unusual variability in V. We then suggest that these stars have such unusual properties because they are in an unstable (and short-lived) phase of their evolutionary lives. This work was supported by the National Science Foundation through AST-0604569 to PM.

  5. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  6. Magnetic activity of F stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Ballot, J.; Ceillier, T.; Salabert, D.; Metcalfe, T. S.; Régulo, C.; Jiménez, A.; Bloemen, S.

    2014-02-01

    Context. The study of stellar activity is important because it can provide new constraints for dynamo models when combined with surface rotation rates and the depth of the convection zone. We know that the dynamo mechanism, which is believed to be the main process that rules the magnetic cycle of solar-like stars, results from the interaction between (differential) rotation, convection, and magnetic field. The Kepler mission has already been collecting data for a large number of stars during four years allowing us to investigate magnetic stellar cycles. Aims: We investigated the Kepler light curves to look for magnetic activity or even hints of magnetic activity cycles. Based on the photometric data we also looked for new magnetic indexes to characterise the magnetic activity of the stars. Methods: We selected a sample of 22 solar-like F stars that have a rotation period shorter than 12 days. We performed a time-frequency analysis using the Morlet wavelet yielding a magnetic proxy for our sample of stars. We computed the magnetic index Sph as the standard deviation of the whole time series and the index ⟨ Sph ⟩, which is the mean of standard deviations measured in subseries of length five times the rotation period of the star. We defined new indicators, such as the contrast between high and low activity, to take into account the fact that complete magnetic cycles are not observed for all the stars. We also inferred the Rossby number of the stars and studied their stellar background. Results: This analysis shows different types of behaviour in the 22 F stars. Two stars show behaviour very similar to magnetic activity cycles. Five stars show long-lived spots or active regions suggesting the existence of active longitudes. Two stars in our sample seem to have a decreasing or increasing trend in the temporal variation of the magnetic proxies. Finally, the last group of stars shows magnetic activity (with the presence of spots) but no sign of cycle. Appendix A is

  7. THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Graczyk, Dariusz; Pietrzynski, Grzegorz; Gieren, Wolfgang; Pilecki, Bogumil; Mennickent, Ronald E-mail: wgieren@astro-udec.cl; and others

    2012-05-10

    We have analyzed the long-period, double-lined eclipsing binary system OGLE SMC113.3 4007 (SC10 137844) in the Small Magellanic Cloud. The binary lies in the northeastern part of the galaxy and consists of two evolved, well-detached, non-active G8 giants. The orbit is eccentric with e = 0.311, and the orbital period is 371.6 days. Using extensive high-resolution spectroscopic and multi-color photometric data, we have determined a true distance modulus of the system of m - M = 18.83 {+-} 0.02 (statistical) {+-} 0.05 (systematic) mag using a surface-brightness-color relation for giant stars. This method is insensitive to metallicity and reddening corrections and depends only very little on stellar atmosphere model assumptions. Additionally, we derived very accurate, at the level of 1%-2%, physical parameters of both giant stars, particularly their masses and radii, making our results important for comparison with stellar evolution models. Our analysis underlines the high potential of late-type, double-lined detached binary systems for accurate distance determinations to nearby galaxies.

  8. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial...

  9. The abundance properties of nearby late-type galaxies. I. The data

    SciTech Connect

    Pilyugin, L. S.; Grebel, E. K.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de

    2014-06-01

    We investigate the oxygen and nitrogen abundance distributions across the optical disks of 130 nearby late-type galaxies using around 3740 published spectra of H II regions. We use these data in order to provide homogeneous abundance determinations for all objects in the sample, including H II regions in which not all of the usual diagnostic lines were measured. Examining the relation between N and O abundances in these galaxies we find that the abundances in their centers and at their isophotal R {sub 25} disk radii follow the same relation. The variation in N/H at a given O/H is around 0.3 dex. We suggest that the observed spread in N/H may be partly caused by the time delay between N and O enrichment and the different star formation histories in galaxies of different morphological types and dimensions. We study the correlations between the abundance properties (central O and N abundances, radial O and N gradients) of a galaxy and its morphological type and dimension.

  10. Multiple circumstellar shells and radiation pressure on grains in the outflows from late-type giants

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1984-01-01

    It is pointed out that mass loss from red giants and supergiants is sometimes as high as 0.0001 solar mass per year. This mass loss represents a major source of new interstellar matter. The present investigation is concerned with the phenomena involved in stellar mass loss, taking into account a comparison of currently available observations with plausible models. The case of the extended circumstellar envelope around IRC +10216 is considered. In observations about mass loss from circumstellar shells, it is sometimes found that the P Cygni profiles are split into two or more sharp, distinct components. The question is considered whether such narrow separate components can be understood in terms of the radiation pressure model. A grain growth model is discussed along with outflow velocity, radiation pressure, and mass loss rates. The models are compared with observations from Alpha Orionis, Mira, and IRC +10216. It is concluded that a hybrid model for the mass loss from some late-type stars seems appropriate. Under certain conditions, outflow speeds of 10 to 20 km/s can be understood.

  11. Coronal activity cycles in solar analog stars

    NASA Astrophysics Data System (ADS)

    Favata, Fabio

    2013-10-01

    We propose continuation into AO13 of the ongoing long-term program for the monitoring of coronal cycles in a sample of five solar-type stars in three stellar systems. The targets have been monitored continuously since AO1, yielding the first unambiguous evidence of cyclic behavior in the X-ray emission from the coronae of cool stars. Thanks to the long-term monitoring our program is starting to show evidence of the complex behavior of stellar cycles, with significant cycle-to-cycle variability becoming apparent. The observations requested in AO-13 will allow us to capitalize on our long-term investment of XMM-Newton observing time and to continue assembling a unique long-term data set that is likely to remain unmatched for a long time.

  12. CA II Emission surface fluxes in active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1984-01-01

    Ca II emission-line surface fluxes are derived for 14 stars from 17 A/mm photographic spectra. Most of the stars observed are active chromosphere binaries; a few are known X-ray sources or have been observed by the IUE. The status of optical information on each of the objects is reviewed, and new information on v sin i and duplicity is presented.

  13. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  14. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  15. Magnetic confinement, Alfven wave reflection, and the origins of X-ray and mass-loss 'dividing lines' for late-type giants and supergiants

    NASA Technical Reports Server (NTRS)

    Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.

    1991-01-01

    A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.

  16. ASYMMETRIC TRANSIT CURVES AS INDICATION OF ORBITAL OBLIQUITY: CLUES FROM THE LATE-TYPE DWARF COMPANION IN KOI-13

    SciTech Connect

    Szabo, Gy. M.; Szabo, R.; Benko, J. M.; Mezo, Gy.; Simon, A. E.; Kovari, Zs.; Hodosan, G.; Regaly, Zs.; Kiss, L. L.; Lehmann, H.

    2011-07-20

    KOI-13.01, a planet-sized companion in an optical double star, was announced as one of the 1235 Kepler planet candidates in 2011 February. The transit curves show significant distortion that was stable over the {approx}130 days time span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (vsin i {approx} 65-70 km s{sup -1}). We identify the host star of KOI-13.01 and conclude that the transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R{sub J} , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.

  17. Analysis of Galactic late-type O dwarfs: more constraints on the weak wind problem

    NASA Astrophysics Data System (ADS)

    Marcolino, W. L. F.; Bouret, J.-C.; Martins, F.; Hillier, D. J.; Lanz, T.; Escolano, C.

    2009-05-01

    Aims: We investigate the stellar and wind properties of a sample of late-type O dwarfs. Previous analyses of such stars have found very low mass-loss rates; rates much lower than predicted by theory (the weak wind problem). Methods: Far-UV to optical spectra of five Galactic O stars were analyzed: HD 216898 (O9IV/O8.5V), HD 326329 (O9V), HD 66788 (O8V/O9V), ζ Oph (O9.5Vnn), and HD 216532 (O8.5V((n))). We used a grid of TLUSTY models to obtain effective temperatures, gravities, rotational velocities, and to identify wind lines. Wind parameters for each object were obtained using expanding atmosphere models calculated with the CMFGEN code. Results: The spectra of our sample have primarily a photospheric origin. A weak wind signature is seen in C iv λλ1548, 1551, from which mass-loss rates consistent with previous CMFGEN results for O8-O9V stars were derived (˜10-10-10-9 M_⊙ yr-1). A discrepancy of roughly two orders of magnitude is found between these mass-loss rates and the values predicted by theory (dot{M}_Vink), confirming a breakdown or a steepening of the modified wind momentum-luminosity relation at log L_star/L_⊙ ⪉ 5.2. We have estimated the carbon abundance for the stars of our sample and concluded that its value cannot be reduced to sufficiently small values to solve the weak wind problem. Upper limits on dot{M} were established for all objects using lines of different ions: P v λλ1118, 1128, C iii λ 1176, N v λλ1239, 1243, Si iv λλ1394, 1403, and N iv λ1718. All the values obtained are in disagreement with theoretical predictions, bringing support to the reality of weak winds. Together with C iv λλ1548, 1551, the use of N v λλ1239, 1243 results in the lowest mass-loss rates: the upper limits indicate that dot{M} must be less than about -1.0 dex dot{M}_Vink. Upper mass-loss rate limits obtained for other transitions are also low: they indicate that dot{M} must be less than about (-0.5 ± 0.2) dex dot{M}_Vink. We studied the behavior of

  18. AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS

    SciTech Connect

    Shkolnik, Evgenya L.

    2013-03-20

    Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, M{sub p} , or M{sub p} /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8{sigma}) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3{sigma} when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result.

  19. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.

  20. The symbiotic star TX CVn has entered an active state

    NASA Astrophysics Data System (ADS)

    Munari, U.; Castellani, F.; Valisa, P.; Dallaporta, S.; Cherini, G.; Vagnozzi, A.; Righetti, G. L.; Belligoli, R.

    2014-01-01

    After the last active phase that begun in 2003, the symbiotic star TX CVn has now entered a new active phase. In 2003, TX CVn rose to B=10.5 and there it remained until the end of 2007 (Skopal 2007, AN 328, 909), when we started monitoring the variable with various ANS Collaboration telescopes in BVRI bands. Our observations show that the star has spent the following 6 years on a steady decline at a rate of 0.084 mag per year in the B band, that took it from B=10.55 on December 2007 to B=11.02 on September 2013, when the star begun a rapid brightening, reaching B=10.65 by early December 2013.

  1. SWP Echelle Spectra of Chromospherically Active Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    High resolution spectra of the 1150-2000 A region are enormously valuable for probing outer- atmosphere structure in cool stars. For example, such data can be used to separate blends, identify individual emission components in short-period binary systems, determine intensity ratios in close multiplets, estimate reliable emission strengths of lines superimposed on bright stellar continua, and test for the presence or absence of stellar winds at 105 K temperatures. These possibilities are not practical with IUE low-dispersion spectra. However, one must pay a steep-price to obtain useable high-dispersion IUE spectra and the additional dimension of diagnostic information, namely only a handful of the brightest UV sources are accessible even with shift-long exposures. We propose below an observing program to obtain echelle spectra of chromospherically active dwarf stars in the 1150-2000 A shortwavelength region. This program is intended to explore a particular class of objects that heretofore have not been observed at high dispersion with the SWP camera. Futhermore, this program complements previous SWP echelle studies by our group at the University of Colorado of quiet-chromosphere dwarf stars (alpha Cen A, alpha Cen B), active giants (alpha Aur A, lambda And, beta Dra), and the extreme case of the very active RS CVn-type system HR 1099. As described below, highdispersion spectra of these targets have provided a critical interpretive dimension that was lacking in previous low-dispersion studies. However, several fundamental questions have been raised in the course of our exploratory SWP work on what, in practice, are two distinct classes of chromospheric stars: the quiet dwarfs and the active giants. We feel that many of these questions can be answered by bridging the interpretive gap with a careful study of the active dwarfs. Our recent experience with shift-long SWP echelle exposures of chromospheric emission stars has suggested that our previous estimates of

  2. Accurate abundance analysis of late-type stars: advances in atomic physics

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-05-01

    The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

  3. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is

  4. Quantifying the faint structure of galaxies: the late-type spiral NGC 2403

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Ferguson, Annette M. N.; Irwin, M. J.; Arimoto, N.; Jablonka, P.

    2012-01-01

    Ground-based surveys have mapped the stellar outskirts of Local Group disc galaxies in unprecedented detail, but extending this work to other galaxies is necessary in order to overcome stochastic variations in evolutionary history and provide more stringent constraints on cosmological galaxy formation models. As part of our continuing programme of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC 2403 using data obtained with Suprime-Cam on the Subaru telescope. The surveyed area reaches a maximum projected radius of 30 kpc or a deprojected radius of Rdp˜ 60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate >50 per cent for Rdp > rsim 12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and SB than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to ≳8 disc scalelengths, or Rdp˜ 18 kpc, and reaches a V-band SB of μV˜ 29 mag arcsec-2. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to Rdp˜ 40 kpc and μV˜ 32 mag arcsec-2. This component can be fit with a power-law index of γ˜ 3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity integrated over all radii of 1-7 per cent that of the whole galaxy. At Rdp˜ 20 - 30 kpc, we estimate a peak metallicity [M/H] =-1.0 ± 0.3 assuming an age of 10 Gyr and zero α-element enhancement. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low

  5. The relation between star formation and active nuclei

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.

    1987-01-01

    Three questions relevant to the relation between an active nucleus and surrounding star formation are discussed. The infrared stellar CO absorption bands can be used to identify galaxies with large populations of young, massive stars and thus can identify strong starburst unambiguously, such as in NGC 6240, and can help identify composite active/starburst systems such as Arp 220. An active nucleus is probably not required for LINER spectral characteristics; dusty starburst galaxies, particularly if they are nearly edge-on, can produce LINER spectra through the shock heating of their interstellar media by supernovae combined with the obscuration of their nuclei in the optical. The Galactic Center would be an ideal laboratory for studying the interaction of starbursts and active nuclei, if both could be demonstrated to occur there. Failure to detect a cusp in the stellar distribution raises questions about the presence of an active nucleus, which should be answered by additional observations in the near future.

  6. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  7. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  8. Photometric study of the active binary star V1430 Aquilae

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.

    2006-05-01

    New BVR light curves and a photometric analysis of the eclipsing binary star V1430 Aql are presented. The light curves were obtained at the Çanakkale Onsekiz Mart University Observatory in 2004. The light curves are generally those of detached eclipsing binaries, but there are large asymmetries between maxima. New BVR light curves were analysed with an ILOT procedure. Light curve asymmetries of the system were explained in terms of large dark starspots on the primary component. The primary star shows a long-lived and quasi-poloidal spot distribution with active longitudes in opposite hemispheres. Absolute parameters of the system were derived. We also discuss the evolution of the system: the components are likely to be pre-main sequence stars, but a post-main sequence stage cannot be ruled out. More observations are needed to decide this point.

  9. The Chromospheric Activity-Age Relation for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Silvestri, N. M.; Oswalt, T. D.; Hawley, S. L.

    2000-12-01

    We present preliminary results from our study in which we use moderate resolution spectroscopy to determine the correlation between the chromospheric activity and age of M dwarf stars in wide binary systems. We have observed ~50 M dwarf stars from our sample with the Apache Point Observatory 3.5-m telescope. We measure the ratio of Hα luminosity to the bolometric luminosity (LHα /Lbol) of the M dwarf---a measure of activity that is proven to correlate well with age. This project is unique in that it will extend the chromospheric activity-age relation of low-mass main sequence stars beyond the ages provided by cluster methods. The ages so determined are also independent of the uncertainties in cluster age determinations. The technique has the potential to improve by at least a factor of two the precision and the range over which ages can currently be determined for main sequence stars. Work on this project is supported by the NASA Graduate Student Researchers Program grant NGT-50290 (N.M.S.).

  10. Li abundance in the stars with solar-type activity

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    Li abundances, atmospheric parameters and rotational velocities for 150 dwarfs have been determined from the high resolution, high signal to noise echelle spectra, obtained with the ELODIE spectrograph at the OHP (France). Among them, there are 101 stars with a determined level of activity, a large part of them being of the BY Dra type. The level of chromospheric and coronal activity of the targets has been evaluated through the logR'_HK index and X-ray flux. We examined the Li abundance behavior with T_eff, vsini and level of the activity. Some correlations between the Li abundances, level of the chromospheric activity and rotational velocities vsini are confirmed. The correlation between the Li abundances and index of the chromospheric activity logR'_HK was found, especially for dwarfs with 5700>T_eff> 5200 K. Those correlations mainly demonstrate that measurable values of the lithium content (higher than the upper limit) refer to the stars with large spot areas in their photospheres. Considering the wider set of stars with high activity levels one can affirm that such a conclusion is valid also for the cooler, earlier K dwarfs. Our results confirm that basic factors of formation of detectable Li abundance and high activity are determined principally by smaller age and fast axial rotation, respectively; and apparently by the depth of the convective zone.

  11. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  12. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  13. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits. PMID:26134708

  14. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits.

  15. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  16. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  17. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  18. THE ENVIRONMENTAL DEPENDENCE OF THE FRACTION OF 'UNCONVENTIONAL' GALAXIES: RED LATE TYPES AND BLUE EARLY TYPES

    SciTech Connect

    Deng Xinfa; He Jizhou; Wu Ping; Ding Yingping

    2009-07-10

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 6, we construct two volume-limited samples with the luminosity -20.0 {<=} M{sub r} {<=} -18.5 and -22.40 {<=} M{sub r} {<=} -20.16, respectively, to explore the environmental dependence of the fraction of 'unconventional' galaxies: red late types and blue early types. We use the density estimator within the distance to the fifth nearest neighbor, and construct two samples at both extremes of density and perform comparative studies between them for each volume-limited sample. Results of two volume-limited samples show the same conclusions: the fraction of red late-type galaxies rises considerably with increasing local density, and that one of the blue early-type galaxies declines substantially with increasing local density. In addition, we note that bluer galaxies preferentially are late types, but the red galaxies are not dominated by early types.

  19. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    ERIC Educational Resources Information Center

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  20. Spots, activity cycles, and differential rotation on cool stars

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.

    2005-01-01

    The first results are reported from a search for activity cycles in stars similar to the sun based on modelling their spotting with an algorithm developed at the Crimean Astrophysical Observatory. Of the more than thirty program stars, 10 manifested a cyclical variation in their central latitudes and total starspot area. The observed cycles have durations of 4-15 years, i.e., analogous to the 11 year Schwabe sunspot cycle. Most of the stars have a rough analog of the solar butterfly pattern, with a reduction in the average latitude of the spots as their area increases. A flip-flop effect during the epoch of the maximum average latitude is noted in a number of these objects (e.g., the analog LQ Hya of the young sun or the RS CVn-type variable V711 Tau), as well as a reduction in the photometric rotation period of a star as the spots drift toward the equator, an analog of the differential rotation effect in the sun. Unlike in the sun, the observed spot formation cycles do not correlate uniquely with other indicators of activity— chromospheric emission in the CaII HK lines (Be Cet, EK Dra, Dx Leo), H line emission (LQ Hya, VY Ari, EV Lac), or cyclical flare activity (EV Lac). In V833 Tau, BY Dra, EK Dra, and VY Ari short Schwabe cycles coexist with long cycles that are analogous to the Gleissberg solar cycle, in which the spotted area can approach half the entire area of the star.

  1. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  2. Active optics, adaptive optics, and laser guide stars.

    PubMed

    Hubin, N; Noethe, L

    1993-11-26

    Optical astronomy is crucial to our understanding of the universe, but the capabilities of ground-based telescopes are severely limited by the effects of telescope errors and of the atmosphere on the passage of light. Recently, it has become possible to construct inbuilt corrective devices that can compensate for both types of degradations as observations are conducted. For full use of the newly emerged class of 8-meter telescopes, such active corrective capabilities, known as active and adaptive optics, are essential. Some physical limitations in the adaptive optics field can be overcome by artificially created reference stars, called laser guide stars. These new technologies have lately been applied with success to some medium and very large telescopes. PMID:17736819

  3. Active Star Configured Fiber Optic CSMA/CD LANs

    NASA Astrophysics Data System (ADS)

    Truman, Alan K.; Smith, Robert W.; Schmidt, Ronald V.

    1987-01-01

    The widespread use of the IEEE 802.3 CSMA/CD (Ethernet) Local Area Network (LAN) has created demand for a fiber optic physical layer implementation to address security issues, hostile electromagnetic environments, modern structured wiring requirements and distance limitations of coaxial based implementations. Active Star CSMA/CD LANs will be described in this paper which consist of a central wiring Concentrator which supports point to point fiber links to Media Access Units (Transceivers) located at the Host computers. The fiber optic Active Star configured CSMA/CD LAN implementation provides a robust network which meets all the requirements imposed on an Ethernet Physical Layer. Collision detection is reliably performed in the electrical domain of the Concentrator. Network requirements included guaranteed collision detection, network reliability and easy addition and rearrangement of host connections. In addition, the Active Star implementation can provide an increased network diameter to 4.2 km and can support the four basic multimode fiber types, simultaneously, with substantial system margins.

  4. The CoRoT target HD 175726: an active star with weak solar-like oscillations

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Michel, E.; Appourchaux, T.; Barban, C.; Baudin, F.; Boumier, P.; Bruntt, H.; Catala, C.; Deheuvels, S.; García, R. A.; Gaulme, P.; Regulo, C.; Roxburgh, I.; Samadi, R.; Verner, G.; Auvergne, M.; Baglin, A.; Ballot, J.; Benomar, O.; Mathur, S.

    2009-10-01

    Context: The CoRoT short runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report observations of the star HD 175726 that lasted for 27 days during the first short run of the mission. The time series reveals a high-activity signal and the power spectrum presents an excess due to solar-like oscillations with a low signal-to-noise ratio. Aims: Our aim is to identify the most efficient tools to extract as much information as possible from the power density spectrum. Methods: The most productive method appears to be the autocorrelation of the time series, calculated as the spectrum of the filtered spectrum. This method is efficient, very rapid computationally, and will be useful for the analysis of other targets, observed with CoRoT or with forthcoming missions such as Kepler and Plato. Results: The mean large separation has been measured to be 97.2±0.5 μHz, slightly below the expected value determined from solar scaling laws. We also show strong evidence for variation of the large separation with frequency. The bolometric mode amplitude is only 1.7±0.25 ppm for radial modes, which is 1.7 times less than expected. Due to the low signal-to-noise ratio, mode identification is not possible for the available data set of HD 175726. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, with participation of the Science Programs of ESA, ESAs RSSD, Austria, Belgium, Brazil, Germany and Spain.

  5. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  6. Determination of Age, Rotation, and Magnetic Activity Relations for dG, dK, and dM Stars: A Search for Candidates that may be Suitable for Life

    NASA Astrophysics Data System (ADS)

    Drescher, J. W.; Guinan, E. F.; DeWarf, L. E.; McCook, G. P.; Hamilton, R. T.; Ribas, I.

    2003-05-01

    discuss the implications of this program for identifying late type stars that might be suitable for life. This research is supported by NSF/RUI Grant AST-00 71260, NASA Grant NAG5 08985, and the Delaware Space Grant College Consortium through the Undergraduate Summer Research Assistance program.

  7. Ages of Late Spectral Type Vega-like Stars.

    PubMed

    Song; Caillault; Barrado Y Navascués D; Stauffer; Randich

    2000-04-10

    We have estimated the ages of eight late-type Vega-like stars by using standard age-dating methods for single late-type stars, e.g., location on the color-magnitude diagram, Li lambda6708 absorption, Ca ii H and K emission, X-ray luminosity, and stellar kinematic population. With the exception of the very unusual pre-main-sequence star system HD 98800, all the late-type Vega-like stars are the same age as the Hyades cluster (600-800 Myr) or older. PMID:10727387

  8. Star formation in quasar and active galaxy environments

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Lambas, Diego G.

    2003-09-01

    We use the 2dF public 100 K data release of galaxies and samples of quasars and active galaxies taken from the Véron-Cetty and Véron catalogue to study the nature of galaxies in the surroundings of active objects with redshifts in the range 0.1 < z < 0.2. We explore the distribution of neighbour 2dF galaxy spectral types, η, at different projected distances from the quasars and active galaxies with radial velocity difference ΔV= 500 km s-1. For comparison, we perform a similar analysis on the environment of typical galaxies in the 2dF catalogue, a sample of bright early-type galaxies, i.e. η < -1.4 and MbJ < -21, and also on a sample of 2dF galaxy groups. We find a higher relative fraction of emission-line galaxies, i.e. with 2dF spectral type indices η >3.5, in the vicinity of quasars and active galaxies compared to that in the neighbourhood of typical galaxies, bright early types and groups. This effect extends up to projected distance rp~ 1 h-1 Mpc for active galaxies and rp~ 3 h-1 Mpc for quasars. We also find a tendency for companion galaxies of quasars to be brighter than the neighbours of active galaxies within rp~ 3 h-1 Mpc. We estimate average star-formation rates for objects at different distances from quasars, active galaxies, galaxies and groups. We find a significantly higher star-formation activity within ~2.0 h-1 Mpc from quasars with respect to typical galaxies, which reinforces the idea that star formation is enhanced in the neighbourhood of quasars. Our tests with the group environment provide evidence against quasars being associated with groups. Also, our analysis of the neighbours of bright early types shows that although these galaxies are typical hosts of quasars, their companion galaxies are significantly different in terms of the star-formation activity.

  9. New X-ray detections of Herbig stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Robrade, J.; Schmitt, J. H. M. M.; Bouvier, J.

    2009-01-01

    Context: The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear whether these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mechanisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed. Aims: The companion hypothesis can be tested by resolving Herbig stars in X-rays from their known visual secondaries. Furthermore, their global X-ray properties (such as detection rate, luminosity, temperature, variability) may give clues to the emission mechanism by comparison to other types of stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but more evolved main-sequence A- and B-type stars, and with respect to model predictions. Methods: In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars where known close visual companions are spatially separated from the primaries. Results: Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three other A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%; i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars. Conclusions: Radiative winds are ruled out as an exclusive emission mechanism on the basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave it open whether the hard X-ray emission

  10. PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Brewer, John M.; Gaidos, Eric; Lepine, Sebastien

    2013-02-01

    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful

  11. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  12. Activity and Brightness Variations of Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2015-08-01

    Long-term observations of variations in Sun-like stars now span a half century. The Mount Wilson Observatory (MWO) HK Project operated from 1966 to 2003, and the Lowell Observatory Solar-Stellar Spectrograph (SSS) project has operated since 1994; together these programs provide a record of chromospheric activity over multiple stellar cycles for more than 100 stars of V < ~7.5. Long-term photometric monitoring of Sun-like stars, including many of the MWO and SSS targets, began in the early 1980s and continues today at the Fairborn Observatory south of Tucson. I will review progress to date in combining and interpreting the spectrosopic and photometric data sets, including some new results from the most recent years of SSS and Fairborn data. I will also review where deficiencies remain in reconciling and combining the major data sets, and will discuss efforts presently underway to remedy this and provide a long-term record for the benefit of the community.

  13. Chromospherically active stars. X - Spectroscopy and photometry of HD 212280

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.

    1993-01-01

    The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.

  14. Rotation, activity, and lithium abundance in cool binary stars

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  15. Late-Type Near-Contact Eclipsing Binary [HH97] FS Aur-79

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Robertson, J. W.; Tycner, C.; Campbell, T.; Honeycutt, R. K.

