Sample records for active lava dome

  1. What factors control superficial lava dome explosivity?

    PubMed

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  2. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  3. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  4. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an

  5. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.

    2013-01-01

    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4–May 4) produced blocky intermediate- to high-silica andesite lava (59–62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8–62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome.We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  6. Changes in lava effusion rate, explosion characteristics and degassing revealed by time-series photogrammetry and feature tracking velocimetry of Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Grocke, S.; Benage, M.

    2016-12-01

    The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These

  7. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha

  8. Crystal-rich lava dome extrusion during vesiculation: an experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.

    2016-12-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a

  9. Seismic experiments on Showa-Shinzan lava dome using firework shots

    NASA Astrophysics Data System (ADS)

    Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu

    1987-11-01

    Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.

  10. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  11. Time Series Radar Observations of a Growing Lava Dome

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2007-12-01

    Exogenous growth of Peléean lava domes occurs by addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows, forming an apron of talus. We observed this process at the Soufrière Hills Volcano, Montserrat between 30 March and 10 April 2006 using a ground-based imaging mm-wave radar, AVTIS, to measure the shape of the dome surface.From a time series of range and intensity measurements at a distance of six kilometres we measured the topographic evolution of the lava dome. The locus of talus deposition moved to the southeast with time and the talus surface grew upwards on average at about 2 metres per day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent rockfall seismicity record. We account for the budget of lava addition and dispersal during the eleven days of measurements using: AVTIS range measurements to measure the talus growth (7.2 Mm3, 67%), AVTIS range and intensity measurements to measure the summit lava growth (1.7 Mm3, 16%), and rockfall seismicity and visual observations to measure the pyroclastic flow deposits (1.8 Mm3, 17%). This gives an overall dense rock equivalent extrusion rate of about 9.7 m3s-1. These figures demonstrate how efficient non-explosive lava dome growth can be in generating large volumes of primary clastic deposits, and how this process could also reduce the propensity for large hazardous pyroclastic flows. andrews.ac.uk/~mmwave/mmwave/avtis.shtml

  12. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    NASA Astrophysics Data System (ADS)

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  13. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  14. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    USGS Publications Warehouse

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  15. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the

  16. Magmatic gas percolation through the old lava dome of El Misti volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Peters, Nial; Masias, Pablo; Apaza, Fredy; Barnie, Talfan; Ian Schipper, C.; Curtis, Aaron; Tamburello, Giancarlo; Aiuppa, Alessandro; Bani, Philipson; Giudice, Gaetano; Pieri, David; Davies, Ashley Gerard; Oppenheimer, Clive

    2017-06-01

    The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.

  17. Small domes on Venus: Probable analogs of Icelandic lava shields

    USGS Publications Warehouse

    Garvin, James B.; Williams, Richard S.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, we interpret small, dome-like features on radar images of Venus to be analogs of Icelandic lava-shield volcanoes. Using morphometric data for venusian domes in Aubele and Slyuta (in press), as well as our own measurements of representative dome volumes and areas from Tethus Regio, we demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS ). LILS are slightly convex in cross-section with typical flank slopes of ∼3°. Plausible lava-shield-production rates for the venusian plains suggest formation of ∼53 million shields over the past 0.25 Ga. The cumulative global volume of lava that would be associated with this predicted number of lava shields is only a factor of 3–4 times that of a single oceanic composite shield volcano such as Mauna Loa. The global volume of all venusian lava shields in the 0.5–20-km size range would only contribute a meter of resurfacing over geologically significant time scales. Thus, venusian analogs to LILS may represent the most abundant landform on the globally dominant plains of Venus, but would be insignificant with regard to the global volume of lava extruded. As in Iceland, associated lavas from fissure eruptions probably dominate plains volcanism and should be evident on the higher resolution Magellan radar images.

  18. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  19. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano

    USGS Publications Warehouse

    Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick; McGimsey, Robert G.

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth.Effusion rates ranged from a maximum of 35 m3 s− 1 during the initial two weeks to a low of 2.2 m3 s− 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s− 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April–1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or

  20. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  1. Periodic behavior in lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-05-01

    Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980-1987) and Santiaguito (1922-2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of ∼0.6 km3 for Mount St. Helens and ∼65 km3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens.

  2. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  3. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    USGS Publications Warehouse

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  4. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  5. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    NASA Astrophysics Data System (ADS)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  6. Laboratory Studies of High Temperature Deformation and Fracture of Lava Domes

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P.; Tuffen, H.; Meredith, P.

    2007-12-01

    The high temperature fracture mechanics of magma at high temperatures exerts a fundamental control on the stability of lava domes and the timing and style of eruptions at andesitic to dacitic volcanoes. This is evidenced in the pervasive fracturing seen in both ancient and active magma conduits and lava domes; in addition to the volcanic earthquakes that occur before and during episodes of dome growth and dome collapse. Uniaxial and triaxial deformation experiments have been performed on crystal rich and crystal free magmas (andesite from Ancestral Mount Shasta, California, USA and a rhyolitic obsidian from Krafla, Iceland) at a range of temperatures (up to 900°C), confining pressures (up to 50 MPa) and strain rates (10-5s-1) to 10-3s-1) whilst recording acoustic emissions (AE). Results from these experiments provide useful inputs into models of lava dome stability, extrusion mechanisms, and source mechanisms for volcanic earthquakes. However, the large sample sizes used to ensure valid results (25mm diameter and 75mm length) made it difficult to maintain stable high temperatures under confined conditions. Also, only rudimentary AE data could be obtained, due to the distance of the transducers from the samples to keep them away from the high temperatures. Here, we present modifications to this apparatus, which include a new furnace, improved loading system, additional pore pressure and permeability measurement capability, and vastly improved acoustic monitoring. This allows (1)stable higher temperatures (up to 1000°C) to be achieved under confined conditions, (2) high temperature and moderate pressure (up to 70 MPa) hydrostatic measurements of permeability and acoustic velocities, (3) high temperature triaxial deformation under different pore fluid and pressure conditions, and (4) full waveform AE monitoring for all deformation experiments. This system can thus be used to measure the physical properties and strength of rocks under volcanic conditions and to

  7. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other

  8. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John J.; Kelly, Peter J.; Wallace, Kristi L.; Schneider, David J.; Wessels, Rick L.

    2017-05-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d- 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s- 1, and the total volume extruded from 2011 to 2015 was 1.9-5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive

  9. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  10. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  11. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011–2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    USGS Publications Warehouse

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John; Kelly, Peter; Wallace, Kristi; Schneider, David; Wessels, Rick

    2017-01-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d− 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s− 1, and the total volume extruded from 2011 to 2015 was 1.9–5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth

  12. Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography

    PubMed Central

    Tanaka, Hiroyuki K. M.

    2016-01-01

    An emerging elementary particle imaging technique called muography has increasingly been used to resolve the internal structures of volcanoes with a spatial resolution of less than 100 m. However, land-based muography requires several days at least to acquire satisfactory image contrast and thus, it has not been a practical tool to diagnose the erupting volcano in a real time manner. To address this issue, airborne muography was implemented for the first time, targeting Heisei-Shinzan lava dome of Unzen volcano, Japan. Obtained in 2.5 hours, the resultant image clearly showed the density contrast inside the dome, which is essential information to predict the magnitude of the dome collapse. Since airborne muography is not restricted by topographic conditions for apparatus placements, we anticipate that the technique is applicable to creating images of this type of lava dome evolution from various angles in real time. PMID:28008978

  13. The unique radar scattering properties of silicic lava flows and domes

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.

    1995-01-01

    Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.

  14. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido--contact between high-energy physics and volcano physics--.

    PubMed

    K M Tanaka, Hiroyuki; Yokoyama, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, "pseudo growth curves" of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the "density length" of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics.

  15. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  16. Modeling the dynamic response of a crater glacier to lava-dome emplacement: Mount St Helens, Washington, USA

    USGS Publications Warehouse

    Price, Stephen F.; Walder, Joseph S.

    2007-01-01

    The debris-rich glacier that grew in the crater of Mount St Helens after the volcano's cataclysmic 1980 eruption was split in two by a new lava dome in 2004. For nearly six months, the eastern part of the glacier was squeezed against the crater wall as the lava dome expanded. Glacier thickness nearly doubled locally and surface speed increased substantially. As squeezing slowed and then stopped, surface speed fell and ice was redistributed downglacier. This sequence of events, which amounts to a field-scale experiment on the deformation of debris-rich ice at high strain rates, was interpreted using a two-dimensional flowband model. The best match between modeled and observed glacier surface motion, both vertical and horizontal, requires ice that is about 5 times stiffer and 1.2 times denser than normal, temperate ice. Results also indicate that lateral squeezing, and by inference lava-dome growth adjacent to the glacier, likely slowed over a period of about 30 days rather than stopping abruptly. This finding is supported by geodetic data documenting dome growth.

  17. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido —Contact between high-energy physics and volcano physics—

    PubMed Central

    TANAKA, Hiroyuki K. M.; YOKOYAMA, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, “pseudo growth curves” of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the “density length” of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics. PMID:18941290

  18. Lava dome growth and mass wasting measured by a time series of ground-based radar and seismicity observations

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2008-08-01

    Exogenous growth of Peléean lava domes involves the addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows. These processes were investigated at the Soufrière Hills Volcano, Montserrat, between 30 March and 10 April 2006, using a ground-based imaging millimeter-wave radar, AVTIS, to measure the shape of the dome and talus surface and rockfall seismicity combined with camera observations to infer pyroclastic flow deposit volumes. The topographic evolution of the lava dome was recorded in a time series of radar range and intensity measurements from a distance of 6 km, recording a southeastward shift in the locus of talus deposition with time, and an average height increase for the talus surface of about 2 m a day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent change in the rockfall seismicity record. The dense rock equivalent volumetric budget of lava added and dispersed, including the respective proportions of the total for each component, was calculated using: (1) AVTIS range and intensity measurements of the change in summit lava (˜1.5 × 106 m3, 22%), (2) AVTIS range measurements to measure the talus growth (˜3.9 × 106 m3, 57%), and (3) rockfall seismicity to measure the pyroclastic flow deposit volumes (˜1.4 × 106 m3, 21%), which gives an overall dense rock equivalent extrusion rate of about 7 m3·s-1. These figures demonstrate how efficient nonexplosive lava dome growth can be in generating large volumes of primary clastic deposits, a process that, by reducing the proportion of erupted lava stored in the summit region, will reduce the likelihood of large hazardous pyroclastic flows.

  19. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    NASA Astrophysics Data System (ADS)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  20. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  1. Small explosive volcanic plume dynamics: insights from feature tracking velocimetry at Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Andrews, B. J.

    2016-12-01

    and description of turbulent surface velocity fields of explosive volcanic eruptions at active lava domes.

  2. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  3. Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus

  4. Using Horizontal Cosmic Muons to Investigate the Density Distribution of the Popocatepetl Volcano Lava Dome

    NASA Astrophysics Data System (ADS)

    Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.

    2013-05-01

    Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.

  5. Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004-06

    USGS Publications Warehouse

    Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P.

    2007-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano's groundwater system rather than flowing through a drainage network along the bed.

  6. Morphological and structural changes at the Merapi lava dome monitored using Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Darmawan, H.; Walter, T. R.; Brotopuspito, K. S.; Subandriyo, S.; Nandaka, M. A.

    2017-12-01

    Six gas-driven explosions between 2012 and 2014 had changed the morphology and structures of the Merapi lava dome. The explosions mostly occurred during rainfall season and caused NW-SE elongated open fissures that dissected the lava dome. In this study, we conducted UAVs photogrammetry before and after the explosions to investigate the morphological and structural changes and to assess the quality of the UAV photogrammetry. The first UAV photogrammetry was conducted on 26 April 2012. After the explosions, we conducted Terrestrial Laser Scanning (TLS) survey on 18 September 2014 and repeated UAV photogrammetry on 6 October 2015. We applied Structure from Motion (SfM) algorithm to reconstruct 3D SfM point clouds and photomosaics of the 2012 and 2015 UAVs images. Topography changes has been analyzed by calculating height difference between the 2012 and 2015 SfM point clouds, while structural changes has been investigated by visual comparison between the 2012 and 2015 photo mosaics. Moreover, a quality assessment of the results of UAV photogrammetry has been done by comparing the 3D SfM point clouds to TLS dataset. Result shows that the 2012 and 2015 SfM point clouds have 0.19 and 0.57 m difference compared to the TLS point cloud. Furthermore, topography, and structural changes reveal that the 2012-14 explosions were controlled by pre-existing structures. The volume of the 2012-14 explosions is 26.400 ± 1320 m3 DRE. In addition, we find a structurally delineated unstable block at the southern front of the dome which potentially collapses in the future. We concluded that the 2012-14 explosions occurred due to interaction between magma intrusion and rain water and were facilitated by pre-existing structures. The unstable block potentially leads to a rock avalanche hazard. Furthermore, our drone photogrammetry results show very promising and therefore we recommend to use drone for topography mapping in lava dome building volcanoes.

  7. The danger of collapsing lava domes; lessons for Mount Hood, Oregon

    USGS Publications Warehouse

    Brantley, S.R.; Scott, W.E.

    1993-01-01

    Nestled in the crater of Oregon's majestic Mount Hood volcano is Crater Rock, a prominent feature known to thousands of skiers, climbers, and tourists who journey each year to the famous Timberline Lodge located high on the volcano's south flank. Crater Rock stands about 100m above the sloping crater floor and warm fumaroles along its base emit sulfur gases and a faint steam plume that is sometimes visible from the lodge. What most visitors do not know, however, is that Crater Rock is a volcanic lava dome only 200 years old. 

  8. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas R.; Brotopuspito, Kirbani Sri; Subandriyo; I Gusti Made Agung Nandaka

    2018-01-01

    Dome-building volcanoes undergo rapid and profound topographic changes that are important to quantify for the purposes of hazard assessment. However, as hazardous lava domes often develop on high-altitude volcanoes that exhibit steep-sided topography, it is challenging to obtain direct field access and thus to analyze these morphological and structural changes. Merapi Volcano in Indonesia is a type example of such a volcano, as soon after its 2010 eruption, a new lava dome developed. This dome was partially destroyed during six distinct steam-driven explosions that occurred between 2012 and 2014. Here, we investigate the topographic and structural changes associated with these six steam-driven explosions by comparing close-range photogrammetric data obtained before and after these explosions. To accomplish this, we performed two UAV campaigns in 2012 and 2015. By applying the Structure from Motion (SfM) technique, we are able to construct three-dimensional point clouds, assess their quality by comparing them to a terrestrial laser scanning (TLS) dataset, and generate high-resolution Digital Elevation Models (DEMs) and photomosaics. The comparison of these two DEMs and photomosaics reveals changes in topography and the appearance of fractures. In the 2012 dataset, we find a dense fracture network striking to the NNW-SSE. In the post-eruptive 2015 dataset, we see that this NNW-SSE fracture trend is much more strongly expressed; we also detect the formation of aligned and elongated explosion craters, which are associated with the removal of over 200,000 m3 of dome material, most of which ( 70%) was deposited outside the crater region. Therefore, this study suggests that the locations of the steam-driven explosions at Merapi Volcano were controlled by the reactivation of preexisting structures. Moreover, some of the newly developed and reactivated fractures delineate a block on the southern slope of the dome, which could become structurally unstable and potentially

  9. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  10. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo

    2016-04-01

    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  11. Emplacement of Volcanic Domes on Venus and Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  12. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  13. Preliminary results from an integrated, multi-parameter, experiment at the Santiaguito lava dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; Rietbrock, A.; Lavallée, Y.; Lamb, O. D.; Lamur, A.; Kendrick, J. E.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.

    2016-12-01

    Understanding the complex processes that drive volcanic unrest is crucial to effective risk mitigation. Characterization of these processes, and the mechanisms of volcanic eruptions, is only possible when high-resolution geophysical and geological observations are available over comparatively long periods of time. In November 2014, the Liverpool Earth Observatory, UK, in collaboration with the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, established a multi-parameter geophysical network at Santiaguito, one of the most active volcanoes in Guatemala. Activity at Santiaguito throughout the past decade, until the summer of 2015, was characterized by nearly continuous lava dome extrusion accompanied by frequent and regular small-to-moderate gas or gas-and-ash explosions. Over the past two years our network collected a wealth of seismic, acoustic and deformation data, complemented by campaign visual and thermal infrared measurements, and rock and ash samples. Here we present preliminary results from the analysis of this unique dataset. Using acoustic and thermal data collected during 2014-2015 we were able to assess volume fractions of ash and gas in the eruptive plumes. The small proportion of ash inferred in the plumes confirms estimates from previous, independent, studies, and suggests that these events did not involve significant magma fragmentation in the conduit. The results also agree with the suggestion that sacrificial fragmentation along fault zones in the conduit region, due to shear-induced thermal vesiculation, may be at the origin of such events. Finally, starting in the summer of 2015, our experiment captured the transition to a new phase of activity characterized by vigorous vulcanian-style explosions producing large, ash-rich, plumes and frequent hazardous pyroclastic flows, as well as the formation a large summit crater. We present evidence of this transition in the geophysical and geological data, and discuss its

  14. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  15. Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole

    2015-04-01

    After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007

  16. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; von Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  17. Effusive silicic volcanism in the Paraná Magmatic Province, South Brazil: Evidence for locally-fed lava flows and domes from detailed field work

    NASA Astrophysics Data System (ADS)

    Polo, L. A.; Janasi, V. A.; Giordano, D.; Lima, E. F.; Cañon-Tapia, E.; Roverato, M.

    2018-04-01

    Lava flows and dome complexes of silicic composition were identified in the Lower Cretaceous Paraná Magmatic Province (PMP) at Rio Grande do Sul state, southern Brazil. Detailed mapping and image analysis reveals significant volumes of effusive deposits aligned according to main lineaments, likely representing the fissural systems that fed the three Palmas-type silicic units. Different structures indicative of effusive emplacement (lava domes, lobated flows, sheet flows and autobreccias) are very common in the study area, and are probably also more abundant than previously thought in whole PMP silicic magmatism. In fact, effusive deposits seem predominant in the three distinct silicic units identified in the area, since no remnants of pyroclastic components have been identified. The vitreous dacites that make up the upper flows of the basaltic andesite to dacite Barros Cassal sequence are clearly effusive, as indicated by their occurrence as thin sheet flows. The much thicker early Caxias do Sul dacites occur mostly as lava flow lobes and pancake-like, of low to moderate viscosity, and lava domes. The younger, high SiO2 Santa Maria rhyolite unit shows unequivocal examples of effusive deposits at its lower portion, as lobated flows formed by vesicle-rich obsidian. In spite of higher viscosities relative to the previous units ( 106 Pa·s), it is probable that the very low H2O contents 1 wt% of these rhyolite melts, associated with high discharge rates, resulted in an effusive nature in most to this unit.

  18. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  19. Sub-surface structure of La Soufrière of Guadeloupe lava dome deduced from a ground-based magnetic survey

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Coutant, Olivier; Glen, Jonathan M. G.

    2016-07-01

    In this study, we present the analysis and interpretation of a new ground magnetic survey acquired at the Soufrière volcano on Guadeloupe Island. Observed short-wavelength magnetic anomalies are compared to those predicted assuming a constant magnetization within the sub-surface. The good correlation between modeled and observed data over the summit of the dome indicates that the shallow sub-surface displays relatively constant and high magnetization intensity. In contrast, the poor correlation at the base of the dome suggests that the underlying material is non- to weakly-magnetic, consistent with what is expected for a talus comprised of randomly oriented and highly altered and weathered boulders. The new survey also reveals a dipole anomaly that is not accounted for by a constant magnetization in the sub-surface and suggests the existence of material with decreased magnetization beneath the Soufrière lava dome. We construct simple models to constrain its dimensions and propose that this body corresponds to hydrothermally altered material within and below the dome. The very large inferred volume for such material may have implications on the stability of the dome.

  20. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    USGS Publications Warehouse

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  1. Gravitational Failures of Lava Domes at Intersections With Tectonic Faults: Examples from Tatun Volcanic Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Belousova, M.; Belousov, A.; Chen, C.

    2009-12-01

    The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak

  2. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  3. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  4. Cryovolcanic emplacement of domes on Europa

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2017-03-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical singularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 103 and 106 m2/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  5. Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse

    NASA Astrophysics Data System (ADS)

    Voight, B.; Linde, A. T.; Sacks, I. S.; Mattioli, G. S.; Sparks, R. S. J.; Elsworth, D.; Hidayat, D.; Malin, P. E.; Shalev, E.; Widiwijayanti, C.; Young, S. R.; Bass, V.; Clarke, A.; Dunkley, P.; Johnston, W.; McWhorter, N.; Neuberg, J.; Williams, P.

    2006-02-01

    The collapse of the Soufrière Hills Volcano lava dome on Montserrat in July 2003 is the largest such event worldwide in the historical record. Here we report on borehole dilatometer data recording a remarkable and unprecedented rapid (~600s) pressurisation of a magma chamber, triggered by this surface collapse. The chamber expansion is indicated by an expansive offset at the near dilatometer sites coupled with contraction at the far site. By analyzing the strain data and using added constraints from experimental petrology and long-term edifice deformation from GPS geodesy, we prefer a source centered at approximately 6 km depth below the crater for an oblate spheroid with overpressure increase of order 1 MPa and average radius ~1 km. Pressurisation is attributed to growth of 1-3% of gas bubbles in supersaturated magma, triggered by the dynamics of surface unloading. Recent simulations demonstrate that pressure recovery from bubble growth can exceed initial pressure drop by nearly an order of magnitude.

  6. Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991

    USGS Publications Warehouse

    Gil, Cruz F.; Chouet, B.A.

    1997-01-01

    Since its reactivation in 1988 the principal eruptions of Galeras Volcano occurred on May 4-9, 1989, July 16, 1992, and January 14, March 23, April 3, April 14 and June 7, 1993. The initial eruption was a phreatic event which clearly marked a new period of activity. A lava dome was extruded within the main crater in October 1991 and subsequently destroyed in an explosive eruption on July 16, 1992. The eruptions that followed were all vulcanian-type explosions. The seismicity accompanying the emplacement, extrusion, and destruction of the lava dome was dominated by a mix of long-period (LP) events and tremor displaying a variety of waveforms. Repetitive LP events with dominant periods in the range 0.2-1 s were observed in October and November 1991 and visually correlated with short energetic pulses of gas venting through a crack bisecting the dome surface. Each LP event was characterized by a weak precursory signal with dominant periods in the range 0.05-0.1 s lasting roughly 7 s. Using the fluid-driven crack model of Chouet (1988, 1992), we infer that two distinct cracks may have acted as sources for the LP and precursor signals. Spectral analyses of the data yield the following parameters for the LP source: crack length, 240-360 m; crack width, 130-150 m; crack aperture, 0.5-3.4 mm; crack stiffness, 100-500; sound speed of fluid, 880 m/s; and excess pressure, 0.01-0.19 MPa. Similar analyses yield the parameters of the precursor source: crack length, 20-30 m; crack width, 15-25 m; crack aperture, 2.3-8.7 mm; crack stiffness, 5-15; sound speed of fluid, 140 m/s; and excess pressure, 0.06-0.15 MPa. Combined with geologic and thermodynamic constraints obtained from field observations, these seismic parameters suggest a gas-release mechanism in which the episodic collapse of a foam layer trapped at the top of the magma column subjacent to the dome releases a slug of pressurized gas which escapes to the surface while dilating a preexisting system of cracks in the dome

  7. Cryovolcanic Emplacement of Domes on Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  8. Remote camera observations of lava dome growth at Mount St. Helens, Washington, October 2004 to February 2006: Chapter 11 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.

  9. Unraveling the hidden origin and migration of plagioclase phenocrysts by in situ Sr isotopes: the case of final dome activity at Nisyros volcano, Greece

    NASA Astrophysics Data System (ADS)

    Braschi, Eleonora; Francalanci, Lorella; Tommasini, Simone; Vougioukalakis, George E.

    2014-03-01

    This contribution reports a detailed study on in situ Sr isotope analyses, along with textural and compositional characteristics, of plagioclase phenocrysts occurring in the rhyodacitic dome-lavas and associated mafic enclaves, erupted during the last magmatic activity at Nisyros volcano (Greece). Dome-lavas and enclaves have a paragenesis dominated by plagioclase. We recognize five different types of plagioclase based on their specific textures and composition. Dome-lava plagioclases (Type-1) are mainly large (1-5 mm), subhedral, clear, and poorly zoned crystals with low An content (An25-35). The plagioclase phenocrysts (Type-4 and Type-5) and groundmass microlites crystallizing in the enclaves, and found in dome-lavas as xenocrysts, have high An content (An75-95). In both dome-lavas and enclaves, two other types of plagioclase do also occur: (1) plagioclase phenocrysts with size and core composition similar to those of Type-1 having a dusty sieve zone (DSZ) at the rims (Type-2); (2) plagioclases with a DSZ affecting the entire crystal but a thin rim (Type-3). The drilled plagioclases have 87Sr/86Sr negatively correlated with their An content. Low An cores of Type-1 and Type-2 have quite homogeneous 87Sr/86Sr (0.7044-0.7046), whose values are more radiogenic than their host magmas (0.70403-0.70408) and similar to those of the previous Upper Pumice (UP) rhyolite magma (0.70438-0.70456). The DSZs of Type-2 and Type-3 show lower and scattered 87Sr/86Sr (0.70397-0.70426) with intermediate and variable An content. High An cores of Type-4 and Type-5 have the least radiogenic Sr isotope composition (0.70379) in equilibrium with that measured in the enclaves (0.70384-0.70389). We demonstrate that Type-1 plagioclase crystallizes in the previous UP rhyolitic magmas representing the silica-rich magma from which the dome-lava melts derived by open system evolutionary processes (e.g., mixing, mingling, and crystal migration), caused by successive refilling of mafic enclave

  10. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  11. Airborne photogrammetry and geomorphological analysis of the 2001-2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. V.; Dvigalo, V. N.; Svirid, I. Yu.

    2015-10-01

    In 2001, after a six-year pause in extrusive activity, lava dome growth resumed at Molodoy Shiveluch Volcano. The new period of dome growth (2001-present) has morphological features that were uncommon during the previous periods of the dome formation (1980-1981, 1993-1995): numerous lava lobes and crease structures. Thus, the current dome growth is mostly of an exogenous type with short periods of endogenous growth that occurred in 2003, 2005, and 2010. Geomorphological interpretation of stereo photo images has revealed elements of the dome that are hardly distinguishable in single photographs. We have made detailed descriptions of the dome morphology covering all the dates of the available images. By using photogrammetric processing of aerial photographs, we created Digital Terrain Models and topographic maps of the lava dome and defined its volumes for 2001 (0.19 km3), 2003 (0.47 km3), 2005 (0.48 km3), 2010 (0.54 km3), and 2012 (0.63 km3). We also defined other morphometric characteristics: absolute and relative heights, as well as the dimensions of the dome and its elements for the investigated period. Taking into account large partial failures of the dome in 2005 (>0.11 km3) and 2010 (0.28 km3), we suggest that the volume of the extruded material for the whole 1980-2012 period was no less than 1.02 km3. The average extrusion rate over the 2001-2012 period exceeded 225,000 m3/day. The transition from endogenous to exogenous dome growth was possibly caused by change in extruded material physical properties due to an increase of SiO2. On the basis of geomorphological analysis of the current lava dome features, we suggest the possible process of the exogenous dome formation at Molodoy Shiveluch. The crease structures detected at Molodoy Shiveluch were classified into three groups according to their shapes: radial, bilaterally symmetrical, and irregular. These crease structures are morphologically similar to those formed at Unzen Volcano during the 1990

  12. Three-dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Jourde, Kevin; Marteau, Jacques; Deroussi, Sébastien; Komorowski, Jean-Christophe; Gibert, Dominique

    2017-07-01

    Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the understanding of the Earth's subsurface. Muon measurements yield a "radiography" of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Here we jointly invert muon data from three simultaneous telescope acquisitions together with gravity data to estimate the three-dimensional density structure of the La Soufrière de Guadeloupe lava dome. Our unique data set allows us to achieve an unprecedented spatial resolution with this novel technique. The retrieved density model reveals an extensive, low-density anomaly where the most active part of the volcanic hydrothermal system is located, supporting previous studies that indicate this region as the most likely to be involved in a partial edifice collapse.

  13. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho

    NASA Astrophysics Data System (ADS)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.

    2014-12-01

    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  14. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  15. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.

    2003-12-01

    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the

  16. Dome collapse eruption in Tatun Volcanic Group near metropolitan Taipei, Taiwan at ~6 kyrs

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, T.

    2010-12-01

    The Tatun Volcanic Group (TVG) is located in the north of metropolitan Taipei, Taiwan. Over 6 million inhabitants are living in Taipei City and suburban area. Another critical issue is an international airport and two nuclear power plants are lying at the foot of the TVG. If the TGV will be re-active, the serious hazard for human lives and economies in this area will definitely occur. Understanding the youngest eruption history of the TVG will be much important for prediction the future activity of eruption. The core was collected from the Dream Lake at the eastern slop of Cising Mt.. Total 21 samples from depth 190 cm to 231.5 cm have been tested. Comparison of chemical compositions of glass and minerals in the volcanic clasts with those of lava around TVG, they clearly showed that the volcanic clasts can be correlated with the eruption of the closest Cising Mt. According to the radiocarbon (C-14) age of core sample at the depth 225 cm, the age was extrapolated around 6150 yrs ca. C-14 B.P.. Moreover, the respiratory cristobalite in the volcanic clasts were firstly identified by the identical morphology, chemical composition and Laser Raman Spectrometry (LRS). The crystalline silica was produced by vapor-phase crystallization and devitrification in the andesite lava dome and volcanic ash generated by pyroclastic flows formed by lava dome collapse in Soufriere Hills volcano, Montserrat (Baxter et al.,1999). These new evidence demonstrated that there would probably have the lava dome collapse eruptions in the TVG in the last 6 kyrs. The result in this paper also sustained that the landslide caused by the weak phreatic eruption within the last 6000 yrs in the TVG (Belousov et al., 2010). It must further be noted that an efficient program of the volcanic hazard reduction should be practiced for the metropolitan Taipei and suburban area.

  17. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  18. Monitoring lava dome changes by means of differential DEMs from TanDEM-X interferometry: Examples from Merapi, Indonesia and Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Kubanek, J.; Westerhaus, M.; Heck, B.

    2013-12-01

    Estimating the amount of erupted material during a volcanic crisis is one of the major challenges in volcano research. One way to do this and to discriminate between juvenile and non-juvenile fraction is to assess topographic changes before and after an eruption while using area-wide 3D data. LiDAR or other airborne systems may be a good source, but the recording fails when clouds due to volcanic activity obstruct the sight. In addition, costs as well as logistics are high for local observatories. When dealing with dome-building volcanoes, acquiring the data gets further complicated. As the volcano dome can change rapidly in active phases, it is nearly impossible to collect data at the right time. However, when dealing with gross volume change estimates, at least two data sets - taken directly before and after the eruption - are essential. The innovative German Earth observation mission TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is of great importance to overcome some of these problems. The two almost identical radar satellites TerraSAR-X and TanDEM-X fly in a close formation, thus recording images of the same place on the Earth surface at the same time (bistatic mode). As the radar signal penetrates clouds, digital elevation models (DEMs) of the area of investigation can be generated without problems even with cloud cover. A time series analysis of the differential DEMs therefore opens the possibility to assess volume changes at active lava domes. We choose Merapi in Indonesia and Volcán de Colima in Mexico as test sites. Both volcanoes reside in a state of long term effusive eruption, interrupted every few years by phases of dome destruction, generation of pyroclastic flows and deposition of volcanic material. The availability of extensive ground truth data for both test sites further enables to validate the spaceborne data and results. Here, we analyze lava dome changes due to the hazardous Merapi 2010 eruption. We show a series of DEMs

  19. Venus steep-sided domes: Relationships between geological associations and possible petrogenetic models

    NASA Technical Reports Server (NTRS)

    Pavri, B.; Head, James W., III

    1992-01-01

    Venus domes are characterized by steep sides, a circular shape, and a relatively flat summit area. In addition, they are orders of magnitude larger in volume and have a lower height/diameter ratio than terrestrial silicic lava domes. The morphology of the domes is consistent with formation by lava with a high apparent viscosity. Twenty percent of the domes are located in or near tessera (highly deformed highlands), while most other (62 percent) are located in and near coronae (circular deformational features thought to represent local mantle upwelling). These geological associations provide evidence for mechanisms of petrogenesis and several of these models are found to be plausible: remelting of basaltic or evolved crust, differentiation of basaltic melts, and volatile enhancement and eruption of basaltic foams. Hess and Head have shown that the full range of magma compositions existing on the Earth is plausible under various environmental conditions on Venus. Most of the Venera and Vego lander compostional data are consistent with tholeiitic basalt; however, evidence for evolved magmas was provided by Venera 8 data consistent with a quartz monzonite composition. Pieters et al. have examined the color of the Venus surface from Venera lander images and interpret the surface there to be oxidized. Preliminary modeling of dome growth has provided some interpretations of lava rheology. Viscosity values obtained from these models range from 10(exp 14) - 10(exp 17) pa*s, and the yield strength has been calculated to be between 10(exp 4) and 10(exp 6) Pa, consistent with terrestrial silicic rocks. The apparent high viscosity of the dome lavas suggests that the domes have a silicic composition or must augment their viscosity with increased visicularity or crystal content. Sixty-two percent of the Venus domes are associated with coronae, circular features that have been proposed as sites of mantle upwelling, and 20 percent of the domes are located near tessera, relatively

  20. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    USGS Publications Warehouse

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  1. Hot pressing in conduit faults during lava dome extrusion: Insights from Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Ryan, Amy G.; Friedlander, Elizabeth A.; Russell, James K.; Heap, Michael J.; Kennedy, Lori A.

    2018-01-01

    Rhyodacitic volcanoes such as Mount St. Helens (MSH), Soufrière Hills, Mount Unzen and Mount Pelée erupt spines mantled by layers of magma-derived cataclasite and fault gouge. MSH produced seven lava spines from 2004-2008 composed of low-porosity, compositionally uniform, crystalline dacite. Dome extrusion was attended by continuous 'drumbeat' seismicity, derived from faulting along the conduit margin at 0.5-1 km depth, and evidenced by the enveloping gouge layers. We describe the properties of the gouge-derived fault rocks, including laboratory measurements of porosity and permeability. The gouge varies from unconsolidated powder to lithified low-porosity low-permeability fault rocks. We reconstruct the subsurface ascent of the MSH magma using published field observations and create a model that reconciles the diverse properties of the gouge with conditions in the conduit during ascent (i.e. velocity, temperature). We show lithification of the gouge to be driven by 'hot pressing' processes, wherein the combination of elevated temperature, confining pressure and dwell-time cause densification and solid-state sintering of the comminuted, crystal-rich (glass-poor) gouge. The degree of gouge lithification corresponds with residence time in the conduit such that well-lithified materials reflect extended times in the subsurface due to slower ascent rates. With this insight, we suggest that gouge competence can be used as a first-order estimate of lava ascent rates. Furthermore we posit gouge lithification, which reduces porosity and permeability, inhibits volcanic outgassing thereby increasing the potential for explosive events at spine-producing volcanoes.

  2. Lava emplacements at Shiveluch volcano (Kamchatka) from June 2011 to September 2014 observed by TanDEM-X SAR-Interferometry

    NASA Astrophysics Data System (ADS)

    Heck, Alexandra; Kubanek, Julia; Westerhaus, Malte; Gottschämmer, Ellen; Heck, Bernhard; Wenzel, Friedemann

    2016-04-01

    As part of the Ring of Fire, Shiveluch volcano is one of the largest and most active volcanoes on Kamchatka Peninsula. During the Holocene, only the southern part of the Shiveluch massive was active. Since the last Plinian eruption in 1964, the activity of Shiveluch is characterized by periods of dome growth and explosive eruptions. The recent active phase began in 1999 and continues until today. Due to the special conditions at active volcanoes, such as smoke development, danger of explosions or lava flows, as well as poor weather conditions and inaccessible area, it is difficult to observe the interaction between dome growth, dome destruction, and explosive eruptions in regular intervals. Consequently, a reconstruction of the eruption processes is hardly possible, though important for a better understanding of the eruption mechanism as well as for hazard forecast and risk assessment. A new approach is provided by the bistatic radar data acquired by the TanDEM-X satellite mission. This mission is composed of two nearly identical satellites, TerraSAR-X and TanDEM-X, flying in a close helix formation. On one hand, the radar signals penetrate clouds and partially vegetation and snow considering the average wavelength of about 3.1 cm. On the other hand, in comparison with conventional InSAR methods, the bistatic radar mode has the advantage that there are no difficulties due to temporal decorrelation. By interferometric evaluation of the simultaneously recorded SAR images, it is possible to calculate high-resolution digital elevation models (DEMs) of Shiveluch volcano and its surroundings. Furthermore, the short recurrence interval of 11 days allows to generate time series of DEMs, with which finally volumetric changes of the dome and of lava flows can be determined, as well as lava effusion rates. Here, this method is used at Shiveluch volcano based on data acquired between June 2011 and September 2014. Although Shiveluch has a fissured topography with steep slopes

  3. Newly Discovered Ring-Moat Dome Structures in the Lunar Maria: Possible Origins and Implications

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Head, James W.; Basilevsky, Alexander T.; Bugiolacchi, Roberto; Komatsu, Goro; Wilson, Lionel; Fa, Wenzhe; Zhu, Meng-Hua

    2017-09-01

    We report on a newly discovered morphological feature on the lunar surface, here named Ring-Moat Dome Structure (RMDS). These low domes (a few meters to 20 m height with slopes <5°) are typically surrounded by narrow annular depressions or moats. We mapped about 2,600 RMDSs in the lunar maria with diameters ranging from tens to hundreds of meters. Four candidate hypotheses for their origin involving volcanism are considered. We currently favor a mechanism for the formation of the RMDS related to modification of the initial lava flows through inflated flow squeeze-ups and/or extrusion of magmatic foams below a cooling lava flow surface. These newly discovered features provide new insights into the nature of emplacement of lunar lava flows, suggesting that in the waning stages of a dike emplacement event, magmatic foams can be produced, extrude to the surface as the dike closes, and break through the upper lava flow thermal boundary layer (crust) to form foam mounds and surrounding moats.

