Science.gov

Sample records for active layer detachment

  1. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  2. Impact of active layer detachments on carbon exchange in a high-Arctic ecosystem, Cape Bounty, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Beamish, A.; Neil, A.; Wagner, I.

    2011-12-01

    High Arctic ecosystems are experiencing some of the earliest and most extreme changes in climate, including increases in both temperature and precipitation leading to a deepening and destabilization of the active layer. This destabilization of shallow slopes can lead to disturbances such as active layer detachments (ALD), which could further alter soil temperature and moisture regimes, potentially releasing carbon (C) and nutrients previously unavailable to soil microbes. We explored the impact of ALD's on carbon dioxide (CO2) exchange at the Cape Bounty Arctic Watershed Observatory on Melville Island, Canada over two growing seasons. CO2 exchange under light and dark conditions was measured approximately every five to nine days across both growing seasons for a total of five sampling day in 2009 and nine sampling days in 2010. Sampling was stratified to include highly disturbed, moderately disturbed, and undisturbed areas. Transparent static chambers were equipped with a Vaisala GMP343 CO2 sensor to measure changes in CO2 concentration over time. Based on static chamber C flux measurements during the growing seasons of 2009 and 2010, we found that the moderately disturbed sites were net sinks of CO2 (-6.44gC m-2 season-1, -8.21gC m-2 season-1, respectively). The highly disturbed sites however were net sources of CO2 in both seasons (3.01gC m-2 season-1, 30.01gC m-2 season-1, respectively). Control sites in 2009 were a net C sink (-6.48gC m-2 season-1) while in 2010 they represented a net C source (16.75gC m-2 season-1). Overall, the formation of ALD's led to highly disturbed areas (roughly 40% of the area of an ALD) becoming C sources, but appeared to enhance C uptake in moderately disturbed areas. Active layer depth explained little of the variation in any of the C fluxes, while combinations of soil moisture, temperature, and air temperature explained up to roughly 40% of the variation in C fluxes. These findings have important implications if temperature and

  3. Drivers and Estimates of Terrain Suitability for Active Layer Detachment Slides and Retrogressive Thaw Slumps in the Brooks Range and Foothills of Northwest Alaska, USA

    NASA Astrophysics Data System (ADS)

    Balser, A.; Jones, J.

    2015-12-01

    Active layer detachment sliding and retrogressive thaw slumping are important modes of upland permafrost degradation and disturbance in permafrost regions, and have been linked with climate warming trends, ecosystem impacts, and permafrost carbon release. In the Brooks Range and foothills of northwest Alaska, these features are widespread, with distribution linked to multiple landscape properties. Inter-related and co-varying terrain properties, including surficial geology, topography, geomorphology, vegetation and hydrology, are generally considered key drivers of permafrost landscape characteristics and responses to climate perturbation. However, these inter-relationships as collective drivers of terrain suitability for active layer detachment and retrogressive thaw slump processes are poorly understood in this region. We empirically tested and refined a hypothetical model of terrain factors driving active layer detachment and retrogressive thaw slump terrain suitability, and used final model results to generate synoptic terrain suitability estimates across the study region. Spatial data for terrain properties were examined against locations of 2,492 observed active layer detachments and 805 observed retrogressive thaw slumps using structural equation modelling and integrated terrain unit analysis. Factors significant to achieving model fit were found to substantially hone and constrain region-wide terrain suitability estimates, suggesting that omission of relevant factors leads to broad overestimation of terrain suitability. Resulting probabilistic maps of terrain suitability, and a threshold-delineated mask of suitable terrain, were used to quantify and describe landscape settings typical of these features. 51% of the study region is estimated suitable terrain for retrogressive thaw slumps, compared with 35% for active layer detachment slides, while 29% of the study region is estimated suitable for both. Results improve current understanding of arctic landscape

  4. Rocket dust storms and detached layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Faure, J.; Madeleine, J.; Maattanen, A. E.; Forget, F.

    2012-12-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA onboard Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments onboard Mars Global Surveyor and Mars Reconnaissance Orbiter. Detached layers are stable over several days owing to nighttime sedimentation being unable to counteract daytime convective transport, and to the resupply of convective energy at sunrise. The peak activity of rocket dust storms is expected in low-latitude regions at clear season, which accounts for the high-altitude tropical dust maximum unveiled by Mars Climate Sounder. Our findings on dust-driven deep convection have strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.ensity-scaled dust optical depth at local times 1400 1600 and 1800 (lat 2.5°S, Ls 135°) hortwave heating rate at local time 1500 and latitude 2.5°S.

  5. The detached haze layer in Titan's mesosphere: The formation process

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Vuitton, V.

    2008-09-01

    Cassini observations made by the Imaging Science Subsystem (ISS) [1] and by the UltraViolet Imaging Spectrometer (UVIS) [2,3] have revealed the presence of a detached haze layer in Titan's mesosphere at an altitude of 520 km. Analysis of the observed optical properties presented in the accompanying talk [5], suggests that the average size of particles in the detached layer is of ~40 nm, with an imaginary index k < 0.3 at 187.5 nm and a number density of ˜30 particles cm-3, while calculations of the sedimentation velocity of the haze particles coupled with the derived number density imply a mass flux of 1.9-3.2 × 10-14 g cm-2 s-1. This is approximately equal to the mass flux required to explain the main haze layer and suggests that the main haze layer in Titan's stratosphere is formed primarily by sedimentation and coagulation of particles in the detached layer [5,6]. The HASI data clearly show that the haze is coincident with a temperature maximum. This rules out condensation as the source of the detached haze. We have also considered a more complicated scenario in which the detached layer is caused by an increase in the density of condensation nuclei near 520 km. This is motivated by the fact that silicate micrometeorites ablate near 500 km [7,8]. Recondensation of the refractory vapor creates `smoke' particles that could serve as condensation nuclei. Combination of Pioneer measurements along with theoretical estimations for the particles velocity distribution, suggest a mass flux of ~10-17 g cm-2 s-1 at Saturn's region [9], while measurements from the Cassini Dust Analyser (CDA) suggest a similar magnitude at Titan's location [10]. These fluxes are ~3 orders of magnitude smaller than the lower limit of the estimated mass flux out of the detached haze layer, so meteorite ablation can not be the direct cause of the aerosol layer. However, if the ablated meteoritic material reforms 1 nm particles, the implied number flux would be 2.4 × 103 particles cm-2 s-1

  6. The detached haze layer in Titan's mesosphere: observations and analysis

    NASA Astrophysics Data System (ADS)

    Yelle, R. V.; Lavvas, P.; Vuitton, V.

    2008-09-01

    The Cassini observations reveal the presence of a detached haze layer in Titan's mesosphere at an altitude of 520 km, well above the stratosphere. Observations of scattered light made by the Imaging Science Subsystem (ISS) [1] reveal a clearly defined layer encircling low and mid-latitude regions. The aerosol layer is also detected in stellar occultation measurements of UV extinction by the UltraViolet Imaging Spectrometer (UVIS) [2,3]. The haze is a global and permanent feature of Titan's atmosphere. Furthermore the location of the detached haze layer is coincident with and the likely cause of a local maximum in the temperature profile measured by the Huygens Atmospheric Structure Instrument (HASI) [4]. This temperature inversion is also permanent and global, having been detected in several ground-based stellar occultations [5]. The correlation between the extinction profile and temperature profile imply that the detached haze cannot be due to condensation, as previously suggested [3]. Analysis of the observed optical properties (Fig. 2) implies that the average size of particles in the detached layer is <45 nm, with an imaginary index < 0.3 at 187.5 nm. Using the solutions shown in Fig. 2 we calculate the imaginary index, number density, sedimentation velocity, and mass flux for the detached haze. The results are shown in Fig. 3. Non-LTE calculations of the temperature perturbation due to the detached haze show that the average size of the haze particles must be greater than 35 nm or implied heating rates are far too large (Fig. 4). Calculation of a suite of thermal structure models as a function of assumed particle size show that the observed temperature rise implies a mean particle radius greater than 35 nm. Thus, we conclude that the particle radius in the detached layer must be in the 35- 45 nm range. Consideration of sources for the haze also implies larger particle sizes. As shown in Fig. 3, a mean particle radius less than 35 nm implies a mass flux greater

  7. Aerosols optical propertites in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoît; Rannou, Pascal; Lavvas, Panayotis; Cours, Thibaud; West, Robert A.

    2016-06-01

    Titan's Detached Haze Layer (DHL) first observed in 1983 by Rages and Pollack during the Voyager 2 [1] is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 [2]. Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere [3-5]. In this study we perform UV photometric analyses on ISS observations taken from 2005 to 2007 based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer size, fractal dimension and local density).

  8. The disappearance and reappearance of Titan's detached haze layer

    NASA Astrophysics Data System (ADS)

    West, Robert; Rannou, Pascal; Lavvas, Panayotis; Seignovert, Benoit; Turtle, Elizabeth P.; Perry, Jason; Ovanessian, Aida; Roy, Mou

    2016-10-01

    Titan's extended haze is a prominent and long-lived feature of the atmosphere that encompasses a rich variety of chemical, dynamical and microphysical processes operating over a wide range of temporal and spatial scales. The so-called 'detached' haze layer is easily seen in high-resolution short-wave (near-UV and blue wavelengths) images and is a consequence of a nearly global (outside of the winter polar hood region) layer depleted in aerosol content. It was first seen near 350 Km altitude in Voyager images (Rages and Pollack, 1983) and later observed by the Cassini ISS cameras (Porco et al., 2005; West et al., 2010) and UV stellar occultation profiles (Koskinen et al. 2011). A series of Cassini images from 2009 to 2010 revealed what appears to be a seasonally related altitude variation with remarkable regularity (comparing the Voyager and Cassini images). The drop in altitude is most rapid at equinox. Here we report on images of the upper haze layer over the period 2012 to early 2016. In the early part of this period the detached haze continued to drop in altitude and disappeared. There was no evidence for it beginning late in 2012 and extending to early 2016 when it was again detected with very low contrast at an altitude near 500 Km. We document this behavior and examine the evolution of the haze as functions of both latitude and time. These new details put additional constraints on models that attempt to account for the existence of the detached layer. Part of this work was done by the Jet Propulsion Laboratory, California Institute of Technology. References: Rages, K., and J. B. Pollack (1983), Vertical distribution of scattering hazes in Titan's upper atmosphere, Icarus, 55, 50–62, doi:10.1016/0019-1035 (83)90049-0; Porco, C. C. et al., Imaging Titan from the Cassini Spacecraft, Nature 434, 159-168 (2005); West, R. A. et al., The evolution of Titans detached haze layer near equinox in 2009", Geophys. Res. Lett. 38, L06204, doi:10.1029/2011GL046843, 2011

  9. Aerosols optical properties in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  10. Extreme detached dust layers near Martian volcanoes: Evidence for dust transport by mesoscale circulations forced by high topography

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.; Cantor, B. A.; Hayne, P. O.; Kass, D. M.; Kleinböhl, A.; McCleese, D. J.; Piqueux, S.; Schofield, J. T.; Shirley, J. H.

    2015-05-01

    Modeling suggests that thermal circulations over Mars's highest volcanoes transport water vapor and dust from the surface into the middle atmosphere, forming detached layers in these constituents. Intense vertical mixing also takes place in regional and global dust storms, which can generate detached layers that are extreme in both altitude and magnitude. Here we employ observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter, taking advantage of improved vertical coverage in MCS's aerosol retrievals, to discover a new class of extreme detached dust layers (EDDLs). Observed during minimal dust storm activity and furthermore distinguished by their potentially large and measurable horizontal extent (>1000 km), these EDDLs cluster near Olympus Mons and the Tharsis Montes, from which they likely originate. The existence of these EDDLs suggests that vertical mixing by topographic circulations can be much stronger than previously modeled and more frequent than previously observed.

  11. EphrinB/EphB Signaling Controls Embryonic Germ Layer Separation by Contact-Induced Cell Detachment

    PubMed Central

    Rohani, Nazanin; Canty, Laura; Luu, Olivia

    2011-01-01

    Background The primordial organization of the metazoan body is achieved during gastrulation by the establishment of the germ layers. Adhesion differences between ectoderm, mesoderm, and endoderm cells could in principle be sufficient to maintain germ layer integrity and prevent intermixing. However, in organisms as diverse as fly, fish, or amphibian, the ectoderm-mesoderm boundary not only keeps these germ layers separated, but the ectoderm also serves as substratum for mesoderm migration, and the boundary must be compatible with repeated cell attachment and detachment. Principal Findings We show that localized detachment resulting from contact-induced signals at the boundary is at the core of ectoderm-mesoderm segregation. Cells alternate between adhesion and detachment, and detachment requires ephrinB/EphB signaling. Multiple ephrinB ligands and EphB receptors are expressed on each side of the boundary, and tissue separation depends on forward signaling across the boundary in both directions, involving partially redundant ligands and receptors and activation of Rac and RhoA. Conclusion This mechanism differs from a simple differential adhesion process of germ layer formation. Instead, it involves localized responses to signals exchanged at the tissue boundary and an attachment/detachment cycle which allows for cell migration across a cellular substratum. PMID:21390298

  12. DUAL ORIGIN OF AEROSOLS IN TITAN'S DETACHED HAZE LAYER

    SciTech Connect

    Cours, T.; Burgalat, J.; Rannou, P.; Rodriguez, S.; Brahic, A.

    2011-11-10

    We have analyzed scattered light profiles from the Cassini Imaging Science Subsystem, taken at the limb and at several large phase angles. We also used results from an occultation observed by Ultraviolet Imaging Spectrograph in the ultraviolet. We found that particles responsible for the scattering in the detached haze have an effective radius around 0.15 {mu}m and the aerosol size distribution follows a power law (exponent about -4.5). We discuss these results along with microphysical constraints and thermal equilibrium of the detached haze, and we conclude that only a strong interaction with atmospheric dynamics can explain such a structure.

  13. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.

    2013-04-01

    We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but

  14. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  15. Rocket dust storms and detached dust layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Faure, Julien; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2013-04-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology "rocket dust storm," or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30-50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.

  16. What Are the Origins of Detached Layers of Dust on Mars ? Investigation with Global Climate Model

    NASA Astrophysics Data System (ADS)

    Bertrand, T.; Spiga, A.; Forget, F.

    2014-12-01

    The climate on Mars is strongly controlled by the amount of dust lifted and transported in the atmosphere, which causes fluctuations of air opacity and affects temperatures and winds. Recently, observations of the vertical dust distribution of the Martian atmosphere by the Mars Climate Sounder on board the Mars Reconnaissance Orbiter revealed a phenomenon which is still poorly understood: the formation of detached layers of dust. These detached layers, also confirmed by the Thermal Emission Spectrometer on-board the Mars Global Surveyor, reside above the planetary boundary layer typically at altitudes between 20 and 40 km and have been mostly observed at low latitudes. These detached layers of dust are not reproduced by Global Climate Models (GCM) and different atmospheric processes are discussed and can be combined to explain their origin, such as small-scale lifting, upslope topographic winds, scavenging by water ice clouds, dust storms… Here we use the Martian GCM developed at the Laboratoire de Météorologie Dynamique (LMD) to simulate the formation of detached layers of dust. To start, we developed a new implementation of the water cycle, taking into account nucleation on dust particles, ice particle growth, and scavenging of dust particles due to the condensation of ice. However, this method didn't yield to satisfying results in the GCM. Then, we performed the parameterization in the GCM of the so-called "rocket dust storms", governed by deep convection and able to inject dust at high altitudes in the Martian troposphere. By coupling this new parameterization with general circulation of the GCM, we succeed to model detached layers of dust. Here we present this parameterization and we discuss about the spatial and temporal variability of the detached layers of dust, in comparison with observations.

  17. Saturated Activity: Very Close, Detached Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.

    It is proposed to obtain EUVE spectra of 4 close, synchronized, late-type binary stars with orbital/rotational periods shorter than 1.2 day, to study stellar coronal activity at very high, saturated levels. Among stars of spectral types between late-F to mid-K, only components of very close binary systems (and very rare young stars) can have such short rotational periods. Together with the EGO-1 and EGO-2 results for DH Leo and TZ CrB obtained by others, the spectra will be utilized in a comprehensive discussion of the saturated stellar activity, in relation to and in contrast with, the previously obtained by us spectra of the single, rapidly-rotating young star, AB Dor (P=0.51 day, EGO-1) and of two contact binary systems, 44i Boo (P=0.27 day) and VW Cep (P=0.28 day, EGO-2).

  18. Delay of Turbulent Boundary Layer Detachment by Mechanical Excitation: Application to Rearward-facing Ramp

    NASA Technical Reports Server (NTRS)

    McKinzie, Daniel J., Jr.

    1996-01-01

    A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.

  19. What are the Origins of Observed Detached Layers of Dust on Mars? Investigating with Global Climate Model

    NASA Astrophysics Data System (ADS)

    Bertrand, T.; Navarro, T.; Spiga, A.; Forget, F.; Millour, E.; Madeleine, J. B.; Pottier, A.

    2014-07-01

    We use a Global Climate Model to simulate the formation of detached layers of dust. Two parameterizations are developed: scavenging of dust particles due to the condensation of ice and injection of dust at high altitudes due to “rocket dust storms”.

  20. Variations of the orbital periods in semi-detached binary stars with radiative outer layers

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    1999-01-01

    A detailed analysis of the period changes of sixteen semi-detached binaries which contain only stars with radiative outer layers (ET-systems) has been performed and their respective O-C diagrams are brought and discussed. It was found that the course of the period variations is monotonic and in some systems the period is even constant. This detailed analysis of extensive sets of timings covering several decades brings a strong support to an earlier finding of te[Hall (1989)]{hal89} and develops it further. We show that all systems with the orbital periods shorter than nine days display constant period or its increase, with the exception of an uncertain case of V 337 Aql. The course of the period variations in TT Aur appears more complex but the cyclic term can be plausibly explained by the third body. A search for general relations between the parameters of the systems and the period changes was undertaken. The mass ratio q appears to play a role in the period variations. Clear changes in systems with orbital periods shorter than 9 days were detected only for q>0.4 while constant periods are common in systems with q<0.4 in this period range. The sense of the secular changes in most systems is in accordance with the dominant conservative mass transfer in evolved binary and corresponds to the slow phase. The role of the evolutionary scenarios (case A versus B) and the influence of changes of the rotational angular momenta of the components are discussed.

  1. Spontaneous detachment of a sublimation-Grown AlN layer from a SiC-6H substrate

    SciTech Connect

    Wolfson, A. A.

    2009-06-15

    Growth of thick layers and bulk crystals of AlN is a topical problem for modern science and technology. The main way to solve the problem is to use the sublimation method in which AlN is evaporated at a temperature of about 2000{sup o}C and is epitaxially deposited onto a SiC substrate. A severe difficulty in this case is that the coefficients of thermal expansion of these materials are different, which leads to bending, cracking, and pronounced stresses in the AlN layer upon cooling to room temperature. This communication considers the case of a spontaneous detachment of a crack-free AlN layer from a SiC substrate, which points to the real possibility of developing a growth technology in which their separation becomes inevitable. The following reasons for spontaneous separation of the layer and the substrate are probable: (i) formation of a thin Al layer at the interface and (ii) occurrence of the initial growth stage by the previously described scheme, according to which, the layer and substrate are atomically bound only at separate comparatively sparse areas of nucleation of the growing crystal. Upon cooling, these areas disintegrate and the layer is detached from the substrate. It is unclear so far what specific features and anomalies of the growth process give rise to this result.

  2. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  3. The Apparent Rates of Crossbridge Attachment and Detachment Estimated from Atpase Activity in Insect Flight Muscle

    PubMed Central

    Güth, K.; Poole, K. J. V.; Maughan, D.; Kuhn, H. J.

    1987-01-01

    The ATPase activity of single fibers of small fiber bundles (one to three fibers) of insect flight muscle was measured when fibers were repetitively released and restretched by 1.5% of their initial length. The ATPase activity increased with increasing duration of release-restretch pulses applied at a constant repetition frequency, reaching a maximum at a duration of ∼20 ms. For a given duration, the average ATPase activity also increased with increasing frequency of applied length changes and reached a maximum (200% of the isometric ATPase) at a frequency of ∼50 Hz. The data could be fitted to a two-state model in which the apparent rate of crossbridge detachment is enhanced when the crossbridges are mechanically released. Estimates of the apparent rates of attachment and detachment in the isometrically contracting state and of the enhanced detachment rate of unloaded crossbridges were derived from fits to the two-state model. After short pulses of releasing and restretching the fiber the force was low and increased after the restretch in a roughly exponential manner to the initial level. The rate at which force increased after a release-restretch pulse was similar to the sum of the apparent attachment and detachment rates for the isometrically contracting muscle derived from the ATPase activity measurements. PMID:19431712

  4. Evidences on Secular Dynamical Evolution of Detached Active Binary Orbits and Contact Binary Formation

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Demircan, O.; Bilir, S.; Karataş, Y.

    2007-05-01

    Evidence of secular dynamical evolution for detached active binary orbits are presented. First order decreasing rates of orbital angular momentum (OAM), systemic mass (M=M_{1}+M_{2}) and orbital period of detached active binaries have been determined as dot J/J = 3.48 × 10^{-10}yr^{-1}, dot M/M = 1.30 × 10^{-10}yr^{-1} and dot P/P = 3.96× 10^{-10}yr^{-1} from the kinematical ages of 62 field detached systems. The ratio of d log J/ d log M = 2.68 implies that either there are mechanisms which amplify AM loss δ=2.68 times with respect to isotropic AM loss of hypothetical isotropic winds or there exist external causes contributing AM loss in order to produce this mean rate of decrease for orbital periods. Various decreasing rates of OAM (d log J / dt) and systemic mass (d log M/ dt) determine various speeds of dynamical evolutions towards a contact configuration. According to average dynamical evolution with δ = 2.68, the fraction of 10, 22 and 39 per cent of current detached sample is expected to be contact system within 2, 4 and 6 Gyr respectively.

  5. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation.

    PubMed

    Kwiecinski, Jakub; Peetermans, Marijke; Liesenborghs, Laurens; Na, Manli; Björnsdottir, Halla; Zhu, Xuefeng; Jacobsson, Gunnar; Johansson, Bengt R; Geoghegan, Joan A; Foster, Timothy J; Josefsson, Elisabet; Bylund, Johan; Verhamme, Peter; Jin, Tao

    2016-01-01

    Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.

  6. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death

    PubMed Central

    Kataoka, K; Matsumoto, H; Kaneko, H; Notomi, S; Takeuchi, K; Sweigard, J H; Atik, A; Murakami, Y; Connor, K M; Terasaki, H; Miller, J W; Vavvas, D G

    2015-01-01

    Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1β, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases. PMID:25906154

  7. Incorporation of silicone oil into elastomers enhances barnacle detachment by active surface strain.

    PubMed

    Shivapooja, Phanindhar; Cao, Changyong; Orihuela, Beatriz; Levering, Vrad; Zhao, Xuanhe; Rittschof, Daniel; López, Gabriel P

    2016-10-01

    Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles. PMID:27560712

  8. An atmospheric process to explain the formation of the detached layers of dust on Mars: GCM modelling, validation and comparison with observations

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Bertrand, Tanguy; Forget, François; Spiga, Aymeric; Millour, Ehouarn

    2015-04-01

    Dust is the crucial component of the Martian atmosphere. Its motion, horizontal and vertical transportation, is of great importance to Martian meteorology and climate. Recently, detached layers of dust are confirmed by the observations of the Mars Climate Sounder (MCS) as well as the Thermal Emission Spectrometer (TES). The origin of the detached layers has remained debated. They cannot be reproduced by traditional Global Climate Models (GCM) including a dust cycle. Several possible interpretations were proposed to explain the origins of the detached layers of dust, such as small-scale dust lifting, upslope topographic winds, scavenging by water ice clouds, dust storms... Scavenging has been shown to be unable to form of dust detached layer through the simulations using the GCM developed at the Laboratoire de Météorologie Dynamique (LMD). In the present study, a new parameterization called 'rocket dust storms' in the LMD Martian GCM were implemented on the basis of mesoscale model simulations. The parameterization works like this: In the GCM, when a strong dust opacity gradient is observed, a local (subgrid scale) dust storm will be produced. Because of the difference of radiative heating rates between inside and outside of the dust storm, the dust particles inside the dust storm will be transported to high altitudes due to the vertical velocity of the dust which is directly deduced from the extra dust radiative heating, since we have found that this heating is almost integrally converted to adiabatic heating . The dust particles injected in the high layers are then horizontally transported by the large scale winds in the GCM. In the present study, the validation of the 'rocket dust storm' parameterization and the comparison between model outputs and MCS observations is implemented. To do so, case studies of the dust storm are performed to see how the dust were lifted and transported and how the detached layers formed in the upper atmosphere. We find that the

  9. Chemical routes to modify, uplift, and detach a silicene layer from a metal substrate.

    PubMed

    Tsetseris, Leonidas; Kaltsas, Dimitrios

    2014-03-21

    Experimental studies have shown that honeycomb silicene layers can grow on various metal substrates. Here we demonstrate using first-principles calculations that hydrogenation and calcium intercalation can be employed to break bonds between a silicene overlayer and a silver surface. The end result of the former process is the creation of a silicane mono-layer, a wide band-gap semiconductor. In this way, the Si overlayer can eventually be etched away, in agreement with pertinent experiments. Ca intercalation, on the other hand, lifts the silicene sheet up without destroying its sp(2) honeycomb bonding. Both approaches augment thus the functionalities of silicene overlayers by creating two-dimensional materials with distinct properties.

  10. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected. PMID:16871215

  11. Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge.

    PubMed

    Smith, Deborah K; Cann, Johnson R; Escartín, Javier

    2006-07-27

    Oceanic core complexes are massifs in which lower-crustal and upper-mantle rocks are exposed at the sea floor. They form at mid-ocean ridges through slip on detachment faults rooted below the spreading axis. To date, most studies of core complexes have been based on isolated inactive massifs that have spread away from ridge axes. Here we present a survey of the Mid-Atlantic Ridge near 13 degrees N containing a segment in which a number of linked detachment faults extend for 75 km along one flank of the spreading axis. The detachment faults are apparently all currently active and at various stages of development. A field of extinct core complexes extends away from the axis for at least 100 km. Our observations reveal the topographic characteristics of actively forming core complexes and their evolution from initiation within the axial valley floor to maturity and eventual inactivity. Within the surrounding region there is a strong correlation between detachment fault morphology at the ridge axis and high rates of hydroacoustically recorded earthquake seismicity. Preliminary examination of seismicity and seafloor morphology farther north along the Mid-Atlantic Ridge suggests that active detachment faulting is occurring in many segments and that detachment faulting is more important in the generation of ocean crust at this slow-spreading ridge than previously suspected.

  12. Retinal Detachment: Torn or Detached Retina Diagnosis

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Written by: Kierstan Boyd ...

  13. Retinal Detachment: Torn or Detached Retina Symptoms

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Written by: Kierstan Boyd ...

  14. Divertor detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  15. Detachment instability of self-sustained volume discharge in active media of non-chain HF(DF) lasers

    SciTech Connect

    Belevtsev, A A; Kazantsev, S Yu; Kononov, I G; Firsov, K N

    2010-08-27

    The development of detachment instability in active media of electric-discharge non-chain HF(DF) lasers due to the electron-impact detachment of electrons from negative ions is considered. This instability is initiated in large volumes of SF{sub 6}-based gas mixtures, spatially separated from electrodes and heated by a pulsed CO{sub 2} laser. The self-organisation of self-sustained volume discharge upon laser heating, which results in the formation of quasi-periodic plasma structures within the discharge gap, is experimentally investigated. The evolution of these structures, depending on the gas temperature and specific deposition of electric energy, is analysed. The possible relationship between the self-organisation and detachment instability is discussed. A mechanism of development of single plasma channels in the working media of HF(DF) lasers, based on electron-impact destruction of negative ions is proposed. (active media)

  16. Effects of carbohydrate on the internal oxygen concentration, oxygen uptake, and nitrogenase activity in detached pea nodules

    SciTech Connect

    Monroe, J.D. ); LaRue, T.A. )

    1989-10-01

    The interaction between carbon substrates and O{sub 2} and their effects on nitrogenase activity (C{sub 2}H{sub 2}) were examined in detached nodules of pea (Pisum sativum L. cv Sparkle). The internal O{sub 2} concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O{sub 2} for 2 hours resulted in a 2- to 10-fold increase in internal O{sub 2}, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O{sub 2} was lowered. Nitrogenase activity was stimulated by succinate but only at high external O{sub 2}. Oxygen uptake increased linearly with external O{sub 2} but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O{sub 2} concentration within detached nodules.

  17. Retinal detachment

    MedlinePlus

    ... separate from the underlying tissues, much like a bubble under wallpaper. This is most often caused by ... small detachment, the doctor may place a gas bubble in the eye. This is called pneumatic retinopexy. ...

  18. Retinal detachment

    PubMed Central

    2010-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal "break" allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent progression from retinal breaks or lattice degeneration to retinal detachment? What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 21 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids, cryotherapy, daunorubicin, fluorouracil plus low molecular weight heparin, laser photocoagulation, pneumatic retinopexy, scleral buckling, short-acting or long-acting gas tamponade, silicone oil tamponade, and vitrectomy. PMID:21406128

  19. Ex vivo bubble production from ovine large blood vessels: size on detachment and evidence of "active spots".

    PubMed

    Arieli, R; Marmur, A

    2014-08-15

    Nanobubbles formed on the hydrophobic silicon wafer were shown to be the source of gas micronuclei from which bubbles evolved during decompression. Bubbles were also formed after decompression on the luminal surface of ovine blood vessels. Four ovine blood vessels: aorta, pulmonary vein, pulmonary artery, and superior vena cava, were compressed to 1013 kPa for 21 h. They were then decompressed, photographed at 1-s intervals, and bubble size was measured on detachment. There were certain spots at which bubbles appeared, either singly or in a cluster. Mean detachment diameter was between 0.7 and 1.0 mm. The finding of active spots at which bubbles nucleate is a new, hitherto unreported observation. It is possible that these are the hydrophobic spots at which bubbles nucleate, stabilise, and later transform into the gas micronuclei that grow into bubbles. The possible neurological effects of these large arterial bubbles should be further explored.

  20. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    PubMed

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  1. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  2. Experimental results from detached plasmas in TFTR

    SciTech Connect

    Strachan, J.D.; Boody, F.P.; Bush, C.E.; Cohen, S.A.; Grek, B.; Grisham, L.; Jobes, F.C.; Johnson, D.W.; Mansfield, D.K.; Medley, S.S.

    1986-10-01

    Detached plasmas are formed in TFTR which have the principal property of the boundary to the high temperature plasma core being defined by a radiating layer. This paper documents the properties of TFTR ohmic-detached plasmas with a range of plasma densities at two different plasma currents.

  3. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato.

    PubMed

    Afiyanti, Mufidah; Chen, Hsien-Jung

    2014-01-15

    Catalase (CAT) functions as one of the key enzymes in the scavenging of reactive oxygen species and affects the H2O2 homeostasis in plants. In sweet potato, a major catalase isoform was detected, and total catalase activity showed the highest level in mature leaves (L3) compared to immature (L1) and completely yellow, senescent leaves (L5). The major catalase isoform as well as total enzymatic activity were strongly suppressed by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). This inhibition could be specifically and significantly mitigated in mature L3 leaves by exogenous CaCl2, but not MgCl2 or CoCl2. EGTA also inhibited the activity of the catalase isoform in vitro. Furthermore, chlorpromazine (CPZ), a calmodulin (CAM) inhibitor, drastically suppressed the major catalase isoform as well as total enzymatic activity, and this suppression was alleviated by exogenous sweet potato calmodulin (SPCAM) fusion protein in L3 leaves. CPZ also inhibited the activity of the catalase isoform in vitro. Protein blot hybridization showed that both anti-catalase SPCAT1 and anti-calmodulin SPCAM antibodies detect a band at the same position, which corresponds to the activity of the major catalase isoform from unboiled, but not boiled crude protein extract of L3 leaves. An inverse correlation between the major catalase isoform/total enzymatic activity and the H2O2 level was also observed. These data suggest that sweet potato CAT activity is modulated by CaCl2 and SPCAM, and plays an important role in H2O2 homeostasis in mature leaves. Association of SPCAM with the major CAT isoform is required and regulates the in-gel CAT activity band.