    2007-05-01

    The secondary photometric standard star number 79 for the FS Aur field (Henden & Honeycutt 1997), designated as [HH97] FS Aur-79 (GSC 1874-399), is a short-period (0.2508 days) eclipsing binary whose light curve is a combination of the β Lyr and BY Dra type variables. High signal-to-noise ratio multicolor photometry was obtained using the US Naval Observatory 1 m telescope. These light curves show asymmetry at quadrature phases (the O'Connell effect), which can be modeled with the presence of starspots. A low-resolution spectrum obtained with the 3.5 m Wisconsin-Indiana-Yale-NOAO telescope at orbital phase 0.76 is consistent with a spectral type of dK7e and dM3e. A radial velocity curve for the primary star was constructed using 24 high-resolution spectra from the 9.2 m Hobby-Eberly Telescope. Spectra show Hα and Hβ in emission confirming chromospheric activity and possibly the presence of circumstellar material. Binary star models that simultaneously fit the U, B, V, R, and radial velocity curves are those with a primary star of mass 0.59+/-0.02 Msolar, temperature 4100+/-25 K, and mean radius 0.67 Rsolar, just filling its Roche lobe, and a secondary star of mass 0.31+/-0.09 Msolar, temperature 3425+/-25 K, and mean radius 0.48 Rsolar, just within its Roche lobe. An inclination angle of 83deg+/-2deg with a center-of-mass separation of 1.62 Rsolar is also derived. Starspots, expected for a rotation period of less than 1 day, had to be included in the modeling to fit the O'Connell effect.

  16. Theoretical studies of the RS Canum Venaticorum stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1982-01-01

    The activity in RS Canum Venaticorum (CVn) is investigated. Models for chromospheric structure are developed and the role of magnetic fields both in the photosphere as well as in the chromosphere and upper atmosphere are examined. T Tau stars are also studied from the same points of view. The properties of magnetic field loops are used to help understand the atmospheric structure in RS CVn stars. The concepts developed in the case of these stars appear to be applicable over a much broader region of the HR diagram. The absence of stable magnetic loops in the atmospheres of late type giant stars suggests that the atmospheres of RS CVn active components are qualitatively distinct from the solar atmosphere.

  17. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  18. Stars of the Big Dipper: A 3-D Vector Activity

    NASA Astrophysics Data System (ADS)

    Kuo, Vince H.; Beichner, Robert J.

    2006-03-01

    Most teachers of introductory physics will agree that many students have difficulty with vectors, so much so that we frequently spend a week at the beginning of the semester presenting material that students should know from previous mathematics courses. This review is often quite abstract, with little or no connection to familiar contexts, and seldom includes any motivation for students to "see it again." In this paper we present a vector activity that attempts to address both these issues using the stars of the Big Dipper, in the constellation Ursa Major, as a memorable context.

  19. Time-resolved Spectroscopy of Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    EUVE has provided the first stellar coronal spectra showing individual emission lines, thereby allowing coronal modelling at a level of sophistication previously unattainable. Long EUVE observations have shown the prevalence of large-scale flaring in the coronae of active binary stars. We propose to obtain EUVE DSS spectra and photometry for 8 active binaries, four of which have never been observed by EUVE (EI Eri, AR Psc, V478 Lyr, BY Dra) and four EUV-bright systems that merit reobservation (Sigma CrB, Sigma Gem, Xi UMa, Lambda And). We shall use these observations to derive high quality quiescent coronal spectra for modelling, and to obtain new flare data. We shall try to coordinate these observations with ground-based radio observations and other spacecraft, if the scheduling allows. The proposed observations will significantly increase the available EUVE spectroscopy of active binaries.

  20. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  1. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil; Coppi, Paolo; Cardamone, Carolin N.; Bamford, Steven P.; Treister, Ezequiel; Lintott, Chris J.; Kaviraj, Sugata; Sarzi, Marc; Keel, William C.; Masters, Karen L.; Nichol, Robert C.; Thomas, Daniel; Ross, Nicholas P.; Andreescu, Dan; Murray, Phil; Raddick, M. Jordan; Szalay, Alex S.; Slosar, Anze

    2010-03-01

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram and their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.

  2. Ruptured Aortic Aneurysm From Late Type II Endoleak Treated by Transarterial Embolization

    SciTech Connect

    Gunasekaran, Senthil; Funaki, Brian Lorenz, Jonathan

    2013-02-15

    Endoleak is the most common complication after endovascular aneurysm repair. The most common type of endoleak, a type II endoleak, typically follows a benign course and is only treated when associated with increasing aneurysm size. In this case report, we describe a ruptured abdominal aortic aneurysm due to a late, type II endoleak occurring 10 years after endovascular aneurysm repair that was successfully treated by transarterial embolization.

  3. EXPLORING THE CONNECTION BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE LOCAL UNIVERSE

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.; Schiminovich, D.; Bertincourt, B.; O'Dowd, M.

    2012-10-10

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from the Sloan Digital Sky Survey (SDSS) and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic contributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [Ne II] 12.8 {mu}m emission line is well correlated with the star formation rate measured from the SDSS spectra, and this holds for the star-forming, composite, and AGN-dominated systems. AGNs show a clear excess of [Ne III] 15.6 {mu}m emission relative to star-forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including the mid-IR spectral slope, the ratio of the [Ne V] 14.3 {mu}m to [Ne II] {mu}m 12.8 fluxes, the equivalent widths of the 7.7 {mu}m, 11.3 {mu}m, and 17 {mu}m polycyclic aromatic hydrocarbon (PAH) features, and the optical 'D' parameter which measures the distance at which a source lies from the locus of star-forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN dominance. We find that the PAH 11.3 {mu}m feature is significantly suppressed in the most AGN-dominated systems.

  4. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    SciTech Connect

    He, Han; Wang, Huaning; Yun, Duo

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.

  5. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    NASA Astrophysics Data System (ADS)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  6. An H-alpha survey of southern hemisphere active chromosphere stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Hearnshaw, J. B.

    1983-01-01

    Because of the variety of extraordinary phenomena exhibited by active chromosphere objects, discovery of new, bright surface-active stars is of considerable importance. Ca II emission is a well-known signature of chromospheric activity, serving even as one of the points of definition of the class of RS CVn binary stars. In connection with the present investigation, spectroscopic observations of 27 Ca II emission stars have been conducted. The observations make it possible to identify unambiguously the most chromospherically active stars in the sample. By observing the H-alpha line, rather than H and K, it is possible to distinguish nine of these stars which are likely to be observational targets as interesting as the extremely surface active objects V711 Tau or FK Com. Of the 27 stars surveyed, two (HD 86005, HD 204128) showed H-alpha as an emission feature above continuum, with estimated equivalent width 1-2 A.

  7. The star formation rates of active galactic nuclei host galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Teimoorinia, Hossen; Rosario, David J.; Mendel, J. Trevor

    2016-05-01

    Using artificial neural network predictions of total infrared luminosities (LIR), we compare the host galaxy star formation rates (SFRs) of ˜21 000 optically selected active galactic nuclei (AGN), 466 low-excitation radio galaxies (LERGs) and 721 mid-IR-selected AGN. SFR offsets (ΔSFR) relative to a sample of star-forming `main-sequence' galaxies (matched in M⋆, z and local environment) are computed for the AGN hosts. Optically selected AGN exhibit a wide range of ΔSFR, with a distribution skewed to low SFRs and a median ΔSFR = -0.06 dex. The LERGs have SFRs that are shifted to even lower values with a median ΔSFR = -0.5 dex. In contrast, mid-IR-selected AGN have, on average, SFRs enhanced by a factor of ˜1.5. We interpret the different distributions of ΔSFR amongst the different AGN classes in the context of the relative contribution of triggering by galaxy mergers. Whereas the LERGs are predominantly fuelled through low accretion rate secular processes which are not accompanied by enhancements in SFR, mergers, which can simultaneously boost SFRs, most frequently lead to powerful, obscured AGN.

  8. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  9. Active Laser Guide Star refocusing system for EAGLE instrument

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Madec, Fabrice; Vives, Sébastien; Chardin, Elodie; Ferrari, Marc; Le Mignant, David; Gimenez, Jean Luc; Mazzanti, Silvio; Vola, Pascal; Cuby, Jean Gabriel

    We detail the study of a laser guide star (LGS) refocusing system based on an variable curvature mirror (VCM) of high dynamic, in the frame of the EAGLE instrument for the E-ELT. From the top level requirements, an on axis optical design based on an active component is optimised to ensure maximal performance in terms of encircled energy. The refocusing is operated by the VCM, which shape varies with the distance of the sodium layer to the telescope. The VCM system concept is based on an embedded metrology. We detail the finite element analysis (FEA) of the VCM, allowing an optimization of the thickness profile to get an optical quality better than λ/5 RMS at each curvature. Mechanical design and manufacturing of prototypes are also presented.

  10. Spectroscopic and Photometric Properties of Late-type BIS Catalogue Sources

    NASA Astrophysics Data System (ADS)

    Rossi, C.; Mickaelian, A. M.; Gigoyan, K. S.; Gaudenzi, S.; Nesci, R.

    2016-06-01

    We performed slit spectroscopy to establish a firm spectral classification, and optical photometry for variability check in a subsample of 88/276 stars of the Byurakan Infrared Star (BIS) catalog. We collected also literature data from optical monitoring projects (ROTSE, CSS) and infrared satellites (IRAS, AKARI, WISE). We explored several color-color diagrams as tools for disentangling Carbon stars from Oxigen-rich AGB stars and to check for correlations with the variability type. The spectra showed that 4 out of 84 stars are N carbon stars in the Asymptotic Giant Branch (AGB), the others being M-type stars. No Main Sequence stars were found. Thirty stars are not variable, 46 are irregular or semi-regular variables, only 5 are Mira variable stars. The color-color plots involving the WISE colors are the best to characterize the variability behavior and to distinguish the carbon stars from the other stars of the sample. The bluer stars were found to be generally not variable, but with some exceptions, and Mira stars occupy a limited region in the w1-w2 vs w2-w3 plane.

  11. Active star formation at intermediate Galactic latitude: the case of IRAS 06345-3023

    NASA Astrophysics Data System (ADS)

    Yun, J. L.; Palmeirim, P. M.

    2015-04-01

    We report the discovery of a small aggregate of young stars seen in high-resolution, deep near-infrared (JHKS) images towards IRAS 06345-3023 in the outer Galaxy and well below the mid-plane of the Galactic disc. The group of young stars is likely to be composed of low-mass stars, mostly Class I young stellar objects. The stars are seen towards a molecular cloud whose CO map peaks at the location of the IRAS source. The near-infrared images reveal, additionally, the presence of nebular emission with rich morphological features, including arcs in the vicinity of embedded stars, wisps and bright rims of a butterfly-shaped dark cloud. The location of this molecular cloud as a new star formation site well below the Galactic plane in the outer Galaxy indicates that active star formation is taking place at vertical distances larger than those typical of the (thin) disc.

  12. X-ray Luminosity Functions of Young Stars: T Tauri Stars, Pleiades and Hyades

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Neuhäuser, R.

    We report on coronal activity of pre-main sequence and young main sequence stars in the Taurus region as observed by ROSAT. X-rays of late-type stars are related to magnetic structures in the corona which are produced in a dynamo mechanism, generally described in analogy to the solar case. The details of the heating process and temporal evolution of the dynamo efficiency are not well understood. The sample studied here represents the largest set of X-ray observations in the Taurus region analysed jointly, and provides better sensitivity than the ROSAT All-Sky Survey due to the use of ROSAT pointed PSPC observations. Our stellar sample is composed of T Tauri stars from the Taurus-Auriga region, and late-type stars from the Pleiades and Hyades clusters. The different ages of these regions allow a study of the evolution of coronal X-ray emission during early stellar phases. We analyse and compare the X-ray luminosity functions (XLF) for subgroups of stars from the above regions to learn more about the influence of age, mass and multiplicity on the observed X-ray emission level. The pre-main sequence stage is characterized by two classes of TTS, classical TTS and weak-line TTS, which show different XLF: in the Taurus region weak-line TTS are X-ray brighter than classical TTS. For stars on the main-sequence the X-ray emission declines with increasing mass (or effective temperature), indicating the importance of the convection zone for the stellar dynamo.

  13. The distribution of early- and late-type galaxies in the Coma cluster

    NASA Technical Reports Server (NTRS)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  14. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  15. Doppler and Zeeman Doppler Imaging of Stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    In this chapter we discuss the problem of reconstructing two-dimensional stellar surface maps from the variability of intensity and/or polarisation profiles of spectral lines. We start by outlining the main principles of the scalar Doppler imaging problem concerned with recovering maps of chemical spots, temperature or brightness from the intensity spectra. After presenting the physical and mathematical foundations of this remote sensing method, we review its applications to mapping different types of spots in early-type chemically peculiar and late-type active stars, and non-radial pulsations in early-type stars. We also discuss an extension of Doppler imaging to the problem of recovering vector distributions of stellar magnetic fields from spectropolarimetric observations and review applications of this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

  16. On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    López-Morales, Mercedes

    2007-05-01

    The recent increase in the number of radius measurements of very low mass stars from eclipsing binaries and interferometry of single stars has raised more questions about what could be causing the discrepancy between the observed radii and those predicted by models. The two main explanations being proposed are a correlation between the radii of the stars and either their activity levels or their metallicities. This paper presents a study of such correlations using all the data published to date. The study also investigates correlations between the radius deviations from the models and the masses of the stars. There is no clear correlation between activity level and radius for the single stars in the sample. These single stars are slow rotators, with typical velocities vrotsini<3.0 km s-1. A clear correlation however exists in the case of the faster rotating members of binaries. This result is based on the X-ray emission levels of the stars. There also appears to be an increase in the deviation of the radii of single stars from the models as a function of metallicity, as previously indicated by Berger et al. The stars in binaries do not seem to follow the same trend. Finally, the Baraffe et al. models reproduce well the radius observations below 0.30-0.35 Msolar, where the stars become fully convective, although this result is preliminary since almost all the sample stars in that mass range are slow rotators and metallicities have not been measured for most of them. The results indicate that stellar activity and metallicity play an important role in determining the radius of very low mass stars, at least above 0.35 Msolar.

  17. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  18. Daybreak Star Preschool Activities Book: A Teacher's "How-to" Book.

    ERIC Educational Resources Information Center

    Patacsil, Sharon; And Others

    The culturally-based educational materials contained in the Daybreak Star Preschool Activities Book are used with the Native American children in the United Indians of All Tribes Foundation's Daybreak Star Preschool. These educational materials reflect the cultures of the children in the Preschool. The Preschool's primary focus is to create a…

  19. The Chromospheric Activity and Age Relation among Main Sequence Stars in Wide Binaries

    NASA Astrophysics Data System (ADS)

    Oswalt, Terry D.; Zhao, J.

    2011-05-01

    We present a study of the chromospheric activity levels in 36 wide binary systems. Thirty one of the binaries contain a white dwarf component. In such binaries the total age can be estimated by adding the cooling age of the white dwarf to an estimate of the progenitor's main sequence lifetime. To better understand how activity correlates to stellar age, 14 cluster member stars were also observed. Our observations confirm the expectation derived from studies of single main sequence stars that activity decays with age. However, for the first time we demonstrate that this relation extends from 50 Myr to at least 8 Gyr for stars with 1.0 < V-I < 2.4 color index. We also find that little change in activity occurs for stars with V-I < 1.0 and ages between 1 Gyr and 5 Gyr. The slope of constant age lines in the activity vs. V-I plane for young stars is relatively steep, while for old stars it appears to be flatter. In addition, our sample includes five wide binaries consisting of two main sequence stars. These pairs provide a useful reality check on our activity vs. age relation. Support for this project from NSF grant AST-0807919 to Florida Institute of Technology is gratefully acknowledged.

  20. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    NASA Technical Reports Server (NTRS)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  1. What do the Mt. Wilson stars tell us about solar activity?

    NASA Astrophysics Data System (ADS)

    Schröder, K.-P.; Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.

    2013-06-01

    We relate the evolutionary status and mass of the Mt. Wilson project stars with the type and strength of stellar activity as established in decades of monitoring their chromospheric Ca II K line emission. We specifically derive their positions in the Hertzsprung-Russell-diagram (HRD) from Hipparcos parallaxes and SIMBAD B - V data, considering and correcting for the effects of different individual stellar metallicities, and place different activity groups of the Mt. Wilson stars on a common set of Z = 0.02 evolution tracks to obtain a quantitative picture of their relative evolutionary status and mass distribution. We find that, first, the downturn in stellar activity does not depend on absolute age but instead decreases with the relative age as stars advance on the main sequence and thus confirm theoretical expectations, while the most active of the irregularly variable stars are found to scatter around the zero-age main-sequence (ZAMS). Moderately active stars, both with clear cycles like the Sun and those without a dominant activity period, populate the 2nd quarter of main-sequence (MS) evolution. Almost inactive stars are mostly in their 3rd quarter of MS evolution and seem to represent stellar analogues of the solar Maunder minimum state. Totally inactive stars are all in the final quarter of their MS evolution and make up for over 70% of the Mt. Wilson stars that far evolved (the remainders being only weakly active). Most of these are more massive and younger than the Sun. Accordingly, less massive stars did not have enough time to significantly decrease their activity, since they generally evolve more slowly. We find, second, that the Sun is near an apparent upper mass limit for cyclic activity on the MS, because there are no cyclic MS stars much above one solar mass, at least not in the Mt. Wilson sample. Once put in proper perspective with the other Mt. Wilson stars, the Sun indeed ought to be approaching a gradual transition from moderate cyclic activity

  2. VizieR Online Data Catalog: Palomar/MSU nearby star spectroscopic survey (Hawley+ 1997)

    NASA Astrophysics Data System (ADS)

    Reid, I. N.; Hawley, S. L.; Gizis, J. E.

    1997-05-01

    The Third Catalogue of Nearby Stars (Gliese & Jahreiss, "Preliminary Version of the third Catalogue of Nearby Stars" (CNS3), 1991, catalog ) includes over 1850 stars which lie north of Dec.= -30° and are either identified as spectral type M, or are unclassified but with an absolute visual magnitude estimate MV > +8.0. Although there is no uniformity in selection criteria, and many of the stars lack basic data (radial velocities, spectral types, accurate photometry), the observational properties of these stars underlie most estimates of the fundamental characteristics of the Galactic Disk. We have obtained optical spectroscopy of 1746 of the 1876 stars -- the remaining 130 are binary companions of brighter stars and inaccessible to our observations. These spectra allow us, first, to exclude 61 stars as either degenerates or as misclassified earlier-type (B-K) stars lying beyond the 25 pc limit; to establish radial velocities accurate to ±10km/s for all stars confirmed as late-type dwarfs; to determine spectral types and absolute magnitudes from the TiO bandstrength, allowing more accurate distance estimates for stars with inaccurate (or no) trigonometric parallax measurements; and to identify stars with Hα emission (chromospherically active stars) and with strong CaH absorption (perhaps including some metal-poor disk subdwarfs). We have determined the nearby-star luminosity function from complete samples derived by applying both the distance limits defined by Wielen (1974, Highlights of Astron. 3, 395) and by using limits derived from our own analysis. Spectroscopic data for the southern stars (Dec.<-30°) in the PMSU survey are also presented. The data were combined with the data from paper I to obtain a list of all the magnetically active dMe stars in the survey. (11 data files).

  3. Star Formation Activity in a z>4 Protocluster

    NASA Astrophysics Data System (ADS)

    Menéndez-Delmestre, Karín; Capak, Peter; Sheth, Kartik

    2015-08-01

    Local studies show that galaxy properties are linked to the galaxy number density within their local environment. Galaxy clusters represent the most extreme density environments and are ideal laboratories to investigate the interplay between galaxy evolution and the environment. However, to understand the origin of the galaxy-environment relation, one needs to look back at the epoch of galaxy formation (z > 1), where the local high-density environments of well-established, virialized clusters give way to looser large-scale structures (LSS) extending over regions of several megaparsecs in size (protoclusters). Clustering analysis indicate that at z~2 submm-selected galaxies (SMGs) reside in very massive halos, suggesting that these may trace high-density environments that likely evolve into rich clusters of galaxies. Conversely, recent work has suggests that SMGs are tracers of a broader range of environments, including structures with more modest masses caught in highly active periods. This suggests that since galaxies in these structures are likely caught during episodes of peak starbursts, SMGs may be tracers of a wider range of environments beyond the progenitors of today’s very rich clusters, opening a window for a more complete exploration of the details underpinning the process of galaxy evolution in concert with the assembly of LSS. We undertook a large observing program comprising deep narrow-band Ly-alpha imaging and multi-object spectroscopy using the IMACS camera on Magellan (Las Campanas) to probe for the presence of a galaxy overdensity in the vicinity of a 4-member group of SMGs at z>4. With ~100 spectroscopically-confirmed Ly-alpha emitters, we are in a position to gauge the level of galaxy overdensity in this region. Furthermore, we have initiated a detailed follow-up study of these Ly-alpha emitters to obtain star-formation rates based on the IRAC and MIPS Spitzer archives, in an effort to probe for trends in the intra-LSS distribution.

  4. Spectroscopic Properties of Cool Stars in the SDSS

    NASA Astrophysics Data System (ADS)

    Hawley, S. L.; West, A. A.; Walkowicz, L. M.; Covey, K. R.

    2004-05-01

    We present a spectroscopic analysis of nearly 8000 late-type dwarfs in the Sloan Digital Sky Survey. Using the H-alpha emission line as an activity indicator, we investigate the fraction of active stars as a function of spectral type and find a peak near type M8, confirming previous results. In contrast to past findings, we find that not all M7-M8 stars are active. We show that this may be a selection effect of the distance distributions of previous samples, as the active stars appear to be concentrated near the Galactic Plane. We also examine the activity strength (ratio of the luminosity emitted in H-alpha to the bolometric luminosity) for each star, and find that the mean activity strength is constant over the range M0-M5 and declines at later types. The decline begins at a slightly earlier spectral type than previously found. We explore the effect that activity has on the broadband photometric colors and find no significant differences between active and inactive stars. We also carry out a search for subdwarfs using spectroscopic metallicity indicators, and find 60 subdwarf candidates. Several of these candidates are near the extreme subdwarf boundary. The spectroscopic subdwarf candidates are redder by approx. 0.2 magnitudes in (g-r) compared to disk dwarfs at the same (r-i) color. A paper describing these results is scheduled for the June 2004 issue of the Astronomical Journal. This work is supported by NSF grant AST 02-05875.

  5. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    2007-01-01

    Context: Several late-type stars present activity cycles resembling the Solar one. This fact has been observed mostly in stars ranging from F to K, i.e., in stars with a radiative core and an outer convective layer. Aims: This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. Methods: We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed over 7 years. We discarded the spectra that present flare activity, and analyze the remaining activity levels using four different statistical techniques to look for a period of activity. Results: We find strong evidence of a cyclic activity, with a period of ~442 days. We also estimate that the Ca ~II S index varies around 130% due to activity variations outside of flares.

  6. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  7. SPI or Spin-up? An UV Investigation of Activity on Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya

    2010-01-01

    Using the near-UV and far-UV photometry of the GALEX All-sky Imaging Survey, we study the effects of tidal and magnetic star-planet interactions (SPI) on the stellar activity of the host stars. We compare samples of stars with close-in planets (a < 0.15 AU) to those with far-out planets (a > 1.5 AU) and show that the former group has on average several times the FUV and NUV luminosity of the latter sample. This is consistent with the X-ray results of Kashyap et al. (2008), who speculate that this may be due to the magnetic influence on the star by its innermost planet, as previously observed in several individual hot Jupiter systems. Our study suggests that increased stellar rotation rate due to the tidal interaction with the planet plays the dominant role in increasing the global stellar activity level. For the stars with close-in planets, the FUV and NUV fluxes are anti-correlated with the stellar synchronization time scales but are not correlated for stars with planets at larger orbital distances. Even though the stars with close-in planets are not fully synchronized (full synchronization in most cases will take longer than the age of the Universe), they have already undergone some increase in rotation rate. This result also suggests that the competing force of magnetic drag slowing down the stars is losing out to tidal spin-up in these systems.

  8. Coronal X-Ray Flares on Active Stars

    NASA Astrophysics Data System (ADS)

    Nordon, Raanan

    2008-09-01

    Stellar coronae are the hot (kT>0.1 keV) tenuous regions in the outer atmospheres of cool-stars. Stellar coronae have been researched for many years, and yet they are poorly understood. In particular, the deviation of coronal chemical composition from photospheric elemental abundances is a long standing mystery. In the solar case, this was labeled the first ionization potential (FIP) effect. While some stellar coronae show a solar-like FIP effect, others show no FIP effect, or an inverse effect, although difficulties in measuring stellar photospheric abundances cast some doubt on these results. A correlation between coronal activity and abundance patterns led to a suggestion that flares affect coronal abundances. However, different variations were observed during flares, with no clear pattern emerging. We investigate a full sample of X-ray flares on stellar coronae from the archives of XMM-Newton and Chandra space observatories. We develop a method for reconstructing emission measure distribution, EMD(T), and abundances that is optimized to reduce systematic uncertainties. We measure variations of coronal abundances during flares, relative to quiescence abundances. This measurement is independent of the photospheric abundances and their related uncertainties. A theoretical analysis of the EMD(T) degeneracy problem is also presented. We find excess emission during flares originates predominantly from temperatures of kT>2 keV, while the low-T emission is very close to quiescence. This result cannot be reconciled with pure radiative-cooling or simple conductive-cooling. Evaporation from low dense regions into higher, thinner corona may aid in explaining this observed behavior. We define a relative measure for the FIP bias and compare the FIP bias of flare vs. quiescence with that of quiescence vs. photospheric (solar). We discovered a general trend where the relative FIP bias during flares is opposite to the quiescence FIP bias, meaning that the flares tend to

  9. Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol

    1995-01-01

    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.

  10. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity.

    PubMed

    Poderoso, Cecilia; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podesta, Ernesto J

    2009-03-01

    It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.

  11. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour.

  12. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour. PMID:24664922

  13. Calculation of Transition Frequencies and Line Strengths of Water for Cool Star Opacities

    NASA Astrophysics Data System (ADS)

    Miller, S.; Tennyson, J.; Fernley, J.

    1992-03-01

    First principles calculations for water, using a number of electronic potential surfaces, are presented as a first step towards the computation of an accurate water opacity for cool stars such as M dwarfs. Key word : MOLECULAR PROCESSES - OPACITIES - STARS: ATMOSPHERES - STARS: LATE-TYPE - STARS: LOW-MASS

  14. Photometric Variations in Spotted Pleiades Stars as Probes of Long-Term Activity Cycles

    NASA Astrophysics Data System (ADS)

    Bardenett, E.; Milingo, J. B.; Marschall, L. A.; Backman, D. E.

    2004-12-01

    Through the collaborative efforts of undergraduates and faculty at Franklin & Marshall and Gettysburg Colleges, we present new photometric data for 3 K-type stars in the Pleiades. Continuing 8+ years of observations, this data contributes to the long-term study of photometric variations in these stars. These young stars have rotational light curves with V-band amplitudes of a few percent (up to 10% in the most active stars) due to large photospheric active regions or "starspots". Quantifying the level of starspot activity from year to year allows us to look for long-term trends analogous to the solar sunspot cycle. These observations were acquired with the National Undergraduate Research Observatory's (NURO) 31" telescope, which is operated by Lowell Observatory and Northern Arizona University. This work is supported by Franklin & Marshall College, the Delaware Space Grant Consortium, and Arizona Space Grant (NASA Space Grant programs).

  15. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  16. Searching Cyclical Period Variations in Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.