  4. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  5. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  6. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within <1 km of the surface. The term "rigidification" refers to the point at which crystallization ends, vesicles are preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad

  7. Anatomy of a lava dome using muon radiography and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lenat, J.

    2011-12-01

    For the TOMUVOL Collaboration Previous works (e.g. Tanaka et al., 2008) have demonstrated the capacity of muon radiography techniques to image the internal structure of volcanoes. The method is based on the attenuation of the flux of high energy atmospheric muons through a volcanic edifice, which is measured by a muon telescope installed at some distance from the volcano. The telescope is composed of three parallel matrices of detectors in order to record the angle of incidence of the muons. The aperture of the telescope and its resolution are determined by the distance between the matrices, their surface and their segmentation. TOMUVOL is a project, involving astroparticle and particle physicists and volcanologists, aimed at developing muon tomography of volcanoes. The ultimate goal is to construct autonomous, portable, remote controlled muon telescopes to study and monitor active volcanoes. A first experiment has been carried out on a large, 11000-year-old, trachytic dome, the Puy de Dôme, located in the French Central Massif. The telescope system is derived from particle physics experiments. The sensors are glass resistive plate chambers. The telescope has two 1 m2 and one 1/6 m2 planes. It is located 2 km away from the summit of Puy de Dôme (elevation 1465 m), at 868 m in elevation, Signals have been accumulated during several months. A high resolution LiDAR digital terrain model has been used in computing a density model of the dome, averaged along the path of the muons through the dome. In parallel, an electrical resistivity section of the dome has been obtained using a long (2.2 km) line of electrodes. The internal structure of the dome is thus described with two physical parameters (density and resistivity). This allows us to analyse jointly the results of the two types of measurements. At the time of writing, a new muon radiography campaign is being carried out from a different viewpoint. This is the first step towards a tomographic image of the volcano

  8. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala

    USGS Publications Warehouse

    Harris, Andrew J. L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold

    2006-01-01

    Persistent lava extrusion at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream of the volcano. We present a simple method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to map impacted zones. Application of this technique to a time series of 21 TM images acquired between 1987 and 2000 allow us to map, measure, and track temporal and spatial variations in the area of lahar impact and river aggradation.In the proximal zone of the fluvial system, these data show a positive correlation between extrusion rate at Santiaguito (E), aggradation area 12 months later (Aprox), and rainfall during the intervening 12 months (Rain12): Aprox=3.92+0.50 E+0.31 ln(Rain12) (r2=0.79). This describes a situation in which an increase in sediment supply (extrusion rate) and/or a means to mobilize this sediment (rainfall) results in an increase in lahar activity (aggraded area). Across the medial zone, we find a positive correlation between extrusion rate and/or area of proximal aggradation and medial aggradation area (Amed): Amed=18.84-0.05 Aprox - 6.15 Rain12 (r2=0.85). Here the correlation between rainfall and aggradation area is negative. This describes a situation in which increased sediment supply results in an increase in lahar activity but, because it is the zone of transport, an increase in rainfall serves to increase the transport efficiency of rivers flowing through this zone. Thus, increased rainfall flushes the medial zone of sediment.These quantitative data allow us to empirically define the links between sediment supply and mobilization in this fluvial system and to derive predictive relationships that use rainfall and extrusion rates to estimate aggradation area 12 months hence.

  9. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  10. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  11. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  12. Crystallization conditions and petrogenesis of the lava dome from the ˜900 years BP eruption of Cerro Machín Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Laeger, Kathrin; Halama, Ralf; Hansteen, Thor; Savov, Ivan P.; Murcia, Hugo F.; Cortés, Gloria P.; Garbe-Schönberg, Dieter

    2013-12-01

    The last known eruption at Cerro Machín Volcano (CMV) in the Central Cordillera of Colombia occurred ˜900 years BP and ended with the formation of a dacitic lava dome. The dome rocks contain both normally and reversely zoned plagioclase (An24-54), unzoned and reversely zoned amphiboles of dominantly tschermakite and pargasite/magnesio-hastingsite composition and olivine xenocrysts (Fo = 85-88) with amphibole/clinopyroxene overgrowth, all suggesting interaction with mafic magma at depth. Plagioclase additionally exhibits complex oscillatory zoning patterns reflecting repeated replenishment, fractionation and changes in intrinsic conditions in the magma reservoir. Unzoned amphiboles and cores of the reversely zoned amphiboles give identical crystallization conditions of 910 ± 30 °C and 360 ± 70 MPa, corresponding to a depth of about 13 ± 2 km, at moderately oxidized conditions (f = +0.5 ± 0.2 ΔNNO). The water content in the melt, calculated based on amphibole chemistry, is 7.1 ± 0.4 wt.%. Rims of the reversely zoned amphiboles are relatively enriched in MgO and yield higher crystallization temperatures (T = 970 ± 25 °C), slightly lower melt H2O contents (6.1 ± 0.7 wt.%) and overlapping pressures (410 ± 100 MPa). We suggest that these rims crystallized following an influx of mafic melt into a resident magma reservoir at mid-crustal depths, further supported by the occurrence of xenocrystic olivine. Crystallization of biotite, albite-rich plagioclase and quartz occurred at comparatively low temperatures (probably <800 °C) during early stages of ascent or storage at shallower levels. Based on amphibole mineral chemistry, the felsic resident melt had a rhyolitic composition (71 ± 2 wt.% SiO2), whereas the hybrid magma, from which the amphibole rims crystallized, was dacitic (64 ± 3 wt.% SiO2). The bulk rock chemistry of the CMV lava dome dacites is homogenous. They have elevated (La/Nb)N ratios of 3.8-4.5, typical for convergent margin magmas, and display

  13. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    NASA Astrophysics Data System (ADS)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  14. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  15. A Radar Survey of Lunar Dome Fields

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Bruce A.; Hawke, B. Ray; Bussey, Ben

    2011-01-01

    The near side of the Moon has several areas with a high concentration of volcanic domes. These low relief structures are considerably different in morphology from terrestrial cinder cones, and some of the domes may be similar to some terrestrial shields formed through Hawaiian or Strombolian eruptions from a central pipe vent or small fissure [1]. The domes are evidence that some volcanic lavas were more viscous than the mare flood basalts that make up most of the lunar volcanic flows. It is still not known what types of volcanism lead to the creation of specific domes, or how much dome formation may have varied across the Moon. Prior work has shown that some domes have unusual radar polarization characteristics that may indicate a surface or subsurface structure that is different from that of other domes. Such differences might result from different styles of late-stage volcanism for some of the domes, or possibly from differences in how the erupted materials were altered over time (e.g. by subsequent volcanism or nearby cratering events). For example, many of the domes in the Marius Hills region have high circular polarization ratios (CPRs) in S-band (12.6 cm wavelength) and/or P-band (70 cm wavelength) radar data [2]. The high CPRs are indicative of rough surfaces, and suggest that these domes may have been built from overlapping blocky flows that in some cases have been covered by meters of regolith [2, 3]. In other cases, domes have low circular polarization ratios indicative of smooth, rock-poor surfaces or possibly pyroclastics. The 12 km diameter dome Manilius 1 in Mare Vaporum [1], has a CPR value of 0.20, which is significantly below values for the surrounding basalts [4]. To better understand the range of surface properties and styles of volcanism associated with the lunar domes, we are currently surveying lunar dome fields including the Marius Hills, Cauchy/Jansen dome field, the Gruithuisen domes, and domes near Hortensius and Vitruvius.

  16. The Rise and Fall of the Soufriere Hills Volcano Lava Dome, Montserrat, BWI, July 2001-July 2003: Science, Hazards, and Volatile Public Perceptions

    NASA Astrophysics Data System (ADS)

    Dunkley, P.; Voight, B.; Edmonds, M.; Herd, R.; Strutt, M.; Thompson, G.; Bass, V.; Aspinall, W. P.; Neuberg, J.; Sparks, R.; Mattioli, G.; Hidayat, D.; Elsworth, D.; Widiwijayanti, C.

    2003-12-01

    Days after the major collapse (45 x 106 m3) of the eastern flank of the lava dome on 29 July 2001, new dome growth was observed within the 200-m deep collapse amphitheatre. accompanied by cyclic seismicity. By January 2002 the summit was broad with an altitude of 990m. A switch in dome activity occurred in April, but Growth nearly stagnated in June and part of July, with the top of the extrusion lobe at 1048m. but GPS monitoring suggested that the magma reservoir continued to inflate, and growth resumed in late July. In August, a lobe grew toward the north and buried the northern buttress and an important drainage channel that formerly led to the east. One of the regular six-monthly meetings of the Risk Assessment Panel (RAP) took place on 3-4 Sept 02 and concluded that if a NW switch in dome growth were to occur, the margins of the Belham Valley on the west could be at high risk; a flow and surge hazard line was provided to officials, crossing the populated area near Salem. Shortly after the RAP Report was finalized, a switch in growth direction toward the northwest in fact occurred. On 7 Oct, the RAP were asked to re-appraise Belham Valley risks given the altered but not unanticipated circumstances; they judged that a potential existed for a hazardous flow down Belham Valley, although RAP emphasized that their assessment did not predict that a large flow would occur soon, nor in that sector. On 8 Oct the Governor ordered an evacuation of an exclusion zone defined by the RAP's hazard line as adjusted to permit administrative control, and the boundary remained in force until Aug 03, with growing public discontent toward the Governor's exercise of Emergency Powers, and toward MVO, as expressed by a caustic vocal minority with provocative exacerbation by the local newspaper and some politicians. Meanwhile, dome growth continued with some switches in direction, a collapse of 5 x 106 m3 occurred eastward on 8 Dec to Spanish Point, and pyroclastic flows occurred in

  17. Hidden Outgassing Dynamics at Kilauea (Hawaii) Lava Lake

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Orr, T. R.; Houghton, B. F.; Scarlato, P.; Patrick, M. R.

    2014-12-01

    Lava lakes offer unique opportunities for understanding how magmatic volatiles physically escape from low-viscosity, vesicular magma in open-vent conditions, a process often referred to as magma outgassing. Large-scale lava convection movements and meter-scale bubble explosions, sometimes triggered by rock falls, are acknowledged outgassing processes but may not be the only ones. In 2013 we used high-frequency (50-500 Hz) thermal and visible imaging to investigate the short-timescale dynamics of the currently active Halema`uma`u lava lake. At that time, besides the dominant release of large bubbles, three types of peculiar outgassing features were observed on the lava lake surface. The first, diffusely observed throughout the observation experiment, consisted of prolonged (up to seconds) gas venting from 'spot vents'. These vents appeared to open and close without the ejection of material or bubble bursting, and were the site of hot gas emission. Spot vents were located both between and inside cooling plates, and followed the general circulation pattern together with the rest of the lava lake surface. The second feature, observed only once, consisted of the transient wobbling of the whole lava lake surface. This wobbling, with a wavelength of meters to tens of meters, was not related to any external trigger, and dampened soon without apparent consequences on the other lake dynamics. Finally, we observed large (meters) doming areas of the lake surface randomly fluctuating over seconds to minutes. These areas were either stationary or moved independently of the general lake surface circulation, and usually were not affected by other lake surface features (e.g., cooling plate boundaries). These three features, though trivial for the overall lake outgassing, testify that the lava lake has a complex shallow subsurface architecture, in which permeable channels and gas pockets act independently of the more common bubble bursts.

  18. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  19. A Volume Flux Approach to Cryolava Dome Emplacement on Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Fagents, Sarah A.; Hurford, Terry A.; Prockter, Louise M.

    2017-01-01

    We previously modeled a subset of domes on Europa with morphologies consistent with emplacement by viscous extrusions of cryolava. These models assumed instantaneous emplacement of a fixed volume of fluid onto the surface, followed by relaxation to form domes. However, this approach only allowed for the investigation of late-stage eruptive processes far from the vent and provided little insight into how cryolavas arrived at the surface. Consideration of dome emplacement as cryolavas erupt at the surface is therefore pertinent. A volume flux approach, in which lava erupts from the vent at a constant rate, was successfully applied to the formation of steep-sided volcanic domes on Venus. These domes are believed to have formed in the same manner as candi-date cryolava domes on Europa. In order to gain a more complete understanding of the potential for the emplacement of Europa domes via extrusive volcanism, we have applied this new volume flux approach to the formation of putative cryovolcanic domes on Europa. Assuming as in that europan cryolavas are briny, aqueous solutions which may or may not contain some ice crystal fraction, we present the results of this modeling and explore theories for the formation of low-albedo moats that surround some domes.

  20. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U-Pb and 40Ar/39Ar age determinations

    NASA Astrophysics Data System (ADS)

    Wilson, Colin J. N.; Stelten, Mark E.; Lowenstern, Jacob B.

    2018-06-01

    The youngest major caldera-forming event at Yellowstone was the 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U-Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source vent lay nearby (< 3 km) for some of the tuffs

  1. Thermal photogrammetric imaging: A new technique for monitoring dome eruptions

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Varley, Nick; James, Mike R.

    2017-05-01

    Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models from photographs and can form a valuable component of hazard monitoring at active volcanic domes. However, model generation from visible imagery can be prevented due to poor lighting conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a SfM workflow to mitigate these issues and provide more continuous time-series data than visible-light equivalents. We demonstrate our methodology by producing georeferenced photogrammetric models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima (Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, despite being less detailed than their DSLR counterparts, the thermal models are more than adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived using the DSLR. Significantly, we were able to construct thermal models in situations where degassing and poor lighting prevented the construction of models from DSLR imagery, providing substantially better data continuity than would have otherwise been possible. We conclude that thermal photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing associated volcanic risks.

  2. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  3. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a < 250-year-old lava dome exposed at the summit of Mt. Taranaki in the western North Island of New Zealand. We also examined samples from 400 to 600-year-old block-and-ash flow deposits, formed by the collapse of earlier, short-lived domes extruded at the same vent. Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (< 41 MPa) and dominantly ductile failure, whereas lower porosity rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  4. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    USGS Publications Warehouse

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  5. Deformation and seismic precursors to dome-collapse and fountain-collapse nuées ardentes at Merapi Volcano, Java, Indonesia, 1994-1998

    USGS Publications Warehouse

    Voight, B.; Young, K.D.; Hidayat, D.; ,; Purbawinata, M.A.; Ratdomopurbo, Antonius; ,; ,; Sayudi, D.S.; LaHusen, R.; Marso, J.; Murray, T.L.; Dejean, M.; Iguchi, M.; Ishihara, K.

    2000-01-01

    Following the eruption of January 1992, episodes of lava dome growth accompanied by generation of dome-collapse nuées ardentes occurred in 1994–1998. In addition, nuées ardentes were generated by fountain-collapse in January 1997, and the 1998 events also suggest an explosive component. Significant tilt and seismic precursors on varying time scales preceded these events. Deformation about the summit has been detected by electronic tiltmeters since November 1992, with inflation corresponding generally to lava dome growth, and deflation (or decreased inflation) corresponding to loss of dome mass. Strong short-term (days to weeks) accelerations in tilt rate and seismicity occurred prior to the major nuées ardentes episodes, apart from those of 22 November 1994 which were preceded by steadily increasing tilt for over 200 days but lacked short-term precursors. Because of the combination of populated hazardous areas and the lack of an issued warning, about 100 casualties occurred in 1994. In contrast, the strong precursors in 1997 and 1998 provided advance warning to observatory scientists, enabled the stepped raising of alert levels, and aided hazard management. As a result of these factors, but also the fortunate fact that the large nuées ardentes did not quite descend into populated areas, no casualties occurred. The nuée ardente episode of 1994 is interpreted as purely due to gravitational collapse, whereas those of 1997 and 1998 were influenced by gas-pressurization of the lava dome.

  6. Contrasting perspectives on the Lava Creek Tuff eruption, Yellowstone, from new U–Pb and 40Ar/39Ar age determinations

    USGS Publications Warehouse

    Wilson, Colin J. N.; Stelten, Mark; Lowenstern, Jacob B.

    2018-01-01

    The youngest major caldera-forming event at Yellowstone was the ~ 630-ka eruption of the Lava Creek Tuff. The tuff as mapped consists of two major ignimbrite packages (members A and B), linked to widespread coeval fall deposits and formation of the Yellowstone Caldera. Subsequent activity included emplacement of numerous rhyolite flows and domes, and development of two structurally resurgent domes (Mallard Lake and Sour Creek) that accommodate strain due to continual uplift/subsidence cycles. Uplifted lithologies previously mapped on and adjacent to Sour Creek dome were thought to include the ~ 2.08-Ma Huckleberry Ridge Tuff, cropping out beneath Lava Creek Tuff members A and B. Mapped outcrops of this Huckleberry Ridge Tuff material were sampled as welded ignimbrite (sample YR345) on Sour Creek dome, and at nearby Bog Creek as welded ignimbrite (YR311) underlain by an indurated lithic lag breccia containing blocks of another welded ignimbrite (YR324). Zircon near-rim U–Pb analyses from these samples yield weighted mean ages of 661 ± 13 ka (YR345: 95% confidence), 655 ± 11 ka (YR311), and 664 ± 15 ka (YR324) (combined weighted mean of 658.8 ± 6.6 ka). We also studied two samples of ignimbrite previously mapped as Huckleberry Ridge Tuff on the northeastern perimeter of the Yellowstone Caldera, ~ 12 km ENE of Sour Creek dome. Sanidines from these samples yield 40Ar/39Ar age estimates of 634.5 ± 6.8 ka (8YC-358) and 630.9 ± 4.1 ka (8YC-359). These age data show that all these units represent previously unrecognized parts of the Lava Creek Tuff and do not have any relationship to the Huckleberry Ridge Tuff. Our observations and data imply that the Lava Creek eruption was more complex than is currently assumed, incorporating two tuff units additional to those currently mapped, and which themselves are separated by a time break sufficient for cooling and some reworking. The presence of a lag breccia suggests that a source

  7. Low-Cost Photogrammetric Technique Used to Measure Dome Growth at Mount St. Helens Volcano, 2007-2007

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.

    2007-12-01

    We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields

  8. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    NASA Astrophysics Data System (ADS)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  9. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  10. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.; McEwen, A.S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 ??m) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale. ?? 2011 by the American Geophysical Union.

  11. Linking Seismicity at Depth to the Mechanics of a Lava Dome Failure - a Forecasting Approach

    NASA Astrophysics Data System (ADS)

    Salvage, R. O.; Neuberg, J. W.; Murphy, W.

    2014-12-01

    Soufriere Hills volcano (SHV), Montserrat has been in a state of ongoing unrest since 1995. Prior to eruptions, an increase in the number of seismic events has been observed. We use the Material Failure Law (MFL) (Voight, 1988) to investigate how an accelerating number of low frequency seismic events are related to the timing of a large scale dome collapse in June 1997. We show that although the forecasted timing of a dome collapse may coincide with the known timing, the accuracy of the application of the MFL to the data is poor. Using a cross correlation technique we show how characterising seismicity into similar waveform "families'' allows us to focus on a single process at depth and improve the reliability of our forecast. A number of families are investigated to assess their relative importance. We show that despite the timing of a forecasted dome collapse ranging between several hours of the known timing of collapse, each of the families produces a better forecast in terms of fit to the seismic acceleration data than when using all low frequency seismicity. In addition, we investigate the stability of such families between major dome collapses (1997 and 2003), assessing their potential for use in real-time forecasting. Initial application of Grey's Incidence Analysis suggests that a key parameter influencing the potential for a large scale slumping on the dome of SHV is the rate of low frequency seismicity associated with magma movement and dome growth. We undertook numerical modelling of an andesitic dome with a hydrothermally altered layer down to 800m. The geometry of the dome is based on SHV prior to the collapse of 2003. We show that a critical instability is reached once slope angles exceed 25°, corresponding to a summit height of just over 1100m a.s.l.. The geometry of failure is in close agreement with the identified failure plane suggesting that the input mechanical properties are broadly consistent with reality. We are therefore able to compare

  12. A history of semi-active laser dome and window materials

    NASA Astrophysics Data System (ADS)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  13. What Is the Emissivity of Active Basaltic Lava Flows?

    NASA Astrophysics Data System (ADS)

    Lee, R.; Ramsey, M. S.

    2016-12-01

    The emissivity of molten lava surfaces has been a topic of study for some time because it directly affects the cooling efficiency of the flow, thermo-rheological models of flow evolution, as well as the accurate interpretation of the bulk composition. Despite past studies, it remains unclear whether the emissivity of molten lava truly is different than that of the cooled surface. Measuring emissivity on flows is complicated with errors arising due to changes in the surface glass content and vesicularity, as well as mixing of multiple temperatures, as the lava cools. We therefore see determination of correct surface emissivity and its change with time to be of great importance to anyone working with thermal infrared (TIR) data or modeling of lava flows. A series of high-resolution melting experiments on basalts has been conducted using a novel micro-furnace and TIR spectrometer, producing high-resolution accurate emissivity measurements at known temperatures transitioning from molten to solid state. These results are compared to data from active analog and natural lava surfaces acquired from a newly-developed field-based multispectral camera system, which is capable of generating lower-resolution emissivity spectra. We present the results of these comparative studies conducted at the Syracuse University Lava Project facility in order to test and calibrate the camera system under controlled conditions. The facility conducts large-scale pours of degassed Palisades Sill basalt, an acceptable analog for natural basalt. In addition, several samples of the analog lava were re-melted in the micro-furnace/spectrometer setup to provide a direct comparison of higher and lower resolution IR spectral data. These results, together with data from the Kilauea lava lake, have allowed us to calibrate and fully test the efficacy of this camera system in a field environment for future deployments as well as provide a means of constraining TIR data from satellite observations.

  14. Ubinas Volcano Activity in Peruvian Andes

    NASA Image and Video Library

    2014-05-01

    On April 28, 2014, NASA Terra spacecraft spotted signs of activity at Ubinas volcano in the Peruvian Andes. The appearance of a new lava dome in March 2014 and frequent ash emissions are signs of increasing activity at this volcano.

  15. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    USGS Publications Warehouse

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  16. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    NASA Astrophysics Data System (ADS)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  17. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  18. Kaumana lava tube

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1974-01-01

    The entrance to Kaumana Lava Tube is in a picnic ground next to Highway 20 (Kaumana Drive) about 6.5 km southwest of Hilo. The area is passed on the way to the Kona Coast via the Saddle Road and is identified by a Hawaii Visitors Bureau sign. Although it is not the largest lava tube in the islands, Kaumana Lava Tube is an interesting geological formation, displaying many of the features typical of lava tube interiors. It is accessible, relatively easy to walk through, and is in an excellent state of preservation. The tube developed in a historic lava flow (1881, from Mauna Loa), and many aspects of lava tube activity are observed.

  19. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  20. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  1. The Cordón Caulle rhyolite lava flow: an exceptional case study

    NASA Astrophysics Data System (ADS)

    Magnall, N.; James, M. R.; Tuffen, H.; Schipper, C. I.; Castro, J. M.; Vye-Brown, C.; Davies, A. G.; Farquharson, J.

    2017-12-01

    Rhyolites comprise the most silica-rich lavas, and rhyolitic lava flows can reach tens of kilometres in length. Interpretations of ancient and historic rhyolite lava flows suggest protracted emplacement due to relatively slow cooling of these massive bodies and have identified late stage events such as the formation of pumice diapirs. However, our understanding of emplacement processes has long remained limited by the lack of observations from an active flow. The 2011-2012 eruption of Puyehue-Cordón Caulle in southern Chile resulted in the first scientifically observed emplacement of an extensive (0.4 km3, 5 km long), crystal-poor rhyolite lava flow and has provided an unparalleled opportunity to further our understanding of flow dynamics. Here, we summarise our work on this lava flow, which has combined satellite and field observations, microstructural characterisation of samples, and numerical modelling. Early observations showed that advance of the 40 m thick flow stalled after 150 days of eruption, due to interactions with topographic barriers and the formation of a retarding surface crust. Following this, numerous breakouts formed from the flow fronts and margins, attaining lengths of ≤2 km. Microstructural characterisation supports the model that the breakouts formed due to continued lava supply to the stalled portions of the flow front along preferential thermal pathways, coupled with late-stage vesiculation of the flow core. This led to pressure increase, inflation, and eventual rupturing of the surface crust. These breakouts have been classified into four morphological types (domed, petaloid, rubbly, and cleft split) that reflect processes of advance and inflation. Some breakouts continued to advance and form after the eruption ended, with numerical modelling and direct observations suggesting mobility of the lava years after the eruption ended. Unlike other rhyolite flows, pumice diapirs were not observed at Cordón Caulle, instead late stage volatile

  2. Volcanic gas emissions during active dome growth at Mount Cleveland, Alaska, August 2015

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Lyons, John; Kelly, Peter; Schneider, David; Wallace, Kristi; Wessels, Rick

    2016-04-01

    Volcanic gas emissions and chemistry data were measured for the first time at Mount Cleveland (1730 m) in the Central Aleutian arc, Alaska, on August 14-15, 2015 as part of the NSF-GeoPRISMS initiative, and co-funded by the Deep Carbon Observatory (DCO) and the USGS Alaska Volcano Observatory. The measurements were made in the month following two explosive events (July 21 and August 7, 2015) that destroyed a small dome (˜50x85 m), which had experienced episodic growth in the crater since November, 2014. These explosions resulted in the elevation of the aviation color code and alert level from Yellow/Advisory to Orange/Watch on July 21, 2015. Between the November, 2014 and July, 2015 dome-destroying explosions, the volcano experienced: (1) frequent periods of elevated surface temperatures in the summit region (based on Mid-IR satellite observations), (2) limited volcano-seismic tremor, (3) visible degassing as recorded in webcam images with occasionally robust plumes, and (4) at least one aseismic volcanic event that deposited small amounts of ash on the upper flanks of the volcano (detected by infrasound, observed visually and in Landsat 8 images). Intermittent plumes were also sometimes detectable up to 60 km downwind in Mid-IR satellite images, but this was not typical. Lava extrusion resumed following the explosion as indicated in satellite data by highly elevated Mid-IR surface temperatures, but was not identifiable in seismic data. By early-mid August, 2015, a new dome growing in the summit crater had reached 80 m across with temperatures of 550-600 C as measured on August 4 with a helicopter-borne thermal IR camera. A semitransparent plume extended several kilometers downwind of the volcano during the field campaign. A helicopter instrumented with an upward-looking UV spectrometer (mini DOAS) and a Multi-GAS was used to measure SO2 emission rates and in situ mixing ratios of H2O, CO2, SO2, and H2S in the plume. On August 14 and 15, 2015, a total of 14

  3. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  4. Observations on lava, snowpack and their interactions during the 2012-13 Tolbachik eruption, Klyuchevskoy Group, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Melnikov, Dmitry

    2015-12-01

    Observations made during January and April 2013 show that interactions between lava flows and snowpack during the 2012-13 Tolbachik fissure eruption in Kamchatka, Russia, were controlled by different styles of emplacement and flow velocities. `A`a lava flows and sheet lava flows generally moved on top of the snowpack with few immediate signs of interaction besides localized steaming. However, lavas melted through underlying snowpack 1-4 m thick within 12 to 24 h, and melt water flowed episodically from the beneath flows. Pahoehoe lava lobes had lower velocities and locally moved beneath/within the snowpack; even there the snow melting was limited. Snowpack responses were physical, including compressional buckling and doming, and thermal, including partial and complete melting. Maximum lava temperatures were up to 1355 K (1082 °C; type K thermal probes), and maximum measured meltwater temperatures were 335 K (62.7 °C). Theoretical estimates for rates of rapid (e.g., radiative) and slower (conductive) snowmelt are consistent with field observations showing that lava advance was fast enough for `a`a and sheet flows to move on top of the snowpack. At least two styles of physical interactions between lava flows and snowpack observed at Tolbachik have not been previously reported: migration of lava flows beneath the snowpack, and localized phreatomagmatic explosions caused by snowpack failure beneath lava. The distinctive morphologies of sub-snowpack lava flows have a high preservation potential and can be used to document snowpack emplacement during eruptions.

  5. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  6. Normal Fault and Tensile Fissure Network Development Around an Off-Axis Silica-Rich Volcanic Dome of the Alarcon Rise, Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Contreras, J.; Vega-Ramirez, L. A.; Spelz, R. M.; Portner, R. A.; Clague, D. A.

    2017-12-01

    The Monterey Bay Aquarium Research Institute collected in 2012 and 2015 high-resolution (1 m horizontal/0.2 m vertical) bathymetry data in the southern Gulf of California using an autonomous underwater vehicle (AUV) that bring to light an extensive array of normal faults and fissures cutting lava domes and smaller volcanic cones, pillow mounds and lava sheet flows of variable compositions along the Alarcon rise. Active faulting and fissure growth in the transition between the neovolcanic zone and adjacent axial summit trough, in a 6.9 x 1.5 km2 area at the NE segment of the rise, developed at some point between 6 Ka B.P. (14C) and the present time. We performed a population analysis of fracture networks imaged by the AUV that reveal contrasting scaling attributes between mode I (opening) and mode III (shearing) extensional structures. Opening-mode fractures are spatially constrained to narrow bands 400 m wide. The youngest set developed on pillow lavas 800 yr old (14C) of the neovolcanic zone. Regions of normal fault propagation by anti-plane shearing alternate with the tensile-fracture growth areas. This provides evidence for permutations in space of the stress field across the ridge axis. Moreover, fault-length frequency plots for both fracture networks show that opening-mode fractures are best fit using an exponential relationship whereas normal faults are best fit using a power-law relationship. These size distributions indicate tensile fractures rapidly reached a saturated state in which large fractures (102 m) accommodate most of the strain and appear to be constrained to a thin mechanical/thermal layer. Faults, by contrast, have slowly evolved to a state of self-organization characterized by growth by linkage with neighboring faults in the strike direction forming fault arrays with a maximum length of 2km. We also analyzed the development of faults in the vicinity of an off-axis rhyolitic dome. We find that faults have asymmetric, half-restricted slip

  7. Lava-snow interactions at Tolbachik 2012-13 eruption: comparison to recent field observations and experiments

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.

    2013-12-01

    More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While

  8. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less

  9. Mass flux measurements at active lava lakes: Implications for magma recycling

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Flynn, Luke P.; Rothery, David A.; Oppenheimer, Clive; Sherman, Sarah B.

    1999-04-01

    Remotely sensed and field data can be used to estimate heat and mass fluxes at active lava lakes. Here we use a three thermal component pixel model with three bands of Landsat thematic mapper (TM) data to constrain the thermal structure of, and flux from, active lava lakes. Our approach considers that a subpixel lake is surrounded by ground at ambient temperatures and that the surface of the lake is composed of crusted and/or molten material. We then use TM band 6 (10.42-12.42 μm) with bands 3 (0.63-0.69 μm) or 4 (0.76-0.90 μm) and 5 (1.55-1.75 μm) or 7 (2.08-2.35 μm), along with field data (e.g., lava lake area), to place limits on the size and temperature of each thermal component. Previous attempts to achieve this have used two bands of TM data with a two-component thermal model. Using our model results with further field data (e.g., petrological data) for lava lakes at Erebus, Erta 'Ale, and Pu'u 'O'o, we calculate combined radiative and convective fluxes of 11-20, 14-27 and 368-373 MW, respectively. These yield mass fluxes, of 30-76, 44-104 and 1553-2079 kg s-1, respectively. We also identify a hot volcanic feature at Nyiragongo during 1987 from which a combined radiative and convective flux of 0.2-0.6 MW implies a mass flux of 1-2 kg s-1. We use our mass flux estimates to constrain circulation rates in each reservoir-conduit-lake system and consider four models whereby circulation results in intrusion within or beneath the volcano (leading to endogenous or cryptic growth) and/or magma mixing in the reservoir (leading to recycling). We suggest that the presence of lava lakes does not necessarily imply endogenous or cryptic growth: lava lakes could be symptomatic of magma recycling in supraliquidus reservoirs.

  10. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  11. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  12. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  13. Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements

    NASA Technical Reports Server (NTRS)

    Flynn, Luke P.; Mouginis-Mark, Peter J.

    1992-01-01

    A narrow-band spectroradiometer has been used to make nighttime measurements of the Phase 50 eruption of Pu'u O'o, on the East Rift Zone of Kilauea Volcano, Hawaii. On February 19, 1992, a GER spectroradiometer was used to determine the cooling rate of an active lava flow. This instrument collects 12-bit data between 0.35 to 3.0 microns at a spectral resolution of 1-5 nm. Thirteen spectra of a single area on a pahoehoe flow field were collected over a 59 minute period (21:27-22:26 HST) from which the cooling of the lava surface has been investigated. A two-component thermal mixing model (Flynn, 1992) applied to data for the flow immediately on emplacement gave a best-fit crustal temperature of 768 C, a hot component at 1150 C, and a hot radiating area of 3.6 percent of the total area. Over a 52-minute period (within the time interval between flow resurfacings) the lava flow crust cooled by 358 to 410 C at a rate that was as high as 15 C/min. The observations have significance both for satellite observations of active volcanoes and for numerical models of the cooling of lava flows during their emplacement.

  14. Calculated viscosity-distance dependence for some actively flowing lavas

    NASA Technical Reports Server (NTRS)

    Pieri, David

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.

  15. Extrusion rate of the Mount St. Helens lava dome estimated from terrestrial imagery, November 2004-December 2005: Chapter 12 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Major, Jon J.; Kingsbury, Cole G.; Poland, Michael P.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Oblique, terrestrial imagery from a single, fixed-position camera was used to estimate linear extrusion rates during sustained exogenous growth of the Mount St. Helens lava dome from November 2004 through December 2005. During that 14-month period, extrusion rates declined logarithmically from about 8-10 m/d to about 2 m/d. The overall ebbing of effusive output was punctuated, however, by episodes of fluctuating extrusion rates that varied on scales of days to weeks. The overall decline of effusive output and finer scale rate fluctuations correlated approximately with trends in seismicity and deformation. Those correlations portray an extrusion that underwent episodic, broad-scale stick-slip behavior superposed on the finer scale, smaller magnitude stick-slip behavior that has been hypothesized by other researchers to correlate with repetitive, nearly periodic shallow earthquakes.

  16. Lava lake activity at the summit of Kīlauea Volcano in 2016

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian

    2018-04-10

    The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The

  17. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  18. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  19. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    NASA Technical Reports Server (NTRS)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  20. Lava Flow at Kilauea, Hawaii

    NASA Image and Video Library

    2007-08-31

    On July 21, 2007, the world most active volcano, Kilauea on Hawaii Big Island, produced a fissure eruption from the Puu Oo vent, which fed an open lava channel and lava flows toward the east. This image is from NASA Terra satellite.

  1. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  2. Extremely magnetized abyssal lavas erupted in active back-arc of the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Sato, H.; Okino, K.

    2017-12-01

    Although high-amplitude of marine magnetic anomalies have been utilized for understanding for seafloor dynamics, the causal link between intensity of natural remanent magnetization and physical and chemical processes of extrusive rocks are still unclear. In addition, we essentially lack rock magnetic data of arc-back-arc lavas, which potentially provide strong constraints for understanding time- and spatial-dependent diversity of lava magnetization including mid-ocean ridge basalts. Here, we present new rock magnetic data of strongly magnetized basaltic rocks, which rank among the most magnetized in known oceanic basaltic rocks, from active back-arc region of the Okinawa Trough. We analyzed 27 non-oxidized (fresh) basaltic rock samples obtained from the active back-arc volcanoes, located at the segment boundary along back-arc rift. Their natural remanent magnetization ranges 7 A/m to >200 A/m, and has clear nonlinear relationship with both magnetic hysteresis signatures and titanomagnetite amount. The strongly magnetized lavas show large contribution of appropriate amount of SD titanomagnetite grains formed in proper crystal growth environments. The high-temperature thermomagnetic experiments demonstrate reversible curves in both heating and cooling with single Curie temperature. The Curie temperature shows up to 480°C for strongly magnetized lavas, which is much higher than that of mid-ocean ridge basalts mainly containing TM60, indicating that rich Fe and low Ti contents of titanomagnetite grains are main magnetic carrier. These observations clearly demonstrate that intensity of natural remanent magnetization is primarily controlled by cooling rate of lavas and ratio of Fe to Ti of titanomagnetite grains as well as bulk iron contents, with important implications towards marine magnetic anomalies and arc-back-arc volcanism.

  3. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  4. Temporal evolution of magma flow and degassing conditions during dome growth, insights from 2D numerical modeling

    NASA Astrophysics Data System (ADS)

    Chevalier, Laure; Collombet, Marielle; Pinel, Virginie

    2017-03-01

    Understanding magma degassing evolution during an eruption is essential to improving forecasting of effusive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases, inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma porosity and permeability. Magma flow evolution is associated with ground deflation of a few μrad in the near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy flow model is used to study the impact of pressure and permeability conditions on gas flow in the conduit and surrounding rock. We show that dome permeability has almost no influence on magma degassing. However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.

  5. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    USGS Publications Warehouse

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  6. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    NASA Astrophysics Data System (ADS)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  7. Lava tubes - Potential shelters for habitats

    NASA Astrophysics Data System (ADS)

    Horz, F.

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  8. Characteristics and petrology of the effusive-explosive activity of Colima volcano, in the years 2015-2017

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nuñez-Cornu, F. J.; Arreola-Ochoa, L. C.; Suarez, G. B. V.; Carrillo-Gonzalez, D. A.

    2017-12-01

    The Colima volcano, during the years 2015-2017, presented an important effusive and explosive activity, which began in January 2015 with the growth of a dome that was destroyed by explosions, forming pyroclastic flows reaching distances of up to 2 km by the north and south flanks of the volcano. In May a new dome was extruded, forming three thick lava flows along the northern and southern slopes; the extruded volume was approximately 6 million cubic meters, with a rate in 52 days of 1.3 m3/sec. On July 11 merapi flows were formed it flowed through by the ravines of Montegrande and San Antonio, on the south and southwest flank, reaching distances of 10.4 km. The following days the activity had decreased substantially, leaving a crater of 60 m of depth and 270 m of diameter. In February 2016, a small dome occupied the central part of the main crater, and it was until September that an episode of volcanic tremor began, that was associated with its rapid growth, which in 48 hours filled the crater and formed a lava flow that descended by the south slope. By October 2, 2.3 million m3 of lava were extruded, which caused a deflation of the dome. In October 7, the volcano emitted a great amount of gases and steam of water that formed an acid rain that affected forests and crops of the south and southwest slope, causing losses by 1 million dollars. In November, a series of explosions occurred that destroyed two thirds of the dome. In January 2017, the explosive activity increased and again destroyed the dome. Five events were recorded that reached between 3 km and 4 km of height on the top of the volcano, the dispersion of the ash generally went to the northeast, reaching distances of up to 200 km. Currently the volcano is sustaining reduced seismic and fumarole activity. In 2005, 2015 and 2017, the geochemical analysis of major elements such as SiO2 from the ash emitted by the volcano showed an increase from 54.51% to 60.05% and 60.24%, respectively, which was associated

  9. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    In the area south of the Rainier Mesa caldera, surface and subsurface geologic data are combined to interpret the overall thickness of the Calico Hills Formation and the proportion of lava flow lithology across the study area. The formation is at least 500 meters (m) thick and contains the greatest proportion of rhyolite lava flow to the northeast of Yucca Mountain in the lower part of Fortymile Canyon. The formation thins to the south and southwest where it is between 50 and 200 m thick beneath Yucca Mountain and contains no rhyolite lavas. Geologic mapping and field-based correlation of individual lava flows allow for the interpretation of the thickness and extent of specific flows and the location of their source areas. The most extensive flows have widths from 2 to 3 kilometers (km) and lengths of at least 5–6 km. Lava flow thickness varies from 150 to 250 m above interpreted source vents to between 30 and 80 m in more distal locations. Rhyolite lavas have length-to-height ratios of 10:1 or greater and, in one instance, a length-to-width ratio of 2:1 or greater, implying a tongue-shaped geometry instead of circular domes or tabular bodies. Although geologic mapping did not identify any physical feature that could be positively identified as a vent, lava flow thickness and the size of clasts in subjacent pyroclastic deposits suggest that primary vent areas for at least some of the flows in the study area are on the east side of Fortymile Canyon, to the northeast of Yucca Mountain.