  4. Zonal detached eddy simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3 150 ⩽ Reθ ⩽ 14 000

    NASA Astrophysics Data System (ADS)

    Deck, Sébastien; Renard, Nicolas; Laraufie, Romain; Sagaut, Pierre

    2014-02-01

    A Wall-Modeled Large Eddy Simulation (WMLES) of a spatially developing zero-pressure gradient smooth flat plate turbulent boundary layer is performed by means of the third mode of the Zonal Detached Eddy Simulation technique. The outer layer is resolved by a Large Eddy Simulation whereas the wall is modeled by a RANS simulation zone, with a RANS/LES interface prescribed at a fixed location. A revisited cost assessment of the Direct Numerical Simulation of high Reynolds numbers (Reθ ⩾ 10 000) wall-bounded flows emphasizes how moderate the cost of the WMLES approach is compared to methods resolving the near-wall dynamics. This makes possible the simulation over a wide Reynolds number range 3 150 ⩽ Reθ ⩽ 14 000, leaving quite enough space for very large scale motions to develop. For a better skin friction prediction, it is shown that the RANS/LES interface should be high enough in the boundary layer and at a location scaling in boundary layer thickness units (e.g., 0.1δ) rather than in wall units. Velocity spectra are compared to experimental data. The outer layer is well resolved, except near the RANS/LES interface where the very simple and robust passive boundary treatment might be improved by a more specific treatment. Besides, the inner RANS zone also contains large scale fluctuations down to the wall. It is shown that these fluctuations fit better to the experimental data for the same interface location that provides a better skin friction prediction. Numerical tests suggest that the observed very large scale motions may appear in an autonomous way, independently from the near-wall dynamics. It still has to be determined whether the observed structures have a physical or a numerical origin. In order to assess how the large scale motions contribute to skin friction, the Reynolds shear stress contribution is studied as suggested by the FIK identity [K. Fukagata, K. Iwamoto, and N. Kasagi, "Contribution of Reynolds stress distribution to the skin friction

  5. RADON REDUCTION TECHNIQUES FOR EXISTING DETACHED HOUSES - TECHNICAL GUIDANCE (THIRD EDITION) FOR ACTIVE SOIL DEPRESSURIZATION SYSTEMS

    EPA Science Inventory

    This technical guidance document is designed to aid in the selection, design, installation and operation of indoor radon reduction techniques using soil depressurization in existing houses. Its emphasis is on active soil depressurization; i.e., on systems that use a fan to depre...

  6. Active emergent thrust associated with a detachment fold: A case study of the eastern boundary fault of Takada plain, central Japan

    NASA Astrophysics Data System (ADS)

    Kato, N.; Ishiyama, T.; Sato, H.; Saito, H.; Kurashimo, E.; Abe, S.

    2012-04-01

    To estimate seismic hazards, understanding the relationship between active fault and seismic source fault is crucial. Along the Japan Sea coast of Northern Honshu, Japan, thick sediments, deposited in the Miocene rift-grabens, formed fold-and-thrust belt, due to the shortening deformation since the Pliocene time. Most of the thrusts are active and show clear geomorphological evidences. Some of the thrusts are secondary faults, produced by the folding of competent layers. To elucidate the relationship between an emergent thrust and deep-sited seismogenic source fault, we performed shallow high-resolution seismic reflection profiling across the eastern boundary fault of the Takada plain, central Japan. Based on the moropho-tectonic data, the vertical slip rate of the Eastern boundary fault of the Takada plain is 0.9 mm/y and has potential to produce M7.2 earthquake (AIST, 2006). For shallow structure, we obtained CMP-seismic reflection data from a 7-km-long seismic line, using 541 channels of off-line recorders. Seismic source was an Envirovibe (IVI). Receiver and shot intervals are 12.5 m and seismic signals were recorded by fixed channels. Shallow seismic data were acquired as a piggy-bag project of 70 km-long onshore-offshore deep seismic profiling. High-resolution seismic section portrays the emergent thrust, dipping to the east at about 30 degrees. The hanging wall consist Pliocene interbedded mudstone and sandstone and deeper extension of the thrust can be traced down to the Miocene mudstone of the Teradoamri Formation as a low-angle fault. In the Niigata basin, the lower part of the Teradomari Formation is known as over pressured mudstone and shallow detachments are commonly developed in this unit. Based on the deep seismic section, including velocity profile obtained by refraction tomography, deep sited fault does not connect to the shallow active fault directly.

  7. The active Moresby Seamount Detachment Fault, Woodlark Basin: insights into structure and mechanics from high-resolution submarine mapping and sampling

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Speckbacher, Romed; Nagel, Thorsten; Klaucke, Ingo; Devey, Colin W.

    2010-05-01

    Moresby Seamount Detachment, located east of Papua New Guinea in the Woodlark Basin, is arguably the best-exposed active extensional detachment fault in the world. It forms the northern slopes of Moresby Seamount, a 3000 meter high east-west trending tectonic horst separating two extensional basins. Fault zone dip is about 30°, and total horizontal stretch accumulated in the past 3.5 Ma is about 8 km. The detachment surface is exposed on the sea floor over an area of about 30 square kilometers. Denudation is almost absent, and sedimentation is apparently suppressed by strong bottom water currents, providing a unique opportunity to analyze the tectonic geomorphology and structure of the fault zone, and sample the fault rocks. R/V SONNE Expedition 203 first mapped the area with about 20 m spatial resolution by ship-based multibeam bathymetry operating at 12 kHz. Most of the detachment surface was subsequently surveyed by AUV fitted with a 200 kHz multibeam echosounder, a CTD and a water column turbidity sensor. Map resolution is about 2 m. Samples were dredged from the detachment, and in basement and sediment sites in the footwall block. In the uppermost part the detachment zone cuts through an approximately 500 m thick sequence of Pliocene clastic sediments. Topography there is rugged, with erosional gullies, and areas of slope failure. Below, an upper smooth zone of the detachment is made up by a slope-parallel belt of cataclasites, generated from metamorphic basement rocks of Paleogene or older age, mainly gabbro, metadiabase and psammo-pelitic schists. Structurally and topographically below the cataclasites is a lower rugged zone mainly exposing cataclasites and mylonites. Topography is due to localized slope failure and a major sinistral strike slip fault scarp transecting the detachment with a 320° azimuth. Below the rugged zone is a lower smooth zone of cataclasites and mylonites. The most spectacular feature here are several north-south trending, extremely

  8. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  9. Descemet membrane detachment.

    PubMed

    Mackool, R J; Holtz, S J

    1977-03-01

    Four eyes of three patients had extensive postoperative Descemet membrane (DM) detachment. Blood was present just anterior to the DM in three of the four eyes and later converted to and persisted as pigment. Haziness of the cornea at the level of the DM could be seen with reattachment. Detachments of the DM are classified as planar when there is 1 mm or less separation of the DM from its overlying stroma in all areas. Nonplanar DM detachments exceed 1 mm of separation. Planar detachments have a much better prognosis than nonplanar detachments do, with or without descemetopexy. Repair of DM detachments, when necessary, should include air injection, with the lease possible instrumentation of the DM. PMID:843278

  10. Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition

    PubMed Central

    Clay, Matthew R.; Halloran, Mary C.

    2014-01-01

    The epithelial-to-mesenchymal transition (EMT) is a complex change in cell phenotype that is important for cell migration, morphogenesis and carcinoma metastasis. Loss of epithelial cell adhesion and tight regulation of cadherin adhesion proteins are crucial for EMT. Cells undergoing EMT often display cadherin switching, where they downregulate one cadherin and induce expression of another. However, the functions of the upregulated cadherins and their effects on cell motility are poorly understood. Neural crest cells (NCCs), which undergo EMT during development, lose N-cadherin and upregulate Cadherin 6 (Cdh6) prior to EMT. Cdh6 has been suggested to suppress EMT via cell adhesion, but also to promote EMT by mediating pro-EMT signals. Here, we determine novel roles for Cdh6 in generating cell motility during EMT. We use live imaging of NCC behavior in vivo to show that Cdh6 promotes detachment of apical NCC tails, an important early step of EMT. Furthermore, we show that Cdh6 affects spatiotemporal dynamics of F-actin and active Rho GTPase, and that Cdh6 is required for accumulation of F-actin in apical NCC tails during detachment. Moreover, Cdh6 knockdown alters the subcellular distribution of active Rho, which is known to promote localized actomyosin contraction that is crucial for apical NCC detachment. Together, these data suggest that Cdh6 is an important determinant of where subcellular actomyosin forces are generated during EMT. Our results also identify mechanisms by which an upregulated cadherin can generate cell motility during EMT. PMID:24917505

  11. Late Miocene termination of tectonic activity on the detachment in the Alaşehir Rift, Western Anatolia: Depositional records of the Göbekli Formation and high-angle cross-cutting faults

    NASA Astrophysics Data System (ADS)

    Sen, Fatih

    2016-04-01

    Western Anatolia is a well-known province of continental extension in the world. Most distinctive structural elements of the region are E-W trending grabens. The Alaşehir Rift/Graben is an asymmetric rift/graben trending E-W between Ahmetli and Turgutlu in its western part and continues eastwardly in a NW-SE direction to Alaşehir (Philadelphia in ancient Greek). The stratigraphy of the region consists of metamorphic rocks of the Menderes Massif (Paleozoic-lower Cenozoic) and the syn-extensional Salihli granitoid (middle Miocene) forming the basement unit and overlying sedimentary cover rocks of Neogene-Quaternary. These rocks are cut and deformed by the Karadut detachment fault and various low-angle normal faults (antithetic and synthetic faults of the Karadut detachment fault), which are also cut by various younger high-angle normal faults. It is possible to observe two continuous sequences of different time intervals in that Miocene deposits of the first rifting phase are covered by Plio-Quaternary sediments of second rifting phase with a "break-up" unconformity. In lower levels of a measured stratigraphic section (583 m) of the Göbekli formation which has lower age of late Miocene and upper age of early Pliocene, the presence of angular to sub-angular clasts of the blocks and conglomerates suggests alluvial-fun origin during an initial stage of deposition. Existence of normal-reverse graded, cross-bedding, pebble imbrications in layers of the pebbly sandstone demonstrates fluvial environment in following levels of the sequence. Existence of lenses and normal graded conglomerates in pebbly sandstones and fine grained sandstones strata evidences a low energy environment. Observed siltstone-claystone intercalations on the middle levels of the sequence indicate an environment with low dipping morphology to be formed as flat plains during this period. In the uppermost levels of the sequence, existence of the pebble imbrications inside pebbly sandstones overlying

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  13. Layer-by-layer nanoencapsulation of camptothecin with improved activity.

    PubMed

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-04-25

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7-8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-l-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  14. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  15. Modeling of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Popov, Dmitri

    1997-01-01

    Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.

  16. Divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-01

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  17. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively. PMID:464014

  18. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  19. Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion: A new manifestation of hydrothermal venting

    NASA Astrophysics Data System (ADS)

    Tucholke, Brian E.; Humphris, Susan E.; Dick, Henry J. B.

    2013-09-01

    Long-lived detachment faults are now known to be important in tectonic evolution of slow-spreading mid-ocean ridges, and there is increasing evidence that fluid flow plays a critical role in development of detachment systems. Here we document a new manifestation of low-temperature hydrothermal venting associated with the detachment fault that formed Kane Megamullion ˜3.3-2.1 m.y. ago in the western rift-valley wall of the Mid-Atlantic Ridge. Hydrothermal effects on the detachment surface include (1) cemented mounds of igneous rock and chalk debris containing hydrothermal Mn oxides and Fe oxyhydroxides, and (2) layered deposits of similar Fe-Mn minerals ± interbedded chalks. Mounds are roughly conical, ˜1-10 m high, and contain primarily basalts with lesser gabbro, serpentinite, and polymict breccia. The layered Fe-Mn-rich sediments are flat-bedded to contorted and locally are buckled into low-relief linear or polygonal ridges. We propose that the mounds formed where hydrothermal fluids discharged through the detachment hanging wall near the active fault trace. Hydrothermal precipitates cemented hanging-wall debris and welded it to the footwall, and this debris persisted as mounds as the footwall was exhumed and surrounding unconsolidated material sloughed off the sloping detachment surface. Some of the layered Fe-Mn-rich deposits may have precipitated from fluids discharging from the hanging-wall vents, but they also precipitated from low-temperature fluids venting from the exposed footwall through overlying chalks. Observed natural disturbance and abnormally thin hydrogenous Fe-Mn crusts on some contorted, hydrothermal Fe-Mn-rich chalks on ˜2.7 Ma crust suggest diffuse venting that is geologically recent. Results of this study imply that there are significant fluid pathways through all parts of detachment systems and that low-temperature venting through fractured detachment footwalls may continue for several million years off-axis.

  20. Carbon dioxide fixation by detached cereal caryopses

    SciTech Connect

    Watson, P.A.; Duffus, C.M. )

    1988-06-01

    Immature detached cereal caryposes from barley (Hordeum vulgare L. var distichum cv Midas) and wheat (Triticum aestivum L. cv Sicco) were shown to be capable of fixing externally supplied {sup 14}CO{sub 2} in the light or dark. Green cross cells and the testa contained the majority of the {sup 14}C-labeled material. Some {sup 14}C-labeled material was also found in the outer, or transparent, layer and in the endosperm/embryo fraction. More {sup 14}C was recovered from caryopses when they were incubated in {sup 14}CO{sub 2} without the transparent layer, thus suggesting that this layer is a barrier to the uptake of CO{sub 2}. In all cases, significant amounts of {sup 14}C-labeled material were found in caryopses after dark incubation with {sup 14}CO{sub 2}. Interestingly, CO{sub 2} fixation in the chlorophyll-less mutant Albino lemma was significantly greater in the light than in the dark. The results indicate that intact caryopses have the ability to translocate {sup 14}C-labeled assimilate derived from external CO{sub 2} to the endosperm/embryo. Carboxylating activity in the transparent layer appears to be confined to phosphoenolpyruvate carboxylase activity but that in the chloroplast-containing cross-cells may be accounted for by both ribulose-1,5-bisphosphate carboxylase-oxygenase and phosphoenolpyruvate carboxylase activity. Depending on a number of assumptions, the amount of CO{sub 2} fixed is sufficient to account for about 2% of the weight of starch found in the mature caryposis.

  1. Layered Fault Rocks Below the West Salton Detachment Fault (WSDF), CA Record Multiple Seismogenic? Slip Events and Transfer of Material to a Fault Core

    NASA Astrophysics Data System (ADS)

    Axen, G. J.; Luther, A. L.; Selverstone, J.; Mozley, P.

    2011-12-01

    Unique layered cataclasites (LCs) occur locally along footwall splays, S of the ~N-dipping, top-E WSDF. They are well exposed in a NW-plunging antiform that folds the LCs and their upper and lower bounding faults. Layers range from very fine-grained granular shear zones 1-2 mm thick and cm's to m's long, to medium- to coarse-grained isotropic granular cataclasite with floating clasts up to 4-5 cm diameter in layers up to ~30 cm thick and 3 to >10 m long. The top, N-flank contact is ~5 m structurally below the main WSDF. Maximum thickness of the LCs is ~5 m on the S flank of the antiform, where the upper 10-50 cm of LCs are composed of relatively planar layers that are subparallel to the upper fault, which locally displays ultracataclasite. Deeper layers are folded into open to isoclinal folds and are faulted. Most shear-sense indicators show N-side-to-E or -SE slip, and include: (1) aligned biotite flakes and mm-scale shear bands that locally define a weak foliation dipping ~ESE, (2) sharp to granular shears, many of which merge up or down into fine-grained layers and, in the base of the overlying granodiorite, (3) primary reidel shears and (4) folded pegmatite dikes. Biotite is unaltered and feldspars are weakly to strongly altered to clays and zeolites. Zeolites also grew in pores between clasts. XRF analyses suggest minimal chemical alteration. The upper fault is sharp and relatively planar, carries granular to foliated cataclasitic granodiorite that grades up over ~2-4 m into punky, microcracked but plutonic-textured rock with much of the feldspar alteration seen in LC clasts. Some upper-plate reidels bend into parallelism with the top fault and bound newly formed LC layers. The basal fault truncates contorted layers and lacks evidence of layers being added there. We infer that the deeper, contorted layers are older and that the LC package grew upward by transfer of cataclasized slices from the overlying granodiorite while folding was ongoing. Particle

  2. Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5°N

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Schouten, Hans; Dick, Henry J. B.; Cann, Johnson R.; Salters, Vincent; Marschall, Horst R.; Ji, Fuwu; Yoerger, Dana; Sanfilippo, Alessio; Parnell-Turner, Ross; Palmiotto, Camilla; Zheleznov, Alexei; Bai, Hailong; Junkin, Will; Urann, Ben; Dick, Spencer; Sulanowska, Margaret; Lemmond, Peter; Curry, Scott

    2014-12-01

    multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5°N provides new insights into detachment faulting and its evolution through time. The survey included regional multibeam bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam system, and an extensive rock-dredging program. At different times, detachment faulting was active along ˜50 km of the western flank of the study area, and may have dominated spreading on that flank for the last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs, and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detachment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corrugated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters). Multiscale corrugations are observed 2-3 km from the detachment breakaway suggesting that they formed in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-angle (6°) detachment footwall near its termination are intensely faulted and fissured; this deformation may be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large portion of the eastern flank on crust >2 Ma, indicating that within the last 5 Ma parts of the ridge axis have experienced periods of two-sided detachment faulting.

  3. Crust rheology, slab detachment and topography

    NASA Astrophysics Data System (ADS)

    Duretz, T.; Gerya, T. V.

    2012-04-01

    The collision between continents following the closure of an ocean can lead to the subduction of continental crust. The introduction of buoyant crust within subduction zones triggers the development of extensional stresses in slabs which eventually result in their detachment. The dynamic consequences of slab detachment affects the development of topography, the exhumation of high-pressure rocks and the geodynamic evolution of collision zones. We employ two-dimensional thermo-mechanical modelling in order to study the importance of crustal rheology on the evolution of spontaneous subduction-collision systems and the occurrence of slab detachment. The modelling results indicate that varying the rheological structure of the crust can results in a broad range of collisional evolutions involving slab detachment, delamination (associated to slab rollback), or the combination of both mechanisms. By enhancing mechanical coupling at the Moho, a strong crust leads to the deep subduction of the crust (180 km). These collisions are subjected to slab detachment and subsequent coherent exhumation of the crust accommodated by eduction (inversion of subduction sense) and thrusting. In these conditions, slab detachment promotes the development of a high (> 4.5 km) and narrow (< 200 km) topographic plateau located in the vicinity of the suture. A contrasting style of collision is obtained by employing a weak crustal rheology. The weak mechanical coupling at the Moho promotes the widespread delamination of the lithosphere, preventing slab detachment to occur. Further shortening leads to buckling and thickening of the crust resulting in the development of topographic bulging on the lower plate. Collisions involving rheologically layered crust are characterised by a decoupling level at mid-crustal depths. These initial condition favours the delamination of the upper crust as well as the deep subduction of the lower crust. These collisions are thus successively affected by delamination

  4. Seismic Slip on an Oblique Detachment Fault at Low Angles

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Steely, A. N.; Evans, J. P.

    2008-12-01

    Pseudotachylytes are one of the few accepted indicators of seismic slip along ancient faults. Low-angle normal faults have produced few large earthquakes in historic times and low-angle normal faults (detachment faults) are typically severely misoriented relative to a vertical maximum compressive stress. As a result many geoscientists question whether low-angle normal faults produce earthquakes at low angles. Relationships in southern California show that a major low-angle normal-oblique fault slipped at low angles and produced large earthquakes. The exhumed Late Cenozoic West Salton detachment fault preserves spectacular fault- related pseudotachylytes along its fault plane and injected into its hanging wall and footwall. Composite pseudotachylyte zones are up to 1.25 m thick and persists over lateral distances of at least 10's of meters. Pseudotachylyte is common in most thin sections of damaged fault rocks with more than 20% (by volume) of cataclasite. We recognized the presence of original melt using numerous criteria: abundant spherulites in thin sections, injection structures at both the thin-section and outcrop scale, black aphanitic textures, quenched vein margins, variations in microcrystallite textures and/or size with respect to the vein margin, and glassy textures in hand sample. Multiple earthquakes are inferred to produce the layered "stratigraphy" in some exposures of pseudotachylytes. We infer that the West Salton detachment fault formed and slipped at low angles because it nearly perfectly reactivates a Cretaceous ductile thrust system at the half km scale and dips between 10 and 45 degrees. The about 30 degree NNE dip of the detachment fault on the north side of Yaqui Ridge is likely steeper than its dip during detachment slip because there is local steepening on the flanks of the Yaqui Ridge antiform in a contractional stepover of a crosscutting Quaternary San Felipe dextral fault zone. These relationships indicate a low dip on the detachment

  5. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  6. Dynamics of active layer in wooded palsas of northern Quebec

    NASA Astrophysics Data System (ADS)

    Jean, Mélanie; Payette, Serge

    2014-02-01

    Palsas are organic or mineral soil mounds having a permafrost core. Palsas are widespread in the circumpolar discontinuous permafrost zone. The annual dynamics and evolution of the active layer, which is the uppermost layer over the permafrost table and subjected to the annual freeze-thaw cycle, are influenced by organic layer thickness, snow depth, vegetation type, topography and exposure. This study examines the influence of vegetation types, with an emphasis on forest cover, on active layer dynamics of palsas in the Boniface River watershed (57°45‧ N, 76°00‧ W). In this area, palsas are often colonized by black spruce trees (Picea mariana (Mill.) B.S.P.). Thaw depth and active layer thickness were monitored on 11 wooded or non-wooded mineral and organic palsas in 2009, 2010 and 2011. Snow depth, organic layer thickness, and vegetation types were assessed. The mapping of a palsa covered by various vegetation types and a large range of organic layer thickness were used to identify the factors influencing the spatial patterns of thaw depth and active layer. The active layer was thinner and the thaw rate slower in wooded palsas, whereas it was the opposite in more exposed sites such as forest openings, shrubs and bare ground. Thicker organic layers were associated with thinner active layers and slower thaw rates. Snow depth was not an important factor influencing active layer dynamics. The topography of the mapped palsa was uneven, and the environmental factors such as organic layer, snow depth, and vegetation types were heterogeneously distributed. These factors explain a part of the spatial variation of the active layer. Over the 3-year long study, the area of one studied palsa decreased by 70%. In a context of widespread permafrost decay, increasing our understanding of factors that influence the dynamics of wooded and non-wooded palsas and understanding of the role of vegetation cover will help to define the response of discontinuous permafrost landforms

  7. Three-dimensional necking during viscous slab detachment

    NASA Astrophysics Data System (ADS)

    Tscharner, M.; Schmalholz, S. M.; Duretz, T.

    2014-06-01

    We study the three-dimensional (3-D) deformation during detachment of a lithospheric slab with simple numerical models using the finite element method. An initially vertical layer of power law viscous fluid mimics the slab and is surrounded by a linear or power law viscous fluid representing asthenospheric mantle. We quantify the impact of slab size and shape (symmetric/asymmetric) on slab detachment and identify two processes that control the lateral (i.e., along-trench) slab deformation: (1) the horizontal deflection of the lateral, vertical slab sides (> 100 km with velocities up to 16 mm/yr) and (2) the propagation of localized thinning (necking) inside the slab (with velocities >9 cm/yr). The lateral propagation velocity is approximately constant during slab detachment. Larger slabs (here wider than approximately 300 km) detach with rates similar to those predicted by 2-D models, whereas smaller slabs detach slower. Implications for geodynamic processes and interpretations of seismic tomography are discussed.

  8. Stability of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Croell, A.

    2009-01-01

    Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.

  9. Assessment of detached podocytes in the Bowman's space as a marker of disease activity in lupus nephritis.

    PubMed

    Moustafa, F E; Soliman, N A; Bakr, A M A; El Shwaf, I M

    2014-02-01

    Podocyte damage is an important pathogenic component of glomerular disease progression. This study is a trial to clarify the value of counting and scoring the number of shed Bowman's space podocytes as an activity parameter of lupus nephritis, a trial that has not been conducted before. This study was performed on 42 female patients with the clinical diagnosis of lupus nephritis. Beside the routine stains tissue sections were stained by colloidal iron and anti podocalyxin for sialomucin. Podocytes in the Bowman's space were counted and scored. Thorough statistical work was carried out to correlate the podocyte scores with the morphological lesions of lupus nephritis. This study revealed significant association and correlation of shed Bowman's space podocytes with histopathological parameters of activity in different classes of lupus nephritis. We concluded that counting and scoring shed Bowman's space podocytes is statistically significant as a marker of disease activity in lupus nephritis. It can be one of the parameters of activity index but not of chronicity index.

  10. A mechanical model of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2012-08-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate, typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular and RPE pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed lesions in which the tissue has a higher choroidal hydraulic conductivity, has insufficient RPE pump activity, or has defective adhesion bonds. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. The corresponding stable blister radius and shape are calculated. Our analysis provides a quantitative description of the physical mechanisms involved in exudative retinal detachments and can help guide the development of retinal reattachment protocols or preventative procedures.

  11. A mitochondria-targeted antioxidant can inhibit peroxidase activity of cytochrome c by detachment of the protein from liposomes.

    PubMed

    Firsov, Alexander M; Kotova, Elena A; Orlov, Viktor N; Antonenko, Yuri N; Skulachev, Vladimir P

    2016-09-01

    Interaction of cytochrome c with cardiolipin converts this respiratory chain electron-transfer protein into a peroxidase, supposedly involved in mitochondria-mediated apoptosis initiation. Liposome membrane permeabilization provoked by peroxidase activity of the cytochrome c/cardiolipin complex has been previously shown to be suppressed by conventional antioxidants. Here, the mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyl-triphenylphosphonium) was found to strongly inhibit both cytochrome c/cardiolipin peroxidase activity and the permeabilization of liposomes composed of phosphatidylcholine and cardiolipin. A number of binding assays revealed a significant inhibiting effect of SkQ1 on cytochrome c binding to liposomes, thus suggesting that SkQ1-mediated protection of liposomes from the cytochrome c/H2 O2 -induced permeabilization involved distortion of the cytochrome c-membrane binding. It is suggested that antioxidant and antiapoptotic effects of alkyltriphenylphosphonium cations can be related to the prevention of cytochrome c/cardiolipin interaction.

  12. Induction of Rapid Detachment in Shewanella oneidensis MR-1 Biofilms

    PubMed Central

    Thormann, Kai M.; Saville, Renée M.; Shukla, Soni; Spormann, Alfred M.

    2005-01-01

    Active detachment of cells from microbial biofilms is a critical yet poorly understood step in biofilm development. We discovered that detachment of cells from biofilms of Shewanella oneidensis MR-1 can be induced by arresting the medium flow in a hydrodynamic biofilm system. Induction of detachment was rapid, and substantial biofilm dispersal started as soon as 5 min after the stop of flow. We developed a confocal laser scanning microscopy-based assay to quantify detachment. The extent of biomass loss was found to be dependent on the time interval of flow stop and on the thickness of the biofilm. Up to 80% of the biomass of 16-h-old biofilms could be induced to detach. High-resolution microscopy studies revealed that detachment was associated with an overall loosening of the biofilm structure and a release of individual cells or small cell clusters. Swimming motility was not required for detachment. Although the loosening of cells from the biofilm structure was observed evenly throughout thin biofilms, the most pronounced detachment in thicker biofilms occurred in regions exposed to the flow of medium, suggesting a metabolic control of detachability. Deconvolution of the factors associated with the stop of medium flow revealed that a sudden decrease in oxygen tension is the predominant trigger for initiating detachment of individual cells. In contrast, carbon limitation did not trigger any substantial detachment, suggesting a physiological link between oxygen sensing or metabolism and detachment. In-frame deletions were introduced into genes encoding the known and putative global transcriptional regulators ArcA, CRP, and EtrA (FNR), which respond to changes in oxygen tension in S. oneidensis MR-1. Biofilms of null mutants in arcA and crp were severely impacted in the stop-of-flow-induced detachment response, suggesting a role for these genes in regulation of detachment. In contrast, an ΔetrA mutant displayed a variable detachment phenotype. From this genetic

  13. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    ERIC Educational Resources Information Center

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  14. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  15. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (TAG, 25°55’N-26°20’N)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Canales, J.

    2009-12-01

    The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow

  16. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  17. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  18. Activity recognition from video using layered approach

    NASA Astrophysics Data System (ADS)

    McPherson, Charles A.; Irvine, John M.; Young, Mon; Stefanidis, Anthony

    2012-01-01

    The adversary in current threat situations can no longer be identified by what they are, but by what they are doing. This has lead to a large increase in the use of video surveillance systems for security and defense applications. With the quantity of video surveillance at the disposal of organizations responsible for protecting military and civilian lives comes issues regarding the storage and screening the data for events and activities of interest. Activity recognition from video for such applications seeks to develop automated screening of video based upon the recognition of activities of interest rather than merely the presence of specific persons or vehicle classes developed for the Cold War problem of "Find the T72 Tank". This paper explores numerous approaches to activity recognition, all of which examine heuristic, semantic, and syntactic methods based upon tokens derived from the video. The proposed architecture discussed herein uses a multi-level approach that divides the problem into three or more tiers of recognition, each employing different techniques according to their appropriateness to strengths at each tier using heuristics, syntactic recognition, and HMM's of token strings to form higher level interpretations.

  19. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  20. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  1. Sensitivity of detachment extent to magnetic configuration and external parameters

    NASA Astrophysics Data System (ADS)

    Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.

    2016-05-01

    Divertor detachment may be essential to reduce heat loads to magnetic fusion tokamak reactor divertor surfaces. Yet in experiments it is difficult to control the extent of the detached, low pressure, plasma region. At maximum extent the front edge of the detached region reaches the X-point and can lead to degradation of core plasma properties. We define the ‘detachment window’ in a given position control variable C (for example, the upstream plasma density) as the range in C within which the front location can be stably held at any position from the target to the X-point; increased detachment window corresponds to better control. We extend a 1D analytic model [1] to determine the detachment window for the following control variables: the upstream plasma density, the impurity concentration and the power entering the scrape-off layer (SOL). We find that variations in magnetic configuration can have strong effects; increasing the ratio of the total magnetic field at the X-point to that at the target, {{B}×}/{{B}t} , (total flux expansion, as in the super-x divertor configuration) strongly increases the detachment window for all control variables studied, thus strongly improving detachment front control and the capability of the divertor plasma to passively accommodate transients while still staying detached. Increasing flux tube length and thus volume in the divertor, through poloidal flux expansion (as in the snowflake or x-divertor configurations) or length of the divertor, also increases the detachment window, but less than the total flux expansion does. The sensitivity of the detachment front location, z h , to each control variable, C, defined as \\partial {{z}h}/\\partial C , depends on the magnetic configuration. The size of the radiating volume and the total divertor radiation increase \\propto {{≤ft({{B}×}/{{B}t}\\right)}2} and \\propto {{B}×}/{{B}t} , respectively, but not by increasing divertor poloidal flux expansion or field line length. We

  2. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  3. High and Low Temperature Oceanic Detachment Faults

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; McCaig, Andrew

    2013-04-01

    One of the most important discoveries in Plate Tectonics in the last ten years is a "detachment mode" of seafloor spreading. Up to 50% of the Atlantic seafloor has formed by a combination of magmatism and slip on long-lived, convex-up detachment faults, forming oceanic core complexes (OCC). Two end-member types of OCC can be defined: The Atlantis Bank on the Southwest Indian Ridge is a high temperature OCC sampled by ODP Hole 735b. Deformation was dominated by crystal-plastic flow both above and below the solidus at 800-950 °C, over a period of around 200 ka. In contrast, the Atlantis Massif at 30 °N in the Atlantic, sampled by IODP Hole 1309D, is a low temperature OCC in which crystal plastic deformation of gabbro is very rare and greenschist facies deformation was localised onto talc-tremolite-chlorite schists in serpentinite, and breccia zones in gabbro and diabase. The upper 100m of Hole 1309D contains about 43% diabase intruded into hydrated fault breccias. This detachment fault zone can be interpreted as a dyke-gabbro transition, which was originally (before flexural unroofing) a lateral boundary between active hydrothermal circulation in the fault zone and hangingwall, and intrusion of gabbroic magma in the footwall. Thus a major difference between high and low temperature detachment faults may be cooling of the latter by active hydrothermal circulation. 2-D thermal modelling suggests that if a detachment fault is formed in a magmatically robust segment of a slow spreading ridge, high temperature mylonites can be formed for 1-2 ka provided there is no significant hydrothermal cooling of the fault zone. In contrast, if the fault zone is held at temperatures of 400 °C by fluid circulation, cooling of the upper 1 km of the fault footwall occurs far too rapidly for extensive mylonites to form. Our models are consistent with published cooling rate data from geospeedometry and isotopic closure temperatures. The control on this process is likely a combination of

  4. The Cave Canyon Detachment: A Standard for Deformation Expected of the Sevier Desert Detachment

    NASA Astrophysics Data System (ADS)

    Anders, M. H.

    2007-12-01

    The Cave Canyon detachment (CCd)is a Neogene normal fault in the Mineral Mountains of west-central Utah. The Mineral Mountains are located directly south of the Sevier Desert basin. Because of its location, orientation and age constraints the Cave Canyon detachment has been proposed to be a non-active splay of the Sevier Desert detachment. The Sevier Desert detachment (SDd) is thought to be one of the largest displaced active normal faults in North America accruing as much as 47 km of displacement. There are some fundamental differences between the CCd and the SDd, one of those being that the CCd places Paleozoic limestone directly on a granitic pluton whereas the SDd beneath the basin places Neogene terrestrial sediments directly on Paleozoic limestones. Nevertheless, the temperature and depth at the time of movement are similar, thus making the CCd an appropriate analog to what might be expected of material potentially recovered by scientific drilling of the SDd. A suite of samples from above and below the CCd yields a distinctive pattern of brittle deformation. In the lower plate granites deformation is mostly brittle, and in the upper plate there is only a minor zone a few cm thick of mylonitized carbonate. The lower plate granites are characterized by an aureole of healed microfractures that decrease in abundance from the contact to background at over 100 m. Cataclasis is observed well over 100 m from the detachment, and is so intense at the contact that no grain is unaffected. Significant growth of new minerals and cross-cutting quartz veins are observed within a few meters of the detachment. In upper plate carbonate rocks, a cm-thick zone of dynamic recrystallization is observed, above which there is a meter or so of extensive undulose extinction of grains. Outward from this is a zone of strongly preferred oriented twinning. At a distance of 15 m from the contact only minor carbonate veinlets distinguish fault zone rock from unaffected limestone. If the SDd

  5. Temperature-activated layer-breathing vibrations in few-layer graphene.

    PubMed

    Lui, Chun Hung; Ye, Zhipeng; Keiser, Courtney; Xiao, Xun; He, Rui

    2014-08-13

    We investigated the low-frequency Raman spectra of freestanding few-layer graphene (FLG) at varying temperatures (400-900 K) controlled by laser heating. At high temperature, we observed the fundamental Raman mode for the lowest-frequency branch of rigid-plane layer-breathing mode (LBM) vibration. The mode frequency redshifts dramatically from 81 cm(-1) for bilayer to 23 cm(-1) for 8-layer. The thickness dependence is well described by a simple model of coupled oscillators. Notably, the LBM Raman response is unobservable at room temperature, and it is turned on at higher temperature (>600 K) with a steep increase of Raman intensity. The observation suggests that the LBM vibration is strongly suppressed by molecules adsorbed on the graphene surface but is activated as desorption occurs at high temperature.