    2006-08-01

    Cataclymic variables (CVs) are semi-detached binary systems in which a main sequence late-type star (the secondary) fills its Roche lobe and transfers matter to a white dwarf (the primary) through the inner Lagragian point L[1]. Evolutive models of CVs predicts that the orbital periods P[orb] of these systems would decrease on time scales of 10^8-10^9 years due to angular momentum losses either by magnetic braking via the secondary star's wind (P [orb] > 3 hr) or by emission of gravitational radiation (P[orb] < 3 hr). These models try to explain the observed gap of systems with P[orb] in the range of ~ 2 to 3 hr as the consequence of a sharp reduction of magnetic field open lines when the secondary star become fully convective (at P[orb] ~ 3 hr). However, up to now no well-studied CVs shows evidence of period decrease. Instead, most well-observed eclipsing CVs show cyclical period changes probably associated to solar-type (quasi-periodic and/or multiperiodic) magnetic activity cycles in the secondary star. The fast spinning secondaries of CVs, covering a range of masses and rotation periods, are an important laboratory to understanding magnetic activities cycles in late type stars. In the present work, we report some results of the search of cyclical period in four Cvs: V4140 Sgr, V2051 Oph, UU Aqr and IP Peg. Both V4140 Sgr and V2051 Oph show modulation periods of 22 yr and 7 yr respectively. A discussion of the distinct magnetic activity properties of short and long orbital period (P[orb] < 3 hr and P[orb] > 3 hr, respectively) systems in the framework of the CV evolution scenarios is presented.

  17. A STATISTICAL ANALYSIS OF THE LATE-TYPE STELLAR CONTENT IN THE ANDROMEDA HALO

    SciTech Connect

    Koch, Andreas; Rich, R. Michael E-mail: rmr@astro.ucla.ed

    2010-06-15

    We present a statistical characterization of the carbon-star to M-giant (C/M) ratio in the halo of M31. Based on the application of pseudo-filter bandpasses to our Keck/DEIMOS spectra, we measure the 81 - 77 color index of 1288 stars in the giant stellar stream and in halo fields out to large distances. From this well-established narrow-band system, supplemented by V - I colors, we find only a low number (five in total) of C-star candidates. The resulting low C/M ratio of 10% is consistent with the values in the M31 disk and inner halo from the literature. Although our analysis is challenged by small number statistics and our sample selection, there is an indication that the oxygen-rich M-giants occur in similar number throughout the entire halo. We also find no difference in the C-star population of the halo fields compared to the giant stream. The very low C/M ratio is at odds with the observed low metallicities and the presence of intermediate-age stars at large radii. Our observed absence of a substantial carbon-star population in these regions indicates that the (outer) M31 halo cannot be dominated by the debris of disk-like or Small-Magellanic-Cloud-type galaxies, but rather resemble the dwarf elliptical NGC 147.

  18. Dark Matter Profiles in Late-type Dwarf Galaxies from Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Fabricius, M. H.; Simon, J. D.; Gebhardt, K.

    2013-01-01

    We present new stellar and gaseous velocity fields for thirteen late-type dwarf galaxies, primarily to study the density distributions of their baryons and dark matter. A subset of our targets reach high enough signal-to-noise that the central dark matter density profile slope can be reliably estimated from the stellar kinematics alone. Most previous observations have been based on kinematics from atomic or ionized gas and have derived best-fit profiles much shallower than those predicted by pure N-body simulations in ΛCDM. In contrast to those results, we find from the stellar kinematics that galaxies contain a wide variety of density profiles ranging from completely cored halos up to cuspy r^-1 profiles comparable to the predicted NFW form. We present our measurements, demonstrate cases where the gas gives a biased inference on the dark matter properties, and fit Jeans models to the data with baryonic and dark components. For the cases that deviate from an NFW profile, we search our data for unusual orbital structure (anisotropies) and chemical abundance gradients in order to constrain the proposed mechanisms that may alter the initial configuration of the dark matter halo.

  19. Chromospherically Active Stars in the RAdial Velocity Experiment (RAVE) Survey. I. The Catalog

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K. C.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siviero, A.; Steinmetz, M.; Wyse, R. F. G.

    2013-10-01

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EWIRT for ~44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ~14,000 show a detectable chromospheric flux with at least a 2σ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases.

  20. The dustier early-type galaxies deviate from late-type galaxies' scaling relations

    NASA Astrophysics Data System (ADS)

    Lianou, S.; Xilouris, E.; Madden, S. C.; Barmby, P.

    2016-09-01

    Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared Herschel and either H I or CO detection (or both). We derive their star formation rates (SFRs), stellar masses and dust masses via modelling their spectral energy distributions. We combine these with literature information on their atomic and molecular gas properties, in order to relate their star formation, total gas mass and dust mass on global scales. The ETGs deviate from the dust mass-SFR relation and the Schmidt-Kennicutt relation that SDSS star-forming galaxies define: compared to SDSS galaxies, ETGs have more dust at the same SFR, or less SFR at the same dust mass. When placing them in the M⋆-SFR plane, ETGs show a much lower specific SFR as compared to normal star-forming galaxies. ETGs show a large scatter compared to the Schmidt-Kennicutt relation found locally within our Galaxy, extending to lower SFRs and gas mass surface densities. Using an ETG's SFR and the Schmidt-Kennicutt law to predict its gas mass leads to an underestimate. ETGs have similar observed-gas-to-modelled-dust mass ratios to star-forming galaxies of the same stellar mass, as well as they exhibit a similar scatter.

  1. A CCD photometric study of the late type contact binary EK Comae Berenices

    NASA Astrophysics Data System (ADS)

    Deb, Sukanta; Singh, Harinder P.; Seshadri, T. R.; Gupta, Ranjan

    2010-11-01

    We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of Δ T = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O'Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O'Connell effect is explained by the presence of a hot spot on the primary component.

  2. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  3. Magnetic Activity of Pre-main Sequence Stars near the Stellar-Substellar Boundary

    NASA Astrophysics Data System (ADS)

    Principe, David; Kastner, Joel. H.; Rodriguez, David

    2016-01-01

    X-ray observations of pre-main sequence (pre-MS) stars of M-type probe coronal emission and offer a means to investigate magnetic activity at the stellar-substellar boundary. Recent observations of main sequence (MS) stars at this boundary display a decrease in fractional X-ray luminosity (L X /L bol ) by almost two orders of magnitude for spectral types M7 and later. We investigate magnetic activity and search for a decrease in X-ray emission in the pre-MS progenitors of these MS stars. We present XMM-Newton X-ray observations and preliminary results for ~10 nearby (30-70 pc), very low mass pre-MS stars in the relatively unexplored age range of 10-30 Myr. We compare the fractional X-ray luminosities of these 10-30 Myr old stars to younger (1-3 Myr) pre-MS brown dwarfs and find no dependence on spectral type or age suggesting that X-ray activity declines at an age later than ~30 Myr in these very low-mass stars.

  4. A SUBSTANTIAL DUST DISK SURROUNDING AN ACTIVELY ACCRETING FIRST-ASCENT GIANT STAR

    SciTech Connect

    Melis, C.; Zuckerman, B.; Rhee, Joseph H.; Metchev, Stanimir; Song, Inseok

    2009-05-10

    We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy, we are able to determine that these two stars are {approx}1 Gyr old and reside at a distance of {approx}550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or substellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.

  5. Upgrading the Solar-Stellar Connection: News about activity in Cool Stars

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Poppenhaeger, K.; Testa, P.; Borgniet, S.; Brun, A. S.; Cegla, H. M.; Garraffo, C.; Kowalski, A.; Shapiro, A.; Shkolnik, E.; Spada, F.; Vidotto, A. A.

    2015-01-01

    In this splinter session, ten speakers presented results on solar and stellar activity and how the two fields are connected. This was followed by a lively discussion and supplemented by short, one-minute highlight talks. The talks presented new theoretical and observational results on mass accretion on the Sun, the activity rate of flare stars, the evolution of the stellar magnetic field on time scales of a single cycle and over the lifetime of a star, and two different approaches to model the radial-velocity jitter in cool stars that is due to the granulation on the surface. Talks and discussion showed how much the interpretation of stellar activity data relies on the sun and how the large number of objects available in stellar studies can extend the parameter range of activity models.

  6. Red Dwarf Stars: Ages, Rotation, Magnetic Dynamo Activity and the Habitability of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Engle, S. G.; Guinan, E. F.

    2011-12-01

    We report on our continued efforts to understand and delineate the magnetic dynamo-induced behavior/variability of red dwarf (K5 V - M6 V) stars over their long lifetimes. These properties include: rotation, light variations (from star spots), coronal-chromospheric XUV activity and flares. This study is being carried out as part of the NSF-sponsored Living with a Red Dwarf program. The Living with a Red Dwarf program's database of dM stars with photometrically determined rotation rates (from starspot modulations) continues to expand, as does the inventory of archival XUV observations. Recently, the photometric properties of several hundred dM stars from the Kepler database are being analyzed to determine the rotation rates, starspot areal coverage/distributions and stellar flare rates. When all data setsare combined with ages from cluster/population memberships and kinematics, the determination of Age-Rotation-Activity relationships is possible. Such relationships have broad impacts not only on the studies of magnetic dynamo theory and angular momentum loss of low-mass stars with deep convective zones, but also on the suitability of planets hosted by red dwarfs to support life. With intrinsically low luminosities (L< 0.02L⊙), the liquid water habitable zones (HZs) for hosted planets are very close to their host stars - typically at ˜0.1 AU < HZ < 0.4 AU. Planets located close to their host stars risk damage and atmospheric loss from coronal & chromospheric XUV radiation, flares and plasma blasts via strong winds and coronal mass ejections. In addition, our relationships permit the stellar ages to be determined through measures of either the stars' rotation periods (best way) or XUV activity levels. This also permits a determination of the ages of their hosted planets. We illustrate this with examples of age determinations of the exoplanet systems: GJ 581 and HD 85512 (both with large Earth-size planets within the host star's HZ), GJ 1214 (hot, close

  7. Characterizing Warm Molecular Hydrogen in Active Star-Forming Systems

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem

    2014-10-01

    Herschel observations of nearby star-forming galaxies have determined that the warm component of the molecular gas traced by the high-J CO lines dominates the luminosity (~90% of the total CO luminosity) and hence the energetics of the molecular ISM. At the temperatures (T = 300 - 2000 K) and densities (n_H < 1E6 per cubic cm) typically found in our survey, H2 emission is the dominant gas coolant, much more important than CO. A fundamental assumption of all analyses of CO emission has been that CO emission traces H2 over the entire range of physical conditions in the observed sources. However, a direct observational comparison of spatial distributions and kinematics of CO and H2 has never been made for the warm molecular gas. We propose to observe the warm H2, in S(1) and S(2) transitions, with the SOFIA-EXES instrument in a diverse sample of star-forming systems: NGC 253 (starburst nucleus), NGC 6240 (luminous infrared galaxy), NGC 1068 (Seyfert-2), and SgrB2(M)/(N) (Galactic hot cores). The primary goal is to compare these measurements with the warm CO (J = 6-5 transition) observed with the Atacama Large Millimeter Array (ALMA) to investigate differences in the kinematics and spatial distributions (for the extended targets) of the two molecules and thereby confirm whether CO is a reliable tracer of H2 in the warm gas.

  8. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  9. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  10. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  11. Observations of the Ca II infrared triplet in chromospherically active single and binary stars

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Bopp, Bernard W.; Henry, Gregory W.; Hall, Douglas S.

    1993-01-01

    Spectroscopic observations of the Ca II infrared triplet (8498, 8542, 8662 A) have been obtained for 45 stars which are known or suspected to be chromospherically active. The sample includes both single and binary stars of spectral types from F2 to M5 spanning luminosity classes III, IV, and V. Several different types of activity diagnostics were measured, and their relative merits are discussed. Dependence of chromospheric emission upon rotation period, luminosity, temperature, and duplicity are analyzed. Synchronous binaries show a slight trend of increased emission with decreasing period while the asynchronous binaries show abnormally high activity levels for their rotation periods. Several stars exhibit rotationally modulated emission which is anticorrelated with the stellar brightness. Finally, estimates of chromospheric energy losses are presented with the result that the total loss in the infrared triplet is about twice that of the H and K lines.

  12. Star Formation in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, René J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2002-09-01

    We investigate star formation along the Hubble sequence using the Infrared Space Observatory Atlas of Bright Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. First, star formation activity is stronger in late-type (Sc-Scd) spirals than in early-type (Sa-Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in low ionization nuclear emission regions and transition objects compared with H II galaxies. The mean star formation rate in the sample is 1.4 Msolar yr-1, based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4×108 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the

  13. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  14. Disentangling star formation and AGN activity in powerful infrared luminous radio galaxies at 1 < z < 4

    NASA Astrophysics Data System (ADS)

    Drouart, G.; Rocca-Volmerange, B.; De Breuck, C.; Fioc, M.; Lehnert, M.; Seymour, N.; Stern, D.; Vernet, J.

    2016-09-01

    High-redshift radio galaxies present signs of both star formation and AGN activity, making them ideal candidates to investigate the connection and coevolution of AGN and star formation in the progenitors of present-day massive galaxies. We make use of a sample of 11 powerful radio galaxies spanning 1 star formation by combining the galaxy evolution code PÉGASE.3 with an AGN torus model. We find that three components are necessary to reproduce the observed SEDs: an evolved and massive stellar component, a submm bright young starburst, and an AGN torus. We find that powerful radio galaxies form at very high-redshift, but experience episodic and important growth at 1 star formation differ from source to source, indicating no general trend of the star formation properties in the most infrared luminous high-redshift radio galaxies and no correlation with the AGN bolometric luminosity. Moreover, we find that AGN scattered light have a very limited impact on broad-band SED fitting on our sample. Finally, our analysis also suggests a wide range in origins for the observed star formation,which we partially constrain for some sources.

  15. Chromospherically active stars. II - HD 82558, a young single BY Draconis variable

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

    1986-01-01

    It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

  16. Activities and achievements of the Double Star Committee of the French Astronomical Society

    NASA Astrophysics Data System (ADS)

    Agati, J. L.; Caille, S.; Debackere, A.; Durand, P.; Losse, F.; Mantle, R.; Mauroy, F.; Mauroy A, P.; Morlet, G.; Pinlou, C.; Salaman, M.; Soule, E. J.; Thorel, Y.; Thorel, J. C.

    2007-08-01

    Created in 1981 by Pierre DURAND with the support of Paul MULLER, the Double Star Committee constitutes ever since a forum of exchange of experiences and information in the field of double stars, particularly visual. The Committee relies on the advice of its scientific counsellors (in particular Pierre BACCHUS, Daniel BONNEAU, Paul COUTEAU and Jean DOMMANGET) to guide the work of its members. By fostering missions in observatories, it has stimulated the activities of observation and measurement of double stars. It has also encouraged the publication of measures (A&A and ``Observations et Travaux '') and raised up missions of verification of double star positions. Under its aegis, many series of measures of double stars made in particular with the 50 cm refractor at the Nice Observatory, either with a filar micrometer or with a CCD camera, were published. Uncertain positions of pairs have been checked and corrected. For the treatment of numerical images of double stars, software aiming in particular at the determination of position elements and the magnitude difference between components were tested and others created (e.g. REDUC and SURFACE). The spar plate double image micrometer of Lyot was developed and its fabrication raised up. Preliminary orbits of double stars were calculated, an amateur participates in the maintenance of the database of double star measures SiDoNie and pursues an historical research on the life and work of Robert JONCKHEERE. The Internet site of the Committee, created in 2005, informs the laypersons as well as the experienced amateurs (http:// saf.etoilesdoubles.free.fr).

  17. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    NASA Astrophysics Data System (ADS)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  18. Towards a self-consistent numerical model of late-type galaxies: calibrating the effects of sub-grid physics on galactic models

    NASA Astrophysics Data System (ADS)

    Rahimi, Awat; Kawata, Daisuke

    2012-05-01

    We carry out several isolated galaxy evolution simulations in a fixed dark matter halo gravitational potential using the new version of our N-body/smoothed particle hydrodynamics code GCD+. The new code allows us to more accurately model and follow the evolution of the gas and stellar components of the system including powerful supernovae feedback and its effects on the interstellar medium. Here we present the results of six simulations of an M33-sized late-type disc galaxy, each with varying values for our model parameters which include the star formation efficiency (C*), the energy released per supernovae explosion (ESN) and the energy released per unit time from stellar winds (ESW). We carry out both a pixel-by-pixel and radial ring analysis method for each of our galaxies comparing our results to the observed Schmidt-Kennicutt law and vertical gas velocity dispersion versus radius relation amongst others. We find that our models with a higher feedback more closely resemble the observations and that feedback plays a pivotal role in obtaining both the observed Schmidt-Kennicutt and gas velocity dispersion relations.

  19. The Life Cycles of Stars: An Information and Activity Booklet, Grades 9-12, 1997-1998. Imagine the Universe! Probing the Structure & Evaluation of the Cosmos.

    ERIC Educational Resources Information Center

    Whitlock, Laura A.; Granger, Kara C.

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for grade 9 through grade 12 classrooms. Background information about star birth and life, black dwarfs, supernovae, white dwarfs, neutron stars, black holes, and the electromagnetic spectrum is included. The seven activities focus on star mass,…

  20. CHROMOSPHERIC ACTIVITY OF SOUTHERN STARS FROM THE MAGELLAN PLANET SEARCH PROGRAM

    SciTech Connect

    Arriagada, Pamela

    2011-06-10

    I present chromospheric-activity measurements of {approx}670 F, G, K, and M main-sequence stars in the Southern Hemisphere, from {approx}8000 archival high-resolution echelle spectra taken at Las Campanas Observatory since 2004. These stars were targets from the Old Magellan Planet Search, and are now potential targets for the New Magellan Planet Search that will look for rocky and habitable planets. Activity indices (S values) are derived from Ca II H and K line cores and then converted to the Mount Wilson system. From these measurements, chromospheric (log R'{sub HK}) indices are derived, which are then used as indicators of the level of radial-velocity jitter, age, and rotation periods these stars present.

  1. A CO LINE AND INFRARED CONTINUUM STUDY OF THE ACTIVE STAR-FORMING COMPLEX W51

    SciTech Connect

    Kang, Miju; Lee, Youngung; Choi, Minho; Bieging, John H.; Kulesa, Craig A.; Peters, William L.

    2010-09-15

    We present the results of an extensive observational study of the active star-forming complex W51 that was observed in the J = 2 - 1 transition of the {sup 12}CO and {sup 13}CO molecules over a 1.{sup 0}25 x 1.{sup 0}00 region with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. We compare the molecular cloud morphology with the distribution of infrared (IR) and radio continuum sources and find associations between molecular clouds and young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO lines associated with H II regions are different from the ratios outside the active star-forming regions. We present evidence of star formation triggered by the expansion of the H II regions and by cloud-cloud collisions. We estimate that about 1% of the cloud mass is currently in YSOs.

  2. A CO Line and Infrared Continuum Study of the Active Star-forming Complex W51

    NASA Astrophysics Data System (ADS)

    Kang, Miju; Bieging, John H.; Kulesa, Craig A.; Lee, Youngung; Choi, Minho; Peters, William L.

    2010-09-01

    We present the results of an extensive observational study of the active star-forming complex W51 that was observed in the J = 2 - 1 transition of the 12CO and 13CO molecules over a 1fdg25 × 1fdg00 region with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. We compare the molecular cloud morphology with the distribution of infrared (IR) and radio continuum sources and find associations between molecular clouds and young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO lines associated with H II regions are different from the ratios outside the active star-forming regions. We present evidence of star formation triggered by the expansion of the H II regions and by cloud-cloud collisions. We estimate that about 1% of the cloud mass is currently in YSOs.

  3. ENVIRONMENTAL DEPENDENCE OF OTHER GALAXY PROPERTIES FOR THE SAME STAR FORMATION ACTIVITIES

    SciTech Connect

    Deng Xinfa; Bei Yang; He Jizhou; Tang Xiaoxun

    2010-01-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 above and below the value of M*, we have investigated the environmental dependence of other galaxy properties for the same star formation activities. Only in the luminous passive class, a strong environmental dependence of the g - r color is observed, but the environmental dependence of other properties in this class is very weak. In other classes, we can conclude that the local density dependence of luminosity, g - r color, concentration index ci, and morphologies for star-forming galaxies and passive ones is much weaker than that obtained in the volume-limited Main galaxy samples. This suggests that star formation activity is a galaxy property very predictive of the local environment. In addition, we also note that passive galaxies are more luminous, redder, highly concentrated, and preferentially 'early type'.

  4. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyn’s star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets—Kapteyn b (P = 48 days)—resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn’s star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of “planet b,” and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  5. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  6. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  7. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  8. A connection between star formation activity and cosmic rays in the starburst galaxy M82

    NASA Astrophysics Data System (ADS)

    VERITAS Collaboration; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Celik, O.; Cesarini, A.; Chow, Y. C.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Dickherber, R.; Duke, C.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gibbs, K.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Lebohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Zitzer, B.

    2009-12-01

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse γ-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of γ-ray emission. Here we report the detection of >700-GeV γ-rays from M82. From these data we determine a cosmic-ray density of 250eVcm-3 in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  9. Lithium Abundance in Solar-type Stars with Low Chromospheric Activity: Application to the Search for Maunder Minimum Analogs

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-01

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'HK <= -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  10. LITHIUM ABUNDANCE IN SOLAR-TYPE STARS WITH LOW CHROMOSPHERIC ACTIVITY: APPLICATION TO THE SEARCH FOR MAUNDER MINIMUM ANALOGS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-10

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'{sub HK} {<=} -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  11. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    Several late-type stars (stars with a radiative core and an outer convective layer) present activity cycles resembling the Solar one. This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We analize the activity levels to look for a period of activity. We find strong evidence of a cyclic activity, with a period of ˜442 days. We also estimated that the Ca II S index varies around 130% due to activity variations outside of flares.

  12. IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)

    NASA Technical Reports Server (NTRS)

    Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.

    1981-01-01

    The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.

  13. The first close-up of the ``flip-flop'' phenomenon in a single star

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Berdyugina, S. V.; Strassmeier, K. G.; Tuominen, I.

    2001-11-01

    We present temperature maps of the active late-type giant FK Com which exhibit the first imagining record of the ``flip-flop'' phenomenon in a single star. The phenomenon, in which the main part of the spot activity shifts 180° in longitude, discovered a decade ago in FK Com, was reported later also in a number of RS CVn binaries and a single young dwarf. With the surface images obtained right before and after the ``flip-flop'', we clearly show that the ``flip-flop'' phenomenon in FK Com is caused by changing the relative strengths of the spot groups at the two active longitudes, with no actual spot movements across the stellar surface, i.e. exactly as it happens in other active stars. Based on the observations obtained at the Kitt Peak National Observatory, USA; the Automatic Photometric Telescope, Phoenix 10, Arizona, USA; the Nordic Optical Telescope, Observatorio Roque de los Muchachos, La Palma, Canary Islands, Spain.

  14. The evolution of chromospheric activity in middle-aged Sun-like stars

    NASA Astrophysics Data System (ADS)

    Curtis, Jason L.

    2016-01-01

    Ages of stars are difficult to infer because stars change very little during the majority of their lifetimes. However, stars are observed to spin down over time due to magnetic braking, which weakens the magnetic dynamo as well. This spin down has led to a new age dating method called gyrochronology, which has been successfully calibrated for Sun-like stars up to 2.5 Gyr, but is still undetermined at older ages and lower masses. The decay of magnetic activity has also been utilized to empirically calibrate an age relationship at ages less than 600 Myr with nearby young star clusters (e.g. Hyades), and pinned down at 4 Gyr with M67, but the relationship is basically unconstrained at intermediate ages and sub-Solar masses. Advances in observational facilities have brought distant clusters into view, while the discovery of Ruprecht 147 has provided a new benchmark that is the oldest nearby cluster (3 Gyr, 300 pc, Curtis et al. 2013), and which provides a bridge across this historic age gap. I will present new, high quality chromospheric activity data for NGC 752 at 1.5 Gyr and Ruprecht 147 at 3 Gyr. The stars of Ruprecht 147 will demonstrate the typical activity level and variability experienced by the Sun at a time when multicellular life first evolved on Earth. I will also re-evaluate the M67 data by considering contamination by the interstellar medium, with implications for the frequency of Maunder Minima. Finally, I will discuss a new opportunity to investigate stellar spin down and variability in low mass KM dwarfs with the K2 Survey of Ruprecht 147, which will have just concluded in late December 2015.

  15. Star Power: Providing for the Gifted & Talented. Module 5. Enrichment Activities for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Gilman, Sharlene

    The document presents Module 5, enrichment activities for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  16. The evolution of chromospheric activity of cool giant and subgiant stars

    SciTech Connect

    Simon, T.; Drake, S.A. ST Systems Corp., Greenbelt, MD )

    1989-11-01

    IUE spectra for a large sample of cool subgiant stars are examined, and evidence is found that subgiants in the mass range 1.2-1.6 solar masses undergo a sudden decline in UV transition region emission near B - V = 0.6, which corresponds to spectral type G0 IV. The decline in UV emission coincides with a sharp decrease in stellar rotation rates, and it is suggested that this decay in activity and rotation marks a transformation from acoustic heating in the early F stars to magnetic dynamo-driven activity in the cooler stars, resulting in a strong rotational braking action by stellar wind. For more massive giant stars, there is a similar transformation in the nature of chromospheric activity near B - V = 0.7, or spectral type G0 III, from acoustic heating in the F-type giants to a solarlike dynamo mechanism in the cooler giants. No sign of an abrupt drop in activity near spectral type G5 III at the location of Gray's proposed rotational boundary line is seen. 102 refs.

  17. Magnetic fields and activity of the sun and stars - An overview

    NASA Technical Reports Server (NTRS)

    Rosner, R.

    1983-01-01

    Recent work on the observation and theory of solar and stellar magnetic field activity and its relation to stellar activity is reviewed, emphasizing those aspects relevant to the problem of activity of red dwarf stars. New observational facts relevant to understanding the root cause of stellar surface activity are summarized and theoretical questions concerning the underlying physical basis for the observed correlations between stellar activity, rotation, and magnetic fields are addressed. These include dyanamo theory and the rotation-activity connection as well as flux tube dynamics and plasma heating.

  18. ιHorologi, the first coronal activity cycle in a young solar-like star

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Stelzer, B.; Metcalfe, T. S.

    2013-05-01

    Context. The shortest chromospheric (Ca ii H&K) activity cycle (1.6 yr) has been recently discovered in the young (~600 Myr) solar-like star ι Hor. Coronal X-ray activity cycles have only been discovered in a few stars other than the Sun, all of them with an older age and a lower activity level than ι Hor. Aims: We intended to find the X-ray coronal counterpart of the chromospheric cycle for ι Hor. This represents the first X-ray cycle observed in an active star, as well as the paradigm of the first coronal cycles in the life of a solar-like star. Methods: We monitored ι Hor with XMM-Newton observations spanning almost two years. The spectra of each observation are fit with two-temperature coronal models to study the long-term variability of the star. Results: We find a cyclic behavior in X-rays very similar to the contemporaneous chromospheric cycle. The continuous chromospheric monitoring for more than three cycle lengths shows a trend toward decreasing amplitude, apparently modulated by a longer term trend. The second cycle is disrupted prior to reaching its maximum, followed by a brief episode of chaotic variability before the cyclic behavior resumes, only to be disrupted again after slightly more than one cycle. Conclusions: We confirm the presence of an activity cycle of ~1.6 yr in ι Hor both in X-rays and Ca ii H&K. It is likely subject to the modulation of a longer, not yet constrained second cycle. The 1.6 yr cycle is the shortest coronal one observed to date, and ι Hor represents the most active star for which a coronal activity cycle has been found. This cycle is probably representative of the first coronal cycles in the life of a solar-like star, at the age when life started on Earth. Table 2 is available in electronic form at http://www.aanda.org

  19. Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2009-08-01

    We aim to constrain the Hα, CaII H and CaII K profiles from quiescent and active regions on active dM1e stars. A preliminary analysis of all the data available for dM1e stars shows that the Hα/CaII equivalent width (EW) ratio varies by up to a factor of 7 for different stars in our sample. We find that spectroscopic binaries have a significantly smaller ratio than single dM1e stars. We also find that the pre-main-sequence stars Gl 616.2, GJ 1264 and Gl 803 have a ratio lower than main-sequence single dM1e stars. These differences imply that different chromospheric structures are present on different stars, notably the temperature minimum must decrease with an increasing Hα/CaII EW ratio. For these reasons, it is impossible to reproduce all observations with only one grid of model chromospheres. We show that the grid of model chromospheres of Paper VI is adequate to describe the physical conditions that prevail in the chromospheres of spectroscopic binaries and pre-main-sequence M1e stars, but not for the conditions in single dM1e stars. One or more additional grids of model chromospheres will be necessary to reproduce all observations. We use the method developed in Paper XI in this series, in order to build two-component model chromospheres for five M1e field stars: FF And A, FF And B, GJ 1264, AU Mic and Gl 815A. Our solutions provide an exact match of the Hα and the mean CaII H & K EWs within measurement uncertainties. We compare the theoretical profiles and the observed profiles of Hα and the CaII H & K resonance lines. On the one hand, our fits to the CaII lines are reasonably good. On the other hand, our models tend to produce Hα profiles with a central absorption that is too deep. This suggests that the column mass at the transition region for plages is underestimated, but this would imply that the contrast factor between quiescent and active regions in the CaII lines is larger than 5. We find that, except in the cases of FF And A and AU Mic, the total

  20. Interactions and star-formation activity in Wolf-Rayet galaxies

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Ángel R.; Esteban, César

    2009-12-01

    We present the main results of the Ph.D. thesis carried out by López-Sánchez (Ph.D. thesis, 2006), in which a detailed morphological, photometric and spectroscopic analysis of a sample of 20 Wolf-Rayet (WR) galaxies was performed. The main aims are the study of the star formation and O and WR stellar populations in these galaxies, and the role that interactions between low surface brightness companion objects have in the triggering of the bursts. We analyze the morphology, stellar populations, physical conditions, chemical abundances and kinematics of the ionized gas, as well as the star-formation activity of each system.