  10. Lava lakes on Io: Observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys

    USGS Publications Warehouse

    Lopes, R.M.C.; Kamp, L.W.; Smythe, W.D.; Mouginis-Mark, P.; Kargel, J.; Radebaugh, J.; Turtle, E.P.; Perry, J.; Williams, D.A.; Carlson, R.W.; Doute, S.

    2004-01-01

    Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes 200 km high plumes and rapidly-emplaced flow fields), and a new style we call "lokian" that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian

  11. Structural Development and Oxidation of the Takanoobane Rhyolite Lava in Aso Caldera, Japan

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Uno, K.; Miyagi, I.

    2007-12-01

    The Takanoobane rhyolite lava (hereafter described as the TR lava) is distributed in the western part of Aso caldera, middle Kyushu Island, SW Japan. The TR lava is one of the central cones. The volume, SiO2 contents and K-Ar age are 0.14km3 (Miyabuchi et al., 2004), 71-72% (Furukawa, 2006) and 51+-5ka (Matsumoto et al., 1991), respectively. The TR lava was effused in a subaerial environment. In this study, we show vertical structural variation and the development of the TR lava from the four drilling cores obtained by Aso Volcanological Laboratory in 2001-2002. The TR lava is about 90m thick in the proximal part, and the internal structures are divided into three parts: Alternation of the pumiceous layers and the obsidian layers (the upper part), the crystalline rhyolite layer (the central part), and the obsidian layer (the lower part). This structural variation apparently resembles to that of the Obsidian Dome near long valley caldera in eastern California (Manley and Fink, 1987). The central crystalline rhyolite layer of the TR lava is characterized by the development of the flow structure, which is composed of interconnected minute cavities. The shapes and sizes of the structure are varied from stubby or lens to flattened and from a few mm to above 5 cm in length, respectively. The morphology of the flow structure tends to be flattened with distance from the source region. It is probably due to shear stress caused by the lava movement We described the vertical variation of the mineral assemblage of Fe-Ti oxides. It shows that the highly oxidized Fe-Ti oxides tend to be distributed around the flow structure. Thus, the part is selectively oxidized. It is supported also by the rock magnetic experiments. Above studies and cooling history calculated by a numerical modeling show that the oxidation was caused by the increasing of fO2 at the part. We interpret that the increasing of fO2 was caused by the release of hydrogen from the degassing lava. Hydrogen should be

  12. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  13. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, Robert W.; Rubin, Kenneth H.

    2018-04-01

    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  14. Dome Schools.

    ERIC Educational Resources Information Center

    Cirulli, Carol

    1999-01-01

    Back in 1988, Emmett, Idaho, built the first monolithic dome school. Now, school boards in Arizona, Missouri, Florida, Minnesota, and New Mexico are among those that have voted to build domed school buildings. A monolithic dome is a steel- reinforced, concrete structure with a smooth, round surface that is inspired by the shape of an egg. (MLF)

  15. Thermal infrared data of active lava surfaces using a newly-developed camera system

    NASA Astrophysics Data System (ADS)

    Thompson, J. O.; Ramsey, M. S.

    2017-12-01

    Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.

  16. "Active" and "Passive" Lava Resurfacing Processes on Io: A Comparative Study of Loki Patera and Prometheus

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Matson, D. L.; Leone, G.; Wilson, L.; Keszthelyi, L. P.

    2004-01-01

    Studies of Galileo Near Infrared Mapping Spectrometer (NIMS) data and ground based data of volcanism at Prometheus and Loki Patera on Io reveal very different mechanisms of lava emplacement at these two volcanoes. Data analyses show that the periodic nature of Loki Patera s volcanism from 1990 to 2001 is strong evidence that Loki s resurfacing over this period resulted from the foundering of a crust on a lava lake. This process is designated passive , as there is no reliance on sub-surface processes: the foundering of the crust is inevitable. Prometheus, on the other hand, displays an episodicity in its activity which we designate active . Like Kilauea, a close analog, Prometheus s effusive volcanism is dominated by pulses of magma through the nearsurface plumbing system. Each system affords views of lava resurfacing processes through modelling.

  17. Documenting Chemical Assimilation in a Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.

  18. Halogen/sulphur variations over the active lava lake of Nyiragongo

    NASA Astrophysics Data System (ADS)

    Giuffrida, G.; Bobrowski, N.; Tedesco, D.; Yalire, M.; Arellano, S.; Balagizi, C.; Galle, B.

    2010-12-01

    In June 2007 and July 2010 spectroscopic measurements and chemical in-situ studies were carried out at the crater rim of the Niyragongo volcano located 15 km north of the city Goma, North Kivu region (DRC). Niyragongo volcano belongs to the Virunga volcanic chain and it is associated with the Western branch of the Great Rift Valley. The volcanism at Niyragongo is caused by the rifting of the Earth’s crust where two parts of the African plates are breaking apart. Niyragongo crater contains the biggest lava lake today and it is considered one of the most active volcanoes in Africa. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight has been applied during both field trips on top at the crater rim of the volcano to measure sulphur dioxide, halogen oxides and nitrogen oxide. Additionally filter pack and spectroscopic in-situ carbon dioxide measurements were carried out, as well as SO2 flux measurements by a scanning DOAS from the NOVAC network at the flank of the volcano. The measurements provide information on the chemical composition as well as its variability within the volcanic plume from the lava lake. The variations of the gas ratios especially BrO/SO2, between 0.3 x 10-5 and 3 x 10-5, together with the variations of SO2 emission fluxes between about 500 up to 2000 t/d, will be discussed in the light of long-term variations between 2007 and 2010, and short-term variations - small scale activity changes (e.g. lava lake overflows), which could be observed during June 2007 and July 2010. Their possible potential to improve the understanding of the volcanic system will be investigated.

  19. Mafic enclaves in dacitic domes and their relation with La Poruña scoria cone, Central Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    González-Maurel, O. P.; Gallmeyer, G.; Godoy, B.; Menzies, A.; le Roux, P. J.; Harris, C.

    2017-12-01

    Chao Dacite, Chillahuita, Cerro Pabellón, Chanka, Chac-Inca, and Cerro La Torta (or Tocorpuri) are dacitic domes of late Pleistocene age (30 to 140 ka; Renzulli et al., 2006; Tierney et al., 2016) located in Northern Chilean Central Andean province (NCCA; 17°20'S - 27°40'S). While, La Poruña is a 180 m high basaltic-andesite scoria cone erupted ca. 100 ka (Wörner et al., 2000). This scoria cone is also located at the NCCA, 26 km to the SW of Chanka and 45 km to the NW of Chao Dacite. The dacitic domes are generally porphyritic and highly crystalline lavas (30 - 50 vol % phenocrysts, plagioclase > biotite > amphibole > quartz ≥ accessory), with hyalopilitic or intersertal groundmass. These domes contain mafic enclaves, mostly andesite in composition, with plagioclase > amphibole > biotite ≥ clinopyroxene ≥ olivine ≥ accessory phenocryst (10 - 20 vol %) in a lightly oxidized groundmass with intersertal or intergranular textures. In contrast, La Poruña rocks are mostly aphanitic (75 - 85 vol % groundmass) and highly vesicular, with plagioclase > olivine ≥ clinopyroxene ≥ orthopyroxene phenocrysts in an intersertal or hyalopilitic groundmass. Although petrographically different, the composition (57 wt % SiO2; 580 ppm Sr, 87Sr/86Sr = 0.7066) of mafic enclaves from Cerro Pabellón dome are similar to the lava flows and pyroclastic blocks of La Poruña scoria cone (55 - 59 wt % SiO2; 560 - 610 ppm Sr; 0.7062 - 0.7066 87Sr/86Sr). Based on this data and the eruption ages of these volcanic structures, we suggest that the mafic enclaves and La Poruña magmas are co-genetic. Thus, we propose that the genesis of these mafic enclaves is associated with the origin of less evolved parental magmas erupted in the NCCA, such as those from La Poruña. In this case, the mafic enclaves would represent batches of less evolved magmas that ascended from deeper sources and probably contributed in the eruption of the dacitic domes. Renzulli et al., 2006. In XI Congreso Geol

  20. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  1. Table Mountain Shoshonite Porphyry Lava Flows and Their Vents, Golden, Colorado

    USGS Publications Warehouse

    Drewes, Harald

    2008-01-01

    South Table Mountain, lava flow 3 forms a low, broad dome that forced flow 4 into channels now restricted to the west and northeast flanks of that mesa. Mesa-capping lava flows 3 and 4 are broken by many small normal faults and are warped into open synclines, probably in response to local stresses associated with the settling of piedmont deposits into the Denver Basin. Mid-Tertiary deposits are inferred to have covered the upper part of the Denver Formation and its lavas; these deposits could thus have been instrumental in changing the stream flow direction to the east before the onset of Neogene uplift and consequent canyon cutting across the flows. Other younger deposits may also have covered the area, to be linked to this consequent canyon cutting.

  2. Geology and impact features of Vargeão Dome, southern Brazil

    NASA Astrophysics Data System (ADS)

    Crósta, Alvaro P.; Kazzuo-Vieira, César; Pitarello, Lidia; Koeberl, Christian; Kenkmann, Thomas

    2012-01-01

    Vargeão Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Paraná Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim-rim diameter of approximately 12 km and comprises several ring-like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambóia formations. We present the morphological/structural characteristics of Vargeão Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz. A geochemical comparison of the target rock equivalents from outside the structure with the shocked rocks from its interior shows that both the BVRs and the brecciated sandstone have a composition largely similar to that of the corresponding unshocked lithologies. No traces of meteoritic material have been found so far. The results confirm the impact origin of Vargeão Dome, making it one of the largest among the rare impact craters in basaltic targets known on Earth.

  3. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  4. Joint analysis of deformation, gravity, and lava lake elevation reveals temporal variations in lava lake density at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Poland, Michael; Patrick, Matthew

    2015-04-01

    We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity

  5. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    NASA Astrophysics Data System (ADS)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  6. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  7. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  8. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  9. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    USGS Publications Warehouse

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Much of the north and south flanks of the Medicine Lake shield were built from molten lava transmitted through lava tubes. These tubes formed beneath the congealing surface of basalt flows in somewhat the same way that a brook may continue to flow beneath a cover of its own winter ice. As molten lava emerges from a vent and flows downslope, congealing lava from the top and sides of the central channel often forms a bridge over the lava stream. The sticking together of bits of lava spatter and fragile lava crusts strengthens the bridge in the manner that thin crusts of floating ice raft together to cover a brook during early stages of a winter freeze. Eruption of basalt lava, however, is a much more violent and spasmodic process than the steady gathering of water that feeds a brook. If liquid lava stops rising from its source deep within the earth, the still-molten lava moving beneath the crusted-over top of a lava flow will continue to drain downhill and may ultimately leave an open lavatube cave-often large enough for people to walk through. It is rare, however, to find such a simple scenario recorded intact among the hundreds of lava-tube caves in the monument. Even before the top and walls of a lava flow have time to cool during a pause in lava supply, a new and violent eruption of lava may refill the open tube, overflow its upper end, and spread a new lava flow beside or on top of the first flow. Even if the original tube is large enough to contain the renewed supply of lava, this tube must deliver the new lava beyond the end of its original flow and thus the lava field extends farther and farther downslope. If the gradient of flow flattens, the tube may subdivide into a number of smaller distributaries, which spread laterally over the more gently sloping ground. 

  10. Determination of eruption temperature of Io's lavas using lava tube skylights

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2016-11-01

    Determining the eruption temperature of Io's dominant silicate lavas would constrain Io's present interior state and composition. We have examined how eruption temperature can be estimated at lava tube skylights through synthesis of thermal emission from the incandescent lava flowing within the lava tube. Lava tube skylights should be present along Io's long-lived lava flow fields, and are attractive targets because of their temporal stability and the narrow range of near-eruption temperatures revealed through them. We conclude that these skylights are suitable and desirable targets (perhaps the very best targets) for the purposes of constraining eruption temperature, with a 0.9:0.7-μm radiant flux ratio ≤6.3 being diagnostic of ultramafic lava temperatures. Because the target skylights may be small - perhaps only a few m or 10 s of m across - such observations will require a future Io-dedicated mission that will obtain high spatial resolution (< 100 m/pixel), unsaturated observations of Io's surface at multiple wavelengths in the visible and near-infrared, ideally at night. In contrast to observations of lava fountains or roiling lava lakes, where accurate determination of surface temperature distribution requires simultaneous or near-simultaneous (< 0.1 s) observations at different wavelengths, skylight thermal emission data are superior for the purposes of temperature derivation, as emission is stable on much longer time scales (minutes, or longer), so long as viewing geometry does not greatly change during that time.

  11. Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm.

    PubMed

    Ferlito, C; Bruno, V; Salerno, G; Caltabiano, T; Scandura, D; Mattia, M; Coltorti, M

    2017-07-13

    On the 28 December 2014, a violent and short paroxysmal eruption occurred at the South East Crater (SEC) of Mount Etna that led to the formation of huge niches on the SW and NE flanks of the SEC edifice from which a volume of ~3 × 10 6  m 3 of lava was erupted. Two basaltic lava flows discharged at a rate of ~370 m 3 /s, reaching a maximum distance of ~5 km. The seismicity during the event was scarce and the eruption was not preceded by any notable ground deformation, which instead was dramatic during and immediately after the event. The SO 2 flux associated with the eruption was relatively low and even decreased few days before. Observations suggest that the paroxysm was not related to the ascent of volatile-rich fresh magma from a deep reservoir (dyke intrusion), but instead to a collapse of a portion of SEC, similar to what happens on exogenous andesitic domes. The sudden and fast discharge eventually triggered a depressurization in the shallow volcano plumbing system that drew up fresh magma from depth. Integration of data and observations has allowed to formulate a novel interpretation of mechanism leading volcanic activity at Mt. Etna and on basaltic volcanoes worldwide.

  12. Flood lavas on Earth, Io and Mars

    USGS Publications Warehouse

    Keszthelyi, L.; Self, S.; Thordarson, T.

    2006-01-01

    Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have

  13. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  14. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    NASA Astrophysics Data System (ADS)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  15. Controls on lava lake level at Halema`uma`u Crater, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.

    2013-12-01

    Lava level is a fundamental measure of lava lake activity, but very little continuous long-term data exist worldwide to explore this aspect of lava lake behavior. The ongoing summit eruption at Kilauea Volcano began in 2008 and is characterized by an active lava lake within the eruptive vent. Lava level has been measured nearly continuously at Kilauea for several years using a combination of webcam images, laser rangefinder, and terrestrial LIDAR. Fluctuations in lava level have been a common aspect of the eruption and occur over several timescales. At the shortest timescale, the lava lake level can change over seconds to hours owing to two observed shallow gas-related processes. First, gas pistoning is common and is driven by episodic gas accumulation and release from the surface of the lava lake, causing the lava level to rise and fall by up to 20 m. Second, rockfalls into the lake trigger abrupt gas release, and lava level may drop as much as 10 m as a result. Over days, cyclic changes in lava level closely track cycles of deflation-inflation (DI) deformation events at the summit, leading to level changes up to 50 m. Rift zone intrusions have caused large (up to 140 m) drops in lava level over several days. On the timescale of weeks to months, the lava level follows the long-term inflation and deflation of the summit region, resulting in level changes up to 140 m. The remarkable correlation between lava level and deflation-inflation cycles, as well as the long-term deformation of the summit region, indicates that the lava lake acts as a reliable 'piezometer' (a measure of liquid pressure in the magma plumbing system); therefore, assessments of summit pressurization (and rift zone eruption potential) can now be carried out with the naked eye. The summit lava lake level is closely mirrored by the lava level within Pu`u `O`o crater, the vent area for the 30-year-long eruption on Kilauea's east rift zone, which is 20 km downrift of the summit. The coupling of these

  16. Overview of the 1997 2000 activity of Volcán de Colima, México

    NASA Astrophysics Data System (ADS)

    Zobin, V. M.; Luhr, J. F.; Taran, Y. A.; Bretón, M.; Cortés, A.; De La Cruz-Reyna, S.; Domínguez, T.; Galindo, I.; Gavilanes, J. C.; Muñíz, J. J.; Navarro, C.; Ramírez, J. J.; Reyes, G. A.; Ursúa, M.; Velasco, J.; Alatorre, E.; Santiago, H.

    2002-09-01

    This overview of the 1997-2000 activity of Volcán de Colima is designed to serve as an introduction to the Special Issue and a summary of the detailed studies that follow. New andesitic block lava was first sighted from a helicopter on the morning of 20 November 1998, forming a rapidly growing dome in the summit crater. Numerous antecedents to the appearance of the dome were recognized, starting more than a year in advance, including: (1) pronounced increases in S/Cl and δD values at summit fumaroles in mid-1997; (2) five earthquake swarms between November-December 1997 and October-November 1998, with hypocenters that ranged down to 8 km beneath the summit and became shallower as the eruption approached; (3) steady inflation of the volcano reflected in shortening of geodetic survey line lengths beginning in November-December 1997 and continuing until the start of the eruption; (4) air-borne correlation spectrometer measurements of SO 2 that increased from the background values of <30 tons/day recorded since 1995 to reach 400 tons/day on 30 October 1998 and 1600 tons/day on 18 November 1998; and (5) small ash emissions detected by satellite-borne sensors beginning on 22 November 1997. The seismic and other trends were the basis of a short-term forecast of an eruption, announced on 13 November 1998, with a forecast window of 16-18 November. Although the lava dome actually appeared on 20 November, this forecast is considered to have been a major success, and the first of its kind at Volcán de Colima. Based in part on this forecast, orderly evacuations of Yerbabuena, Juan Barragan, and other small proximal communities took place on 18 November. The lava dome grew rapidly (˜4.4 m 3/s) on 20 November, and was spilling over the SW rim of the crater by the morning of 21 November to feed block-and-ash flows (pyroclastic flows) ahead of an advancing lobe of andesitic block lava. The pyroclastic flows were initially generated at intervals of 3-5 min, reached speeds of 80

  17. Lava Flow at Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud

  18. Photogrammetric and Global Positioning System Measurements of Active Pahoehoe Lava Lobe Emplacement on Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.

    2012-01-01

    Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the

  19. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  20. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    NASA Astrophysics Data System (ADS)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    'Accademia dei Lincei, 9, 16 (3), 127-135.[2]Pasquaré G., Bistacchi A., Francalanci L.. Gigantic self-confined pahoehoe inflated lava flows in Argentina. Submitted to Terra Nova. [3]Self, S., Keszthelyi, L., Thordarson, Th., 1998. The Importance of Pahoehoe. Annual Review of Earth and Planetary Science, 26, 81-110. [4]Anderson T., 1910. The volcano of Matavanu in Savaii. Geological Society of London Quarterly Journal, 66, 621-639. [5] Walker, G.P.L., 1991. Structure and origin by injection of lava under surface crust, of tumuli, "lava rises", "lava rise pits", and "lava inflation clefts" in Hawaii. Bulletin of Volcanology, 53, 546-558. [6] Hon, K, Kauahikaua, J., Denlinger, R., Mackay, K., 1994. Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 106, 351-370. [7] Llambias, E., 1966. Geología y petrográfica del Volcán Payún-Matru. Acta Geológica Lill., VIII: 265-310. Instituto Lillo, Universidad Nacional Tucumán. Tucumán. [8] Zimbelman, J. R., 1998. Emplacement of long lava flows on planetary surface. J. Geophys. Res., 103, 27503- 27516. [9] Smith, D. E. et al., 1999. The global topography of Mars and implications for surface evolution. Science, 284, 1495-1503. [10] Glaze L.S., Anderson S.W., Stofan E.R., Baloga S., Smrekar S. E, 2005. Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential application to lava flows on Mars. Journal of Geophysical Research, v. 110, B08202, doc: 10.1029/2004JB003564. [11] MacDonald, 1972. Volcanoes. Prentice-Hall Inc., Englewood Cliffs. 510 pp.

  1. Ridge-like lava tube systems in southeast Tharsis, Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes < 0.3°. We analyzed their geomorphology in detail with CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) images and DTM (digital terrain model) derived from them. We identified three cross-sectional shapes of these sinuous ridges: round-crested, double-ridged, and flat-crested and described features associated with the lava tubes, including branches, axial cracks, collapsed pits, breakout lobes, and tube-fed lava deltas. Age determination results showed that most of the lava tubes formed in Late Hesperian and were active until the Hesperian-Amazonian boundary. We proposed that these lava tubes formed at relatively low local flow rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  2. Introducing Kansas Lava

    NASA Astrophysics Data System (ADS)

    Gill, Andy; Bull, Tristan; Kimmell, Garrin; Perrins, Erik; Komp, Ed; Werling, Brett

    Kansas Lava is a domain specific language for hardware description. Though there have been a number of previous implementations of Lava, we have found the design space rich, with unexplored choices. We use a direct (Chalmers style) specification of circuits, and make significant use of Haskell overloading of standard classes, leading to concise circuit descriptions. Kansas Lava supports both simulation (inside GHCi), and execution via VHDL, by having a dual shallow and deep embedding inside our Signal type. We also have a lightweight sized-type mechanism, allowing for MATLAB style matrix based specifications to be directly expressed in Kansas Lava.

  3. Mineral resources of the Devil's Garden Lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas, Lake County, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, W.J.; King, H.D.; Gettings, M.E.

    1988-01-01

    The Devel's Garden lava Bed, Squaw Ridge Lava Bed, and Four Craters Lava Bed Wilderness Study Areas include approximately 70,940 acres and are underlain entirely by Pleistocene or Holocene lava flows and associated sediments. There is no evidence of hydrothermal alteration in the study areas. No resources were identified in the study areas, but there is low potential for perlite resources in the southern part of the Devil's Garden Lava Bed and the northern half of the Squaw Ridge Lava Bed areas. All three study areas have low potential for geothermal resources and for oil and gas resources.

  4. Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1988-09-01

    The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.

  5. Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemistry perspective

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.

    1994-01-01

    The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. ?? 1994 Springer-Verlag.

  6. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Lavallée, Yan; Hornby, Adrian J.; Lamb, Oliver D.; Andrews, Benjamin J.; Kendrick, Jackie E.

    2016-04-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of A.) The active vent of Caliente and B.) The flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These were supported by still frames from the video recording. Video footage of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: A.) - A new breach opened on the east side of the crater rim, possibly during the collapse in November 2015. - The active lava dome is now almost completely covered with ash, only leaving the largest blocks and faults exposed in times without gas venting - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, rather than arcuate or ring faults, with a later, separate, and more ash-laden burst occurring from an off-centre fracture, however, other explosions during the observation period were seen to persist along the ring fault system observed on the lava dome since at least 2007 - suggesting a diversification of explosive activity. B.) - The lava flow fronts did

  7. Real-time satellite monitoring of Nornahraun lava flow NE Iceland

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Þórðarson, Þorvaldur; Höskuldsson, Ármann; Davis, Ashley; Schneider, David; Wright, Robert; Kestay, Laszlo; Hamilton, Christopher; Harris, Andrew; Coppola, Diego; Tumi Guðmundsson, Magnús; Durig, Tobias; Pedersen, Gro; Drouin, Vincent; Höskuldsson, Friðrik; Símonarson, Hreggviður; Örn Arnarson, Gunnar; Örn Einarsson, Magnús; Riishuus, Morten

    2015-04-01

    An effusive eruption started in Holuhraun, NE Iceland, on 31 August 2014, producing the Nornahraun lava flow field which had, by the beginning of 2015, covered over 83 km2. Throughout this event, various satellite images have been analyzed to monitor the development, active areas and map the lava extent in close collaboration with the field group, which involved regular exchange of direct observations and satellite based data for ground truthing and suggesting possible sites for lava sampling. From the beginning, satellite images in low geometric but high temporal resolution (NOAA AVHRR, MODIS) were used to monitor main regions of activity and position new vents to within 1km accuracy. As they became available, multispectral images in higher resolution (LANDSAT 8, LANDSAT 7, ASTER, EO-1 ALI) were used to map the lava channels, study lava structures and classify regions of varying activity. Hyper spectral sensors (EO-1 HYPERION), though with limited area coverage, have given a good indication of vent and lava temperature and effusion rates. All available radar imagery (SENTINEL-1, RADARSAT, COSMO SKYMED, TERRASAR X) have been used for studying lava extent, landscape and roughness. The Icelandic Coast Guard has, on a number of occasions, provided high resolution radar and thermal images from reconnaissance flights. These data sources compliment each other well and have improved analysis of events. Whilst classical TIR channels were utilized to map the temperature history of the lava, SWIR and NIR channels caught regions of highest temperature, allowing an estimate of the most active lava channels and even indicating potential changes in channel structure. Combining thermal images and radar images took this prediction a step further, improving interpretation of both image types and studying the difference between open and closed lava channels. Efforts are underway of comparing different methods of estimating magma discharge and improving the process for use in real

  8. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  9. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  10. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    NASA Astrophysics Data System (ADS)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  11. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  12. Mount St. Helens, 1980 to now—what’s going on?

    USGS Publications Warehouse

    Dzurisin, Daniel; Driedger, Carolyn L.; Faust, Lisa M.

    2013-01-01

    Mount St. Helens seized the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. An enormous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping around and partly burying the lava dome. From 1987 to 2003, sporadic earthquake swarms and small steam explosions indicated that magma (molten rock) was being replenished deep underground. In 2004, steam-and-ash explosions heralded the start of another eruption. A quieter phase of continuous lava extrusion followed and lasted until 2008, building a new dome and doubling the volume of lava on the crater floor. Scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network maintain constant watch for signs of renewed activity at Mount St. Helens and other Cascade volcanoes. Now is an ideal time for both actual and virtual visitors to Mount St. Helens to learn more about dramatic changes taking place on and beneath this active volcano.

  13. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  14. The LSST Dome final design

    NASA Astrophysics Data System (ADS)

    DeVries, J.; Neill, D. R.; Barr, J.; De Lorenzi, Simone; Marchiori, Gianpietro

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile 1. As a result of the Telescope wide field of view, the optical system is unusually susceptible to stray light 2. In addition, balancing the effect of wind induced telescope vibrations with Dome seeing is crucial. The rotating enclosure system (Dome) includes a moving wind screen and light baffle system. All of the Dome vents include hinged light baffles, which provide exceptional Dome flushing, stray light attenuation, and allows for vent maintenance access from inside the Dome. The wind screen also functions as a light screen, and helps define a clear optical aperture for the Telescope. The Dome must operate continuously without rotational travel limits to accommodate the Telescope cadence and travel. Consequently, the Azimuth drives are located on the fixed lower enclosure to accommodate glycol water cooling without the need for a utility cable wrap. An air duct system aligns when the Dome is in its parked position, and this provides air cooling for temperature conditioning of the Dome during the daytime. A bridge crane and a series of ladders, stairs and platforms provide for the inspection, maintenance and repair of all of the Dome mechanical systems. The contract to build the Dome was awarded to European Industrial Engineering in Mestre, Italy in May 2015. In this paper, we present the final design of this telescope and site sub-system.

  15. Nornahraun lava morphology and mode of emplacement

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  16. Raman spectroscopy of volcanic lavas and inclusions of relevance to astrobiological exploration.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M

    2010-07-13

    Volcanic eruptions and lava flows comprise one of the most highly stressed terrestrial environments for the survival of biological organisms; the destruction of botanical and biological colonies by molten lava, pyroclastic flows, lahars, poisonous gas emissions and the deposition of highly toxic materials from fumaroles is the normal expectation from such events. However, the role of lichens and cyanobacteria in the earlier colonization of volcanic lava outcrops has now been recognized. In this paper, we build upon earlier Raman spectroscopic studies on extremophilic colonies in old lava flows to assess the potential of finding evidence of biological colonization in more recent lava deposits that would inform, first, the new colonization of these rocks and also provide evidence for the relict presence of biological colonies that existed before the volcanism occurred and were engulfed by the lava. In this research, samples were collected from a recent expedition to the active volcano at Kilauea, Hawaii, which comprises very recent lava flows, active fumaroles and volcanic rocks that had broken through to the ocean and had engulfed a coral reef. The Raman spectra indicated that biological and geobiological signatures could be identified in the presence of geological matrices, which is encouraging for the planned exploration of Mars, where it is believed that there is evidence of an active volcanism that perhaps could have preserved traces of biological activity that once existed on the planet's surface, especially in sites near the old Martian oceans.

  17. Patterns and processes: Subaerial lava flow morphologies: A review

    NASA Astrophysics Data System (ADS)

    Gregg, Tracy K. P.

    2017-08-01

    Most lava flows have been emplaced away from the watchful eyes of volcanologists, so there is a desire to use solidified lava-flow morphologies to reveal important information about the eruption that formed them. Our current understanding of the relationship between solidified basaltic lava morphology and the responsible eruption and emplacement processes is based on decades of fieldwork, laboratory analyses and simulations, and computer models. These studies have vastly improved our understanding of the complex interactions between the solids, liquids, and gases that comprise cooling lava flows. However, the complex interactions (at millimeter and sub-millimeter scales) between the temperature-dependent abundances of the distinct phases that comprise a lava flow and the final morphology remain challenging to model and to predict. Similarly, the complex behavior of an active pahoehoe flow, although almost ubiquitous on Earth, remains difficult to quantitatively model and precisely predict.

  18. Ground deformation at Merapi Volcano, Java, Indonesia: distance changes, June 1988-October 1995

    USGS Publications Warehouse

    Young, K.D.; Voight, B.; ,; ,; ,; Casadevall, T.J.

    2000-01-01

    Edifice deformations are reported here for the period 1988–1995 at Merapi volcano, one of the most active and dangerous volcanoes in Indonesia. The study period includes a major resumption in lava effusion in January 1992 and a major dome collapse in November 1994. The data comprise electronic distance measurements (EDM) on a summit trilateration network, slope distance changes measured to the upper flanks, and other data collected from 1988 to 1995. A major consequence of this study is the documentation of a significant 4-year period of deformation precursory to the 1992 eruption. Cross-crater strain rates accelerated from less than 3×10−6/day between 1988 and 1990 to more than 11×10−6/day just prior to the January 1992 activity, representing a general, asymmetric extension of the summit during high-level conduit pressurization. After the vent opened and effusion of lava resumed, strain occurred at a much-reduced rate of less than 2×10−6/day. EDM measurements between lower flank benchmarks and the upper edifice indicate displacements as great as 1 m per year over the four years before the 1992 eruption. The Gendol breach, a pronounced depression formed by the juxtaposition of old lava coulées on the southeast flank, functioned as a major displacement discontinuity. Since 1993, movements have generally not exceeded the 95% confidence limits of the summit network. Exceptions to this include 12 cm outward movement for the northwest crater rim in 1992–1993, probably from loading by newly erupted dome lava, and movements as much as 7 cm on the south flank between November 1994 and September 1995. No short-term precursors were noted before the November 1994 lava dome collapse, but long-term adjustments of crater geometry accompanied lava dome growth in 1994. Short-term 2-cm deflation of the edifice occurred following the November 1994 dome collapse.

  19. Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.

    2012-12-01

    We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples

  20. The CALIPSO Borehole Project at Soufrière Hills Volcano, Montserrat, BWI: Status and Scientific Overview of Prodigious Dome Collapse of July 2003

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Hidayat, D.; Young, S. R.; Widiwijayanti, C.; Shalev, E.; Malin, P. E.; Elsworth, D.; Williams, P.; van Boskirk, E.; Thompson, G.; Syers, T.; Sparks, R. S.; Schleigh, B.; Norton, G.; Neuberg, J.; Miller, V.; McWhorter, N.; Johnston, W.; Dunkley, P.; Clarke, A. B.; Bass, V.

    2005-05-01

    The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufrière Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites (Mattioli et al., 2004). The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer (~Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. The project has been successfully launched with its capture of the tremendous SHV lava dome collapse of 12-13 July 2003 (Herd et al., 2003), involving about 120 million cubic meters--the largest lava dome collapse in the historical record. A wide variety of unique geophysical signals were acquired CALIPSO instrumentation during the July 2003 collapse and important constraints on a variety of volcanic processes are being obtained. For example, tsunami waves were generated 2 km east of the volcanic dome by pyroclastic flows entering the sea. We reconstruct collapse volume-time history from seismic signals generated by pyroclastic flows, using the method of Brodscholl et al. (2000). The tsunami left flotsam strandlines of runup >8m high along the east coast of Montserrat, and waves ~0.5m high were reported from Guadaloupe. Unique borehole dilatometer data (Voight et al., 2003; Mattioli et al., 2003; 2004) record details of tsunami wave passage. One station is located 40m from the sea, with the instrument ~180m below MSL. Strain wave packets at periods of ~200-500s occurred, consistent in period and amplitude with water loading from passing tsunami waves. Wave packets between ~0600-1130 LT can be correlated with pyroclastic flow seismic data. Non-linear Boussinesq hydrodynamic modeling fits wave decay from source to instrument site and is

  1. Wind and Lava

    NASA Image and Video Library

    2006-11-27

    In this image wind seems to be the dominant process, but lava flows are still recognizable from the surface texture. It appears that the lava flow top left is relatively thin, and the material below is easily eroded by the wind

  2. Geological evolution of the Afro-Arabian dome

    NASA Astrophysics Data System (ADS)

    Almond, D. C.

    1986-12-01

    The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene "trap" volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.

  3. Multifractal characterization of Vesuvio lava-flow margins and its implications

    NASA Astrophysics Data System (ADS)

    Luongo, G.; Mazzarella, A.; Di Donna, G.

    2000-09-01

    The digitized lava-flow margins of well-defined extended eruptions occurring at Vesuvio in 1760, 1794, 1861, 1906, 1929 and 1944 are found to follow fractal behaviours inside a scaling region enclosed between 50 and 400 m. Although the invariance region is well respected, the fractal dimension D varies from one lava flow to another: the more irregular the lava-flow margin, the larger the value of D. The ascertained dependence of D on the duration of premonitory activity, preceding the emission of lavas, might provide some insight into the inner volcanic processes before the eruption and into the dynamical processes operating during flow emplacement.

  4. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    NASA Astrophysics Data System (ADS)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  5. Sequential dome-collapse nuées ardentes analyzed from broadband seismic data, Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Brodscholl, A.; Kirbani, S.B.; Voight, B.

    2000-01-01

    The broadband data were evaluated using the assumption that avalanches with the same source areas and descent paths exhibit a linear relation between source volume and recorded seismic-amplitude envelope area. A result of the analysis is the determination of the volume of selected individual events. From the field surveys, the total volume of the collapsed dome lava is 2.6 Mm3. Discounting the volumetric influence of rockfalls, the average size of the 44 nuées ardentes is therefore about 60,000 m3. The largest collapse event at 10:54 is estimated to involve 260,000 m3, based on an analysis of the seismicity. The remaining 23 phase I events averaged 60,000 m3, with the total volume of all phase I events accounting for 63% of the unstable dome. The 20 phase II events comprised 37% of the total volume and averaged 47,000 m3. The methods described here can be put to practical use in real-time monitoring situations. Broadband data were essential in this study primarily because of the wide dynamic range.

  6. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    NASA Astrophysics Data System (ADS)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (<0.1 K per km from source vent [2]). Using skylights has a number of advantages over outbursts. Lava fountains have a complex physical and thermal structure, and many model inputs can only be roughly estimated. Outburst events are also relatively rare. Finally, fluctuations in fountain activity mean that multi-spectral observations ideally have to be contemporaneous [3] to yield usable results. Skylights provide an unvarying thermal signal on timescales of 1 minute or longer, and expose a restricted range of temperatures close to lava eruption temperature. Skylights are therefore easily discernible against a cool background, and are detectable from great distances at night or with Io in eclipse with imagers covering the range 0.4 to 5.0 μm. To distinguish between ultramafic and mafic lavas, multispectral (or hyperspectral) observations with precise exposure timing and knowledge of filter response are needed in the range 0.4 to 0.8 μm, with (minimally) an additional model-constraining measurement at ~4-5 μm. As with many

  7. Improving daylight in mosques using domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alturki, I.; Schiler, M.; Boyajian, Y.

    1996-10-01

    This paper studies the possibilities for improving daylight in mosques by measuring the illumination level under various domes in an old mosque ``Mosque of Guzelce Hasan Bey in Hayrabolu`` using an architectural physical model. The illumination level under the domes were tested under three different cases: a dome without openings (the original building), a dome with a central opening, and a dome with openings around the base. It was found that a dome with openings around the base brings an evenly distributed light all over the prayer hall during the critical hours of 12:00 p.m. and 3:00 p.m. In addition,more » it improves the quality and quantity of light.« less

  8. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contactmore » with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.« less

  9. Fire, Lava Flows, and Human Evolution

    NASA Astrophysics Data System (ADS)

    Medler, M. J.

    2015-12-01

    Richard Wrangham and others argue that cooked food has been obligate for our ancestors since the time of Homo erectus. This hypothesis provides a particularly compelling explanation for the smaller mouths and teeth, shorter intestines, and larger brains that separate us from other hominins. However, natural ignitions are infrequent and it is unclear how earlier hominins may have adapted to cooked food and fire before they developed the necessary intelligence to make or control fire. To address this conundrum, we present cartographical evidence that the massive and long lasting lava flows in the African Rift could have provided our ancestors with episodic access to heat and fire as the front edges of these flows formed ephemeral pockets of heat and ignition and other geothermal features. For the last several million years major lava flows have been infilling the African Rift. After major eruptions there were likely more slowly advancing lava fronts creating small areas with very specific adaptive pressures and opportunities for small isolated groups of hominins. Some of these episodes of isolation may have extended for millennia allowing these groups of early hominins to develop the adaptations Wrangham links to fire and cooked food. To examine the potential veracity of this proposal, we developed a series of maps that overlay the locations of prominent hominin dig sites with contemporaneous lava flows. These maps indicate that many important developments in hominin evolution were occurring in rough spatial and temporal proximity to active lava flows. These maps indicate it is worth considering that over the last several million years small isolated populations of hominins may have experienced unique adaptive conditions while living near the front edges of these slowly advancing lava flows.

  10. Effects of lava heating on volatile-rich slopes on Io

    USGS Publications Warehouse

    Dundas, Colin M.