  6. Passive and active control of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush

  7. Estimating Active Layer Thickness from Remotely Sensed Surface Deformation

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Zhang, T.; Wahr, J. M.

    2010-12-01

    We estimate active layer thickness (ALT) from remotely sensed surface subsidence during thawing seasons derived from interferometric synthetic aperture radar (InSAR) measurements. Ground ice takes up more volume than ground water, so as the soil thaws in summer and the active layer deepens, the ground subsides. The volume of melted ground water during the summer thaw determines seasonal subsidence. ALT is defined as the maximum thaw depth at the end of a thawing season. By using InSAR to measure surface subsidence between the start and end of summer season, one can estimate the depth of thaw over a large area (typically 100 km by 100 km). We developed an ALT retrieval algorithm integrating InSAR-derived surface subsidence, observed soil texture, organic matter content, and moisture content. We validated this algorithm in the continuous permafrost area on the North Slope of Alaska. Based on InSAR measurements using ERS-1/2 SAR data, our estimated values match in situ measurements of ALT within 1--10 cm at Circumpolar Active Layer Monitoring (CALM) sites within the study area. The active layer plays a key role in land surface processes in cold regions. Current measurements of ALT using mechanical probing, frost/thaw tubes, or inferred from temperature measurements are of high quality, but limited in spatial coverage. Using InSAR to estimate ALT greatly expands the spatial coverage of ALT observations.

  8. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  9. The mechanics of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2013-03-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular, and retinal pigment epithelium (RPE) pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed tissue within which e.g., the hydraulic conductivities of the retina or choroid increase, the RPE pumps fail, or the adhesion properties change. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. This work supported by the Army Research Office through grant 58386MA

  10. Thermally activated decomposition of (Ga,Mn)As thin layer at medium temperature post growth annealing

    NASA Astrophysics Data System (ADS)

    Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.

    2016-05-01

    The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.

  11. HAMLET binding to α-actinin facilitates tumor cell detachment.

    PubMed

    Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-08

    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.

  12. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  13. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  14. Fluids drainage along detachments: the West Cycladic Detachment System and synkinematic skarns on Serifos Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Ducoux, Maxime; Jolivet, Laurent; Arbaret, Laurent; Branquet, Yannick; Rabillard, Aurélien

    2014-05-01

    Back-arc extension in the Aegean Sea has been accommodated by several large-scale detachments such as the West Cycladic Detachment System (WCDS) in the Oligocene and Miocene. The WCDS is associated on Serifos island (Cyclades) with a synkinematic granodioritic intrusion. Serifos is also well known for its skarn deposit and a rich mineralogy as well as colder Fe-Ba ore deposits that were exploited until 1963. The geometrical and kinematic relations between the detachments and ore bodies have so far been little studied. Different types of skarn can be observed (1) massive garnet endoskarns, (2) garnet-pyroxene endoskarns in the granodiorite, (3) garnet-pyroxene cracks exoskarns, (4) brecciated pyroxene +/- ilvaite skarn within the Meghàlo Livadhi and Kavos Kiklopas detachments. Fields observations show that the formation of the skarn is intimately associated with the detachments and the deformation of the intrusion in the footwall. Endo and exo-skarn deposits formed before, during and after the ductile and brittle structures resulting from the activity of the WCDS. They are represented by echelon veins, veins with antithetic shear and boudinaged veins wrapped within sheath folds, with a shearing movement top SSW or SW compatible with the regional tectonics, deformation in host-rock and the emplacement of the syn-tectonic granodioritic intrusion. Skarnified breccias formed within the two main detachments attesting for the intense circulation of fluids at a certain distance from the main intrusion. These skarn parageneses were deposited by hydrothermal fluids associated with the intrusion, mixed with meteoric or oceanic fluids forming at the regional level of pyroxene. The two detachments acted as preferential crustal-scale drains during footwall exhumation. This example illustrates the potential of detachments to channelize large amount of fluids in the crust during extension.

  15. Detached Growth of Germanium by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Volz, M. P.; Cobb, S.; Motakef, S.; Szofran, F. R.

    2004-01-01

    The conditions of detached solidification under controlled pressure differential across the meniscus were investigated. Uncoated and graphite- or BN-coated silica and pBN crucibles were used. Detached and partly detached growth was achieved in pBN and BN-coated crucibles, respectively. The results of the experiments are discussed based on the theory of Duffar et al.

  16. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Mattione, Paul

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  17. Surface activation of CNT Webs towards layer by layer assembly of biosensors.

    PubMed

    Musameh, Mustafa; Huynh, Chi P; Hickey, Mark; Kyratzis, Ilias Louis

    2016-04-25

    Several surface activation methods such as chemical, electrochemical and plasma have been used for enhancing the electrochemical performance of carbon based electrodes for various applications. However, some of these surface activation methods may not be useful depending on the chemical and physical properties of the activated surface. Herein we investigate the surface activation of carbon nanotube (CNT) webs by electrochemical and plasma techniques to enhance their electrochemical performance and enable the fabrication of a biosensor using the layer-by-layer (LBL) approach. The pretreated CNT webs were characterized by SEM, TEM, Raman, XPS and electrochemical methods. TEM images and Raman analysis showed an increase in the level of surface defects upon pretreatment with higher number of defects after electrochemical pretreatment. XPS analysis showed an increase in the level of oxygen functional groups after pretreatment (4 to 5 times increase) which resulted in enhanced water wettability especially for plasma pretreated CNT webs. The pretreated CNT web electrodes also showed an enhanced electrochemical activity towards the oxidation and reduction of different redox probes with higher sensitivity for the electrochemically pretreated CNT web electrode that was accompanied by a higher level of noise in amperometric measurements. A highly linear response was obtained for the untreated and the electrochemically pretreated CNT web electrodes towards the amperometric detection of NADH (R(2) of 0.9996 and 0.9986 respectively) while a non-linear response was observed for the plasma pretreated CNT web electrode (R(2) of 0.8538). The pretreated CNT web electrodes enabled the fabrication of a LBL biosensor for alcohol detection with highest operational stability obtained for the plasma pretreated CNT web surface.

  18. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  19. Detachment and steep normal faulting in Atlantic oceanic crust west of Africa

    USGS Publications Warehouse

    Reston, T.J.; Ruoff, O.; McBride, J.H.; Ranero, C.R.; White, Robert S.

    1996-01-01

    Improved images of the internal structure of Early Cretaceous North Atlantic crust reveal both probable detachment faults and more steeply dipping normal faults. The detachment faults occur as subhorizontal structures passing ???1.5 km beneath fault blocks without offset; several steeper block-bounding faults appear to detach onto these structures. However, the detachments are bounded to the west (ridgeward) by presumably younger, more steeply west-dipping normal faults. In one possible interpretation, the detachment and the steep faults belong to the same "rolling-hinge" extension system. An intriguing alternative is that a phase of detachment faulting, perhaps related to increased magmatic activity, was succeeded by localized amagmatic extension along steeper and more deeply penetrating faults.

  20. Effect of electric currents on bacterial detachment and inactivation.

    PubMed

    Hong, Seok Hoon; Jeong, Joonseon; Shim, Soojin; Kang, Heekyoung; Kwon, Sunghoon; Ahn, Kyung Hyun; Yoon, Jeyong

    2008-06-01

    Since biofilms show strong resistance to conventional disinfectants and antimicrobials, control of initial bacterial adhesion is generally accepted as one of the most effective strategies for preventing biofilm formation. Although electrical methods have been widely studied, the specific properties of cathodic, anodic, and block currents that influence the bacterial detachment and inactivation remained largely unclear. This study investigated the specific role of electric currents in the detachment and inactivation of bacteria adhered to an electrode surface. A real-time bacterial adhesion observation and control system was employed that consisted of Pseudomonas aeruginosa PAO1 (PAO1) with green fluorescent protein as the indicator microorganism and a flow cell reactor mounted on a fluorescent microscope. The results suggest that the bacteria that remained on the electrode surface after application of a cathodic current were alive, although the extent of detachment was significant. In contrast, when an anodic current was applied, the bacteria that remained on the surface became inactive with time, although bacterial detachment was not significant. Further, under these conditions, active bacterial motions were observed, which weakened the binding between the electrode surface and bacteria. This phenomenon of bacterial motion on the surface can be used to maximize bacterial detachment by manipulation of the shear rate. These findings specific for each application of a cathodic or anodic electric current could successfully explain the effectiveness of block current application in controlling bacterial adhesion. PMID:18080346

  1. Optical activity of transparent polymer layers characterized by spectral means

    NASA Astrophysics Data System (ADS)

    Cosutchi, Andreea Irina; Dimitriu, Dan Gheorghe; Zelinschi, Carmen Beatrice; Breaban, Iuliana; Dorohoi, Dana Ortansa

    2015-06-01

    The method based on the channeled spectrum, validated for inorganic optical active layers, is used now to determine the optical activity of some transparent polymer solutions in different solvents. The circular birefringence, the dispersion parameter and the specific rotation were estimated in the visible range by using the measurements of wavelengths in the channeled spectra of Hydroxypropyl cellulose in water, methanol and acetic acid. The experiments showed the specific rotation dependence on the polymer concentration and also on the solvent nature. The decrease of the specific rotation in the visible range with the increase in wavelength was evidenced. The method has some advantages as the rapidity of the experiments and the large spectral range in which it can be applied. One disadvantage is the fact that the channeled spectrum does not allow to establish the rotation sense of the electric field intensity.

  2. Role of pulsed winds on detachment of low salinity water from the Pearl River Plume: Upwelling and mixing processes

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu

    2016-04-01

    The detachment of low salinity water (LSW) from the Pearl River plume occurs frequently as revealed by in situ observations and satellite images, and plays an important role in cross-shore transport of the nutrient-rich plume water. In this study, the Regional Ocean Modeling System (ROMS) is used to simulate the LSW detachment process forced by realistic and idealized winds, and to explore its dynamical mechanisms. Modeling results show that the LSW detachment appears under a pulsed southwesterly wind, while tidal mixing modifies the size and salinity of the detached LSW. Strong pulsed wind causes the LSW to separate from the plume and move offshore quickly after the detachment. Under a pulsed northeasterly wind, however, the plume without separation of the LSW moves shoreward, indicating that the LSW detachment is sensitive to wind direction. In the plume region, upwelling develops under the forcing of the pulsed southwesterly wind, which transports high salinity bottom water to the surface layer, while the shear mixing in the upper layer further enhances the surface buoyancy flux, leading to appearance of high salinity water in the surface layer off the Pearl River estuary mouth, cutting off the eastward-spreading plume water, and resulting in the plume LSW detachment. Further analysis shows that the pulsed southwesterly wind induces positive local salinity change rate in the LSW detachment area. The pulsed upwelling-favorable wind with duration of 2-5 days is responsible for the detachment process.

  3. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.

    PubMed

    Hetler, D M; Bronfenbrenner, J

    1931-05-20

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.

  4. GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara—Turkey

    NASA Astrophysics Data System (ADS)

    Oztekin, B.; Topal, T.

    2005-11-01

    Due to the rapidly growing population of the city of Ankara (Turkey) and increased traffic congestion, it has become necessary to widen the Ankara-Eskişehir (E-90) highway connecting the newly built areas west of the city to the city center. During widening, several cut slopes were formed along the highway route. As a result, some instability problems (small-sized rock falls/sliding, sloughing, raveling) produced detachment zones along a cut slope in highly jointed, folded and sheared limestone, causing local degradation of the cut slope. Identification of the areas that are likely to detach from the cut slope in the future is considered to be very important for the application of remedial measures. For this purpose, the relationships between the existing detachment zones and various parameters (e.g., point load strength index, weathering, block size, daylighting, shear zone) were investigated using GIS-based statistical detachment susceptibility analyses in order to predict the further aerial extension of the detachment zones with time. During the overlay analyses, statistical index and weighting factor methods were used. The outcomes of the analyses were compared and evaluated with the field observations to check the reliability of the methods and to assess the detachment zones that may develop in the future. The detachment susceptibility map without the block-size layer gives the best result and indicates some risky zones where detachments are likely to occur in the future. Recommendations on remedial measures of the cut slope should consider these risky zones.

  5. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  6. Quaternary low-angle slip on detachment faults in Death Valley, California

    USGS Publications Warehouse

    Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.

    2003-01-01

    Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.

  7. Slab detachment under the Eastern Alps seen by seismic anisotropy

    PubMed Central

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968

  8. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  9. Dynamic stability of detached solidification

    NASA Astrophysics Data System (ADS)

    Mazuruk, K.; Volz, M. P.

    2016-06-01

    A dynamic stability analysis model is developed for meniscus-defined crystal growth processes. The Young-Laplace equation is used to analyze the response of a growing crystal to perturbations to its radius and a thermal transport model is used to analyze the effect of perturbations on the evolution of the crystal-melt interface. A linearized differential equation is used to analyze radius perturbations but a linear integro-differential equation is required for the height perturbations. The stability model is applied to detached solidification under zero-gravity and terrestrial conditions. A numerical analysis is supplemented with an approximate analytical analysis, valid in the limit of small Bond numbers. For terrestrial conditions, a singularity is found to exist in the capillary stability coefficients where, at a critical value of the pressure differential across the meniscus, there is a transition from stability to instability. For the zero-gravity condition, exact formulas for the capillary stability coefficients are derived.

  10. ERK-mediated activation of Fas apoptotic inhibitory molecule 2 (Faim2) prevents apoptosis of 661W cells in a model of detachment-induced photoreceptor cell death.

    PubMed

    Besirli, Cagri G; Zheng, Qiong-Duon; Reed, David M; Zacks, David N

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.

  11. ERK-Mediated Activation of Fas Apoptotic Inhibitory Molecule 2 (Faim2) Prevents Apoptosis of 661W Cells in a Model of Detachment-Induced Photoreceptor Cell Death

    PubMed Central

    Besirli, Cagri G.; Zheng, Qiong-Duon; Reed, David M.; Zacks, David N.

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death. PMID:23029562

  12. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  13. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  14. Active millimeter wave detection of concealed layers of dielectric material

    NASA Astrophysics Data System (ADS)

    Bowring, N. J.; Baker, J. G.; Rezgui, N. D.; Southgate, M.; Alder, J. F.

    2007-04-01

    Extensive work has been published on millimetre wave active and passive detection and imaging of metallic objects concealed under clothing. We propose and demonstrate a technique for revealing the depth as well as the outline of partially transparent objects, which is especially suited to imaging layer materials such as explosives and drugs. The technique uses a focussed and scanned FMCW source, swept through many GHz to reveal this structure. The principle involved is that a parallel sided dielectric slab produces reflections at both its upper and lower surfaces, acting as a Fabry-Perot interferometer. This produces a pattern of alternating reflected peaks and troughs in frequency space. Fourier or Burg transforming this pattern into z-space generates a peak at the thickness of the irradiated sample. It could be argued that though such a technique may work for single uniform slabs of dielectric material, it will give results of little or no significance when the sample both scatters the incident radiation and gives erratic reflectivities due to its non-uniform thickness and permittivity . We show results for a variety of materials such as explosive simulants, powder and drugs, both alone and concealed under clothing or in a rucksack, which display strongly directional reflectivities at millimeter wavelengths, and whose location is well displayed by a varying thickness parameter as the millimetre beam is scanned across the target. With this system we find that samples can easily be detected at standoff distances of at least 4.6m.

  15. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  16. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  17. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  18. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  19. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  20. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    PubMed Central

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  1. SOLPS5.1 analysis of detachment with drifts and gas pumping effects in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hailong; Sang, Chaofeng; Wang, Liang; Bonnin, Xavier; Guo, Houyang; Sun, Jizhong; Wang, Dezhen

    2016-08-01

    The aim of this paper is to estimate the effects of usual drifts and gas puffing/pumping locations on divertor detachment and Ar ion transport in the Experimental Advanced Superconducting Tokamak (EAST) by using the edge plasma code package SOLPS5.1. The simulated results reveal that which target plate first detaches depends strongly on the usual drifts, but not on the location of impurity gas puffing, which could be one of the possible explanations for the experimentally observed phenomenon (Chen et al 2013 Phys. Plasmas 20 022311) that the lower inner target first detached compared to the lower outer target with the lower outer gas puffing. The physics behind this phenomenon is that drifts not only can induce background ion flux, plasma density and temperature redistribution in the scrape-off layer (SOL) and divertor region, but also can change the Ar impurity force balance leading to Ar ions being dragged from bottom to top. Furthermore, the simulated results illustrate that the Ar ion transport in the SOL and divertor region is similar for different gas puffing locations including upstream and divertor region before partial detachment. However, the Ar ions penetrate into the core more easily, giving rise to more discharge disruption during complete detachment with upstream gas puffing than with divertor region puffing. Finally, we also estimate the effect of gas pumping on the detachment in order to realize long-pulse partial detachment in EAST. The results indicate that long-pulse partial detachment could be obtained by improving the pumping speed to match the puffing speed in case the excess Ar atoms accumulate in the core plasma during partial detachment in EAST.

  2. Bacterial detachment from salivary conditioning films by dentifrice supernates.

    PubMed

    van der Mei, Henny C; White, Donald J; Cox, Ed R; Geertsema-Doornbusch, Gesinda I; Busscher, Henk J

    2002-01-01

    This study compared the detachment by supernates of nine different dentifrices of four oral bacterial strains adhering to a salivary pellicle in a parallel plate flow chamber. Ultra-thin bovine enamel slabs were coated for 1.5 h with human whole saliva. Following buffer rinsing, a bacterial suspension of Streptococcus oralis, Streptococcus sanguis, Streptococcus mutans or Actinomyces naeslundii was perfused through the flow chamber at a shear rate of 30 s-1 for four hours, and the number of adhering bacteria n4h was enumerated by image analysis after buffer rinsing at the same shear rate. Then, a 25 wt%-dentifrice/water supernate was perfused through the flow chamber for four minutes, followed by eight minutes of buffer rinsing and another enumeration of the number of bacteria that had remained adhering nad. Finally, an air-bubble was passed through the flow chamber to mimic the occasionally high detachment forces occurring in the oral cavity, and the adhering bacteria nab were counted again. On average, S. sanguis was the easiest to detach (73% averaged over all dentifrice supernates), while A. naeslundii was the most difficult (22% on average). The combined detachment of bacteria by dentifrice supernates and air-bubble ranged from a low of 16% to a high of 80%. Dentifrices containing pyrophosphate and polymeric polyphosphate (hexametaphosphate) surface active ingredients appeared to produce the most consistent and strongest desorption effects on plaque bacteria. Factors apparently important to bacterial detachment from pellicle-covered tooth surfaces by dentifrice formulations include the nature of adhesion of bacterial strains and chemical composition of the dentifrice formulations, including pH, surfactant system and the effect of added ingredients (dispersants, metal ions, peroxides, baking soda). PMID:11507932

  3. Bacterial detachment from salivary conditioning films by dentifrice supernates.

    PubMed

    van der Mei, Henny C; White, Donald J; Cox, Ed R; Geertsema-Doornbusch, Gesinda I; Busscher, Henk J

    2002-01-01

    This study compared the detachment by supernates of nine different dentifrices of four oral bacterial strains adhering to a salivary pellicle in a parallel plate flow chamber. Ultra-thin bovine enamel slabs were coated for 1.5 h with human whole saliva. Following buffer rinsing, a bacterial suspension of Streptococcus oralis, Streptococcus sanguis, Streptococcus mutans or Actinomyces naeslundii was perfused through the flow chamber at a shear rate of 30 s-1 for four hours, and the number of adhering bacteria n4h was enumerated by image analysis after buffer rinsing at the same shear rate. Then, a 25 wt%-dentifrice/water supernate was perfused through the flow chamber for four minutes, followed by eight minutes of buffer rinsing and another enumeration of the number of bacteria that had remained adhering nad. Finally, an air-bubble was passed through the flow chamber to mimic the occasionally high detachment forces occurring in the oral cavity, and the adhering bacteria nab were counted again. On average, S. sanguis was the easiest to detach (73% averaged over all dentifrice supernates), while A. naeslundii was the most difficult (22% on average). The combined detachment of bacteria by dentifrice supernates and air-bubble ranged from a low of 16% to a high of 80%. Dentifrices containing pyrophosphate and polymeric polyphosphate (hexametaphosphate) surface active ingredients appeared to produce the most consistent and strongest desorption effects on plaque bacteria. Factors apparently important to bacterial detachment from pellicle-covered tooth surfaces by dentifrice formulations include the nature of adhesion of bacterial strains and chemical composition of the dentifrice formulations, including pH, surfactant system and the effect of added ingredients (dispersants, metal ions, peroxides, baking soda).

  4. Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2014-09-01

    The temperature-dependent photoresponse characteristics of MnAl2S4 layers have been investigated, for the first time, by use of photocurrent (PC) spectroscopy. Three peaks were observed at all temperatures. The electronic origin of these peaks was associated with band-to-band transitions from the valence-band states Γ4( z), Γ5( x), and Γ5( y) to the conduction-band state Γ1( s). On the basis of the relationship between PC-peak energy and temperature, the optical band gap could be well expressed by the expression E g( T) = E g(0) - 2.80 × 10-4 T 2/(287 + T), where E g(0) was estimated to be 3.7920 eV, 3.7955 eV, and 3.8354 eV for the valence-band states Γ4( z), Γ5( x), and Γ5( y), respectively. Results from PC spectroscopy revealed the crystal-field and spin-orbit splitting were 3.5 meV and 39.9 meV. The gradual decrease of PC intensity with decreasing temperature can be explained on the basis of trapping centers associated with native defects in the MnAl2S4 layers. Plots of log J ph, the PC current density, against 1/ T, revealed a dominant trap level in the high-temperature region. By comparing PC and the Hall effect results, we confirmed that this trap level is a shallow donor 18.9 meV below the conduction band.

  5. [Ocular hypertension after surgery for retinal detachment].

    PubMed

    Muşat, O; Cristescu, R; Coman, Corina; Asandi, R

    2012-01-01

    This papers presents a case of a patient with retinal detachement, 3 days ago operated (posterior vitrectomy internal tamponament with silicon oil 1000) who develop increased ocular pressure following silicon oil output in the anterior chamber.

  6. Current convective instability in detached divertor plasma

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Smolyakov, A. I.

    2016-09-01

    The asymmetry of inner and outer divertors, which cause the inner divertor to detach first, while the outer one is still attached, results in the large temperature difference between the vicinities of inner and outer targets and the onset of large electric potential drop through detached plasma of the inner divertor. A large potential drop along with the inhomogeneity of the resistivity of detached plasma across the divertor leg drives the current convective instability in the inner divertor and subsequent fluctuations of radiation loss similar to that observed in experiments. The estimates of the frequency of plasma parameter fluctuations due to the current convective instability are in a reasonable agreement with experimental data. Once the outer divertor also detaches, the temperature difference between the vicinities of inner and outer targets disappears, and the driving force for the current convective instability, and resulting oscillations of radiation loss, vanishes. This feature is indeed observed in experiments.

  7. Detached plasma in Saturn's front side magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1983-01-01

    Plasma observations in the outer front side Saturnian magnetosphere are discussed which indicate the existence of dense flux tubes outside the plasma sheets. It is suggested that flux tubes are detached from the plasma sheet by a centifugally driven flute instability. The same instability leads to a dispersal of Titan-injected plasma. It is shown that the detached flux tubes will probably break open as they convect into the nightside magnetotail and lose their content in the form of a planetary wind.

  8. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-07-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morpho-dynamics and for measuring and predicting bed load transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to re-work the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three-dimensions. Normalizing active layer thickness and dividing into 10 sub-layers we show that all grain sizes occur with almost equal frequency in all sub-layers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bed load prediction a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  9. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  10. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.

    PubMed

    Kittitheeranun, Paveenuch; Sajomsang, Warayuth; Phanpee, Sarunya; Treetong, Alongkot; Wutikhun, Tuksadon; Suktham, Kunat; Puttipipatkhachorn, Satit; Ruktanonchai, Uracha Rungsardthong

    2015-08-15

    Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery. PMID:26143232

  11. Carbonate pseudotachylite? from a Miocene extensional detachment, W. Cyclades, Greece.

    NASA Astrophysics Data System (ADS)

    Rice, A. Hugh N.; Grasemann, Bernhard

    2016-04-01

    Most pseudotachylites, both impact- and fault-related, occur in silicate-rich rocks, typically with 'granitoid' compositions. Examples of melting in carbonate rocks, excluding magmatic sources, are restricted to impact-events, except for a carbonate pseudotachylite in the Canalone Fault, S. Italy (Viganò et al. 2011). Another potential example of carbonate pseudotachylite, shown here, comes from the Miocene-aged W. Cycladic Detachment System, in Greece. Top-SSE ductile to brittle movement on this detachment, with a maximum displacement estimated at tens of kilometers, exhumed of HP-rocks. The carbonate pseudotachylite occurs within an <200 mm thick zone of cataclasites developed between footwall carbonate ultramylonites, containing thin layers and cm-scale boudins of quartzite, and hanging wall breccias; no contacts with the footwall ultramylonites or hanging wall breccias has been found (yet). The cataclasite zone, which can be traced along-strike for at least 90 m, over ~20 m elevation, comprises several distinct layers. In the sample described, five layers occur. The lowest (A; >43 mm thick), consists of dark (hematitic) red, ultra-fine grained unlayered carbonate with up to 40x10 mm rather rounded clasts of earlier generations of cataclasite, many with a quartzite composition. These clasts are fractured and partially separated, with a fine red carbonate matrix. No layering of the matrix or clasts is apparent. The clasts become finer and more abundant towards the boundary with Layer B. Layers B and D (~57 & ~20 mm thick) dominantly comprises protocataclasite with greyish quartz fragments separated by a carbonate matrix along narrow fractures. Zone C and E (~23 m & >15 mm thick) comprise pale pink carbonate-dominated rocks with abundant <30x5 mm-sized red carbonate clasts (+/- quartz fragments) of earlier cataclasite generations. These elongate clasts lie parallel to the overall banding, which is parallel to the ultramylonitic foliation (detachment surface

  12. Development of different modes of detachment faulting at 16.5N, MAR

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Schouten, H.; Dick, H. J.; Cann, J. R.

    2013-12-01

    During May and June of 2013, we surveyed and sampled a region of the Mid-Atlantic Ridge centered on 16.5N where detachment faulting occurs along the western flank of the ridge axis for ~120 km and the axis exhibits varying local magmatic budgets. This area presents excellent examples of several different modes of detachment faulting. Regional multibeam bathymetry, gravity, and magnetic data were collected out to ~5 Ma on each side of the axis to understand the spreading history. Autonomous underwater vehicle (AUV) Sentry collected high-resolution multibeam bathymetry, side-scan, magnetic, and other data in critical locations complemented by photographs from the WHOI Towcam. We also completed an extensive dredging program in the region. The data are used to characterize modes of detachment faulting and especially fault terminations, assessing where detachment faults are active, how they evolve off-axis, and how they might link along the axis. We identify four styles of active detachment faults that accommodate extension of the western rift valley wall. Near 16.4N a classic, corrugated (wavelengths of 400-1600 m on SeaBeam data), domed detachment surface dips beneath the median valley floor. At 16.5N a young detachment fault near to the axis partly interrupts the development of a longer, older and still active detachment fault whose breakaway is farther off-axis. The arcuate shape of the termination of the newer detachment fault suggests that it has linked with the older fault along the axis. Near 16.6N, what we thought might be a landslide deposit from the SeaBeam bathymetry was found to be a detachment surface with fine-scale corrugations (wavelengths of 50-250 m) as observed on Sentry bathymetry. The 16.4N, 16.5N and 16.6N detachment faults intersect the valley floor where a well-developed axial volcanic ridge suggests abundant volcanism at the ridge axis. At 16.7N, a detachment fault covered in rider blocks borders a deep rift axis floored with only sparse

  13. Silver ions/ovalbumin films layer-by-layer self-assembled polyacrylonitrile nanofibrous mats and their antibacterial activity.

    PubMed

    Song, Rukun; Yan, Jinjiao; Xu, Shasha; Wang, Yuntao; Ye, Ting; Chang, Jing; Deng, Hongbing; Li, Bin

    2013-08-01

    The CN groups of polyacrylonitrile (PAN) can strongly adsorb silver ions. The possibility of using this attraction as a layer-by-layer (LBL) self-assembly driving force was investigated. Firstly, the surface of the PAN nanofibrous mats was modified by silver ions to make sure it was positively charged. Then oppositely charged ovalbumin (OVA) and silver ions in aqueous media were alternatively deposited onto the surface of the obtained composite mats by layer-by-layer self-assembly technique. The morphology of the LBL films coating mats was observed by field emission scanning electron microscope (FE-SEM). The deposition of silver ions and OVA was confirmed by X-ray photoelectron spectroscopy (XPS) and wide-angle X-ray diffraction (XRD). The thermal degradation properties were investigated by thermo-gravimetric analysis (TGA). Besides these, the cytotoxicity and antibacterial activity of the prepared mats were studied via flow cytometry (FCM) and inhibition zone test, respectively. The results showed that the composite mats after LBL self-assembly processing exhibited improved thermal stability, slightly decreased cytotoxicity, and excellent antibacterial activity against Escherichia coil and Staphylococcus aureus. PMID:23563300

  14. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination

    NASA Astrophysics Data System (ADS)

    Duretz, T.; Gerya, T. V.

    2013-08-01

    Collision between continents can lead to the subduction of continental material. If the crust remains coupled to the downgoing slab, a large buoyancy force is generated. This force slows down convergence and promotes slab detachment. If the crust resists to subduction, it may decouple from the downgoing slab and be subjected to buoyant extrusion. We employ two-dimensional thermo-mechanical modelling to study the importance of crustal rheology on the evolution of subduction-collision systems. We propose simple quantifications of the mechanical decoupling between lithospheric levels (σ*) and the potential for buoyant extrusion of the crust (ξ*). The modelling results indicate that a variable crustal rheological structure results in slab detachment, delamination, or the combination of both mechanisms. A strong crust provides coupling at the Moho (low σ*) and remains coherent during subduction (low ξ). It promotes deep subduction of the crust (180 km) and slab detachment. Exhumation occurs in coherent manners via eduction and thrusting. Slab detachment triggers the development of topography (> 4.5 km) close to the suture. A contrasting style of collision occurs using a weak crustal rheology. Mechanical decoupling at the Moho (high σ*) promotes the extrusion of the crust (high ξ), disabling slab detachment. Ongoing shortening leads to buckling of the crust and development of topography on the lower plate. Collisions involving rheologically layered crust allow decoupling at mid-crustal depths. This structure favours both the extrusion of upper crust and the subduction of the lower crust. Such collisions are successively affected by delamination and slab detachment. Topography develops together with the buoyant extrusion of crust onto the foreland and is further amplified by slab detachment. Our results suggest that the occurrence of both delamination (Apennines) and slab detachment (Himalayas) in orogens may indicate differences in the initial crustal structure of

  15. Retinal detachment associated with atopic dermatitis.

    PubMed Central

    Takahashi, M; Suzuma, K; Inaba, I; Ogura, Y; Yoneda, K; Okamoto, H

    1996-01-01

    BACKGROUND: Retinal detachment associated with atopic dermatitis, one of the most common forms of dermatitis in Japan, has markedly increased in Japan in the past 10 years. To clarify pathogenic mechanisms of retinal detachment in such cases, we retrospectively studied clinical characteristics of retinal detachment associated with atopic dermatitis. METHODS: We examined the records of 80 patients (89 eyes) who had retinal detachment associated with atopic dermatitis. The patients were classified into three groups according to lens status: group A, eyes with clear lenses (40 eyes); group B, eyes with cataract (38 eyes), and group C, aphakic or pseudophakic eyes (11 eyes). RESULTS: No significant differences were noted in the ratio of males to females, age distribution, refractive error, or characteristic of retinal detachment among the three groups. The types of retinal breaks, however, were different in eyes with and without lens changes. While atrophic holes were dominant in group A, retinal dialysis was mainly seen in groups B and C. CONCLUSION: These findings suggested that anterior vitreoretinal traction may play an important role in the pathogenesis of retinal breaks in eyes with atopic cataract and that the same pathological process may affect the formation of cataract and tractional retinal breaks in patients with atopic dermatitis. PMID:8664234

  16. Detachment folds versus thrust-folds: numerical modelling and applications to the Swiss Jura Mountains and the Canadian Foothills

    NASA Astrophysics Data System (ADS)

    Humair, Florian; Bauville, Arthur; Epard, Jean-Luc; Schmalholz, Stefan

    2016-04-01

    The Jura Mountains and the Foothills of the Canadian Rockies fold-and-thrust belts are classical examples of thin-skinned belts where folds develop over weak detachment horizons. They offer the possibility to observe and measure strain in folds. In these two belts, a large spectrum of fold geometries is expressed, from symmetric box-fold or pop-up structures to asymmetric thrust-related folds. In this study, we focus on the quantification and prediction of the brittle strain distribution in folds as a function of the fold geometry. Fold geometry is considered as a continuum between two end-member structural styles: symmetric detachment folds and asymmetric foreland-vergent thrust-folds. We performed two-dimensional numerical simulations of visco-plastic detachment folding. The models are used (1) to systematically examine the influence of different initial parameters on the resulting geometry and style of folding and (2) to quantify the local strain pattern through time. The different parameters tested are the following: presence and size of initial geometrical perturbation at the detachment-sediment interface, rheology of the detachment (frictional vs. viscous), additional detachment layer within the series and overbunden thickness. Results of single detachment layer models show that the asymmetry of folds is primarily controlled by the height of the initial geometrical perturbation, regardless to the rheology of the detachment (frictional vs. viscous). Additional detachment interlayer within the series decreases the brittle strain within the stiff layers and favours more rounded anticlines geometry. The models were then adapted to the Swiss Jura and the Canadian Foothills settings. Compared to field observations and cross-sections of existing fault-related anticlines, the proposed simulations agree with the first order geometry and the development of associated localized zones of brittle deformation.