  1. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  2. FREQUENCY OF MAUNDER MINIMUM EVENTS IN SOLAR-TYPE STARS INFERRED FROM ACTIVITY AND METALLICITY OBSERVATIONS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2012-03-10

    We consider the common proposition that the fraction of chromospherically very inactive stars in a solar-type sample is analogous to the fraction of the Sun's main-sequence lifetime spent in a grand minimum state. In a new approach to this proposition, we examine chromospheric activity log R'{sub HK} in a stellar sample having Hipparcos parallax measurements, and having spectroscopically determined metallicity close to solar (-0.1 {<=} [Fe/H] {<=} 0.1). We evaluate height above the Hipparcos main sequence, and estimate age using isochrones, to identify the most Sun-like stars in this sample. As a threshold below which a star is labeled very inactive, we use the peak of the HK activity distribution mapped over the quiet Sun during the 1968 epoch. We estimate the fraction of Maunder Minimum (MM) analog candidates in our sample at 11.1%. Given the 70 yr duration of the historical MM, this suggests that in any given year there is a 1/630 chance of entering a similar grand minimum. There are three important cautions with this type of estimate. First, recent investigation using actual activity and photometric time series has suggested that very low activity may not be a necessary criterion for identifying a non-cycling MM analog candidate. Second, this type of estimate depends very strongly on the choice of very low activity threshold. Third, in instantaneous measurements of log R'{sub HK}, it is not always clear whether a star is a viable MM analog candidate or merely an older star nearing the end of its main-sequence lifetime.

  3. Multiwavelength study of the magnetically active T Tauri star HD 283447

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Welty, Alan D.; Imhoff, Catherine; Hall, Jeffrey C.; Etzel, Paul B.; Phillips, Robert B.; Lonsdale, Colin J.

    1994-01-01

    We observed the luminous T Tauri star HD 283447 = V773 Tauri simultaneously at X-ray, ultraviolet, optical photometric and spectroscopic, and radio wavelengths for several hours on UT 1992 September 11. ROSAT, IUE, Very Large Array (VLA) and an intercontinental Very Long Baseline Interferometry (VLBI) network, and three optical observatories participated in the campaign. The star is known for its unusually high and variable nonthermal radio continuum emission. High levels of soft X-ray and Mg II line emission are discovered, with luminosity L(sub x) = 5.5 x 10(exp 30) ergs/s (0.2 - 2 keV) and L(sub Mg II) = 1 x 10(exp 29) ergs/s, respectively. Optically, the spectrum exhibits rather weak characteristics of `classical' T Tauri stars. A faint, broad emission line component, probably due to a collimated wind or infall, is present. During the campaign, the radio luminosity decreased by a factor of 4, while optical/UV lines and X-ray emission remained strong but constant. The large gyrosynchrotron-emitting regions are therefore decoupled from the chromospheric and coronal emission. Five models for the magnetic geometry around the star are discussed; solar-type activity, dipole magnetosphere, star-disk magnetic coupling, disk magnetic fields, and close binary interaction. The data suggest that two magnetic geometries are simultaneously present: complex multipolar fields like those on the Sun, and a large-scale field possibly associated with the circumstellar disk.

  4. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats

    PubMed Central

    Vasant, Rupal A.

    2014-01-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress. PMID:26109886

  5. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats.

    PubMed

    Vasant, Rupal A; Narasimhacharya, A V R L

    2014-06-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress.

  6. Cosmic web and star formation activity in galaxies at z ∼ 1

    SciTech Connect

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  7. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  8. MK Classification and Dynamical Masses for Late-Type Visual Binaries

    NASA Astrophysics Data System (ADS)

    Tamazian, Vakhtang S.; Docobo, José A.; Melikian, Norair D.; Karapetian, Arthur A.

    2006-06-01

    On the basis of slit spectra obtained with the SCORPIO spectral camera attached to the 2.6 m telescope of the V. Ambartsumian Byurakan Astrophysical Observatory (Armenia), MK classifications for 30 visual binaries comprising mostly late K and M type stars are presented. Comparison with other determinations shows that this configuration provides a reliable MK classification. Dynamical masses for 25 systems are computed. Using standard mass-luminosity calibrations, individual mass sums for 11 pairs consisting of virtually single, nonvariable dwarfs are calculated, showing a good agreement with corresponding dynamical masses. The dynamical parallax of HIP 112354 is closer to the trigonometric parallax given in the Yale General Catalogue of Trigonometric Stellar Parallaxes (van Altena et al.) than to the Hipparcos parallax.

  9. Increase in multidrug transport activity is associated with oocyte maturation in sea stars.

    PubMed

    Roepke, Troy A; Hamdoun, Amro M; Cherr, Gary N

    2006-12-01

    In this study, we report on the presence of efflux transporter activity before oocyte maturation in sea stars and its upregulation after maturation. This activity is similar to the multidrug resistance (MDR) activity mediated by ATP binding cassette (ABC) efflux transporters. In sea star oocytes the efflux activity, as measured by exclusion of calcein-am, increased two-fold 3 h post-maturation. Experiments using specific and non-specific dyes and inhibitors demonstrated that the increase in transporter activity involves an ABCB protein, P-glycoprotein (P-gp), and an ABCC protein similar to the MDR-associated protein (MRP)-like transporters. Western blots using an antibody directed against mammalian P-gp recognized a 45 kDa protein in sea star oocytes that increased in abundance during maturation. An antibody directed against sea urchin ABCC proteins (MRP) recognized three proteins in immature oocytes and two in mature oocytes. Experiments using inhibitors suggest that translation and microtubule function are both required for post-maturation increases in transporter activity. Immunolabeling revealed translocation of stored ABCB proteins to the plasma cell membrane during maturation, and this translocation coincided with increased transport activity. These MDR transporters serve protective roles in oocytes and eggs, as demonstrated by sensitization of the oocytes to the maturation inhibitor, vinblastine, by MRP and PGP-specific transporter inhibitors.

  10. Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas

    NASA Astrophysics Data System (ADS)

    Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.

    2003-04-01

    We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).

  11. Spots and activity cycles of the star FKCom—2013-2015 data analysis

    NASA Astrophysics Data System (ADS)

    Puzin, V. B.; Savanov, I. S.; Dmitrienko, E. S.; Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.; Burdanov, A. Yu.

    2016-04-01

    We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014-2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength < B z >, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the < B z > parameter starting from 2014.

  12. Search of X-ray emission from roAp stars: the case of γ Equulei

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Hummel, C. A.; Schöller, M.; Hubrig, S.; Cowley, C.

    2011-05-01

    Context. Rapidly oscillating Ap (roAp) stars represent a subclass of magnetic, chemically peculiar stars. The explanation for their pulsations includes suppressed convection due to the strong magnetic field. These stars rotate slowly such that a solar-like dynamo and ensuing magnetic activity is unlikely to be present. On the other hand, magnetic activity could provide the particle acceleration suspected to be responsible for the presence of short-lived radionuclides on some roAp stars. Aims: The detection of X-ray emission from Ap stars can be an indicator for the presence of magnetic activity and dynamo action, provided different origins for the emission, such as wind shocks and close late-type companions, can be excluded. Here we report on results for γ Equ, the only roAp star for which an X-ray detection is reported in ROSAT catalogs. Methods: We use high resolution imaging in X-rays with Chandra and in the near-infrared with NACO/VLT that allow us to spatially resolve companions down to ≤ 1'' and ~0.06'' separations, respectively. Results: The bulk of the X-ray emission is associated with a companion of γ Equ identified in our NACO image. Assuming coevality with the primary roAp star (~900 Myr), the available photometry for the companion points at a K-type star with ~0.6 M⊙. Its X-ray properties are in agreement with the predictions for its age and mass. An excess of photons with respect to the expected background and contribution from the nearby companion is observed near the optical position of γ Equ. We estimate an X-ray luminosity of log Lx [erg/s] = 26.6 and log (Lx/Lbol) = -7.9 for this emission. A small offset between the optical and the X-ray image leaves some doubt on its association with the roAp star. Conclusions: The faint X-ray emission that we tentatively ascribe to the roAp star is difficult to explain as a solar-like stellar corona due to its very low Lx/Lbol level and the very long rotation period of γ Equ. It could be produced in

  13. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    SciTech Connect

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao

    2009-10-10

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg{sup 2} of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 mum and 70 mum, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L {sub bol} approx 0.2 L {sub sun} and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only approx0.06%.

  14. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young <300 Myr), early-M dwarfs within 25 parsecs were measured using photometric data collected with telescopes at Lowell Observatory during 2012 and 2013. An additional 25 rotation periods for members of the same sample were found in the literature. Ages were derived from Hα and X-ray emission, lithium absorption, surface gravity, and kinematic association of members of known young moving groups (YMGs). We compared rotation periods with the estimated ages as well as indicators of magnetic activity, with the intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  15. Forecasting life: a study of activity cycles in low-mass stars: lessons from long-term stellar light curves.

    PubMed

    Kafka, Stella

    2012-06-01

    Magnetic activity cycles are indirect traces of magnetic fields and can provide an insight on the nature and action of stellar dynamos and stellar magnetic activity. This, in turn, can determine local space weather and activity effects on stellar habitable zones. Using photometric monitoring of low-mass stars, we study the presence and properties of their magnetic activity cycles. We introduce long-term light curves of our sample stars, and discuss the properties of the observed trends, especially at spectral types where stars are fully convective (later than M3).

  16. ACTIVE GALACTIC NUCLEI AND THE TRUNCATION OF STAR FORMATION IN K+A GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Palamara, David; Moustakas, John; Caldwell, Nelson; Cool, Richard J.; Zaritsky, Dennis; Dey, Arjun; Jannuzi, Buell T.; Hickox, Ryan C.; Murray, Stephen S.

    2009-09-20

    We have searched for active galactic nuclei (AGNs) in K+A galaxies, using multiwavelength imaging and spectroscopy in the Booetes field of the NOAO Deep Wide-Field Survey. The K+A galaxies, which have had their star formation rapidly truncated, are selected via their strong Balmer absorption lines and weak Halpha emission. Our sample consists of 24 K+A galaxies selected from 6594 0.10 < z < 0.35 galaxies brighter than I = 20 with optical spectroscopy from the AGN and Galaxy Evolution Survey. Two thirds of the K+A galaxies are likely ongoing galaxy mergers, with nearby companion galaxies or tidal tails. Galaxy mergers may be responsible for the truncation of star formation, or we are observing the aftermath of merger triggered starbursts. As expected, the optical colors of K+A galaxies largely fall between blue galaxies with ongoing star formation and red passive galaxies. However, only 1% of the galaxies with colors between the red and blue populations are K+A galaxies, and we conclude that the truncation of star formation in K+A galaxies must have been unusually abrupt ({approx}<100 Myr). We examined the AGN content of K+A galaxies with both optical emission-line ratios (BPT diagrams) and Chandra X-ray imaging. At least half of all K+A galaxies display the optical emission-line ratios of AGNs, and a third of M{sub R} < -22 K+A galaxies host AGNs with X-ray luminosities of {approx}10{sup 42} erg s{sup -1}. The faintest K+A galaxies do not show clear evidence for hosting AGNs, having emission-line ratios consistent with photoionization by massive stars and few X-ray detections. We speculate that two mechanisms may be responsible for the truncation of star formation in K+A galaxies, with AGN feedback only playing a role in M{sub R} {approx}< -20.5 galaxies.

  17. 3C 273 with NuSTAR: Unveiling the Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Fürst, Felix; Walton, Dominic J.; Harrison, Fiona A.; Nalewajko, Krzysztof; Ballantyne, David R.; Boggs, Steve E.; Brenneman, Laura W.; Christensen, Finn E.; Craig, William W.; Fabian, Andrew C.; Forster, Karl; Grefenstette, Brian W.; Guainazzi, Matteo; Hailey, Charles J.; Madejski, Greg M.; Matt, Giorgio; Stern, Daniel; Walter, Roland; Zhang, William W.

    2015-10-01

    We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1–78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3–78 keV spectrum is well described by an exponentially cutoff power law ({{Γ }}=1.646+/- 0.006, {E}{cutoff}={202}-34+51 keV) with a weak reflection component from cold, dense material. There is also evidence for a weak ({EW}=23+/- 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high-energy power law is consistent with the presence of a beamed jet, which begins to dominate over emission from the inner accretion flow at 30–40 keV. Modeling the jet locally (in the NuSTAR + INTEGRAL band) as a power law, we find that the coronal component is fit by {{{Γ }}}{AGN}=1.638+/- 0.045, {E}{cutoff}=47+/- 15 {keV}, and jet photon index by {{{Γ }}}{jet}=1.05+/- 0.4. We also consider Fermi/LAT observations of 3C 273, and here the broadband spectrum of the jet can be described by a log-parabolic model, peaking at ∼2 MeV. Finally, we investigate the spectral variability in the NuSTAR band and find an inverse correlation between flux and Γ.

  18. Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Huélamo, N.; Micela, G.; Hubrig, S.

    2006-06-01

    Context: .The X-ray emission from B-type main-sequence stars is a longstanding mystery in stellar coronal research. Since there is no theory at hand that explains intrinsic X-ray emission from intermediate-mass main-sequence stars, the observations have often been interpreted in terms of (unknown) late-type magnetically active companion stars. Aims: .Resolving the hypothesized companions requires high spatial resolution observations in the infrared and in X-rays. We use Chandra imaging observations to spatially resolve a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. Methods: .Our strategy is to search for X-ray emission at the position of both the B-type primary and the faint companion. Results: .We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, cannot be discarded. An appropriate scenario would be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.

  19. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  20. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    NASA Astrophysics Data System (ADS)

    Roettenbacher, R. M.; Monnier, J. D.; Korhonen, H.; Aarnio, A. N.; Baron, F.; Che, X.; Harmon, R. O.; Kővári, Zs.; Kraus, S.; Schaefer, G. H.; Torres, G.; Zhao, M.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.

    2016-05-01

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  1. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    PubMed

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos. PMID:27144357

  2. Surface imaging of late-type contact binaries I: AE Phoenicis and YY Eridani

    NASA Astrophysics Data System (ADS)

    Maceroni, C.; Vilhu, O.; van't Veer, F.; van Hamme, W.

    1994-08-01

    This paper presents the results of the first application of Doppler Imaging to solar-type contact binaries. Our aim was to examine whether this technique can help discriminate between various types of surface inhomogeneities (dark vs. bright star-spots) which are produced by different physical processes and which affect not only the surface brightness distribution but also the system's secular evolution. Simultaneous high dispersion spectroscopy and photometry for the systems AE Phe and YY Eri were obtained at ESO using the Coude Auxiliary Telescope (CAT) and the 50 cm telescope. The observed light-curves were solved by means of the latest version of the Wilson-Devinney program. Doppler maps were constructed taking into account the effects of fast rotation and proximity of the system's components. Doppler maps reveal the presence of dark spots on both systems. For AE Phe, this result is in agreement with the light-curve solution. Indirect evidence of enhanced chromospheric emission is also found. This emission appears to be more intense on the primary components.

  3. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity

  4. COMPUTING INTRINSIC LY{alpha} FLUXES OF F5 V TO M5 V STARS

    SciTech Connect

    Linsky, Jeffrey L.; France, Kevin; Ayres, Tom

    2013-04-01

    The Ly{alpha} emission line dominates the far-ultraviolet spectra of late-type stars and is a major source for photodissociation of important molecules including H{sub 2}O, CH{sub 4}, and CO{sub 2} in exoplanet atmospheres. The incident flux in this line illuminating an exoplanet's atmosphere cannot be measured directly as neutral hydrogen in the interstellar medium (ISM) attenuates most of the flux reaching the Earth. Reconstruction of the intrinsic Ly{alpha} line has been accomplished for a limited number of nearby stars, but is not feasible for distant or faint host stars. We identify correlations connecting the intrinsic Ly{alpha} flux with the flux in other emission lines formed in the stellar chromosphere, and find that these correlations depend only gradually on the flux in the other lines. These correlations, which are based on Hubble Space Telescope spectra, reconstructed Ly{alpha} line fluxes, and irradiance spectra of the quiet and active Sun, are required for photochemical models of exoplanet atmospheres when intrinsic Ly{alpha} fluxes are not available. We find a tight correlation of the intrinsic Ly{alpha} flux with stellar X-ray flux for F5 V to K5 V stars, but much larger dispersion for M stars. We also show that knowledge of the stellar effective temperature and rotation rate can provide reasonably accurate estimates of the Ly{alpha} flux for G and K stars, and less accurate estimates for cooler stars.

  5. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    Aim: We address the relation between star formation and AGN activity in a large sample of nearby early type (E and S0) galaxies. The redshift range of the galaxies is 0.0002star formation and thus the process of galaxy evolution and formation. Evidence of AGN feedback is found in massive galaxies in galaxy clusters. However, how common AGN feedback is in the local universe and in small scale systems is still not evident.Methods: To answer this question, we carried out a multiple wavelength study of a sample of 231 early type galaxies which were selected to have an apparent K-band magnitude brighter than 13.5 and whose positions correlate with Chandra ACIS-I and ACIS-S sources. The galaxies in the sample are unbiased regarding their star formation and radio source properties. Using the archival observations at radio, IR and UV from VLA, WISE and GALEX respectively, we obtained the radio power, estimate FUV star formation rate (SFR) and other galaxy properties to study AGN activity and ongoing star formation.Results: The relationship between radio power and stellar mass shows that there is an upper envelope of radio power that is a steep function of stellar luminosity. This suggests that less massive galaxies have low radio power while massive galaxies are capable of hosting powerful radio sources. The Radio-MIR relation shows that galaxies with P>=1022 WHz-1 are potential candidates for being AGN. About ~ 7% of the sample show evidence of ongoing star formation with SFR ranging from 10-3 to 1 M⊙yr-1. These are also less massive and radio faint suggesting the absence of active accretion. There is nearly equal fraction of star forming galaxies in radio faint (P<1022 WHz-1) and radio bright galaxies (P>=1022 WHz-1) . Only ~ 5% of the galaxies in our sample have P>=1022 WHz-1 and most of them do not show evidence of bright accretion disks. We see a weak correlation and a dispersion of

  6. Star-formation Activity in the Neighborhood of W–R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ˜4 × 1037 erg s‑1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ˜18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ˜9.2 × 1022 cm‑2 and A V ˜ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (˜1–2 Myr) and a typical age of WN7 W–R star (˜4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  7. Star-formation Activity in the Neighborhood of W-R 1503-160L Star in the Mid-infrared Bubble N46

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-07-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf-Rayet (W-R) star. We have used 13CO line data to trace an expanding shell surrounding the W-R star containing about five condensations within the molecular cloud associated with the bubble. The W-R star is associated with a powerful stellar wind having a mechanical luminosity of ˜4 × 1037 erg s-1. A deviation of the H-band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ˜18-24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H2) ˜9.2 × 1022 cm-2 and A V ˜ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V-B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (˜1-2 Myr) and a typical age of WN7 W-R star (˜4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W-R star.

  8. Stellar activity as noise in exoplanet detection - I. Methods and application to solar-like stars and activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Andersen, J. M.; Piskunov, N.; Hackman, T.; Juncher, D.; Järvinen, S. P.; Jørgensen, U. G.

    2015-04-01

    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused `jitter' we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 and 9 m s-1. With a realistic observing frequency a Neptune-mass planet on a 1-yr orbit can be reliably recovered. On the other hand, the recovery of an Earth-mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.

  9. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  10. No Evidence for Activity Correlations in the Radial Velocities of Kapteyn’s Star

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Tuomi, M.; Arriagada, P.; Zechmeister, M.; Jenkins, J. S.; Ofir, A.; Dreizler, S.; Gerlach, E.; Marvin, C. J.; Reiners, A.; Jeffers, S. V.; Butler, R. Paul; Vogt, S. S.; Amado, P. J.; Rodríguez-López, C.; Berdiñas, Z. M.; Morin, J.; Crane, J. D.; Shectman, S. A.; Díaz, M. R.; Sarmiento, L. F.; Jones, H. R. A.

    2016-10-01

    Stellar activity may induce Doppler variability at the level of a few m s‑1 which can then be confused by the Doppler signal of an exoplanet orbiting the star. To first order, linear correlations between radial velocity measurements and activity indices have been proposed to account for any such correlation. The likely presence of two super-Earths orbiting Kapteyn’s star was reported in Anglada-Escudé et al., but this claim was recently challenged by Robertson et al., who argued for evidence of a rotation period (143 days) at three times the orbital period of one of the proposed planets (Kapteyn’s b, P = 48.6 days) and the existence of strong linear correlations between its Doppler signal and activity data. By re-analyzing the data using global statistics and model comparison, we show that such a claim is incorrect given that (1) the choice of a rotation period at 143 days is unjustified, and (2) the presence of linear correlations is not supported by the data. We conclude that the radial velocity signals of Kapteyn’s star remain more simply explained by the presence of two super-Earth candidates orbiting it. We note that analysis of time series of activity indices must be executed with the same care as Doppler time series. We also advocate for the use of global optimization procedures and objective arguments, instead of claims based on residual analyses which are prone to biases and incorrect interpretations.

  11. Periodic Variations in DQ Herculis Stars

    NASA Astrophysics Data System (ADS)

    Bless, Robert

    1991-07-01

    The DQ Herculis Stars are cataclysmic variables showing rapid, strictly periodic luminosity variations at either optical or X-ray wavelengths, and usually both. The periods range from 33 sec in AE AQR through 71 sec in DQ Her to 18690 sec in TV Col. The cataclysmic variables are all close binary stars consisting of a late-type star transferring mass to its companion white dwarf star. The white dwarf in the DQ Her stars is magnetized. The periodicities of the DQ Her stars are caused by rotation of the magnetized, acreting white dwarf. We propose to observe the DQ Her stars at ultraviolet wavelengths using the high speed photometer on the space telescope. The purpose of the observations is to investigate the physics of accretion onto compact stars. Revision History: Prepared for future cycles submission--BJW 4/22/92; Cycle 3 to cycle 2, PRISM to SINGLE--BJW 8/27/92;

  12. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  13. The First X-Ray Imaging Spectroscopy of Quiescent Solar Active Regions with NuSTAR

    NASA Astrophysics Data System (ADS)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Glesener, Lindsay; Krucker, Säm; Hudson, Hugh S.; Madsen, Kristin K.; Marsh, Andrew; White, Stephen M.; Caspi, Amir; Shih, Albert Y.; Harrison, Fiona A.; Stern, Daniel; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Zhang, William W.

    2016-03-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission measures 1-8 × 1046 cm-3. We do not observe emission above 5 MK, but our short effective exposure times restrict the spectral dynamic range. With few counts above 6 keV, we can place constraints on the presence of an additional hotter component between 5 and 12 MK of ˜ {10}46 cm-3 and ˜ {10}43 cm-3, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission.

  14. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  15. The Fidelity Index provides a systematic quantitation of star activity of DNA restriction endonucleases

    PubMed Central

    Wei, Hua; Therrien, Caitlin; Blanchard, Aine; Guan, Shengxi; Zhu, Zhenyu

    2008-01-01

    Restriction endonucleases are the basic tools of molecular biology. Many restriction endonucleases show relaxed sequence recognition, called star activity, as an inherent property under various digestion conditions including the optimal ones. To quantify this property we propose the concept of the Fidelity Index (FI), which is defined as the ratio of the maximum enzyme amount showing no star activity to the minimum amount needed for complete digestion at the cognate recognition site for any particular restriction endonuclease. Fidelity indices for a large number of restriction endonucleases are reported here. The effects of reaction vessel, reaction volume, incubation mode, substrate differences, reaction time, reaction temperature and additional glycerol, DMSO, ethanol and Mn2+ on the FI are also investigated. The FI provides a practical guideline for the use of restriction endonucleases and defines a fundamental property by which restriction endonucleases can be characterized. PMID:18413342

  16. An active M star with X-ray double flares disguised as an ultra-luminous X-ray source

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Ji-Feng; Wang, Song; Wu, Yue; Qin, Yu-Xiang

    2016-02-01

    Here we present research on an ultra-luminous X-ray source (ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star. More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray (0.3-11.0 keV) flux of the first peak was derived from the two-temperature APEC model as ˜ 1.1 ± 0.1 × 10-12 erg cm-2 s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences. By optical spectral fitting, it is confirmed to be a late type dMe2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ˜ 133.4 ± 14.2 pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.

  17. A Hard X-Ray Study of the Normal Star-forming Galaxy M83 with NuSTAR

    NASA Astrophysics Data System (ADS)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.; Ptak, A.; Wik, D. R.; Zezas, A.; Antoniou, V.; Maccarone, T. J.; Replicon, V.; Tyler, J. B.; Venters, T.; Argo, M. K.; Bechtol, K.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C.; Harrison, F.; Krivonos, R.; Kuntz, K.; Stern, D.; Zhang, W. W.

    2016-06-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E\\gt 10 keV) X-ray emission of this galaxy. The nuclear region and ˜20 off-nuclear point sources, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, which is consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC 253, NGC 3310, and NGC 3256. The NuSTAR observations constrain any active galactic nucleus (AGN) to be either highly obscured or to have an extremely low luminosity of ≲1038 erg s‑1 (10–30 keV), implying that it is emitting at a very low Eddington ratio. An X-ray point source that is consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038 erg s‑1 may be a low-luminosity AGN but is more consistent with being an X-ray binary.

  18. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  19. CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star

    NASA Astrophysics Data System (ADS)

    García, Rafael A.; Mathur, Savita; Salabert, David; Ballot, Jérôme; Régulo, Clara; Metcalfe, Travis S.; Baglin, Annie

    2010-08-01

    The 11-year activity cycle of the Sun is a consequence of a dynamo process occurring beneath its surface. We analyzed photometric data obtained by the CoRoT space mission, showing solarlike oscillations in the star HD49933, for signatures of stellar magnetic activity. Asteroseismic measurements of global changes in the oscillation frequencies and mode amplitudes reveal a modulation of at least 120 days, with the minimum frequency shift corresponding to maximum amplitude as in the Sun. These observations are evidence of a stellar magnetic activity cycle taking place beneath the surface of HD49933 and provide constraints for stellar dynamo models under conditions different from those of the Sun.