    2017-01-01

    The upper crust of Io may be very rich in volatile sulfur and SO2. The surface is also highly volcanically active, and slopes may be warmed by radiant heat from the lava. This is particularly the case in paterae, which commonly host volcanic eruptions and long-lived lava lakes. Paterae slopes are highly variable, but some are greater than 70°. I model the heating of a volatile slope for two end-member cases: instantaneous emplacement of a large sheet flow, and persistent heating by a long-lived lava lake. In general, single flows can briefly raise sulfur to the melting temperature, or drive a modest amount of sublimation of SO2. Persistently lava-covered surfaces will drive much more significant geomorphic effects, with potentially significant sublimation and slope retreat. In addition to the direct effects, heating is likely to weaken slope materials and may trigger mass wasting. Thus, if the upper crust of Io is rich in these volatile species, future missions with high-resolution imaging are likely to observe actively retreating slopes around lava lakes and other locations of frequent eruptions.

  11. Pyroclastic Flow Generated Tsunami Waves Detected by CALIPSO Borehole Strainmeters at Soufriere Hills, Montserrat During Massive Dome Collapse: Numerical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    van Boskirk, E. J.; Voight, B.; Watts, P.; Widiwijayanti, C.; Mattioli, G. S.; Elsworth, D.; Hidayat, D.; Linde, A.; Malin, P.; Neuberg, J.; Sacks, S.; Shalev, E.; Sparks, R. J.; Young, S. R.

    2004-12-01

    The July 12-13, 2003 eruption (dome collapse plus explosions) of Soufriere Hills Volcano in Montserrat, WI, is the largest historical lava dome collapse with ˜120 million cubic meters of the dome lost. Pyroclastic flows entered the sea at 18:00 AST 12 July at the Tar River Valley (TRV) and continued until the early hours of 13 July. Low-amplitude tsunamis were reported at Antigua and Guadaloupe soon after the dome collapse. At the time of eruption, four CALIPSO borehole-monitoring stations were in the process of being installed, and three very-broad-band Sacks-Evertson dilatometers were operational and recorded the event at 50 sps. The strongest strain signals were recorded at the Trants site, 5 km north of the TRV entry zone, suggesting tsunami waves >1 m high. Debris strandlines closer to TRV recorded runup heights as much as 8 m. We test the hypothesis that the strain signal is related to tsunami waves generated by successive pyroclastic flows induced during the dome collapse. Tsunami simulation models have been generated using GEOWAVE, which uses simple physics to recreate waves generated by idealized pyroclastic flows entering the sea at TRV. Each simulation run contains surface wave amplitude gauges located in key positions to the three borehole sites. These simulated wave amplitudes and periods are compared quantitatively with the data recorded by the dilatometers and with field observations of wave runup, to elucidate the dynamics of pyroclastic flow tsunami genesis and its propagation in shallow ocean water.

  12. Gigantic self-confined pahoehoe inflated lava flows in Argentina

    NASA Astrophysics Data System (ADS)

    Pasquare', G.; Bistacchi, A.

    2007-05-01

    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the

  13. Dome, Sweet Dome--Geodesic Structures Teach Math, Science, and Technology Principles

    ERIC Educational Resources Information Center

    Shackelford, Ray; Fitzgerald, Michael

    2007-01-01

    Today, geodesic domes are found on playgrounds, homes, over radar installations, storage facilities, at Disney's Epcot Center, and at World's Fairs. The inventor of the design, Buckminster Fuller, thought that geodesic domes could be used to cover large areas and even designed one to cover all of New York's Manhattan Island. This article details…

  14. Activity at Shiveluch Volcano

    NASA Image and Video Library

    2017-12-08

    NASA image acquired Sept 7, 2010 Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired. According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on

  15. Using Lava Tube Skylights To Derive Lava Eruption Temperatures on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2015-11-01

    The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1]. We have examined the theoretical thermal emission from lava tube skylights above basaltic and ultramafic lava channels. Assuming that tube-fed lava flows are common on Io, skylights could also be common. Skylights present steady thermal emission on a scale of days to months. We find that the thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [2]. Observations would ideally be at night or in eclipse. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the resulting flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing geometry. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [3]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus 192, 491-502 [2] McEwen et al. (2015) The Io Volcano Observer (IVO) LPSC-46 abstract 1627 [3] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.

  16. Prototype PBO Instrumentation of CALIPSO Project Captures World-Record Lava Dome Collapse on Montserrat Volcano

    NASA Astrophysics Data System (ADS)

    Mattioli, Glen S.; Young, Simon R.; Voight, Barry; Sparks, R. Steven J.; Shalev, Eylon; Selwyn, Sacks; Malin, Peter; Linde, Alan; Johnston, William; Hadayat, Dannie; Elsworth, Derek; Dunkley, Peter; Herd, Richard; Neuberg, Jurgen; Norton, Gillian; Widiwijayanti, Christina

    2004-08-01

    This article is an update on the status of an innovative new project designed to enhance generally our understanding of andesitic volcano eruption dynamics and, specifically, the monitoring and scientific infrastructure at the active Soufriàre Hills Volcano (SHV), Montserrat. The project has been designated as the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory, known as CALIPSO. Its purpose is to investigate the dynamics of the entire SHV magmatic system using an integrated array of specialized instruments in four strategically located ~200-m-deep boreholes in concert with several shallower holes and surface sites. The project is unique, as it represents the first, and only, such borehole volcano-monitoring array deployed at an andesitic stratovolcano. CALIPSO may be considered as a prototype for planned Plate Boundary Observatory (PBO) installations at several volcanic targets in the western United States. Scientific objectives of the EarthScope Integrated Science Plan (ES-ISP) relevant to magmatic systems are to investigate (1) melt generation in the mantle; (2) melt migration from the mantle to and through the crust to the surface; (3) melt residence times at various deep reservoirs; and (4) delineation of characteristic patterns of surface deformation and seismicity, which may prove useful in eruption forecasting. The CALIPSO project shares most of the same scientific goals and has, moreover, the benefit of a rich existing geophysical context in its deployment at SHV. Our experience during instrument design, planning, drilling and installation, systems integration, and early operation of CALIPSO, moreover, may prove valuable to EarthScope and PBO managers.

  17. Thermal Remote Sensing of Lava Lakes on Io and Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2013-12-01

    Volcanology has been transformed by remote sensing. For decades, Earth's volcanoes have been studied in the infrared by a wide variety of instruments on spacecraft at widely varying spectral, spatial and temporal resolutions, for which techniques have been developed to interpret and understand ongoing volcanic eruptions. The study of volcanism on Io, the only Solar System body besides Earth known to have ongoing, high temperature, silicate-based effusive and explosive volcanic eruptions, requires new remote sensing techniques. The extraordinary volcanism allows us to examine Io's interior and composition from the material erupted onto the surface. For Io, the biggest question in the wake of NASA's Galileo mission concerns the eruption temperature of Io's dominant silicate lavas [1,2]. Constraining eruption temperature constrains magma composition, in turn a reflection of the composition, physical state and tidal heating within Io. However, the extraction of lava eruption temperature from remote sensing data is difficult. Detector saturation is likely except when the hot material fills a tiny fraction of a resolution element, unless instruments are designed for this objective. High temperature lava surfaces cool rapidly, so remote observations can miss the peak temperature. Observations at different wavelengths must be acquired nearly simultaneously to derive accurate temperatures of very hot and dynamic sources [3]. Uncertainties regarding hot lava emissivity [4] also reduce the confidence in derived temperatures. From studying thermal emission data from different styles of volcanic activity on Earth by remote sensing in conjunction with contemporaneous observations on the ground, it is found that only certain styles of volcanic activity are suitable for deriving liquid lava temperatures [3]. Active lava lakes are particularly useful, especially during a phase of lava fountaining. Examination and analysis of FLIR data obtained at the Erta'Ale (Ethiopia) basaltic

  18. Relationships between lava and tephra volumes erupted during the 26 October 2013 lava fountaining episode from the New Southeast Crater of Etna

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Behncke, Boris; Cristaldi, Antonio; De Beni, Emanuela; Lo Castro, Maria Deborah; Lopez, Manuela; Scollo, Simona

    2014-05-01

    Determining the volume of the various products of a volcanic eruption can be notoriously difficult, especially if the products encompass lava, distal tephra, and proximal pyroclastics mostly deposited on a growing volcanic cone. We evaluated, for the first time at Etna, the total masses and volumes of both lava flows and pyroclastic material emitted during the 26 October 2013 episode of lava fountaining at Etna's New Southeast Crater (NSEC), correlating them with mass eruption rate and total grain-size of the fallout deposit. The episode was heralded by Strombolian activity starting on early 25 October and gradually intensifying throughout the day, blending into a continuous lava fountain early on 26 October. An eruption column started to rise to ~4 km above Etna's summit before being bent toward WSW by the wind. Lava fountaining up to 500 m high continued until ~10:00 GMT, and then started to diminish significantly; by 13:00 GMT, the episode was over. 'A'¯a lava flows were emitted throughout the phase of lava fountaining, forming a three-lobed lava field toward south and a minor lava flow toward east. After the episode, we carried out field surveys to map both the fallout deposits and the lava flows. Distal tephra was deposited to at least 110 km distance from the vent and possibly beyond the south coast of Sicily. The dispersal area of the tephra deposit was quite narrow on the ground, the load per unit area declining very rapidly away from the main dispersal axis. In the very proximal area (~1.6 km from the NSEC), the fallout deposit formed a 3-cm thick bed of scoriaceous lapilli (peaked at -2 phi) amounting to 22.25 kg/m2. The tephra load dropped up to 0.4 kg/m2 in the town of Adrano (16 km), where we found a continuous, thin layer of medium-sized ash. Finally, the fallout consisted of fine ash (~99 % of clasts

  19. Probabilistically modeling lava flows with MOLASSES

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  20. Geologic mapping on the deep seafloor: Reconstructing lava flow emplacement and eruptive history at the Galápagos Spreading Center

    NASA Astrophysics Data System (ADS)

    McClinton, J. T.; White, S.; Colman, A.; Sinton, J. M.; Bowles, J. A.

    2012-12-01

    most recent eruptions (<100yrs BP by paleomagnetic intensity) are mainly on-axis pillow ridges and domes. These spatial and temporal trends suggest a gradual transition from low-relief, "paving" eruptions to relief-building, "constructional" eruptions. In our second study area at 95°W, where magma supply is lower, eruptions mostly consist of axial seamounts and irregularly shaped clusters of pillow mounds. Many have summit plateaus with inflated, partially collapsed lobate lavas suggesting variable effusion rates and topographic influence on lava flows. In addition, a relatively extensive (~9.5km2) flow field of inflated lobate and sheet lavas erupted from vents ~1km north of the ridge axis and flowed ~1km into the inner axial graben through channels and tubes, ponding against older structures and leaving prominent "bathtub rings" and collapse features. This eruption provides direct evidence that large, high effusion rate eruptions can occur in low magma supply settings at MORs.

  1. Wax Modeling and Image Analysis for Classroom-Scale Lava Flow Simulations.

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Clarke, A. B.; Vanderkluysen, L.

    2016-12-01

    The use of polyethylene glycol wax (PEG 600) as an analog for lava allows for a visual representation of the complex physical process occurring in natural lava flows, including cooling, breakouts, and crust and lobe formation. We used a series of cameras positioned around a tank filled with chilled water as a lab bench to observe and quantify lava flow morphology and motion. A peristaltic pump connected to a vent at the base of the tank delivered dyed wax simulating effusive eruptions similar to those of Kilauea in Hawai`i. By varying the eruptive conditions such as wax temperature and eruption rate, students can observe how the crust forms on wax flows, how different textures result, and how a flow field evolves with time. Recorded footage of the same `eruption' can then be quantitatively analyzed using free software like ImageJ and Tracker to quantify time-series of spreading rate, change in height, and appearance of different surface morphologies. Additional dye colors can be added periodically to further illustrate how lava is transported from the vent to the periphery of a flow field (e.g., through a tube system). Data collected from this activity can be compared to active lava flow footage from Hawai`i and with numerical models of lava flow propagation, followed by discussions of the application of these data and concepts to predicting the behavior of lava in hazard management situations and interpreting paleomagnetic, petrologic, and mapping of older eruptions.

  2. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    NASA Astrophysics Data System (ADS)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  3. Map showing lava inundation zones for Mauna Loa, Hawai'i

    USGS Publications Warehouse

    Trusdell, F.A.; Graves, P.; Tincher, C.R.

    2002-01-01

    The Island of Hawai‘i is composed of five coalesced basaltic volcanoes. Lava flows constitute the greatest volcanic hazard from these volcanoes. This report is concerned with lava flow hazards on Mauna Loa, the largest of the island shield volcanoes. Hilo lies 58 km from the summit of Mauna Loa, the Kona coast 33 km, and the southernmost point of the island 61 km.Hawaiian volcanoes erupt two morphologically distinct types of lava, aa and pahoehoe. The surfaces of pahoehoe flows are rather smooth and undulating. Pahoehoe flows are commonly fed by lava tubes, which are well insulated, lava-filled conduits contained within the flows. The surfaces of aa flows are extremely rough and composed of lava fragments. Aa flows usually form lava channels rather than lava tubes.In Hawai‘i, lava flows are known to reach distances of 50 km or more. The flows usually advance slowly enough that people can escape from their paths. Anything overwhelmed by a flow will be damaged or destroyed by burial, crushing, or ignition. Mauna Loa makes up 51 percent of the surface area of the Island of Hawai‘i. Geologic mapping shows that lava flows have covered more than 40 percent of the surface every 1,000 years. Since written descriptions of its activity began in A.D. 1832, Mauna Loa has erupted 33 times. Some eruptions begin with only brief seismic unrest, whereas others start several months to a year following increased seismic activity. Once underway, the eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities. For example, the 1950 flows from the southwest rift zone reached the ocean in approximately three hours. The two longest flows of Mauna Loa are pahoehoe flows from the 50-kilometer-long 1859 and the 48-kilometer-long 1880-81 eruptions.Mauna Loa will undoubtedly erupt again. When it does, the first critical question that must be answered is: Which areas are threatened with inundation? Once the threatened areas are established, we

  4. Environmental assessment: Richton Dome Site, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.« less

  5. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  6. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  7. Modeling Submarine Lava Flow with ASPECT

    NASA Astrophysics Data System (ADS)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  8. Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.; Self, S.; Francis, P. W.; Drake, R. E.; Ramirez, Carlos R.

    1994-01-01

    The largest known Quaternary silicic lava body in the world is Cerro Chao in north Chile, a 14-km-long coulee with a volume of at least 26 cu km. It is the largest of a group of several closely similar dacitic lavas erupted during a recent (less than 100,000 year old) magmatic episode in the Altiplano-Puna Volcanic Complex (APVC; 21-24 deg S) of the Centra; Andean Volcanic Zone. The eruption of Chao proceeded in three phases. Phase 1 was explosive and produced approximately 1 cu km of coarse, nonwelded dacitic pumice deposits and later block and ash flows that form an apron in front of the main lava body. Phase 2 was dominantly effusive and erupted approximately 22.5 cu km of magma in the form of a composite coulee covering approximately 53 sq km with a 400-m-high flow front and a small cone of poorly expanded pumice around the vent. The lava is homogeneous with rare flow banding and vesicular tops and selvages. Ogives (flow ridges) reaching heights of 30 m form prominent features on its surface. Phase 3 produced a 6-km-long, 3-km-wide flow that emanated from a collapsed dome. Ogives are subdued, and the lava is glassier than that produced in previous phases. All the Chao products are crystal-rich high-K dacites and rhyodacites with phenocrysts of plagioclase, quartz, hornblende, biotite, sphene, rare snidine, and oxides. Phenocryst contents reach 40-60 vol % (vesicle free) in the main phase 2 lavas but are lower in the phase 1 (20-25%) and phase 3 (approximately 40%) lavas. Ovoid andesitic inclusions with vesicular interiors and chilled margins up to 10 cm are found in the later stages of phase 2 and compose up to 5% of the phase 3 lava. There is little evidence for preeruptive zonation of the magma body in composition, temperature (approximately 840 C), fO2 (19(exp -11), or water content, so we propose that eruption of the Chao complex was driven by intrusion of fresh, hot andesitic magma into a crystallizing and largely homogeneous body of dacitic magma

  9. MrLavaLoba: A new probabilistic model for the simulation of lava flows as a settling process

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Tarquini, Simone

    2018-01-01

    A new code to simulate lava flow spread, MrLavaLoba, is presented. In the code, erupted lava is itemized in parcels having an elliptical shape and prescribed volume. New parcels bud from existing ones according to a probabilistic law influenced by the local steepest slope direction and by tunable input settings. MrLavaLoba must be accounted among the probabilistic codes for the simulation of lava flows, because it is not intended to mimic the actual process of flowing or to provide directly the progression with time of the flow field, but rather to guess the most probable inundated area and final thickness of the lava deposit. The code's flexibility allows it to produce variable lava flow spread and emplacement according to different dynamics (e.g. pahoehoe or channelized-'a'ā). For a given scenario, it is shown that model outputs converge, in probabilistic terms, towards a single solution. The code is applied to real cases in Hawaii and Mt. Etna, and the obtained maps are shown. The model is written in Python and the source code is available at http://demichie.github.io/MrLavaLoba/.

  10. Radar topography of domes on planetary surfaces

    USGS Publications Warehouse

    Neish, Catherine D.; Lorenz, R.D.; Kirk, R.L.

    2008-01-01

    We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. ?? 2008 Elsevier Inc.

  11. A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2017-08-01

    A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the "thermal proxy"). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a "real-world" view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion "lava circuit" over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the "lava circuit." Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.

  12. Sensitivity of OMI SO2 measurements to variable eruptive behaviour at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Hayer, C. S.; Wadge, G.; Edmonds, M.; Christopher, T.

    2016-02-01

    Since 2004, the satellite-borne Ozone Mapping Instrument (OMI) has observed sulphur dioxide (SO2) plumes during both quiescence and effusive eruptive activity at Soufrière Hills Volcano, Montserrat. On average, OMI detected a SO2 plume 4-6 times more frequently during effusive periods than during quiescence in the 2008-2010 period. The increased ability of OMI to detect SO2 during eruptive periods is mainly due to an increase in plume altitude rather than a higher SO2 emission rate. Three styles of eruptive activity cause thermal lofting of gases (Vulcanian explosions; pyroclastic flows; a hot lava dome) and the resultant plume altitudes are estimated from observations and models. Most lofting plumes from Soufrière Hills are derived from hot domes and pyroclastic flows. Although Vulcanian explosions produced the largest plumes, some produced only negligible SO2 signals detected by OMI. OMI is most valuable for monitoring purposes at this volcano during periods of lava dome growth and during explosive activity.

  13. Io's Volcanism: Thermo-Physical Models of Silicate Lava Compared with Observations of Thermal Emission

    NASA Technical Reports Server (NTRS)

    Davies, Ashely G.

    1996-01-01

    Analyses of thermal infrared outbursts from the jovian satellite Io indicate that at least some of these volcanic events are due to silicate lava. Analysis of the January 9, 1990 outburst indicates that this was an active eruption consisting of a large lava flow (with mass eruption rate of order 10(exp 5) cubic m/sec) and a sustained area at silicate liquidus temperatures. This is interpreted as a series of fire fountains along a rift zone. A possible alternative scenario is that of an overflowing lava lake with extensive fire fountaining. The January 9, 1990 event is unique as multispectral observations with respect to time were obtained. In this paper, a model is presented for the thermal energy lost by active and cooling silicate lava flows and lakes on Io. The model thermal emission is compared with Earth-based observations and Voyager IRIS data. The model (a) provides an explanation of the thermal anomalies on Io's surface; (b) provides constraints on flow behavior and extent and infers some flow parameters; and (c) determines flow geometry and change in flow size with time, and the temperature of each part of the flow or lava lake surface as a function of its age. Models of heat output from active lava flows or inactive but recently emplaced lava flows or overturning lava lakes alone are unable to reproduce the observations. If the January 9, 1990 event is the emplacement of a lava flow, the equivalent of 27 such events per year would yield a volume of material sufficient, if uniformly distributed, to resurface all of Io at a rate of 1 cm/year.

  14. Evolution of oceanic core complex domes and corrugations

    NASA Astrophysics Data System (ADS)

    Cann, J.; Escartin, J.; Smith, D.; Schouten, H.

    2007-12-01

    In regions of the oceans where detachment faulting is developed widely, individual core complex domes (elevated massifs capped by corrugated detachment surfaces) show a consistent morphology. At their outward sides, most core complex domes are attached to a planar slope, interpreted (Smith et al., 2006) as an originally steep inward-facing normal fault that has been rotated to shallower angles. We suggest that the break in slope where the originally steep normal fault meets the domal corrugated surface marks the trace of the brittle-ductile transition at the base of the original normal fault. The steep faults originate within a short distance of the spreading axis. This means that the arcuate shape of the intersection of the steep fault with the dome must indicate the shape of the brittle-ductile transition very close to the spreading axis. The transition must be very shallow close to the summit of the dome and deeper on each flank. Evidence from drilling of some core complexes (McCaig et al, 2007) shows that while the domal detachment faults are active they may channel hydrothermal flow at black smoker temperatures and may be simultaneously injected by magma from below. This indicates a close link between igneous activity, hydrothermal flow and deformation while a core complex is forming. Once the shape of the core complex dome is established, it persists as the ductile footwall mantle rising from below is shaped by the overlying brittle hanging wall that has been cooled by the hydrothermal circulation. The corrugations in the footwall must be moulded into it by irregularities in the brittle hanging wall, as suggested by Spencer (1999). The along-axis arched shape of the hanging wall helps to stabilise the domal shape of the footwall as it rises and cools.

  15. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    NASA Astrophysics Data System (ADS)

    Self, S.; Jay, A. E.; Widdowson, M.; Keszthelyi, L. P.

    2008-05-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India , are remnants of the longest lava flows yet recognized on Earth (˜ 1000 km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pāhoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pāhoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400 km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000 km 3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  16. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    USGS Publications Warehouse

    Self, S.; Jay, A.E.; Widdowson, M.; Keszthelyi, L.P.

    2008-01-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India, are remnants of the longest lava flows yet recognized on Earth (??? 1000??km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pa??hoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pa??hoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400??km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000??km3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  17. Stability of lava lakes

    NASA Astrophysics Data System (ADS)

    Witham, Fred; Llewellin, Edward W.

    2006-11-01

    A physical model of a generic lava lake system is developed. We derive the requisite conditions for the existence of an 'equilibrium lava lake' in which magmastatic pressure at the base of the conduit balances the pressure in the underlying magmatic reservoir. The stability of this lava lake system is tested by investigating the response of the system to perturbation. We develop a graphical method, based on the system's pressure-depth profile, to predict the subsequent behaviour of the system. Despite the simplicity of the modelled system, we find a broad behavioural spectrum. Initially, the rise of bubbles through the magma is ignored. In this case, both stable, long-lived lava lakes, and unstable lakes that are prone to sudden draining, are predicted. The stability of the system is shown to be controlled by lake-conduit geometry, the solubility and gas expansion laws and the magma's volatile content. We show that an unstable lake must collapse to a new, stable equilibrium. Subsequent recharge of the system by, for example, conduit overturn, would promote a return to the original equilibrium, giving rise to cyclic behaviour. Such a mechanism is consistent with lava lake behaviour during the 1983-1984 Pu'u 'O'o eruption of Kilauea. When the rise of bubbles through the magma is considered, our model predicts that stable lakes must drain over time. We, therefore, deduce that persistently degassing, stable lava lakes, such as those observed at Mt. Erebus, Antarctica, and Mauna Ulu, Kilauea, Hawaii, must have an effective conduit convection mechanism or an exogenous supply of bubbles from depth.

  18. Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption

    NASA Astrophysics Data System (ADS)

    Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.

    1998-12-01

    Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.

  19. Visualizing lava flow interiors with LiDAR

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Young, K.; Kruse, S.; Esmaeili, S.; Bell, E.; Paylor, R.

    2017-12-01

    Lava tube caves provide unprecedented access to the shallow (meters to tens of meters) interiors of lava flows. Surveying tube geometry and morphology can illuminate lava flow thermal history and emplacement mechanics. In an expedition to Lava Beds National Monument, California, our team collected ultra-high-resolution (< 10 cm) topography from the interiors of four lava tubes using a terrestrial laser scanner (TLS). More than 78 GB of point data (latitude, longitude, elevation) of the surface and interiors of Hercules Leg, Skull, Valentine and, Indian Well Caves were collected. For example, our point cloud for 50 m of Valentine Cave contains 748 million points (interior: 478 million, exterior: 270 million) from 28 TLS scans. The tubes visited range in diameter from < 1 m to > 10 m, and from 1 m to < 20 m of overburden. The interior morphology of the tubes remain pristine (i.e., un-eroded) after more than 10,000 years. The TLS data illuminate fresh-looking lava tube flow features (e.g., lava-coils, pillars, benches, and ropes) and post-emplacement deformation features (e.g., fractures, lava-drips, molded ceilings, and drop-blocks). Furthermore, the data provide context for geochemical and geophysical observations made in conjunction with the TLS survey. Lava tube morphology, observable in the TLS data, informs each tube's emplacement history. Skull cave is the largest ( 20 m in diameter) requiring a comparatively high lava discharge rate and suggesting this cave formed by roofing over a lava channel. In contrast, Valentine, Hercules Leg, and Indian Well Caves are narrower, (1 to 4 m) and have many branches, some of which rejoin the "main passage", suggesting they formed by developing a network of pathways within the lava flow. We will showcase video fly-throughs for these lava tubes, plus manipulable point clouds. The interactive eLighning presentation will encourage hands-on exploration of these unique data. We will guide them on a tour of the underground to

  20. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

    1980-01-01

    Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.

  1. Identifying hazards associated with lava deltas

    USGS Publications Warehouse

    Poland, Michael P.; Orr, Tim R.

    2014-01-01

    Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.

  2. Investigation of Volcanic Seismo-Acoustic Signals: Applying Subspace Detection to Lava Fountain Activity at Etna Volcano

    NASA Astrophysics Data System (ADS)

    Sciotto, M.; Rowe, C. A.; Cannata, A.; Arrowsmith, S.; Privitera, E.; Gresta, S.

    2011-12-01

    The current eruption of Mount Etna, which began in January, 2011, has produced numerous energetic episodes of lava fountaining, which have bee recorded by the INGV seismic and acoustic sensors located on and around the volcano. The source of these events was the pit crater on the east flank of the Southeast crater of Etna. Simultaneously, small levels of activity were noted in the Bocca Nuova as well, prior to its lava fountaining activity. We will present an analysis of seismic and acoustic signals related to the 2011 activity wherein we apply the method of subspace detection to determine whether the source exhibits a temporal evolution within or between fountaining events, or otherwise produces repeating, classifiable events occurring through the continuous explosive degassing. We will examine not only the raw waveforms, but also spectral variations in time as well as time-varying statistical functions such as signal skewness and kurtosis. These results will be compared to straightforward cross-correlation analysis. In addition to classification performance, the subspace method has promise to outperform standard STA/LTA methods for real-time event detection in cases where similar events can be expected.

  3. The role of lava erosion in the formation of lunar rilles and Martian channels

    USGS Publications Warehouse

    Carr, M.H.

    1974-01-01

    Lava tubes and channels develop around active sources of low viscosity lava. The channels normally form without erosion; however, sustained flow can result in the incision of a lava channel and simulation of fluvial erosion features. Lava erosion by means of thermal incision was modelled by computer, erosion rates calculated, and these compared with rates observed terrestrially. Lunar sinuous rilles are examined in light of the proposed lava erosion. The mechanism explains many features of lunar rilles that were heretofore puzzling and implies erosion rates comparable to terrestrial rates. Many Mars channels also appear to form by the action of lava; however, the larger, more spectacular Mars channels do not appear to have been formed by the same process. ?? 1974.

  4. Toothpaste lava: Characteristics and origin of a lava structural type transitional between pahoehoe and aa

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George P. L.

    1987-08-01

    Toothpaste lava, an important basalt structural type which illustrates the transition from pahoehoe to aa, is particularly well displayed on the 1960 Kapoho lava of Kilauea Volcano. Its transitional features stem from a viscosity higher than that of pahoehoe and a rate of flow slower than that of aa. Viscosity can be quantified by the limited settling of olivine phenocrysts and rate of flow by field observations related to the low-angle slope on which the lava flowed. Much can be learned about the viscosity, rheologic condition, and flow velocity of lavas long after solidification by analyses of their structural characteristics, and it is possible to make at least a semiquantitative assessment of the numerical values of these parameters.

  5. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel

    2012-01-01

    We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.

  6. Morphometric study of the Habo dome, Kachchh, Gujarat, India: implications on neotectonic activity

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Mohanty, S. P.

    2017-12-01

    The Kachchh Basin of western India was developed during the separation of the Indian plate from the Gondwanaland in Mesozoic. Series of E-W striking master faults were generated during this extensional phase. The collision of the Indian and Eurasian plates in Eocene time resulted in the change of stress regime to a compressional setting when the built-up stress developed NNW-SSE to NNE-SSW striking transverse faults and reactivated the earlier E-W master faults. The present work was carried out in the Habo dome, located in the central part of the Kachchh Basin, to analyse the morphometric features such as the bifurcation ratio, circulation ratio, drainage texture, asymmetric factor, hypsometric indices and mountain front sinuosity of selected sub-watersheds of the area to understand the effects of fault reactivation and neotectonic activities on the geometry of the dome. Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data were used to extract drainage network for morphometric analysis of the Kaswati, Khari, and Pur river basins. The study area is elliptical in outline with the long axis trending approximately E-W. The evolution of this domal structure is interpreted to be the result of fault-bound nature of the block. The northern slope of the dome is bound by the Kachchh Mainland Fault and the eastern and western boundaries are marked by transverse faults. The undulating topography was developed by differential movements along several transverse faults striking NW-SE, N-S, and NE-SW. The earlier interpretation of laccolith intrusion into the sedimentary rocks is not supported by the data analysis and field mapping. Stress propagations from the Himalayan range in the northeast and Sulaiman range in the northwest are identified to be the causative factor for historical seismicity and drainage anomalies in the area. Keywords: Basin morphometry, Geographical Information System, Lineament patterns, Kachchh basin, Neotectonics, Fault reactivation

  7. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning

  8. Lava Tube Seismicity at Kilauea

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Battaglia, J.; Kauahikaua, J. P.; Okubo, P. G.

    2002-12-01

    We have begun to collect seismic data on lava tubes at Kilauea volcano in an effort to develop a real-time method for monitoring lava tube flux. Utilizing seismometers whose responses collectively vary from about 1 Hz to 1000 Hz, we find that most tube signals range between about 1 to 150 Hz, though some sites exhibit transient signals that range upward to several hundred Hz or more. Part of the lower frequency band--perhaps 1-10 Hz--may be volcanic tremor from Pu`u `O`o, the source of the lava flowing in the tubes. We attribute the higher frequencies to flowing lava, though wind noise and helicopter noise complicate interpretation. At a given site, both the amplitude and frequency spectrum change with time. We strongly suspect that at least some of the changes are related to changes in lava velocity and/or lava flux. Our strongest evidence that the part of the spectrum greater than 10 Hz contains velocity/flux information is that the signal amplitude of this band decreased by about 90 percent when the independently measured VLF (Very Low Frequency) tube flux decreased from about 300,000 m3/day in early February, 2002 to less than 5,000 m3/day in late August. Qualitative field observations of this tube system are in agreement with the VLF measurements.

  9. Black Peak Caldera, Alaska: Preliminary Investigations of the ˜4600 BP Caldera-forming Eruption and Subsequent Post-caldera Activity

    NASA Astrophysics Data System (ADS)

    McGimsey, R. G.; Neal, C. A.; Adleman, J. A.; Larsen, J. F.; Ramsey, M.

    2003-12-01

    Black Peak Caldera is a 4-km-diameter, circular crater located on the Alaska Peninsula midway between Aniakchak and Veniaminof Volcanoes, approximately 45 km south-southwest of the community of Port Heiden and 730 km southwest of Anchorage. The caldera truncates a highly altered volcanic edifice that consists largely of lava domes, minor lava flows, and volcaniclastics. New radiocarbon dating of soils beneath the ash-flow deposit confirm earlier dating and place the age of the caldera-forming event at approximately 4600 14C yrs BP. Climactic fall deposits from this eruption form a prominent, crystal-rich, regional tephra horizon informally referred to as the 'salt and pepper ash.' Coeval pyroclastic flow deposits fill the two major drainages around the caldera to a depth of up to 100 m, and extend at least 10 km from the caldera rim. Deposits consist of a lower, highly pumiceous, crystal-rich dacite flow unit capped by a conspicuously oxidized, lithic-rich unit that is less aerially extensive. We estimate the bulk volume of the eruption to be less than 10-20 km3. Post-caldera eruptions at Black Peak have largely consisted of viscous, crystal-rich, hornblende-bearing dacite lavas forming a coalescing field of steep-sided, blocky domes and at least one coulee that fill much of the caldera. No coarse tephra fall deposits related to these eruptions have been found. Fine-grained, highly altered ash fall deposits, possibly related to dome emplacement, form a thick, monotonous sequence on the caldera rim and immediately overlying the ash flow in exposures near the caldera. This suggests that the dome eruptions closely followed caldera formation. Several domes collapsed over the eastern rim of the caldera to form coarse block and ash avalanche fans that extend ~1.5 km down Red Bluff Creek. Radiocarbon dating of an overlying soil indicates an age of >500 14C yrs BP for these avalanches. There are no reports of eruptive activity at Black Peak in historic time (approximately

  10. Bringing the Volcano to the Students: The Syracuse University LAVA Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, B.; Kissane, M. T.

    2011-12-01

    A collaborative effort between the Department of Earth Sciences and Sculpture Department at Syracuse University has resulted in the facility to make natural-scale lava flows in a laboratory environment for K-university students and the general public. Using a large, gas-fired, furnace with a tilting crucible, basaltic gravel is heated at temperatures of 1100° to 1300°C resulting in up to 800 lbs of homogeneous, basaltic lava. Lava is poured over a variety of surfaces including rock slab, wet or dry sand, ice and dry ice. A ceramic funnel permits pouring into and under water. Differing set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. Composition is held constant, but varying key parameters such as temperature, pouring (effusion) rate, and slope result in different flow morphologies including ropey to toey pahoehoe, inflated flows, channelized flows with levees, and hyaloclastites. Typical flows are 2-4 m long and < 1 m wide. The cooled flows are dissected to document variations in vesicle and crystal densities. In general, the flows produce massive, glassy basalt with internal structures that mimic flows from natural environments. Byproducts of the process include abundant Pelee's hair and tears. Experiments are underway to quantify the variables associated with different morphologies, but the spectacular lava flows are also being integrated into class experiences. Students and instructors from K-12 classes as well as university classes are spectators and active participants in the lava flow events, commonly proposing experiments before or during flows. Lava flows are incorporated into labs for Earth Science classes and also used for artistic creations in the Sculpture program. Although students have access to still images and video of natural lava flows from active volcanoes, there is no substitute for "being there" and experiencing the spectacle of viscous, incandescent orange, lava flowing over the surface in a

  11. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  12. Titan2D simulations of dome-collapse pyroclastic flows for crisis assessments on Montserrat

    NASA Astrophysics Data System (ADS)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2010-12-01

    The Soufriere Hills Volcano (SHV), Montserrat, has experienced numerous episodes of lava dome collapses since 1995. Collapse volumes range from small rockfalls to major dome collapses (as much as ~200 M m3). Problems arise in hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flowage deposits in various scenarios is important for hazards zonation, provision of advice by scientists, and decision making by public officials. Towards resolution of this issue we have tested the TITAN2D code, calibrated parameters for an SHV database, and using updated topography have provided flowage maps for various scenarios and volume classes from SHV, for use in hazards assessments. TITAN2D is a map plane (depth averaged) simulator of granular flow and yields mass distributions over a DEM. Two Coulomb frictional parameters (basal and internal frictions) and initial source conditions (volume, source location, and source geometry) of single or multiple pulses in a dome-collapse type event control behavior of the flow. Flow kinematics are captured, so that the dynamics of flow can be examined spatially from frame to frame, or as a movie. Our hazard maps include not only the final deposit, but also areas inundated by moving debris prior to deposition. Simulations from TITAN2D were important for analysis of crises in the period 2007-2010. They showed that any very large mass released on the north slope would be strongly partitioned by local topography, and thus it was doubtful that flows of very large size (>20 M m3) could be generated in the Belham River drainage. This partitioning effect limited runout toward populated areas. These effects were interpreted to greatly reduce the down-valley risk of ash-cloud surges.

  13. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  14. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  15. Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens

    2015-04-01

    The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow

  16. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.

    2017-12-01

    The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.

  17. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  18. Dome growth and destruction during the 1989-1990 eruption of redoubt volcano

    USGS Publications Warehouse

    Miller, T.P.

    1994-01-01

    Much of the six-month-long 1989-1990 eruption of Redoubt Volcano consisted of a dome-growth and -destructive phase in which 14 short-lived viscous silicic andesite domes were emplaced and 13 subsequently destroyed. The life span of an individual dome ranged from 3 to 21 days and volumes are estimated at 1 ?? 106 to 30 ?? 106 m3. Magma supply rates to the vent area averaged about 5 ?? 105 m3 / day for most of the dome-building phase and ranged from a high of 2.2 ?? 106 m3 per day initially to a low of 1.8 ?? 105 m3 per day at the waning stages of the eruption. The total volume of all domes is estimated to be about 90 ?? 106 m3 and may represent as much as 60-70% of the volume for the entire eruption. The site of 1989-1990 dome emplacement, like that in 1966, was on the margin of a north-facing amphitheatre-like summit crater. The domes were confined on the east and west by steep cliffs of pre-eruption cone-building volcanic rocks and thus were constrained to grow vertically. Rapid upward growth in a precarious site caused each dome to spread preferentially to the north, resulting in eventual gravitational collapse. As long as the present conduit remains active at Redoubt Volcano, any dome formed in a new eruption will be confined to a narrow steeply-sloping gorge, leading to rapid vertical growth and a tendency to collapse gravitationally. Repetitive cycles of dome formation and failure similar to those seen in 1989-1990 are probably the norm and must be considered in future hazard analyses of Redoubt Volcano. ?? 1994.

  19. Thermal influences on spontaneous rock dome exfoliation

    USGS Publications Warehouse

    Collins, Brian D.; Stock, Greg M.; Eppes, Martha C.; Lewis, Scott W.; Corbett, Skye C.; Smith, Joel B.

    2018-01-01

    Rock domes, with their onion-skin layers of exfoliation sheets, are among the most captivating landforms on Earth. Long recognized as integral in shaping domes, the exact mechanism(s) by which exfoliation occurs remains enigmatic, mainly due to the lack of direct observations of natural events. In August 2014, during the hottest days of summer, a granitic dome in California, USA, spontaneously exfoliated; witnesses observed extensive cracking, including a ~8000 kg sheet popping into the air. Subsequent exfoliation episodes during the following two summers were recorded by instrumentation that captured—for the first time—exfoliation deformation and stress conditions. Here we show that thermal cycling and cumulative dome surface heating can induce subcritical cracking that culminates in seemingly spontaneous exfoliation. Our results indicate that thermal stresses—largely discounted in dome formation literature—can play a key role in triggering exfoliation and therefore may be an important control for shaping domes worldwide.