  17. High temperature microbial activity in upper soil layers.

    PubMed

    Santana, M M; Gonzalez, J M

    2015-11-01

    Biomineralization at high temperatures in upper soil layers has been largely ignored, although desertification and global warming have led to increasing areas of soils exposed to high temperatures. Recent publications evidenced thermophilic bacteria ubiquity in soils as viable cells, and their role in nutrient cycling and seedling development. High temperature events, frequently observed at medium and low latitudes, locate temporal niches for thermophiles to grow in soils. There, at temperatures inhibitory for common mesophiles, thermophilic bacteria could perform biogeochemical reactions important to the soil food web. Nutrient cycling analyses in soils at medium and low latitudes would benefit from considering the potential role of thermophiles.

  18. Detached auroral arcs in the trough region

    NASA Technical Reports Server (NTRS)

    Anger, C. D.; Moshupi, M. C.; Wallis, D. D.; Murphree, J. S.; Brace, L. H.; Shepherd, G. G.

    1978-01-01

    In a previous paper, Moshupi et al. (1977) have reported on the occurrence of rare auroral 'patches' equatorward of the normally well-defined boundary of diffuse aurora. Some less spectacular but more common arclike features were observed in the same 'trough' region (between the plasmapause and the auroral oval) during the period 1972-1975. These 'detached' arcs show some similarities to stable auroral red arcs in terms of their location and occurrence, but are completely different spectroscopically in that the stable auroral red arcs produce almost pure atomic oxygen red line emissions, whereas the detached arcs are deficient in red line emission - a feature implying totally different production mechanisms. The characteristics of the detached lines are described, including their unusual local time/longitude dependence.

  19. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-12-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  20. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  1. Evaluation and management of pediatric rhegmatogenous retinal detachment

    PubMed Central

    Wenick, Adam S.; Barañano, David E.

    2012-01-01

    Pediatric rhegmatogenous retinal detachments are rare, accounting for less than ten percent of all rhegmatogenous retinal detachments. While most retinal detachments in the adult population are related to posterior vitreous detachment, pediatric retinal detachment are often related to trauma or an underlying congenital abnormalities or genetic syndrome. The anatomy of pediatric eyes, the often late presentation of the disease, and the high incidence of bilateral pathology in children all pose significant challenges in the management of these patients. We discuss the epidemiology of pediatric rhegmatogenous retinal detachment, review the genetic syndromes associated with a high incidence of retinal detachment, and examine other common causes of retinal detachment in this age group. We then outline an approach to evaluation and management and describe the expected outcomes of repair of retinal detachment in the pediatric population. PMID:23961003

  2. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs.

    PubMed

    Hay, Y Audrey; Andjelic, Sofija; Badr, Sammy; Lambolez, Bertrand

    2015-11-01

    Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal.

  3. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  4. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  5. Central serous choroidopathy with bullous retinal detachment.

    PubMed

    Tsukahara, I; Uyama, M

    1978-05-16

    We report here a new type of secondary retinal detachment that has never been clearly defined. The characteristic features of the disease are: (1) prevalence in middle-aged males, (2) bilateral involvement, (3) frequent existence of prodromal lesions that over long periods resemble central serous retinopathy, (4) in the evolution stage, appearance of multiple yellowish white exudative flecks of one-half to one disc in diameter at or near the posterior pole of the fundus, (5) fluorescein studies revealing pronounced leakage of dye from the choroid into the subretinal space at the sites of exudates, (6) retinal detachment of various degrees with shifting subretinal fluid and without tears, (7) no evidence of intraocular inflammation, (8) no filling abnormalities seen in the choroidal fluorescence, (9) no response to medical therapy, including steroids and antibiotics, (10) photocoagulation to leakage sites leading to rapid resolution of retinal detachment; otherwise, spontaneous healing of detachment occurring within about 7-9 months, leaving fibroblastic macular scars and marked visual loss, and (11) no evidence of systemic findings that may be of etiologic significance. From this characteristic clinical picture, the idea of a new clinical entity must be considered. Our findings in 35 eyes from 18 Japanese patients are discussed.

  6. [Retinal detachment with retinoschisis--case report].

    PubMed

    Cristescu, R; Muşat, O; Toma, Oana; Coma, Corina; Gabej, Ioana; Burcea, M

    2013-01-01

    We present the case of a 43 year old patient diagnosed with rhegmatogenous retinal detachment and retinoschizis, a rare case of disease association. Surgery is recommended and we practice 23 gauge vitrectomy, laser retinopexy, criopexy in the periphery and internal heavy oil tamponade. Postoperatory evolution was favorable.

  7. Electrically induced drop detachment and ejection

    NASA Astrophysics Data System (ADS)

    Cavalli, Andrea; Preston, Daniel J.; Tio, Evelyn; Martin, David W.; Miljkovic, Nenad; Wang, Evelyn N.; Blanchette, Francois; Bush, John W. M.

    2016-02-01

    A deformed droplet may leap from a solid substrate, impelled to detach through the conversion of surface energy into kinetic energy that arises as it relaxes to a sphere. Electrowetting provides a means of preparing a droplet on a substrate for lift-off. When a voltage is applied between a water droplet and a dielectric-coated electrode, the wettability of the substrate increases in a controlled way, leading to the spreading of the droplet. Once the voltage is released, the droplet recoils, due to a sudden excess in surface energy, and droplet detachment may follow. The process of drop detachment and lift-off, prevalent in both biology and micro-engineering, has to date been considered primarily in terms of qualitative scaling arguments for idealized superhydrophobic substrates. We here consider the eletrically-induced ejection of droplets from substrates of finite wettability and analyze the process quantitatively. We compare experiments to numerical simulations and analyze how the energy conversion efficiency is affected by the applied voltage and the intrinsic contact angle of the droplet on the substrate. Our results indicate that the finite wettability of the substrate significantly affects the detachment dynamics, and so provide new rationale for the previously reported large critical radius for drop ejection from micro-textured substrates.

  8. Amitraz: a tick and flea repellent and tick detachment drug.

    PubMed

    Folz, S D; Ash, K A; Conder, G A; Rector, D L

    1986-06-01

    A topical formulation of amitraz (Mitaban Liquid Concentrate, The Upjohn Company, Kalamazoo, Michigan, U.S.A.) was evaluated as a tick repellent and detachment agent, and flea repellent. The diluted liquid concentrate (250 p.p.m. active drug) was topically applied as a single treatment to dogs; the concentration was identical to the rate recommended for treatment of demodicosis and scabies. Brown dog tick (Rhipicephalus sanguineus) and American dog tick (Dermacentor variabilis) populations were eliminated and repelled. Repellent activity (92-95%) was observed against R. sanguineus for 2 weeks post-treatment; the treatment was moderately active (63%) during the third week, and at 4 weeks post-treatment the drug was inactive. Established R. sanguineus populations were also treated, and the diluted liquid concentrate had 100% tick-detachment efficacy. Repellent activity (99%) was also detected against D. variabilis; the activity was monitored for only 7 days. The ectoparasiticide had low to moderate flea (Ctenocephalides felis) repellent activity (42%) for 4 days post-treatment; thereafter the treatment was ineffective. Side-effects were not observed in any of the dogs treated with amitraz, or the placebo.

  9. Dynamics of the Thermal State of Active Layer at the Alaska North Slope and Northern Yakutia

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Romanovsky, V. E.; Marchenko, S.; Shiklomanov, N. I.; Fedorov-Davydov, D.

    2010-12-01

    Dynamics of the active layer is one of the most important indexes, reflecting permafrost response to the modern climate changes. Monitoring of active layer thickness dynamics is the main goal of CALM (Circumpolar Active Layer Monitoring) project. But, from different points of view, it is very important to know not only maximal depth of seasonal thawing but also dynamics of thermal field of active layer and duration of its staying in the unfrozen state. Current research was aimed on the analyzing data of temperature measurements have been done during the more then 10 years at the North Slope of Brooks Range (Alaska) and 2 years at the selected sites at the Northern Yakutia (Russia) and its comparison with the 17 to 10 years records of active layer thickness dynamics at the corresponding sites (http://www.udel.edu/Geography/calm/data/north.html). The area of investigation characterized by the typical tundra landscape and different kinds of micro topography. Reported observation sites located at the latitudinal range from 68.5 to 70.3N in Alaska and 70.5 to 71.75N in the Northern Yakutia. Observation have been done using the 1 meter long MRC probe with 11 sensors (every 10 cm) and single Campbell SCI A107 sensors in Alaska and 2-channel HOBO U23 data loggers with TMC-HD thermistors in the Northern Yakutia. Analyses of CALM data show what most observation sites in Alaska (except located near the Brooks Range and at the Arctic Ocean coast) do not subjected to the significant sustainable changes of active layer thickness over the last 10 years. At the same time active layer thickness at the Yakutian sites was increasing. Temperature observations show decreasing of the mean annual temperature at the average depth of active layer bottom at the Alaskan sites. But, because of general trend to increasing of period of thawing it does not lead to the decreasing of active layer thickness. Recent equipment deployment at the Tiksi and Allaikha sites (Northern Yakutia) does not

  10. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C.

  11. Syneresis and delayed detachment in agar plates

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Mao, Bosi; Snabre, Patrick

    Biogels made of crosslinked polymers such as proteins or polysaccharides behave as porous soft solids and store large amount of solvent. These gels undergo spontaneous aging, called syneresis that consists in the shrinkage of the gel matrix and the progressive expulsion of the solvent. As a result, a biogel originally casted in a container often lose contact with the container sidewalls, and the detachment time is a priori difficult to anticipate since it may occur over variable time spans (from hours to days). Here we report on the syneresis phenomena in agar plates that consist in Petri dishes filled with a gel mainly composed of agar. Direct observations and speckle pattern correlation analysis allow us to rationalize the delayed detachment of the gel from the sidewall of the Petri dish. The detachment time $t^*$ is surprisingly not controlled by the mass loss as one would intuitively expect. Instead, $t^*$ is strongly correlated to the gel minimum thickness $e_{min}$ measured along the sidewall of the plate, and increases as a robust function of $e_{min}$ independently of the prior mass-loss history. Time-resolved correlation spectroscopy atypically applied to such weakly diffusive media gives access to the local thinning rate of the gel. This technique also allows us to detect the gel micro-displacements that are triggered by the water evaporation prior to the detachment, and even to anticipate the latter from a few hours. Our work provides observables to predict the detachment time of agar gels in dishes, and highlights the relevance of speckle pattern correlation analysis for the quantitative investigation of the syneresis dynamics in biopolymer gels.

  12. Syneresis and delayed detachment in agar plates.

    PubMed

    Divoux, Thibaut; Mao, Bosi; Snabre, Patrick

    2015-05-14

    Biogels made of crosslinked polymers such as proteins or polysaccharides behave as porous soft solids and store large amounts of solvent. These gels undergo spontaneous aging, called syneresis, which consists of the shrinkage of the gel matrix and the progressive expulsion of solvent. As a result, a biogel originally casted in a container often loses contact with the container sidewalls, and the detachment time is difficult to anticipate a priori, since it may occur over variable time spans (from hours to days). Here we report on syneresis phenomena in agar plates, which consist of Petri dishes filled with a gel mainly composed of agar. Direct observations and speckle pattern correlation analysis allow us to rationalize the delayed detachment of the gel from the sidewall of the Petri dish. The detachment time t* is surprisingly not controlled by the mass loss as one would intuitively expect. Instead, t* is strongly correlated to the gel minimum thickness emin measured along the sidewall of the plate, and increases as a robust function of emin, independently of the prior mass-loss history. Time-resolved correlation spectroscopy atypically applied to such weakly diffusive media gives access to the local thinning rate of the gel. This technique also allows us to detect the gel micro-displacements that are triggered by water evaporation prior to the detachment, and even to anticipate the latter from a few hours. Our work provides observables to predict the detachment time of agar gels in dishes, and highlights the relevance of speckle pattern correlation analysis for the quantitative investigation of the syneresis dynamics in biopolymer gels.

  13. Syneresis and delayed detachment in agar plates.

    PubMed

    Divoux, Thibaut; Mao, Bosi; Snabre, Patrick

    2015-05-14

    Biogels made of crosslinked polymers such as proteins or polysaccharides behave as porous soft solids and store large amounts of solvent. These gels undergo spontaneous aging, called syneresis, which consists of the shrinkage of the gel matrix and the progressive expulsion of solvent. As a result, a biogel originally casted in a container often loses contact with the container sidewalls, and the detachment time is difficult to anticipate a priori, since it may occur over variable time spans (from hours to days). Here we report on syneresis phenomena in agar plates, which consist of Petri dishes filled with a gel mainly composed of agar. Direct observations and speckle pattern correlation analysis allow us to rationalize the delayed detachment of the gel from the sidewall of the Petri dish. The detachment time t* is surprisingly not controlled by the mass loss as one would intuitively expect. Instead, t* is strongly correlated to the gel minimum thickness emin measured along the sidewall of the plate, and increases as a robust function of emin, independently of the prior mass-loss history. Time-resolved correlation spectroscopy atypically applied to such weakly diffusive media gives access to the local thinning rate of the gel. This technique also allows us to detect the gel micro-displacements that are triggered by water evaporation prior to the detachment, and even to anticipate the latter from a few hours. Our work provides observables to predict the detachment time of agar gels in dishes, and highlights the relevance of speckle pattern correlation analysis for the quantitative investigation of the syneresis dynamics in biopolymer gels. PMID:25812667

  14. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes.

    PubMed

    Coronell, Orlando; Mariñas, Benito J; Cahill, David G

    2011-05-15

    We studied the depth heterogeneity of fully aromatic polyamide (PA) active layers in commercial reverse osmosis (RO) and nanofiltration (NF) membranes by quantifying near-surface (i.e., top 6 nm) and volume-averaged properties of the active layers using X-ray photoelectron spectrometry (XPS) and Rutherford backscattering spectrometry (RBS), respectively. Some membranes (e.g., ESPA3 RO) had active layers that were depth homogeneous with respect to the concentration and pK(a) distribution of carboxylic groups, degree of polymer cross-linking, concentration of barium ion probe that associated with ionized carboxylic groups, and steric effects experienced by barium ion. Other membranes (e.g., NF90 NF) had active layers that were depth heterogeneous with respect to the same properties. Our results therefore support the existence of both depth-homogeneous and depth-heterogeneous active layers. It remains to be assessed whether the depth heterogeneity consists of gradually changing properties throughout the active layer depth or of distinct sublayers with different properties.

  15. Activity of lactoperoxidase when adsorbed on protein layers.

    PubMed

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  16. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy. PMID:27436164

  17. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy.

  18. Risk factors of rhegmatogenous retinal detachment associated with choroidal detachment in Chinese patients

    PubMed Central

    Gu, Yong-Hao; Ke, Gen-Jie; Wang, Lin; Gu, Qi-Hong; Zhou, En-Liang; Pan, Hong-Biao; Wang, Shi-Ying

    2016-01-01

    AIM To comprehensively analyze the risk factors of rhegmatogenous retinal detachment (RRD) associated with choroidal detachment (CD). METHODS A total of 265 eyes of 265 consecutive cases of RRD were retrospectively analyzed. All patients had systemic and ophthalmologic examination. CD was diagnosed by indirect ophthalmoscopy, B-scan ultrasonography, and ultrasound biomicroscope (UBM). Each parameter was compared between patients of RRD and rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD). Logistic regression analysis was used to determine the independent risk factors of CD. RESULTS There were 52 eyes (19.62%) with CD. Pseudophakia was more commonly seen in RRDCD (21.15% vs 6.10%, P=0.002). Intraocular pressure (IOP) was lower (8.60±3.62 vs 12.96±3.55, P<0.001), best-corrected visual acuity was worse [3.00 (2.00 to 3.00) vs 1.92 (1.22 to 3.00), P=0.001], and refractive error was more myopic [-4 (-9 to -2) vs -2 (-6 to 0), P=0.007] in RRDCD. Eyes with RRDCD had larger extent of retinal detachment (P=0.007). In RRDCD, 34.62% of eyes presented with multiple holes (P=0.044) and 25.00% with macular holes (P=0.012), compared with 20.66% and 14.08% in RRD. High myopia (P=0.039), low IOP (P=0.017), and larger extent of retinal detachment (P<0.001) were significant and independent risk factors for developing CD. CONCLUSION For CD in RRD, related factors include BCVA, IOP, lens status, refractive error, extent of retinal detachment, number of holes, and macular hole. Larger extent of retinal detachment, high myopia, and low IOP are significant and independent risk factors. PMID:27500106

  19. High-T Detachment Shear Zone in Mirdita Ophiolite (albania)

    NASA Astrophysics Data System (ADS)

    Jousselin, D.; Nicolas, A. A.; Boudier, F. I.; Meshi, A.

    2013-12-01

    Two oceanic core complex (OCC) extending over 50km have been mapped in the northern part of the Mirdita ophiolite. Despite the fact that the ophiolite is encased between major Dinaric thrusts, a late Jurassic marine topography is still preserved, as demonstrated by the nearly horizontal sedimentary cover. The study area exposes two peridotite domes, aligned on a N-S trend, separated by a talweg 1km wide, occupied by gabbros. This alignment is parallel to the paleoridge indicated by the sheeted dike complex, exposed at the eastern margin, and trending N-S. The two mantle domes composed of clinopyroxene bearing harzburgite with high-T porphyroclastic textures are roofed by a ~1km thick mylonitic shell, particularly well exposed at the limit with the gabbros, and interpreted as an oceanic high-T detachment shear zone. Six mylonite samples are studied for textures and crystal preferred orientation (CPO) aiming to improve the kinematics of the oceanic detachment. The mylonitic peridotite are exceptionally fresh, serpentine minerals being restricted to the bordering porphyroclastic harzburgites. They exhibit a tight millimetric layering formed by olivine / olivine+orthopyroxene / olivine+clinopyroxene or pargasitic amphibole, with grain-size 100-200μm in olivine bands vs 20-50μm in polyphase bands; plagioclase is ubiquitous. Orthopyroxene porphyroclasts show both body rotation and slip with boudinage in the flowing matrix. Electron back scattering diffraction (EBSD) maps provide precise modal composition and phase distribution. Although olivine CPO is not strong, it consistently records solid state flow on the [100](0kl)(010) slip system; the slight obliquity of [100] slip line on the mineral lineation marks the sense of shear. Pargasitic amphibole having grown in the mylonitic development has a strong CPO with [001]pg parallel to [100]ol. The most surprising result is a weak but constant orientation of [001]opx, known as the unique slip direction in orthopyroxene, at

  20. Contribution of S-Layer Proteins to the Mosquitocidal Activity of Lysinibacillus sphaericus

    PubMed Central

    Allievi, Mariana Claudia; Palomino, María Mercedes; Prado Acosta, Mariano; Lanati, Leonardo; Ruzal, Sandra Mónica; Sánchez-Rivas, Carmen

    2014-01-01

    Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity. PMID:25354162

  1. Nanofibrous mats layer-by-layer assembled by HTCC/layered silicate composites with in vitro antitumor activity against SMMC-7721 cells.

    PubMed

    Huang, Rong; Zhou, Xue; Liu, Xinqin; Zhang, Qi; Jin, Huan'guang; Shi, Xiaowen; Luo, Wenjing; Deng, Hongbing

    2014-03-01

    Organic rectorite (OREC) was used to prepare the intercalated nanocomposites with N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC), and then the immobilization of the positively charged HTCC-OREC nanocomposites and the negatively charged sodium alginate (ALG) on cellulose nanofibrous mats was performed through layer-by-layer (LBL) technique. Fiber diameter distribution results from Field Emission Scanning Electron Microscopy (FE-SEM) images showed that the average fiber diameter of (HTCC-OREC/ALG)(n) films coating obviously increased from 433 to 608 nm. Moreover, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results further confirmed the interaction between HTCC and OREC and their successful immobilization on cellulose template. MTT assay indicated that the prepared nanofibrous mats exhibited strong inhibitory activity against human hepatocellular carcinoma cells (SMMC-7721) but a little cytotoxic effect on human Chang liver (CCL-13) cells. Furthermore, the experimental results from FE-SEM and Inverted Fluorescence Microscope of SMMC-7721 cells cultured on LBL structured nanofibrous mats demonstrated the significant antitumor activity of prepared samples. The developed approach to immobilize nanocomposites onto polymer nanofibers with controllable thickness may also be utilized to tumor therapy. PMID:24730244

  2. Permafrost and Active Layer Monitoring in the Maritime Antarctic: A Contribution to TSP and ANTPAS projects

    NASA Astrophysics Data System (ADS)

    Vieira, G.; Ramos, M.; Batista, V.; Caselli, A.; Correia, A.; Fragoso, M.; Gruber, S.; Hauck, C.; Kenderova, R.; Lopez-Martinez, J.; Melo, R.; Mendes-Victor, L. A.; Miranda, P.; Mora, C.; Neves, M.; Pimpirev, C.; Rocha, M.; Santos, F.; Blanco, J. J.; Serrano, E.; Trigo, I.; Tome, D.; Trindade, A.

    2008-12-01

    Permafrost and active layer monitoring in the Maritime Antarctic (PERMANTAR) is a Portuguese funded International Project that, in cooperation with the Spanish project PERMAMODEL, will assure the installation and the maintenance of a network of boreholes and active layer monitoring sites, in order to characterize the spatial distribution of the physical and thermal properties of permafrost, as well as the periglacial processes in Livingston and Deception Islands (South Shetlands). The project is part of the International Permafrost Association IPY projects Thermal State of Permafrost (TSP) and Antarctic and Sub-Antarctic Permafrost, Soils and Periglacial Environments (ANTPAS). It contributes to GTN-P and CALM-S networks. The PERMANTAR-PERMAMODEL permafrost and active layer monitoring network includes several boreholes: Reina Sofia hill (since 2000, 1.1m), Incinerador (2000, 2.3m), Ohridski 1 (2008, 5m), Ohridski 2 (2008, 6m), Gulbenkian-Permamodel 1 (2008, 25m) and Gulbenkian- Permamodel 2 (2008, 15m). For active layer monitoring, several CALM-S sites have been installed: Crater Lake (2006), Collado Ramos (2007), Reina Sofia (2007) and Ohridski (2007). The monitoring activities are accompanied by detailed geomorphological mapping in order to identify and map the geomorphic processes related to permafrost or active layer dynamics. Sites will be installed in early 2009 for monitoring rates of geomorphological activity in relation to climate change (e.g. solifluction, rockglaciers, thermokarst). In order to analyse the spatial distribution of permafrost and its ice content, electrical resistivity tomography (ERT), and seismic refraction surveys have been performed and, in early 2009, continuous ERT surveying instrumentation will be installed for monitoring active layer evolution. The paper presents a synthesis of the activities, as well as the results obtained up to the present, mainly relating to ground temperature monitoring and from permafrost characteristics and

  3. Detached Growth of Germanium by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Volz, M.; Cobb, S.; Motakef, S.; Szofran, F. R.

    2004-01-01

    Detached crystal growth technique (dewetting) offers improvement in the quality of the grown crystals by preventing sticking to the walls of the crucible and thus reducing the possibility of parasitic nucleation and formation of lattice defects upon cooling. One of the factors relevant for the phenomena is the pressure differential across the meniscus at the crystal-melt interface. We investigated this effect experimentally. The growth took place in closed ampoules under the pressure of an inert gas (forming gas: 96% Ar + 4% H2). The pressure above the melt was adjustable and allowed for a control of the pressure difference between the top and bottom menisci. The crystals were characterized, particularly by taking profilometer measurements along the grown crystals surface. The effects of the experimental conditions on the detachment were compared with those predicted based on the theory of Duffar et al.

  4. On Transients in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2011-01-01

    In detached Bridgman growth, a gap exists between the growing crystal and the crucible wall. According to crystal shape stability theory, only specific gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. The transient shapes are calculated assuming that the growth angle is constant. Anisotropy and dynamic contact angle effects are considered. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. However, heat transfer will influence the crystal-melt interface shape. The local angles and the crystal-melt-vapor triple junction are analyzed and the applicability of the Herring formula is discussed. A potential microgravity experiment is proposed which would enhance our understanding of the detached growth dynamic stability problem.

  5. Responsive systems for cell sheet detachment

    PubMed Central

    Patel, Nikul G.; Zhang, Ge

    2013-01-01

    Cell sheet engineering has been progressing rapidly during the past few years and has emerged as a novel approach for cell based therapy. Cell sheet harvest technology enables fabrication of viable, transplantable cell sheets for various tissue engineering applications. Currently, the majority of cell sheet studies use thermo-responsive systems for cell sheet detachment. However, other responsive systems began showing their potentials for cell sheet harvest. This review provides an overview of current techniques in creating cell sheets using different types of responsive systems including thermo-responsive, electro-responsive, photo-responsive, pH-responsive and magnetic systems. Their mechanism, approach, as well as applications for cell detachment have been introduced. Further development of these responsive systems will allow efficient cell sheet harvesting and patterning of cells to reconstruct complex tissue for broad clinical applications. PMID:23820033

  6. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  7. Retinoschisis transposition following a retinal detachment repair

    PubMed Central

    McVeigh, Katherine; Keller, Johannes; Haynes, Richard J.

    2015-01-01

    Objective: The authors have observed this phenomenon of translocation of the schisis cavity in a few previous cases and aim to report this unusual finding. Method: A patient with known superotemporal retinoschisis developed a distinctly separate inferotemporal retinal detachment in his left eye. This was repaired with a vitrectomy, cryotherapy and C2F6 tamponade under local anaesthetic. Following surgery, the retinoschisis was found in the inferonasal quadrant of the eye and remained stable as the gas dispersed. Result: We hypothesise that the tamponading agent compressed the viscous fluid within the area of schisis, displacing the area of schisis circumferentially. Conclusion: This case emphasises that as long as the retinal breaks are properly sealed, no intervention is required with the schisis during rhegmatogenous retinal detachment surgery.

  8. In Vivo Synthesis and Turnover of alpha-Amylase in Attached and Detached Cotyledons of Vigna mungo Seeds.

    PubMed

    Koshiba, T; Minamikawa, T

    1983-01-01

    alpha-Amylase activity increased in attached cotyledons of germinated Vigna mungo seeds until the 5th day after imbibition and decreased thereafter, whereas in detached and incubated cotyledons the activity continuously increased and, at the 6th day, reached the value more than three times that of the maximum activity of attached cotyledons. Zymograms of the activities and Ouchterlony double immunodiffusion test on the activities of attached and detached cotyledons showed that the increase of activity in detached cotyledons was due to the identical enzyme as in attached tissues. alpha-Amylase contents, determined by single radial immunodiffusion method, changed in parallel with enzyme activity in both attached and detached cotyledons, which also suggested the de novo synthesis of alpha-amylase in V. mungo cotyledons.The rate of incorporation of the label from [(3)H]leucine into alpha-amylase and the ratios of dpm in alpha-amylase/dpm in trichloroacetic acid-insoluble fraction did not show significant difference between attached and detached cotyledons. The results indicated that in attached cotyledons fluctuation of alpha-amylase activity was regulated by both synthesis and degradation of the enzyme, whereas in detached cotyledons alpha-amylase was synthesized and accumulated, because of low degrading activity during incubation.

  9. In Vivo Synthesis and Turnover of α-Amylase in Attached and Detached Cotyledons of Vigna mungo Seeds 1

    PubMed Central

    Koshiba, Tomokazu; Minamikawa, Takao

    1983-01-01

    α-Amylase activity increased in attached cotyledons of germinated Vigna mungo seeds until the 5th day after imbibition and decreased thereafter, whereas in detached and incubated cotyledons the activity continuously increased and, at the 6th day, reached the value more than three times that of the maximum activity of attached cotyledons. Zymograms of the activities and Ouchterlony double immunodiffusion test on the activities of attached and detached cotyledons showed that the increase of activity in detached cotyledons was due to the identical enzyme as in attached tissues. α-Amylase contents, determined by single radial immunodiffusion method, changed in parallel with enzyme activity in both attached and detached cotyledons, which also suggested the de novo synthesis of α-amylase in V. mungo cotyledons. The rate of incorporation of the label from [3H]leucine into α-amylase and the ratios of dpm in α-amylase/dpm in trichloroacetic acid-insoluble fraction did not show significant difference between attached and detached cotyledons. The results indicated that in attached cotyledons fluctuation of α-amylase activity was regulated by both synthesis and degradation of the enzyme, whereas in detached cotyledons α-amylase was synthesized and accumulated, because of low degrading activity during incubation. Images Fig. 1 Fig. 2 Fig. 4 PMID:16662780

  10. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  11. Shear-Induced Detachment of Polystyrene Beads from SAM-Coated Surfaces.

    PubMed

    Cho, Kwun Lun; Rosenhahn, Axel; Thelen, Richard; Grunze, Michael; Lobban, Matthew; Karahka, Markus Leopold; Kreuzer, H Jürgen

    2015-10-13

    In this work we experimentally and theoretically analyze the detachment of microscopic polystyrene beads from different self-assembled monolayer (SAM) surfaces in a shear flow in order to develop a mechanistic model for the removal of cells from surfaces. The detachment of the beads from the surface is treated as a thermally activated process applying an Arrhenius Ansatz to determine the activation barrier and attempt frequency of the rate determing step in bead removal. The statistical analysis of the experimental shear detachment data obtained in phosphate-buffered saline buffer results in an activation energy around 20 kJ/mol, which is orders of magnitude lower than the adhesion energy measured by atomic force microscopy (AFM). The same order of magnitude for the adhesion energy measured by AFM is derived from ab initio calculations of the van der Waals interaction energy between the polystyrene beads and the SAM-covered gold surface. We conclude that the rate determing step for detachment of the beads is the initiation of rolling on the surface (overcoming static friction) and not physical detachment, i.e., lifting the particle off the surface. PMID:26401759

  12. Shear-Induced Detachment of Polystyrene Beads from SAM-Coated Surfaces.

    PubMed

    Cho, Kwun Lun; Rosenhahn, Axel; Thelen, Richard; Grunze, Michael; Lobban, Matthew; Karahka, Markus Leopold; Kreuzer, H Jürgen

    2015-10-13

    In this work we experimentally and theoretically analyze the detachment of microscopic polystyrene beads from different self-assembled monolayer (SAM) surfaces in a shear flow in order to develop a mechanistic model for the removal of cells from surfaces. The detachment of the beads from the surface is treated as a thermally activated process applying an Arrhenius Ansatz to determine the activation barrier and attempt frequency of the rate determing step in bead removal. The statistical analysis of the experimental shear detachment data obtained in phosphate-buffered saline buffer results in an activation energy around 20 kJ/mol, which is orders of magnitude lower than the adhesion energy measured by atomic force microscopy (AFM). The same order of magnitude for the adhesion energy measured by AFM is derived from ab initio calculations of the van der Waals interaction energy between the polystyrene beads and the SAM-covered gold surface. We conclude that the rate determing step for detachment of the beads is the initiation of rolling on the surface (overcoming static friction) and not physical detachment, i.e., lifting the particle off the surface.

  13. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  14. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  15. Transfection activity of layer-by-layer plasmid DNA/poly(ethylenimine) films deposited on PLGA microparticles

    PubMed Central

    Kakade, Sandeep; Manickam, Devika Soundara; Handa, Hitesh; Mao, Guangzhao; Oupický, David

    2009-01-01

    Layer-by-layer (LbL) assemblies of DNA and polycations on the surface of colloidal templates can be used for gene delivery. Plasmid DNA encoding for secreted alkaline phosphatase (SEAP) was used to deposit LbL films with poly(ethylenimine) (PEI) on the surface of polystyrene and poly(lactide-co-glycolide) microparticles. The formation of LBL films was confirmed by zeta potential analysis and fluorescence and atomic force microscopy techniques. The LbL particles were rapidly internalized in a dose-dependent manner by J774.1 murine macrophages. Transfection activity of the LbL particles was evaluated in J774.1 cells using three different doses (5, 10, 25 particle per cell). The levels of SEAP expression increased with increasing dose but were lower than transfection levels mediated by control PEI/DNA polyplexes at corresponding DNA doses. The LbL particles reported here present a promising platform for delivery of DNA to phagocytic cells. PMID:18786622

  16. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering.

  17. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  18. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  19. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when

  20. Middle Miocene Displacement Along the Rand Detachment Fault, Rand Mountains

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Grove, M. J.