  20. Chandra Observation of the Trifid Nebula: X-Ray Emission from the O Star Complex and Actively Forming Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Ramírez, Solange V.; Corcoran, Michael F.; Hamaguchi, Kenji; Lefloch, Bertrand

    2004-06-01

    The Trifid Nebula, a young star-forming H II region, was observed for 16 hr by the ACIS-I detector on board the Chandra X-Ray Observatory. We detected 304 X-ray sources, 30% of which are hard sources and 70% of which have near-infrared counterparts. Chandra resolved the HD 164492 multiple system into a number of discrete X-ray sources. X-ray emission is detected from components HD 164492A (an O7.5 III star that ionizes the nebula), B and C (a B6 V star), and possibly D (a Be star). Component C is blended with an unidentified source to the northwest. HD 164492A has a soft spectrum (kT~0.5 keV), while the component C blend shows much harder emission (kT~6 keV). This blend and other hard sources are responsible for the hard emission and Fe K line seen by ASCA, which was previously attributed entirely to HD 164492A. The soft spectrum of the O star is similar to emission seen from other single O stars and is probably produced by shocks within its massive stellar wind. Lack of hard emission suggests that neither a magnetically confined wind shock nor colliding wind emission is important in HD 164492A. A dozen stars are found to have flares in the field, and most of them are pre-main-sequence stars (PMS). Six sources with flares have both optical and Two Micron All Sky Survey counterparts. These counterparts are not embedded, and thus it is likely that these sources are in a later stage of PMS evolution, possibly Class II or III. Two flare sources did not have any near-IR, optical, or radio counterparts. We suggest that these X-ray flare stars are in an early PMS stage (Class I or earlier). We also detected X-ray sources apparently associated with two massive star-forming cores, TC 1 and TC 4. The spectra of these sources show high extinction and X-ray luminosities of (2-5)×1031 ergs s-1. If these sources are Class 0 objects, it is unclear whether their X-ray emission is due to solar-type magnetic activities, as in Class I objects, or to some other mechanism.

  1. A Method for Measuring Active Region Filling Factors on Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark Steven; Andretta, Vincenzo; Beeck, Benjamin; Reiners, Ansgar; Schussler, Manfred

    2015-04-01

    Radiative diagnostics of “activity” in the Sun and solar-type stars are spatially associated with sites of emergent magnetic flux. The magnetic fields themselves are widely regarded as the surface manifestations of a dynamo mechanism. The further development of both dynamo theory and models of the non-radiative heating of outer stellar atmospheres requires a knowledge of stellar magnetic field properties. In this context, it becomes important to determine the surface distribution, or at least the fractional coverage of, magnetic active regions as one critical constraint for dynamo models. But, while information on the spatial distribution of activity on stellar surfaces can be gathered in some special cases (mostly rapid rotators), such measurements have always been elusive in more solar-like stars. We discuss the challenges and results obtained from a method that relies on the non-linear response of the two principal He I triplet lines (at 1083 nm and 587.6 nm) to infer useful constraints on the fractional area coverage of magnetic active regions on solar-type stars.

  2. Difference at chromospheric levels between rs cvn-type binaries, active and quiet chromosphere single stars, and active and quiet regions in the sun

    SciTech Connect

    Linsky, J.L.

    1980-01-01

    This paper summarizes the differences in the properties of active chromospheres compared with quiet chromospheres by comparing active and quiet regions on the Sun, active and quiet chromosphere stars, and the very active chromospheres seen in close binary systems with chromospheres of single stars. In particular, the chromospheres of the RS CVn-type binary systems UX Arietis and HR 1099 and the chromosphere of UX Arietis during a flare are modeled.

  3. STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS

    SciTech Connect

    Greissl, Julia; Meyer, Michael R.; Christopher, Micol H.; Scoville, Nick Z.

    2010-02-20

    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of {approx}90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

  4. A Multi-wavelength Study of Star Formation Activity in the S235 Complex

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  5. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

    SciTech Connect

    Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Berian James, J.; Brink, Henrik; Long, James P.; Rice, John

    2012-01-10

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL-where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up-is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  6. Sejong Open Cluster Survey (SOS) - V. The Active Star Forming Region SH 2-255-257

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Hur, Hyeonoh; Lee, Byeong-Cheol; Bessell, Michael S.; Kim, Jinyoung S.; Lee, Kang Hwan; Park, Byeong-Gon; Jeong, Gwanghui

    2015-12-01

    There is much observational evidence that active star formation is taking place in the H II regions Sh 2-255-257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B-V) = 0.8 mag, and the reddening law toward the region is normal (R_V = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J-H) color-magnitude diagram. The slope of the IMF is about Γ = -1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169 M_{⊙}). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.

  7. A Census of Star Formation and Active Galactic Nuclei Populations in Abell 1689

    NASA Astrophysics Data System (ADS)

    Jones, Logan H.; Atlee, David Wesley

    2016-01-01

    A recent survey of low-z galaxy clusters observed a disjunction between X-ray and mid-infrared selected populations of active galactic nuclei (X-ray and IR AGNs) (Atlee+ 2011, ApJ 729, 22.). Here we present an analysis of near-infrared spectroscopic data of star-forming galaxies in cluster Abell 1689 in order to confirm the identity of some of their IR AGN and to provide a check on their reported star formation rates. Our sample consists of 24 objects in Abell 1689. H and K band spectroscopic observations of target objects and standard stars were obtained by David Atlee between 2010 May 17 and 2011 June 6 using the Large Binocular Telescope's LUCI instrument. After undergoing initial reductions, standard stars were corrected for telluric absorption using TelFit (Gullikson+ 2014, AJ, 158, 53). Raw detector counts were converted to physical units using the wavelength-dependent response of the grating and the star's reported H and K band magnitudes to produce conversion factors that fully correct for instrumental effects. Target spectra were flux-calibrated using the airmass-corrected transmission profiles produced by TelFit and the associated H band conversion factor (or the average of the two factors, for nights with two standard stars). Star formation rates were calculated using the SFR-L(Ha) relation reported in Kennicutt (1998), with the measured luminosity of the Pa-a emission line at the luminosity distance of the cluster used as a proxy for L(Ha) (Kennicutt 1998, ARA&A 36, 189; Hummer & Stoney 1987, MNRAS 346, 1055). The line ratios H2 2.121 mm/Brg and [FeII]/Pab were used to classify targets as starburst galaxies, AGNs, or LINERs (Rodriguez-Ardila+ 2005, MNRAS, 364, 1041). Jones was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program, which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  8. Modelling the photosphere of active stars for planet detection and characterization

    NASA Astrophysics Data System (ADS)

    Herrero, Enrique; Ribas, Ignasi; Jordi, Carme; Morales, Juan Carlos; Perger, Manuel; Rosich, Albert

    2016-02-01

    Context. Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes in the measurements obtained from photometric and spectroscopic time series observations. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Aims: Accurate simulations of the stellar photosphere based on the most recent available models for main-sequence stars can provide synthetic photometric and spectroscopic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales (defined by the passbands of given instruments or space missions) to design strategies to remove or minimize them. Methods: We present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. The resulting synthetic time series data generated with this simulator were used to characterize the effects of activity jitter in extrasolar planet measurements from photometric and spectroscopic observations. Results: Several cases of synthetic data series for Sun-like stars are presented to illustrate the capabilities of the methodology. A specific application for characterizing and modelling the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low-temperature contrasts of spots. Synthetic multi-band photometry and radial velocity time series are modelled for HD 189733 by adopting the known system parameters and fitting for the

  9. EPISODIC STAR FORMATION COUPLED TO REIGNITION OF RADIO ACTIVITY IN 3C 236

    SciTech Connect

    Tremblay, Grant R.; O'Dea, Christopher P.; Baum, Stefi A.; Koekemoer, Anton M.; Sparks, William B.; De Bruyn, Ger; Schoenmakers, Arno P.

    2010-05-20

    We present Hubble Space Telescope Advanced Camera for Surveys and STIS FUV/NUV/optical imaging of the radio galaxy 3C 236, whose relic {approx}4 Mpc radio jet lobes and inner 2 kpc compact steep spectrum (CSS) radio source are evidence of multiple epochs of active galactic nucleus (AGN) activity. Consistent with previous results, our data confirm the presence of four bright knots of FUV emission in an arc along the edge of the inner circumnuclear dust disk in the galaxy's nucleus, as well as FUV emission cospatial with the nucleus itself. We interpret these to be sites of recent or ongoing star formation. We present photometry of these knots, as well as an estimate for the internal extinction in the source using line ratios from archival ground-based spectroscopy. We estimate the ages of the knots by comparing our extinction-corrected photometry with stellar population synthesis models. We find the four knots cospatial with the dusty disk to be young, of order {approx}10{sup 7} yr old. The FUV emission in the nucleus, to which we do not expect scattered light from the AGN to contribute significantly, is likely due to an episode of star formation triggered {approx}10{sup 9} yr ago. We argue that the young {approx}10{sup 7} yr old knots stem from an episode of star formation that was roughly coeval with the event resulting in reignition of radio activity, creating the CSS source. The {approx}10{sup 9} yr old stars in the nucleus may be associated with the previous epoch of radio activity that generated the 4 Mpc relic source, before being cut off by exhaustion or interruption. The ages of the knots, considered in the context of both the disturbed morphology of the nuclear dust and the double-double morphology of the 'old' and 'young' radio sources, present evidence for an AGN/starburst connection that is possibly episodic in nature. We suggest that the AGN fuel supply was interrupted for {approx}10{sup 7} yr due to a minor merger event and has now been restored. The

  10. Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    NASA Astrophysics Data System (ADS)

    Bitsakis, T.; Dultzin, D.; Ciesla, L.; Díaz-Santos, T.; Appleton, P. N.; Charmandaris, V.; Krongold, Y.; Guillard, P.; Alatalo, K.; Zezas, A.; González, J.; Lanz, L.

    2016-06-01

    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multiwavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01 < z < 0.23. To derive the physical properties of the galaxies, we rely on ultraviolet (UV)-to-infrared spectral energy distribution modelling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3 to 10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colours are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals to early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.

  11. Spectroscopic survey of ASAS eclipsing variables: search for chromospherically active eclipsing binary stars - I

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar; Messina, S.; Bama, P.; Medhi, B. J.; Muneer, S.; Velu, C.; Ahmad, A.

    2009-05-01

    We have started a spectroscopic survey to identify new chromospherically active components and low-mass pre-main sequence (PMS) stars in recently discovered All Sky Automated Survey (ASAS) eclipsing binaries. In this paper, we briefly describe our scientific motivation, the observing tools and the results obtained from the first phase of this survey. Using the available observing facilities in India, the spectroscopic observations of a sample of 180 candidate eclipsing binary stars selected from ASAS-I&II releases were carried out during 2004-2006. The strength of Hα emission was used to characterize the level of chromospheric activity. Our spectroscopic survey reveals that out of 180 stars about 36 binary systems show excess Hα emission. One of the objects in our sample, ASAS 081700-4243.8, displays very strong Hα emission. Follow-up high-resolution spectroscopic observations reveal that this object is indeed very interesting and most likely a classical Be-type system with K0III companion.

  12. Low-level supermassive black hole activity and star formation in isolated ellipticals

    NASA Astrophysics Data System (ADS)

    Martinkus, Charlotte; Miller, Brendan; Gallo, Elena

    2016-01-01

    We present and discuss Chandra ACIS-S X-ray observations of six early-type galaxies located within cosmic voids. The targeted galaxies have comparable stellar masses of 6-9e10 solar but span a wide range of star formation rates, from 0.03 to 6.5 solar masses per year. These data permit clean investigation of the link, if any, between star formation and low-level supermassive black hole activity. We isolate the nuclear X-ray emission associated with SMBH activity through analyzing the X-ray surface brightness profiles and calculating the predicted X-ray binary contamination within the extraction aperture. The galaxies with higher star formation rates also tend to have greater SMBH-associated X-ray luminosities, perhaps suggestive of a mutual dependence on cold gas. We also compare our void galaxies to cluster early-type galaxies of similar stellar mass, finding that the void galaxies have, on average, more compact optical surface brightness profiles along with greater X-ray luminosities.

  13. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  14. Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers.

    PubMed

    Wong, Edgar H H; Khin, Mya Mya; Ravikumar, Vikashini; Si, Zhangyong; Rice, Scott A; Chan-Park, Mary B

    2016-03-14

    The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10,000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases.

  15. EChO spectra and stellar activity II. The case of dM stars

    NASA Astrophysics Data System (ADS)

    Scandariato, Gaetano; Micela, Giuseppina

    2015-12-01

    EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magneticvariability has to be taken into account in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm.

  16. Evaluation of the different forces brought into play during tube foot activities in sea stars.

    PubMed

    Hennebert, Elise; Haesaerts, Delphine; Dubois, Philippe; Flammang, Patrick

    2010-04-01

    Sea star tube feet consist of an enlarged and flattened distal extremity (the disc), which makes contact with the substratum, and a proximal contractile cylinder (the stem), which acts as a tether. In this study, the different forces brought into play during tube foot functioning were investigated in two related species. The tube feet of Asterias rubens and Marthasterias glacialis attach to glass with a similar mean tenacity (0.24 and 0.43 MPa, respectively), corresponding to an estimated maximal attachment force of 0.15 and 0.35 N. The contraction force of their retractor muscle averages 0.017 N. The variation of the retractor muscle contraction with its extension ratio follows a typical bell-shaped length-tension curve in which a maximal contraction of approximately 0.04 N is obtained for an extension ratio of approximately 2.3 in both sea star species. The tensile strength of the tube foot stem was investigated considering the two tissues that could assume a load-bearing function, i.e. the retractor muscle and the connective tissue. The latter is a mutable collagenous tissue presenting a fivefold difference in tensile strength between its soft and stiff state. In our experiments, stiffening was induced by disrupting cell membranes or by modifying the ionic composition of the bathing solution. Finally, the force needed to break the tube foot retractor muscle was found to account for 18-25% of the tube foot total breaking force, showing that, although the connective tissue is the tissue layer that supports most of the load exerted on the stem, the contribution of the retractor muscle cannot be neglected in sea stars. All these forces appear well-balanced for proper functioning of the tube feet during the activities of the sea star. They are discussed in the context of two essential activities: the opening of bivalve shells and the maintenance of position in exposed habitats.

  17. Detection of EUV emission from the low activity dwarf HD 4628: Evidence for a cool corona

    NASA Technical Reports Server (NTRS)

    Mathioudakis, M.; Drake, J. J.; Vedder, P. W.; Schmitt, J. H. M. M.; Bowyer, S

    1994-01-01

    We present observations of low activity late-type stars obtained with the Extreme Ultraviolet Explorer (EUVE). These stars are the slowest rotators, and acoustic heating may dominate their outer atmospheric heating process. We report detection of EUV emission from the low acitivity K dwarf HD 4628 during the EUVE Deep Survey in the Lexan/boran band. This detection, in conjunction with the non-detection of this object in the ROSAT Position Sensitive Proportional Counter (PSPC) all-sky survey, suggests the existence of a cool corona with a characteristic temperature of less than 10(exp 6) K. The flux and spectral signature are consistent with current theories of acoustic heating.

  18. Chromospheric MG II H and K emissions free of interstellar contamination - Velocity structure in late-type dwarfs and giants

    NASA Astrophysics Data System (ADS)

    Vladilo, G.; Molaro, P.; Crivellari, L.; Foing, B. H.; Beckman, J. E.; Genova, R.

    1987-10-01

    The authors have used high resolution IUE spectra from their own studies and from the archive to examine the Mg II h and k chromospheric emission cores of a sample of late-type dwarfs and giants. Sharp photospheric absorptions were used to provide a velocity rest-frame with respect to each stellar photosphere with the IUE-limited precision of ±4 km s-1. The knowledge of the kinematics of the local interstellar medium (LISM) could then be used to identify cases where either the cores or the wings, or in best circumstances both features of the chromospheric lines were uncontaminated by LISM absorption. The authors derive, using only LISM-free emission wings, accurate Wilson-Bappu relations for both the h and k line, characterized by a slope higher than in previous determinations.

  19. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.

    2015-10-01

    Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.

  20. Star formation and AGN activity in the most luminous LINERs in the local universe

    NASA Astrophysics Data System (ADS)

    Pović, Mirjana; Márquez, Isabel; Netzer, Hagai; Masegosa, Josefa; Nordon, Raanan; Pérez, Enrique; Schoenell, William

    2016-11-01

    This work presents the properties of 42 objects in the group of the most luminous, highest star formation rate (SFR) low-ionization nuclear emission-line regions (LINERs) at z = 0.04-0.11. We obtained long-slit spectroscopy of the nuclear regions for all sources, and FIR data (Herschel and IRAS) for 13 of them. We measured emission-line intensities, extinction, stellar populations, stellar masses, ages, active galactic nuclei (AGN) luminosities, and SFRs. We find considerable differences from other low-redshift LINERs, in terms of extinction, and general similarity to star-forming galaxies. We confirm the existence of such luminous LINERs in the local universe, after being previously detected at z ˜ 0.3 by Tommasin et al. The median stellar mass of these LINERs corresponds to 6-7 × 1010 M⊙ which was found in previous work to correspond to the peak of relative growth rate of stellar populations and therefore for the highest SFRs. Other LINERs although showing similar AGN luminosities have lower SFR. We find that most of these sources have LAGN ˜ LSF suggesting co-evolution of black hole and stellar mass. In general, the fraction of local LINERs on the main sequence of star-forming galaxies is related to their AGN luminosity.

  1. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  2. New Insights on Late-A and Early-F Star Activity

    NASA Astrophysics Data System (ADS)

    Freire Ferrero, R.; Catalano, S.; Marilli, E.; Gouttebroze, P.; Talavera, A.; Bruhweiler, F.

    The onset of chromospheric activity in late-A and early-F stars is here discussed. The detection of Ly- emission core in several A and F atars with the IUE satellite, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0m.19 (Marilli et al., 1996). Semiempirical chromospheric models for Altair allowed us (Freire Ferrero et al., 1995) to explain the observed emission profiles taking into account normal H I interstellar (IS) absorption. However, due to the very high rotational velocity, we analysed alternative hypotheses to explain the observed emissions: (1) circumstellar or shell matter; (2) co-rotating expanding optically thin wind. We ruled out these hypotheses because their effects are negligible and as a consequence, this result reinforces the chromospheric origin of the observed Ly- core in Altair. The stars of our sample, having observed Ly- profilies similar to Altair's and similar stellar and IS properties, should reproduce similar chromospheric behaviour. Here we discuss several important questions that are raised by these results.

  3. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  4. The X-Ray Luminosity Function of M37 and the Evolution of Coronal Activity in Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Agüeros, Marcel A.

    2016-10-01

    We use a 440.5 ks Chandra observation of the ≈500 Myr old open cluster M37 to derive the X-ray luminosity functions of its ≤1.2 {M}ȯ stars. Combining detections of 162 M37 members with upper limits for 160 non-detections, we find that its G, K, and M stars have a similar median (0.5–7 keV) X-ray luminosity {L}{{X}}={10}29.0 {erg} {{{s}}}-1, whereas the {L}{{X}}-to-bolometric-luminosity ratio ({L}{{X}}/{L}{bol}) indicates that M stars are more active than G and K stars by ≈ 1 order of magnitude at 500 Myr. To characterize the evolution of magnetic activity in low-mass stars over their first ≈ 600 {{Myr}}, we consolidate X-ray and optical data from the literature for stars in six other open clusters: from youngest to oldest they are, the Orion Nebula Cluster (ONC), NGC 2547, NGC 2516, the Pleiades, NGC 6475, and the Hyades. For these, we homogenize the conversion of instrumental count rates to {L}{{X}} by applying the same one-temperature emission model as for M37, and obtain masses using the same empirical mass-absolute magnitude relation (except for the ONC). We find that for G and K stars X-ray activity decreases ≈ 2 orders of magnitude over their first 600 Myr, and for M stars, ≈1.5. The decay rate of the median {L}{{X}} follows the relation {L}{{X}}\\propto {t}b, where b=-0.61+/- 0.12 for G stars, ‑0.82 ± 0.16 for K stars, and ‑0.40 ± 0.17 for M stars. In {L}{{X}}/{L}{bol} space, the slopes are ‑0.68 ± 0.12, ‑0.81 ± 0.19, and ‑0.61 ± 0.12, respectively. These results suggest that for low-mass stars the age-activity relation steepens after ≈ 625 {{Myr}}, consistent with the faster decay in activity observed in solar analogs at t\\gt 1 {{Gyr}}.

  5. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E.; Altieri, B.; Coia, D.; Charmandaris, V.; Daddi, E.; Le Floc'h, E.; Leiton, R.; Dasyra, K.; Dickinson, M.; Kartaltepe, J.; Hickox, R. C.; Ivison, R. J.; Magnelli, B.; Popesso, P.; Rosario, D.; and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  6. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  7. Application of active controls technology to the NASA Jet Star airplane

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Cahill, J. F.; Campion, M. C.; Bradley, E. S.; Macwilkinson, D. G.; Phillips, J. W.

    1975-01-01

    The feasibility was studied of modifying a Jet Star airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables. Also, an alternate configuration which incorporated composite structures, but not active controls technology, was defined in order to compare the benefits of composite structures with those of active controls technology.

  8. Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang, Yiping; Hernán-Caballero, Antonio; Rigopoulou, Dimitra

    2013-03-01

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M ⊙ using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ~1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  9. Deep Chandra observations of HCG 16. I. Active nuclei, star formation, and galactic winds

    SciTech Connect

    O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Trevisan, M.; Ponman, T. J.; Raychaudhury, S.; Mamon, G. A.

    2014-10-01

    We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz observations of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The deep Chandra observations allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.

  10. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  11. PHYSICAL PROPERTIES, STAR FORMATION, AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN BALMER BREAK GALAXIES AT 0 < z < 1

    SciTech Connect

    Diaz Tello, J.; Donzelli, C.; Padilla, N.; Fujishiro, N.; Yoshikawa, T.; Hanami, H.; Hatsukade, B.

    2013-07-01

    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  12. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    SciTech Connect

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-11-20

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F{sub 1.4{sub GHz}} {approx}> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z {approx}< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  13. Disentangling AGN and Star Formation Activity at High Redshift Using Hubble Space Telescope Grism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ˜ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope/Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/Hβ line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ˜40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/Hβ gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ˜ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  14. Warm dust and aromatic bands as quantitative probes of star-formation activity

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Roussel, H.; Sauvage, M.; Charmandaris, V.

    2004-05-01

    We combine samples of spiral galaxies and starburst systems observed with ISOCAM on board ISO to investigate the reliability of mid-infrared dust emission as a quantitative tracer of star formation activity. The total sample covers very diverse galactic environments and probes a much wider dynamic range in star formation rate density than previous similar studies. We find that both the monochromatic 15 μm continuum and the 5-8.5 μm emission constitute excellent indicators of the star formation rate as quantified by the Lyman continuum luminosity LLyc, within specified validity limits which are different for the two tracers. Normalized to projected surface area, the 15 μm continuum luminosity Σ15 μm,ct is directly proportional to ΣLyc over several orders of magnitude. Two regimes are distinguished from the relative offsets in the observed relationship: the proportionality factor increases by a factor of ≈5 between quiescent disks in spiral galaxies, and moderate to extreme star-forming environments in circumnuclear regions of spirals and in starburst systems. The transition occurs near ΣLyc ˜ 102 L⊙ pc-2 and is interpreted as due to very small dust grains starting to dominate the emission at 15 μm over aromatic species above this threshold. The 5-8.5 μm luminosity per unit projected area is also directly proportional to the Lyman continuum luminosity, with a single conversion factor from the most quiescent objects included in the sample up to ΣLyc ˜ 104 L⊙ pc-2, where the relationship then flattens. The turnover is attributed to depletion of aromatic band carriers in the harsher conditions prevailing in extreme starburst environments. The observed relationships provide empirical calibrations useful for estimating star formation rates from mid-infrared observations, much less affected by extinction than optical and near-infrared tracers in deeply embedded H II regions and obscured starbursts, as well as for theoretical predictions from evolutionary

  15. The Evolution of Accretion and Activity Signatures in Young A Stars

    NASA Astrophysics Data System (ADS)

    Williger, G. M.; Grady, C. A.; Hamaguchi, K.; Hubrig, S.; Bouret, J.-C.; Roberge, A.; Sahu, M.; Woodgate, B.; Kimble, R.

    2005-12-01

    FUV spectroscopy obtained with FUSE reveals excess continuum light in 12 lightly reddened Herbig Ae stars, as well as the routine presence of emission in a range of ionization stages sampling material from neutral atomic gas to transition region temperature plasma. The FUV excess light is correlated with the near IR colors of the stars which has previously been noted as a tracer of mass accretion rate. In several cases, sufficient data exist to demonstrate that FUV continuum variability is present and is correlated with changes in the FUV emission lines, particularly red-shifted material. Combining the FUV spectra with disk inclination data, we find that the red-shifted C III 1176 emission is seen for inclinations between 0 and 60 degrees with no dependence upon inclination in that range, as expected for funneled accretion scenarios. The FUV excess light and X-ray luminosity show the same evolutionary trend, dropping gradually over the 1st 10 Myr as long as the star is accreting material from the disk. Centrally-cleared A debris disk systems have X-ray luminosities which are at least 3 orders of magnitude fainter than the Herbig Ae stars, demonstrating that the X-ray emission is related to accretion and not to more conventional stellar activity. Plasma at transition region and chromospheric temperatures persists longer, at least in some systems. Recent magnetic field detections for 5 of the FUSE Herbig Ae stars and Beta Pictoris indicate that magnetic fields with typical field strengths of 50 to several hundred Gauss are present over the entire age range where the accretion signatures are seen. This study is based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. Data included in this study were obtained under FUSE GO Programs C126, D065, and the FUSE Legacy program E510. HST observations of HD 163296 and HD 104237 were obtained under HST

  16. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  17. CoRoT reveals a magnetic activity cycle in a Sun-like star.

    PubMed

    García, Rafael A; Mathur, Savita; Salabert, David; Ballot, Jérôme; Régulo, Clara; Metcalfe, Travis S; Baglin, Annie

    2010-08-27

    The 11-year activity cycle of the Sun is a consequence of a dynamo process occurring beneath its surface. We analyzed photometric data obtained by the CoRoT space mission, showing solarlike oscillations in the star HD49933, for signatures of stellar magnetic activity. Asteroseismic measurements of global changes in the oscillation frequencies and mode amplitudes reveal a modulation of at least 120 days, with the minimum frequency shift corresponding to maximum amplitude as in the Sun. These observations are evidence of a stellar magnetic activity cycle taking place beneath the surface of HD49933 and provide constraints for stellar dynamo models under conditions different from those of the Sun. PMID:20798310

  18. A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2013-06-20

    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.

  19. Time-resolved Spectroscopy of Active Binary Stars: Coronal Structure and Flares (Part II)

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    EUVE has provided the first stellar coronal spectra showing individual emission lines, thereby allowing coronal modelling at a level of sophistication previously unattainable. Long EUVE observations have shown that large-scale flaring is prevalent in the coronae of active binary stars. We propose to obtain EUVE DSS spectra and photometry for 4 active binaries, one of which has never been observed by EUVE (V478 Lyr) and three EUV-bright systems that merit reobservation (Sigma CrB, Sigma Gem, Xi UMa). We shall use these observations to derive high quality quiescent coronal spectra for measuring emission measure distributions and modelling, and to obtain new flare data. We shall try to coordinate these observations with ground-based radio observations and other spacecraft, if the scheduling allows. The Sigma CrB spectra may be coordinated with AXAF GTO observations. The proposed observations will significantly increase the available EUVE spectroscopy of active binaries.