  20. Toothpaste lava from the Barren Island volcano (Andaman Sea)

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Kumar, Alok; Bhutani, Rajneesh; Awasthi, Neeraj

    2011-04-01

    Toothpaste lava is a basaltic lava flow type transitional between pahoehoe and aa and has been described from Paricutin, Kilauea and Etna volcanoes. Here we describe a spectacular example of toothpaste lava, forming part of a recent (possibly 1994-95) aa flow on the active volcano of Barren Island (Andaman Sea). This flow of subalkalic basalt shows abundant squeeze-ups of viscous toothpasate lava near its entry into the sea. The squeeze-ups are sheets and slabs, up to several meters across and tens of centimeters thick, extruded from boccas. They are often prominently curved, have striated upper surfaces with close-spaced, en echelon linear ridges and grooves, broad wave-like undulations perpendicular to the striations, and sometimes, clefts. Textural, geochemical, and Sr-Nd isotopic data on the squeeze-ups and the exposed aa flow core indicate very crystal-rich, viscous, and isotopically very homogeneous lava. We envisage that a greatly reduced speed of this viscous flow at the coastline, possibly aided by a shallowing of the basal slope, led to lateral spreading of the flow, which caused tension in its upper parts. This, with continued (albeit dwindling) lava supply at the back, led to widespread tearing of the flow surface and extrusion of the squeeze-ups. The larger slabs, while extruding in a plastic condition, curved under their own weight, whereas their surfaces experienced brittle deformation, forming the en echelon grooves. The extruded, detached, and rotated sheets and slabs were carried forward for some distance atop the very slowly advancing aa core, before the flow solidified.

  1. Lava effusion rate definition and measurement: a review

    USGS Publications Warehouse

    Calvari, Sonia; Dehn, Jonathan; Harris, A.

    2007-01-01

    Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.

  2. Flowing Hot or Cold: User-Friendly Computational Models of Terrestrial and Planetary Lava Channels and Lakes

    NASA Astrophysics Data System (ADS)

    Sakimoto, S. E. H.

    2016-12-01

    Planetary volcanism has redefined what is considered volcanism. "Magma" now may be considered to be anything from the molten rock familiar at terrestrial volcanoes to cryovolcanic ammonia-water mixes erupted on an outer solar system moon. However, even with unfamiliar compositions and source mechanisms, we find familiar landforms such as volcanic channels, lakes, flows, and domes and thus a multitude of possibilities for modeling. As on Earth, these landforms lend themselves to analysis for estimating storage, eruption and/or flow rates. This has potential pitfalls, as extension of the simplified analytic models we often use for terrestrial features into unfamiliar parameter space might yield misleading results. Our most commonly used tools for estimating flow and cooling have tended to lag significantly behind state-of-the-art; the easiest methods to use are neither realistic or accurate, but the more realistic and accurate computational methods are not simple to use. Since the latter computational tools tend to be both expensive and require a significant learning curve, there is a need for a user-friendly approach that still takes advantage of their accuracy. One method is use of the computational package for generation of a server-based tool that allows less computationally inclined users to get accurate results over their range of input parameters for a given problem geometry. A second method is to use the computational package for the generation of a polynomial empirical solution for each class of flow geometry that can be fairly easily solved by anyone with a spreadsheet. In this study, we demonstrate both approaches for several channel flow and lava lake geometries with terrestrial and extraterrestrial examples and compare their results. Specifically, we model cooling rectangular channel flow with a yield strength material, with applications to Mauna Loa, Kilauea, Venus, and Mars. This approach also shows promise with model applications to lava lakes, magma

  3. Late Holocene lava flow morphotypes of the northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Nemeth, K.; Moufti, R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E.

    2013-12-01

    Lava morphotype refers to the surface morphology of a lava flow after solidification. In Saudi Arabia, young and well-preserved mafic lava fields (Harrats) display a wide range of these morphotypes. This study examines those exhibited by four of the post-4500 yrs. BP lava fields in the northern Harrat Rahat (<10 Ma) and describes these lava fields from general characteristics to detailed lava structures. This study also discusses the relationship between rheology and morphotypes, and proposes a preliminary correlation with whole-rock chemical composition. The Harrat Rahat lava fields include one or more lobes that may extend over 20 km from the source, with thicknesses varying between 1-2 m up to 12 m. Each lava flow episode covered areas between ~32 and ~61 km2, with individual volumes estimated between ~0.085 and ~0.29 km3. The whole-rock chemical compositions of these lavas lie between 44.3 to 48.4% SiO2, 9.01-4.28% MgO and 3.13-6.19% NaO+K2O. Seven different morphotypes with several lava structures are documented: Shelly, Slabby, Rubbly-pahoehoe, Platy, Cauliflower, Rubbly-a'a, and Blocky. These may be related to the shear strain and/or apparent viscosity of the lava flows formed from typical pahoehoe (pure or Hawaiian-pahoehoe, or sheet-pahoehoe). The well-preserved lava fields in Harrat Rahat allow the development of a more expanded classification scheme than has been traditionally applied. In addition to the whole-rock composition, these morphotypes may be indicators of other properties such as vesicularity, crystallization, effusion mechanism, as well as significant along-flow variations in topography and lava thickness and temperature that modify the rheology. The linearity of transitions between morphotypes observed in the lava fields suggest that real time forecasting of the evolution of lava flows might be possible.

  4. Lava flow hazard at the new South-East Crater of Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro

    2017-04-01

    The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.

  5. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    PubMed

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  6. High-resolution mapping of the 1998 lava flows at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.

    2011-12-01

    Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has

  7. Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Kim, Eojin

    2014-06-01

    Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

  8. Geology of selected lava tubes in the Bend Area, Oregon

    NASA Technical Reports Server (NTRS)

    Greely, R.

    1971-01-01

    Longitudinal profiles representing 5872.5 m of mapped lava tubes and a photogeologic map relating lava tubes to surface geology, regional structure and topography are presented. Three sets of lava tubes were examined: (1) Arnold Lava Tube System (7km long) composed of collapsed and uncollapsed tube segments and lava ponds, (2) Horse Lava Tube System (11 km long) composed of parallel and anastomosing lava tube segments, and (3) miscellaneous lava tubes. Results of this study tend to confirm the layered lava hypothesis of Ollier and Brown (1965) for lava tube formation; however, there are probably several modes of formation for lava tubes in general. Arnold System is a single series of tubes apparently formed in a single basalt flow on a relatively steep gradient. The advancing flow in which the tubes formed was apparently temporarily halted, resulting in the formation of lava ponds which were inflated and later drained by the lava tube system. Horse System probably formed in multiple, interconnected flows. Pre-flow gradient appears to have been less than for Arnold System, and resulted in meandrous, multiple tube networks.

  9. Satellite-based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Carn, Simon A.; Prata, Fred J.

    2010-09-01

    Numerous episodes of explosive degassing have punctuated the 1995-2009 eruption of Soufrière Hills volcano (SHV), Montserrat, often following major lava dome collapses. We use ultraviolet (UV) and infrared (IR) satellite measurements to quantify sulfur dioxide (SO2) released by explosive degassing, which is not captured by routine ground-based and airborne gas monitoring. We find a total explosive SO2 release of ˜0.5 Tg, which represents ˜6% of total SO2 emissions from SHV since July 1995. The majority of this SO2 (˜0.4 Tg) was vented following the most voluminous SHV dome collapses in July 2003 and May 2006. Based on our analysis, we suggest that the SO2 burden measured following explosive disruption of lava domes depends on several factors, including the instantaneous lava effusion rate, dome height above the conduit, and the vertical component of directed explosions. Space-based SO2 measurements merit inclusion in routine gas monitoring at SHV and other dome-forming volcanoes.

  10. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.

  11. A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    1998-05-01

    The local cooling process of thermal diffusion-dominated lava flows in the atmosphere was studied by a transient, one-dimensional heat transfer model taking into account the most relevant processes governing its behavior. Thermal diffusion-dominated lava flows include any type of flow in which the conductive-diffusive contribution in the energy equation largely overcomes the convective terms. This type of condition is supposed to be satisfied, during more or less extended periods of time, for a wide range of lava flows characterized by very low flow-rates, such as slabby and toothpaste pahoehoe, spongy pahoehoe, flow at the transition pahoehoe-aa, and flows from ephemeral vents. The analysis can be useful for the understanding of the effect of crust formation on the thermal insulation of the lava interior and, if integrated with adequate flow models, for the explanation of local features and morphologies of lava flows. The study is particularly aimed at a better knowledge of the complex non-linear heat transfer mechanisms that control lava cooling in the atmosphere and at the estimation of the most important parameters affecting the global heat transfer coefficient during the solidification process. The three fundamental heat transfer mechanisms with the atmosphere, that is radiation, natural convection, and forced convection by the wind, were modeled, whereas conduction and heat generation due to crystallization were considered within the lava. The magma was represented as a vesiculated binary melt with a given liquidus and solidus temperature and with the possible presence of a eutectic. The effects of different morphological features of the surface were investigated through a simplified description of their geometry. Model results allow both study of the formation in time of the crust and the thermal mushy layer underlying it, and a description of the behavior of the temperature distribution inside the lava as well as radiative and convective fluxes to the

  12. Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.

    Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient

  13. Features of lava lake filling and draining and their implications for eruption dynamics

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes experience filling, circulation, and often drainage depending upon the style of activity and location of the vent. Features formed by these processes have proved difficult to document due to dangerous conditions during the eruption, inaccessibility, and destruction of features during lake drainage. Kilauea Iki lava lake, Kilauea, Hawai'i, preserves many such features, because lava ponded in a pre-existing crater adjacent to the vent and eventually filled to the level of, and interacted with, the vent and lava fountains. During repeated episodes, a cyclic pattern of lake filling to above vent level, followed by draining back to vent level, preserved features associated with both filling and draining. Field investigations permit us to describe the characteristic features associated with lava lakes on length scales ranging from centimeters to hundreds of meters in a fashion analogous to descriptions of lava flows. Multiple vertical rinds of lava coating the lake walls formed during filling as the lake deepened and lava solidified against vertical faces. Drainage of the lake resulted in uneven formation of roughly horizontal lava shelves on the lakeward edge of the vertical rinds; the shelves correlate with stable, staggered lake stands. Shelves either formed as broken relict slabs of lake crust that solidified in contact with the wall or by accumulation, accretion, and widening at the lake surface in a dynamic lateral flow regime. Thin, upper lava shelves reflect an initially dynamic environment, in which rapid lake lowering was replaced by slower and more staggered drainage with the formation of thicker, more laterally continuous shelves. At all lava lakes experiencing stages of filling and draining these processes may occur and result in the formation of similar sets of features. ?? Springer-Verlag 2009.

  14. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; von Aulock, F.; Lavallée, Y.; Hornby, A. J.; Kennedy, B.; Lamb, O. D.; Kendrick, J. E.

    2016-12-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of the active vent of Caliente and the flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These models can be used to constrain topographical changes and distribution of ballistics via cloud comparisons. The preliminary data of aerial images and videos of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, with a later, separate, and more ash-laden burst occurring from an off-centre fracture. - A comparison of the point clouds before and after a degassing explosion shows minor subsidence of the dome surface and the formation of several small craters at the main venting locations. - The lava flow fronts did not advance more than a few meters between May and December 2015. - Damming of river valleys by the lava flows has established new stream channels that have modified established pathways for the recurring lahars, one of the major

  15. Lava and Snow on Klyuchevskaya Volcano [detail

    NASA Image and Video Library

    2017-12-08

    This false-color (shortwave infrared, near infrared, green) satellite image reveals an active lava flow on the western slopes of Klyuchevskaya Volcano. Klyuchevskaya is one of several active volcanoes on the Kamchatka Peninsula in far eastern Russia. The lava flow itself is bright red. Snow on Klyuchevskaya and nearby mountains is cyan, while bare ground and volcanic debris is gray or brown. Vegetation is green. The image was collected by Landsat 8 on September 9, 2013. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Instrument: Landsat 8 - OLI More info: 1.usa.gov/1evspH7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    NASA Astrophysics Data System (ADS)

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  17. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  18. Geochemical constraints on possible subduction components in lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines

    USGS Publications Warehouse

    Castillo, P.R.; Newhall, C.G.

    2004-01-01

    Mayon is the most active volcano along the east margin of southern Luzon, Philippines. Petrographic and major element data indicate that Mayon has produced a basaltic to andesitic lava series by fractional crystallization and magma mixing. Trace element data indicate that the parental basalts came from a heterogeneous mantle source. The unmodified composition of the mantle wedge is similar to that beneath the Indian Ocean. To this mantle was added a subduction component consisting of melt from subducted pelagic sediment and aqueous fluid dehydrated from the subducted basaltic crust. Lavas from the highly active Taal Volcano on the west margin of southern Luzon are compositionally more variable than Mayon lavas. Taal lavas also originated from a mantle wedge metasomatized by aqueous fluid dehydrated from the subducted basaltic crust and melt plus fluid derived from the subducted terrigenous sediment. More sediment is involved in the generation of Taal lavas. Lead isotopes argue against crustal contamination. Some heterogeneity of the unmodified mantle wedge and differences in whether the sediment signature is transferred into the lava source through an aqueous fluid or melt phase are needed to explain the regional compositional variation of Philippine arc lavas. ?? Oxford University Press 2004; all rights reserved.

  19. Lava flow-field morphology: A case study from Mount Etna, Sicily

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Hughes, J. W.; Duncan, A. M.

    1987-01-01

    The morphology of lava flows is often taken as an indicator of the broad chemical composition of the lava, especially when interpreting extraterrestrial volcanoes using spacecraft images. The historical lavas of the active volcano Mount Etna in Sicily provide an excellent opportunity to examine the controls on flow field morphology. In this study only flow produced by flank eruptions after the middle of the 18th century are examined. The final form of a flow-field may be more indicative of the internal plumbing of the volcano, which may control such factors as the effusion, rate, duration of eruption, volume of available magma, rate of de-gassing, and lava rheology. Different flow morphologies on Etna appear to be a good indicator of differing conditions within the volcanic pile. Thus the spatial distribution of different flow types on an extraterrestrial volcano may provide useful information about the plumbing conditions of that volcano, rather than necessarily providing information on the composition of materials erupted.

  20. Generation of Hummocky Flow Morphology Revealed through Ground-based LiDAR Measurements of Actively Inflating Pahoehoe Lavas

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Finnegan, D. C.; Byrnes, J. M.; Nicoll, K.

    2007-12-01

    Although the extrusion of pahoehoe lava flows is one of the most dominant planetary surface-forming processes in the solar system, emplacement models remain controversial, and affect our ability to understand the implications of continental effusive eruptions. To study the detailed growth patterns of an actively inflating hummocky pahoehoe field in Hawaii, we used a Riegl LMSZ420i ground-based light detection and ranging (LiDAR) system that captures topographic data at unprecedented resolutions and speed, and co-registers the x, y and z coordinates with the RGB values of true color high-resolution (12 megapixel) photographs from an externally-mounted camera. Over a 3-day period (February 21-23, 2007) we acquired 4 surveys of surface topography over a ~200 x 200 m area within the Pu'u O'o flow field that contained actively inflating pahoehoe flows emplaced over older, hummocky pahoehoe lavas. Total scan times ranged from 6 to 19 minutes, with topographic points collected at a 0.05-0.08 degree spacing. Each scan obtained between 1.6 and 5.1 million x, y, and z data points. We acquired topographic data at a rate of 12,000 points/second, permitting repeatable digital elevation model (DEM) generation with 5mm accuracy. We differenced successive DEMs generated from our topographic data to determine the magnitude and patterns of growth. We documented uneven rates of inflation over the area, ranging from less than 0.5 m to 3.9 m, with several tumuli forming over the 3-day time period. These results are the first detailed measurements that help us constrain the movement of lava between upper and lower flow crusts.

  1. Arc jet testing of a Dynasil dome

    NASA Astrophysics Data System (ADS)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  2. Utility of Lava Tubes on Other Worlds

    NASA Technical Reports Server (NTRS)

    Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.

    1998-01-01

    On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.

  3. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  4. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  5. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  6. A flexible open-source toolkit for lava flow simulations

    NASA Astrophysics Data System (ADS)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  7. Littoral hydrovolcanic explosions: A case study of lava-seawater interaction at Kilauea Volcano

    USGS Publications Warehouse

    Mattox, T.N.; Mangan, M.T.

    1997-01-01

    A variety of hydrovolcanic explosions may occur as basaltic lava flows into the ocean. Observations and measurements were made during a two-year span of unusually explosive littoral activity as tube-fed pahoehoe from Kilauea Volcano inundated the southeast coastline of the island of Hawai'i. Our observations suggest that explosive interactions require high entrance fluxes (??? 4 m3/s) and are most often initiated by collapse of a developing lava delta. Two types of interactions were observed. "Open mixing" of lava and seawater occurred when delta collapse exposed the mouth of a severed lava tube or incandescent fault scarp to wave action. The ensuing explosions produced unconsolidated deposits of glassy lava fragments or lithic debris. Interactions under "confined mixing" conditions occurred when a lava tube situated at or below sea level fractured. Explosions ruptured the roof of the tube and produced circular mounds of welded spatter. We estimate a water/rock mass ratio of 0.15 for the most common type of littoral explosion and a kinetic energy release of 0.07-1.3 kJ/kg for the range of events witnessed.

  8. Lava Flows of Daedalia Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This THEMIS image captures a portion of several lava flows in Daedalia Planum southwest of the Arsia Mons shield volcano. Textures characteristic of the variable surface roughness associated with different lava flows in this region are easily seen. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows. The surfaces of some flows look wrinkly and ropy, probably indicating a relatively fluid type of lava flow referred to as pahoehoe. The surface textures of lava flows can thus sometimes be used for comparative purposes to infer lava viscosity and effusion rates. Numerous parallel curved ridges are visible on the upper surfaces of some of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, cooling it, but the insulated much warmer interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  9. The structural stability of lunar lava tubes

    NASA Astrophysics Data System (ADS)

    Blair, David M.; Chappaz, Loic; Sood, Rohan; Milbury, Colleen; Bobet, Antonio; Melosh, H. Jay; Howell, Kathleen C.; Freed, Andrew M.

    2017-01-01

    Mounting evidence from the SELENE, LRO, and GRAIL spacecraft suggests the presence of vacant lava tubes under the surface of the Moon. GRAIL evidence, in particular, suggests that some may be more than a kilometer in width. Such large sublunarean structures would be of great benefit to future human exploration of the Moon, providing shelter from the harsh environment at the surface-but could empty lava tubes of this size be stable under lunar conditions? And what is the largest size at which they could remain structurally sound? We address these questions by creating elasto-plastic finite element models of lava tubes using the Abaqus modeling software and examining where there is local material failure in the tube's roof. We assess the strength of the rock body using the Geological Strength Index method with values appropriate to the Moon, assign it a basaltic density derived from a modern re-analysis of lunar samples, and assume a 3:1 width-to-height ratio for the lava tube. Our results show that the stability of a lava tube depends on its width, its roof thickness, and whether the rock comprising the structure begins in a lithostatic or Poisson stress state. With a roof 2 m thick, lava tubes a kilometer or more in width can remain stable, supporting inferences from GRAIL observations. The theoretical maximum size of a lunar lava tube depends on a variety of factors, but given sufficient burial depth (500 m) and an initial lithostatic stress state, our results show that lava tubes up to 5 km wide may be able to remain structurally stable.

  10. Morphodynamics of dome dunes under unimodal wind regimes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2017-04-01

    Dome dunes are isolated sand piles with a rounded shape and no slip face. They are not only incipient or disappearing dunes, they can also reach a giant size and form dome-dune fields. Nevertheless, unlike other types of dunes, they have not been the subject of intense research, certainly because they result from complex multidirectional wind regimes. Here we analyze the morphodynamics of dome dunes under unimodal wind regimes. From numerical modeling using a normal distribution of sand flux orientation, we show that the transition from barchan to dome dunes occur when the standard deviation is larger than 40°. As confirmed by sand flux roses of dome-dune fields in arid deserts on Earth, it corresponds to RDP/DP-value of 0.8 (RDP/DP is the ratio between the resultant drift potential and the drift potential). Both in the field and in the numerical model, the transition from barchan to dome-dunes can also be captured from the coefficient of variation of the planar dune shape. Not surprisingly, smaller dome dunes are faster than larger ones. However, the dependence of dune migration rate on the RDP-value changes according to the presence or absence of slip faces because of the speed-up effect. Transient finger dunes may develop in dome-dune fields, but they rapidly break-up into smaller bodies. This shows that, contrary to bidirectional wind regimes, a large dispersion of sand flux orientation is not efficient in building longitudinal dunes.

  11. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  12. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8-0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  13. The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.

    2017-11-01

    Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.

  14. Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields

    NASA Astrophysics Data System (ADS)

    Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.

    2014-04-01

    A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow

  15. Post-emplacement cooling and contraction of lava flows: InSAR observations and thermal model for lava fields at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Wittmann, Werner; Dumont, Stephanie; Lavallee, Yan; Sigmundsson, Freysteinn

    2016-04-01

    Gradual post-emplacement subsidence of lava flows has been observed at various volcanoes, e.g. Okmok volcano in Alaska, Kilauea volcano on Hawaii and Etna volcano on Sicily. In Iceland, this effect has been observed at Krafla volcano and Hekla volcano. The latter was chosen as a case study for investigating subsidence mechanisms, specifically thermal contraction. Effects like gravitational loading, clast repacking or creeping of a hot and liquid core can contribute to subsidence of emplaced lava flows, but thermal contraction is considered being a crucial effect. The extent to which it contributes to lava flow subsidence is investigated by mapping the relative movement of emplaced lava flows and flow substrate, and modeling the observed signal. The slow vegetation in Iceland is advantageous for Interferometric Synthetic Aperture Radar (InSAR) and offers great coherence over long periods after lava emplacement, expanding beyond the outlines of lava flows. Due to this reason, InSAR observations over volcanoes in Iceland have taken place for more than 20 years. By combining InSAR tracks from ERS, Envisat and Cosmo-SkyMed satellites we gain six time series with a total of 99 interferograms. Making use of the high spatial resolution, a temporal trend of vertical lava movements was investigated over a course of over 23 years over the 1991 lava flow of Hekla volcano, Iceland. From these time series, temporal trends of accumulated subsidence and subsidence velocities were determined in line of sight of the satellites. However, the deformation signal of lava fields after emplacement is vertically dominated. Subsidence on this lava field is still ongoing and subsidence rates vary from 14.8 mm/year in 1995 to about 1.0 mm/year in 2014. Fitting a simple exponential function suggests a exponential decay constant of 5.95 years. Additionally, a one-dimensional, semi-analytical model was fitted to these data. While subsidence due to phase change is calculated analytically

  16. The eruption in Holuhraun, NE Iceland 2014-2015: Real-time monitoring and influence of landscape on lava flow

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Ingibjörg; Höskuldsson, Ármann; Thordarson, Thor; Bartolini, Stefania; Becerril, Laura; Marti Molist, Joan; Þorvaldsson, Skúli; Björnsson, Daði; Höskuldsson, Friðrik

    2016-04-01

    The largest eruption in Iceland since the Laki 1783-84 event began in Holuhraun, NE Iceland, on 31 August 2014, producing a lava flow field which, by the end of the eruption on February 27th 2015, covered 84,5 km2 with volume of 1,44 km3. Throughout the event, various satellite images (NOAA AVHRR, MODIS, SUOMI NPP VIIRS, ASTER, LANDSAT7&8, EO-1 ALI & HYPERION, RADARSAT-2, SENTINEL-1, COSMO SKYMED, TERRASAR X) were analysed to monitor the development of activity, identify active flow fronts and channels, and map the lava extent in close collaboration with the on-site field group. Aerial photographs and radar images from the Icelandic Coast Guard Dash 8 aircraft supported this effort. By the end of 2015, Loftmyndir ehf had produced a detailed 3D model of the lava using aerial photographs from 2013 and 2015. The importance of carrying out real-time monitoring of a volcanic eruption is: i) to locate sites of elevated temperature that may be registering new areas of activity within the lava or opening of vents or fissures. ii) To establish and verify timing of events at the vents and within the lava. iii) To identify potential volcanic hazard that can be caused by lava movements, eruption-induced flash flooding, tephra fallout or gas pollution. iv) to provide up-to-date regional information to field groups concerning safety as well as to locate sites for sampling lava, tephra and polluted water. v) to produce quantitative information on magma discharge and lava flow advance, map the lava extent, document the flow morphology and plume/tephra dispersal. During the eruption, these efforts supported mapping of the extent of the lava every 3-4 days on average underpinning the time series of magma discharge calculations. Digitial elevation models from before and after the event, combined with the real-time data series, supports detailed analysis of how landscape affects lava flow in a flat terrain (<0,4°), and provides important input to further developing lava flow models

  17. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  18. Dome: Distributed Object Migration Environment

    DTIC Science & Technology

    1994-05-01

    Best Available Copy AD-A281 134 Computer Science Dome: Distributed object migration environment Adam Beguelin Erik Seligman Michael Starkey May 1994...Beguelin Erik Seligman Michael Starkey May 1994 CMU-CS-94-153 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Dome... Linda [4], Isis [2], and Express [6] allow a pro- grammer to treat a heterogeneous network of computers as a parallel machine. These tools allow the

  19. Mechanical Design of Metal Dome for Industrial Application

    NASA Astrophysics Data System (ADS)

    Jin-Chee Liu, Thomas; Chen, Li-Wei; Lin, Nai-Pin

    2018-02-01

    In this paper, the mechanical design of metal domes is studied using finite element analysis. The snap-through behavior of a practical button design that uses a metal dome is found. In addition, the individual click ratio and maximum force for a variety of metal domes are determined. This paper provides guidance on button design for industrial engineers.

  20. Autonomous Dome for a Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  1. Observing Lava Flows with Spaceborne Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2017-12-01

    The interpretation of infrared observations of lava flows is well-established, both on Earth and Io, to establish flow areas and temperatures, and thereby constrain eruption rates. However, the detection of such radiation from space requires lava temperatures that are high enough to be incandescent, and a relatively clear atmosphere. The former condition is met only for a short period after eruption as the top millimeters of lava cool quickly. The latter condition may fail due to ash or water clouds on Earth, or the persistent thick clouds on Venus. Microwave radiometry, which in principle probes to depths of centimeters to decimeters, offers the prospect of detecting older flows. It furthermore is minimally sensitive to cloud.The challenge, however, is that spaceborne microwave instruments have relatively large footprints (sometimes 100km) such that the emission from relatively small flows is heavily diluted and therefore difficult to detect. Here we describe models of microwave remote sensing of recent volcanics on Earth, Venus and Titan, and present some preliminary observational studies of terrestrial volcanoes with the SMAP (Soil Moisture Active Passive) radiometer. This spacecraft has a large antenna to yield a relatively narrow observation footprint, and a long wavelength to penetrate into volcanic rock, and thus offers the best prospects yet for volcano surveillance in microwave radiometry.

  2. Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement

    NASA Technical Reports Server (NTRS)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.

    2013-01-01

    A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.

  3. Experimental and theoretical fracture mechanics applied to volcanic conduits and domes

    NASA Astrophysics Data System (ADS)

    Sammonds, P.; Matthews, C.; Kilburn, C.; Smith, R.; Tuffen, H.; Meredith, P.

    2008-12-01

    We present an integrated modelling and experimental approach to magma deformation and fracture, which we attempt to validate against field observations of seismicity. The importance of fracture processes in magma ascent dynamics and lava dome growth and collapse are apparent from the associated seismicity. Our laboratory experiments have shown that brittle fracture of magma can occur at high temperature and stress conditions prevalent in the shallow volcanic system. Here, we use a fracture mechanics approach to model seismicity preceding volcanic eruptions. Starting with the fracture mechanics concept of a crack in an elastic body, we model crack growth around the volcanic conduit through the processes of crack interactions, leading either to the propagation and linkage of cracks, or crack avoidance and the inhibition of crack propagation. The nature of that interaction is governed by the temperature and plasticity of the magma. We find that fracture mechanics rules can account for the style of seismicity preceding eruptions. We have derived the changes in seismic b-value predicted by the model and interpret these in terms of the style of fracturing, fluid flow and heat transport. We compare our model with results from our laboratory experiments where we have deformed lava at high temperatures under triaxial stresses. These experiments were conducted in dry and water saturated conditions at effective pressures up to 10 MPa, temperatures up to 1000°C and strain rates from 10-4 s-1 to 10-6 s-1. The behaviour of these magmas was largely brittle under these conditions. We monitored the acoustic emission emitted and calculate the change in micro-seismic b-value with deformation. These we find are in accord with volcano seismicity and our fracture mechanics model.

  4. Emplacement of Basaltic Lava Flows: the Legacy of GPL Walker

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.

    2005-12-01

    Through his early field measurements of lava flow morphology, G.P.L. Walker established a framework for examination of the dynamics of lava flow emplacement that is still in place today. I will examine this legacy as established by three early papers: (1) his 1967 paper, where he defined a relationship between the thickness of recent Etna lava flows and the slope over which they flowed, a relationship that he ascribed to lava viscosity; (2) his 1971 paper, which defined a relationship between lava flux and the formation of simple and compound flow units that he used to infer high effusion rates for the emplacement of some flood basalt lavas; and (3) his often-cited 1973 paper, which related the length of lava flows to their average effusion rate. These three papers, all similar in their basic approach of using field measurements of lava flow morphology to extract fundamental relationships between eruption conditions (magma flux and rheology) and emplacement style (flow length and thickness), firmly established the relationship between flow morphology and emplacement dynamics that has since been widely applied not only to subaerial lava flows, but also to the interpretation of flows in submarine and planetary environments. Important extensions of these concepts have been provided by improved field observation methods, particularly for analysis of flowing lava, by laboratory measurements of lava rheology, by the application of analog experiments to lava flow dynamics, and by steady improvement of numerical techniques to model the flow of lava over complex terrain. The real legacy of G.P.L. Walker's field measurement approach, however, may lie in the future, as new topographic measurement techniques such as LIDAR hold exciting promise for truly quantitative analysis of lava flow morphologies and their relationship to flow dynamics.

  5. NASA Spacecraft Captures Fury of Russian Volcano

    NASA Image and Video Library

    2011-01-27

    This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.

  6. Support of LAVA Integration and Testing

    NASA Technical Reports Server (NTRS)

    Jackson, Marcus Algernon

    2014-01-01

    The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith and Environment Science & Oxygen and Lunar Volatile Analysis (RESOLVE) Payload that will fly to the lunar pole on the Resource Prospector Mission (RPM) in 2019. The purpose of the mission is to characterize the water on the surface and subsurface of the moon in various locations in order to map the distribution. This characterization of water will help to understand how feasible water is as a resource that can be used for drinking water, breathable air, and propellants in future missions. This paper describes the key support activities performed during a 10 week internship; specifically, troubleshooting the Near Infrared Spectrometer for the Surge Tank (NIRST) instrument count loss, contributing to a clamp to be used in the installation of Resistive Temperature Detectors (RTDs) to tubing, performing a failure analysis of the LAVA Fluid Subsystem (FSS), and finalizing trade studies for release.

  7. Magma rheology from 3D geometry of martian lava flows

    NASA Astrophysics Data System (ADS)

    Allemand, P.; Deschamps, A.; Lesaout, M.; Delacourt, C.; Quantin, C.; Clenet, H.

    2012-04-01

    Volcanism is an important geologic agent which has been recently active at the surface of Mars. The composition of individual lava flows is difficult to infer from spectroscopic data because of the absence of crystallized minerals and the possible cover of the flows by dust. The 3D geometry of lava flows provides an interesting alternative to infer the chemical composition of lavas and effusion rates. Indeed, chemical composition exerts a strong control on the viscosity and yield strength of the magma and global geometry of lava flow reflects its emplacement rate. Until recently, these studies where realized from 2D data. The third dimension, which is a key parameter, was deduced or supposed from local shadow measurements on MGS Themis IR images with an uncertainty of more than 500%. Recent CTX data (MRO mission) allow to compute Digital Elevation Model at a resolution of 1 or 2 pixels (5 to 10 m) with the help of Isis and the Ames Stereo Pipeline pipe line. The CTX images are first transformed in format readable by Isis. The external geometric parameters of the CTX camera are computed and added to the image header with Isis. During a correlation phase, the homologous pixels are searched on the pair of stereo images. Finally, the DEM is computed from the position of the homologous pixels and the geometrical parameters of the CTX camera. Twenty DEM have been computed from stereo images showing lava flows of various ages on the region of Cerberus, Elyseum, Daedalia and Amazonis planitia. The 3D parameters of the lava flows have been measured on the DEMs and tested against shadows measurement. These 3D parameters have been inverted to estimate the viscosity and the yield strength of the flow. The effusion rate has also been estimated. These parameters have been compared to those of similar lava flows of the East Pacific rise.

  8. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  9. Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar-Ar dating of Syrian lavas

    NASA Astrophysics Data System (ADS)

    Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.

    2009-04-01

    New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating

  10. Transdomes: Emplacement of Migmatite Domes in Oblique Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Rey, P. F.; Whitney, D. L.; Mondy, L. S.; Roger, F.

    2014-12-01

    Many migmatite domes are emplaced within wrench corridors in which a combination of strike-slip and extensional detachment zones (pull-apart, extensional relay, or transfer zones) focus deep-crust exhumation. The Montagne Noire dome (France, Variscan Massif Central) exemplifies wrench-related dome formation and displays the following structural, metamorphic, and geochronologic characteristics of a 'transdome': the dome is elongate in the direction of extension; foliation outlines a double dome separated by a high-strain zone; lineation is shallowly plunging with a fairly uniform trend that parallels the strike of the high-strain zone; subdomes contain recumbent structures overprinted by upright folds that affected upward by flat shear zones associated with detachment tectonics; domes display a large syn-deformation metamorphic gradient from core (upper amphibolite facies migmatite) to margin (down to greenschist facies mylonite); some rocks in the dome core experienced isothermal decompression revealed by disequilibrium reaction textures, particularly in mafic rocks (including eclogite); and results of U-Pb geochrononology indicate a narrow range of metamorphic crystallization from core to mantling schist spanning ~10 Myr. 3D numerical modeling of transdomes show that the dome solicits a larger source region of partially molten lower crust compared to 2D models; this flowing crust creates a double-dome architecture as in 2D models but there are differences in the predicted thermal history and flow paths. In a transtension setting, flow lines converge at depth (radial-centripetal flow) toward the zone of extension and diverge at shallow levels in a more uniform direction that is imposed by upper crust motion and deformation. This evolution produces a characteristic pattern of strain history, progressive fabric overprint, and P-T paths that are comparable to observed dome rocks.

  11. The Discovery Dome: A Tool for Increasing Student Engagement

    NASA Astrophysics Data System (ADS)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  12. Lava and Snow on Klyuchevskaya Volcano [high res

    NASA Image and Video Library

    2013-09-20

    IDL TIFF file This false-color (shortwave infrared, near infrared, green) satellite image reveals an active lava flow on the western slopes of Klyuchevskaya Volcano. Klyuchevskaya is one of several active volcanoes on the Kamchatka Peninsula in far eastern Russia. The lava flow itself is bright red. Snow on Klyuchevskaya and nearby mountains is cyan, while bare ground and volcanic debris is gray or brown. Vegetation is green. The image was collected by Landsat 8 on September 9, 2013. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Instrument: Landsat 8 - OLI More info: 1.usa.gov/1evspH7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection

    NASA Astrophysics Data System (ADS)

    Baïri, A.; Laraqi, N.; Adeyeye, K.

    2018-03-01

    This study examines the thermal behavior of a hemispherical electronic component subjected to a natural nanofluidic convective flow. During its operation, this active dome generates a high power, leading to Rayleigh number values reaching 4.56×109 . It is contained in a hemispherical enclosure and the space between the dome and the cupola is filled with a monophasic water-based copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. According to the intended application, the disc of the enclosure may be tilted at an angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards, respectively). The numerical solution has been obtained by means of the volume control method. The surface average temperature of the dome has been determined for many configurations obtained by combining the Rayleigh number, the cavity's tilt angle and the nanofluid volume fraction which vary in wide ranges. The temperature fields presented for several configurations confirm the effects of natural convection. The results clearly highlight the effects of these influence parameters on the thermal state of the assembly. The study shows that some combinations of the Rayleigh-tilt angle-volume fraction are incompatible with a normal operating system at steady state and that a thermoregulation is required. The correlation of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out the thermal dimensioning of the considered electronic assembly.

  14. Research on conformal dome of Karman-curve shape

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Chang, Jun; Niu, Yajun

    2018-01-01

    Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.

  15. The research of suspen-dome structure

    NASA Astrophysics Data System (ADS)

    Gong, Shengyuan

    2017-09-01

    After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.

  16. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We

  17. Broadband seismic measurements of degassing activity associated with lava effusion at Popocatépetl Volcano, Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, Alejandra; Chouet, Bernard A.; Dawson, Phillip; Asch, Guenter

    2008-01-01

    exhalations”). Eruptive activity increased in intensity in February, coinciding with an increasing occurrence of Type-II LP events. Type-III events were first observed at the end of February and during March, in coincidence with the formation of a new lava dome. Vulcanian eruptions occurred in April and May. These events typically exhibit broadband signatures extending over the full period range of the sensors and lasting 30–80 min.

  18. Radiative temperature measurements at Kupaianaha lava lake, Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Flynn, Luke P.; Mouginis-Mark, Peter J.; Gradie, Jonathan C.; Lucey, Paul G.

    1993-01-01

    The radiative temperature of the surface of Kupaianaha lava lake is computed using field spectroradiometer data. Observations were made during periods of active overturning. The lake surface exhibits three stages of activity. Magma fountaining and overturning events characterize stage 1, which exhibits the hottest crustal temperatures and the largest fractional hot areas. Rifting events between plates of crust mark stage 2; crustal temperatures in this stage are between 100 C and 340 C, and fractional hot areas are at least an order of magnitude smaller than those in stage 1. Stage 3 is characterized by quiescent periods when the lake is covered by a thick crust. This stage dominates the activity of the lake more than 90 percent of the time. The results of this study are relevant for satellite and airborne measurement of the thermal characteristics of active volcanoes, and indicate that the thermal output of a lava lake varies on a time scale of seconds to minutes.