    2015-12-01

    Laramide flat-slab subduction extinguished Sierra Nevada pluton emplacement in southern California by ca. 85 Ma as trench-derived sediments were underthrust and accreted beneath arc basement. These relationships are well illustrated in the Rand Mountains, situated just south of the Garlock fault in the northwestern Mojave Desert. Here, accreted rocks within the Rand Mountains are referred to as Rand Schist. The Rand Detachment fault juxtaposes Rand Schist beneath 87 Ma Sierran granitoids. New zircon (U-Th)/He age results from schist and basement juxtaposed across the Rand Detachment fault are 15 ± 3 Ma and 30 ± 5 Ma, respectively. When considered within the context of previously reported thermochronology from the Rand Mountains, our data shows that the Rand Detachment fault in the Rand Mountains is a middle Miocene fault that facilitated extension of the northwest Mojave Desert. This timing is in temporal and spatial agreement with regional extension throughout the Mojave triggered by northern migration of the slab window after collision of the Mendocino Triple Junction with the southern California margin. Further evidence of slab-window-related magmatism in the easternmost Rand Mountains is provided by the 19 Ma Yellow Aster pluton and 19 Ma rhyolite porphyry. It is possible that Miocene extension re-activated an older structure within the Rand Mountains. For example, a similar low-angle fault juxtaposing schist and basement present in the San Emigdio Mountains is believed to have accommodated large scale Late Cretaceous displacement, exhuming Rand Schist and overlying deepest Sierran basement to shallow crustal levels by 77 Ma [1]. However, 68-72 Ma phengite cooling ages and other thermochronology from the Rand Mountains indicates that any pre-Miocene extension in this area must postdate that in the San Emigdio Mountains. [1] Chapman et al., 2012. Geosphere, 8, 314-341.

  1. Two-Dimensional Island Shape Determined by Detachment

    NASA Astrophysics Data System (ADS)

    Saito, Yukio; Kawasaki, Ryo

    2007-07-01

    Effect of an anisotropic detachment on a heteroepitaxial island shape is studied by means of a kinetic Monte Carlo simulation of a square lattice gas model. Only with molecular deposition followed by surface diffusion, islands grow in a ramified dendritic shape, similar to diffusion-limited aggregate (DLA). Introduction of molecular detachment from edges makes islands compact. To understand an anisotropic island shape observed in the experiment of pentacene growth on a hydrogen-terminated Si(111) vicinal surface, asymmetry in detachment around the substrate step is assumed. Edge molecules detach more to the higher terrace than to the lower terrace. The island edge from which molecules are easy to detach is smooth and the one hard to detach is dendritic. If islands are close to each other, islands tend to align in a line, since detached molecules from the smooth edge of the right island are fed to the dendritic and fast growing edge of the left island.

  2. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  3. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK

    PubMed Central

    Avivar-Valderas, A; Bobrovnikova-Marjon, E; Diehl, J Alan; Bardeesy, N; Debnath, J; Aguirre-Ghiso, JA

    2012-01-01

    Adhesion to the extracellular matrix (ECM) is critical for epithelial tissue homeostasis and function. ECM detachment induces metabolic stress and programmed cell death via anoikis. ECM-detached mammary epithelial cells are able to rapidly activate autophagy allowing for survival and an opportunity for re-attachment. However, the mechanisms controlling detachment-induced autophagy remain unclear. Here we uncover that the kinase PERK rapidly promotes autophagy in ECM-detached cells by activating AMP-activated protein kinase (AMPK), resulting in downstream inhibition of mTORC1-p70S6K signaling. LKB1 and TSC2, but not TSC1, are required for PERK-mediated inhibition of mammalian target of rapamycinin MCF10A cells and mouse embryo fibroblast cells. Importantly, this pathway shows fast kinetics, is transcription-independent and is exclusively activated during ECM detachment, but not by canonical endoplasmic reticulum stressors. Moreover, enforced PERK or AMPK activation upregulates autophagy and causes luminal filling during acinar morphogenesis by perpetuating a population of surviving autophagic luminal cells that resist anoikis. Hence, we identify a novel pathway in which suspension-activated PERK promotes the activation of LKB1, AMPK and TSC2, leading to the rapid induction of detachment-induced autophagy. We propose that increased autophagy, secondary to persistent PERK and LKB1-AMPK signaling, can robustly protect cells from anoikis and promote luminal filling during early carcinoma progression. PMID:23160380

  4. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-01

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision. PMID:27187779

  5. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  6. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  7. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  8. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Rasoga, O.; Catargiu, A. M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A.

    2015-05-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of heterostructures with single layer of arylene based polymer, poly[N-(2-ethylhexyl)2.7-carbazolyl vinylene]/AMC16 and poly[N-(2-ethylhexyl)2.7-carbazolyl 1.4-phenylene ethynylene]/AMC22, and with layers of these polymers mixed with Buckminsterfullerene/C60 in the weight ratio of 1:2 (AMC16:C60) and 1:3 (AMC22:C60). The deposited layers have been characterized by spectroscopic (UV-Vis-NIR, PL, FTIR) and microscopic (SEM, AFM) methods. The effect of the polymer particularities on the optical and electrical properties of the structures based on polymer and polymer:C60 mixed layer has been analyzed. The study of the electrical properties has revealed typical solar cell behavior for the heterostructure prepared by MAPLE on glass/ITO/PEDOT-PSS with AMC16, AMC22 and AMC22:C60 layer, confirming that this method is adequate for the preparation of polymeric and mixed active layers for solar cells applications. The highest photovoltaic effect was shown by the solar cell structure realized with single layer of AMC16 polymer: glass/ITO/PEDOT-PSS/AMC16/Al.

  9. ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo.

    PubMed

    Malin, D; Strekalova, E; Petrovic, V; Rajanala, H; Sharma, B; Ugolkov, A; Gradishar, W J; Cryns, V L

    2015-11-01

    Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.

  10. Efficacy of different final irrigant activation protocols on smear layer removal by EDTA and citric acid.

    PubMed

    Herrera, Daniel R; Santos, Zarina T; Tay, Lidia Y; Silva, Emmanuel J; Loguercio, Alessandro D; Gomes, Brenda P F A

    2013-04-01

    The aim of this study was to evaluate the influence of different activation protocols for chelating agents used after chemo-mechanical preparation (CMP), for smear layer (SL) removal. Forty-five single-rooted human premolars with straight canals and fully formed apex were selected. The specimens were randomly divided into three groups depending on the chelating agent used for smear layer removal: distilled water (DW, control group); 17% ethylenediaminetetraacetic acid (EDTA); and 10% citric acid (CA). Each group was further divided into three subgroups according to the activation protocol used: no-activation (NA), manual dynamic activation (MDA), or sonic activation (SA). After CMP, all specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy (SEM). Two calibrated evaluators attributed scores to each specimen. The differences between activation protocols were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between each root canal third. When chelating agents were activated, either by MDA or SA, it was obtained the best cleaning results with no significant difference between EDTA and CA (P > 0.05). Sonic activation showed the best results when root canal thirds were analyzed, in comparison to MDA and NA groups (P < 0.05). The activation of chelating agents, independent of the protocol used, benefits smear layer removal from root canals.

  11. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  12. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  13. Modeling the gain and bandwidth of submicron active layer n+-i-p+ avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Majumder, Kanishka; Das, N. R.

    2012-10-01

    The electron initiated avalanche gain and bandwidth are calculated for thin submicron GaAs n+-i-p+ avalanche photodiode. A model is used to estimate the avalanche build-up of carriers in the active multiplication layer considering the dead-space effect. In the model, the carriers are identified both by their energy and position in the multiplication region. The excess energy of the carriers above threshold is assumed to be equally distributed among the carriers generated after impact ionization. The gain versus bias and bandwidth versus gain characteristics of the device are also demonstrated for different active layer thicknesses of the APD.

  14. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic.

    PubMed

    Wilhelm, Roland C; Niederberger, Thomas D; Greer, Charles; Whyte, Lyle G

    2011-04-01

    The abundance and structure of archaeal and bacterial communities from the active layer and the associated permafrost of a moderately acidic (pH < 5.0) High Arctic wetland (Axel Heiberg Island, Nunavut, Canada) were investigated using culture- and molecular-based methods. Aerobic viable cell counts from the active layer were ∼100-fold greater than those from the permafrost (2.5 × 10(5) CFU·(g soil dry mass)(-1)); however, a greater diversity of isolates were cultured from permafrost, as determined by 16S rRNA gene sequencing. Isolates from both layers demonstrated growth characteristics of a psychrotolerant, halotolerant, and acidotolerant community. Archaea constituted 0.1% of the total 16S rRNA gene copy number and, in the 16S rRNA gene clone library, predominantly (71% and 95%) consisted of Crenarchaeota related to Group I. 1b. In contrast, bacterial communities were diverse (Shannon's diversity index, H = ∼4), with Acidobacteria constituting the largest division of active layer clones (30%) and Actinobacteria most abundant in permafrost (28%). Direct comparisons of 16S rRNA gene sequence data highlighted significant differences between the bacterial communities of each layer, with the greatest differences occurring within Actinobacteria. Comparisons of 16S rRNA gene sequences with those from other Arctic permafrost and cold-temperature wetlands revealed commonly occurring taxa within the phyla Chloroflexi, Acidobacteria, and Actinobacteria (families Intrasporangiaceae and Rubrobacteraceae). PMID:21491982

  15. Study of dopant activation in biaxially compressively strained SiGe layers using excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Wirths, S.; Stefanov, S.; Holländer, B.; Schubert, J.; Conde, J. C.; Stoica, T.; Breuer, U.; Chiussi, S.; Goryll, M.; Buca, D.; Mantl, S.

    2013-05-01

    Excimer Laser Annealing (ELA) with a wavelength of 248 nm is used to study doping of biaxialy compressively strained Si1-xGex/Si heterostructures. The challenge is to achieve a high activation of As in SiGe, while conserving the elastic strain and suppressing dopant diffusion. Doping of 20 nm Si0.64Ge0.36 layers by ion implantation of 1 × 1015 As+/cm2 and subsequent laser annealing using single 20 ns pulse with an energy density of 0.6 J/cm2 leads to an As activation of about 20% and a sheet resistance of 650 Ω/sq. At this laser energy density, the entire SiGe layer melts and the subsequent fast recrystallization on a nanosecond time scale allows high As incorporation into the lattice. Moreover, using these annealing parameters, the SiGe layer exhibits epitaxial regrowth with negligible strain relaxation. ELA at energy densities greater than 0.6 J/cm2 resembles Pulsed Lased Induced Epitaxy, leading to an intermixing of the SiGe layer with the Si substrate, thus to thicker single-crystalline strained SiGe layers with sheet resistance down to 62 Ω/sq. Effects of energy densities on composition, crystal quality, activation of As and co-doping with B are discussed and related to the spatial and temporal evolution of the temperature in the irradiated zone, as simulated by Finite Element Methods.

  16. Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds.

    PubMed

    Kampalanonwat, Pimolpun; Supaphol, Pitt; Morlock, Gertrud E

    2013-07-19

    For the first time, electrospun nanofiber phases were fabricated with manganese-activated zinc silicate as photoluminescent indicator (UV254) to transfer and enlarge its application to the field of UV-active compounds. By integration of such an indicator, UV-active compounds got visible on the chromatogram. The separation of 7 preservatives and a beverage sample were studied on the novel luminescent polyacrylonitrile layers. The mat thickness and mean fiber diameters were calculated for additions of different UV254 indicator concentrations. The separation efficiency on the photoluminescent layers was characterized by comparison to HPTLC layers and calculation of the plate numbers and resolutions. Some benefits were the reduction in migration distance (3cm), migration time (12min), analyte (10-nL volumes) and mobile phase volumes (1mL). As ultrathin stationary phase, such layers are suited for their integration into the Office Chromatography concept. For the first time, electrospun nanofiber layers were hyphenated with mass spectrometry and the confirmation of compounds was successfully performed using the elution-head based TLC-MS Interface.

  17. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  18. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  19. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen-Popper, Dion-Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  20. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  1. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  2. Hexuronic acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation.

    PubMed

    Leach, Franklin E; Ly, Mellisa; Laremore, Tatiana N; Wolff, Jeremy J; Perlow, Jacob; Linhardt, Robert J; Amster, I Jonathan

    2012-09-01

    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated (0,2)X(3) and Y(3) ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  3. Hexuronic Acid Stereochemistry Determination in Chondroitin Sulfate Glycosaminoglycan Oligosaccharides by Electron Detachment Dissociation

    NASA Astrophysics Data System (ADS)

    Leach, Franklin E.; Ly, Mellisa; Laremore, Tatiana N.; Wolff, Jeremy J.; Perlow, Jacob; Linhardt, Robert J.; Amster, I. Jonathan

    2012-09-01

    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated 0,2X3 and Y3 ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  4. Antidepressants cause foot detachment from substrate in five species of marine snail.

    PubMed

    Fong, Peter P; Molnar, Nikolett

    2013-03-01

    Active Pharmaceutical Ingredients (APIs) are released into aquatic ecosystems through discharged sewage wastewater. Antidepressants are among those APIs often detected in wastewater effluent and have been recently reported to cause foot detachment from the substrate in freshwater snails. We tested the effects of four commonly prescribed antidepressants {fluoxetine ("Prozac"), fluvoxamine ("Luvox"), venlafaxine ("Effexor"), and citalopram ("Celexa") on adhesion to the substrate in five species of marine snails, three from the Pacific coast (Chlorostoma funebralis, Nucella ostrina, Urosalpinx cinerea) and two species from the Atlantic coast (Tegula fasciatus and Lithopoma americanum) of North America representing three different gastropod families. All antidepressants tested induced foot detachment from the substrate in all snail species in a mainly dose-dependent manner (p < 0.04-0.00000001). The lowest LOECs (lowest observed effect concentration) for antidepressants and snails were recorded for Lithopoma in 43.4 μg/L (100 nM) fluvoxamine and Chlorostoma in 157 μg/L (500 nM) venlafaxine and 217 μg/L (500 nM) fluvoxamine. The trochids and turbinids were 2-10× more sensitive to the antidepressants than the muricids. Latency to detachment was also dose dependent, with the fastest average times to detach seen in Chlorostoma and Lithopoma (7.33 and 13.16 min respectively in 3.13 mg/L venlafaxine). The possible physiological mechanisms regulating antidepressant-induced foot detachment in marine snails and the possible ecological consequences are discussed. PMID:23218553

  5. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Le Breton, Nicole; Gumiaux, Charles; Augier, Romain; Grasemann, Bernhard

    2015-06-01

    In order to better understand the interactions between plutonic activity and strain localization during metamorphic core complex formation, the Miocene granodioritic pluton of Serifos (Cyclades, Greece) is studied. This pluton (11.6-9.5 Ma) intruded the Cycladic Blueschists during thinning of the Aegean domain along a system of low-angle normal faults belonging to the south dipping West Cycladic Detachment System (WCDS). Based on structural fieldwork, together with microstructural observations and anisotropy of magnetic susceptibility, we recognize a continuum of deformation from magmatic to brittle conditions within the magmatic body. This succession of deformation events is kinematically compatible with the development of the WCDS. The architecture of the pluton shows a marked asymmetry resulting from its interaction with the detachments. We propose a tectonic scenario for the emplacement of Serifos pluton and its subsequent cooling during the Aegean extension: (1) A first stage corresponds to the metamorphic core complex initiation and associated southwestward shearing along the Meghàlo Livadhi detachment. (2) In the second stage, the Serifos pluton has intruded the dome at shallow crustal level, piercing through the ductile/brittle Meghàlo Livadhi detachment. Southwest directed extensional deformation was contemporaneously transferred upward in the crust along the more localized Kàvos Kiklopas detachment. (3) The third stage was marked by synmagmatic extensional deformation and strain localization at the contact between the pluton and the host rocks resulting in nucleation of narrow shear zones, which (4) continued to develop after the pluton solidification.

  6. [Effects of human engineering activities on permafrost active layer and its environment in northern Qinghai-Tibetan plateau].

    PubMed

    Guo, Zhenggang; Wu, Qingbo; Niu, Fujun

    2006-11-01

    With disturbed and undisturbed belts during the construction of Qinghai-Tibet highway as test objectives, this paper studied the effects of human engineering activities on the permafrost ecosystem in northern Qinghai-Tibetan plateau. The results showed that the thickness of permafrost active layer was smaller in disturbed than in undisturbed belt, and decreased with increasing altitude in undisturbed belt while no definite pattern was observed in disturbed belt. Different vegetation types had different effects on the thickness of permafrost active layer, being decreased in the order of steppe > shrub > meadow. In the two belts, altitude was the main factor affecting the vertical distribution of soil moisture, but vegetation type was also an important affecting factor if the altitude was similar. Due to the human engineering activities, soil temperature in summer was lower in disturbed than in undisturbed belt.

  7. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination.

  8. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia.

    PubMed

    Liebner, Susanne; Rublack, Katja; Stuehrmann, Torben; Wagner, Dirk

    2009-01-01

    With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer. PMID:18592300

  9. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  10. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  11. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  13. Activation of ethylenediaminetetraacetic acid by a 940 nm diode laser for enhanced removal of smear layer.

    PubMed

    Lagemann, Manfred; George, Roy; Chai, Lei; Walsh, Laurence J

    2014-08-01

    Laser enhancement of ethylenediaminetetraacetic acid with cetrimide (EDTAC) has previously been shown to increase removal of smear layer, for middle-infrared erbium lasers. This study evaluated the efficiency of EDTAC activation using a near-infrared-pulsed 940 nm laser delivered by plain fibre tips into 15% EDTAC or 3% hydrogen peroxide. Root canals in 4 groups of 10 single roots were prepared using rotary files, with controls for the presence and absence of smear layer. After laser treatment (80 mJ pulse(-1) , 50 Hz, 6 cycles of 10 s), roots were split and the apical, middle and coronal thirds of the canal were examined using scanning electron microscopy, with the area of dentine tubules determined by a validated quantitative image analysis method. Lasing EDTAC considerably improved smear layer removal, while lasing into peroxide gave minimal smear layer removal. The laser protocol used was more effective for smear layer removal than the 'gold standard' protocol using EDTAC with sodium hypochlorite (NaOCl). In addition, lasers may also provide a benefit through photothermal disinfection. Further research is needed to optimise irrigant activation protocols using near-infrared diode lasers of other wavelengths.

  14. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  15. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  16. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  17. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    USGS Publications Warehouse

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  18. The ironic detachment of Edward Gibbon.

    PubMed

    Trosman, Harry

    2009-06-01

    Edward Gibbon, the author of The History of the Decline and Fall of the Roman Empire, has been widely recognized as a master of irony. The historian's early life with parents he found self-serving and unreliable, his reaction to the events surrounding the death of his mother at the age of 9 and the decline of his father, left an impact on his personality and played a role in determining his choice of his life work. Irony has been approached from a psychoanalytic perspective as a mode of communication, as a stylistic device, as a modality through which one might view reality and as a way of uncovering the linkage between pretense and aspiration, between the apparent and the real. Gibbon's ironic detachment can be understood as rooted in his life history. He felt detached from his family of origin, in need of a protective device which would enable him to deal with passion. Sexual and aggressive impulses mobilized defensive postures that were later transformed into an attitude of skepticism and an interest in undercutting false beliefs and irrational authority, positions he attributes to religious ideation which served to instigate historical decline.

  19. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  20. Electrical and mechanical characterization of nanoscale-layered cellulose-based electro-active paper.

    PubMed

    Yun, Gyu-Young; Yun, Ki-Ju; Kim, Joo-Hyung; Kim, Jaehwan

    2011-01-01

    In order to understand the electro-mechanical behavior of piezoelectric electro active paper (EAPap), the converse and direct piezoelectric characterization of cellulose EAPap was studied and compared. A delay between the electrical field and the induced strain of EAPap was observed due to the inner nano-voids or the localized amorphous regions in layer-by-layered structure to capture or hold the electrical charges and remnant ions. The linear relation between electric field and induced strain is also observed. The electro-mechanical performance of EAPap is discussed in detail in this paper.

  1. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  2. Detection of detachments and inhomogeneities in frescos by Compton scattering

    NASA Astrophysics Data System (ADS)

    Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palamà, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.

    2005-07-01

    A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the "Raphael's stanze".

  3. Active layer temperature in two Cryosols from King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto F. M.; Schaefer, Carlos Ernesto G. R.; Poelking, Everton L.; Simas, Felipe N. B.; Fernandes Filho, Elpidio I.; Bockheim, James G.

    2012-06-01

    This study presents soil temperature and moisture regimes from March 2008 to January 2009 for two active layer monitoring (CALM-S) sites at King George Island, Maritime Antarctica. The monitoring sites were installed during the summer of 2008 and consist of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths and one soil moisture probe placed at the bottommost layer at each site (accuracy of ± 2.5%), recording data at hourly intervals in a high capacity datalogger. The active layer thermal regime in the studied period for both soils was typical of periglacial environments, with extreme variation in surface temperature during summer resulting in frequent freeze and thaw cycles. The great majority of the soil temperature readings during the eleven month period was close to 0 °C, resulting in low values of freezing and thawing degree days. Both soils have poor thermal apparent diffusivity but values were higher for the soil from Fildes Peninsula. The different moisture regimes for the studied soils were attributed to soil texture, with the coarser soil presenting much lower water content during all seasons. Differences in water and ice contents may explain the contrasting patterns of freezing of the studied soils, being two-sided for the coarser soil and one-sided for the loamy soil. The temperature profile of the studied soils during the eleven month period indicates that the active layer reached a maximum depth of approximately 92 cm at Potter and 89 cm at Fildes. Longer data sets are needed for more conclusive analysis on active layer behaviour in this part of Antarctica.

  4. Evolution of the combat and operational stress control detachment.

    PubMed

    Dailey, Jason I; Ijames, Victoria L

    2014-01-01

    Medical units designed to provide combat and operational stress control services have evolved since World War II into the current Combat and Operational Stress Control (COSC) detachments. Yet the structure of these COSC detachments differ greatly between what is authorized in the table of organization and equipment (TO&E) and what is doctrinally described in the current field manual guiding combat and operational stress control operations. We therefore explore the evolution of the COSC detachment, compare the organizations found in current doctrine with that currently authorized on the TO&E, and conclude with a proposed structure of a modern COSC detachment that is functionally modular with more clear chains of command.

  5. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  6. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGES

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  7. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  8. [Impact of ozone therapy on the electrophysiological parameters of the retina in patients operated on for its rhegmatogenous detachment].

    PubMed

    Neroev, V V; Sarygina, O I; Zueva, M V; Tsapenko, I V; Egorova, E N

    2007-01-01

    The impact of ozone therapy on changes in the data of maximum combined electroretinography (ERG), macular ERG (MERG), and rhythmic ERG (RERG) at 12, 32, and 40 Hz was studied in the rehabilitative period in patients operated on for rhegmatogenous retinal detachment. The integral and local glial indices K(g) and K(c) were calculated. Studies were conducted before, within 1 week and 1 and 2 months after a course of therapy. With ozone therapy, ERG and RERG depended on the specific features of changes available in the fundus of the eye before surgery. In the early rehabilitative period after surgery (circlage with subretinal fluid removal), ozone therapy normalized the glial indices, by decreasing the supernormal activity of Muller's glial cells and drastically increasing their reduced activity. The maximum effect was revealed for the function of phororeceptors (except for the eyes showing pronounced myopic dystrophic changes in the fundus). There were increases in MERG, ERG b-wave, and low-frequency RERG by 12 Hz, i.e. improved functions of the macular region and distal neurons of the retinal rod cell system. A latent period was established for the manifestation of a positive effect of ozonwe therapy on the functional of neurons of the internal retinal nuclear layer, as evidenced by RERG changes. Ozone therapy positively affect retinal electrogenesis in cases of total retinal detachment accompanied by a pronounced reduction in the glial index Kg before surgery. The therapy was found to have a positive impact on the functional activity of the retina of pair eyes, by developing within a one-moth latent period.

  9. Air-coupled piezoelectric transducers with active polypropylene foam matching layers.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2013-05-10

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1-3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the l/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range.

  10. Activation of Extrasynaptic NMDARs at Individual Parallel Fiber–Molecular Layer Interneuron Synapses in Cerebellum

    PubMed Central

    Nahir, Ben

    2013-01-01

    NMDA receptors (NMDARs) expressed by cerebellar molecular layer interneurons (MLIs) are not activated by single exocytotic events but can respond to glutamate spillover following coactivation of adjacent parallel fibers (PFs), indicating that NMDARs are perisynaptic. Several types of synaptic plasticity rely on these receptors but whether they are activated at isolated synapses is not known. Using a combination of electrophysiological and optical recording techniques in acute slices of rat cerebellum, along with modeling, we find that repetitive activation of single PF–MLI synapses can activate NMDARs in MLIs. High-frequency stimulation, multivesicular release (MVR), or asynchronous release can each activate NMDARs. Frequency facilitation was found at all PF–MLI synapses but, while some showed robust MVR with increased release probability, most were limited to univesicular release. Together, these results reveal a functional diversity of PF synapses, which use different mechanisms to activate NMDARs. PMID:24107963

  11. Influence of the Halogen Activation on the Ozone Layer in XXIst Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Aloyan, Artash; Yermakov, Alexandr

    2016-04-01

    The aim of the work is to evaluate a possible effect of heterophase chemical reactions (HCR) with participation of reservoir gases (ClONO2, HCl) and sulfate particles of the Junge layer on the ozone layer at mid-latitudes in the XXI century, which could be relevant for more accurate predicting a recovery of the ozone layer, taking into account that just these processes were the main cause of the ozone depletion at the end of XXth century. Required for calculating the dynamics of GHR data on the specific volume/surface of the sulfate aerosols in the lower stratosphere were taken from the data of field experiments. Their physico-chemical properties (chemical composition, density, water activity and free protons activity et al.) have been obtained with help of thermodynamic calculations (Atmospheric Inorganic Model, AIM). Altitude concentration profiles of individual gas components, as well as temperature and relative humidity (RH) at a given geographic location and season have been calculated using a two-dimensional model SOCRATES. The calculations have been made for the conditions of June 1995, 2040 and 2080 at 15 km altitude and 50° N latitude. It has been shown that the rate of ozone depletion as a result of processes involving halogen activation for the given conditions in 2040, 2080 is about 35% lower than a corresponding value in 1995 (a year of maximum effect of halogen activation). From this we can conclude that in the XXI century, despite the natural decline of ozone-depleting chlorofluorocarbons. processes of halogen activation of the ozone depletion with participation of sulfate aerosols should be taken into account in the calculations of the recovery of the ozone layer at mid-latitudes.

  12. Activity retention after nisin entrapment in a polyethylene oxide brush layer.

    PubMed

    Auxier, Julie A; Schilke, Karl F; McGuire, Joseph

    2014-09-01

    The cationic, amphiphilic peptide nisin is an effective inhibitor of gram-positive bacteria whose mode of action does not encourage pathogenic resistance, and its proper incorporation into food packaging could enhance food stability, safety, and quality in a number of circumstances. Sufficiently small peptides have been shown to integrate into otherwise nonfouling polyethylene oxide (PEO) brush layers in accordance with their amphiphilicity and ordered structure, including nisin, and we have recently shown that nisin entrapment within a PEO layer does not compromise the nonfouling character of that layer. In this work we test the hypothesis that surface-bound, pendant PEO chains will inhibit displacement of entrapped nisin by competing proteins and, in this way, prolong retention of nisin activity at the interface. For this purpose, the antimicrobial activity of nisinloaded, PEO-coated surfaces was evaluated against the gram-positive indicator strain, Pediococcus pentosaceous. The retained antimicrobial activity of nisin layers was evaluated on uncoated and PEO-coated surfaces after incubation in the presence of bovine serum albumin for contact periods up to 1 week. Nisin-loaded, uncoated and PEO-coated samples were withdrawn at selected times and were incubated on plates inoculated with P. pentosaceous to quantify nisin activity by determination of kill zone radii. Our results indicate that nisin activity is retained at a higher level for a longer period of time after entrapment within PEO than after direct adsorption in the absence of PEO, owing to inhibition of nisin exchange with dissolved protein afforded by the pendant PEO chains.

  13. Dynamics of thin-skinned fold and thrust belts with a tilted detachment

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Epard, Jean-Luc

    2014-05-01

    The formation of the Jura fold and thrust belt is linked to the Alpine orogeny. However, it is still a matter of debate why the Jura was formed tens of kilometres far away from the active deformation front while the Molasse basin that lies in between remained mostly undeformed. Progressive thickening of the Molasse basin due to its infill with sediments, and the existence of a tilted potential detachment level at the Triassic evaporitic units, have been pushed forward as the main causes for the detachment of the Molasse basin and the consequent jump of the deformation front from the Alpine front to the position of the Jura at around 22 Ma or later (e.g Willett and Schlunegger, 2010). In order to better understand the dynamics of a thin-skinned fold and thrust belt with a tilted detachment we have performed systematic forward numerical simulations with the 2D thermo-mechanical finite element code MILAMIN_VEP. The modelled setup consists of a tilted detachment, overlain by a sedimentary cover of constant thickness and a wedge shaped basin infill that makes the initial surface slope of the system to be zero. In this study we have tested the importance of the following factors in the dynamics of such a fold and thrust belt evolution: 1) the applied boundary conditions 2) the angle of a uniformly tilted detachment 3) the end displacement of a curved detachment with a flexural foreland basin profile. The implications of the studied factors are discussed for the case of the Jura-Molasse system. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. References Willett, S.D. and Schlunegger, F. 2010, The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Research 22, 623-639, doi: 10.1111/j.1365-2117.2009.00435.x

  14. Detachment of a single water drop

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2014-01-01

    The detachment process of a single water drop from a nozzle made of poorly wetted material is followed using high-speed video equipment. The formation and motion dynamics of various flow components are investigated. These are the drop itself; a liquid bridge (jumper), which connects the drop with the mother liquid; the primary satellite, which is formed from the jumper; and a microsatellite, which is thrown from the satellite and flies to the mother liquid. The strong influence of surface effects, under which the satellite initially moves upward and only at a certain time starts to fall along the ballistic trajectory, is established. Bounce of the microsatellite from the mother liquid, which precedes its absorption, is fixed. It is shown that a stable connection of the formation mechanism of satellites with the jumper dynamics opens the possibility of obtaining uniform-sized drops.

  15. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  16. Changes in spectral properties of detached leaves

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Biehl, L. L.

    1984-01-01

    If leaf senescence can be delayed for several days without significant changes in spectral properties, then samples of leaves at remote test sites could be prepared and shipped to laboratories to measure spectral properties. The changes in spectral properties of detached leaves were determined. Leaves from red birch and red pine were immersed in water or 0.001 M benzylaminopurine (BAP) and stored in plastic bags in the dark at either 5 or 25 C. Total directional-hemispherical reflectance and transmittance of the adaxial surface of birch leaves were measured over the 400 to 1100 nm wavelength region with a spectroradiometer and integrating sphere. Pine needles were taped together and reflectance of the mat of needles was measured. Spectral properties changed less than 5% of initial values during the first week when leaves were stored at 5 C. Storage at 25 C promoted rapid senescence and large changes in spectral properties. BAP delayed, but did not stop, senescence at 25 C.

  17. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described

  18. Recurrent Annular Peripheral Choroidal Detachment after Trabeculectomy

    PubMed Central

    Liu, Shaohui; Sun, Lisa L.; Kavanaugh, A. Scott; Langford, Marlyn P.; Liang, Chanping

    2013-01-01

    We report a challenging case of recurrent flat anterior chamber without hypotony after trabeculectomy in a 54-year-old Black male with a remote history of steroid-treated polymyositis, cataract surgery, and uncontrolled open angle glaucoma. The patient presented with a flat chamber on postoperative day 11, but had a normal fundus exam and intraocular pressure (IOP). Flat chamber persisted despite treatment with cycloplegics, steroids, and a Healon injection into the anterior chamber. A transverse B-scan of the peripheral fundus revealed a shallow annular peripheral choroidal detachment. The suprachoroidal fluid was drained. The patient presented 3 days later with a recurrent flat chamber and an annular peripheral choroidal effusion. The fluid was removed and reinforcement of the scleral flap was performed with the resolution of the flat anterior chamber. A large corneal epithelial defect developed after the second drainage. The oral prednisone was tapered quickly and the topical steroid was decreased. One week later, his vision decreased to count fingers with severe corneal stromal edema and Descemet's membrane folds that improved to 20/50 within 24 h of resumption of the oral steroid and frequent topical steroid. The patient's visual acuity improved to 20/20 following a slow withdrawal of the oral and topical steroid. Eight months after surgery, the IOP was 15 mm Hg without glaucoma medication. The detection of a shallow anterior choroidal detachment by transverse B-scan is critical to making the correct diagnosis. Severe cornea edema can occur if the steroid is withdrawn too quickly. Thus, steroids should be tapered cautiously in steroid-dependent patients. PMID:24348402

  19. The Oman Ophiolite from Detachment to Obduction

    NASA Astrophysics Data System (ADS)

    Boudier, F. I.