  20. Hide and Seek: Radial-Velocity Searches for Planets around Active Stars

    NASA Astrophysics Data System (ADS)

    Haywood, Raphaëlle Dawn

    2015-11-01

    The detection of low-mass extra-solar planets through radial-velocity searches is currently limited by the intrinsic magnetic activity of the host stars. The correlated noise that arises from their natural radial-velocity variability can easily mimic or conceal the orbital signals of super-Earth and Earth-mass extra-solar planets. I developed an intuitive and robust data analysis framework in which the activity-induced variations are modelled with a Gaussian process that has the frequency structure of the photometric variations of the star, thus allowing me to determine precise and reliable planetary masses. I applied this technique to three recently discovered planetary systems: CoRoT-7, Kepler-78 and Kepler-10. I determined the masses of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be 4.73 ± 0.95 M⊕ and 13.56 ± 1.08 M⊕, respectively. The density of CoRoT-7b is 6.61 ± 1.72 g.cm-3, which is compatible with a rocky composition. I carried out Bayesian model selection to assess the nature of a previously identified signal at 9 days, and found that it is best interpreted as stellar activity. Despite the high levels of activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to be 1.76 ± 0.18 M⊕. With a density of 6.2(+1.8:-1.4) g.cm-3, it is also a rocky planet. I found the masses of Kepler-10b and Kepler-10c to be 3.31 ± 0.32 M⊕ and 16.25 ± 3.66 M⊕, respectively. Their densities, of 6.4(+1.1:-0.7) g.cm-3 and 8.1 ± 1.8 g.cm-3, imply that they are both of rocky composition - even the 2 Earth-radius planet Kepler-10c! In parallel, I deepened our understanding of the physical origin of stellar radial-velocity variability through the study of the Sun, which is the only star whose surface can be imaged at high resolution. I found that the full-disc magnetic flux is an excellent proxy for activity-induced radial-velocity variations; this result may become key to breaking the activity barrier in coming

  1. Chromospheric activity and lithium line variations in the spectra of the spotted star LQ Hydrae

    NASA Astrophysics Data System (ADS)

    Flores Soriano, M.; Strassmeier, K. G.; Weber, M.

    2015-03-01

    Context. Although the relationship between lithium abundance in stars and their magnetic activity is commonly accepted, it is still unclear how the different phenomena related to it can increase the amount of Li, reduce its depletion, or be a source of bias for the measurements. Aims: We study the rotational modulation of chromospheric and photospheric parameters of the young, active, single K2 dwarf LQ Hya and their connection with the variability of the Li i 6708 Å line. Methods: A total of 199 high-resolution STELLA spectra and quasi-simultaneous photometry were used to compute effective temperature, gravity, and chromospheric activity indicators such as Hα and Hβ emission, Balmer decrement, and chromospheric electron density, as a function of the rotational phase. The variation of the Li i 6708 Å line was characterized in terms of equivalent width, abundance, and of 6Li/7Li isotopic ratio in the form of line shifts. Results: Photospheric and chromospheric parameters show clear rotational modulation. Effective temperatures and continuum variations reveal a higher concentration of cool spots on the side of the star on which we also detect stronger chromospheric activity. Increased electron densities and the modulation of the He i D3 line suggest that the source of this activity can be a combination of plages and repeated low-intensity flares. The Li line and other temperature-sensitive lines are clearly enhanced by the spots located on the most active side of the star. Li abundances calculated taking into account the temperature variations simultaneously show, although with high dispersion, a small overabundance of this element that correlates well with the surface magnetic activity. In addition, the Li line center is more intensely redshifted than in the other hemisphere, which might be interpreted as a weak enrichment of 6Li. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Vienna

  2. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  3. HATS-2b: A transiting extrasolar planet orbiting a K-type star showing starspot activity

    NASA Astrophysics Data System (ADS)

    Mohler-Fischer, M.; Mancini, L.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Bayliss, D.; Jordán, A.; Csubry, Z.; Zhou, G.; Rabus, M.; Nikolov, N.; Brahm, R.; Espinoza, N.; Buchhave, L. A.; Béky, B.; Suc, V.; Csák, B.; Henning, T.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Schmidt, B.; Noyes, R. W.; Papp, I.; Lázár, J.; Sári, P.; Conroy, P.

    2013-10-01

    We report the discovery of HATS-2b, the second transiting extrasolar planet detected by the HATSouth survey. HATS-2b is moving on a circular orbit around a V = 13.6 mag, K-type dwarf star (GSC 6665-00236), at a separation of 0.0230 ± 0.0003 AU and with a period of 1.3541 days. The planetary parameters have been robustly determined using a simultaneous fit of the HATSouth, MPG/ESO 2.2 m/GROND, Faulkes Telescope South/Spectral transit photometry, and MPG/ESO 2.2 m/FEROS, Euler 1.2 m/CORALIE, AAT 3.9 m/CYCLOPS radial-velocity measurements. HATS-2b has a mass of 1.37 ± 0.16 MJ, a radius of 1.14 ± 0.03 RJ, and an equilibrium temperature of 1567 ± 30 K. The host star has a mass of 0.88 ± 0.04 M⊙ and a radius of 0.89 ± 0.02 R⊙, and it shows starspot activity. We characterized the stellar activity by analyzing two photometric follow-up transit light curves taken with the GROND instrument, both obtained simultaneously in four optical bands (covering the wavelength range of 3860-9520 Å). The two light curves contain anomalies compatible with starspots on the photosphere of the host star along the same transit chord. Tables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A55

  4. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  5. A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Endl, Michael; Cochran, William D.; Meschiari, Stefano; Robertson, Paul; MacQueen, Phillip J.; Brugamyer, Erik J.; Caldwell, Caroline; Hatzes, Artie P.; Ramírez, Ivan; Wittenmyer, Robert A.

    2016-04-01

    The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca ii SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M{sin}i\\gt 0.36{M}J at 12 years (corresponding to the orbital period of Jupiter) and M{sin}i\\gt 0.72{M}J at a period of 16.4 years (assuming a circular orbit for an outer companion).

  6. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    SciTech Connect

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun

    2015-07-15

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions of compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.

  7. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  8. Super-massive planets around late-type stars—the case of OGLE-2012-BLG-0406Lb

    SciTech Connect

    Poleski, Radosław; Gould, Andrew; Udalski, Andrzej; Szymański, Michał K.; Soszyński, Igor; Kubiak, Marcin; Pietrzyński, Grzegorz; Kozłowski, Szymon; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Jan; Wyrzykowski, Łukasz; Dong, Subo

    2014-02-10

    Super-Jupiter-mass planets should form only beyond the snow line of host stars. However, the core accretion theory of planetary formation does not predict super-Jupiters forming around low-mass hosts. We present a discovery of a 3.9 ± 1.2 M {sub Jup} mass planet orbiting the 0.59 ± 0.17 M {sub ☉} star using the gravitational microlensing method. During the event, the projected separation of the planet and the star is 3.9 ± 1.0 AU, i.e., the planet is significantly further from the host star than the snow line. This is the fourth such planet discovered using the microlensing technique and challenges the core accretion theory.

  9. Long and short timescale variability of magnetic activity on the BY Dra star BD+26 deg 730

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Golub, L.; Bopp, B.; Herbst, W.; Huovelin, J.

    1990-01-01

    BD+26 degree 730 is a very active K5V flare star with a 60 year starspot cycle. Since it is also nearly pole-on, it presents an unusual opportunity to study purely temporal evolution of magnetic activity. Contemporaneous International Ultraviolet Explorer (IUE), magnetic flux, polarimetric, and H alpha observations of the star taken over several rotational periods in 1988 are presented. When combined with older photometry, optical and IUE archive spectra, the data show a surprising lack of any activity variability on either short (few days) or long (years) timescales. The lack of variability is suggested to be due to a nearly saturated level of magnetic activity on the star, as indicated by its large magnetic filling factor.

  10. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  11. Thermally activated post-glitch response of the neutron star inner crust and core. I. Theory

    SciTech Connect

    Link, Bennett

    2014-07-10

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Based on the idea of Alpar et al., I develop a description of the coupling between the solid and liquid components of a neutron star through thermally activated vortex slippage, and calculate the response to a spin glitch. The treatment begins with a derivation of the vortex velocity from the vorticity equations of motion. The activation energy for vortex slippage is obtained from a detailed study of the mechanics and energetics of vortex motion. I show that the 'linear creep' regime introduced by Alpar et al. and invoked in fits to post-glitch response is not realized for physically reasonable parameters, a conclusion that strongly constrains the physics of a post-glitch response through thermal activation. Moreover, a regime of 'superweak pinning', crucial to the theory of Alpar et al. and its extensions, is probably precluded by thermal fluctuations. The theory given here has a robust conclusion that can be tested by observations: for a glitch in the spin rate of magnitude Δν, pinning introduces a delay in the post-glitch response time. The delay time is t{sub d} = 7(t{sub sd}/10{sup 4} yr)((Δν/ν)/10{sup –6}) d, where t{sub sd} is the spin-down age; t{sub d} is typically weeks for the Vela pulsar and months in older pulsars, and is independent of the details of vortex pinning. Post-glitch response through thermal activation cannot occur more quickly than this timescale. Quicker components of post-glitch response, as have been observed in some pulsars, notably, the Vela pulsar, cannot be due to thermally activated vortex motion but must represent a different process, such as drag on vortices in regions where there is no pinning. I also derive the mutual friction force for a pinned superfluid at finite temperature for use in other studies of neutron star hydrodynamics.

  12. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  13. A NEW MULTI-BAND RADIAL VELOCITY TECHNIQUE FOR DETECTING EXOPLANETS AROUND ACTIVE STARS

    SciTech Connect

    Ma Bo; Ge Jian E-mail: jge@astrto.ufl.edu

    2012-05-10

    The radial velocity (RV) technique is one of the most efficient ways of detecting exoplanets. However, large RV jitters induced by starspots on an active star can inhibit detection of any exoplanet present or even lead to a false positive detection. This paper presents a new multi-band RV technique capable of substantially reducing starspot-induced RV jitters from stellar RV measurements to allow efficient and accurate extraction of RV signals caused by exoplanets. It takes full advantage of the correlation of RV jitters at different spectral bands and the independence of exoplanet signals at the corresponding bands. Simulations with a single-spot model and a multi-spot model have been conducted to investigate the RV jitter reduction capability of this method. The results show that this method can reduce the RV jitter amplitude by at least an order of magnitude, allowing detection of weaker exoplanet signals without significantly increasing RV observation time and cadence. This method can greatly reduce the observation time required to detect Earth-like planets around solar type stars with {approx}0.1 m s{sup -1} long term Doppler precision if spot-induced jitter is the dominant astrophysical noise source for RV measurements. This method can work efficiently for RV jitter removal if: (1) all the spots on a target star have approximately the same temperature during RV observations; (2) the RV jitter amplitude changes with wavelength, i.e., the RV jitter amplitude ratio, {alpha}, between two different spectral bands is not close to one; (3) the spot-induced RV jitter dominates the RV measurement error.

  14. The Sedentary Time and Activity Reporting Questionnaire (STAR-Q): reliability and validity against doubly labeled water and 7-day activity diaries.

    PubMed

    Csizmadi, Ilona; Neilson, Heather K; Kopciuk, Karen A; Khandwala, Farah; Liu, Andrew; Friedenreich, Christine M; Yasui, Yutaka; Rabasa-Lhoret, Rémi; Bryant, Heather E; Lau, David C W; Robson, Paula J

    2014-08-15

    We determined measurement properties of the Sedentary Time and Activity Reporting Questionnaire (STAR-Q), which was designed to estimate past-month activity energy expenditure (AEE). STAR-Q validity and reliability were assessed in 102 adults in Alberta, Canada (2009-2011), who completed 14-day doubly labeled water (DLW) protocols, 7-day activity diaries on day 15, and the STAR-Q on day 14 and again at 3 and 6 months. Three-month reliability was substantial for total energy expenditure (TEE) and AEE (intraclass correlation coefficients of 0.84 and 0.73, respectively), while 6-month reliability was moderate. STAR-Q-derived TEE and AEE were moderately correlated with DLW estimates (Spearman's ρs of 0.53 and 0.40, respectively; P < 0.001), and on average, the STAR-Q overestimated TEE and AEE (median differences were 367 kcal/day and 293 kcal/day, respectively). Body mass index-, age-, sex-, and season-adjusted concordance correlation coefficients (CCCs) were 0.24 (95% confidence interval (CI): 0.07, 0.36) and 0.21 (95% CI: 0.11, 0.32) for STAR-Q-derived versus DLW-derived TEE and AEE, respectively. Agreement between the diaries and STAR-Q (metabolic equivalent-hours/day) was strongest for occupational sedentary time (adjusted CCC = 0.76, 95% CI: 0.64, 0.85) and overall strenuous activity (adjusted CCC = 0.64, 95% CI: 0.49, 0.76). The STAR-Q demonstrated substantial validity for estimating occupational sedentary time and strenuous activity and fair validity for ranking individuals by AEE.

  15. VizieR Online Data Catalog: Stellar activity and kinematics of FGK stars (Murgas+, 2013)

    NASA Astrophysics Data System (ADS)

    Murgas, F.; Jenkins, J. S.; Rojo, P.; Jones, H. R. A.; Pinfield, D. J.

    2013-02-01

    We present a compilation of stellar activity catalogs combined with galactic velocity information of 2529 F, G, and K stars. The stellar activity catalogs use in this work are: Jenkins et al. 2011 (Cat. J/A+A/531/A8); Gray et al. 2003 (Cat. J/AJ/126/2048), 2006 (Cat. J/AJ/132/161); Henry et al 1996 (Cat. J/A+A/111/439); Wright et al. 2004 (Cat. J/ApJS/152/261); Duncan et al. (1991ApJS...76..383D, Cat. III/159). The galactic velocities are taken from the Jenkins et al. 2011 (Cat. J/A+A/531/A8) and the Geneva-Copenhaguen Survey (GCS) Nordstrom et al. (2004A&A...418..989N, Cat. V/117). (1 data file).

  16. Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald

    1994-01-01

    HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.

  17. Photospheric Activity in Selected Be STARS: lambda Eri and gamma Cas

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1994-01-01

    Recent observations of rapid variations in optical He I lines, X-rays, and FUV wavelengths in the prototypical classical Be stars lambda Eri and star gamma Cas hint that the violent processes occur on the surfaces of these stars almost all the time. We suggest that of these phenomena show greater similarities with magnetic flaring than any other process through to occur on stars.

  18. DETECTION OF A MOLECULAR DISK ORBITING THE NEARBY, 'OLD', CLASSICAL T TAURI STAR MP MUSCAE

    SciTech Connect

    Kastner, Joel H.; Sacco, G. G.; Hily-Blant, Pierry; Forveille, Thierry; Zuckerman, B.

    2010-11-10

    We have used the Atacama Pathfinder Experiment 12 m telescope to detect circumstellar CO emission from MP Muscae (MP Mus; K1 IVe), a nearby (D {approx} 100 pc), actively accreting, {approx}7 Myr old pre-main-sequence (pre-MS) star. The CO emission line profile measured for MP Mus is indicative of an orbiting disk with radius {approx}120 AU, assuming that the central star mass is 1.2 M {sub sun} and the disk inclination is i {approx} 30{sup 0}. The inferred disk molecular gas mass is {approx}3 M {sub +}. MP Mus thereby joins TW Hya and V4046 Sgr as the only late-type (low-mass), pre-MS star systems within {approx}100 pc of Earth that are known to retain orbiting, molecular disks. We also report the nondetection (with the Institut de Radio Astronomie Millimetrique 30 m telescope) of CO emission from another 10 nearby (D {approx_lt} 100 pc), dusty, young (age {approx}10-100 Myr) field stars of spectral type A-G. We discuss the implications of these results for the timescales for stellar and Jovian planet accretion from, and dissipation of, molecular disks around young stars.

  19. MHD seismology as a tool to diagnose the coronae of X-ray active sun-like flaring stars

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Lalitha, Sairam

    It is now well accepted that the detection of impulsively generated multiple MHD modes are potentially used in diagnosing the local plasma conditions of the solar corona. Analogously, such analyses can also be significantly used in diagnosing the coronae of X-ray active Sun-like stars. In the present paper, we briefly review the detection of MHD modes in coronae of some X-ray active Sun-like stars, e.g. Proxima Centauri, ξ-Boo etc using XMM-Newton observations, and discuss the implications in deriving physical information about their localized magnetic atmosphere. We conclude that the refinement in the MHD seismology of solar corona is also providing the best analogy to develop the stellar seismology of magnetically active and flaring Sun-like stars to deduce the local physical conditions of their coronae.

  20. Rotational modulation of the chromospheric activity in the young solar-type star, X-1 Orionis

    NASA Technical Reports Server (NTRS)

    Boesgaard, A. M.; Simon, T.

    1982-01-01

    The IUE satellite was used to observe one of the youngest G stars (GO V) for which Duncan (1981) derives an age of 6 x 10 to the 8th power years from the Li abundance. Rotational modulation was looked for in the emission flux in the chromospheric and transition region lines of this star. Variations in the Ca 11 K-lines profile were studied with the CHF telescope at Mauna Kea. Results show that the same modulation of the emission flux of Ca 11 due to stellar rotation is present in the transition region feature of C IV and probably of He II. For other UV lines the modulation is not apparent, due to a more complex surface distribution of the active areas or supergranulation network, or a shorter lifetime of the conditions which give rise to these features, or to the uncertainities in the measured line strengths. The Mg II emission flux is constant to within + or - 3.4% implying a rather uniform distribution of Mg II emission areas. The Ca II emission not only shows a measurable variation in intensity but also variations in detailed line profile shape when observed at high resolution.

  1. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    PubMed

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

  2. Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    NASA Astrophysics Data System (ADS)

    Buccino, A. P.; Mauas, P. J. D.

    2009-02-01

    Context: The IUE database provides several UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims: Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22 468 (V711 Tau, HR 1099, K1IV+G5V), HD 21 242 (UX Ari, K0IV+G5V), and HD 224 085 (II Peg, K2IV). Methods: We first obtained the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we used the Lomb-Scargle periodogram to analyse the mean annual index < S> and the amplitude of the rotational modulation of the index S. Results: For HD 22 468 (V711 Tau, HR 1099), we find a possible chromospheric cycle with a period of ~18 years and a shorter cycle with a period of ~3 years, which could be associated to a chromospheric “flip-flop” cycle. The data of HD 224 085 (II Peg) also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~7 years for HD 21 242 (UX Ari).

  3. Far Ultraviolet Spectroscopic Explorer Observations of the Active Cool Star AB Doradus

    NASA Astrophysics Data System (ADS)

    Ake, T. B.; Dupree, A. K.; Young, P. R.; Linsky, J. L.; Malina, R. F.; Griffiths, N. W.; Siegmund, O. H. W.; Woodgate, B. E.

    2000-07-01

    Far-ultraviolet spectra were obtained of the active cool star AB Doradus (HD 36705) during the calibration and checkout period of the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Observations in this early phase of the mission were taken at a resolving power of 12,000-15,000 (~20-25 km s-1) and covered the spectral range 905-1187 Å. The integrated spectrum exhibits strong, rotationally broadened stellar emission from C III (λλ977, 1175) and O VI (λλ1032, 1037) and many weaker lines. Strong emission lines of C III and O VI exhibit broad wings. The C III λ977 profile shows blueshifted absorption at ~30 km s-1, and C II λ1036 absorption appears superposed on emission in the wing of O VI λ1037. Rotational modulation of C III and O VI is present, in harmony with its photometric variability. Flares were detected in the brightest lines, and subexposures were analyzed to examine flux and profile variations. Downflows that extend to 600 km s-1 during a flare are found in the O VI profiles. These early observations demonstrate that FUSE will be an exceptional instrument for studying chromospheres in cool stars.

  4. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    PubMed

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-25

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events. PMID:21866154

  5. LONG-TERM CHROMOSPHERIC ACTIVITY IN SOUTHERN M DWARFS: Gl 229 A AND Gl 752 A

    SciTech Connect

    Buccino, Andrea P.; Luoni, MarIa Luisa; Abrevaya, Ximena C.; Mauas, Pablo J. D.; DIaz, Rodrigo F.

    2011-02-15

    Several late-type stars present activity cycles similar to that of the Sun. However, these cycles have been mostly studied in F to K stars. Due to their small intrinsic brightness, M dwarfs are not usually the targets of long-term observational studies of stellar activity, and their long-term variability is generally not known. In this work, we study the long-term activity of two M dwarf stars: Gl 229 A (M1/2) and Gl 752 A (M2.5). We employ medium-resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO between 2000 and 2010, and photometric observations obtained from the ASAS database. We analyze Ca II K line-core fluxes and the mean V magnitude with the Lomb-Scargle periodogram, and we obtain possible activity cycles of {approx}4 yr for Gl 229 A and {approx}7 yr for Gl 752 A.

  6. How similar is the stellar structure of low-mass late-type galaxies to that of early-type dwarfs?

    NASA Astrophysics Data System (ADS)

    Janz, J.; Laurikainen, E.; Laine, J.; Salo, H.; Lisker, T.

    2016-09-01

    We analyse structural decompositions of 500 late-type galaxies (Hubble T-type ≥6) from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Salo et al.), spanning stellar mass range of about 107 to a few times 1010 M⊙. Their decomposition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of 2 larger than in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low- and high-density environmental bins, it is noticeable that both the inner and outer components of late types in the high local density galaxies are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late- and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.

  7. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  8. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  9. The Development of Chromospheres & Coronae in the T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Imhoff, Catherine L.

    The T Tauri stars represent a normal stage in the pre-main sequence evolution of solar-mass stars. Ultraviolet observations have revealed the presence of strong Mg II h and k lines, ultraviolet excesses, and far-ultraviolet emission lines indicative of dense, active chromospheres (Appenzeller and Wolf 1979, Appenzeller et al. 1980, Brown et al. 1981, Gahm et al. 1979, Giampapa et al. 1981, Gondhalekar et al. 1979, Imhoff and Giampapa 1980, 1981). The surface fluxes of the transition region lines equal and exceed those of any other late-type star (Imhoff and Giampapa 1980, 1981). However only about one third of the T Tauri stars have been detected by Einstein (Feigelson and DeCampli 1981, Gahm 1980, Walter and Kuhi 1981). The low X-ray flux, relative to the far-ultraviolet lines, in some of the stars may be due to absorption of the X-rays in dense gas shells (Gahm 1980, Walter and Kuhi 1981). On the other hand, a relative weakening of the higher temperature far-ultraviolet emission lines may signal that the T Tauri atmosphere does not reach coronal temperatures in those stars, perhaps due to higher chromospheric densities or to the effects of mass loss (Imhoff and Giampapa 1981, 1982). If there are indeed T Tauri stars with and without coronae, then we may be witnessing the birth of the corona sometime during the T Tauri stage. It would be of great interest to study the development of the chromosphere and corona during the evolution of a protostar and to detail the processes that affect its evolution. We propose to study this evolution through the T Tauri stage with IUE. We would like to observe a selection of X-ray bright and faint T Tauri stars. Concurrently we will perform ground-based scanner observations to obtain Ca II fluxes for these variable stars. We have chosen the targetted stars carefully on the basis of known surface temperatures, luminosities, extinction, distance, X-ray results, and vsini's. we wish to derive information on the density and

  10. FIRE SPECTROSCOPY OF FIVE LATE-TYPE T DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Burgasser, Adam J.; Cushing, Michael C.; Mainzer, A.; Bauer, James M.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Looper, Dagny L.; Tinney, Christopher; Simcoe, Robert A.; Bochanski, John J.; Skrutskie, Michael F.; Thompson, Maggie A.; Wright, Edward L.

    2011-07-10

    We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette reveal strong H{sub 2}O and CH{sub 4} absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon and Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J - K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.

  11. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-Age, Late-Type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  12. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-age, Late-type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  13. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  14. Chromospheric activity in Delta Scuti stars - The suspected variable Tau Cygni

    NASA Technical Reports Server (NTRS)

    Fracassini, M.; Pasinetti Fracassini, L. E.; Mariani, A.; Pastori, L.; Teays, T. J.

    1991-01-01

    High-resolution IUE spectra of the suspected variable Tau Cyg were obtained to search for a possible variability of the Mg II h, k double-peaked emission. The observations, spanning an interval of about 6.3 h, have shown flux excursions within or just near 15 percent, a value suggested as the detection limit of actual variations with IUE spectra. A variability, difficult to explain, could be present in the ratios Fk2v/Fk2r. The emission fluxes seem to be higher than those of the Delta Scuti variables Rho Pup and Beta Cas. This comparison could give some insights on the possible role of the convection on the pulsational and chromospheric activities of Tau Cyg. A positive correlation between the total emission fluxes and the rotational velocities of these stars was found.

  15. Thermal infrared imaging of GGD27-IRS. The active pre-main sequence star revealed

    NASA Astrophysics Data System (ADS)

    Aspin, C.; Puxley, P. J.; Blanco, P. R.; Pina, R. K.; Pickup, D. A.; Paterson, M. J.; Sylvester, J.; Laird, D. C.; Bridger, A.; Daly, P. N.; Griffin, J. L.

    1994-12-01

    We present near-IR (NIR) 2.2-4.7 micrometer imaging of the core region of the pre-main sequence bipolar CO outflow source GGD27-IRS. Indirect evidence from earlier imaging polarimetry and long-slit spectroscopy suggested that the true young active star in the region, GGD27-ILL, is heavily embedded and completely obscured even at 2 micrometers. Our new 4.7 micrometer images directly detect this source for the first time locating it at 2.0 sec west, 1.3 sec south of the bright NIR source IRS2. This position is 0.2 sec from the position derived from our earlier NIR polarization maps. New mid-IR images of the core region show three point-like sources which are identified as GGD27-ILL, IRS7 and IRS8. We discuss the morphological composition of the core region in light of our discovery.

  16. A Search for Hard X-ray Emission from Active Stars Using CGRO/BATSE

    NASA Astrophysics Data System (ADS)

    White, S. M.; Harmon, B. A.; Lim, J.; Kundu, M. R.

    We report the results of a search for > 20 keV photons from active stars using CGRO/BATSE Earth-occultation observations. Twelve of the "usual suspects" together with 12 "placebo" locations have been analyzed using the BATSE software for occultation analysis developed at NASA/MSFC. There are four detections at the nominal 5sigma level, and eight at the 3sigma level. However the strongest detection (that of AB Dor) shows clear evidence for contamination from the nearby strong source LMC X-4. 18 of the 24 fields yield positive fluxes, indicating a clear bias in the results, and possibly indicating the presence of weak background hard X-ray sources detectable by BATSE in long-term studies.

  17. The photometric variability of the chromospherically active binary star HD 80715

    NASA Technical Reports Server (NTRS)

    Strassmeier, Klaus G.; Hooten, James T.; Hall, Douglas S.; Fekel, Francis C.

    1989-01-01

    Differential UBVRI photometry of the double-lined BY Dra system HD 80715 (K3 V + K3 V) obtained in December 1987 is presented. The star is found to be a variable with a full amplitude of 0.06 mag in V and a period similar or equal to the orbital period of 3.804 days. The mechanism of the variability is interpreted as rotational modulation due to dark starspots. In an attempt to detect chromospheric activity, high-resolution CCD spectra were obtained at Ca II H and K and at Fe I 6430 A and Ca I 6439 A, the photospheric lines normally used for Doppler imaging. HD 80715 shows double H and K emission features at a constant flux level for each component.

  18. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  19. A Dust Shell around the Early Type Wolf-Rayet Star WR:19

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; van der Hucht, K. A.; The, P. S.; Bouchet, P.