  19. Nature and Significance of the High-Sr Aleutian Lavas

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y<30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (>700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr < 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# >0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La<7 ppm, Yb<0.4 ppm) and 87Sr/86Sr < 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and

  20. Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Comeau, Matthew; Käufl, Johannes; Becken, Michael; Kuvshinov, Alexey; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg; Tserendug, Shoovdor; Nasan, Ochir

    2017-04-01

    The Hangai Dome in west-central Mongolia is an unusual high-elevation intra-continental plateau located far from tectonic plate boundaries and characterized by dispersed, low-volume, basaltic volcanism. This region is an ideal natural laboratory for studying intra-continental orogenic and magmatic processes resulting from crust-mantle interactions. The processes responsible for developing the Hangai Dome remain unexplained, due in part to a lack of high resolution geophysical data over the area. Here we present newly acquired broadband (0.008 - 3,000 s) magnetotelluric (MT) data from a large-scale ( 200 x 450 km) and high resolution (site spacing > 5 km) survey across the Hangai Dome. A total of 125 sites were collected and include full MT sites and telluric-only sites where inter-station transfer functions were computed. The MT data are used to generate an electrical resistivity model of the crust and upper mantle below the Hangai Dome. The model shows that the lower crust ( 30 - 50 km; below the brittle-ductile transition zone) beneath the Hangai Dome contains anomalous discrete pockets of low-resistivity ( 30 ohm-m) material that indicate the presence of local accumulations of fluids and/or low-percent partial melts. These anomalous regions appear to be spatially associated with the surface expressions of past volcanism, hydrothermal activity, and an increase in heat flow. They also correlate with observed crustal low-density and low-velocity anomalies. However they are in contrast to some geochemical and petrological studies which show long-lived crustal melt storage is impossible below the Hangai due to limited crustal assimilation and crustal contamination, arguing for a single parent-source at mantle depths. The upper mantle (< 70 km) contains an anomalous low-resistivity zone directly below the Hangai Dome that represents a shallow asthenosphere, and possibly a zone of melt generation. The MT data require the presence of a small amount of partial melts (> 6

  1. Studies of fluid instabilities in flows of lava and debris

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.

    1987-01-01

    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows.

  2. Geochemistry of Intra-Transform Lavas from the Galápagos Transform Fault

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Harpp, K. S.

    2013-12-01

    The Galápagos plume has profoundly affected the development and evolution of the nearby (<250 km) Galápagos Transform Fault (GTF), a ~100km right-stepping offset in the Galápagos Spreading Center (GSC). The GTF can be divided into two sections that represent different stages of transform evolution: the northern section exhibits fully developed transform fault morphology, whereas the southern section is young, and deformation is more diffuse. Both segments are faulted extensively and include numerous small (<0.5km3) monogenetic volcanic cones, though volcanic activity is more common in the south. To examine the composition of the mantle source and melting conditions responsible for the intra-transform lavas, as well as the influence of the plume on GTF evolution, we present major element, trace element, and radiogenic isotope analysis of samples collected during SON0158, EWI0004, and MV1007 cruises. Radiogenic isotope ratio variations in the Galápagos Archipelago require four distinct mantle reservoirs across the region: PLUME, DM, FLO, and WD. We find that Galápagos Transform lavas are chemically distinct from nearby GSC lavas and neighboring seamounts. They have radiogenic isotopic compositions that lie on a mixing line between DM and PLUME, with little to no contribution from any other mantle reservoirs despite their geographic proximity to WD-influenced lavas erupted along the GSC and at nearby (<50km away) seamounts. Within the transform, lavas from the northern section are more enriched in radiogenic isotopes than lavas sampled in the southern section. Transform lavas are anomalously depleted in incompatible trace elements (ITEs) relative to GSC lavas, suggesting unique melting conditions within the transform. Isotopic variability along the transform axis indicates that mantle sources and/or melting mechanisms vary between the northern and southern sections, which may relate to their distances from the plume or the two-stage development and evolution of

  3. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    explosions occurred in the next two days, followed by a hiatus in explosive activity between March 29 and April 4. During this hiatus effusion of a lava dome occurred, whose growth slowed on or around April 2. The final explosion pulverized the very poorly vesicular dome on April 4, and was immediately followed by the extrusion of the final dome that ceased growing by July 1, 2009, and reached 72 M m3 in bulk volume. The dome remains as of this writing. Effusion of the final dome in the first month produced blocky intermediate- to high-silica andesite lava, which then expanded by means of lava injection beneath a fracturing and annealing, cooling surface crust. In the first week of May, a seismic swarm accompanied extrusion of an intermediate- to high-silica andesite from the apex of the dome that was highly vesicular and characterized by lower P2O5 content. The dome remained stable throughout its growth period likely due to combined factors that include an emptied conduit system, steady degassing through coalesced vesicles in the effusing lava, and a large crater-pit created by the previous explosions. We estimate the total volume of erupted material from the 2009 eruption to be between ~ 80 M and 120 M m3 dense-rock equivalent (DRE). The aim of this report is to synthesize the results from various datasets gathered both during the eruption and retrospectively, and which are represented by the papers in this publication. We therefore provide an overall view of the 2009 eruption and an introduction to this special issue publication.

  4. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    NASA Astrophysics Data System (ADS)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    . Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.

  5. Unique dome design for the SOAR telescope project

    NASA Astrophysics Data System (ADS)

    Teran, Jose U.; Porter, David S.; Hileman, Edward A.; Neff, Daniel H.

    2000-08-01

    The SOAR telescope dome is a 20 meter diameter 5/8 spherical structure built on a rotating steel frame with an over the top nesting shutter and covered with a fiberglass panel system. The insulated fiberglass panel system can be self- supporting and is typically used for radomes on ground based tracking systems. The enclosed observing area is ventilated using a down draft ventilation system. The rotating steel frame is comprised of a ring beam and dual arch girders to provide support to the panel system sections and guide the shutter. The dual door shutter incorporates a unique differential drive system that reduces the complexity of the control system. The dome, shutter and windscreen `track' the telescope for maximum wind protection. The dome rotates on sixteen fixed compliant bogie assemblies. The dome is designed for assembly in sections off the facility and lifted into place for minimal impact on assembly of other telescope systems. The expected cost of the complete dome; including structure, drives, and controls is under 1.7 million. The details covered in this paper are the initial trade-offs and rationale required by SOAR to define the dome, the detailed design performed by M3 Engineering and Technology, and the choices made during the design.

  6. Proximal lava drainage controls on basaltic fissure eruption dynamics

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Llewellin, E. W.; Houghton, B. F.; Brown, R. J.; Vye-Brown, C.

    2017-11-01

    Hawaiian basaltic eruptions commonly initiate as a fissure, producing fountains, spattering, and clastogenic lava flows. Most fissures rapidly localize to form a small number of eruptive vents, the location of which may influence the subsequent distribution of lava flows and associated hazards. We present results from a detailed field investigation of the proximal deposits of episode 1 of the 1969 fissure eruption of Mauna Ulu, Kīlauea, Hawai`i. Exceptional preservation of the deposits allows us to reconstruct vent-proximal lava drainage patterns and to assess the role that drainage played in constraining vent localization. Through detailed field mapping, including measurements of the height and internal depth of lava tree moulds, we reconstruct high-resolution topographic maps of the pre-eruption ground surface, the lava high-stand surface and the post-eruption ground surface. We calculate the difference in elevation between pairs of maps to estimate the lava inundation depth and lava drainage depth over the field area and along different segments of fissure. Aerial photographs collected during episode 1 of the eruption allow us to locate those parts of the fissure that are no longer exposed at the surface. By comparing with the inundation and drainage maps, we find that fissure segments that were inundated with lava to greater depths (typically 1-6 m) during the eruption later became foci of lava drainage back into the fissure (internal drain-back). We infer that, in these areas, lava ponding over the fissure suppressed discharge of magma, thereby favouring drain-back and stagnation. By contrast, segments with relatively shallow inundation (typically less than 1 m), such as where the fissure intersects pre-eruptive topographic highs, or where flow away from the vent (outflow) was efficient, are often associated with sub-circular vent geometries in the post-eruption ground surface. We infer that these parts of the fissure became localization points for ongoing

  7. Olympus Mons, Mars: Constraints on Lava Flow Silica Composition

    NASA Astrophysics Data System (ADS)

    Kirshner, M.; Jurdy, D. M.

    2016-12-01

    Olympus Mons, Mars, the largest known volcano in our solar system, contains numerous enigmatic lava flow features. Lava tubes have received attention as their final morphologies may offer habitable zones for both native life and human exploration. Such tubes were formed through mechanisms involving several volatile species with significant silica content. Olympus Mons, a shield volcano, might be expected to have flows with silica content similar to that of terrestrial basaltic flows. However, past investigations have estimated a slightly more andesitic composition. Data pertaining to lava tubes such as flow width and slope are collected from the Mars Reconnaissance Orbiter's Context Camera, Mars Odyssey's THEMIS instrument, and Mars Express' HRSC instrument. Compiling this data in GIS software allows for extensive mapping and analysis of Olympus Mons' seemingly inactive flow features. A rheological analysis performed on 62 mapped lava tubes utilizes geometric parameters inferred from mapping. Lava was modeled as a Bingham fluid on an inclined plane, allowing for the derivation of lava yield stress. Percent silica content was calculated for each of the 62 mapped flows using a relationship derived from observations of terrestrial lava yield strengths and corresponding silica composition. Results indicate that lava tube flows across Olympus Mons were on average basaltic in nature, occasionally reaching into the andesitic classification: percent silica content is 51% on average and ranges between roughly 40% and 57%.

  8. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  9. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  10. Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia

    USGS Publications Warehouse

    Hidayat, D.; Chouet, B.; Voight, B.; Dawson, P.; Ratdomopurbo, Antonius

    2002-01-01

    Very-long-period (VLP) pulses with period of 6-7s, displaying similar waveforms, were identified in 1998 from broadband seismographs around the summit crater. These pulses accompanied most of multiphase (MP) earthquakes, a type of long-period event locally defined at Merapi Volcano. Source mechanisms for several VLP pulses were examined by applying moment tensor inversion to the waveform data. Solutions were consistent with a crack striking ???70?? and dipping ???50?? SW, 100m under the active dome, suggest pressurized gas transport involving accumulation and sudden release of 10-60 m3 of gas in the crack over a 6s interval.

  11. Water recycling at the Millennium Dome.

    PubMed

    Hills, S; Smith, A; Hardy, P; Birks, R

    2001-01-01

    Thames Water is working with the New Millennium Experience Company to provide a water recycling system for the Millennium Dome which will supply 500 m3/d of reclaimed water for WC and urinal flushing. The system will treat water from three sources: rainwater--from the Dome roof greywater--from handbasins in the toilet blocks groundwater--from beneath the Dome site The treatment technologies will range from "natural" reedbeds for the rainwater, to more sophisticated options, including biological aerated filters and membranes for the greywater and groundwater. Pilot scale trials were used to design the optimum configuration. In addition to the recycling system, water efficient devices will be installed in three of the core toilet blocks as part of a programme of research into the effectiveness of conservation measures. Data on water usage and customer behaviour will be collected via a comprehensive metering system. Information from the Dome project on the economics and efficiency of on-site recycling at large scale and data on water efficient devices, customer perception and behaviour will be of great value to the water industry. For Thames Water, the project provides vital input to the development of future water resource strategies.

  12. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known

  13. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    . Flow patterns and local interfingering and overlapping relationships are delineated in CTX images and allow reconstruction of the complex flow field surfaces. Darker channel-/tube-fed flows are generally younger than adjacent thicker, bright, rugged flows; however, the diversity and complexity of temporal relationships observed, along with the thermophysical variability, suggests that lava sources with different eruptive styles and magnitudes and/or lavas that experienced different local emplacement conditions were active contemporaneously.

  14. Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Orr, Tim; Sutton, A. J.; Lev, Einat; Thelen, Wes; Fee, David

    2016-01-01

    Lava lakes provide ideal venues for directly observing and understanding the nature of outgassing in basaltic magmatic systems. Kīlauea Volcano's summit lava lake has persisted for several years, during which seismic and infrasonic tremor amplitudes have exhibited episodic behavior associated with a rise and fall of the lava surface (;gas pistoning;). Since 2010, the outgassing regime of the lake has been tied to the presence or absence of gas pistoning. During normal behavior (no gas pistoning), the lake is in a ;spattering; regime, consisting of higher tremor amplitudes and gas emissions. In comparison, gas piston events are associated with an abrupt rise in lava level (up to 20 m), during which the lake enters a ;non-spattering; regime with greatly decreased tremor and gas emissions. We study this episodic behavior using long-term multidisciplinary monitoring of the lake, including seismicity, infrasound, gas emission and geochemistry, and time-lapse camera observations. The non-spattering regime (i.e. rise phase of a gas piston cycle) reflects gas bubbles accumulating near the top of the lake, perhaps as a shallow foam, while spattering regimes represent more efficient decoupling of gas from the lake. We speculate that the gas pistoning might be controlled by time-varying porosity and/or permeability in the upper portions of the lava lake, which may modulate foam formation and collapse. Competing models for gas pistoning, such as deeply sourced gas slugs, or dynamic pressure balances, are not consistent with our observations. Unlike other lava lakes which have cyclic behavior that is thought to be controlled by deeply sourced processes, external to the lake itself, we show an example of lava lake fluctuations driven by cycles of activity at shallow depth and close to the lake's surface. These observations highlight the complex and unsteady nature of outgassing from basaltic magmatic systems.

  15. Long-term variations in explosion dynamics at Santiaguito volcano

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; De Angelis, Silvio; Lavallée, Yan; Lamur, Anthony; Hornby, Adrian; Von Aulock, Felix; Kendrick, Jackie; Chigna, Gustavo; Rietbrock, Andreas

    2017-04-01

    Here we present two years of seismic and infrasound observations of ash-and-gas explosions recorded during an ongoing multi-disciplinary experiment at the Santiaguito lava dome complex, Guatemala. Due to the occurrence of regular explosive activity since the early 1970's, the volcano is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. The instrument network, deployed between 0.5 and 7 km from the active vent, includes 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. Seismo-acoustic data are complemented by thermal infrared imagery, visual observations from an unmanned aerial vehicle, and geochemical measurements of eruptive products. In mid-2015, a major shift in activity took place at Santiaguito. Vulcanian explosions became more energetic and less regular, and were often accompanied by pyroclastic density currents. Important morphological changes were observed at the active El Caliente dome, as the lava-filled crater was excavated by a sequence of vigorous explosions to a depth of at least 150 m. Variations in the relative arrival times of seismic and infrasound signals suggest a significant deepening of the explosion initiation point inside the conduit. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath El Caliente, possibly triggered by disequilibrium at a greater depth in the volcanic system. Our observations suggest a reactivation of the deep magmatic system at Santiaguito, with little precursory activity. The results of this multi-parameteric monitoring experiment have specific implications for hazard assessment at Santiaguito, and contributes to understanding the processes that control changes in eruptive regime at lava dome volcanoes.

  16. Similarities in basalt and rhyolite lava flow emplacement processes

    NASA Astrophysics Data System (ADS)

    Magnall, Nathan; James, Mike; Tuffen, Hugh; Vye-Brown, Charlotte

    2016-04-01

    Here we use field observations of rhyolite and basalt lava flows to show similarities in flow processes that span compositionally diverse lava flows. The eruption, and subsequent emplacement, of rhyolite lava flows is currently poorly understood due to the infrequency with which rhyolite eruptions occur. In contrast, the emplacement of basaltic lava flows are much better understood due to very frequent eruptions at locations such as Mt Etna and Hawaii. The 2011-2012 eruption of Cordón Caulle in Chile enabled the first scientific observations of the emplacement of an extensive rhyolite lava flow. The 30 to 100 m thick flow infilled a topographic depression with a negligible slope angle (0 - 7°). The flow split into two main channels; the southern flow advanced 4 km while the northern flow advanced 3 km before stalling. Once the flow stalled the channels inflated and secondary flows or breakouts formed from the flow front and margins. This cooling rather than volume-limited flow behaviour is common in basaltic lava flows but had never been observed in rhyolite lava flows. We draw on fieldwork conducted at Cordón Caulle and at Mt Etna to compare the emplacement of rhyolite and basaltic flows. The fieldwork identified emplacement features that are present in both lavas, such as inflation, breakouts from the flow font and margins, and squeeze-ups on the flow surfaces. In the case of Cordón Caulle, upon extrusion of a breakout it inflates due to a combination of continued lava supply and vesicle growth. This growth leads to fracturing and breakup of the breakout surface, and in some cases a large central fracture tens of metres deep forms. In contrast, breakouts from basaltic lava flows have a greater range of morphologies depending on the properties of the material in the flows core. In the case of Mt Etna, a range of breakout morphologies are observed including: toothpaste breakouts, flows topped with bladed lava as well as breakouts of pahoehoe or a'a lava. This

  17. Statistical forecasting of repetitious dome failures during the waning eruption of Redoubt Volcano, Alaska, February-April 1990

    USGS Publications Warehouse

    Page, R.A.; Lahr, J.C.; Chouet, B.A.; Power, J.A.; Stephens, C.D.

    1994-01-01

    The waning phase of the 1989-1990 eruption of Redoubt Volcano in the Cook Inlet region of south-central Alaska comprised a quasi-regular pattern of repetitious dome growth and destruction that lasted from February 15 to late April 1990. The dome failures produced ash plumes hazardous to airline traffic. In response to this hazard, the Alaska Volcano Observatory sought to forecast these ash-producing events using two approaches. One approach built on early successes in issuing warnings before major eruptions on December 14, 1989 and January 2, 1990. These warnings were based largely on changes in seismic activity related to the occurrence of precursory swarms of long-period seismic events. The search for precursory swarms of long-period seismicity was continued through the waning phase of the eruption and led to warnings before tephra eruptions on March 23 and April 6. The observed regularity of dome failures after February 15 suggested that a statistical forecasting method based on a constant-rate failure model might also be successful. The first statistical forecast was issued on March 16 after seven events had occurred, at an average interval of 4.5 days. At this time, the interval between dome failures abruptly lengthened. Accordingly, the forecast was unsuccessful and further forecasting was suspended until the regularity of subsequent failures could be confirmed. Statistical forecasting resumed on April 12, after four dome failure episodes separated by an average of 7.8 days. One dome failure (April 15) was successfully forecast using a 70% confidence window, and a second event (April 21) was narrowly missed before the end of the activity. The cessation of dome failures after April 21 resulted in a concluding false alarm. Although forecasting success during the eruption was limited, retrospective analysis shows that early and consistent application of the statistical method using a constant-rate failure model and a 90% confidence window could have yielded five

  18. Experimental Insights on Natural Lava-Ice/Snow Interactions and Their Implications for Glaciovolcanic and Submarine Eruptions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Karson, J.; Wysocki, R.; Lev, E.; Bindeman, I. N.; Kueppers, U.

    2012-12-01

    Lava-ice-snow interactions have recently gained global attention through the eruptions of ice-covered volcanoes, particularly from Eyjafjallajokull in south-central Iceland, with dramatic effects on local communities and global air travel. However, as with most submarine eruptions, direct observations of lava-ice/snow interactions are rare. Only a few hundred potentially active volcanoes are presently ice-covered, these volcanoes are generally in remote places, and their associated hazards make close observation and measurements dangerous. Here we report the results of the first large-scale experiments designed to provide new constraints on natural interactions between lava and ice/snow. The experiments comprised controlled effusion of tens of kilograms of melted basalt on top of ice/snow, and provide insights about observations from natural lava-ice-snow interactions including new constraints for: 1) rapid lava advance along the ice-lava interface; 2) rapid downwards melting of lava flows through ice; 3) lava flow exploitation of pre-existing discontinuities to travel laterally beneath and within ice; and 4) formation of abundant limu o Pele and non-explosive vapor transport from the base to the top of the lava flow with minor O isotope exchange. The experiments are consistent with observations from eruptions showing that lava is more efficient at melting ice when emplaced on top of the ice as opposed to beneath the ice, as well as the efficacy of tephra cover for slowing melting. The experimental extrusion rates are as within the range of those for submarine eruptions as well, and reproduce some features seen in submarine eruptions including voluminous production of gas rich cavities within initially anhydrous lavas and limu on lava surfaces. Our initial results raise questions about the possibility of secondary ingestion of water by submarine and glaciovolcanic lava flows, and the origins of apparent primary gas cavities in those flows. Basaltic melt moving down

  19. Radially fractured domes: A comparison of Venus and the Earth

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1993-01-01

    Radially fractured domes are large, tectonic and topographic features discovered on the surface of Venus by the Magellan spacecraft. They are thought to be due to uplift over mantle diapirism, and to date are known to occur only on Venus. Since Venus and the Earth are grossly similar in size, composition and structure, we seek to understand why these features have not been seen on the Earth. We model the uplift and fracturing over a mantle diapir as functions of lithospheric thickness and diapir size and depth. We find that lithospheres of the same thickness on the Earth and Venus should respond similarly to the same sized diapir, and that radially fractured domes should form most readily in thin oceanic lithospheres on Earth if diapiric activity is similar on the two planets. However, our current knowledge of the Earth's oceanic floors is insufficient to confirm or deny the presence of radially fractured domes. We compute the expected dimensions for these features on the Earth and suggest a search for them to determine whether mantle diapirism operates similarly on the Earth and Venus.

  20. Comparative analysis between Payen and Daedalia Planum lava fields

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo

    The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by

  1. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    PubMed Central

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  2. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-15

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  3. Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew; Orr, Tim; Fisher, Gary; Trusdell, Frank; Kauahikaua, James

    2017-02-01

    Pāhoehoe lava flows are a major component of Hawaiian eruptive activity, and an important part of basaltic volcanism worldwide. In recent years, pāhoehoe lava has destroyed homes and threatened parts of Hawai'i with inundation and disruption. In this study, we use oblique helicopter-borne thermal images to create high spatial resolution ( 1 m) georeferenced thermal maps of the active pāhoehoe flow on Kīlauea Volcano's East Rift Zone. Thermal maps were created on 27 days during 2014-2016 in the course of operational monitoring, encompassing a phase of activity that threatened the town of Pāhoa. Our results illustrate and reinforce how pāhoehoe flows are multicomponent systems consisting of the vent, master tube, distributary tubes, and surface breakouts. The thermal maps accurately depict the distribution and character of pāhoehoe breakouts through time, and also delineate the subsurface lava tube. Surface breakouts were distributed widely across the pāhoehoe flow, with significant portions concurrently active well upslope of the flow front, often concentrated in clusters of activity that evolved through time. Gradual changes to surface breakout distribution and migration relate to intrinsic processes in the flow, including the slow evolution of the distributary tube system. Abrupt disruptions to this system, and the creation of new breakouts (and associated hazards), were triggered by extrinsic forcing-namely fluctuations in lava supply rate at the vent which disrupted the master lava tube. Although the total area of a pāhoehoe flow has been suggested to relate to effusion rate, our results show that changes in the proportion of expansion vs. overplating can complicate this relationship. By modifying existing techniques, we estimate time-averaged discharge rates for the flow during 2014-2016 generally in the range of 1-2 m3 s- 1 (mean: 1.3 ± 0.4 m3 s- 1)-less than half of Kīlauea's typical eruption rate on the East Rift Zone and suggestive of a weak

  4. Studies of vesicle distribution patterns in Hawaiian lavas

    NASA Technical Reports Server (NTRS)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  5. Stochastic modeling of a lava-flow aquifer system

    USGS Publications Warehouse

    Cronkite-Ratcliff, Collin; Phelps, Geoffrey A.

    2014-01-01

    This report describes preliminary three-dimensional geostatistical modeling of a lava-flow aquifer system using a multiple-point geostatistical model. The purpose of this study is to provide a proof-of-concept for this modeling approach. An example of the method is demonstrated using a subset of borehole geologic data and aquifer test data from a portion of the Calico Hills Formation, a lava-flow aquifer system that partially underlies Pahute Mesa, Nevada. Groundwater movement in this aquifer system is assumed to be controlled by the spatial distribution of two geologic units—rhyolite lava flows and zeolitized tuffs. The configuration of subsurface lava flows and tuffs is largely unknown because of limited data. The spatial configuration of the lava flows and tuffs is modeled by using a multiple-point geostatistical simulation algorithm that generates a large number of alternative realizations, each honoring the available geologic data and drawn from a geologic conceptual model of the lava-flow aquifer system as represented by a training image. In order to demonstrate how results from the geostatistical model could be analyzed in terms of available hydrologic data, a numerical simulation of part of an aquifer test was applied to the realizations of the geostatistical model.

  6. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Harris, Andrew J. L.; James, Mike R.; Calabrò, Laura; Gurioli, Lucia; Pinkerton, Harry

    2018-07-01

    Viscosity is one of the most important physical properties controlling lava flow dynamics. Usually, viscosity is measured in the laboratory where key parameters can be controlled but can never reproduce the natural environment and original state of the lava in terms of crystal and bubble contents, dissolved volatiles, and oxygen fugacity. The most promising approach for quantifying the rheology of molten lava in its natural state is therefore to carry out direct field measurements by inserting a viscometer into the lava while it is flowing. Such in-situ syn-eruptive viscosity measurements are notoriously difficult to perform due to the lack of appropriate instrumentation and the difficulty of working on or near an active lava flow. In the field, rotational viscometer measurements are of particular value as they have the potential to measure the properties of the flow interior rather than an integration of the viscosity of the viscoelastic crust + flow interior. To our knowledge only one field rotational viscometer is available, but logistical constraints have meant that it has not been used for 20 yr. Here, we describe new viscosity measurements made using the refurbished version of this custom-built rotational viscometer, as performed on active pāhoehoe lobes from the 61G lava flow of Kilauea's Pu'u 'Ō'ō eruption in 2016. We successfully measured a viscosity of ∼380 Pa s at strain-rates between 1.6 and 5 s-1 and at 1144 °C. Additionally, synchronous lava sampling allowed us to provide detailed textural and chemical characterization of quenched samples. Application of current physico-chemical models based on this characterization (16 ± 4 vol.% crystals; 50 ± 6 vol.% vesicles), gave viscosity estimates that were approximately compatible with the measured values, highlighting the sensitivity of model-based viscosity estimates on the effect of deformable bubbles. Our measurements also agree on the range of viscosities in comparison to previous field

  7. Electromagnetic Monitoring of Lava Tubes: Numerical Modeling and Instrument Testing

    NASA Astrophysics Data System (ADS)

    Sly, Michael K.

    Currently the only method to measure the flow rates of lava in lava tubes is through the use of a skylight. This means that only a fraction of lava tubes can be measured. It is important to know the flow rate throughout a lava tube to know how much lava is being produced by a volcano at a given time. In order to measure the flow rate without using a skylight we can utilize the electromagnetic properties of flowing lava and the Lorentz force. Theoretical as well as numerical methods have been used to model an expected response using this technique. The experimental results will be compared to these models to discern accuracy. The main difficulty involved in this experiment is the high resistivity of the basalt that surrounds the lava tube. In order to obtain measurements in this environment high impedance electrodes are needed. After months of development and testing, multiple high impedance electrodes are available to be used on any surface including basalt. These electrodes are able to measure electric signals through any highly resistive surface including concrete, asphalt, basalt, and ice. Currently no tests have been done or are planned to measure flowing lava. Instead we will measure flowing sea water in pipes on the SIO campus. These pipes provide a good analog to the lava tubes. These tests have provided useful information about the noise floor for this system, telling us that a response from a full size lava tube could most likely be seen.

  8. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  9. Structural Optimization of the Retractable Dome for Four Meter Telescope (FMT)

    NASA Astrophysics Data System (ADS)

    Pan, Nian; Li, Yuxi; Fan, Yue; Ma, Wenli; Huang, Jinlong; Jiang, Ping; Kong, Sijie

    2017-03-01

    Dome seeing degrades the image quality of ground-based telescopes. To achieve dome seeing of the Four Meter Telescope (FMT) less than 0.5 arcsec, structural optimizations based on computational fluid dynamics (CFD) simulation were proposed. The results of the simulation showed that dome seeing of FMT was 0.42 arcsec, which was mainly caused by the slope angle of the dome when the slope angle was 15° and the wind speed was 10 m/s. Furthermore, the lower the air speed was, the less dome seeing would be. Wind tunnel tests (WT) with a 1:120 scaled model of the retractable dome and FMT indicated that the calculated deviations of the CFD simulation used in this paper were less than 20% and the same variations of the refractive index derived from the WT would be a convincing argument for the validity of the simulations. Thus, the optimization of the retractable dome was reliable and the method expressed in this paper provided a reference for the design of next generation of ground-based telescope dome.

  10. Stress-induced comenditic trachyte effusion triggered by trachybasalt intrusion: multidisciplinary study of the AD 1761 eruption at Terceira Island (Azores)

    NASA Astrophysics Data System (ADS)

    Pimentel, A.; Zanon, V.; de Groot, L. V.; Hipólito, A.; Di Chiara, A.; Self, S.

    2016-03-01

    The AD 1761 eruption on Terceira was the only historical subaerial event on the island and one of the last recorded in the Azores. The eruption occurred along the fissure zone that crosses the island and produced a trachybasalt lava flow and scoria cones. Small comenditic trachyte lava domes (known as Mistérios Negros) were also thought by some to have formed simultaneously on the eastern flank of Santa Bárbara Volcano. Following a multidisciplinary approach, we combined geological mapping, paleomagnetic, petrographic, mineral and whole-rock geochemical and structural analyses to study this eruption. The paleomagnetic dating method compared geomagnetic vectors (directions and intensities) recorded by both the AD 1761 lava flow and Mistérios Negros domes and revealed that the two events were indeed coeval. Based on new data and interpretation of historical records, we have accordingly reconstructed the AD 1761 eruptive dynamics and distinguished three phases: (1) a precursory phase characterized by decreased degassing in the fumarolic field of Pico Alto Volcano and a gradual increase of seismic activity, which marked the intrusion of trachybasalt magma; (2) a first eruptive phase that started with phreatic explosions on the eastern flank of Santa Bárbara Volcano, followed by the inconspicuous effusion of comenditic trachyte (66 wt% SiO2), forming a WNW-ESE-oriented chain of lava domes; and (3) a second eruptive phase on the central part of the fissure zone, where a Hawaiian to Strombolian-style eruption formed small scoria cones (E-W to ENE-WSW-oriented) and a trachybasalt lava flow (50 wt% SiO2) which buried 27 houses in Biscoitos village. Petrological analyses show that the two batches of magma were emitted independently without evidence of interaction. We envisage that the dome-forming event was triggered by local stress changes induced by intrusion of the trachybasalt dyke along the fissure zone, which created tensile stress conditions that promoted ascent

  11. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    NASA Technical Reports Server (NTRS)

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  12. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    NASA Technical Reports Server (NTRS)

    Needham, D. H.; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system.These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  13. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai'i with InSAR coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Schmidt, D. A.; Poland, M. P.; Cashman, K. V.

    2010-12-01

    Remote sensing of lava flows from the Pu`u `O`o-Kupaianaha eruption on the east rift zone of Kilauea serves to document the ongoing eruption, while yielding insights into how lava flow fields develop. InSAR is widely used to measure deformation by detecting minute changes in ground surfaces that stay correlated during repeat observations. The eruption and emplacement of fresh lava on the surface, however, disrupts the coherence of the radar echoes, allowing the area of these flows to be mapped with InSAR coherence images. We use InSAR correlation to visualize surface flow activity from 2003-2010 in order to quantify eruption rates and explore lava flow behavior from emplacement onward. This method for mapping flows does not require daylight, cloudless skies, or access to the active flow fields that is necessary for traditional visual surveys. We produce coherence maps for hundreds of 35 to 105-day periods from twelve tracks of ENVISAT SAR data using the GAMMA software package. By combining these coherence maps we create a unique dataset with which to develop this technique and amass lava flow observations. Where correlation images overlap in time, they are summed and normalized to derive a time series of surface coherence with a spatial resolution of 20 meters and a temporal resolution of as little as a few days. We identify existing stable flows by their high radar coherence, and determine a coherence threshold that is applied to each correlation image. This threshold is calibrated so as to reduce the effects of varying baseline, time duration, and atmospheric effects between images, as well as decorrelation due to vegetation. The final images illustrate lava flow activity that corresponds well with surface flow outlines and tube locations recorded by the USGS mapping effort. The InSAR-derived results serve to enhance these traditional maps by documenting pixel-scale changes over time. When compared with forward looking infrared (FLIR) thermal imagery, pixel

  14. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    NASA Technical Reports Server (NTRS)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  15. Diverting lava flows in the lab

    USGS Publications Warehouse

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  16. Observations and initial modeling of lava-SO2 interactions at Prometheus, Io

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Keszthelyi, L. P.; McEwen, A. S.

    2001-12-01

    We present observations and initial modeling of the lava-SO2 interactions at the flow fronts in the Prometheus region of Io. Recent high-resolution observations of Prometheus reveal a compound flow field with many active flow lobes. Many of the flow lobes are associated with bright streaks of what is interpreted to be volatilized and recondensed SO2 radiating away from the hot lava. Lower-resolution color data show diffuse blue to violet areas, also near the active flow front, perhaps from active venting of SO2. Not clearly visible in any of the images is a single source vent for the active plume. While the size of the proposed vent is probably near the limit of the resolution, we expected to see radial or concentric albedo patterns or other evidence for gas and entrained particles above the flow field. The lack of an obvious plume vent, earlier suggestions that the Prometheus-type plumes may originate from the advancing flow lobes, and the high-resolution images showing evidence for large-scale volatilization of the SO2-rich substrate at Prometheus encouraged us to develop a model to quantify the heat transfer between a basaltic lava flow and a substrate of SO2 snow. We calculate that the vaporization rate of SO2 snow is 2.5×10-6ms-1 per unit area. Using an estimated 5 m2s-1 lava coverage rate (from change detection images), we show that the gas production rate of SO2 at the flow fronts is enough to produce a resurfacing rate of ~0.24 cm yr-1 at the annulus of Prometheus. This is much less than other estimates of resurfacing by the Prometheus plume. While not easily explaining the main Prometheus plume, our model readily accounts for the bright streaks.

  17. Lava Flow on Mawson Peak, Heard Island

    NASA Image and Video Library

    2017-12-08

    In October 2012, satellites measured subtle signals that suggested volcanic activity on remote Heard Island. These images, captured several months later, show proof of an eruption on Mawson Peak. By April 7, 2013, Mawson's steep-walled summit crater had filled, and a trickle of lava had spilled down the volcano’s southwestern flank. On April 20, the lava flow remained visible and had even widened slightly just below the summit. These natural-color images were collected by the Advanced Land Imager (ALI) on the Earth Observing-1 (EO-1) satellite. Image Credit: NASA Earth Observatory Read more: earthobservatory.nasa.gov/NaturalHazards/view.php?id=81024 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California: Insights into magma chamber processes

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Wilson, L. F.; Underwood, S. J.

    2008-11-01

    Variations in spatial abundances, compositions, and textures of undercooled magmatic inclusions were determined in a glaciated Pleistocene lava dome (Mt. Helen; ~ 0.6 km 3) at the Lassen volcanic center (LVC), southernmost Cascades. Spatial variations were determined by point-counting at 86 locations separated by ~ 100 m on the dome. Major and trace element compositions of host rocks and inclusions at 12 locations along the flow length of the dome were obtained. Important results include the following. (1) Inclusion abundances range from 3-19 vol.%, with the highest values generally located along the little eroded northwestern margin and flow front of the dome. (2) Host rock compositions are markedly uniform across the dome (65.4 +/- 0.4 wt.% SiO 2) indicating that the degree of inclusion disaggregation was uniform, despite large spatial variations in inclusion abundances. (3) Inclusion sizes range from a maximum of ~ 1 m across to mm-sized crystal clots of phenocrysts plus adhering Ca-rich plagioclase microphenocrysts. (4) Inclusions have variable macroscopic textures indicating that partial undercooling both prior to and following entrapment in cooler dacitic host magma were important processes. (5) Inclusions are variably fractionated magmas with large variations in Ni (79-11 ppm) and Cr (87-7 ppm) contents that are lower than presumed mantle-derived melts. Furthermore, large ranges in incompatible trace elements indicate that inclusion compositions also reflect deep processes involving either melting of variable mantle source rocks or assimilation-fractional crystallization. (6) Inclusions are variably mixed magmas (56-61 wt.% SiO 2) that contain up to 50% host dacitic magma. (7) Correlations between Ni and Cr contents in hosts and inclusions from individual outcrops indicate that the effect of inclusion disaggregation and magma mingling on host dacitic magma was local (e.g., < 50 m). These features are interpreted to reflect protracted recharge of diverse

  19. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  20. Sustainable Outreach: Lessons Learned from Space Update and Discovery Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.

    2009-12-01

    A sustainable program lives on past its initial funding cycle, and develops a network of users that ensures continued life, either by fees, advertising revenue, or by making the program more successful in later sponsored grants. Teachers like free things, so having a sponsor for products such as lithographs or CD-Roms is key to wide distribution. In 1994 we developed “Space Update®”, under the NASA “Public Use of the Internet” program. It has new editions annually, with over 40,000 distributed so far (many purchased but most free at teacher and student workshops). In 1996 we created a special edition “Space Weather®”, which includes the space weather module from Space Update plus other resources. Initially developed with funding from the IMAGE mission, it is now sponsored by Cluster and MMS. A new edition is published annually and distributed in the “Sun-Earth Day” packet; total distribution now exceeds 180,000. “Earth Update” was created in 1999 under cooperative agreement “Museums Teaching Planet Earth”. It now has a total distribution of over 20,000. Both Earth Update and Space Update were developed to be museum kiosk software, and more than 15 museums have them on display. Over 4,000 users are active in our e-Teacher network and 577 in our museum educator network. Although these can certainly be considered successful because of their longevity and user base, we have had a far more dramatic sustainable program arise in the last six years… the “Discovery Dome®”. Invented at HMNS and developed under NASA Cooperative Agreement “Immersive Earth”, this dome was the first digital portable planetarium that also showed fulldome movies with an interactive interface (first shown to the public at the Dec 2003 AGU meeting). The Discovery Dome network (tinyurl.com/DiscDome) has spun those initial 6 NASA-funded domes into over 90 installations in 22 states and 23 countries. Creating high quality content is quite expensive and so needs

  1. The Birth and Growth of Kupaianaha Lava Shield, Kilauea Volcano: 1986-1992

    NASA Astrophysics Data System (ADS)

    Hon, K.; Heliker, C.

    2007-12-01

    Kupaianaha began to form on July 20, 1986, 3 km northeast of Pu`u `O`o, which had been the focus of Kilauea¡¦s east-rift-zone eruption for the prior 3.5 years. On July 18, Pu`u `O`o was primed for the 48th episode of high fountaining. Instead, fissures erupted first uprift and then downrift of the cone. This activity, which lasted until mid- morning on July 19, was preceded by an earthquake swarm and accompanied by 17.4 Ýradians of deflation at Kilauea¡¦s summit. On July 20, another small swarm of earthquakes heralded the eruption of the 200-m-long Kupaianaha fissure. Lava flows spread rapidly from the new fissure, advancing about 800 m southeastward during the first 2 days. The nascent shield was 4 m high by July 25, and a lava pond was forming over the vents. On July 26, a major breakout fed a channelized flow with an `a`a terminus that traveled 4.6 km southeast before stagnating on August 3. The upper end of the channel remained active on the shield after August 3 and evolved into the pond neck and the upper section of master tube that would direct most of the lava to the southeast during the next five years. The Kupaianaha shield attained a height of 33 m during August due to pond overflows, and expanded to cover an area of 1 x 1.6 km. By early October 1986, the lava pond had acquired its final shape and the shield was over 40 m high. Growth of the shield via intrusions also began in August and continued throughout the first year. Outpourings of intruded lava built satellitic shields, and extrusions of `a`a emanated from upwarped regions on the flanks of the shield. Intrusions were volumetrically less important than pond overflows, but they had a significant effect on the final shield morphology. The Kupaianaha shield reached a final height of 60 m early in July 1987, when a blockage of the master tube caused the pond to overflow in all directions for the last time. Two days later, the master tube broke open on the east side of the shield, building a

  2. Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Horvath, S.; Duarte, E.; Fernandez, E.