    2014-12-01

    An overview model is presented accounting for older and up-dated published data. Detachment of the Oman ophiolite exhumed a 20 km thick fragment of oceanic lithosphere 500 x 100 km2 in extension. This detachment occurred at margin of a fast spreading NeoTethyan Ocean, at P/T conditions ~900°C-200 MPa, 95-95.5 Ma ago. The Hawasinah nappes underlying the ophiolite at present, represent the stacking of the sedimentary cover deposited on the Arabian continental margin, thinned and rifted since Permian time, and extending more than 300 km north from the present shore. The sedimentary record points to the collapse of the continental basement at Jurassic-Cretaceous boundary, 140 Ma ago. Subduction of the rifted continental margin is inferred, as recorded in the Saih Hatat high-pressure rocks whose metamorphic age 80-140 Ma is discussed, as well as the vergence of related subduction. Late Cretaceous time 85-70 Ma marks the emplacement of the Oman ophiolite in the Muti Basin, to its present position inland the Permo-Triassic continental margin. These episodes are not similarly recorded in the northern part of the Oman Mountains, that do not expose any HP metamorphic belt, but granulitic crustal rocks and large development of syn-obduction non-MORB magmatism in the ophiolite crustal section. Collision is achieved at the northern tip, the Musandam area, linked to the opening of the Gulf of Aden 25 Ma ago, and northward drift of the Arabian Plate.

  20. Active layer hydrology for Imnavait Creek, Toolik, Alaska. Annual progress report, July 1984--January 1986

    SciTech Connect

    Kane, D.L.

    1986-12-31

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  1. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  2. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  3. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  4. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes.

  5. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes. PMID:25564877

  6. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  7. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  8. Hypoxia inducible factor 1α contributes to regulation of autophagy in retinal detachment

    PubMed Central

    Shelby, Shameka J.; Angadi, Pavan S.; Zheng, Qiong-Duon; Yao, Jingyu; Jia, Lin; Zacks, David N.

    2015-01-01

    Photoreceptor (PR) cells receive oxygen and nutritional support from the underlying retinal pigment epithelium (RPE). Retinal detachment results in PR hypoxia and their time-dependent death. Detachment also activates autophagy within the PR, which serves to reduce the rate of PR apoptosis. In this study, we test the hypothesis that autophagy activation in the PR results, at least in part, from the detachment-induced activation of hypoxia-inducible factors (HIF). Retina-RPE separation was created in Brown-Norway rats and C57BL/6J mice by injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested and assayed for HIF protein levels. Cultured 661W photoreceptor cells were subjected to hypoxic conditions and assayed for induction of HIF and autophagy. The requirement of HIF-1α and HIF-2α in regulating photoreceptor autophagy was tested using siRNA in vitro and in vivo. We observed increased levels of HIF-1α and HIF-2α within 1 day post-detachment, as well as increased levels of BNIP3, a downstream target of HIF-1α that contributes to autophagy activation. Exposing 661W cells to hypoxia resulted in increased HIF-1α and HIF-2α levels and increase in conversion of LC3-I to LC3-II. Silencing of HIF-1α, but not HIF-2α, reduced the hypoxia-induced increase in LC3-II formation and increased cell death in 661W cells. Silencing of HIF-1α in rat retinas prevented the detachment-induced increase in BNIP3 and LC3-II, resulting in increased PR cell death. Our data support the hypothesis that HIF-1α, but not HIF-2α, serves as an early response signal to induce autophagy and reduce photoreceptor cell death. PMID:26093278

  9. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  10. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  11. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  12. Bioavailable Carbon and the Relative Degradation State of Organic Matter in Active Layer and Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.

    2015-12-01

    The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons

  13. Role of edge turbulence in detached divertor plasmas

    NASA Astrophysics Data System (ADS)

    Gang, F. Y.; Sigmar, D. J.; Krasheninnikov, S. I.

    1996-04-01

    The role of edge turbulence in detached divertor plasmas is investigated. It is shown that the edge turbulence, through poloidal transport of parallel momentum, can produce a significant plasma pressure drop along the magnetic field lines toward the divertor plate, a feature that characterizes the detached divertor plasma regime.

  14. Frictional and elastic energy in gecko adhesive detachment.

    PubMed

    Gravish, Nick; Wilkinson, Matt; Autumn, Kellar

    2008-03-01

    Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1 m s(-1). Climbing presents a significant challenge for an adhesive since it requires both strong attachment and easy, rapid removal. Conventional pressure-sensitive adhesives are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). We discovered that the energy required to detach adhering tokay gecko setae (W(d)) is modulated by the angle (theta) of a linear path of detachment. Gecko setae resist detachment when dragged towards the animal during detachment (theta = 30 degrees ) requiring W(d) = 5.0+/-0.86(s.e.) J m(-2) to detach, largely due to frictional losses. This external frictional loss is analogous to viscous internal frictional losses during detachment of pressure-sensitive adhesives. We found that, remarkably, setae possess a built-in release mechanism. Setae acted as springs when loaded in tension during attachment and returned elastic energy when detached along the optimal path (theta=130 degrees ), resulting in W(d) = -0.8+/-0.12 J m(-2). The release of elastic energy from the setal shaft probably causes spontaneous release, suggesting that curved shafts may enable easy detachment in natural, and synthetic, gecko adhesives.

  15. Preludes to retinal detachment in the aphakic eye.

    PubMed

    Osterlin, S

    1977-01-01

    The author reviews the characteristic differences in primary rhegmatogenous retina detachment occurring in phakic eyes and in aphakic eyes. The preoperative findings in aphakic detachment are explained on the basis of two factors: surgical trauma during cataract extraction and postoperative changes in the macromolecular compostion of the vitreous.

  16. Heart Mountain, Wyoming, detachment lineations: are they in microbreccia or in volcanic tuff?

    USGS Publications Warehouse

    Pierce, W.G.; Nelson, W.H.; Tokarski, A.K.; Piekarska, E.

    1991-01-01

    The concept of tectonic denudation followed by deposition of lower middle Eocene Wapiti Formation volcanic rocks on the exposed Heart Mountain detachment has been challenged by Hauge. His "extending allochthon' interpretation requires that the Wapiti Formation be fault emplaced and that lineations in a volcanic tuff overlying the fault north of Jim Smith Peak be fault striae in "microbreccia'. Our re-examination of the field evidence in minute detail indicates that these lineations were produced by flowage of volcanic rocks on a thin layer of air-fall tuff. The evidence indicates that this tuff was deposited on the detachment surface during the brief interval that the denuded surface was exposed. -from Authors

  17. Fluorosilicone oil in the treatment of retinal detachment.

    PubMed Central

    Gremillion, C M; Peyman, G A; Liu, K R; Naguib, K S

    1990-01-01

    We evaluated the use of a heavier-than-water fluorinated silicone oil in the treatment of 30 selected cases of complicated retinal detachment from January 1988 to July 1989. Proliferative vitreoretinopathy grade C-2 or greater accounted for 19 cases, proliferative diabetic retinopathy with traction detachment for two cases, giant retinal tears five, ruptured globe with retinal detachment two, massive choroidal effusion with retinal detachment one, and acute retinal necrosis with retinal detachment one. Initial retinal reattachment was achieved in all cases. Complications included redetachment seven (23%), cataract six (75% of phakic patients), raised intraocular pressure four (13%), hypotony four (13%), keratopathy three (10%), uveitis-synechia formation three (10%), phthisis two (3%), choroidal haemorrhage one (3%), and vitreous haemorrhage one (3%). Postoperative visual acuities with at least six months' follow-up range from no light perception to 20/50, with seven patients (23%) 20/400 or better. Images PMID:2223698

  18. Fluorosilicone oil in the treatment of retinal detachment.

    PubMed

    Gremillion, C M; Peyman, G A; Liu, K R; Naguib, K S

    1990-11-01

    We evaluated the use of a heavier-than-water fluorinated silicone oil in the treatment of 30 selected cases of complicated retinal detachment from January 1988 to July 1989. Proliferative vitreoretinopathy grade C-2 or greater accounted for 19 cases, proliferative diabetic retinopathy with traction detachment for two cases, giant retinal tears five, ruptured globe with retinal detachment two, massive choroidal effusion with retinal detachment one, and acute retinal necrosis with retinal detachment one. Initial retinal reattachment was achieved in all cases. Complications included redetachment seven (23%), cataract six (75% of phakic patients), raised intraocular pressure four (13%), hypotony four (13%), keratopathy three (10%), uveitis-synechia formation three (10%), phthisis two (3%), choroidal haemorrhage one (3%), and vitreous haemorrhage one (3%). Postoperative visual acuities with at least six months' follow-up range from no light perception to 20/50, with seven patients (23%) 20/400 or better.

  19. Spontaneous Solitaire™ AB Thrombectomy Stent Detachment During Stroke Treatment

    SciTech Connect

    Akpinar, Suha Yilmaz, Guliz

    2015-04-15

    Spontaneous Solitaire™ stent retriever detachment is a rarely defined entity seen during stroke treatment, which can result in a disastrous clinical outcome if it cannot be solved within a critical stroke treatment time window. Two solutions to this problem are presented in the literature. The first is to leave the stent in place and apply angioplasty to the detached stent, while the second involves surgically removing the stent from the location at which it detached. Here, we present a case of inadvertent stent detachment during stroke treatment for a middle cerebral artery M1 occlusion resulting in progressive thrombosis. The detached stent was removed endovascularly by another Solitaire stent, resulting in the recanalization of the occluded middle cerebral artery.

  20. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    PubMed

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  1. Dissociative detachment relates to psychotic symptoms and personality decompensation.

    PubMed

    Allen, J G; Coyne, L; Console, D A

    1997-01-01

    Previous studies have addressed the prominence of psychotic symptoms in conjunction with multiple personality disorder (now dissociative identity disorder). The present study examines the relation between psychotic symptoms and a more pervasive form of dissociative disturbance, namely dissociative detachment. Two hundred sixty-six women in inpatient treatment for severe trauma-related disorders completed the Dissociative Experiences Scale (DES), and 102 of these patients also completed the Millon Clinical Multiaxial Inventory (MCMI-III). A factor analysis of the DES yielded two dimensions of dissociative detachment: detachment from one's own actions and detachment from the self and the environment. Each of these DES dimensions relates strongly to the thought disorder and schizotypal personality disorder scales of the MCMI-III. We propose that severe dissociative detachment, by virtue of loosening the moorings in inner and outer reality, is conducive to psychotic symptoms and personality decompensation.

  2. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-04-01

    The activity of certain proteolytic enzymes is often an indicator of disease states such as cancer, stroke and neurodegeneracy, so there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules, but coupling a sensitive detection method to such a membrane remains difficult. Here, we demonstrate a single mesoporous nanoreactor that can isolate and quantify in real time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer, with large pore sizes (~100 nm in diameter), traps the protease and acts as the reactor. The lower layer, with smaller pore sizes (~6 nm), excludes the proteases and other large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity, and this allows label-free quantification of enzyme kinetics in real time within a volume of ~5 nl.

  3. Microbial activities at the benthic boundary layer in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.

    2003-05-01

    During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm -2 h -1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the

  4. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan C. C.; Schaefer, Carlos Ernesto G. R.; Fernandes, Raphael B. A.; Pereira, Thiago T. C.; Nieuwendam, Alexandre; Pereira, Antônio Batista

    2014-11-01

    Climate change impacts the biotic and abiotic components of polar ecosystems, affecting the stability of permafrost, active layer thickness, vegetation, and soil. This paper describes the active layer thermal regimes of two adjacent shallow boreholes, under the same soil but with two different vegetations. The study is location in Lions Rump, at King George Island, Maritime Antarctic, one of the most sensitive regions to climate change, located near the climatic limit of Antarctic permafrost. Both sites are a Turbic Cambic Cryosol formed on andesitic basalt, one under moss vegetation (Andreaea gainii, at 85 m a.s.l.) and another under lichen (Usnea sp., at 86 m a.s.l.), located 10 m apart. Ground temperature at same depths (10, 30 and 80 cm), water content at 80 cm depth and air temperature were recorded hourly between March 2009 and February 2011. The two sites showed significant differences in mean annual ground temperature for all depths. The lichen site showed a higher soil temperature amplitude compared to the moss site, with ground surface (10 cm) showing the highest daily temperature in January 2011 (7.3 °C) and the lowest daily temperature in August (- 16.5 °C). The soil temperature at the lichen site closely followed the air temperature trend. The moss site showed a higher water content at the bottommost layer, consistent with the water-saturated, low landscape position. The observed thermal buffering effect under mosses is primarily associated with higher moisture onsite, but a longer duration of the snowpack (not monitored) may also have influenced the results. Active layer thickness was approximately 150 cm at low-lying moss site, and 120 cm at well-drained lichen site. This allows to classify these soils as Cryosols (WRB) or Gelisols (Soil Taxonomy), with evident turbic features.

  5. Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes.

    PubMed

    Naudin, Clément; Hurley, Sinead M; Malmström, Erik; Plug, Tom; Shannon, Oonagh; Meijers, Joost C M; Mörgelin, Matthias; Björck, Lars; Herwald, Heiko

    2015-10-01

    Activation of thrombin is a critical determinant in many physiological and pathological processes including haemostasis and inflammation. Under physiological conditions many of these functions are involved in wound healing or eradication of an invading pathogen. However, when activated systemically, thrombin can contribute to severe and life-threatening conditions by causing complications such as multiple multi-organ failure and disseminated intravascular coagulation. In the present study we investigated how the activity of thrombin is modulated when it is bound to the surface of Streptococcus pyogenes. Our data show that S. pyogenes bacteria become covered with a proteinaceous layer when incubated with human plasma, and that thrombin is a constituent of this layer. Though the coagulation factor is found attached to the bacteria with a functional active site, thrombin has lost its capacity to interact with its natural substrates and inhibitors. Thus, the interaction of bacteria with human plasma renders thrombin completely inoperable at the streptococcal surface. This could represent a host defense mechanism to avoid systemic activation of coagulation which could be otherwise induced when bacteria enter the circulation and cause systemic infection.

  6. Tricuspid valve detachment in closure of congenital ventricular septal defect.

    PubMed

    Zhao, Jinping; Li, Jun; Wei, Xiang; Zhao, Bo; Sun, Wei

    2003-01-01

    From January 1991 through December 2001, 600 patients underwent closure of a perimembranous ventricular septal defect through a right atrial approach at our institution. In 122 of these patients, the operation included temporary detachment of a tricuspid valve septal leaflet from the annulus to allow complete visualization of a perimembranous ventricular septal defect The mean age of the patients at surgery was 4.6 years in those who underwent leaflet detachment and 4.7 years in the 478 patients who did not (P > 0.05). Preoperatively, all patients were in sinus rhythm. Echocardiography showed trivial tricuspid regurgitation in 21 of the patients undergoing detachment and in 39 of the non-detachment patients. There was no difference in bypass time or aortic cross-clamp time between the 2 groups. Postoperatively, 3 patients in the non-detachment group had heart block; all other patients were in sinus rhythm. Echocardiograms on the 7th postoperative day showed small residual ventricular septal defects in none of the patients who underwent valve detachment and in 10 of the non-detachment patients; mild tricuspid regurgitation was present in 12 non-detachment patients only; and trivial tricuspid regurgitation was present in 19 patients who underwent valve detachment and in 29 who did not. There was no hospital death in either group. Long-term follow-up showed no progression of tricuspid regurgitation or tricuspid stenosis. All patients remained in sinus rhythm. This study suggests that tricuspid valve detachment is a safe, effective technique that improves exposure for ventricular septal defect repair and does not adversely affect valve competence. PMID:12638669

  7. Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Darányi, Mária; Csesznok, Tamás; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre; Ajayan, Pulickel M.; Vajtai, Robert

    2011-05-01

    We report on the layer-by-layer (LbL) formation of TiO2-MWNT-TiO2 coatings on quartz with either trititanate derived TiO2 nanowires or Degussa P25 as the photocatalytically active material. The optimized deposition sequence is discussed in detail and the morphology of the prepared coatings is analyzed by SEM and XRD. The heterogeneous photocatalytic performance of the coatings was tested in the methyl orange oxidation reaction. The apparent first order rate constant fell in the 0.01-0.20 h - 1 range over a 2.5 × 2.5 cm2 film depending on the type and the thickness of the titanate coating. Building a multiwall carbon nanotube layer into the middle of the layer improved the photocatalytic activity for each material for all of the studied thicknesses. P25 based films performed 2-5 times better than TiO2 nanowire films; however, the pores in the P25 based films were largely blocked because the isotropic P25 nanoparticles form closely packed layers by themselves and even more so with the comparably sized multiwall carbon nanotubes. Therefore, films derived from titanate nanowires appear to be more suitable for use as multifunctional, photocatalytically active filtration media.

  8. Superior Photostability and Photocatalytic Activity of ZnO Nanoparticles Coated with Ultrathin TiO2 Layers through Atomic-Layer Deposition.

    PubMed

    Sridharan, Kishore; Jang, Eunyong; Park, Young Min; Park, Tae Joo

    2015-12-21

    Atomic-layer deposition (ALD) is a thin-film growth technology that allows for conformal growth of thin films with atomic-level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈ 0.75-1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.

  9. Permian magmatism, Permian detachment faulting, and Alpine thrusting in the Orobic Anticline, southern Alps, Italy

    NASA Astrophysics Data System (ADS)

    Pohl, Florian; Froitzheim, Niko; Geisler-Wierwille, Thorsten; Schlöder, Oliver

    2014-05-01

    The Grassi Detachment Fault is located in the Orobic Alps east of Lake Como and was described by Froitzheim et al. (2008) as an Early Permian extensional structure. Many issues still remained unclear, like the exact timing of faulting and the extension from the well-exposed part of the detachment towards west. The Grassi Detachment Fault separates the Variscan Basement in its footwall from the volcanic and sedimentary rocks of the Early Permian Collio Formation within its hanging wall, marked by a mylonitic and cataclastic layer whose textures indicate top-to-the-southeast displacement. The footwall basement is formed by the Variscan Morbegno Gneiss and two granitic intrusions, the Val Biandino Quarz Diorite (VBQD) and the Valle Biagio Granite (VBG). The former is syntectonic with respect to the detachment, whereas for the latter, the relation to the detachment is unknown. The age of the VBQD is poorly defined as 312 Ma ± 48 Ma (Thöni et al. 1992); the VBG has not been dated. Volcanic rocks of the Collio Formation in the hanging wall may represent the extrusive part of the magmatic system. In our study area west of Val Biandino, several faults and shear zones are exposed: (1) The Grassi Detachment Fault is represented by mylonites and cataclasites with top-SE shear sense, between basement rocks and the Collio Volcanics. Towards NW, it is truncated by the unconformably overlying Late Permian Verrucano Lombardo. This may reflect the eroded culmination of a Permian metamorphic core complex. (2) A steeply NW-dipping, brittle normal fault is found further west in the footwall between VBQD and VBG. It is sealed by the basal unconformity of the Verrucano Lombardo and therefore should also be of Early Permian age (Sciunnach, 2001). It may represent an antithetic fault with respect to the detachment, accommodating the uplift of the magmatically inflated core complex. (3) The Biandino Fault is a steeply SE-dipping reverse fault, affecting also the Late Permian Verrucano

  10. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  11. Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers.

    PubMed

    de Jubera, Ana M Saenz; Gao, Yuan; Moore, Jeffrey S; Cahill, David G; Mariñas, Benito J

    2012-09-01

    The fully aromatic polyamide active layer of a commercial nanofiltration membrane was modified with three generations (G1, G2, and G3) of aramide dendrimers, all with oligoethylene glycol chains on their peripheries. Permeation experiments revealed that the rejection of Rhodamine WT, used as a surrogate for organic contaminants, improved 1-2 orders of magnitude for membranes modified with G2 and G3 dendrimers at loadings of 0.7-3.5 μg/cm(2) (dendrimer layer thicknesses of ~1-6 nm) compared to the performance of unmodified membranes. In contrast, the corresponding water permeability of dendrimer-modified membranes decreased by only ~30%. Although an enhancement in the rejection of H(3)AsO(3), NaCl, and BaCl(2) was also observed for dendritic membranes, the effect was less pronounced than that for rhodamine WT. Characterization of membranes modified with 3.5 μg/cm(2) dendrimers G2 and G3 by Rutherford backscattering spectrometry with the aid of heavy ion probes (Ag(+) and Ba(2+)) revealed that accessibility of the larger Ba(2+) probe to carboxylate groups on the active layer decreased for the membranes modified with dendrimers.

  12. Statistical analysis on Na layer response to geomagnetic activities using Odin/OSIRIS data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo T.; Nakamura, Takuji; Ejiri, Mitsumu K.; Nishiyama, Takanori; Hosokawa, Keisuke; Takahashi, Toru; Gumbel, Jörg; Hedin, Jonas

    2016-04-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational dataset obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  13. Design method of the layered active magnetic regenerator (AMR) for hydrogen liquefaction by numerical simulation

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Kim, Youngkwon; Park, Jiho; Jeong, Sangkwon

    2015-09-01

    The design procedure of an active magnetic regenerator (AMR) operating between liquid nitrogen temperature and liquid hydrogen temperature is discussed with the selected magnetic refrigerants. Selected magnetic refrigerants (GdNi2, Dy0.85Er0.15Al2, Dy0.5Er0.5Al2, and Gd0.1Dy0.9Ni2) that have different transition temperatures are layered in an AMR to widen the temperature span. The optimum volume fraction of the layered refrigerants for the maximum COP with minimum volume is designed in a two-stage active magnetic regenerative refrigerator (AMRR) using one dimensional numerical simulation. The entropy generation in each stage of the AMR is calculated by the numerical simulation to optimize the proposed design. The main sources of the entropy generation in the AMR are pressure drop, convection and conduction heat transfers in the AMR. However, the entropy generation by the convective heat transfer is mostly dominant in the optimized cases. In this paper, the design parameters and the operating conditions such as the distribution of the selected refrigerants in the layered AMR, the intermediate temperature between two stages and the mass flow rate of heat transfer fluid are specifically determined to maximize the performance of the AMR. The proposed design method will facilitate the construction of AMR systems with various magnetic refrigerants and conditions such as AMR size, operating temperature range, and magnetic field variation.

  14. Layer V Perirhinal Cortical Ensemble Activity during Object Exploration: A Comparison between Young and Aged Rats

    PubMed Central

    Burke, S.N.; Hartzell, A.L.; Lister, J.P.; Hoang, L.T.; Barnes, C.A.

    2012-01-01

    Object recognition memory requires the perirhinal cortex (PRC) and this cognitive function declines during normal aging. Recent electrophysiological recordings from young rats have shown that neurons in layer V of the PRC are activated by 3-dimensional objects. Thus, it is possible that age-related object recognition deficits result from alterations in PRC neuron activity in older animals. To examine this, the present study used cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) with confocal microscopy to monitor cellular distributions of activity-induced Arc RNA in layer V of the PRC. Activity was monitored during two distinct epochs of object exploration. In one group of rats (6 young/6 aged) animals were placed in a familiar testing arena and allowed to explore five different 3-dimensional objects for two 5-min sessions separated by a 20-min rest (AA). The second group of animals (6 young/6 aged) also explored the same objects for two 5-min sessions, but the environment was changed between the first and the second epoch (AB). Behavioral data showed that both age groups spent less time exploring objects during the second epoch, even when the environment changed, indicating successful recognition. Although the proportion of active neurons between epochs did not change in the AA group, in the AB group more neurons were active during epoch 2 of object exploration. This recruitment of neurons into the active neural ensemble could serve to signal that familiar stimuli are being encountered in a new context. When numbers of Arc positive neurons were compared between age groups, the old rats had significantly lower proportions of Arc-positive PRC neurons in both the AA and AB behavioral conditions. These data support the hypothesis that age-associated functional alterations in the PRC contribute to declines in stimulus recognition over the lifespan. PMID:22987683

  15. Layer V perirhinal cortical ensemble activity during object exploration: a comparison between young and aged rats.

    PubMed

    Burke, S N; Hartzell, A L; Lister, J P; Hoang, L T; Barnes, C A

    2012-10-01

    Object recognition memory requires the perirhinal cortex (PRC) and this cognitive function declines during normal aging. Recent electrophysiological recordings from young rats have shown that neurons in Layer V of the PRC are activated by three-dimensional objects. Thus, it is possible that age-related object recognition deficits result from alterations in PRC neuron activity in older animals. To examine this, the present study used cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) with confocal microscopy to monitor cellular distributions of activity-induced Arc RNA in layer V of the PRC. Activity was monitored during two distinct epochs of object exploration. In one group of rats (6 young/6 aged) animals were placed in a familiar testing arena and allowed to explore five different three-dimensional objects for two 5-min sessions separated by a 20-min rest (AA). The second group of animals (6 young/6 aged) also explored the same objects for two 5-min sessions, but the environment was changed between the first and the second epoch (AB). Behavioral data showed that both age groups spent less time exploring objects during the second epoch, even when the environment changed, indicating successful recognition. Although the proportion of active neurons between epochs did not change in the AA group, in the AB group more neurons were active during epoch 2 of object exploration. This recruitment of neurons into the active neural ensemble could serve to signal that familiar stimuli are being encountered in a new context. When numbers of Arc positive neurons were compared between age groups, the old rats had significantly lower proportions of Arc-positive PRC neurons in both the AA and AB behavioral conditions. These data support the hypothesis that age-associated functional alterations in the PRC contribute to declines in stimulus recognition over the lifespan.

  16. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    PubMed

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-08-06

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.

  17. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

    PubMed

    Hong, Kijoo; Cho, Moonkyu; Kim, Sang Ouk

    2015-01-28

    Operating voltage enhancement is an effective route for high energy density supercapacitors. Unfortunately, widely used activated carbon electrode generally suffers from poor electrochemical stability over 2.5 V. Here we present atomic layer deposition (ALD) encapsulation of activated carbons for high voltage stable supercapacitors. Two-nanometer-thick Al2O3 dielectric layers are conformally coated at activated carbon surface by ALD, well-maintaining microporous morphology. Resultant electrodes exhibit excellent stability at 3 V operation with 39% energy density enhancement from 2.5 V operation. Because of the protection of surface functional groups and reduction of electrolyte degradation, 74% of initial voltage was maintained 50 h after full charge, and 88% of capacitance was retained after 5000 cycles at 70 °C accelerated test, which correspond to 31 and 17% improvements from bare activated carbon, respectively. This ALD-based surface modification offers a general method to enhance electrochemical stability of carbon materials for diverse energy and environmental applications.

  18. On Active Layer Environments and Processes in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hansen, C. D.; Meiklejohn, I.; Nel, W.

    2012-12-01

    The current understanding of Antarctic permafrost is poor, particularly regarding its evolution, the current thermal characteristics, and relationships with pedogenesis, hydrology, geomorphic, dynamics, biotic activity and response to global changes. Results from borehole temperature measurements over a four-year period in Western Dronning Maud Land suggest that the active layer depth is dependent on the substrate, latitude, altitude and the volume of ground exposed; the latter alludes to the potential impact of surrounding ice on the ground thermal regime. The active layer depths at the monitoring sites, varied between 16 cm at Vesleskarvet, a small nunatak at 850 masl to 28 cm in granitic till at Jutulsessen (1 270 masl). The mean near surface (1.5 cm depth) ground temperatures from 2009 to 2012 in the region have a narrow range from -16.4°C at 850m to -17.5°C at 1270 masl. Permafrost temperatures for the same locations vary between -16.3°C and -18.3°C. While little variability exists between the mean temperatures at the study locations, each site is distinct and seasonal and shorter-term frost cycles have produced landforms that are characteristic of both permafrost and diurnal frost environments. One of the key aspects of investigation is the control that the active layer has on autochthonous blockfield development in the region. The, thus far, exploratory research is being used to understand controls on the landscape and the relationship between distribution and abundance of biota. Given the rapidly changing climates in the region, improving knowledge of what drives patterns of biodiversity at a local and regional scale is vital to assess consequences of environmental change.

  19. Descemet's Membrane Detachment Management Following Trabeculectomy

    PubMed Central

    Sharifipour, Farideh; Nassiri, Saman; Idan, Aida

    2016-01-01

    Purpose: To present a case of total Descemet's membrane detachment (DMD) after trabeculectomy and its surgical management. Case Report: A 68-year-old woman presented with large DMD and corneal edema one day after trabeculectomy. Intracameral air injection on day 3 was not effective. Choroidal effusion complicated the clinical picture with Descemet's membrane (DM) touching the lens. Choroidal tap with air injection on day 6 resulted in DM attachment and totally clear cornea on the next day. However, on day 12 the same scenario was repeated with choroidal effusion, shallow anterior chamber (AC), and DM touching the lens. The third surgery included transconjunctival closure of the scleral flap with 10/0 nylon sutures, choroidal tap, and intracameral injection of 20% sulfur hexafluoride. After the third surgery, DM remained attached with clear cornea. Suture removal and needling bleb revision preserved bleb function. Lens opacity progressed, and the patient underwent uneventful cataract surgery 4 months later. Conclusion: Scleral flap closure using transconjunctival sutures can be used for DMD after trabeculectomy to make the eye a closed system. Surgical drainage of choroidal effusions should be considered to increase the AC depth. PMID:27621793

  20. Descemet's Membrane Detachment Management Following Trabeculectomy

    PubMed Central

    Sharifipour, Farideh; Nassiri, Saman; Idan, Aida

    2016-01-01

    Purpose: To present a case of total Descemet's membrane detachment (DMD) after trabeculectomy and its surgical management. Case Report: A 68-year-old woman presented with large DMD and corneal edema one day after trabeculectomy. Intracameral air injection on day 3 was not effective. Choroidal effusion complicated the clinical picture with Descemet's membrane (DM) touching the lens. Choroidal tap with air injection on day 6 resulted in DM attachment and totally clear cornea on the next day. However, on day 12 the same scenario was repeated with choroidal effusion, shallow anterior chamber (AC), and DM touching the lens. The third surgery included transconjunctival closure of the scleral flap with 10/0 nylon sutures, choroidal tap, and intracameral injection of 20% sulfur hexafluoride. After the third surgery, DM remained attached with clear cornea. Suture removal and needling bleb revision preserved bleb function. Lens opacity progressed, and the patient underwent uneventful cataract surgery 4 months later. Conclusion: Scleral flap closure using transconjunctival sutures can be used for DMD after trabeculectomy to make the eye a closed system. Surgical drainage of choroidal effusions should be considered to increase the AC depth.

  1. Stability of Menisci in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2013-01-01

    Detached growth, also referred to as dewetted growth, is a Bridgman crystal growth process in which the melt is in contact with the crucible wall but the crystal is not. A meniscus bridges the gap between the top of the crystal and the crucible wall. The meniscus shape depends on the contact angle of the melt with the crucible wall, the growth angle of the melt with respect to the solidifying crystal, the gas pressure differential, the Weber number describing the rotation rate of the crucible, and the Bond number. Only some of the meniscus shapes are stable and the stability criterion is the sign of the second variation of the potential energy upon admissible meniscus shape perturbations. The effects of confined gas volumes above and below the melt and crucible rotation are evaluated. The analysis is applicable to the non-stationary case where the crystal radius changes during growth. Static stability maps (crystal radius versus pressure differential) are obtained for a series of Bond numbers, growth angles and Weber numbers. Also, the specific cases of Ge and InSb, in both terrestrial and microgravity conditions, are analyzed. Stability was found to depend significantly on whether the interior surface was considered to be microscopically rough or smooth, corresponding to pinned or unpinned states. It was also found that all meniscus shapes are statically stable in a microgravity environment.

  2. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  3. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  4. The Western Cycladic Detachment System on Makronisos, Greece

    NASA Astrophysics Data System (ADS)

    Loisl, Johannes; Lindner, Karoline; Huet, Benjamin; Grasemann, Bernhard; Rice, A. Hugh. N.; Soukis, Konstantinos; Schneider, David

    2014-05-01

    porphyroclasts may preserve an older foliation and layering, exhibiting features of an earlier, higher grade metamorphism and deformation phase. This evolution is consistent with progressive cooling during top-to-SSW deformation. The relict HP-mineral assemblages indicate a correlation with the Cycladic Blueschist Unit and hence the white-grey to pale-red ultramylonites forming the structurally uppermost part of the island can be interpreted as a part of the footwall of the Western Cycladic Detachment System. 40Ar/39Ar analyses on metamorphic white mica from pelitic schists, quartzites and marble mylonites/ultramylonites yield ages between 15 and 22 Ma, with a positive correlation between young ages and higher strain. These results are younger than 40Ar/39Ar ages in the Cycladic Blueschist Unit on Evvia (55-45 Ma and 35-30 Ma) but are similar to white mica ages on nearby Kea. In combination with the given tectonometamorphic data, this suggests that Makronisos underwent a similar geological history as other Western Cycladic islands.

  5. Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri; Basu, Abhik

    2015-11-01

    We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient Γ . Being controlled by Γ , our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on Γ . Based on our results, we discuss estimation of bounds on Γ in experimentally accessible systems.

  6. Interplay between magmatic accretion, spreading asymmetry and detachment faulting at a segment end: Crustal structure south of the Ascension Fracture Zone

    NASA Astrophysics Data System (ADS)

    Bialas, Jörg; Dannowski, Anke; Reston, Timothy J.

    2015-12-01

    A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).

  7. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).