    1990-11-01

    Infrared photometry of the WC4-type Wolf-Rayet star WR 19 (LS 3) in 1988-90 shows evidence for an expanding dust shell in its wind, similar to those observed from late-type WR stars like WR 48a (WC8), WR 140 (WC7 + 04) and WR 137 (WC 7+). This demonstrates that dust formation by Wolf-Rayet stars is not restricted to later WC subtypes and is more common than hitherto supposed.

  20. The 2006/2007 photometric activity of three chromospherically active stars: V2075 Cyg, FG UMa and BM CVn

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Soydugan, E.; Bakış, H.; Doğru, D.; Doğru, S. S.; Tüysüz, M.; Kaçar, Y.; Dönmez, A.; Soydugan, F.

    2009-08-01

    We present new multiband CCD photometric observations of three chromospherically active stars with long periods (V2075 Cyg, FG UMa and BM CVn). The observations were made at the Çanakkale Onsekiz Mart University Observatory in 2006 and 2007. We analyzed BVRI (Bessell) CCD observations of these three RS CVn-type SB1 binaries with the following three steps: (i) Photometric rotation periods were obtained by analyzing their light variations with a differential corrections method and a Fourier transform technique. (ii) Light variations, observed over three or more consecutive orbital cycles, were investigated by using dark (cool) spot models with the program SPOT. (iii) Surface differential rotation coefficients for the primary components of these binaries were derived using our own photometric periods together with orbital periods taken from the literature.

  1. A SINFONI view of the nuclear activity and circumnuclear star formation in NGC 4303

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Colina, L.; Storchi-Bergmann, T.; Piqueras López, J.; Arribas, S.; Riffel, R.; Pastoriza, M.; Sales, Dinalva A.; Dametto, N. Z.; Labiano, A.; Davies, R. I.

    2016-10-01

    We present new maps of emission-line flux distributions and kinematics in both ionized (traced by H I and [Fe II] lines) and molecular (H2) gas of the inner 0.7 × 0.7 kpc2 of the galaxy NGC 4303, with a spatial resolution 40-80 pc and velocity resolution 90-150 km s- 1 obtained from near-IR integral field spectroscopy using the Very Large Telescope instrument SINFONI. The most prominent feature is a 200-250 pc ring of circumnuclear star-forming regions. The emission from ionized and molecular gas shows distinct flux distributions: while the strongest H I and [Fe II] emission comes from regions in the west side of the ring (ages ˜ 4 Myr), the H2 emission is strongest at the nucleus and in the east side of the ring (ages > 10 Myr). We find that regions of enhanced hot H2 emission are anti-correlated with those of enhanced [Fe II] and H I emission, which can be attributed to post-starburst regions that do not have ionizing photons anymore but still are hot enough (≈2000 K) to excite the H2 molecule. The line ratios are consistent with the presence of an active galactic nucleus at the nucleus. The youngest regions have stellar masses in the range 0.3-1.5 × 105 M⊙ and ionized and hot molecular gas masses of ˜0.25-1.2 × 104 M⊙ and ˜2.5-5 M⊙, respectively. The stellar and gas velocity fields show a rotation pattern, with the gas presenting larger velocity amplitudes than the stars, with a deviation observed for the H2 along the nuclear bar, where increased velocity dispersion is also observed, possibly associated with non-circular motions along the bar. The stars in the ring show smaller velocity dispersion than the surroundings, which can be attributed to a cooler dynamics due to their recent formation from cool gas.

  2. "Things to Share and Do" from the Daybreak Star Indian Reader: Classroom Activities for the Middle Grades.

    ERIC Educational Resources Information Center

    Wolfe, Karleen

    Designed for classroom use, the booklet is a collection of the easiest-to-use classroom ideas taken from past issues of the "Daybreak Star Indian Reader," published monthly throughout the school year by the United Indians of All Tribes Foundation. The selection of articles and activities focus primarily on Plains and Northwest Indian cultures,…

  3. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.

  4. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  5. Determining the Covering Factor of Compton-thick Active Galactic Nuclei with NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Stern, D.; Arévalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fuerst, F.; Gandhi, P.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S.; Puccetti, S.; Rivers, E.; Vasudevan, R.; Walton, D. J.; Zhang, W. W.

    2015-05-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (NH > 1.5 × 1024 cm-2) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (>10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman & Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with NH measured from 1024 to 1026 cm-2, and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, fc, is a strongly decreasing function of the intrinsic 2-10 keV luminosity, LX, where fc = (-0.41 ± 0.13)log10(LX/erg s-1)+18.31 ± 5.33, across more than two orders of magnitude in LX (1041.5-1044 erg s-1). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with LX > 1042.5 erg s-1.

  6. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Santerne, A.; Almenara, J.-M.; Anderson, D. R.; Collier-Cameron, A.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Udry, S.; Van Grootel, V.; West, R. G.

    2016-06-01

    We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body.

  7. Star quality.

    PubMed

    Dent, Emma

    2007-09-20

    Around 150 wards are participating in the voluntary Star Wards scheme to provide mental health inpatients with more activities with therapeutic value. Suggested activities range from a library, to horse riding Internet access and comedy. Service users are particularly keen to have more exercise, which can be a challenge in inpatient settings. PMID:17970387

  8. Stellar activity and coronal heating: an overview of recent results.

    PubMed

    Testa, Paola; Saar, Steven H; Drake, Jeremy J

    2015-05-28

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  9. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  10. Stellar activity and coronal heating: an overview of recent results.

    PubMed

    Testa, Paola; Saar, Steven H; Drake, Jeremy J

    2015-05-28

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars.

  11. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM)

    PubMed Central

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-01-01

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3′ untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF–myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  12. IUE observations of rapidly rotating low-mass stars in young clusters - The relation between chromospheric activity and rotation

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1990-01-01

    If the rapid spindown of low-mass stars immediately following their arrival on the ZAMS results from magnetic braking by coronal winds, an equally sharp decline in their chromospheric emission may be expected. To search for evidence of this effect, the IUE spacecraft was used to observe the chromospheric Mg II emission lines of G-M dwarfs in the nearby IC 2391, Alpha Persei, Pleiades, and Hyades clusters. Similar observations were made of a group of X-ray-selected 'naked' T Tauri stars in Taurus-Auriga. The existence of a decline in activity cannot be confirmed from the resulting data. However, the strength of the chromospheric emission in the Mg II lines of the cluster stars is found to be correlated with rotation rate, being strongest for the stars with the shortest rotation periods and weakest for those with the longest periods. This provides indirect support for such an evolutionary change in activity. Chromospheric activity may thus be only an implicit function of age.

  13. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    PubMed

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells. PMID:27601530

  14. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM).

    PubMed

    Gosselin, Pauline; Rando, Gianpaolo; Fleury-Olela, Fabienne; Schibler, Ueli

    2016-08-15

    The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3' untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF-myocardin-related TF (MRTF) activity bouts in proliferating cells.

  15. BVRI CCD-Photometry of comparison stars in the fields of galaxies with active nuclei. V

    NASA Astrophysics Data System (ADS)

    Doroshenko, V. T.; Sergeev, S. G.; Efimov, Yu. S.; Borman, G. A.; Okhmat, D. N.; Pulatova, N. G.; Nazarov, S. V.

    2013-09-01

    Observations of 79 comparison stars in the fields of seven Seyfert galaxies (Akn 79, Mrk 374, Mrk 382, Mrk 478, Mrk 493, Mrk 618, and Mrk 1513) and a single quasar (CTA 102) are reported. The observations were made with CCD photometry in the B, V, R, and I bands. The stellar magnitudes of these stars in the V band range from 12m.9 to 18m.4. The typical photometric uncertainties for magnitude 15 stars are 0m.008, 0m.011, 0m.009 and 0m.015 in the BVRI bands, respectively. For most of these stars the B, V, R, and I magnitudes have not been known previously. A variable star with brightness variations over a period of P = 0.1705 d was found in the field of the galaxy Mrk 478 and the sampled stars in the field of the galaxy Mrk 1513 include a variable with a period of P = 0.2211 d. These stars may be type W UMa contact binary systems with orbital periods of 0.341 and 0.4422 d, respectively. Finding charts for the comparison stars are included. These results can be used for differential photometry of the AGNs.

  16. FUV Spectra of Evolved Late-K and M Stars: Mass Loss Revisited and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2002-01-01

    This is the final report for the FUSE Cycle 1 program A100: FUV Spectra of Evolved Late-K and M Stars: Mass Loss revisited and Stellar Activity. Targets alpha TrA (K3 II) and gamma Cru (M3 III) were originally assigned 25 ksec each, to be observed in the medium aperture. Once the in-flight performance and telescope alignment problems were known, the observations were reprogrammed to optimized the scientific return of the program. Alpha TrA was scheduled for 25 ksec observations in both the medium and large apertures. The principle aim of this program was to measure the stellar FUV line and continuum emission, in order to estimate the photoionization radiation field and to determine the level of stellar activity through the fluxes in the collisionally excited high temperature diagnostics: C III 977Angstroms and O VI 1032,1038Angstrom doublet. The medium aperture observations were obtained successfully while the large aperture observations were thought by Johns Hopkins University (JHU)to be lost to satellite problems. There was insufficient signal-to- noise in the medium aperture short wavelength Sic channels to do quantitative science.

  17. Reliable Radii for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Mann, Andrew; Feiden, Gregory A.; Gaidos, Eric

    2015-01-01

    Precise and accurate parameters for late-type (late K and M) dwarf stars are critical for characterizing their planets. A deluge of planets discovered by Kepler has driven the need for even more precise stellar radii. We present our efforts to better constrain the luminosity-radius and Teff-radius relations for late-type (K5-M6) stars, taking advantage of improved techniques to calculate bolometric fluxes and [Fe/H] for M dwarfs. We determine effective temperatures for these stars by comparing observed spectra to atmospheric models, and confirm the accuracy of these temperatures using stars with temperatures determined from long-baseline optical interferometry. Using the Stefan-Boltzmann law we can empirically determine radii for these stars to better than 5%. We find the Teff-radius relation depends strongly on [Fe/H], which was missed in earlier studies that used smaller samples or less precise methods. We expect our empirical relations to be increasingly useful with the arrival of Gaia parallaxes in the near future.

  18. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  19. Evolution of the chromospheric and coronal activity of intermediate mass stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    1986-01-01

    Recent ultraviolet and X-ray observations pertaining to the outer atmospheric structure of intermediate mass (4-6 solar masses) stars and the evolution of their structure are presented. A distance-limited (d equal to or less than 200 pc) IUE ultraviolet survey of early K bright giants shows that C IV emission commonly is present. These stars are almost evenly split between stars showing hybrid-chromospheric and coronal outer atmospheric structures. Exosat observations have been obtained for three hybrid stars, of which only Alpha TrA, the nearest, is detected. The temperature of the emitting plasma is likely to be about 10 to the 6th K. Observtions of six K II stars made with the Einstein satellite show no detections. The general conclusion from the available X-ray data is that early K bright giants are not strong X-ray sources.

  20. Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-07-01

    Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high-resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (ɛ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields M~F1.15+/-0.20X. The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars suggests that mass loss decreases with time. We infer a power-law relation of M~t-2.00+/-0.52. This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  1. A study of star formation in the disks of Sa galaxies

    SciTech Connect

    Caldwell, N.; Kennicutt, R.; Phillips, A.C.; Schommer, R.A. Steward Observatory, Tucson, AZ Washington Univ., Seattle Rutgers Univ., Piscataway, NJ )

    1991-04-01

    This paper compares the luminosity functions of the H II regions in several Sa galaxies with those of later-type galaxies. Broad UV measurements confirm expectations that the knots associated with the regions are very blue; the converse is also true. The H II region luminosity functions are very steep. The total H-alpha luminosities for the galaxies are computed and used to derive the current star-formation rates. It is found that, in contrast to the late-type galaxies, the current star-formation rates in Sa disks are less than one-tenth of the average rate over the last 15 Gyr. The formal depletion times of gas through star formation are longer than a Hubble time. If the star formation in late-type galaxies takes on the character of that currently seen in the Sas, star formation in such galaxies could continue for much longer than the usual estimate of 5 Gyr. 35 refs.

  2. VLTI and KI Interferometric Observations of Massive Evolved Stars and Their Dusty Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Wallace, Debra J.; Danchi, W. C.; Rajagopal, J.; Chesneau, O.; Lopez, B.; Menut, J.; Monnier, J.; Tuthill, P.; Ireland, M.; Barry, R.; Richardson, L. J.

    2007-12-01

    Recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet stars strongly support the theory that dust formation in these objects is a result of colliding winds in binary systems. To explore and quantify this possible explanation, we have conducted a high-resolution interferometric survey of late-type massive stars utilizing the VLTI, KI, IOTA, and FGS1r interferometers. We present here the motivation for this study. We also present the first results from the MIDI instrument on the VLTI, and the KI and IOTA observations. Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. Our IOTA and KI interferometric observations resolve the WR star WR 137 into a dust-producing binary system.

  3. POLYCYCLIC AROMATIC HYDROCARBONS IN GALAXIES AT z approx 0.1: THE EFFECT OF STAR FORMATION AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, S.; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2009-11-01

    We present the analysis of the polycyclic aromatic hydrocarbon (PAH) spectra of a sample of 92 typical star-forming galaxies at 0.03 < z < 0.2 observed with the Spitzer intensified Reticon spectrograph (IRS). We compare the relative strengths of PAH emission features with Sloan Digital Sky Survey optical diagnostics to probe the relationship between PAH grain properties and star formation and active galactic nuclei (AGNs) activity. Short-to-long wavelength PAH ratios, and in particular the 7.7 mum-to-11.3 mum feature ratio, are strongly correlated with the star formation diagnostics D{sub n} (4000) and Halpha equivalent width, increasing with younger stellar populations. This ratio also shows a significant difference between active and non-active galaxies, with the active galaxies exhibiting weaker 7.7 mum emission. A hard radiation field as measured by [O{sub III}]/Hbeta and [Ne{sub III}]{sub 15.6m}u{sub m}/[Ne{sub II}]{sub 12.8m}u{sub m} effects PAH ratios differently depending on whether this field results from starburst activity or an AGN. Our results are consistent with a picture in which larger PAH molecules grow more efficiently in richer media and in which smaller PAH molecules are preferentially destroyed by the AGN.

  4. Physical properties of the WR stars in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.

    The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.

  5. The Palomar/MSU Nearby-Star Spectroscopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics

    NASA Astrophysics Data System (ADS)

    Reid, I. Neill; Hawley, Suzanne L.; Gizis, John E.

    1995-10-01

    The Third Catalogue of Nearby Stars (Gliese & Jahreiss Preliminary Version of the third Catalogue of Nearby Stars, 1991) includes over 1850 stars which lie north of δ 30° and are either identified as spectral type M, or are unclassified but with an absolute visual magnitude estimate MV>+8.O. Although there is no uniformity in selection criteria, and many of the stars lack basic data (radial velocities, spectral types, accurate photometry), the observational properties of these stars underlie most estimates of the fundamental characteristics of the Galactic Disk. We have obtained optical spectroscopy of 1746 of the 1876 stars-the remaining 130 are binary companions of brighter stars and inaccessible to our observations. These spectra allow us, first, to exclude 61 stars as either degenerates or as misclassified earlier-type (B - K) stars lying beyond the 25 pc limit; to establish radial velocities accurate to ±10 km s-1 for all stars confirmed as late-type dwarfs; to determine spectral types and absolute magnitudes from the TiO bandstrength, allowing more accurate distance estimates for stars with inaccurate (or no) trigonometric parallax measurements; and to identify stars with Ha emission (chromospherically active stars) and with strong CaH absorption (perhaps including some metal-poor disk subdwarfs). We have determined the nearby-star luminosity function from complete samples derived by applying both the distance limits defined by Wielen (1974) and by using limits derived from our own analysis. In both cases, we find good agreement with Wielen's results to MV ˜+11, but lower densities at the maximum (MV˜+12). The latter analysis results in a luminosity function, ΦCNS, which closely matches photometric parallax analyses for MV<+11 and MV>+14 -- we do not recover the apparent excess of low-luminosity stars inferred from analysis of the 5 pc sample. However, ΦCNS does lie below Φphot at the peak (MV˜12), and we suggest that this offset is caused by the

  6. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from the BIMA Survey of Nearby Galaxies, the Sloan Digital Sky Survey and the Spectrographic Areal Unit for Research on Optical Nebulae. Our analysis illustrates that NGC 1068 is a gravitationally unstable `monster'. Its starburst disc is subject to unusually powerful instabilities. Several processes, including feedback from the active galactic nucleus and starburst activity, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability `wins' because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  7. Tomography of Accretion Flows in Binary Stars and Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Livio, Mario

    2001-01-01

    Under this project, a variety of accretion problems have been studied, with two in particular. In the first, astrophysical jets are observed in many objects ranging from young stars to Active Galactic Nuclei. A major unsolved problem is how do these jets originate from accretion disks. In a series of works, I have examined the launching of outflows from magnetized disks, the extraction of energy from black holes, and the formation of jets in systems like Cataclysmic Variables and supermassive accreting black holes. The results of these works were published in a number of papers. In the second, I examined the potential role of vortices in accretion disks around Young Stellar Objects, for the formation of planets and for angular momentum transport. I showed that vortices are surprisingly stable, and that they are able to concentrate dust in their cores. I also examined the development of spiral shocks in disks. Finally, I studied the evolution of magnetically layered protoplanetary disks, and showed that they exhibit outbursts which could 'pump' the jets that are observed in Herbig-Haro objects. The results of these works were published in a number of papers as well. Additional information on the published papers is contained in the original abstract.

  8. X-ray/microwave relation of different types of active stars

    NASA Technical Reports Server (NTRS)

    Guedel, Manuel; Benz, Arnold O.

    1993-01-01

    Coronal active stars of seven classes between spectral types F and M, single and double, are compared in their quiescent radio and X-ray luminosities L(R) and L(X). We find, largely independent of stellar class, log L(X) is less than about log L(R) + 15.5. This general relation points to an intimate connection between the nonthermal, energetic electrons causing the radio emission and the bulk plasma of the corona responsible for thermal X-rays. The relation, observed over six orders of magnitude, suggests that the heating mechanism necessarily involves particle acceleration. We derive requirements for simple models based on optically thin gyrosynchrotron emission of mildly relativistic electrons and thermal X-rays from the bulk plasma. We discuss the possibility that a portion of the accelerated particles heats the ambient plasma by collisions. More likely, plasma heating and particle acceleration may occur in parallel and in the same process, but at a fixed ratio.

  9. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  10. Photometric activity of UX orionis stars and related objects in the near infrared and optical: CO Ori, RR Tau, UX Ori, and VV Ser

    NASA Astrophysics Data System (ADS)

    Shenavrin, V. I.; Rostopchina-Shakhovskaya, A. N.; Grinin, V. P.; Demidova, T. V.; Shakhovskoi, D. N.; Belan, S. P.

    2016-08-01

    This paper continues a study of the photometric activity of UX Ori stars in the optical and near-infrared ( JHKLM bands) initiated in 2000. For comparison, the list of program stars contains two Herbig Ae stars that are photometrically quiet in the optical: MWC480 andHD179218. Fadings ofUXOri stars in the optical ( V band) due to sporadic increases of the circumstellar extinction are also observed in the infrared (IR), but with decreasing amplitude. Two stars, RR Tau and UX Ori, displayed photometric events when V -band fadings were accompanied by an increase in IR fluxes. Among the two Herbig Ae stars that are photometrically quiet in the optical, MWC 480 proved to be fairly active in the IR. Unlike the UX Ori stars, the variation amplitude of MWC 480 increases from the J band to the M band. In the course of the observations, no deep fadings in the IR bands were detected. This indicates that eclipses of the program stars have a local nature, and are due to extinction variations in the innermost regions of the circumstellar disks. The results presented testify to an important role of the alignment of the circumstellar disks relative to the direction towards the observer in determining the observed IR variability of young stars.

  11. Constraining magnetic-activity modulations in three solar-like stars observed by CoRoT and NARVAL

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Morgenthaler, A.; Salabert, D.; Petit, P.; Ballot, J.; Régulo, C.; Catala, C.

    2013-02-01

    Context. Stellar activity cycles are the manifestation of dynamo process running in the stellar interiors. They have been observed from years to decades thanks to the measurement of stellar magnetic proxies on the surface of the stars, such as the chromospheric and X-ray emissions, and to the measurement of the magnetic field with spectropolarimetry. However, all of these measurements rely on external features that cannot be visible during, for example, a Maunder-type minimum. With the advent of long observations provided by space asteroseismic missions, it has been possible to penetrate the stars and study their properties. Moreover, the acoustic-mode properties are also perturbed by the presence of these dynamos. Aims: We track the temporal variations of the amplitudes and frequencies of acoustic modes allowing us to search for signature of magnetic activity cycles, as has already been done in the Sun and in the CoRoT target HD 49933. Methods: We used asteroseimic tools and more classical spectroscopic measurements performed with the NARVAL spectropolarimeter to check that there are hints of any activity cycle in three solar-like stars observed continuously for more than 117 days by the CoRoT satellite: HD 49385, HD 181420, and HD 52265. To consider that we have found a hint of magnetic activity in a star we require finding a change in the amplitude of the p modes that should be anti-correlated with a change in their frequency shifts, as well as a change in the spectroscopic observations in the same direction as the asteroseismic data. Results: Our analysis gives very small variation in the seismic parameters preventing us from detecting any magnetic modulation. However, we are able to provide a lower limit of any magnetic-activity change in the three stars that should be longer than 120 days, which is the length of the time series. Moreover we computed the upper limit for the line-of-sight magnetic field component being 1, 3, and 0.6 G for HD 49385, HD 181420

  12. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A. ); Siemiginowska, A. )

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such star tails'' with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  13. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A.; Siemiginowska, A.

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle_dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much_gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such ``star tails`` with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  14. A PANCHROMATIC STUDY OF BLAST COUNTERPARTS: TOTAL STAR FORMATION RATE, MORPHOLOGY, ACTIVE GALACTIC NUCLEUS FRACTION, AND STELLAR MASS

    SciTech Connect

    Moncelsi, Lorenzo; Ade, Peter A. R.; Cortese, Luca; Dye, Simon; Eales, Stephen; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Tucker, Carole; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.; Devlin, Mark J.; Truch, Matthew D. P.; Netterfield, Calvin B.; Viero, Marco P.

    2011-02-01

    We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates (SFRs) for BLAST counterparts with z {<=} 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L{sub FIR} {approx}> 10{sup 11} L{sub sun}, z {approx}> 0.5, but the contribution from unobscured starlight cannot be neglected at L{sub FIR} {approx}< 10{sup 11} L{sub sun}, z {approx}< 0.25. We assess that about 20% of the galaxies in our sample show indication of a type 1 active galactic nucleus, but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of {approx}10{sup 11} M{sub sun}, which seem to link the 24 {mu}m and Submillimetre Common-User Bolometer Array (SCUBA) populations, in terms of both stellar mass and star formation activity. The bulk of the BLAST counterparts at z {approx}< 1 appears to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific SFRs. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both SFRs and stellar masses, with observed trends of specific SFR that support strong evolution and downsizing.

  15. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Vulcani, Benedetta; Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia; Fritz, Jacopo; Calvi, Rosa; Paccagnella, Angela

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  16. Star formation and accretion in the circumnuclear disks of active galaxies

    NASA Astrophysics Data System (ADS)

    Wutschik, Stephanie; Schleicher, Dominik R. G.; Palmer, Thomas S.

    2013-12-01

    Aims: We explore the evolution of supermassive black holes (SMBH) centered in a circumnuclear disk (CND) as a function of the mass supply from the host galaxy and considering different star formation laws, which may give rise to a self-regulation via the injection of supernova-driven turbulence. Methods: A system of equations describing star formation, black hole accretion and angular momentum transport in the disk was solved self-consistently for an axisymmetric disk in which the gravitational potential includes contributions from the black hole, the disk and the hosting galaxy. Our model extends the framework provided by Kawakatu & Wada (2008, ApJ, 681, 73), by separately considering the inner and outer part of the disk, and by introducing a potentially non-linear dependence of the star formation rate on the gas surface density and the turbulent velocity. The star formation recipes are calibrated using observational data for NGC 1097, while the accretion model is based on turbulent viscosity as a source of angular momentum transport in a thin viscous accretion disk. Results: We find that current data provide no strong constraint on the star formation recipe, and can in particular not distinguish between models entirely regulated by the surface density, and models including a dependence on the turbulent velocity. The evolution of the black hole mass, on the other hand, strongly depends on the applied star formation law, as well as the mass supply from the host galaxy. We suggest to explore the star formation process in local AGN with high-resolution ALMA observations to break the degeneracy between different star formation models.

  17. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  18. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  19. Searching for cyclical period variations in cataclysmic variable stars

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.; Oliveira, A. S.

    2014-10-01

    Cataclysmic variables (CVs) are close binary systems where the late-type star (the secondary) overfills its Roche lobe and transfers matter to a white dwarf (the primary) via an accretion disc. In this poster we report the first results of long-term project to study cyclical period variations in CVs. The observations were done from 2008 to 2013 at Observatório do Pico dos Dias (OPD/LNA, Brazil). Times series of high speed CCD photometry were obtained using the 0.6 m and 1.6 m telescopes at OPD. We measured new white-dwarf mid-eclipse timings and combined them with published measurements to construct updated observed-minus-calculated (O-C) diagrams. The UU Aqr O-C diagram covers 24 years of observations and presents a 26 yr modulation with semi-amplitude of 47 s. The V2051 Oph data cover 35 years of observations and the new timings show significant deviations from the published linear plus sinusoidal ephemeris (22 yr modulation with a semi-amplitude of 17 s), indicating that the variation is not strictly periodic. We discuss the observed modulations in context of the two current explanations for the phenomenon: magnetic activity in the secondary star and the presence of a third body in the system.

  20. Constraints on Feedback in the Local Universe: The Relation Between Star Formation and AGN Activity in Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher P.; Baum, Stefi Alison

    2016-01-01

    We address the relation between star formation and AGN activity in a sample of 231 nearby (0.0002 < z < 0.0358) early type galaxies by carrying out a multi-wavelength study using archival observations in the UV, IR and radio. Our results indicate that early type galaxies in the current epoch are rarely powerful AGNs, with P < 1022 WHz-1 for a majority of the galaxies. Only massive galaxies are capable of hosting powerful radio sources while less massive galaxies are hosts to lower radio power sources. Evidence of ongoing star formation is seen in approximately 7% of the sample. The SFR of these galaxies is less than 0.1 M⊙yr-1. They also tend to be radio faint (P < 1022 WHz-1). There is a nearly equal fraction of star forming galaxies in radio faint (P < 1022 WHz-1) and radio bright galaxies (P ≥ 1022 WHz-1) suggesting that both star formation and radio mode feedback are constrained to be very low in our sample. We notice that our galaxy sample and the Brightest Cluster Galaxies (BCGs) follow similar trends in radio power versus SFR. This may be produced if both radio power and SFR are related to stellar mass.

  1. Discovery of 15 Myr Old pre-Main Sequence Stars with Active Accretion and Sizeable Discs in NGC 6611

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Guarcello, M. G.; Bonito, R.

    2012-01-01

    Attention is given to a population of 110 stars with prominent near-infrared (NIR) excess in the NGC 6611 cluster of the Eagle Nebula that have optical colours typical of pre-main sequence (PMS) stars older than 10 Myr. In principle, their V-I colours would be consistent with those of young PMS objects (< 1 Myr), whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness and their positions in the colour-magnitude diagram unambiguously indicate that most of these stars are intrinsically older than 10 Myr. Ages range from 8 to 30 Myr with a median value of 15 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 10 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 5% to the disc frequency at 15 Myr in NGC 6611. These values imply a characteristic exponential lifetime of 5 Myr for disc dissipation.