    2007-05-01

    Conventional air photographs, multi-spectral images and a map scale 1:10 000 were used to upgrade Arenal volcano's lava field. Arenal volcano located in NW Costa Rica has been active for 39 years. Fifty two days after the initial explosive events that opened three craters on the west flank, lava flows were erupted from crater A (1050 m) in September, 1968 and continued flowing until November, 1973. These lavas were the most voluminous of the eruption and the effusion rate of lava was relatively high in this period. In April, 1974 lava flows were erupted from crater C (1460 m) and continue to present time. Younger lava flows extended over uncovered ground to the south and southwest in the 1980s and early 1990s and onto the northern slopes in the 1990s and 2000s. Lava flows are becoming shorter and narrower with time. Therefore, the centre of mass of the whole lava flow-field has migrated closer to the vent. Above crater C a cone has been growing steadily, reaching a height of 1670 m, 36 m higher than the prehistoric Arenal cone by 2004. After 39 years of continuous emission of lava flows, the profile of Arenal volcano consists of a duplet of cones whose summits are separated by less than 500 meters. Most of the build up around the new cone comes from varied lava flows. For near 30 years volcano monitoring staff (from OVSICORI-UNA) has recorded field observations of regular and extraordinary events, in paper. Several drafts maps have been used for teaching, academic presentations and for graphic explanations to specific audiences and to the general public. An upgraded version was needed. The purpose of this work is to present the most recent lava flows giving a visual presentation of them by computer methods. Combined SIG techniques (Arc View 3.3) and ERDAS produced a base map in which layers containing the recorded lava flows from the recent 16 years, were depicted. Each lava flow has its own characteristics: direction, year of origin, width, length, surface texture

  3. The compression dome concept: the restorative implications.

    PubMed

    Milicich, Graeme

    2017-01-01

    Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.

  4. Electromagnetic sensing for deterministic finishing gridded domes

    NASA Astrophysics Data System (ADS)

    Galbraith, Stephen L.

    2013-06-01

    Electromagnetic sensing is a promising technology for precisely locating conductive grid structures that are buried in optical ceramic domes. Burying grid structures directly in the ceramic makes gridded dome construction easier, but a practical sensing technology is required to locate the grid relative to the dome surfaces. This paper presents a novel approach being developed for locating mesh grids that are physically thin, on the order of a mil, curved, and 75% to 90% open space. Non-contact location sensing takes place over a distance of 1/2 inch. A non-contact approach was required because the presence of the ceramic material precludes touching the grid with a measurement tool. Furthermore, the ceramic which may be opaque or transparent is invisible to the sensing technology which is advantageous for calibration. The paper first details the physical principles being exploited. Next, sensor impedance response is discussed for thin, open mesh, grids versus thick, solid, metal conductors. Finally, the technology approach is incorporated into a practical field tool for use in inspecting gridded domes.

  5. The cooling of terrestrial basaltic lava flows and implications for lava flow emplacement on Venus from surface morphology and radar data

    NASA Astrophysics Data System (ADS)

    Hultgrien, Lynn Kerrell

    Basalt is the most common surface rock on the terrestrial planets. Understanding the emplacement mechanisms for basaltic lava flows facilitates study of the geologic history of a planet and in volcanic hazards assessment. Lava flow cooling is examined through two different models, one applicable to aa and the second to pahoehoe. Occurrence of these basaltic flow types is evaluated in an extensive global survey of lava flows on Venus using Magellan data. First, a basic heat balance model is considered for as flow cooling with terms for conduction, radiation, viscous dissipation and entrainment of cooler material. Pahoehoe cooling is modeled through three different analytic solutions to the one-dimensional, time-dependent heat conduction equation, with constant surface temperature, linear heat transfer at the surface, and surface radiation. The models are compared with thermal data from the Hawaiian 1984 Mauna Loa and 1990 Puu Oo-Kupaianaha, Kilauea eruptions, for as and pahoehoe, respectively. Although commonly omitted in other models, heat conduction is found here to be important in the cooling of both aa and pahoehoe. Equally important is entrainment in as flows and both radiation and atmospheric convection for pahoehoe cooling. Morphology measurements and surface properties are determined for ninety individual lava flows from forty-four volcanic features on Venus. Radar backscatter and rms slope values, relative to terrestrial studies, indicate Venusian lavas are predominately pahoehoe. Emissivities and dielectric constants are consistent with basalt as the principal lithology. Effusion rates and flow velocities, determined using Earth-calibrated parametric relationships, and lava flow dimensions are greater than those found on Earth. Modeling lava flows on the terrestrial planets should involve careful consideration of the type of lava flow being studied. This investigation finds that heat conduction is an important limitation in the ability of a basalt flow to

  6. Geochemical aspects of some Japanese lavas.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Martin, W.; Schnetzler, C. C.

    1971-01-01

    K, Rb, Sr, Ba and rare-earth concentrations in some Japanese lavas have been determined by mass-spectrometric stable-isotope dilution. The samples fall into three rare-earth groups corresponding to tholeiitic, high alumina and alkali basalts. Japanese tholeiites have trace element characteristics similar to those of oceanic ridge tholeiites except for distinctly higher relative concentrations of Ba. Japanese lavas may result from various degrees of partial fusion of amphibole eclogite.

  7. Athabasca Valles, Mars: a lava-draped channel system.

    PubMed

    Jaeger, W L; Keszthelyi, L P; McEwen, A S; Dundas, C M; Russell, P S

    2007-09-21

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava-the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  8. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  9. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    USGS Publications Warehouse

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  10. Incorporation of seawater into mid-ocean ridge lava flows during emplacement

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Ridley, W.I.; Reed, M.H.; Cann, J.R.

    2006-01-01

    Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals (i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be

  11. [Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system].

    PubMed

    Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A

    2001-06-01

    The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%).

  12. Upheaval Dome, An Analogue Site for Gale Center

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Eignebrode, J. L.

    2011-01-01

    We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.

  13. CALIPSO Borehole Monitoring Project at Soufriere Hills Volcano, Montserrat, BWI: Overview, and Response of Magma Reservoir to Prodigious Dome Collapse

    NASA Astrophysics Data System (ADS)

    Voight, B.; Mattioli, G. S.; Linde, A. T.; Sacks, I. S.; Young, S. R.; Malin, P. E.; Shalev, E.; Hidayat, D.; Elsworth, D.; Widiwijayanti, C.; Miller, V.; McWhorter, N.; Schleigh, B.; Johnston, W.; Sparks, R.; Neuberg, J.; Bass, V.; Dunkley, P.; Herd, R.; Jolly, A.; Norton, G.; Syers, T.; Thompson, G.; Williams, C.; Williams, D.; Clarke, A. B.

    2004-12-01

    Project CALIPSO (Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory) aims to investigate the magmatic system at the active Soufriere Hills Volcano (SHV), Montserrat. The collaborative project involves several institutions acting in partnership with the Montserrat Volcano Observatory (MVO), and is funded by NSF with assistance by NERC. SHV remains active after 9 years, displaying cyclic activity on several scales. Many aspects of andesite system dynamics remain poorly understood, and CALIPSO is expected to improve our understanding of SHV and andesite systems generally. Drilling was carried out Nov 02 to Mar 03. CALIPSO comprises an integrated array of four strategically located 200-m boreholes, plus several shallower holes and surface installations. The borehole instruments are designed to have long life (decades). Each site includes a very broad-band Sacks-Evertson strainmeter, three-component seismometer, tiltmeter, and surface cGPS station. At one site a hot-hole strainmeter design, involving hydraulic sensors and no downhole electronics, has been used for the first time anywhere. FreeWave telemetry is coupled with Quanterra A/D converters. These instruments are intended to probe changes in the andesitic volcanic system and underlying mafic sources with unprecedented sensitivity. Early data from the July 2003 dome collapse suggest remarkable insights about the depth, shape and nature of the volatile-saturated magmatic reservoir, gleaned from the magnitude of dilatation pulses accompanying the collapse, and their change in sign of with radial distance.

  14. 4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. FACING EAST AT VIEW OF YOSEMITE VALLEY; EL CAPITAN ON LEFT, HALF DOME AT CENTER AND SENTINEL DOME AT LEFT REAR. POST AT LOWER LEFT MARKED 'W3' IS MARKER FOR SELF GUIDED TOUR TO PARK. - Wawona Road, Between South Entrance & Yosemite Valley, Yosemite Village, Mariposa County, CA

  15. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    USGS Publications Warehouse

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  16. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  17. Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima

    2017-04-01

    Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.

  18. Terraced margins of inflated lava flows on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  19. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  20. Seismicity associated with quiescent-explosive transitions at dome forming eruptions: The July 2008 Vulcanian Explosion of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Mather, Tamsin A.; Pyle, David M.

    2017-04-01

    During long-lived dome-forming eruptions volcanoes often transition between quiescent, effusive, and explosive behaviour. Soufrière Hills Volcano (SHV), Montserrat, has been erupting since 1995 and has repeatedly transitioned between these different phases of activity. At SHV many of the largest explosions have occurred either during periods of dome growth, or as major dome collapse events at the end of extrusion phases. However, on the 29th July 2008 a vulcanian explosion marked the transition from a quiescent phase (Pause 3) to explosion and then extrusion. This was one of the largest explosions by volume and the largest to occur outside a period of lava extrusion. The eruption was preceded by one of the most intense seismic swarms ever recorded at SHV. In this study we analysed precursory seismic data to investigate the subsurface volcanic processes that culminated in this eruption. We used spectral and multiplet analysis techniques, and applied a simple parameterization approach to relate monitoring observations (seismic, SO2, visual) to subsurface interpretations. These techniques would be available to most volcano observatories. Our study suggests that an initial VT swarm, coincident with ash-venting events, can be triggered by ascent of decoupled gas ahead of rising magma. A subsequent large LF swarm shows a coincident decrease in spectral content that we interpret as magma ascent through the upper conduit system. An ash-venting event on 27 July (a few hours before peak event rate) may have triggered rapid microlite growth. We observe an increase in the spectral content of the LF swarm that is concurrent with a decrease in event rates, suggesting pressurization of the magmatic system due to inhibited magmatic outgassing. Our results suggest that pressurization of the magmatic system may have occurred in the final 24 h before the vulcanian explosion. We also observe LP and Hybrid events within the same multiplet, suggesting that these events have very

  1. Fracturing as a Quantitative Indicator of Lava Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Kilburn, C. R.; Solana, C.

    2005-12-01

    The traditional classification of lava flows into pahoehoe and aa varieties reflects differences in how a flow can fracture its surface during advance. Both types of lava have a low strength upon eruption and require surface cooling to produce a crust that can fracture. Among pahoehoe lavas, applied stresses are small enough to allow the growth of a continuous crust, which is broken intermittently as the flow advances by propagating a collection of lava tongues. Among aa lavas, in contrast, applied stresses are large enough to maintain persistent crustal failure. The differences in fracturing characteristics has been used to quantify the transition between flow regimes and suggests that shear fracture may dominate tensile failure. Applied to Lanzarote, the model confirms the inference from incomplete eye-witness accounts of the 1730-36 Timanfaya eruption that pahoehoe flows were able to advance about an order of magnitude more quickly than would have been expected by analogy with Hawaiian pahoehoe flow-fields of similar dimensions. Surface texture and morphology, therefore, are insufficient guides for constraining the rate and style of pahoehoe emplacement. Applications include improved hazard assessments during effusive eruptions and new evaluations of the emplacement conditions for very large-volume pahoehoe lava flows.

  2. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    NASA Astrophysics Data System (ADS)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  3. Internal ballistics model update for ASRM dome

    NASA Technical Reports Server (NTRS)

    Bowden, Mark H.; Jenkins, Billy Z.

    1991-01-01

    A previous report (no. 5-32279, contract NAS8-36955, DO 51) describes the measures taken to adapt the NASA Complex Burning Region Model and code so that is was applicable to the Advanced Solid Rocket Motor as envisioned at that time. The code so modified was called the CBRM-A. CBRM-A could calculate the port volume and burning area for the star, transition, and cylindrically perforated regions of the motor. Described here is a subsequent effort to add computation of port volume and burning area for the Advanced Solid Rocket Motor head dome. Sample output, input, and overview of the models are included. The software was configured in two forms - a stand alone head dome code and a code integrating the head dome solution with the CBRM-A.

  4. A year of lava fountaining at Etna: Volumes from SEVIRI

    NASA Astrophysics Data System (ADS)

    Ganci, G.; Harris, A. J. L.; Del Negro, C.; Guehenneux, Y.; Cappello, A.; Labazuy, P.; Calvari, S.; Gouhier, M.

    2012-03-01

    We present a new method that uses cooling curves, apparent in high temporal resolution thermal data acquired by geostationary sensors, to estimate erupted volumes and mean output rates during short lava fountaining events. The 15 minute temporal resolution of the data allows phases of waxing and peak activity to be identified during short (150-to-810 minute-long) events. Cooling curves, which decay over 8-to-21 hour-periods following the fountaining event, can also be identified. Application to 19 fountaining events recorded at Etna by MSG's SEVIRI sensor between 10 January 2011 and 9 January 2012, yields a total erupted dense rock lava volume of ˜28 × 106 m3, with a maximum intensity of 227 m3 s-1 being obtained for the 12 August 2011 event. The time-averaged output over the year was 0.9 m3 s-1, this being the same as the rate that has characterized Etna's effusive activity for the last 40 years.

  5. Lava delta deformation as a proxy for submarine slope instability

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  6. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, Seth C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, William E.; Sherrod, David R.; Vallance, James W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome.

  7. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-12-01

    Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the

  8. Gas and ash emissions associated with the 2010–present activity of Sinabung Volcano, Indonesia

    USGS Publications Warehouse

    Primulyana, Sofyan; Kern, Christoph; Lerner, Allan; Saing, Ugan; Kunrat, Syegi; Alfianti, Hilma; Marlia, Mitha

    2017-01-01

    Sinabung Volcano (Sumatra, Indonesia) awoke from over 1200 years of dormancy with multiple phreatic explosions in 2010. After a period of quiescence, Sinabung activity resumed in 2013, producing frequent explosions, lava dome extrusion, and pyroclastic flows from dome collapses, becoming one of the world's most active volcanoes and displacing over 20,000 citizens. This study presents a compilation of the geochemical datasets collected by the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM) from 2010 - current (2016), which provides insights into the evolution of the eruption. Based on observations of SO2 emissions, ash componentry, leachate chemistry, and bulk ash geochemistry, the eruption can be split into five distinct phases. The initial stage of phreatic summit explosions occurred from August - October 2010, during which background SO2 emissions averaged ~550 ± 180 t/d (1 s.d.). An eruptive pause (phase two) starting in October 2010 abruptly ended in September 2013 with a resumption of conduit-clearing eruptions. This third phase had a relatively modest background SO2 emission rate (avg. ~410 ± 275 t/d) and produced ash consisting entirely of accidental ejecta with high S/Cl leachate ratios (up to 30), suggestive of deep-sourced magma and the incorporation of hydrothermal sulfur-bearing phases. The most intense phase of the eruption (phase four) occurred from December 2013 to February 2014, when juvenile magma first reached the surface. This period included dozens of large eruptions per day, high SO2 emission rates (average: 1,120 ± 1,030 t/d, peak: ~3,800 t/d), the onset of lava dome extrusion, and a dramatic drop in S/Cl ash leachates to ratios < 5, all reflecting increased degassing from shallow magma and the clearing out of sulfurous phases from the old hydrothermal system. From late February 2014 through the time of writing (September 2016), Sinabung settled into a relatively steady state of lower activity (phase five). Ash

  9. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Orr, Tim R.; Davies, Ashley G.; Ramsey, Michael S.

    2016-01-01

    Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea's East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.

  10. Lava Lamp

    ERIC Educational Resources Information Center

    Leif, Todd R.

    2008-01-01

    This past semester I brought a Lava Lite[R] Lamp into my classroom. Why bring such a thing into class? Many of today's students are part of the "retro" movement. They buy clothes from the '60s, they wear their hair like people did in the '60s, and they look for the ideals and themes related to living in the 1960s. Physics education reform is also…

  11. Atmospheric scintillation at Dome C, Antarctica: implications for photometry and astrometry

    NASA Astrophysics Data System (ADS)

    Kenyon, S.; Lawrence, J.; Ashley, M. C. B.; Storey, J. W. V.; Tokovinin, A.; Fossat, E.

    2006-08-01

    Night-time turbulence profiles of the atmosphere above Dome C, Antarctica, were measured during 2004, using a MASS instrument. We compare this data with turbulence profiles above Cerro Tololo and Cerro Pachon, also measured with a MASS, and find, with the exception of the owest layer, that Dome C has significantly less turbulence. In addition, the integrated at turbulence 16 km above Dome C is always less than the median values at the two Chilean sites. Using average wind speed profiles, we assess the photometric noise produced by scintillation, and the atmospheric contribution to the error budget in narrow angle differential astrometry. In comparison with the two mid-latitude sites in Chile, Dome C offers a potential gain of about 3.6 in both photometric precision (for long integrations) and narrow-angle astrometry precision. Although the data from Dome C cover a fairly limited time frame, they lend strong support to expectations that Dome C will offer significant advantages for photometric and astrometric studies.

  12. 3D seismic imaging of voluminous earliest Eocene buried lava fields and coastal escarpments off mid-Norway

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed

    2017-04-01

    Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events

  13. Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor

    2017-01-01

    Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

  14. The explosive origin of obsidian lava (Invited)

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Bindeman, I. N.; Tuffen, H.; Schipper, C.

    2013-12-01

    melt (higher D/H) deeper in the conduit fluxed through the tuffisite veins. The D/H ratios and bulk H2O contents of bomb glasses define a continuous array that terminates in the lavas at D/H of about -145 ‰ and <0.2 wt.% H2O. This degassing trend is well fit by a mixed closed-and-open system process, whereby 'batches' of exsolved vapour are repetitively formed and rapidly extracted in explosive pulses. The episodic and frequent release of gas from fragmental magma domains in otherwise coherently rising magma is shown to be time effective and consistent with observed timelines of explosive-effusive activity at Chaitén and Cordón Caulle.

  15. Kīlauea June 27th Lava Flow Hazard Mapping and Disaster Response with UAS

    NASA Astrophysics Data System (ADS)

    Turner, N.; Perroy, R. L.; Hon, K. A.; Rasgado, V.

    2015-12-01

    In June of 2014, pāhoehoe lava flows from the Púu ´Ō´ō eruption began threatening communities and infrastructure on eastern Hawaii Island. During the subsequent declared state of emergency by Hawaii Civil Defense and temporary flight restriction by the Federal Aviation Administration (FAA), we used a small fixed-wing Unmanned Aircraft System (UAS) to collect high spatial and temporal resolution imagery over the active flow in support of natural hazard assessment by emergency managers. Integration of our UAS into busy airspace, populated by emergency aircraft and tour helicopters, required close operational coordination with the FAA and local operators. We logged >80 hours of UAS flight operations between October 2014 and March 2015, generating a dense time-series of 4-5 cm resolution imagery and derived topographic datasets using structure from motion. These data were used to monitor flow activity, document pre- and post- lava flow damage, identify hazardous areas for first responders, and model lava flow paths in complex topography ahead of the active flow front. Turnaround times for delivered spatial data products improved from 24-48 hours at the beginning of the study to ~2-4 hours by the end. Data from this project are being incorporated into cloud computing applications to shorten delivery time and extract useful analytics regarding lava flow hazards in near real-time. The lessons learned from this event have advanced UAS integration in disaster operations in U.S. airspace and show the high potential UAS hold for natural hazards assessment and real-time emergency management.

  16. Owyhee River intracanyon lava flows: does the river give a dam?

    USGS Publications Warehouse

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  17. A Foamy Lava Lake at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Carbone, D.

    2012-12-01

    Kilauea Volcano, in Hawai`i, is currently erupting from two locations simultaneously: along the east rift zone and at the summit. The east rift zone eruption began in 1983 and is characterized by lava effusion from the Pu`u `O`o and nearby vents, while the summit eruptive vent, which opened in 2008, persistently emits gas and small amounts of ash while hosting a lava lake. On March 5, 2011, a dike initiated from the east rift zone magma conduit and reached the surface, resulting in the 4.5-day-long Kamoamoa fissure eruption just uprift of Pu`u `O`o. The eruption was accompanied by summit deflation as magma withdrew from subsurface reservoirs to feed the fissure eruption. The level of the summit lava lake dropped as the summit deflated. A continuously recording gravimeter located at Kilauea's summit (about 150 m east of the center of the summit eruptive vent, 80 m above the vent rim, and about 140 m above the highest level reached by the lava lake) measured a gravity decrease of about 150 μGal during the lava level drop, after taking into account corrections for the solid Earth tide. The gravity signal is caused by a combination of three processes. First, subsidence of 15 cm due to summit deflation moved the gravimeter closer to the center of the Earth, resulting in a gravity increase. Second, mass removal from the subsurface magma reservoir at a depth of 1.4 km (based on a model from GPS and InSAR data) caused a gravity decrease. Third, the drop in the level of the lava lake, which reached a maximum of about 150 m, led to a gravity decrease. Assuming a simple point source of pressure change and a typical density for basaltic magma (2.3-2.7 g/cm3), the first two processes can only explain a small percent of the observed gravity decrease, which must therefore be mainly due to the drop in the level of the lava lake. We developed a numerical model of the summit eruptive vent that takes into account its complex geometry (as deduced from geological observations). Using

  18. Measuring Io's Lava Eruption Temperatures with a Novel Infrared Detector and Digital Readout Circuit

    NASA Astrophysics Data System (ADS)

    Davies, Ashley; Gunapala, Sarath; Rafol, B., Sir; Soibel, Alexander; Ting, David Z.

    2016-10-01

    One method of determining lava eruption temperature of Io's dominant silicate lavas is by measuring radiant flux at two or more wavelengths and fitting a black-body thermal emission function. Only certain styles of volcanic activity are suitable, those where thermal emission is from a restricted range of surface temperatures close to eruption temperature. Such processes include [1] large lava fountains; [2] fountaining in lava lakes; and [3] lava tube skylights. Problems that must be overcome are (1) the cooling of the lava between data acquisitions at different wavelengths; (2) the unknown magnitude of thermal emission, which often led to detector saturation; and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector [4] and an advanced digital readout circuit [5]. We have created an instrument model that allows different instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested so as to determine eruption detectability. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures exposed. Observations at 1 and 1.5 μm are sufficient to do this. Lava temperature determinations are also possible with a visible wavelength detector [3] so long as data at different wavelengths are obtained simultaneously and integration time is very short. This is especially important for examining the thermal emission from lava tube skylights [3] due to rapidly-changing viewing geometry during close flybys. References: [1] Davies et al., 2001, JGR, 106, 33079-33104. [2] Davies et al., 2011, GRL, 38, L21308. [3] Davies et al., 2016, Icarus, in press. [4

  19. LAVA Pressure Transducer Trade Study

    NASA Technical Reports Server (NTRS)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  20. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  1. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source transmitter and small optical detector receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test

  2. Hemispherical optical dome for underwater communication

    NASA Astrophysics Data System (ADS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-08-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with this approach is that there is generally a large loss of the light signal due to scattering and absorption in water, even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple communication system, consisting only of a highly directional source/transmitter and small optical detector/receiver, has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter. Two versions of the optical dome (with 6" and 8" diameters) were designed using PTC's Creo CAD software and modeled using Synopsys' CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows that the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with

  3. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source/transmitter and small optical detector/receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test

  4. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

  5. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

    NASA Astrophysics Data System (ADS)

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur

    2018-01-01

    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  6. Recent Flood Volcanism on Mars: Implications for Climate Change, Layered Deposits, and Lava-Water Interactions

    NASA Astrophysics Data System (ADS)

    Keszthelyi, L.; McEwen, A.

    2001-05-01

    . There is evidence from MOC and MOLA that recent floods of both water and lava originated from Cerberus Rupes, a fracture system which has been active very recently (it cuts the young lavas). This may be the very best place on Mars to search for current geothermal activity. Keszthelyi et al. (2000) JGR 105, 15027-15049. Hartmann and Berman (2000) JGR, 105, 15011-15025. Thordarson and Self (1996) JVGR 74, 49-73. Keszthelyi and Thordarson, (2000) GSA Ann. Meet. Abst. #5293. McSween, et al. (2001), Nature 409, 487-490. Lanagan et al., (submitted) GRL.

  7. The Wind-Scoured Lava Flows of Pavonis Mons

    NASA Image and Video Library

    2016-09-21

    Click on the image for larger version This image shows a circular impact crater and an oval volcanic caldera on the southern flank of a large volcano on Mars called Pavonis Mons. The caldera is also the source of numerous finger-like lava flows and at least one sinuous lava channel. Both the caldera and the crater are degraded by aeolian (wind) erosion. The strong prevailing winds have apparently carved deep grooves into the terrain. When looking at the scene for the first time, the image seems motion blurred. However, upon a closer look, the smaller, young craters are pristine, so the image must be sharp and the "blurriness" is due to the processes acting on the terrain. This suggests that the deflation-produced grooves, along with the crater and the caldera, are old features and deflation is not very active today. Alternatively, perhaps these craters are simply too young to show signs of degradation. This deeply wind-scoured terrain type is unique to Mars. Wind-carved stream-lined landforms on Earth are called "yardangs," but they don't form extensive terrains like this one. The basaltic lavas on the flanks of this volcano have been exposed to wind for such a long time that there are no parallels on Earth. Terrestrial landscapes and terrestrial wind patterns change much more rapidly than on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21064

  8. Rheology of phonolitic magmas - the case of the Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Moretti, Roberto; Kyle, Philip R.; Oppenheimer, Clive

    2015-02-01

    Long-lived active lava lakes are comparatively rare and are typically associated with low-viscosity basaltic magmas. Erebus volcano, Antarctica, is unique today in hosting a phonolitic lava lake. Phonolitic magmas can erupt explosively, as in the 79 CE Plinian eruption of Vesuvius volcano, Italy, and it is therefore important to understand their physical properties. The phonolite at Erebus has slightly higher silica content than that at Vesuvius yet its present activity is predominantly non-explosive. As a contribution to understanding such contrasting eruptive behaviour, we focus on the rheological differences between these comparable magmas. In particular, we evaluate the viscosity of the Erebus phonolite magma by integrating new experimental data within a theoretical and empirical framework. The resulting model enables estimation of the Erebus melt viscosity as a function of temperature, crystal and water concentrations, with an uncertainty of, at most, ± 0.45 log (Pa s). Using reported ranges for these parameters, we predict that the magma viscosity in the upper region of the plumbing system of Erebus ranges between 105 and 107 Pas. This is substantially higher than has been hitherto considered with significant implications for modelling the dynamics of the lava lake, conduit and magma reservoir system. Our analysis highlights the generic challenges encountered in calculation of magma viscosity and presents an approach that can be applied to other cases.

  9. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out <200 m from Pahoa Village road. Over 150,000 m3of lava were added to the study site during our period of observations, with maximum vertical inflation >4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and

  10. Field Measurements of the 1983 Royal Gardens Lava Flows, Kilauea Volcano, and 1984 Mauna Loa Lava Flow, Hawaii

    NASA Technical Reports Server (NTRS)

    Fink, J.; Zimbelman, J.

    1985-01-01

    Theoretical models used in the remote determination of lava flow rheology and compositions rely on estimates of such geometric and flow parameters as volume flow rates, levee heights, and channel dimensions, as well as morphologic and structural patterns on the flow surfaces. Quantitative measures of these variables are difficult to obtain, even under optimum conditions. Detailed topographic profiles across several Hawaiian lava flows that were carefully monitored by the U.S. Geological Survey during their emplacement in 1983 were surveyed in order to test various flow emplacement models. Twenty two accurate channel cross sections were constructed by combining these profiles with digitized pre-flow topographic measurements. Levee heights, shear zone widths, and flow depths could then be read directly from the cross sections and input into the models. The profiles were also compared with ones constructed for some Martian lava flows.

  11. Radar scattering properties of pancakelike domes on Venus

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1992-01-01

    Magellan radar images have disclosed the presence of a large number of almost perfectly circular domes, presumably of volcanic origin, in many regions of Venus several with diameters of 30 km or more. Their high degree of symmetry has permitted measurements of their shape, as determined by the Magellan altimeter to be compared with models of dome production from the eruption of high-viscosity magmas. In this work, we examine in detail the radar images of domes in Rusalka Planitia (2.8 deg S, 150.9 deg E) and Tinatin Planitia (12.2 deg N, 7.5 deg E), selected for their circular symmetry and apparent absence of modification due to large-scale slumping or tectonic rifting.

  12. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    NASA Astrophysics Data System (ADS)

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  13. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland

    NASA Astrophysics Data System (ADS)

    Rossi, Matti J.

    1997-09-01

    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and

  14. Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian

    2018-05-01

    The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.

  15. 2500 pyroclast puzzle: probing eruptive scenarios at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Varley, N. R.; Alatorre-Ibarguengoitia, M. A.; Lavallee, Y.; Becker, S.; Berninger, N.; Goldstein, F.; Hanson, J. B.; Kolzenburg, S.; Dingwell, D. B.

    2009-12-01

    The Colima volcanic complex is comprised by two edifices, the extinct Nevado de Colima to the North and the active Fuego de Colima in the South. Since 1998, a dome-building phase has shown repeated shifts between lava effusion and short-lived explosive activity. Lava extrusion rates were usually low leading to the build-up of domes inside the crater but occasionally, lava spilled over the crater rim and flowed down the flanks. This effusive activity was usually associated with several ash explosions and gas exhalation events per day. In 2005, occasional block-and-ash flows from dome-collapse events travelled down the Western flanks and reached La Lumbre valley. Later that year, violent explosive eruptions destroyed the dome and sent pyroclastic flows to valleys in the South (Monte Grande) and South-East (La Arena). The transition from effusive to short-lived but highly explosive eruptive behaviour presents an interesting opportunity to study pyroclastic flow deposits from different generating mechanisms. Gas at overpressure in bubbly magma is one of the main driving forces of explosive eruptions. The change of the physical properties of evolved magmas after the fragmentation is minor. Therefore, a detailed characterisation of volcanic products reveals much information and is vital for a correct understanding of volcanic deposits. Comparing different units allows constraining the bandwidth of possible eruptive scenarios. Here, we thoroughly characterized the deposits of the above described events on site. In the field, we 1) measured the density distribution of 100 surficial juvenile and lithic clasts at 24 localities (1 * 1 m) across the length and width of the pyroclastic flow deposits; 2) sieved the matrix (approx. 30 * 30 * 30 cm) at each locality; and 3) created detailed stratigraphic logs. We observe a lower mean density and a greater variance for clasts generated by the explosive eruption. Our results highlight the different origin of the 2005 deposits on

  16. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  17. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC)more » of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.« less

  18. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    USGS Publications Warehouse

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  19. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  20. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  1. Red Hot: Determining the Physical Properties of Lava Lake Skin

    NASA Astrophysics Data System (ADS)

    Ford, C.; Lev, E.

    2015-12-01

    Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.

  2. Rootless shield and perched lava pond collapses at Kīlauea Volcano, Hawai'i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2012-01-01

    Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.

  3. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less

  4. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    USGS Publications Warehouse

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  5. The Ongoing Lava Flow Eruption of Sinabung Volcano (Sumatra, Indonesia): Observations from Structure-from-Motion and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.

    2015-12-01

    Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows

  6. Petrogenesis of High-CaO Lavas Recovered from Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Huang, S.

    2015-12-01

    Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of low degree partial melt of the Low-SiO2 mantle source and a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, or lower oceanic crust.Mauna Kea tholeiitic lavas recovered from Hawaii Scientific Drilling Project (HSDP) can be divided into three groups based on their major element compositions: High-SiO2, Low-SiO2, and High-CaO groups. Detailed geochemical and isotopic studies have been focused on the High- and Low-SiO2 group lavas, and High-CaO lavas were not well studied because they were not included in the original reference suite samples. Here we report trace element compositions determined on a suite of High-CaO glasses, and use these data to constrain the petrogenesis of High-CaO lavas. When normalized to Low-SiO2 lavas, High-CaO lavas form a U-shaped trace element pattern. That is, High-CaO lavas are enriched in both the most (Nb, Th) and the least (Sc, V) incompatible elements. This trace element difference is best explained if High-CaO parental magma represents a mixture of

  7. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  8. A meta-analysis of aneurysm formation in laser assisted vascular anastomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. However, aneurysm formation is one of the main reasons delay the clinical application of LAVA. Some scientists investigated the incidence of aneurysms in animal model. To systematically analyze the literature on reported incidence of aneurysm formation in LAVA therapy, we performed a meta-analysis comparing LAVA with conventional suture anastomosis (CSA) in animal model. Data were systematically retrieved and selected from PUBMED. In total, 23 studies were retrieved. 18 studies were excluded, and 5 studies involving 647 animals were included. Analysis suggested no statistically significant difference between LAVA and CSA (OR 1.24, 95%CI 0.66-2.32, P=0.51). Result of meta analysis shows that the technology of LAVA is very close to clinical application.

  9. Validating Cellular Automata Lava Flow Emplacement Algorithms with Standard Benchmarks

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Connor, L.; Charbonnier, S. J.; Connor, C.; Gallant, E.

    2015-12-01

    A major existing need in assessing lava flow simulators is a common set of validation benchmark tests. We propose three levels of benchmarks which test model output against increasingly complex standards. First, imulated lava flows should be morphologically identical, given changes in parameter space that should be inconsequential, such as slope direction. Second, lava flows simulated in simple parameter spaces can be tested against analytical solutions or empirical relationships seen in Bingham fluids. For instance, a lava flow simulated on a flat surface should produce a circular outline. Third, lava flows simulated over real world topography can be compared to recent real world lava flows, such as those at Tolbachik, Russia, and Fogo, Cape Verde. Success or failure of emplacement algorithms in these validation benchmarks can be determined using a Bayesian approach, which directly tests the ability of an emplacement algorithm to correctly forecast lava inundation. Here we focus on two posterior metrics, P(A|B) and P(¬A|¬B), which describe the positive and negative predictive value of flow algorithms. This is an improvement on less direct statistics such as model sensitivity and the Jaccard fitness coefficient. We have performed these validation benchmarks on a new, modular lava flow emplacement simulator that we have developed. This simulator, which we call MOLASSES, follows a Cellular Automata (CA) method. The code is developed in several interchangeable modules, which enables quick modification of the distribution algorithm from cell locations to their neighbors. By assessing several different distribution schemes with the benchmark tests, we have improved the performance of MOLASSES to correctly match early stages of the 2012-3 Tolbachik Flow, Kamchakta Russia, to 80%. We also can evaluate model performance given uncertain input parameters using a Monte Carlo setup. This illuminates sensitivity to model uncertainty.

  10. Atmospheric Scintillation at Dome C, Antarctica: Implications for Photometryand Astrometry

    NASA Astrophysics Data System (ADS)

    Kenyon, S. L.; Lawrence, J. S.; Ashley, M. C. B.; Storey, J. W. V.; Tokovinin, A.; Fossat, E.

    2006-06-01

    We present low-resolution turbulence profiles of the atmosphere above Dome C, Antarctica, measured with the MASS instrument during 25 nights in 2004 March-May. Except for the lowest layer, Dome C has significantly less turbulence than Cerro Tololo and Cerro Pachón. In particular, the integrated turbulence at 16 km is always less than the median values at the two Chilean sites. From these profiles we evaluate the photometric noise produced by scintillation, and the atmospheric contribution to the error budget in narrow-angle differential astrometry. In comparison with the two midlatitude sites in Chile, Dome C offers a potential gain of about 3.6 in both photometric precision (for long integrations) and narrow-angle astrometry precision. These gain estimates are preliminary, being computed with average wind-speed profiles, but the validity of our approach is confirmed by independent data. Although the data from Dome C cover a fairly limited time frame, they lend strong support to expectations that Dome C will offer significant advantages for photometric and astrometric studies.

  11. The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Kauahikaua, J. P.

    2013-12-01

    descent lines calculated on a geoid-based DEM may differ significantly from those calculated on an ellipsoid-based DEM. Good estimates of lava flow advance rates can be obtained from empirical compilations of historical advance rates of Hawaiian lava flows. In this way, rates appropriate for observed flow types (`a`a or pahoehoe, channelized or not) can be applied. Eruption rate is arguably the most important factor, while slope is also significant for low eruption rates. Eruption rate, however, remains the most difficult parameter to estimate during an active eruption. The simplicity of the HVO approach is its major benefit. How much better can lava-flow advance be forecast for all types of lava flows? Will the improvements outweigh the increased uncertainty propagated through the simulation calculations? HVO continues to improve and evaluate its lava flow forecasting tools to provide better hazard assessments to emergency personnel.

  12. The thermal environment of the fiber glass dome for the new solar telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.

    2007-09-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  13. A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Damiani, M. L.; Groppelli, G.; Norini, G.; Bertino, E.; Gigliuto, A.; Nucita, A.

    2006-05-01

    Volcanic hazard assessment is of paramount importance for the safeguard of the resources exposed to volcanic hazards. In the paper we present ELFM, a lava flow simulation model for the evaluation of the lava flow hazard on Mount Etna (Sicily, Italy), the most important active volcano in Europe. The major contributions of the paper are: (a) a detailed specification of the lava flow simulation model and the specification of an algorithm implementing it; (b) the definition of a methodological framework for applying the model to the specific volcano. For what concerns the former issue, we propose an extended version of an existing stochastic model that has been applied so far only to the assessment of the volcanic hazard on Lanzarote and Tenerife (Canary Islands). Concerning the methodological framework, we claim model validation is definitely needed for assessing the effectiveness of the lava flow simulation model. To that extent a strategy has been devised for the generation of simulation experiments and evaluation of their outcomes.

  14. If Lava Mingled with Ground Ice on Mars

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2001-06-01

    Clusters of small cones on the lava plains of Mars have caught the attention of planetary geologists for years for a simple and compelling reason: ground ice. These cones look like volcanic rootless cones found on Earth where hot lava flows over wet surfaces such as marshes, shallow lakes or shallow aquifers. Steam explosions fragment the lava into small pieces that fall into cone-shaped debris piles. Peter Lanagan, Alfred McEwen, Laszlo Keszthelyi (University of Arizona), and Thorvaldur Thordarson (University of Hawaii) recently identified groups of cones in the equatorial region of Mars using new high-resolution Mars Orbiter Camera (MOC) images. They report that the Martian cones have the same appearance, size, and geologic setting as rootless cones found in Iceland. If the Martian and terrestrial cones formed in the same way, then the Martian cones mark places where ground ice or groundwater existed at the time the lavas surged across the surface, estimated to be less than 10 million years ago, and where ground ice may still be today.