  8. Aminosilane layers on the plasma activated thermoplastics: influence of solvent on its structure and morphology.

    PubMed

    Sunkara, Vijaya; Cho, Yoon-Kyoung

    2013-12-01

    The chemistry and the structure of aminosilane layer on the plasma activated thermoplastic substrates, e.g., polycarbonate (PC), polystyrene (PS), poly(methyl methacrylate) (PMMA), and cyclic olefin co-polymer (COC) were investigated at the molecular level. The nature of the surface functional groups of the silane layers prepared by solution phase deposition in aqueous and anhydrous solvents were studied using various techniques including ellipsometry, goniometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance infrared spectroscopy (ATR-IR). The XPS analyses revealed the presence of various oxygen functionalities on the plasma activated thermoplastics. Considerable differences were observed for the structure of aminosilane depending on the solvent used for the reaction. Deposition from aqueous solution resulted in relatively flat and smooth surfaces with consistent thickness compared to the anhydrous solution deposition. In the former case, 33% of the total nitrogen accounted for protonated amine and 16% for the free amino groups. In the latter, only 6% accounted for the protonated amine. The point of zero charge (pzc), on the aminosilane modified PC was found to be around 7, indicated that the surface is positively charged below pH 7 and negatively charged above pH 7. The surface analysis data suggested that various interactions are possible between the plasma activated thermoplastic surface and the aminosilane. In general, they are bound to the surface through covalent bond formation between the oxygen functionalities on the thermoplastic surface and the amino or the silanol groups of the aminosilane.

  9. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  10. Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers

    NASA Astrophysics Data System (ADS)

    Bag, Monojit; Renna, Lawrence A.; Jeong, Seung Pyo; Han, Xu; Cutting, Christie L.; Maroudas, Dimitrios; Venkataraman, D.

    2016-10-01

    Using impedance spectroscopy and computation, we show that incorporation of multi-walled carbon nanotubes (MWCNTs) in the bulk of the active layer of perovskite-based solar cells reduces charge recombination and increases the open circuit voltage. An ∼87% reduction in recombination was achieved when MWCNTs were introduced in the planar-heterostructure perovskite solar cell containing mixed counterions. The open circuit voltage (Voc) of perovskite/MWCNTs devices was increased by 70 mV, while the short circuit current density (Jsc) and fill factor (FF) remained unchanged.

  11. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  12. Active Layer Thawing and Freeze-Back in Svalbard using DC Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oswald, A.; Juliussen, H.; Christiansen, H. H.

    2009-04-01

    The thawing of the active layer has an important impact on the permafrost below, since the state of the uppermost soil layers determines how large surface temperature fluctuations are translated to deeper ground. Latent heat and combined liquid water and energy transport during the thawing season influence the energy exchange between permafrost and atmosphere. A first step to a better understanding of these processes is to determine the depth of the active layer and its thermal state the best possible way. Borehole temperatures give a very accurate measure of the ground thermal state but are, like active layer depths from mechanical probing, single point measurements. Geophysical imaging methods, such as DC resistivity tomography, allow for a 2d-image of subsurface soil properties, but should be supplemented with point temperature measurements as the results might be ambiguous. In spring and late summer 2007 electrode arrays have been permanently installed in three different permafrost landforms in Svalbard (a gently sloping solifluction sheet, a valley bottom loess terrace and a vertical sandstone rockwall) as a part of the IPY-project - ‘Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard' TSP Norway. With a spacing of 20cm and a total array length of 16m this allows for a maximum measurement depth of about 2.5m. During most parts of IPY measurements were carried on a more or less regular basis - ideally in a two weeks interval. While measurements in the rockwall suffered from permanent loosening of the electrodes in the brittle sandstone, the measurements on the loess terrace and the solifluction slope were only interrupted during the very cold spring conditions as grounding errors occurred. Hence field work focused on the loess terrace and the solifluction sheet - the former consisting of silt and fine clay; the latter characterized by its high water content and a rather heterogeneous grain size

  13. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  14. Subduction Initiation at Oceanic Detachment Faults and the Origin of Supra-subduction Ophiolites

    NASA Astrophysics Data System (ADS)

    Maffione, M.; Thieulot, C.; Van Hinsbergen, D. J. J.; Morris, A.; Spakman, W.; Plümper, O.

    2015-12-01

    Subduction initiation is a critical link in the plate tectonic cycle. Intra-oceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g. the Neotethys Ocean during the Jurassic, remains a matter of debate. In recent years, extensional detachment faults have been widely documented adjacent to slow- and ultraslow-spreading ridges where they cut across the oceanic lithosphere. These structures are extremely weak due to widespread occurrence of serpentine and talc resulting from hydrothermal alteration, and can therefore effectively localize deformation. Here, we show geochemical, tectonic, and paleomagnetic evidence from the Jurassic ophiolites of Albania and Greece for a subduction zone formed in the western Neotethys parallel to a spreading ridge along an oceanic detachment fault. With 2-D numerical modeling exploring the evolution of a detachment-ridge system experiencing compression, we show that serpentinized detachments are always weaker than spreading ridges. We conclude that, owing to their extreme weakness, oceanic detachments can effectively localize deformation under perpendicular far-field forcing, providing ideal conditions to nucleate new subduction zones parallel and close to (or at) spreading ridges. Direct implication of this, is that resumed magmatic activity in the forearc during subduction initiation can yield widespread accretion of supra-subduction zone ophiolites at or close to the paleoridge. Our new model casts the enigmatic origin of regionally extensive ophiolite belts in a novel geodynamic context, and calls for future research on three-dimensional modeling of subduction initiation and how upper plate extension is associated with that.

  15. Advantages of diabetic tractional retinal detachment repair

    PubMed Central

    Sternfeld, Amir; Axer-Siegel, Ruth; Stiebel-Kalish, Hadas; Weinberger, Dov; Ehrlich, Rita

    2015-01-01

    Purpose To evaluate the outcomes and complications of patients with diabetic tractional retinal detachment (TRD) treated with pars plana vitrectomy (PPV). Patients and methods We retrospectively studied a case series of 24 eyes of 21 patients at a single tertiary, university-affiliated medical center. A review was carried out on patients who underwent PPV for the management of TRD due to proliferative diabetic retinopathy from October 2011 to November 2013. Preoperative and final visual outcomes, intraoperative and postoperative complications, and medical background were evaluated. Results A 23 G instrumentation was used in 23 eyes (95.8%), and a 25 G instrumentation in one (4.2%). Mean postoperative follow-up time was 13.3 months (4–30 months). Visual acuity significantly improved from logarithm of the minimum angle of resolution (LogMAR) 1.48 to LogMAR 1.05 (P<0.05). Visual acuity improved by ≥3 lines in 75% of patients. Intraoperative complications included iatrogenic retinal breaks in seven eyes (22.9%) and vitreal hemorrhage in nine eyes (37.5%). In two eyes, one sclerotomy was enlarged to 20 G (8.3%). Postoperative complications included reoperation in five eyes (20.8%) due to persistent subretinal fluid (n=3), vitreous hemorrhage (n=1), and dislocated intraocular lens (n=1). Thirteen patients (54.2%) had postoperative vitreous hemorrhage that cleared spontaneously, five patients (20.8%) required antiglaucoma medications for increased intraocular pressure, seven patients (29.2%) developed an epiretinal membrane, and two patients (8.3%) developed a macular hole. Conclusion Patients with diabetic TRD can benefit from PPV surgery. Intraoperative and postoperative complications can be attributed to the complexity of this disease. PMID:26604667

  16. A detachable mobile and adjustable telemetry system

    PubMed Central

    Parker, Tommy S; Persons, William E; Bradley, Joseph G; Gregg, Margaret; Gonzales, Shinelle K; Helton, Jesse S

    2013-01-01

    Many traditional mobile telemetry systems require permanently mounting a rod through the cabin of a vehicle to serve as the mast for a directional antenna. In this article we present an alternative to this configuration by providing a platform that can be placed atop the vehicle in which the antenna mast can be mounted and controlled from the cabin of the vehicle. Thereby making this design a viable option for researchers who share vehicles with others that may not approve of permanent vehicle modifications such as placing a hole in the roof of the vehicle as required by traditional mobile configurations. We tested the precision and accuracy of detachable mobile and adjustable telemetry system (DMATS) in an urban park with varying terrain, tree stands, overhead wires, and other structures that can contribute to signal deflection. We placed three radiocollars 50 m apart and 1.2 m above the ground then established three testing stations ∼280 m from the location of the radiocollars. The DMATS platform required 12 h for completion and cost $1059 USD. Four technicians were randomly assigned radio collars to triangulate using DMATS and a handheld telemetry system. We used a one-way analysis of variance (ANOVA) with a Scheffe post hoc test to compare error ellipses between azimuths taken using DMATS and the hand held system. Average error ellipses for all testers was 1.96 ± 1.22 ha. No significant differences were found between error ellipses of testers (P = 0.292). Our design, the DMATS, does not require any vehicle modification; thereby, making this a viable option for researchers sharing vehicles with others that may not approve of permanent vehicle alterations. PMID:23919133

  17. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  18. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

  19. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  20. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study.

    PubMed

    Paytan, Adina; Lecher, Alanna L; Dimova, Natasha; Sparrow, Katy J; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D

    2015-03-24

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  1. Ultrahigh Enzyme Activity Assembled in Layered Double Hydroxides via Mg(2+)-Allosteric Effector.

    PubMed

    Wang, Min; Huang, Shu-Wan; Xu, Dan; Bao, Wen-Jing; Xia, Xing-Hua

    2015-06-01

    It is well-known that some metal ions could be allosteric effectors of allosteric enzymes to activate/inhibit the catalytic activities of enzymes. In nanobiocatalytic systems constructed based on the positive metal ion-induced allosteric effect, the incorporated enzymes will be activated and thus exhibit excellent catalytic performance. Herein, we present an environmentally friendly strategy to construct a novel allosteric effect-based β-galactosidase/Mg-Al layered double hydroxide (β-gal/Mg-Al-LDH) nanobiocatalytic system via the delamination-reconstruction method. The intercalated β-gal in the LDH galleries changes its conformation significantly due to the Mg(2+)-induced allosteric interactions and other weak interactions, which causes the activation of enzymatic activity. The β-gal/Mg-Al-LDH nanobiocatalytic system shows much higher catalytic activity and affinity toward its substrate and about 30 times higher catalytic reaction velocity than the free β-gal, which suggests that Mg(2+)-induced allosteric effect plays a vital role in the improvement of enzymatic performance.

  2. Comparative Metagenomic Analysis Of Microbial Communities From Active Layer And Permafrost After Short-Term Thaw

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Chauhan, A.; Saarunya, G.; Murphy, J.; Williams, D.; Layton, A. C.; Pfiffner, S. M.; Stackhouse, B. T.; Sanders, R.; Lau, C. M.; myneni, S.; Phelps, T. J.; Fountain, A. G.; Onstott, T. C.

    2012-12-01

    .Permafrost areas occupy 20-25% of the Earth and extend of 1 km depths. The total number of prokaryotes and their biomass in cold regions are estimated to be 1 x 1030 cells and 140 x1015 g of C, respectively. Thus these environments serve as a reservoir of microbial and biogeochemical activity, which is likely to increase upon thawing. We are currently performing long-term thawing experiments at 4o C on 18, geochemically well-characterized, 1 meter long, intact cores consisting of active-layer (0-70 cm depth) and permafrost, collected from a 7 meter diameter ice-wedge polygon located at the McGill Arctic Research Station on Axel Heiberg Island, Nunavut, Canada. The organic carbon content of these cores averages ~1% at depth but increases to 5.4% in the top 10 cm. The cores were subdivided into four treatment groups: saturated cores (thawed while receiving artificial rain), drained cores (being thawed under natural hydrological conditions), dark cores (thawed under natural hydrological conditions with no light input) and control cores (maintain permafrost table at 70 cm depth). Over the course of 10 weeks the cores were progressively thawed from -4oC to 4oC from the top down to simulate spring thaw conditions in the Arctic. The temperatures at 5 cm, 35 cm, 65 cm, and below the permafrost table in the core were recorded continuously. Pore water and gas samples from 4 depths in each core were collected every two weeks and analyzed for pH, anions, cations, H2, CH4, CO, O2, N2, CO2 and δ13C of CO2. Headspace gas samples were collected weekly and analyzed for the same gases as the pore gases. Sediment sub-samples from the 4 depths were collected and total community genomic DNA (gDNA) was isolated using FastDNA SPIN kit followed by Qiagen column purification. The average yield of gDNA was ~3.5 μg/g of soil for the upper 5 cm active layers and decreased to ~1.5 μg/g of soil in the permafrost. The bacterial 16S copy numbers estimated by real-time quantitative PCR

  3. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  4. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  5. Serous retinal detachment after trabeculectomy in angle recession glaucoma

    PubMed Central

    Roy, Avik Kumar; Padhy, Debananda

    2015-01-01

    An 18-year-old male with 360 degree angle recession after blunt trauma in his right eye developed uncontrolled intraocular pressure (IOP) despite four antiglaucoma medications (AGM) with advancing disc damage. He underwent trabeculectomy with intraoperative mitomycin-c (MMC) application. There was an intraoperative vitreous prolapse which was managed accordingly. On post-surgery day 1, he had shallow choroidal detachment superiorly with non-recordable IOP. This was deteriorated 1 week postoperatively as choroidal detachment proceeded to serous retinal detachment. He was started with systemic steroid in addition to topical route. The serous effusions subsided within 2 weeks time. At the last follow up at 3 months, he was enjoying good visual acuity, deep anterior chamber, diffuse bleb, an IOP in low teens off any AGM and attached retina. This case highlights the rare occurrence of serous retinal detachment after surgical management of angle recession glaucoma. PMID:27625959

  6. One- and two-photon detachment of O-

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Urbain, Xavier; Dochain, Arnaud; Cyr, Alain; Dunseath, Kevin M.; Terao-Dunseath, Mariko

    2016-08-01

    Cross sections for one- and two-photon detachment of O-(1 s22 s22 p5P2o) have been determined in a joint experimental and theoretical study. The absolute measurement is based on the animated-crossed-beam technique, which is extended to the case of pulsed lasers, pulsed ion beams, and multiphoton detachment. The ab initio calculations employ R -matrix Floquet theory, with simple descriptions of the initial bound state and the residual oxygen atom which reproduce well the electron affinity and ground-state polarizability. For one-photon detachment, the measured and computed cross sections are in good mutual agreement, departing significantly from previous reference experiments and calculations. The generalized two-photon detachment cross section, measured at the Nd:YAG laser wavelength, is in good agreement with the R -matrix Floquet calculations. Long-standing discrepancies between theory and experiment are thus resolved.

  7. On Favorable Thermal Fields for Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Stelian, Carmen; Volz, Martin P.; Derby, Jeffrey J.

    2009-01-01

    The thermal fields of two Bridgman-like configurations, representative of real systems used in prior experiments for the detached growth of CdTe and Ge crystals, are studied. These detailed heat transfer computations are performed using the CrysMAS code and expand upon our previous analyses [14] that posited a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. Computational results indicate that heat transfer conditions that led to successful detached growth in both of these systems are in accordance with our prior assertion, namely that the prevention of crystal reattachment to the crucible wall requires the avoidance of any undercooling of the melt meniscus during the growth run. Significantly, relatively simple process modifications that promote favorable thermal conditions for detached growth may overcome detrimental factors associated with meniscus shape and crucible wetting. Thus, these ideas may be important to advance the practice of detached growth for many materials.

  8. Serous retinal detachment after trabeculectomy in angle recession glaucoma

    PubMed Central

    Roy, Avik Kumar; Padhy, Debananda

    2015-01-01

    An 18-year-old male with 360 degree angle recession after blunt trauma in his right eye developed uncontrolled intraocular pressure (IOP) despite four antiglaucoma medications (AGM) with advancing disc damage. He underwent trabeculectomy with intraoperative mitomycin-c (MMC) application. There was an intraoperative vitreous prolapse which was managed accordingly. On post-surgery day 1, he had shallow choroidal detachment superiorly with non-recordable IOP. This was deteriorated 1 week postoperatively as choroidal detachment proceeded to serous retinal detachment. He was started with systemic steroid in addition to topical route. The serous effusions subsided within 2 weeks time. At the last follow up at 3 months, he was enjoying good visual acuity, deep anterior chamber, diffuse bleb, an IOP in low teens off any AGM and attached retina. This case highlights the rare occurrence of serous retinal detachment after surgical management of angle recession glaucoma.

  9. O1 DETACHED GARAGE FRONT ELEVATION. Naval Magazine Lualualei, Headquarters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    O-1 DETACHED GARAGE FRONT ELEVATION. - Naval Magazine Lualualei, Headquarters Branch, Garage for Building O, Sixty-sixth Street between Constitution & Amberjack Streets, behind Building O, Pearl City, Honolulu County, HI

  10. O1 DETACHED GARAGE FRONT AND SIDE VIEW. Naval Magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    O-1 DETACHED GARAGE FRONT AND SIDE VIEW. - Naval Magazine Lualualei, Headquarters Branch, Garage for Building O, Sixty-sixth Street between Constitution & Amberjack Streets, behind Building O, Pearl City, Honolulu County, HI

  11. Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays

    SciTech Connect

    Siw, Sin C.; Chyu, Minking K.; Shih, Tom I-P.; Alvin, Mary Anne

    2012-08-01

    Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W = 76.2 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = ¼E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D = 0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D = 1, i.e., H/D = 3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D = 0 and C/D = 2, i.e., H/D = 4 or 2, respectively.

  12. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  13. Hydrogenated Amorphous Silicon Germanium Active Layer for Top Cell of a Multi Junction Cell Structure.

    PubMed

    Cho, Jaehyun; Iftiquar, S M; Kim, Minbum; Park, Jinjoo; Jung, Junhee; Kim, Jiwoong; Yi, Junsin

    2016-05-01

    Intrinsic hydrogenated amorphous silicon-germanium (a-SiGe:H) alloy is generally used in the bottom cell because of its low band gap. The a-SiGe:H has a higher photo conductivity in comparison to the a-Si:H; thus, it is expected that the a-SiGe:H can show better short circuit current density than that of the a-Si:H based solar cell. Therefore, we optimized a-SiGe:H active layer that can be a suitable choice for the front cell of a multi junction.solar cell. Furthermore, we carried out a comparative study of the solar cells that have a-SiGe:H and a-Si:H as respective active layers. The a-SiGe:H based solar cells show higher short circuit current density, while the a-Si:H based cells show higheropen circuit voltage. The current-voltage characteristics of these cells are as follows: (a) V(oc) = 770 mV, J(sc) = 15.0 mA/cm2, FF = 64.5%, and η = 7.47% for a-SiGe:H based cell; and (b) V(oc) = 826 mV, J(sc) = 13.63 mA/cm2, FF = 72.0%, and η = 8.1% for a-Si:H based cell.

  14. Mapping Active-Layer Thickness in an Urbanized Environment: The Barrow Urban Heat Island Study

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Hinkel, K. M.; Nelson, F. E.; Shiklomanov, N. I.

    2003-12-01

    Local and global changes in the Arctic climate may have profound impacts on hydrology, soil stability, and infrastructure, such as roads, buildings, and water, gas, or oil pipelines. These changes will be manifested in large part through permafrost, which can influence virtually all physical, chemical, and biological processes occurring in the soil. The "Barrow Urban Heat Island Study" (BUHIS) is an ongoing project in northern Alaska that examines the effects of urbanization on air and soil temperatures in and around Barrow. At 4600 residents, Barrow is the largest native settlement in the circumarctic region and the northernmost urban area in the United States. Initiated in summer 2001, BUHIS is recording temperature and thaw depth at more than 60 locations throughout the village, the developing suburbs, and surrounding undisturbed tundra. This paper describes one part of study examining the active layer and anthropogenic influences on its thickness. Summer air and soil temperature data, together with digital vegetation and soil maps, are used as input to a modified Stefan solution to map depth of thaw over an area of 100 square kilometers that includes both the village of Barrow and the surrounding tundra. Maps representing end-of-summer conditions for 2001 provide the first spatial/temporal representation of active-layer variability within an urbanized area. Increasing urban development in Arctic regions is causing information about changes accompanying industrial development and urbanization to become more vital, particularly given the possibility of a warming climate.

  15. Cooperation between adsorbates accounts for the activation of atomic layer deposition reactions.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2015-04-14

    Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.

  16. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    PubMed Central

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-01-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2–C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2–C release from the active layer, whereas soil microbial abundance is more directly associated with CO2–C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment. PMID:27703168

  17. Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopeng; Kang, Zhan

    2015-08-01

    This paper investigates topology optimization of the magnetorheological (MR) fluid layer in a sandwich plate for improving the semi-active vibration control performance. Therein, a uniform magnetic field is applied across the MR fluid layer to provide a semi-active damping control effect. In the optimization model, the pseudo-densities describing the MR fluid material distribution are taken as design variables, and an artificial magneto-rheological fluid model (AMRF) with penalization is proposed to suppress intermediate density values. For reducing the vibration level under harmonic excitations, the dynamic compliance under a specific excitation frequency, or the frequency-aggregated dynamic compliance in a given frequency band, is taken as the objective function to be minimized. In this context, the adjoint-variable sensitivity analysis scheme is derived. The effectiveness and efficiency of the proposed method are demonstrated by numerical examples, in which the structural dynamic performance can be remarkably improved through optimization. The influences of several key factors on the optimal designs are also explored. It is shown that the AMRF model is effective in yielding clear boundaries in the final optimal solutions without use of additional regularization techniques.

  18. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  19. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGES

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  20. Interplay of solvent additive concentration and active layer thickness on the performance of small molecule solar cells.

    PubMed

    Love, John A; Collins, Samuel D; Nagao, Ikuhiro; Mukherjee, Subhrangsu; Ade, Harald; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-11-19

    A relationship between solvent additive concentration and active layer thickness in small-molecule solar cells is investigated. Specifically, the additive concentration must scale with the amount of semiconductor material and not as absolute concentration in solution. Devices with a wide range of active layers with thickness up to 200 nm can readily achieve efficiencies close to 6% when the right concentration of additive is used.

  1. Threshold improvement in uniformly lying helix cholesteric liquid crystal laser using auxiliary π-conjugated polymer active layer

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Shiozaki, Yusuke; Inoue, Yo; Takahashi, Masaya; Ogawa, Yasuhiro; Fujii, Akihiko; Ozaki, Masanori

    2013-05-01

    We propose a device structure to lower the lasing threshold of a uniformly lying helix cholesteric liquid crystal (ChLC) laser. We place a π-conjugated polymer active layer beneath the ChLC layer to provide auxiliary gain, and demonstrate an improvement in the lasing threshold by a factor of 2.3. We also perform finite difference time domain calculations coupled with rate equations for a four-level system, and clarify the effect of the additional active layer on both the photonic density of states and the inversion population density. Although the addition of an extra layer lowers the photonic density of states, the gain provided by the auxiliary layer is sufficient to overcome the losses and decrease the lasing threshold. Our concept is useful for obtaining high-performance ChLC lasers.

  2. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    PubMed

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  3. Simulating Biofilm Deformation and Detachment with the Immersed Boundary Method

    NASA Astrophysics Data System (ADS)

    Sudarsan, Rangarajan; Ghosh, Sudeshna; Stockie, John M.; Eberl, Hermann J.

    2016-03-01

    We apply the immersed boundary (or IB) method to simulate deformation and detachment of a periodic array of wall-bounded biofilm colonies in response to a linear shear flow. The biofilm material is represented as a network of Hookean springs that are placed along the edges of a triangulation of the biofilm region. The interfacial shear stress, lift and drag forces acting on the biofilm colony are computed by using fluid stress jump method developed by Williams, Fauci and Gaver [Disc. Contin. Dyn. Sys. B 11(2):519-540, 2009], with a modified version of their exclusion filter. Our detachment criterion is based on the novel concept of an averaged equivalent continuum stress tensor defined at each IB point in the biofilm which is then used to determine a corresponding von Mises yield stress; wherever this yield stress exceeds a given critical threshold the connections to that node are severed, thereby signalling the onset of a detachment event. In order to capture the deformation and detachment behaviour of a biofilm colony at different stages of growth, we consider a family of four biofilm shapes with varying aspect ratio. Our numerical simulations focus on the behaviour of weak biofilms (with relatively low yield stress threshold) and investigate features of the fluid-structure interaction such as locations of maximum shear and increased drag. The most important conclusion of this work is that the commonly employed detachment strategy in biofilm models based only on interfacial shear stress can lead to incorrect or inaccurate results when applied to the study of shear induced detachment of weak biofilms. Our detachment strategy based on equivalent continuum stresses provides a unified and consistent IB framework that handles both sloughing and erosion modes of biofilm detachment, and is consistent with strategies employed in many other continuum based biofilm models.

  4. Retinal Detachment due to CrossFit Training Injury.

    PubMed

    Joondeph, Stephanie A; Joondeph, Brian C

    2013-01-01

    The purpose of this paper is to describe a traumatic retinal detachment occurring as a result of CrossFit training using an elastic exercise band. The patient sustained an ocular injury from an elastic band during CrossFit training, resulting in a giant retinal dialysis and retinal detachment, which were successfully repaired. Trainers and athletes need to be aware of the potential for ocular injury from elastic exercise bands and take appropriate precautions.

  5. 1. Streetscape with south sides of Medical Detachment Barracks on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Streetscape with south sides of Medical Detachment Barracks on Ramp No. 5. Part of Building No. 9962-A with door is on far right. Also shown are the south A-sides of Buildings Nos. 9963, 9964, 9965, 9966, 9967 and 9968. The new Madigan Army Medical Center, which opened in 1992, is in far distance on right. - Madigan Hospital, Medical Detachment Barracks, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  6. Retinal Detachment due to CrossFit Training Injury

    PubMed Central

    Joondeph, Stephanie A.; Joondeph, Brian C.

    2013-01-01

    The purpose of this paper is to describe a traumatic retinal detachment occurring as a result of CrossFit training using an elastic exercise band. The patient sustained an ocular injury from an elastic band during CrossFit training, resulting in a giant retinal dialysis and retinal detachment, which were successfully repaired. Trainers and athletes need to be aware of the potential for ocular injury from elastic exercise bands and take appropriate precautions. PMID:24106626

  7. Tracing detached and attached care practices in nursing education.

    PubMed

    Soffer, Ann Katrine B

    2014-07-01

    The implementation of skills labs in Danish nursing education can, in itself, be viewed as a complexity. The students are expected to eventually carry out their work in a situated hospital practice, but they learn their professional skills in a different space altogether, detached and removed from the hospitals and practising on plastic dummies. Despite the apparent artificiality of the skills lab, this article will show that it is possible to analyse some of the fundamental aspects of care in nursing by ethnographically following this phenomenon of simulation-based training. These particular aspects of care are not explicated in the curriculum or textbooks; however, they surfaced once this crooked approach to studying care in a simulated practice was applied. The article start from the assertion that detached engagements are not recognized within the field of nursing education as an equal component to attachments. Yet empirical cases from the skills lab and hospitals illustrate how students sometimes felt emotionally attached to plastic dummies and how experienced nurses sometimes practised a degree of detachment in relation to human patients. Detached engagements will therefore be presented as part of care practices of nurses - rendering the ability to detach in engagement with patients a professional skill that students also need to learn. In the analysis to follow, attached and detached engagements are located on an equal plane by integrating both into the same conceptual framework, rather than imposing a priori notions about their dialectic relation. The analysis shows that it is the particular intertwinement of attachment and detachment that gives care its fundamental meaning. In conclusion, the need for a conceptual shift from a strong emphasis on attached engagement to a more balanced analytical approach to care work, as involving both attached and detached engagement within Danish nursing education, is advocated.

  8. Retinal Detachment due to CrossFit Training Injury.

    PubMed

    Joondeph, Stephanie A; Joondeph, Brian C

    2013-01-01

    The purpose of this paper is to describe a traumatic retinal detachment occurring as a result of CrossFit training using an elastic exercise band. The patient sustained an ocular injury from an elastic band during CrossFit training, resulting in a giant retinal dialysis and retinal detachment, which were successfully repaired. Trainers and athletes need to be aware of the potential for ocular injury from elastic exercise bands and take appropriate precautions. PMID:24106626

  9. Hypoxia Activates Calpains in the Nerve Fiber Layer of Monkey Retinal Explants

    PubMed Central

    Hirata, Masayuki; Shearer, Thomas R.; Azuma, Mitsuyoshi

    2015-01-01

    Purpose The vascular ischemic hypothesis attributes nerve damage in the retina to decreased blood flow in the ophthalmic artery, reduced oxygenation, and impaired axonal transport. Activation of calpain enzymes contributes to retinal cell death during hypoxia. However, we still do not know in which specific retinal layers calpains are activated. Thus, the purpose of the present study was to investigate where and when calpains are activated in an improved culture model of hypoxic monkey retina. Methods Monkey retinal explants were cultured on microporous membranes with the retinal ganglion cell (RGC) side facing up. Explants were incubated under hypoxic conditions, with or without additional reoxygenation. When it was used, the calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting assays for α-spectrin, calpains 1 and 2, calpastatin, β-III tubulin, and γ-synuclein were performed with specific antibodies. Cell death was assessed by TUNEL staining. Results Under normoxic conditions, TUNEL-positive cells were minimal in our improved culture conditions. As early as 8 hours after hypoxia, the 150-kDa calpain-specific α-spectrin breakdown product appeared in the nerve fiber layer (NFL), where calpains 1 and 2 were localized. TUNEL-positive RGCs then increased at later time periods. The calpain inhibitor SNJ-1945 ameliorated changes induced by hypoxia or hypoxia/reoxygenation. Conclusions During hypoxia/reoxygenation in an improved, relevant monkey model, calpains were first activated in the NFL, followed by death of the parent RGCs. This observation suggest that calpain-induced degeneration of retinal nerve fibers may be an underlying mechanism for RGC death in hypoxic retinal neuropathies. PMID:26393472

  10. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  11. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane.

    PubMed

    Dathar, Gopi Krishna Phani; Tsai, Yu-Tung; Gierszal, Kamil; Xu, Ye; Liang, Chengdu; Rondinone, Adam J; Overbury, Steven H; Schwartz, Viviane

    2014-02-01

    The general consensus in the studies of nanostructured carbon catalysts for oxidative dehydrogenation (ODH) of alkanes to olefins is that the oxygen functionalities generated during synthesis and reaction are responsible for the catalytic activity of these nanostructured carbons. Identification of the highly active oxygen functionalities would enable engineering of nanocarbons for ODH of alkanes. Few-layered graphenes were used as model catalysts in experiments to synthesize reduced graphene oxide samples with varying oxygen concentrations, to characterize oxygen functionalities, and to measure the activation energies for ODH of isobutane. Periodic density functional theory calculations were performed on graphene nanoribbon models with a variety of oxygen functionalities at the edges to calculate their thermal stability and to model reaction mechanisms for ODH of isobutane. Comparing measured and calculated thermal stability and activation energies leads to the conclusion that dicarbonyls at the zigzag edges and quinones at armchair edges are appropriately balanced for high activity, relative to other model functionalities considered herein. In the ODH of isobutane, both dehydrogenation and regeneration of catalytic sites are relevant at the dicarbonyls, whereas regeneration is facile compared with dehydrogenation at quinones. The catalytic mechanism involves weakly adsorbed isobutane reducing functional oxygen and leaving as isobutene, and O2 in the feed, weakly adsorbed on the hydrogenated functionality, reacting with that hydrogen and regenerating the catalytic sites.

  12. Polyethylene/organically-modified layered-silicate nanocomposites with antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Songtipya, P.; Jimenez-Gasco, M. M.; Manias, E.

    2009-03-01

    Despite the very intensive research on polymer nanocomposites, the opportunities for new functionalities possible by nanofillers still remain largely untapped. Here, we present polyethylene/inorganic nanocomposites that exhibit strongly enhanced mechanical performance and, at the same time, also an antimicrobial activity originating from the organo-filler nature. Specifically, PE/organically-modified layered-silicate nanocomposites were prepared via melt-processing, and antimicrobial activity was designed by proper choice of their organic modification. Their antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum) as model soil-borne plant and food contaminants. Montmorillonite-based organofillers, which only differ in their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the nanocomposites. The comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants.

  13. Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes.

    PubMed

    Coronell, Orlando; González, Mari I; Mariñas, Benito J; Cahill, David G

    2010-09-01

    We characterized the fully aromatic polyamide (PA) active layers of six commercial reverse osmosis (RO) and nanofiltration (NF) membranes and found that in contrast to their similar elemental composition, total concentration of functional groups, and degree of polymerization, the ionization behavior and spatial distribution of carboxylic (R-COOH) groups within the active layers can be significantly different. We also studied the steric effects experienced by barium ion (Ba2+) in the active layers by determining the fraction of carboxylate (R-COO-) groups accessible to Ba2+; such fraction, referred to as the accessibility ratio (AR), was found to vary within the range AR=0.40-0.81, and to be generally independent of external solution pH. Additionally, we studied an NF membrane with a sulfonated polyethersulfone (SPES) active layer, and found that the concentration of sulfonate (R-SO3-) groups in the active layer was 1.67 M, independent of external solution pH and approximately three times higher than the maximum concentration (approximately 0.45+/-0.25 M) of R-COO- groups in PA active layers. The R-SO3- groups were found to be highly accessible to Ba2+ (AR=0.95+/-0.01).