  2. Magnetic activity cycles in solar-like stars: The cross-correlation technique of p-mode frequency shifts

    NASA Astrophysics Data System (ADS)

    Régulo, C.; García, R. A.; Ballot, J.

    2016-05-01

    Aims: We set out to study the use of cross-correlation techniques to infer the frequency shifts that are induced by changing magnetic fields in p-mode frequencies and to provide a precise estimation of error bars. Methods: This technique and the calculation of the associated errors is first tested and validated on the Sun where p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546, observed by Kepler. Results: We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three stars analyzed, we confirm the presence of a magnetic activity cycle in HD 49933 with this methodology and we unveil the seismic signature of ongoing magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.

  3. ALMA and HST Observations of the Molecular Environment, Star formation Activity and Cluster Dissolution In NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Ngcebetsha, Buntu; Kohno, Kotaro; Teuben, Peter J.; Vogel, Stuart N.; Villard, Eric; Wiklind, Tommy; Lundgren, Andreas

    2015-01-01

    Barred spiral galaxies, such as NGC 1097, are an ideal laboratory for studying the interplay between the molecular gas environment and recent star formation activity because there are several dynamically distinct environs (the circumnuclear ring, the bar dust lanes and spurs, the bar end, the inner ring and spiral arms) where the SF activity varies by over three orders of magnitude. We present new ALMA Cycle 1 data showing the CO(1-0), HCN, HCO+, CS, 13CO, C18O emission across the entire disk of NGC 1097 at a resolution of 75 pc (1'). We map the distribution and kinematics of the molecular ISM and quantify the free fall time and shear to constrain what initiates (or inhibits) the star formation activity. By combining the 12m primary array, ACA-7m and total power data we show the most complete maps of NGC 1097. We use the high resolution data to measure the gas inflow rate and accretion onto the circumnuclear ring and constrain the feeding of the central AGN. The 13CO / 12CO ratio across the different environments is used to measure and quantify the diffuse versus dense phases of the molecular ISM across the disk of the galaxy. Finally we compare the ALMA data to new HST UV & optical data to measure the ages and locations of young star clusters. By comparing the cluster age and morphology to the ALMA data we constrain the cluster dissolution time scales as a function of the molecular ISM. Finally we show new JVLA C, X and Ka band continuum data to distinguish between old and young star formation activity.

  4. Water in stars: expected and unexpected

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Aoki, W.; Ohnaka, K.

    1999-03-01

    We have confirmed the presence of water in the early M giant α Cet (M1.5III) and supergiant KK Per (M2Iab) by the highest resolution grating mode of SWS, but this result is quite unexpected from present model atmospheres. In late M giant and supergiant stars, water observed originates partly in the photosphere as expected by the model atmospheres, but ISO SWS has revealed that the 2.7 mic\\ absorption bands appear to be somewhat stronger than predicted while 6.5 mic\\ bands weaker, indicating the contamination by an emission component. In the mid-infrared region extending to 45 mic, pure rotation lines of hho\\ appear as distinct emission on the high resolution SWS spectra of 30g Her (M7III) and S Per (M4-7Ia), along with the dust emission at 10, 13, 20 mic\\ and a new unidentified feature at 30 mic. Thus, together with the dust, water contributes to the thermal balance of the outer atmosphere already in the mid-infrared. The excitation temperature of hho\\ gas is estimated to be 500 - 1000 K. In view of this result for late M (super)giants, unexpected water observed in early M (super)giants should also be of non-photospheric in origin. Thus, ISO has finally established the presence of a new component of the outer atmosphere - a warm molecular envelope - in red giant and supergiant stars from early to late types. Such a rather warm molecular envelope will be a site of various activities such as chemical reactions, dust formation, mass-outflow etc.

  5. Magnetic Field Structure and Activity of the He-burning Giant 37 Comae

    NASA Astrophysics Data System (ADS)

    Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Charbonnel, C.; Drake, N. A.

    2014-08-01

    We present the first magnetic map of the late-type giant 37 Com. The Least Squares Deconvolution (LSD) method and Zeeman Doppler Imaging (ZDI) inversion technique were applied. The chromospheric activity indicators Hα, S-index, Ca ii IRT and the radial velocity were also measured. The evolutionary status of the star has been studied on the basis of state-of-the-art stellar evolutionary models and chemical abundance analysis. 37 Com appears to be in the core Helium-burning phase.

  6. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  7. Submillimetre observations of galaxy clusters with the BLAST: the star formation activity in Abell 3112

    NASA Astrophysics Data System (ADS)

    Braglia, Filiberto G.; Ade, Peter A. R.; Bock, James J.; Chapin, Edward L.; Devlin, Mark J.; Edge, Alastair; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B.; Ngo, Henry; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Pimbblet, Kevin A.; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Valiante, Elisabetta; Viero, Marco P.; Wiebe, Donald V.

    2011-04-01

    We present observations at 250, 350 and 500 μm of the nearby galaxy cluster Abell 3112 (z= 0.075) carried out with the Balloon-borne Large Aperture Submillimeter Telescope. Five cluster members are individually detected as bright submillimetre (submm) sources. Their far-infrared spectral energy distributions and optical colours identify them as normal star-forming galaxies of high mass, with globally evolved stellar populations. They all have (B-R) colours of 1.38 ± 0.08, transitional between the blue, active population and the red, evolved galaxies that dominate the cluster core. We stack to estimate the mean submm emission from all cluster members, which is determined to be 16.6 ± 2.5, 6.1 ± 1.9 and 1.5 ± 1.3 mJy at 250, 350 and 500 μm, respectively. Stacking analyses of the submm emission of cluster members reveal trends in the mean far-infrared luminosity with respect to clustercentric radius and KS-band magnitude. We find that a large fraction of submm emission comes from the boundary of the inner, virialized region of the cluster, at clustercentric distances around R500. Stacking also shows that the bulk of the submm emission arises in intermediate-mass galaxies with KS magnitude ˜1 mag fainter than the characteristic magnitude ?. The results and constraints obtained in this work will provide a useful reference for the forthcoming surveys to be conducted on galaxy clusters by Herschel.

  8. Herschel-ATLAS: the connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies

    NASA Astrophysics Data System (ADS)

    Gürkan, G.; Hardcastle, M. J.; Jarvis, M. J.; Smith, D. J. B.; Bourne, N.; Dunne, L.; Maddox, S.; Ivison, R. J.; Fritz, J.

    2015-10-01

    We examine the relationship between star formation and active galactic nuclei (AGN) activity by constructing matched samples of local (0 < z < 0.6) radio-loud and radio-quiet AGN in the Herschel-Astrophysical Terahertz Large Area Survey fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies using their emission lines and WISE 22-μm luminosity. AGN accretion and jet powers in these active galaxies are traced by [O III] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using Herschel 250-μm luminosity and stellar mass measurements from the Sloan Digital Sky Survey-Max Planck Institute for Astrophysics-John Hopkins University catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with Herschel we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radio-quiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.

  9. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger; Scott, Douglas; Magnelli, Benjamin; Popesso, Paola; Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan; Dannerbauer, Helmut; Dickinson, Mark; Kartaltepe, Jeyhan; Magdis, Georgios

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  10. Hot ammonia around young O-type stars. III. High-mass star formation and hot core activity in W51 Main

    NASA Astrophysics Data System (ADS)

    Goddi, C.; Ginsburg, A.; Zhang, Q.

    2016-05-01

    Context. This paper is the third in a series of NH3 multilevel imaging studies in well-known, high-mass star-forming regions. The main goal is to characterize kinematics and physical conditions of (hot and dense) circumstellar molecular gas around O-type young stars. Aims: We want to map at subarcsecond resolution highly excited inversion lines of NH3 in the high-mass star-forming region W51 Main (distance = 5.4 kpc), which is an ideal target to constrain theoretical models of high-mass star formation. Methods: Using the Karl Jansky Very Large Array (JVLA), we mapped the hot and dense molecular gas in W51 Main with ~0.2 arcsec-0.3 arcsec angular resolution in five metastable (J = K) inversion transitions of ammonia (NH3): (J,K) = (6, 6), (7, 7), (9, 9), (10, 10), and (13, 13). These lines arise from energy levels between ~400 K and ~1700 K above the ground state. We also made maps of the (free-free) continuum emission at frequencies between 25 and 36 GHz. Results: We have identified and characterized two main centers of high-mass star formation in W51 Main, which excite hot cores and host one or multiple high-mass young stellar objects (YSOs) at their centers: the W51e2 complex and the W51e8 core (~6'' southward of W51e2). The former breaks down into three further subcores: W51e2-W, which surrounds the well-known hypercompact (HC) HII region, where hot NH3 is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 arcsec to the East) and W51e2-NW (~1'' to the North), where hot NH3 is observed in emission. The velocity maps toward the HC HII region show a clear velocity gradient along the east-west in all lines. The gradient may indicate rotation, although any Keplerian motion must be on smaller scales (<1000 AU) as we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 M⊙, assuming [NH3]/[H2] = 10-7) with respect to the mass of the central

  11. Star Formation Activity in the Galactic H II Region Sh2-297

    NASA Astrophysics Data System (ADS)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  12. Environmental Effects on Star Formation Activity at z ~ 0.9 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Kajisawa, M.; Shioya, Y.; Aida, Y.; Ideue, Y.; Taniguchi, Y.; Nagao, T.; Murayama, T.; Matsubayashi, K.; Riguccini, L.

    2013-05-01

    We investigated the fraction of [O II] emitters in galaxies at z ~ 0.9 as a function of the local galaxy density in the Hubble Space Telescope (HST) COSMOS 2 deg2 field. [O II] emitters are selected by the narrowband excess technique with the NB711-band imaging data taken with Suprime-Cam on the Subaru telescope. We carefully selected 614 photo-z-selected galaxies with M U3500 < -19.31 at z = 0.901 - 0.920, which includes 195 [O II] emitters, to directly compare the results with our previous study at z ~ 1.2. We found that the fraction is almost constant at 0.3 Mpc-2 < Σ10th < 10 Mpc-2. We also checked the fraction of galaxies with blue rest-frame colors of NUV - R < 2 in our photo-z-selected sample, and found that the fraction of blue galaxies does not significantly depend on the local density. On the other hand, the semi-analytic model of galaxy formation predicted that the fraction of star-forming galaxies at z ~ 0.9 decreases with increasing projected galaxy density even if the effects of the projection and the photo-z error in our analysis were taken into account. The fraction of [O II] emitters decreases from ~60% at z ~ 1.2 to ~30% at z ~ 0.9 independent of galaxy environment. The decrease of the [O II] emitter fraction could be explained mainly by the rapid decrease of star formation activity in the universe from z ~ 1.2 to z ~ 0.9. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern

  13. Effects of droplet-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Brassidium shooting star orchid.

    PubMed

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor; Subramaniam, Sreeramanan

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  14. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    PubMed Central

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  15. Effects of droplet-vitrification cryopreservation based on physiological and antioxidant enzyme activities of Brassidium shooting star orchid.

    PubMed

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor; Subramaniam, Sreeramanan

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.

  16. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  17. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  18. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  19. Stepanian's star - The energy distribution reveals a nontypical cataclysmic variable

    NASA Technical Reports Server (NTRS)

    Szkody, P.

    1981-01-01

    Einstein, IUE, optical multichannel spectrophotometry, and IR observations of Stepanian's star are discussed in terms of other known cataclysmics. While the X-ray flux and IUE emission-line data are similar to that of dwarf novae, the total continuum flux distribution from uv-IR is cooler (peaking near a 10,000 K blackbody) and is unlike either a stellar component or a classic steady-state disk. The IR data show no evidence for a late-type component.

  20. Star-like gold nanoparticles as highly active substrate for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Mehn, Dora; Vanna, Renzo; Bedoni, Marzia; Pascual García, César; Prosperi, Davide; Gramatica, Furio

    2013-02-01

    Surface Enhanced Raman Spectroscopy (SERS) is a popular method in bio-analytical chemistry and a potentially powerful enabling technology for in vitro diagnostics. SERS combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by enhancement of the signal that is observed when a molecule is located on (or very close to) the surface of nanostructured metallic materials. Star-like gold nanoparticles (SGN) are a new class of multibranched nanoparticles that in the last few years have attracted the attention of SERS community for their plasmonic properties. In this work we present a new method to prepare star-like gold nanoparticles with a simple one step protocol at room temperature using hydroquinone as reducing agent. Besides we compare the enhancement of Raman signal of malachite green, a dye commonly employed as label in biological studies, by star-like gold nanoparticles having different size, directly in liquid. This study shows that SGN provide good enhancement of Raman signal and that the effect of their dimension is strongly dependent on the wavelength used. Moreover preliminary results suggest that SGN produced using this method are characterized by good physical-chemical properties and they can be functionalized using the standard thiol chemistry. Overall, these results suggest that star-like gold nanoparticles produced through this method could be used for the further development of highly specific and sensitive SERS-based bio-analytical tests.

  1. Optical and X-ray studies of chromospherically active stars: FR Cancri, HD 95559 and LO Pegasi

    NASA Technical Reports Server (NTRS)

    Pandey, J. C.; Singh, K. P.; Drake, S. A.; Sagar, R.

    2005-01-01

    We present a multiwavelength study of three chromospherically active stars, namely FR Cnc (= BD +16 degrees 1753), HD 95559 and LO Peg (=BD +22 degrees 4409), including newly obtained optical photometry, (for FR Cnc) low-resolution optical spectroscopy, as well as archival IR and X-ray observations. The BVR photometry carried out during the years 2001 - 2004 has found significant photometric variability to be present in all three stars. For FR Cnc, a photometric period 0.826685 +/- 0.000034 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. Two independent spots with migration periods of 0.97 and 0.93 years respectively are inferred. The photometry of HD 95559 suggests the formation of a spot (group) during the interval of our observations. We infer the existence of two independent spots or groups in the photosphere of LO Peg, one of which has a migration period of 1.12 years. The optical spectroscopy of FR Cnc carried out during 2002-2003, reveals the presence of strong and variable Ca I1 H and K, H(sub beta) and H(sub alpha) emission features indicative of high level of chromospheric activity. The value of 5.3 for the ratio of the excess emission in H(sub alpha) to H(sub beta), EH(sub alpha)/EH(sub beta), suggests that the chromospheric emission may arise from an extended off-limb region. We have searched for the presence of color excesses in the near-IR JHK bands of these stars using 2MASS data, but none of them appear to have any significant color excess. We have also analyzed archival X-ray observations of HD 95559 and LO Peg carried out by with the ROSAT observatory. The best fit models to their X-ray spectra imply the presence of two coronal plasma components of differing temperatures and with sub-solar metal abundances. The inferred emission measures and temperatures of these systems are similar to

  2. Color-magnitude Diagrams of the Star-forming Galaxies Ho IX, Cam B, NGC 2976, and UGC 1281

    NASA Astrophysics Data System (ADS)

    Georgiev, T. B.; Bomans, D. J.

    We report results on a study of nearby late type galaxies performed with the 2m RC telescope of the Rozhen NAO with with 1×1 K CCD camera. The scale and the frame size are 0.32''/pix and 5.4'×5.4', respectively. At typical seeing of 1'' the data reach routinely a limiting magnitude of ˜4 mag. With these parameters many nearby galaxies, including the members of the IC 342 and M81 groups can be resolved into star-like and diffuse objects. This allows the determination of several fundamental properties of the galaxies, based on surface photometry and study of the brightest resolved objects. The most crucial parameter is the distance to the galaxy. It can be estimated to a standard error of 20 % using the brightest red and blue stars. Selection of these stars is greatly improved by analysis of the image shapes, which allows to detect diffuse objects, like cluster candidates and background galaxies. Further improvement gives the analysis of color-magnitude (CMD) and color-color diagrams. The CMDs also allow to estimate the age of the most recent star formation event and may hint at the metallicity. The CMDs of the low surface brightness irregular galaxies Ho IX and Cam B are very similar. Especially Cam B seems to be an extreme case of a low-mass star-forming dwarf galaxy. The CMD of NGC 2976 is very similar to this of the star burst galaxy M82 (Georgiev T., 2000, Compt. Rend. Acad. Bulg. Sci. 53/2, 5-8). The edge-on galaxy UGC 1281 is of intermediate star-forming activity, but the CMD is quite sparse.

  3. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    SciTech Connect

    Karak, Bidya Binay; Choudhuri, Arnab Rai; Kitchatinov, Leonid L.

    2014-08-10

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1 M{sub ☉} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f{sub m} of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f{sub m}. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.

  4. Star Formation Activity in a Young Galaxy Cluster at Z = 0.866

    NASA Astrophysics Data System (ADS)

    Laganá, T. F.; Ulmer, M. P.; Martins, L. P.; da Cunha, E.

    2016-07-01

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation-density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μm imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for this cluster, the SFR-density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.

  5. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  6. The Mid-infrared High-ionization Lines from Active Galactic Nuclei and Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Diamond-Stanic, Aleksandar M.; Alonso-Herrero, Almudena; Rieke, George H.

    2010-12-01

    We used Spitzer/Infrared Spectrograph spectroscopic data on 426 galaxies including quasars, Seyferts, LINERs, and H II galaxies to investigate the relationship among the mid-IR emission lines. There is a tight linear correlation between the [Ne V]14.3 μm and 24.3 μm (97.1 eV) and the [O IV]25.9 μm (54.9 eV) high-ionization emission lines. The correlation also holds for these high-ionization emission lines and the [Ne III]15.56 μm (41 eV) emission line, although only for active galaxies. We used these correlations to calculate the [Ne III] excess due to star formation in Seyfert galaxies. We also estimated the [O IV] luminosity due to star formation in active galaxies and determined that it dominates the [O IV] emission only if the contribution of the active nucleus to the total luminosity is below 5%. We find that the active galactic nucleus dominates the [O IV] emission in most Seyfert galaxies, whereas star formation adequately explains the observed [O IV] emission in optically classified H II galaxies. Finally, we computed photoionization models to determine the physical conditions of the narrow-line region where these high-ionization lines originate. The estimated ionization parameter range is -2.8 < log U < -2.5 and the total hydrogen column density range is 20 < log n H (cm-2) < 21. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  7. Kepler Flares. IV. A Comprehensive Analysis of the Activity of the dM4e Star GJ 1243

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven M.; Kowalski, Adam F.; Davenport, James R. A.; Wisniewski, John P.; Hawley, Suzanne L.; Hilton, Eric J.

    2016-10-01

    We present a comprehensive study of the active dM4e star GJ 1243. We use previous observations and ground-based echelle spectroscopy to determine that GJ 1243 is a member of the Argus association of field stars, suggesting it is ∼ 30{--}50 {{Myr}} old. We analyze 11 months of 1 minute cadence data from Kepler, presenting Kepler flare frequency distributions, as well as determining correlations between flare energy, amplitude, duration, and decay time. We find that the exponent α of the power-law flare energy distribution varies in time, primarily due to completeness of sample and the low frequency of high-energy flares. We also find a deviation from a single power law at high energy. We use ground-based spectroscopic observations that were simultaneous with the Kepler data to provide simultaneous photometric and spectroscopic analysis of three low-energy flares, the lowest-energy dMe flares with detailed spectral analysis to date on any star. The spectroscopic data from these flares extend constraints for radiative hydrodynamic flare models to a lower energy regime than has previously been studied. We use this simultaneous spectroscopy and Kepler photometry to develop approximate conversions from the Kepler bandpass to the traditional U and B bands. This conversion will be a critical factor in comparing any Kepler flare analyses to the canon of previous ground-based flare studies.

  8. The temperature of C II emission-line formation regions in cool stars

    NASA Technical Reports Server (NTRS)

    Brown, A.; Carpenter, K. G.

    1984-01-01

    An investigation has been conducted of the temperature of C II emission-line formation regions in the outer atmospheres of late-type giant and supergiant stars. A distinct dichotomy is seen in the C II lambda 2325/lambda 1335 ratio between coronal and noncoronal stars. It is found that C II emission from noncoronal giant and supergiant stars comes from regions with temperatures of 7000-9000 K, with the mean temperature being approximately 8500 K, whereas the C II emission from coronal stars likely comes from hotter regions. The C II ratio provides a powerful empirical tool for estimating the chromospheric temperatures of cool giants and supergiants.

  9. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  10. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    SciTech Connect

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garces, Ane; Catalan, Silvia; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  11. The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae

    NASA Astrophysics Data System (ADS)

    Borisova, A.; Aurière, M.; Petit, P.; Konstantinova-Antova, R.; Charbonnel, C.; Drake, N. A.

    2016-06-01

    Context. When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic fields and activity indicators of two active, fast rotating red giants with similar masses and spectral class but different rotation rates - OU And (Prot = 24.2 d) and 31 Com (Prot = 6.8 d) - to address the question of the origin of their magnetism and high activity. Methods: Observations were carried out with the Narval spectropolarimeter in 2008 and 2013. We used the least-squares deconvolution (LSD) technique to extract Stokes V and I profiles with high signal-to-noise ratio to detect Zeeman signatures of the magnetic field of the stars. We then provide Zeeman-Doppler imaging (ZDI), activity indicators monitoring, and a precise estimation of stellar parameters. We use state-of-the-art stellar evolutionary models, including rotation, to infer the evolutionary status of our giants, as well as their initial rotation velocity on the main sequence, and we interpret our observational results in the light of the theoretical Rossby numbers. Results: The detected magnetic field of OU Andromedae (OU And) is a strong one. Its longitudinal component Bl reaches 40 G and presents an about sinusoidal variation with reversal of the polarity. The magnetic topology of OU And is dominated by large-scale elements and is mainly poloidal with an important dipole component, as well as a significant toroidal component. The detected magnetic field of 31 Comae (31 Com) is weaker, with a magnetic map showing a more complex field geometry, and poloidal and toroidal components of equal contributions. The evolutionary models show that the progenitors of OU And and 31 Com must have been rotating at velocities that correspond to 30 and 53%, respectively, of their critical rotation velocity on the zero age main sequence

  12. Stimulation of StAR expression by cAMP is controlled by inhibition of highly inducible SIK1 via CRTC2, a co-activator of CREB.

    PubMed

    Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin

    2015-06-15

    In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci.

  13. Mass fluxes for hot stars

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2010-03-01

    In an attempt to understand the extraordinarily small mass-loss rates of late-type O dwarfs, mass fluxes in the relevant part of (Teff, g)-space are derived from first principles using a previously-described code for constructing moving reversing layers. From these mass fluxes, a weak-wind domain is identified within which a star's rate of mass loss by a radiatively-driven wind is less than that due to nuclear burning. The five weak-wind stars recently analysed by Marcolino et al. (2009, A&A, 498, 837) fall within or at the edge of this domain. But although the theoretical mass fluxes for these stars are ≈1.4 dex lower than those derived with the formula of Vink et al. (2000), the observed rates are still not matched, a failure that may reflect our poor understanding of low-density supersonic outflows. Mass fluxes are also computed for two strong-wind O4 stars analysed by Bouret et al. (2005, A&A, 438, 301). The predictions agree with the sharply reduced mass loss rates found when Bouret et al. take wind clumping into account.

  14. A Cluster Of Activities On Coma From The Hubble Space Telescope, StarDate, And McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Jogee, S.; Fricke, K.; Preston, S.

    2011-01-01

    With a goal of providing a vast audience of students, teachers, the general public, and Spanish-speakers with activities to learn about research on the Coma cluster of galaxies based on the HST ACS Treasury survey of Coma, McDonald Observatory used a many-faceted approach. Since this research offered an unprecedented legacy dataset, part of the challenge was to convey the importance of this project to a diverse audience. The methodology was to create different products for different (overlapping) audiences. Five radio programs were produced in English and Spanish for distribution on over 500 radio stations in the US and Mexico with a listening audience of over 2 million; in addition to the radio listeners, there were over 13,000 downloads of the English scripts and almost 6000 of the Spanish. Images were prepared for use in the StarDate Online Astronomy Picture of the Week, for ViewSpace (used in museums), and for the StarDate/Universo Teacher Guide. A high-school level activity on the Coma Cluster was prepared and distributed both on-line and in an upgraded printed version of the StarDate/Universo Teacher Guide. This guide has been distributed to over 1700 teachers nationally. A YouTube video about careers and research in astronomy using the Coma cluster as an example was produced. Just as the activities were varied, so were the evaluation methods. This material is based upon work supported by the National Aeronautics and Space Administration under Grant/Contract/Agreement No. HST-EO-10861.35-A issued through the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Economic Development Activities at the Young - Rainey Science, Technology, & Research (STAR) Center

    SciTech Connect

    Paul S. Sacco; Carl Smeigh; John Caponiti, Jr.

    2008-06-30

    Project mission was to mitigate the adverse economic effects of closing the U.S. Department of Energy's Pinellas Plant in Largo, Florida. This project was to facilitate the physical renovation of the plant and to help maintain and create jobs for the employees that worked at the plant when DOE terminated its operations. It also included finding and attracting high technology, industrial manufacturing and related firms to utilize the space and high tech equipment to remain at the plant. Stakeholders included the affected plant employees, local government and related public organizations, and businesses and universities in the Tampa Bay Florida area. The $17.6 million funded for this project helped produce 2,780 jobs at the Young - Rainey STAR Center at an average cost of $6,328. Rental income from STAR Center tenants and third party cash input amounted to approximately $66 million over the project period of 13.3 years.

  16. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    SciTech Connect

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara; Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn; Kramer, Carsten; Moran, Sean; Heckman, Timothy M.; Schiminovich, David; Schuster, Karl

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  17. The diskmass survey. VIII. On the relationship between disk stability and star formation

    SciTech Connect

    Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  18. THE AGE, STELLAR CONTENT, AND STAR FORMATION TIMESCALE OF THE B59 DENSE CORE

    SciTech Connect

    Covey, K. R.; Lada, C. J.; Muench, A. A.; Forbrich, J.; Ascenso, J.; Roman-Zuniga, C.

    2010-10-20

    We have investigated the stellar content of Barnard 59 (B59), the most active star-forming core in the Pipe Nebula. Using the SpeX spectrograph on the NASA Infrared Telescope Facility, we obtained moderate resolution, near-infrared (NIR) spectra for 20 candidate young stellar objects (YSOs) in B59 and a representative sample of NIR and mid-IR bright sources distributed throughout the Pipe. Measuring luminosity and temperature sensitive features in these spectra, we identified likely background giant stars and measured each star's spectral type, extinction, and NIR continuum excess. To measure B59's age, we place its candidate YSOs in the Hertzsprung-Russell diagram and compare their location to YSOs in several well-studied star-forming regions, as well as predictions of pre-main-sequence (PMS) evolutionary models. We find that B59 is composed of late-type (K4-M6) low-mass (0.9-0.1 M{sub sun}) YSOs whose median stellar age is comparable to, if not slightly older than, that of YSOs within the {rho} Oph, Taurus, and Chameleon star-forming regions. Deriving absolute age estimates from PMS models computed by D'Antona et al., and accounting only for statistical uncertainties, we measure B59's median stellar age to be 2.6 {+-} 0.8 Myr. Including potential systematic effects increases the error budget for B59's median (DM98) stellar age to 2.6{sup +4.1}{sub -2.6} Myr. We also find that the relative age orderings implied by PMS evolutionary tracks depend on the range of stellar masses sampled, as model isochrones possess significantly different mass dependences. The maximum likelihood median stellar age we measure for B59, and the region's observed gas properties, suggests that the B59 dense core has been stable against global collapse for roughly six dynamical timescales and is actively forming stars with a star formation efficiency per dynamical time of {approx}6%. While the {approx}150% uncertainties associated with our age measurement propagate directly into these

  19. Star Light, Star Bright.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    1984-01-01

    Presents a technique for obtaining a rough measure of the brightness among different stars. Materials needed include a standard 35-mm camera, a plastic ruler, and a photo enlarger. Although a telescope can be used, it is not essential. (JN)

  20. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.