  15. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  16. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  17. Trace-element analyses of core samples from the 1967-1988 drillings of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill

    2012-01-01

    This report presents previously unpublished analyses of trace elements in drill core samples from Kilauea Iki lava lake and from the 1959 eruption that fed the lava lake. The two types of data presented were obtained by instrumental neutron-activation analysis (INAA) and energy-dispersive X-ray fluorescence analysis (EDXRF). The analyses were performed in U.S. Geological Survey (USGS) laboratories from 1989 to 1994. This report contains 93 INAA analyses on 84 samples and 68 EDXRF analyses on 68 samples. The purpose of the study was to document trace-element variation during chemical differentiation, especially during the closed-system differentiation of Kilauea Iki lava lake.

  18. Lava Flow Near the Base of Olympus Mons

    NASA Image and Video Library

    2015-02-18

    This image from NASA Mars Reconnaissance Orbiter shows a lava channel, which lies just to the east of the largest volcano in the solar system: Olympus Mons. The channel appears to be discontinuous, meaning it disappears several times throughout its length, but in fact, it is likely that the channel continues underground as a lava tube. These are relatively common features at terrestrial volcanic centers, such as the Big Island of Hawai'i. The channel appears to have been infilled with dust and sand, so that the entrance to a lava tube cave is no longer visible at this particular location; fortunately this has been observed elsewhere on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19299

  19. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  20. Paleo-geomorphic evolution of the Ciomadul volcano (East Carpathians, Romania) using integrated volcanological, stratigraphical and radiometric data

    NASA Astrophysics Data System (ADS)

    Karátson, Dávid; Wulf, Sabine; Veres, Daniel; Gertisser, Ralf; Telbisz, Tamás; Magyari, Enikö

    2016-04-01

    Ciomadul volcano is the youngest eruptive center of the Carpatho-Pannonian Region (CPR), located at the southernmost end of the Intra-Carpathian Volcanic Range, and within this, the Harghita Mountains in the East Carpathians. As a result of multi-disciplinary, ongoing studies (Karátson et al. 2013 and in review; Magyari et al. 2014; Veres et al. in prep.; Wulf et al. in review), we have obtained a number of constraints on the paleo-geomorphic evolution of the volcano. Our studies clarified that this volcano, a lava dome complex with a twin-crater (i.e. the older Mohos peat bog and the younger St. Ana lake), produced frequent explosive eruptions between 50 and 29 ky. As a result, a set of superimposed volcanic landforms were created, the chronology of which in some cases can be well constrained, in other cases further studies are required to infer their timing. Ciomadul evolved as a moderately explosive dacitic dome complex possibly for several hundred ka (see controversial chronology in Karátson et al. 2013, Harangi et al. 2015 and Szakács et al. 2015), resulting in a set of adjoining lava domes and a central complex. There is no evidence for crater-forming eruptions during that time, although the possibility of moderate explosions cannot be ruled out. Field relations show that the first exposive products are phreatomagmatic tuff series, called Turia type, dated at ca. 50 ka. These tephra units could be linked to the formation of a "Paleo-Mohos" crater, and possibly to the northern half-caldera rim which consists of massive lava dome rock and hosts Ciomadul Mare, the highest point of the volcano (1300 m). After this first explosive activity, volcanism seems to have migrated toward the W, at the site of the later St. Ana crater. Following plinian eruption(s) at ca. 47-43 ka, the explosive activity went dormant, and a lava dome might have grown up in a possibly small "Proto-St. Ana" crater. At 31-32 ka, a succession of violent magmatic explosive eruptions occurred

  1. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas.

    PubMed

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  2. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    PubMed Central

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-01-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. PMID:26925957

  3. Bedrock topography of Talos Dome and Frontier Mountain area

    NASA Astrophysics Data System (ADS)

    Forieri, A.; Tabacco, I.; della Vedova, A.; Zirizzotti, A.; de Michelis, P.

    2003-04-01

    Talos Dome is an ice dome in the East Antarctica near the coastal line. The exact position was located first with the analysis of ERS-1 data and then from kinematic GPS data collected in 2002. In the area of Talos Dome two traverse surveys were carried out in 1996 and 2002 and eight shallow snow firn cores were drilled in order to understand latitudinal and longitudinal gradient and to document climatic and atmospheric conditions. The interest in Talos Dome area is due to the possibility to extract an ice core down to the bedrock: it would be the first deep drilling in a near coastal site. Frontier Mountain is located about 30 km SE from Talos Dome and its blue ice field is an important meteorite trap. The mechanism concentration is due to the particular flow of ice, slow moving against an absolute and submerged barrier. In the area of Talos Dome and Frontier Mountain airborne radar surveys were conducted by Italian PNRA (Programma Nazionale di Ricerche in Antartide) in 1995, 1997, 1999 and 2001. We present here the bedrock topography obtained by the analysis of all radar data. Our objective is to have a full description of main caractheristics of the bedrock. This could be helpful in the choice of the best site for drilling and could provide more input data for flow model near Frontier Mountain. Radar data are not homogeneous because radar systems with different characteristics have been used. All data have been processed with the same criteria to obtain a homogeneous dataset. Radio-echo sounding records show quite good reflections from the ice sheet base and the internal layering. This confirms the preliminary results of snow radar data with a continuous and horizontal (up to 15 km from the Dome) internal layering. The data of all expeditions have been cross-controlled and are in good agreement each-other.

  4. Morphometric study of pillow-size spectrum among pillow lavas

    NASA Astrophysics Data System (ADS)

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  5. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  6. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    ), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10

  7. Underwater Calibration of Dome Port Pressure Housings

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  8. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  9. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    NASA Astrophysics Data System (ADS)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  10. Structure and Kinematics of a Complex Crater: Upheaval Dome, Southeast, Utah

    NASA Technical Reports Server (NTRS)

    Kriens, B. J.; Herkenhoff, K. E.; Shoemaker, E. M.

    1997-01-01

    Two vastly different phenomena, extraterrestrial impact and salt diapirism, have been proposed for the origin of Upheaval Dome. Upheaval Dome is a about 2.5-km-diameter structural dome surrounded by a 5-km-diameter ring structural depression, which is in turn flanked by extensive, nearly flat-lying Colorado Plateau strata. Seismic refraction data and geologic mapping indicate that the dome originated by the collapse of a transient cavity formed by impact; data also show that rising salt has had a negligible influence on dome development. Evidence for this includes several factors: (1) a rare lag deposit of impactite is present; (2) fan-tailed fracture surfaces (shatter surfaces) and a few shattercones are present; (3) the top of the underlying salt horizon is at least 500 m below the center of the dome, with no exposures of salt in the dome to support the possibility that a salt diapir has ascended through it; (4) sedimentary strata in the center are significantly imbricated by top-to-the-center thrust faulting and are complexly folded; (5) top-to-the-center low-angle normal faults are found at the perimeter of the structure; and (6) clastic dikes are widespread. The scarcity of melt rocks and shock fabrics is attributed to approximately 0.5 km of erosion; the structures of the dome reflect processes of complex crater development at a depth of about 0.5 km below the crater floor. Based on mapping and kinematic analysis, we infer that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, largely resulted from this motion. In addition, we have detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding in the perimeter of the structure. Collectively, the observed deformation accounts for the creation of both the central uplift and the encircling ring syncline.

  11. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    -dominated terrestrial flows can be identified. Since tumuli form by the injection of lava beneath a crust, the distribution of tumuli on a flow should represent the distribution of thermally preferred pathways beneath the surface of the crust. That distribution of thermally preferred pathways may be a function of the evolution of a basaltic lava flow. As a longer-lived flow evolves, initially broad thermally preferred pathways would evolve to narrower, more well-defined tube-like pathways. The final flow morphology clearly preserves the growth of the flow over time, with inflation features indicating pathways that were not necessarily contemporaneously active. Here, we test using statistical analysis whether this final flow morphology produces distinct distributions that can be used to readily determine the distribution of thermally preferred pathways beneath the surface of the crust.

  12. Four and eight faceted domes effects on drag force and image in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-10-01

    Drag force effect is an important aspect of range performance in missile applications. Depending on domes geometry, this effect can be decreased. Hemispherical domes have great image uniformity but more drag force has an effect on it. Four and eight faceted domes decrease drag force. However, environment reflections cause a noise in a system. Also depending on the faceted domes shape, sun and other sources in the environment are deformed in the face of them and these deformed objects result in a false target in an image. In this study; hemispherical, four faceted and eight faceted domes are compared with respect to drag force. Furthermore, images are captured by using these manufactured domes. To compare domes effects on images, scenarios are generated and automatic target acquisition algorithm is used.

  13. A Dome Amidst the Hexagons

    ERIC Educational Resources Information Center

    American School and University, 1976

    1976-01-01

    Describes the design of the gymnasium of York (South Carolina) Comprehensive High School, a circular 12,000 square foot structure with a prefabricated domed roof constructed of steel hubs and curved wooden beams. (JG)

  14. Design and Test of Low-Profile Composite Aerospace Tank Dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.

    1999-01-01

    This report summarizes the design, analysis, manufacture, and test of a subscale, low-profile composite aerospace dome under internal pressure. A low-profile dome has a radius-to-height ratio greater than the square root of two. This effort demonstrated that a low-profile composite dome with a radius-to-height ratio of three was a feasible design and could adequately withstand the varying stress states resulting from internal pressurization. Test data for strain and displacement versus pressure are provided to validate the design.

  15. Thermal and Dynamic Properties of Volcanic Lava Inferred from Measurements on its Surface

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Korotkii, A.; Kovtunov, D.; Tsepelev, I.; Melnik, O. E.

    2015-12-01

    Modern remote sensing technologies allow for detecting the absolute temperature at the surface of volcanic lava, and the heat flow could be then inferred from the Stefan-Boltzmann law. Is it possible to use these surface thermal data to constrain the thermal and dynamic conditions inside the lava? We propose a quantitative approach to reconstruct temperature and velocity in the steady-state volcanic lava flow from thermal observations at its surface. This problem is reduced to a combination of the direct and inverse problems of mass- and heat transport. Namely, using known conditions at the lava surface we determine the missing condition at the bottom of lava (the inverse problem) and then search for the physical properties of lava - temperature and flow velocity - inside the lava (the direct problem). Assuming that the lava rheology and the thermal conductivity are temperature-dependent, we determine the flow characteristics in the model domain using an adjoint method. We show that in the case of smooth input data (observations) the lava temperature and the flow velocity can be reconstructed with a high accuracy. The noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level.

  16. Heat-transfer measurements of the 1983 Kilauea lava flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  17. Heat transfer measurements of the 1983 kilauea lava flow.

    PubMed

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  18. DOMe: A deduplication optimization method for the NewSQL database backups

    PubMed Central

    Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng

    2017-01-01

    Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307

  19. Technologies for precision manufacture of current and future windows and domes

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Shorey, Aric

    2009-05-01

    The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.

  20. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  1. The Energy Dome. Social Studies Packet-Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Washington, DC.

    This teacher's guide contains a unit of study for teaching about energy in grades four, five, and six. The guide is self-contained and includes the fact sheets students need to work out the activity problems. The unit is organized around the theme of the domed athletic stadium. The students begin by surveying the energy it takes to travel from…

  2. 10Be in ice at high resolution: Solar activity and climate signals observed and GCM-modeled in Law Dome ice cores

    NASA Astrophysics Data System (ADS)

    Pedro, Joel; Heikkilä, Ulla; van Ommen, T. D.; Smith, A. M.

    2010-05-01

    Changes in solar activity modulate the galactic cosmic ray flux, and in turn, the production rate of 10Be in the earth's atmosphere. The best archives of past changes in 10Be production rate are the polar ice cores. Key challenges in interpreting these archives as proxies for past solar activity lie in separating the useful solar activity (or production) signal from the interfering meteorological (or climate) signal, and furthermore, in determining the atmospheric source regions of 10Be deposited to the ice core site. In this study we use a new monthly resolution composite 10Be record, which spans the past decade, and a general circulation model (ECHAM5-HAM), to constrain both the production and climate signals in 10Be concentrations at the Law Dome ice core site, East Antarctica. This study differs from most previous work on 10Be in Antarctica due to the very high sample resolution achieved. This high resolution, through a time period where accurate instrumental measurements of solar activity and climate are available, allows us to examine the response of 10Be concentrations in ice to short-term (monthly to annual) variations in solar activity, and to short-term variations in climate, including seasonality. We find a significant correlation (r2 = 0.56, P < 0.005, n = 92) between observed 10Be concentrations and solar activity (represented by the neutron counting rate). The most pervasive climate influence is a seasonal cycle, which shows maximum concentrations in mid-to-late-summer and minimum concentrations in winter. Model results show reasonable agreement with observations; both a solar activity signal and seasonal cycle in 10Be are captured. However, the modeled snow accumulation rate is too high by approximately 60%. According to the model, the main atmospheric source region of 10Be deposited to Law Dome is the 30-90°S stratosphere (~50%), followed by the 30-90°S troposphere (~30%). An enhancement in the fraction of 10Be arriving to Law Dome from the

  3. Hyperthyroidism with dome-and-dart T wave: A case report

    PubMed Central

    Lai, Ping; Yuan, Jing-ling; Xue, Jin-hua; Qiu, Yue-qun

    2017-01-01

    Abstract Rationale: Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. Patient concerns: The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Diagnoses: Hyperthyroidism. Interventions: Methimazole. Outcomes: All symptoms were alleviated. Lessons: Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients. PMID:28178156

  4. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

    PubMed Central

    Read, Kaitlyn J. H.; Hughes, Evan M.; Spilde, Michael N.

    2017-01-01

    Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. Actinobacteria dominated in all cave samples, with 39% from caves and 21% from surface soils. Proteobacteria made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were Nitrospirae (7%) followed by minor phyla (7%), compared to surface soils with Bacteroidetes (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community. PMID:28199330

  5. Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.

    2009-01-01

    Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does

  6. UKIRT Upgrades Program: design and installation of the Dome Ventilation System (DVS)

    NASA Astrophysics Data System (ADS)

    Neff, D. H.; Hileman, Edward A.; Kain, S. J.; Cavedoni, Charles P.; Chuter, Timothy C.

    1997-03-01

    In order to encourage adequate dome ventilation to reduce or eliminate dome seeing at the 3.8 m United Kingdom Infrared Telescope (UKIRT), a dome ventilation system (DVS) was designed to be installed in the lower dome skirt. The modifications to the dome for the new DVS apertures consisted of installing a reinforcing frame containing an insulated rollup door and adjustable louvers. This paper describes the finite element structural analysis of the reinforcing frame, the detailed design of the frame hardware, the design of the programmable language control (PLC) system for controlling the opening and closing of the rollup doors, and the fabrication and installation of a prototype frame assembly. To date, a prototype assembly has been installed that confirms the design, and fifteen production assemblies are currently under fabrication for installation by September 1996.

  7. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2010-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.

  8. Emplacement of the youngest flood lava on Mars: A short, turbulent story

    USGS Publications Warehouse

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.

    2009-01-01

    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.

  9. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA -fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano. The Etnean 2001 Mt. Calcarazzi lava-flow event has been selected for model calibration, while validation has been performed by considering the 2002 Linguaglossa and the 1991-93 Valle del Bove events — suitable data for back analysis being available for these recent eruptions. Quantitative evaluation of the simulations, with respect to the real events, has been performed by means of a couple of fitness functions, which consider either the areas affected by the lava flows, or areas and eruption duration. Sensitivity analyses are in progress for thoroughly evaluating the role of parameters, topographic input data, and mesh geometry on model performance; though, preliminary results have already given encouraging responses on model robustness. In order to evaluate lava-flow hazard in the study area, a regular grid of n.340 possible vents, uniformly covering the study area and located at 500 m intervals, has been hypothesised. For each vent, a statistically-significant number of simulations has been planned, by adopting combinations of durations, lava volumes, and effusion-rate functions, selected by considering available volcanological data. Performed simulations have been stored in a GIS environment for successive analyses and map elaboration. Probabilities of activation, empirically based on past behaviour of the volcano, can be assigned to each vent of the grid, by

  10. The 'stealth' lavas of Kilauea: the 2014-2015 volcanic crisis in Puna

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Gregg, C. E.; Kim, K.

    2015-12-01

    The 1983 onwards eruption of Kīlauea took a complex turn and changed course in June 2014 when activity switched to a new vent northeast of Pu'u 'Ō'ō. New flows were directed into lower Puna, a district which had not experienced lava since 1845. The new flow was the longest seen in Hawaii in 500 years and in October—November 2015 it threatened buildings in Pāhoa town and critical lifelines (roading, electricity) to a larger population of some 10,500 people in lower Puna. The behavior of long-lived slow-moving flows of this type is exceptionally difficult to predict over time and the lava advanced as narrow lobes, typically only a few inches high and feet-wide, guided by small changes in ground slope and local barriers, before widening and thickening over time scales of days. New lobes have then broken out either from the front or margins of the flows, often taking unpredictable paths, and allowing the flows to cover progressively larger areas. The uncertainty as to where the flow would appear next made the human response very challenging. At the same time slow advance gave lots of warning time and has led to both a globally unique set of 'just-in-time' measures to mitigation lava impacts and development of a resilient, strong, articulate community. The lava flow retreated back 'up-slope' in mid-2015 but remains a hidden threat that could return to threaten Pāhoa and neighboring subdivisions.

  11. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  12. Dynamics and viscosity of `a'a and pahoehoe lava flows of the 2012-2013 eruption of Tolbachik volcano, Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina

    2018-01-01

    The 2012-2013 flank eruption of Tolbachik volcano (Kamchatka) lasted 9 months and produced 0.54 km3 of basaltic trachyandesite lava, thus becoming one of the most voluminous historical lava effusions of basic composition in subduction-related environments globally. From March to July 2013, the volcano monotonously erupted lava of constant composition (SiO2 = 52 wt%) with a nearly stable effusion rate of 18 m3/s. Despite the uniform eruptive and emplacement conditions, the dominant style of lava propagation throughout that time gradually changed from `a'a to pahoehoe. We report results of instrumental field measurements of the `a'a and pahoehoe flow dynamics (documented with time-lapse cameras) as well as the lava viscosity determined by flow rate and shear stress (using penetrometer) methods. Maximal propagation velocities of the `a'a fronts ranged from 2 to 25 mm/s, and those of the pahoehoe from 0.5 to 6 mm/s. The flow front velocities of both lava types experienced short-period fluctuations that were caused by complex flow mechanics of the advancing flow lobes. Minimal viscosities of lava of the `a'a lobes ranged from 1.3 × 105 to 3.3 × 107 Pa s (flow rate method), and those of the pahoehoe from to 5 × 103 to 5 × 104 Pa s (shear stress method). Our data include the first ever measured profiles of viscosity through the entire thickness of actively advancing pahoehoe lava lobes. We have found that both the `a'a and pahoehoe flows were fed by identical parental lava, which then developed contrasting rheological properties, owing to differences in the process of lava transport over the ground surface. The observed transition from the dominant `a'a to the dominant pahoehoe propagation styles occurred due to gradual elongation and branching of the lava tube system throughout the course of the eruption. Such evolution became possible because the growing lava field, composed of semisolidified flows, provided an environment for shallow subsurface intrusions and

  13. Overview of the 2004 to 2006, and continuing, eruption of Mount St. Helens, Washington: Chapter 1 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Scott, William E.; Sherrod, David R.; Gardner, Cynthia A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Rapid onset of unrest at Mount St. Helens on September 23, 2004, initiated an uninterrupted lava-dome-building eruption that continues to the time of writing this overview (spring 2006) for a volume of papers focused on this eruption. About three weeks of intense seismic unrest and localized surface uplift, punctuated by four brief explosions, constituted a ventclearing phase, during which there was a frenzy of media attention and considerable uncertainty regarding the likely course of the eruption. The third week exhibited lessened seismicity and only minor venting of steam and ash, but rapid growth of the uplift, or welt, south of the 1980-86 lava dome proceeded as magma continued to push upward. Crystalrich dacite (~65 weight percent SiO2) lava first appeared at the surface on October 11, 2004, beginning the growth of a complex lava dome of uniform chemical composition accompanied by persistent but low levels of seismicity, rare explosions, low gas emissions, and frequent rockfalls. Petrologic studies suggest that the dome lava is chiefly of 1980s vintage, but with an admixed portion of new dacite. Alternatively, it may derive from a part of the magma chamber not tapped by 1980s eruptions. Regardless, detailed investigations of crystal chemistry, melt inclusions, and isotopes reveal a complex magmatic history. Largely episodic extrusion between 1980 and 1986 produced a relatively symmetrical lava dome composed of stubby lobes. In contrast, continuous extrusion at mean rates of about 5 m3/s in autumn 2004 to 3/s in early 2006 has produced an east-west ridge of three mounds with total volume about equal to that of the old dome. During much of late 2004 to summer 2005, a succession of spines, two recumbent and one steeply sloping and each mantled by striated gouge, grew to nearly 500 m in length in the southeastern sector of the 1980 crater and later disintegrated into two mounds. Since then, growth has been concentrated in the southwestern sector, producing a

  14. Nicaragua Eruption Lava Threat Closely Monitored by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2015-12-07

    Momotombo volcano, Nicaragua, began erupting on Dec. 1, 2015, after more than a century of inactivity. On Dec. 4, 2015, the Advanced Land Imager (ALI) on NASA's Earth Observing 1 (EO-1) spacecraft observed the new eruption. This image is created from infrared data, and shows the incandescent active vent at the summit of the volcano and lava flowing down the side of the volcano. These data are being examined by scientists to determine where lava will flow, allowing assessment of possible threats to local infrastructure. The EO-1 data were obtained at an altitude of 438 miles (705 kilometers) and at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths. The ALI image is 23 miles (37 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20203

  15. Mapping lava flow textures using three-dimensional measures of surface roughness

    NASA Astrophysics Data System (ADS)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on

  16. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    NASA Astrophysics Data System (ADS)

    Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-10-01

    We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.

  17. The Mairan domes: silicic volcanic constructs on the Moon

    USGS Publications Warehouse

    Glotch, Timothy D.; Hagerty, Justin J.; Lucey, Paul G.; Hawke, B. Ray; Giguere, Thomas A.; Arnold, Jessica A.; Williams, Jean-Pierre; Jolliff, Bradley L.; Paige, David A.

    2011-01-01

    The Mairan domes are four features located in northern Oceanus Procellarum at ∼312.3E, 41.4N on the Moon. High resolution visible imagery, visible-to-mid-IR spectra, and Lunar Prospector Th abundance data all indicate that these four domes have a composition that is consistent with derivation from a Si-rich, highly evolved magma.

  18. The Preservation of Organic Matter and its Signatures at Experimental Lava Flow Interfaces: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Karson, J. A.; Kahan, T.

    2015-12-01

    The oxidizing nature of Martian soils suggests that the preservation of organic molecules or any direct evidence for life at the surface may not be possible. Future rover missions will need to focus on a variety localitions including those that provide the best possibility for the preservation of organic matter. Volcanic glass and basalt flow surfaces are favored environments for microbial colonization on Earth and this may have been similar on an early Mars. Trace metals and nutrients from easily weathered surface would have provided nutrients as well as substrates for chemolithoautotrophs. In regions of igneous activity, successive flows could overrun microbial communities, trapping potential organic signatures between flows. Here we present experimental evidence for the preservation of organic matter between lava flows and that flow interfaces may be excellent sites for exploratory efforts in the search for Martian biosignatures. We performed a series of experiments using the infrastructure of the Syracuse Lava Project that allows for natural-scale lava flows of up to several hundred kilograms. We subjected cyanobacterial organic matter to overrun by lava under a variety of conditions. In all cases organic matter was preserved between lava flows as chars on the overrun 'colonized" lava and as thin shiny carbon coatings on the overriding flow. The carbon coatings are likely the result of rapid heating and pyrolysis of organic matter that sears to the underside of the overriding lava. Controls yielded no positive signatures for organic matter. We also tested the degree to which the organic matter could be detected remotely using technologies that are found on the Mars Science Laboratory or planned for future missions. We employed elemental and stable isotopes analysis, and Raman spectroscopy. Elemental analysis demonstrated that organic carbon and nitrogen remain in the charred material and that the carbon and nitrogen isotopes of the chars do not deviate

  19. Cooling rate and thermal structure determined from progressive magnetization of the dacite dome at Mount St. Helens, Washington

    USGS Publications Warehouse

    Dzurisin, D.; Denlinger, R.P.; Rosenbaum, J.G.

    1990-01-01

    Our study of a magnetic anomaly associated with the recently active dacite dome at Mount St. Helens suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool, magnetized carapace and flanking talus. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03 ?? 0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magnetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. -from Authors

  20. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    USGS Publications Warehouse

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  1. Analogue experiments as benchmarks for models of lava flow emplacement

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  2. The dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.

    2012-10-01

    Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  3. First photometric properties of Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chadid, M.; Vernin, J.; Jeanneaux, F.; Mekarnia, D.; Trinquet, H.

    2008-07-01

    Here we present the first photometric extinction measurements in the visible range performed at Dome C in Antarctica, using PAIX photometer (Photometer AntarctIca eXtinction). It is made with "off the shelf" components, Audine camera at the focus of Blazhko telescope, a Meade M16 diaphragmed down to 15 cm. For an exposure time of 60 s without filter, a 10th V-magnitude star is measured with a precision of 1/100 mag. A first statistics over 16 nights in August 2007 leads to a 0.5 magnitude per air mass extinction, may be due to high altitude cirrus. This rather simple experiment shows that continuous observations can be performed at Dome C, allowing high frequency resolution on pulsation and asteroseismology studies. Light curves of one of RR Lyrae stars: SAra were established. They show the typical trend of a RRLyrae star. A recent sophisticated photometer, PAIX II, has been installed recently at Dome C during polar summer 2008, with a ST10 XME camera, automatic guiding, auto focusing and Johnson/Bessel UBVRI filter wheels.

  4. Eruption rate, area, and length relationships for some Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Pieri, David C.; Baloga, Stephen M.

    1986-01-01

    The relationships between the morphological parameters of lava flows and the process parameters of lava composition, eruption rate, and eruption temperature were investigated using literature data on Hawaiian lava flows. Two simple models for lava flow heat loss by Stefan-Boltzmann radiation were employed to derive eruption rate versus planimetric area relationship. For the Hawaiian basaltic flows, the eruption rate is highly correlated with the planimetric area. Moreover, this observed correlation is superior to those from other obvious combinations of eruption rate and flow dimensions. The correlations obtained on the basis of the two theoretical models, suggest that the surface of the Hawaiian flows radiates at an effective temperature much less than the inner parts of the flowing lava, which is in agreement with field observations. The data also indicate that the eruption rate versus planimetric area correlations can be markedly degraded when data from different vents, volcanoes, and epochs are combined.

  5. Low sulfur content in submarine lavas: an unreliable indicator of subaerial eruption

    USGS Publications Warehouse

    Davis, A.S.; Clague, D.A.; Schulz, M.S.; Hein, J.R.

    1991-01-01

    Low S content (<250 ppm) has been used to identify subaerially erupted Hawaiian and Icelandic lavas. Large differences in S content of submarine-erupted lavas from different tectonic settings indicate that the behavior of S is complex. Variations in S abundance in undegassed, submarine-erupted lavas can result from different source compositions, different percentages of partial melting, and crystal fractionation. Low S concentrations in highly vesicular submarine lavas suggest that partial degassing can occur despite great hydrostatic pressure. These processes need to be evaluated before using S content as an indicator of eruption depth. -Authors

  6. Lava flow hazards-An impending threat at Miyakejima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Geshi, Nobuo; Neri, Marco; Del Negro, Ciro

    2015-12-01

    The majority of the historic eruptions recorded at Miyakejima volcano were fissure eruptions that occurred on the flanks of the volcano. During the last 1100 years, 17 fissure eruptions have been reported with a mean interval of about 76-78 years. In the last century, the mean interval between fissure eruptions decreased to 21-22 years, increasing significantly the threat of lava flow inundations to people and property. Here we quantify the lava flow hazards posed by effusive eruptions in Miyakejima by combining field data, numerical simulations and probability analysis. Our analysis is the first to assess both the spatiotemporal probability of vent opening, which highlights the areas most likely to host a new eruption, and the lava flow hazard, which shows the probabilities of lava-flow inundation in the next 50 years. Future eruptive vents are expected in the vicinity of the Hatchodaira caldera, radiating from the summit of the volcano toward the costs. Areas more likely to be threatened by lava flows are Ako and Kamitsuki villages, as well as Miike port and Miyakejima airport. Thus, our results can be useful for risk evaluation, investment decisions, and emergency response preparation.

  7. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  8. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    NASA Astrophysics Data System (ADS)

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  9. Lithospheric Structure Beneath the Hangay Dome, Central Mongolia

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Meltzer, A.; Souza, S.; Munkhuu, U.; Tsaagan, B.; Russo, R. M.

    2014-12-01

    The Mongolian Plateau is a broad regional uplift positioned between the Siberian Craton to the north and the far northern edge of the India-Asia collision to the south. Within this intracontinental setting of high topography, the Hangay Dome in central Mongolia reaches elevations of 4 km and contains intermittent basaltic magmatism over the last 30 Ma. The relationship between high topography, magmatism, and geodynamic processes remains largely unsolved although processes ranging from lithospheric delamination to mantle plume effects have been proposed. A temporary array of seismic stations was deployed around the Hangay Dome to determine lithospheric structure. Preliminary results are shown from receiver function analysis, ambient noise tomography, and teleseismic P-wave tomography. Crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. The bulk crustal Vp/Vs ratio ranges from 1.71 to 1.9 with a median value for the array of 1.77, perhaps indicating a variable crustal composition with some regions having a more mafic crust. The stacked receiver functions are also combined with ambient noise phase velocity dispersion measurements in a joint inversion for shear velocity profiles at each station which reveals crustal thickness estimates consistent with the H-k stacks while also determining the shear velocity step at the Moho. Teleseismic P-wave travel time residuals ranging between +/-1 second are inverted for a 3D P-wave velocity model using finite-frequency kernels. Notable features include 1) a low velocity anomaly (-3%) in the upper 200 km beneath the eastern part of the Hangay Dome near the Orkhon River Valley, , 2) a steeply dipping low velocity anomaly to the north of the Hangay Dome, perhaps related to the nearby Baikal Rift, and 3) generally higher velocities in the upper 200 km surrounding the high topography. To first order, the high topography of

  10. Quenching and disruption of lunar KREEP lava flows by impacts

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1988-01-01

    The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.

  11. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  12. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  13. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts

    PubMed Central

    Gebert, Andreas; Fassbender, Susanne; Werner, Kerstin; Weissferdt, Annikka

    1999-01-01

    It is controversial whether the membranous (M) cells of the Peyer’s patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer’s patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer’s patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors. PMID:10329609

  14. A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline

    NASA Astrophysics Data System (ADS)

    Summers, Frank

    2018-01-01

    Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.

  15. The permeability evolution of tuffisites and outgassing from dense rhyolitic magma

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Tuffen, H.; Wadsworth, F. B.; Reuschlé, T.; Castro, J. M.; Schipper, C. I.

    2017-12-01

    Recent observations of rhyolitic lava effusion from eruptions in Chile indicate that simultaneous pyroclastic venting facilitates outgassing. Venting from conduit-plugging lava domes is pulsatory and occurs through shallow fracture networks that deliver pyroclastic debris and exsolved gases to the surface. However, these fractures become blocked as the particulate fracture infill sinters viscously, thus drastically reducing permeability. Tuffisites, fossilized debris-filled fractures of this venting process, are abundant in pyroclastic material ejected during hybrid explosive-effusive activity. Dense tuffisite-hosting obsidian bombs ejected from Volcán Chaitén (Chile) in 2008 afford an opportunity to better understand the permeability evolution of tuffisites within low-permeability conduit plugs, wherein gas mobility is reliant upon fracture pathways. We use laboratory measurements of the permeability and porosity of tuffisites that preserve different degrees of sintering, combined with a grainsize-based sintering model and constraints on pressure-time paths from H2O diffusion, to place first-order constraints on tuffisite permeability evolution. Inferred timescales of sintering-driven tuffisite compaction and permeability loss, spanning minutes to hours, coincide with observed vent pulsations during hybrid rhyolitic activity and, more broadly, timescales of pressurization accompanying silicic lava dome extrusion. We therefore conclude that sintering exerts a first-order control on fracture-assisted outgassing from low-permeability, conduit-plugging silicic magma.

  16. Completely open-foldable domes remaining cool in sunshine

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Deelen, Sander; Hoogendoorn, Pieter W.; Kommers, Johannes N. M.; Sonner, Thomas; Simoes, Roberto; Grassin, Olivier; Fischer, Andreas; Visser, Simon; Thewissen, Kristof

    2016-07-01

    These open-foldable very light-weight domes, based on very strong textile membranes highly tensioned between steel bows, are designed for bad-weather protection and maintenance of instruments for astronomical, meteorological and civil-engineering measurements and have extremely high wind stability. The domes of the GREGOR telescope and the Dutch Open Telescope are the two existing prototypes. Improvements were developed with all parts light-colored to remain cool in solar light. The new specially made connection parts (eyes) between the textile parts are made from white-colored PETP, a very strong and UV-stable synthetic, and have a better geometrical shape giving higher stability. The rubber seal tubes on top of the dome were of black-colored chloride rubber CR (neoprene), strong and UV stable, but very warm in sunlight. New UV-stable EPDM rubber tubes were produced in natural light color. To get this rubber stiff enough to give good sealing, a black-colored stiff EPDM rubber is put inside the light-colored one. Tests were performed and the forces necessary for compression of the rubber tubes were measured. An inside black tube with a circa 1.3 times larger compression force than the original black tubes was applied. The assembling of the black tubes into the light-colored tubes was successfully applied at the DOT and GREGOR domes.

  17. Gas-driven lava lake fluctuations at Erta 'Ale volcano (Ethiopia) revealed by MODIS measurements

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Bouche, Emmanuella

    2016-09-01

    The long-lived lava lake of Erta 'Ale volcano (Ethiopia) is remotely monitored by moderate resolution imaging spectroradiometers (MODIS) installed on satellites. The Normalised Thermal Index (NTI) (Wright et al. Remote Sens Environ 82:135-155 2002) is shown to be proportional to the volume of the lava lake based on visual observations. The lava lake's variable level can be plausibly related to a stable foam, i.e. a mixture composed of densely packed non-coalescing bubbles in suspension within a liquid. This foam is trapped at the top of the magma reservoir, and its thickness changes in response to the gas flux feeding the foam being successively turned on and off. The temporal evolution of the foam thickness, and the resulting variation of the volume of the lava lake, is calculated numerically by assuming that the gas flux feeding the foam, initially constant and homogeneous since December 9, 2002, is suddenly stopped on December 13, 2002 and not restarted before May 2003. The best fit between the theoretical foam thickness and the level of the lava lake deduced from the NTI provides an estimate of both the reservoir radius, 155-170 m, and the gas flux feeding the foam, 5.5×10-3-7.2×10-3 m 3 s -1 when existing. This is in agreement with previous estimates from acoustic measurements (Bouche et al. Earth Planet Sci Lett 295:37-48 2010). The very good agreement between the theoretical foam thickness and that deduced from MODIS data shows for the first time the existence of a regime based on the behaviour of a stable foam, whose spreading towards the conduit ("wide" conduit condition), can explain the long-lived activity. Our predictive model, which links the gas flux at the vent to the foam spreading, could potentially be used on any volcano with a long-lived activity. The underlying gas flux and the horizontal surface area of the magma reservoir can then be deduced by combining modelling to continuous measurements of gas flux. The lava lake, when high, often shows

  18. Boron isotopic constraints on the source of Hawaiian shield lavas

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryoji; Nakamura, Eizo

    2005-07-01

    Boron isotopic compositions of lavas from three representative Hawaiian shield volcanoes (Kilauea, Mauna Loa, and Koolau) were analyzed by thermal ionization mass spectrometry. The boron isotopic composition of each sample was analyzed twice, once with and once without acid leaching to evaluate the effect of posteruptive boron contamination. Our acid-leaching procedure dissolved glass, olivine, secondary zeolite, and adsorbed boron; this dissolved boron was completely removed from the residue, which was comprised of plagioclase, pyroxenes, and newly formed amorphous silica. We confirmed that an appropriate acid-leaching process can eliminate adsorbed and incorporated boron contamination from all submarine samples without modifying the original 11B/ 10B ratio. On the other hand, when the sample was weathered, i.e., the olivine had an iddingsite rim, 11B/ 10B of the acid-resistant minerals are also modified, thus it is impossible to get the preeruptive 11B/ 10B value from the weathered samples. Through this elimination and evaluation procedure of posteruptive contamination, preeruptive δ 11B values for the shield lavas are -4.5 to -5.4‰ for Koolau ( N = 8), -3.6 to -4.6‰ for Kilauea ( N = 11), and -3.0 to -3.8‰ for Mauna Loa ( N = 6). Historical Kilauea lavas show a systematic temporal trend for B content and Nb/B coupled with other radiogenic isotopic ratios and trace element ratios, at constant δ 11B, indicating little or no assimilation of crustal materials in these lavas. Uncorrelated B content and δ 11B in Koolau and Mauna Loa lavas may also indicate little or no effect of crustal assimilation in these lavas. The source of KEA-component (identical to the so-called Kea end member in Hawaiian lavas) of the Hawaiian source mantle, represented by Kilauea, should be derived from lower part of subducted oceanic crust or refractory peridotite in the recycled subducted slab. The systematic trend from Kilauea to Koolau—decreasing δ 11B coupled with decreasing

  19. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  20. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields

    USGS Publications Warehouse

    Self, S.; Thordarson, Th.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T.; Long, P.; Finnemore, S.

    1996-01-01

    Extensive flows of the Columbia River Basalt (CRB) Group in Washington, Oregon, and Idaho are dominantly inflated compound pahoehoe sheet lavas. Early studies recognized that CRB lavas are compound pahoehoe flows, with textures suggesting low flow velocities, but it was thought that the great thickness and extent of the major flows required very rapid emplacement as turbulent floods of lava over a period of days or weeks. However, small volume ( < 1 km3) compound pahoehoe flows on Kilauea, Hawai'i, demonstrate that such flows can thicken by at least an order of magnitude through gradual inflation and the same mechanism has been proposed for larger (10-20 km3) pahoehoe flows in Iceland. The vertical distribution of vesicles and other morphologic features within CRB lava flows indicate that they grew similarly by inflation. Small pahoehoe lobes at the base and top of many CRB pahoehoe lava flows indicate emplacement in a gradual, piecemeal manner rather than as a single flood. We propose that each thick CRB sheet flow was active for months to years and that each group of flows produced by a single eruption (a flow field) was emplaced slowly over many years. Copyright 1996 by the American Geophysical Union.