  14. Contribution of Sp1 to Telomerase Expression and Activity in Skin Keratinocytes Cultured With a Feeder Layer.

    PubMed

    Bisson, Francis; Paquet, Claudie; Bourget, Jean-Michel; Zaniolo, Karine; Rochette, Patrick J; Landreville, Solange; Damour, Odile; Boudreau, François; Auger, François A; Guérin, Sylvain L; Germain, Lucie

    2015-02-01

    The growth of primary keratinocytes is improved by culturing them with a feeder layer. The aim of this study was to assess whether the feeder layer increases the lifespan of cultured epithelial cells by maintaining or improving telomerase activity and expression. The addition of an irradiated fibroblast feeder layer of either human or mouse origin (i3T3) helped maintain telomerase activity as well as expression of the transcription factor Sp1 in cultured keratinocytes. In contrast, senescence occurred earlier, together with a reduction of Sp1 expression and telomerase activity, in keratinocytes cultured without a feeder layer. Telomerase activity was consistently higher in keratinocytes grown on the three different feeder layers tested relative to cells grown without them. Suppression of Sp1 expression by RNA inhibition (RNAi) reduced both telomerase expression and activity in keratinocytes and also abolished their long-term growth capacity suggesting that Sp1 is a key regulator of both telomerase gene expression and cell cycle progression of primary cultured human skin keratinocytes. The results of the present study therefore suggest that the beneficial influence of the feeder layer relies on its ability to preserve telomerase activity in cultured human keratinocytes through the maintenance of stable levels of Sp1 expression.

  15. Contribution of Sp1 to Telomerase Expression and Activity in Skin Keratinocytes Cultured With a Feeder Layer.

    PubMed

    Bisson, Francis; Paquet, Claudie; Bourget, Jean-Michel; Zaniolo, Karine; Rochette, Patrick J; Landreville, Solange; Damour, Odile; Boudreau, François; Auger, François A; Guérin, Sylvain L; Germain, Lucie

    2015-02-01

    The growth of primary keratinocytes is improved by culturing them with a feeder layer. The aim of this study was to assess whether the feeder layer increases the lifespan of cultured epithelial cells by maintaining or improving telomerase activity and expression. The addition of an irradiated fibroblast feeder layer of either human or mouse origin (i3T3) helped maintain telomerase activity as well as expression of the transcription factor Sp1 in cultured keratinocytes. In contrast, senescence occurred earlier, together with a reduction of Sp1 expression and telomerase activity, in keratinocytes cultured without a feeder layer. Telomerase activity was consistently higher in keratinocytes grown on the three different feeder layers tested relative to cells grown without them. Suppression of Sp1 expression by RNA inhibition (RNAi) reduced both telomerase expression and activity in keratinocytes and also abolished their long-term growth capacity suggesting that Sp1 is a key regulator of both telomerase gene expression and cell cycle progression of primary cultured human skin keratinocytes. The results of the present study therefore suggest that the beneficial influence of the feeder layer relies on its ability to preserve telomerase activity in cultured human keratinocytes through the maintenance of stable levels of Sp1 expression. PMID:24962522

  16. Improved Crystal Quality By Detached Solidification in Microgravity

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Wang, Yaz-Hen; Wang, Jian-Bin

    2003-01-01

    Many microgravity directional solidification experiments yielded ingots with portions that grew without contacting the ampoule wall, leading to greatly improved crystallographic perfection. Our long term goals have been: (1) To develop a complete understanding of all of the phenomena of detached solidification.; (2) To make it possible to achieve detached solidification reproducibly; (3) To increase crystallographic perfection through detached solidification. We have three major achievements to report here: (1) We obtained a new material balance solution for the Moving Meniscus Model of detached solidification. This solution greatly clarifies the physics as well as the roles of the parameters in the system; (2) We achieved detached solidification of InSb growing on earth in BN-coated ampoules; (3) We performed an extensive series of experiments on freezing water that showed how to form multiple gas bubbles or tubes on the ampoule wall. However, these did not propagate around the wall and lead to fully detached solidification unless the ampoule wall was extremely rough and non-wetted.

  17. Growth and Detachment of 5 Helix DNA Ribbons.

    PubMed

    Bashar, Saima; Hwang, Si Un; Lee, Junwye; Amin, Rashid; Dugasani, Sreekantha Reddy; Ha, Tai Hwan; Park, Sung Ha

    2016-04-01

    We report on the concentration-dependent surface-assisted growth and time-temperature-dependent detachment of one-dimensional 5 helix DNA ribbons (5HR) on a mica substrate. The growth coverage ratio was determined by varying the concentration of the 5HR strands in a test tube, and the detachment rate of 5HR on mica was determined by varying the incubation time at a fixed temperature on a heat block. The topological changes in the concentration-dependent attachment and the time-temperature-dependent detachment for 5HR on mica were observed via atomic force microscopy. The observations indicate that 5HR started to grow on mica at ~10 nM and provided full coverage at ~50 nM. In contrast, 5HR at 65 °C started to detach from mica after 5 min and was completely removed after 10 min. The growth and detachment coverage show a sinusoidal variation in the growth ratio and a linear variation with a rate of detachment of 20%/min, respectively. The physical parameters that control the stability of the DNA structures on a given substrate should be studied to successfully integrate DNA structures for physical and chemical applications. PMID:27451775

  18. Unilateral, recurrent exudative retinal detachment in association with pansinusitis

    PubMed Central

    Osman Saatci, Ali; Ozbek Soylemezoglu, Zeynep; Barut Selver, Ozlem; Cenk Ecevit, M.; Ada, Emel

    2012-01-01

    Aim: To report a patient with unilateral exudative retinal detachment due to pansinusitis. Methods: Case report. Results: A 65-year-old woman with a two-month history of blurred vision, red eye and lid swelling in her left eye was referred to us. Her best-corrected visual acuity was 20/20 in the right eye and 20/200 in the left. Conjunctival vessels were engorged in the OS. Funduscopy revealed a 360° exudative detachment in OS and computerized tomography (CT) imaging revealed pansinusitis. Systemic antibiotic treatment was employed and exudative detachment regressed. However, exudative detachment remitted as soon as antibiotic treatment ceased. Finally she underwent sinus surgery and decompression of the orbita. Her visual acuity improved to 20/100 just two days after the surgery, stabilized at 20/30 and no further recurrences occured during the follow-up of 10 months. Conclusion: Since exudative retinal detachment usually accompanies systemic inflammatory or neoplastic diseases, systemic screening and collaboration with other disciplines are mandatory. To the best of our knowledge, this is the first report of a case that developed exudative retinal detachment due to pansinusitis and only recovered after decompression surgery.

  19. Defect Density Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Cobb, S. D.; Volz, M. P.; Szoke, J.; Szofran, F. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several (111)-oriented, Ga-doped germanium crystals were grown in pyrolytic boron nitride (pBN) containers by the Bridgman and the detached Bridgman growth techniques. Growth experiments in closed-bottom pBN containers resulted in nearly completely detached-grown crystals, because the gas pressure below the melt can build up to a higher pressure than above the melt. With open-bottom tubes the gas pressure above and below the melt is balanced during the experiment, and thus no additional force supports the detachment. In this case the crystals grew attached to the wall. Etch pit density (EPD) measurements along the axial growth direction indicated a strong improvement of the crystal quality of the detached-grown samples compared to the attached samples. Starting in the seed with an EPD of 6-8 x 10(exp 3)/square cm it decreased in the detached-grown crystals continuously to about 200-500/square cm . No significant radial difference between the EPD on the edge and the middle of the crystal exists. In the attached grown samples the EPD increases up to a value of about 2-4 x 10(exp 4)/square cm (near the edge) and up to 1 x 10(exp 4)/square cm in the middle of the sample. Thus the difference between the detached- and the attached-grown crystals with respect to the EPD is approximately two orders of magnitude.

  20. Effects of Nanoscale Surface Roughness on Colloid Detachment

    NASA Astrophysics Data System (ADS)

    Rasmuson, J. A.; Johnson, W. P.

    2015-12-01

    Recent advances in colloid transport science have demonstrated the importance of surface roughness on colloid attachment; however, few studies have investigated the influence of nano-scale roughness on colloid detachment. This study explores the effects of flow perturbations on a variety of mineral surfaces, as well as NaOH treated (i.e. rough, Figure 1a) and untreated (i.e. smooth, Figure 1b) surfaces for colloids of various sizes attached in an impinging jet system under flowing and stagnant conditions. These experiments showed minimal detachment from the roughened surfaces (treated glass) and significant detachment from the smooth surfaces (untreated glass and mica). A correlation between residence time and attachment irreversibility was also revealed, indicating that the particles that spent the longest time attached to the surface developed the strongest adhesion. The representative surface-heterogeneity model developed by Pazmino et al. (2014) was used to conduct detachment simulations under similar geochemical and flow conditions. While simulated results show qualitative agreement with experimental results, they tend to over-predict detachment, highlighting differences among simulated versus real surfaces, which may be related to surface roughness. These results suggest that more sophisticated models that incorporate surface roughness and time-based adhesion are needed to accurately predict colloid detachment in environmental systems.

  1. Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex

    PubMed Central

    Spaak, Eelke; Bonnefond, Mathilde; Maier, Alexander; Leopold, David A.; Jensen, Ole

    2012-01-01

    Summary While the mammalian neocortex has a clear laminar organization, layer-specific neuronal computations remain to be uncovered. Several studies suggest that gamma band activity in primary visual cortex (V1) is produced in granular and superficial layers and is associated with the processing of visual input [1–3]. Oscillatory alpha band activity in deeper layers has been proposed to modulate neuronal excitability associated with changes in arousal and cognitive factors [4–7]. To investigate the layer-specific interplay between these two phenomena, we characterized the coupling between alpha and gamma band activity of the local field potential (LFP) in V1 of the awake macaque. Using multicontact laminar electrodes to measure spontaneous signals simultaneously from all layers of V1, we found a robust coupling between alpha phase in the deeper layers and gamma amplitude in granular and superficial layers. Moreover, the power in the two frequency bands was anticorrelated. Taken together, these findings demonstrate robust inter-laminar cross-frequency coupling in the visual cortex, supporting the view that neuronal activity in the alpha frequency range phasically modulates processing in the cortical microcircuit in a top-down manner [7]. PMID:23159599

  2. Induction and modulation of persistent activity in a layer V PFC microcircuit model

    PubMed Central

    Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota

    2013-01-01

    Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically—yet morphologically simplified—microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (Ih, ID, IsAHP, IcaL, IcaN, IcaR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519

  3. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.

    PubMed

    Tang, Zhonglan; Akiyama, Yoshikatsu; Itoga, Kazuyoshi; Kobayashi, Jun; Yamato, Masayuki; Okano, Teruo

    2012-10-01

    A new approach to quantitatively estimate the interaction between cells and material has been proposed by using a microfluidic system, which was made of poly(dimethylsiloxane) (PDMS) chip bonding on a temperature-responsive cell culture surface consisted of poly(N-isopropylacrylamide) (PIPAAm) grafted tissue culture polystyrene (TCPS) (PIPAAm-TCPS) having five parallel test channels for cell culture. This construction allows concurrently generating five different shear forces to apply to cells in individual microchannels having various resistance of each channel and simultaneously gives an identical cell incubation condition to all test channels. NIH/3T3 mouse fibroblast cells (MFCs) and bovine aortic endothelial cells (BAECs) were well adhered and spread on all channels of PIPAAm-TCPS at 37 °C. In our previous study, reducing culture temperature below the lower critical solution temperature (LCST) of PIPAAm (32 °C), cells detach themselves from hydrated PIPAAm grafted surfaces spontaneously. In this study, cell detachment process from hydrated PIPAAm-TCPS was promoted by shear forces applied to cells in microchannels. Shear stress-dependent cell detachment process from PIPAAm-TCPS was evaluated at various shear stresses. Either MFCs or BAECs in the microchannel with the strongest shear stress were found to be detached from the substrate more quickly than those in other microchannels. A cell transformation rate constant C(t) and an intrinsic cell detachment rate constant k(0) were obtained through studying the effect of shear stress on cell detachment with a peeling model. The proposed device and quantitative analysis could be used to assess the possible interaction between cells and PIPAAm layer with a potential application to design a cell sheet culture surface for tissue engineering. PMID:22818649

  4. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    SciTech Connect

    Xie, Shuifen; Choi, Sang; Lu, Ning; Roling, Luke T.; Herron, Jeffrey A.; Zhang, Lei; Park, Jinho; Wang, Jinguo; Kim, Moon J.; Xie, Zhaoxiong; Mavrikakis, Manos; Xia, Younan

    2014-06-11

    An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PnL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.

  5. Novel Guglielmi detachable coils (GDCs) for the treatment of brain aneurysms. In vitro study of hydroxyapatite coating on Pt plate as GDCs model.

    PubMed

    Matsusaki, Michiya; Kamezawa, Takashi; Shimozuru, Tetsuro; Kuratsu, Jun-Ichi; Kishida, Akio; Akashi, Mitsuru

    2003-07-15

    With the use of an alternate soaking process a thin layer of hydroxyapatite (HAp) was formed on a platinum plate (Pt plate) which was used as a model for Guglielmi detachable coils (GDCs). The in vitro coagulant activity of the HAp-coated Pt plate was evaluated for the purpose of brain aneurysm treatment. In order to fix and to form the apatite layer homogeneously, beta-mercaptopropionic acid was immobilized onto the Pt surface prior to use. The HAp layer was formed on the beta-mercaptopropionic acid-fixed Pt plate surface, and quantitative control of apatite formation was achieved by controlling the number of alternate soaking process cycles. The HAp formed on the Pt plate surface was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy studies. Blood interaction with the Pt plate was altered from nonthrombotic to highly thrombotic by forming a HAp layer on the surface. The alternate soaking process is an appropriate method to modify the GDCs. Complete treatment of brain aneurysms is expected with the use of HAp-coated GDCs, which would allow formation of a stable blood clot.

  6. Detachment of an adhered micropillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Khaderi, S. N.; Fleck, N. A.; Arzt, E.; McMeeking, R. M.

    2015-02-01

    The mechanics of detachment is analysed for 2D flat-bottomed planar pillars and 3D cylindrical pillars from a dissimilar elastic substrate. Application of an axial stress to the free end of the pillar results in a singularity in stress at the corner with the substrate. An eigenvalue analysis reveals that the stress field near the corner is dominated by two singular eigenfields having eigenvalues (λ1, λ2) with corresponding intensities (H1, H2). The asymptotic stress field σij is of the form σij =H1 r λ1 - 1fij (λ1, θ) +H2 r λ2 - 1fij (λ2, θ), where fij describe the angular dependence θ of σij, and r is the radial distance from the corner. The stress intensities (H1, H2) are calculated numerically, using a domain integral approach, as a function of the elastic mismatch between the pillar and substrate. The singular zone extends across approximately 10% of the pillar diameter (in 3D) or pillar width (in 2D). Interfacial failure is predicted for an assumed crack emanating from the corner of pillar and substrate. For the case of an interfacial crack that resides within the domain of corner singularity, a boundary layer analysis is performed to calculate the dependence of the interfacial stress intensity factor K upon (H1, H2). When the crack extends beyond the domain of corner singularity, it is necessary to consider the full geometry in order to obtain K. A case study explores the sensitivity of the pull-off stress to the flaw size and to the degree of material mismatch. The study has implications for the optimum design of adhesive surface micropatterns, for bonding to either stiffer or more compliant substrates.

  7. Transformation of organic-inorganic hybrid films obtained by molecular layer deposition to photocatalytic layers with enhanced activity.

    PubMed

    Ishchuk, Sergey; Taffa, Dereje Hailu; Hazut, Ori; Kaynan, Niv; Yerushalmi, Roie

    2012-08-28

    We present the transformation of organic-inorganic hybrid titanicone films formed by TiCl(4) as metal precursor and ethylene glycol (EG) using solvent-free MLD to highly active photocatalytic films. The photocatalytic activities of the films were investigated using hydroxyl-functionalized porphyrin as a spectroscopic marker. TEM imaging and electron diffraction, XPS, UV-vis spectroscopy, and spectroscsopic ellipsometry were employed for structural and composition analyses of the films. The photocatalytic activity of Ti-EG films was investigated for different anneal temperatures and compared to TiO(2) films prepared by ALD using TiCl(4) as metal precursor and H(2)O (TiO(2) films). Overall, our results indicate that the photocatalytic activity of the thermally annealed Ti-EG film is about 5-fold increased compared to that of the TiO(2) film prepared by ALD for optimal process conditions. The combined results indicate that the structural and photocatalytic properties can be assigned to three states: (I) amorphous state, intermediate dye loading, low photocatalytic activity, (II) intermediate film state with both crystalline and amorphous regions, high dye loading, high catalytic activity, and (III) highly crystalline film with low dye loading and low photocatalytic activity. The formation of photocatalytic nanotubes (NTs) is demonstrated using sacrificial Ge nanowires (NWs) scaffolds to yield Ti-EG NT structures with controllable wall thickness structures and enhanced dye loading capacity. Our results demonstrate the feasibility and high potential of MLD to form metal oxides with high photocatalytic activity. PMID:22768917

  8. Absorption of the selenite anion from aqueous solutions by thermally activated layered double hydroxide.

    PubMed

    Liu, Rui; Frost, Ray L; Martens, Wayde N

    2009-03-01

    The presence of selenite or selenate in potable water is a health hazard especially when consumed over a long period of time. Its removal from potable water is of importance. This paper reports technology for the removal of selenite from water through the use of thermally activated layered double hydroxides. Mg/Al hydrotalcites with selenite in the interlayer were prepared at different times from 0.5 to 20 h through ion exchange. X-ray diffraction of the MgAlSeO3 hydrotalcites indicates that the selenite anion entered the interlayer spacing of Mg/Al hydrotalcite and MgAlSeO3 hydrotalcite was formed. Raman spectra proved the presence of selenite anion in the hydrotalcite interlayer as the counter anion. The band intensity and width of MgAlSeO3 hydrotalcite in the region of 3800-3000 cm(-1) increase with the adsorption of selenite by the Mg/Al hydrotalcite. The characteristic bands of free selenite anions in the MgAlSeO3 hydrotalcites are located between the region between 850 and 800 cm(-1). The Raman spectra of the lower wave number region of 550-500 cm(-1) show a shift toward higher wave numbers with adsorption of the selenite. An estimation of the amount of selenite anion removed by the thermally activated layered double hydroxide was obtained through the measurement of the intensity of the selenite Raman bands at 814 and 835 cm(-1) resulting from the amount of selenite anion remaining in solution. Thermally activated LDHs provide a mechanism for removing selenite anions from aqueous solutions.

  9. An Integrated Observational and Model Synthesis Approach to Examine Dominant Environmental Controls on Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Coon, E.; Painter, S. L.; Harp, D. R.; Wilson, C. J.

    2015-12-01

    The active layer thickness (ALT) - the annual maximum depth of soil with above 0°C temperatures - in part determines the volume of carbon-rich stores available for decomposition and therefore potential greenhouse gas release into the atmosphere from Arctic tundra. However, understanding and predicting ALT in polygonal tundra landscapes is difficult due to the complex nature of hydrothermal atmospheric-surface-subsurface interactions in freezing/thawing soil. Simply deconvolving effects of single environmental controls on ALT is not possible with measurements alone as processes act in concert to drive thaw depth formation. Process-rich models of thermal hydrological dynamics, conversely, are a valuable tool for understanding the dominant controls and uncertainties in predicting permafrost conditions. By integrating observational data with known physical relationships to form process-rich models, synthetic experiments can then be used to explore a breadth of environmental conditions encountered and the effect of each environmental attribute may be assessed. Here a process rich thermal hydrology model, The Advanced Terrestrial Simulator, has been created and calibrated using observed data from Barrow, AK. An ensemble of 1D thermal hydrologic models were simulated that span a range of three environmental factors 1) thickness of organic rich soil, 2) snow depth, and 3) soil moisture content, to investigate the role of each factor on ALT. Results show that organic layer thickness acts as a strong insulator and is the dominant control of ALT, but the strength of the effect of organic layer thickness is also dependent on the saturation state. Using the ensemble results, the effect of peat thickness on ALT was then examined on a 2D domain. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and

  10. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    PubMed

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance.

  11. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost. PMID:25739499

  12. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  13. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  14. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  15. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  16. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  17. Transport and Deposition of 13c From Methane Injection into Detached H-Mode Plasmas in DIII-D

    SciTech Connect

    Wampler, W R; McLean, A G; Allen, S L; Brooks, N H; Elder, J D; Fenstermacher, M E; Groth, M; Stangeby, P C; West, W P; Whyte, D G

    2006-06-01

    Experiments are described which examine the transport and deposition of carbon entering the main plasma scrape-off layer in DIII-D. {sup 13}CH{sub 4} was injected from a toroidally symmetric source into the crown of lower single-null detached ELMy H-mode plasmas. {sup 13}C deposition, mapped by nuclear reaction analysis of tiles, was high at the inner divertor but absent at the outer divertor, as found previously for low density L-mode plasmas. This asymmetry indicates that ionized carbon is swept towards the inner divertor by a fast flow in the scrape-off layer. In the private flux region between inner and outer strike points, carbon deposition was low for L-mode but high for the H-mode plasmas. OEDGE modeling reproduces observed deposition patterns and indicates that neutral carbon dominates deposition in the divertor from detached H-mode plasmas.

  18. Low-noise encoding of active touch by layer 4 in the somatosensory cortex

    PubMed Central

    Andrew Hires, Samuel; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. DOI: http://dx.doi.org/10.7554/eLife.06619.001 PMID:26245232

  19. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Zhang, Dongdong; Wang, Yi

    2011-02-01

    In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.

  20. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system.

  1. Molecular mechanisms of photochemically induced posterior vitreous detachment.

    PubMed

    Kakehashi, A; Ueno, N; Chakrabarti, B

    1994-01-01

    Vitreous gel contraction and syneresis, commonly associated with age- and disease-related posterior vitreous detachment (PVD), were induced by a hematoporphyrin (HP)-photosensitized reaction. Calf vitreous gel was irradiated by white light in the presence of HP. Gel weights of the vitreous samples after 24 h of irradiation decreased by 14%, the irradiated control without HP by 8% and the control with HP stored in the dark by 8%. No significant difference in vitreous gel compressibility was found between the irradiated controls and the irradiated samples. In separate experiments, collagen gel in a glass capillary and hyaluronic acid (HA) were irradiated with white light in the presence of HP. The control collagen gel (irradiated without HP and stored in the dark with HP) decreased in length by 0.6% after 96 h, the experimental gel with HP decreased in length by 1.3 and 1.9% after 24- and 96-hour irradiation by visible light, respectively. The irradiated HA monitored by high-performance liquid chromatography showed a molecular weight decrease in the HP-treated polymer. Because the HP-sensitized reaction predominantly produces singlet oxygen, collagen gel contraction and HA degradation, in this case, are likely caused by this active oxygen species.

  2. Modelling of the Semi-Detached Binary Star WZ Corvi

    NASA Astrophysics Data System (ADS)

    Virnina, N. A.; Zola, S.; Krajci, T.

    We present results from modeling of multicolor light curves of the semi-detached, algol- type binary system WZ Corvi. We analyzed V R data gathered in 2010 and new BV RcIc observations collected in 2012. Two models for WZ Crv are considered: the first was derived under the assumption that the temperature of the primary component, having the dominant contribution to total system light, corresponds to spectral type F7, and the second model, in which the temperature of the secondary was estimated from the colors observed at the at bottom of the primary minimum. The new set of observations shows almost no difference in maxima heights, obvious in the earlier, 2010 data. However, primary minimum in V and R is deeper than in the 2010 light curve. We explain the variable shape of the system light curve as spot(s) present on primary or secondary component(s) due to their magnetic activity. Based on the derived solutions, we calculate relative physical (assuming the primary component to be a Main Sequence star) parameters of WZ Crv for both models.

  3. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  4. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    NASA Astrophysics Data System (ADS)

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  5. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells.

    PubMed

    Muenzner, Petra; Rohde, Manfred; Kneitz, Susanne; Hauck, Christof R

    2005-08-29

    Exfoliation, which is the detachment of infected epithelial cells, is an innate defense mechanism to prevent bacterial colonization. Indeed, infection with Neisseria gonorrhoeae induced epithelial detachment from an extracellular matrix (ECM) substrate in vitro. Surprisingly, variants of N. gonorrhoeae that bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) failed to induce detachment and, instead, promoted enhanced host cell adhesion to the ECM. Microarray analysis revealed that CEACAM engagement by several human pathogens triggers expression of CD105. Blockage of CD105 expression by antisense oligonucleotides abolished infection-induced cell adhesion. The expression of full-length CD105 promoted cell adhesion to the ECM and was sufficient to prevent infection-induced detachment. The CD105-mediated increase in cell adhesion was dependent on the presence and function of integrin beta1. CD105 expression did not elevate cellular integrin levels but caused a dramatic increase in the ECM-binding capacity of the cells, suggesting that CD105 affects integrin activity. The exploitation of CEACAMs to trigger CD105 expression and to counteract infection-induced cell detachment represents an intriguing adaptation of pathogens that are specialized to colonize the human mucosa. PMID:16115956

  6. Comparison of Plasma Activation of Thin Water Layers by Direct and Remote Plasma Sources

    NASA Astrophysics Data System (ADS)

    Kushner, Mark

    2014-10-01

    Plasma activation of liquids is now being investigated for a variety of biomedical applications. The plasma sources used for this activation can be generally classified as direct (the plasma is in contact with the surface of the liquid) or remote (the plasma does not directly touch the liquid). The direct plasma source may be a dielectric barrier discharge (DBD) where the surface of the liquid is a floating electrode or a plasma jet in which the ionization wave forming the plasma plume reaches the liquid. The remote plasma source may be a DBD with electrodes electrically isolated from the liquid or a plasma jet in which the ionization wave in the plume does not reach the liquid. In this paper, a comparison of activation of thin water layers on top of tissue, as might be encountered in wound healing, will be discussed using results from numerical investigations. We used the modeling platform nonPDPSIM to simulate direct plasma activation of thin water layers using DBDs and remote activation using plasma jets using up to hundreds of pulses. The DBDs are sustained in humid air while the plasma jets consist of He/O2 mixtures flowed into humid air. For similar number of pulses and energy deposition, the direct DBD plasma sources produce more acidification and higher production of nitrates/nitrites in the liquid. This is due to the accumulation of NxOy plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with newly produced reactive species. in the gas phase. In the plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with

  7. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  8. Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp.

    PubMed

    Duffus, C M; Rosie, R

    1973-09-01

    Some photosynthetic and biochemical properties of the chlorophyl containing layers of the pericarp of developing barley have been investigated. The tissue changes from pale green to bright green early in development, chlorophyll disappearing only at the later stages of maturity. It contains chloroplasts and probably amyloplasts and starch bearing chloroplasts. It is capable of high rates of light dependent oxygen evolution. It has been shown that the enzyme phosphoenol pyruvate carboxylase (EC 4.1.1.31) is present in the pericarp and is 100 times as active in carbon dioxide fixation as ribulose diphosphate carboxylase (EC 4.1.1.39). Other enzymes present in the pericarp are phosphoenol pyruvate synthetase, pyrophosphatase (EC 3.6.1.1), malate NAD and NADP dehydrogenases (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), and fructose 1,6 diphosphatase (EC 3.1.3.11). PMID:24458756

  9. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  10. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    PubMed

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  11. Modeling of the polymer solar cell with a P3HT:PCBM active layer

    NASA Astrophysics Data System (ADS)

    Jelić, Ž.; Petrović, J.; Matavulj, P.; Melancon, J.; Sharma, A.; Zellhofer, C.; Živanović, S.

    2014-09-01

    In this paper we present a theoretical model for simulating the behavior of a polymer solar cell with a poly(3-hexylthiophene):1-(3-methoxycarbonyl) propyl-1-phenyl-[6, 6]-methanofullerene (P3HT:PCBM) active layer. Two different types of boundary conditions were considered, Dirichlet’s and mixed. For Dirichlet’s boundary conditions we have achieved an excellent agreement with the experiment. The influence of boundary conditions on the appearance of the s-shaped current-voltage characteristic (sometimes observed in experiments) has been investigated. When mixed boundary conditions are applied, calculated current-voltage characteristics are inevitably s-shaped. By altering the boundary carrier concentration, an s-shaped deformation in current-voltage characteristics is numerically simulated by using Dirichlet’s boundary conditions.

  12. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  13. Materials for the active layer of organic photovoltaics: ternary solar cell approach.

    PubMed

    Chen, Yung-Chung; Hsu, Chih-Yu; Lin, Ryan Yeh-Yung; Ho, Kuo-Chuan; Lin, Jiann T

    2013-01-01

    Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.

  14. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  15. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  16. Kink-style detachment folding in Bachu fold belt of central Tarim Basin, China: geometry and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Bo, Zhang; Jinjiang, Zhang; Shuyu, Yan; Jiang, Liu; Jinhai, Zhang; Zhongpei, Zhang

    2010-05-01

    The phenomenon of Kink banding is well known throughout the engineering and geophysical sciences. Associated with layered structures compressed in a layer-parallel direction, it arises for example in stratified geological systems under tectonic compression. Our work documented it is also possible to develop super large-scale kink-bands in sedimentary sequences. We interpret the Bachu fold uplift belt of the central Tarim basin in western China to be composed of detachment folds flanked by megascopic-scale kink-bands. Those previous principal fold models for the Bachu uplift belt incorporated components of large-scale thrust faulting, such as the imbricate fault-related fold model and the high-angle, reverse-faulted detachment fold model. Based on our observations in the outcrops and on the two-dimension seismic profiles, we interpret that first-order structures in the region are kink-band style detachment folds to accommodate regional shortening, and thrust faulting can be a second-order deformation style occurring on the limb of the detachment folds or at the cores of some folds to accommodate the further strain of these folds. The belt mainly consists of detachment folds overlying a ductile decollement layer. The crests of the detachment folds are bounded by large-scale kink-bands, which are zones of angularly folded strata. These low-signal-tonoise, low-reflectivity zones observed on seismic profiles across the Bachu belt are poorly imaged sections, which resulted from steeply dipping bedding in the kink-bands. The substantial width (beyond 200m) of these low-reflectivity zones, their sub-parallel edges in cross section, and their orientations at a high angle to layering between 50 and 60 degrees, as well as their conjugate geometry, support a kink-band interpretation. The kink-band interpretation model is based on the Maximum Effective Moment Criteria for continuous deformation, rather than Mohr-Column Criteria for brittle fracture. Seismic modeling is done to

  17. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  18. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Fisher, J. P.; Estop-Aragones, C.; Thierry, A.; Hartley, I. P.; Murton, J.; Charman, D.; Williams, M.

    2014-12-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence also the extent that permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed multiple plots across 4 sites of contrasting vegetation and fire status, including a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may

  19. Mesospheric electron detachment and LORE recovery times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vazquez, Francisco J.; Haldoupis, Christos; Luque, Alejandro

    2015-04-01

    We present new results concerning the recovery times (> 10 minutes) of LOng Recovery Early VLF events (LORE) in the upper mesosphere connected to electromagnetic pulses (EMP) of large (> 250 kA km) charge moment change (CMC) ± CG (cloud to ground) lightning capable of producing elves or elve-sprite pairs (in the case of +CG parent lightning) [1], [2]. We have modeled two possible scenarios considering first the relaxation of slightly perturbed ambient electron densities (ne0 + Δne) without an impulsive ionization source and another scenario where the ambient electron density is considerably enhanced due to an impulsive ionization source (the lightning EMP). The full non-equilibrium kinetic and 2D EMP modelling of the perturbed mesosphere in the 76 km - 92 km range during LORE occurring conditions indicates that the electron density relaxation time (defined as the time the perturbed electron density, Δne, takes to decay a factor 1/e of the way to the ambient electron density (ne0)) is critically controlled at each altitude by the relative importance of associative detachment (of O- by, respectively, O and CO and of O2- by O) with respect to electron loss mechanisms (mainly 3-body, 2-body attachment and electron-ion recombination at the highest altitudes). We found that the maximum electron density relaxation time (> 15000 s) occur between 80 km and 82 km while it decreases with increasing altitudes to 12000 s (at 85 km) and about 2000 s (at 92 km). However, LORES are presumably due to VLF scattering from electron density enhancements caused by lightning-induced EMPs in the uppermost D region ionosphere (85 - 92 km). Thus the observed VLF signal recoveries (LORE recovery times) should associate with the relaxation of the maximum enhanced electron densities produced by elves between 85 km and 92 km [3]. Finally, our results for the lowest altitudes considered (76 km and 77 km) are in good agreement with the recovery times (between 20 s and 120 s) of the typical

  20. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures.

    PubMed

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-22

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  1. Many-body microhydrodynamics of colloidal particles with active boundary layers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one

  2. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere.

    PubMed

    Escartín, J; Smith, D K; Cann, J; Schouten, H; Langmuir, C H; Escrig, S

    2008-10-01

    The formation of oceanic detachment faults is well established from inactive, corrugated fault planes exposed on sea floor formed along ridges spreading at less than 80 km Myr(-1) (refs 1-4). These faults can accommodate extension for up to 1-3 Myr (ref. 5), and are associated with one of the two contrasting modes of accretion operating along the northern Mid-Atlantic Ridge. The first mode is asymmetrical accretion involving an active detachment fault along one ridge flank. The second mode is the well-known symmetrical accretion, dominated by magmatic processes with subsidiary high-angle faulting and the formation of abyssal hills on both flanks. Here we present an examination of approximately 2,500 km of the Mid-Atlantic Ridge between 12.5 and 35 degrees N, which reveals asymmetrical accretion along almost half of the ridge. Hydrothermal activity identified so far in the study region is closely associated with asymmetrical accretion, which also shows high levels of near-continuous hydroacoustically and teleseismically recorded seismicity. Increased seismicity is probably generated along detachment faults that accommodate a sizeable proportion of the total plate separation. In contrast, symmetrical segments have lower levels of seismicity, which occurs primarily at segment ends. Basalts erupted along asymmetrical segments have compositions that are consistent with crystallization at higher pressures than basalts from symmetrical segments, and with lower extents of partial melting of the mantle. Both seismic evidence and geochemical evidence indicate that the axial lithosphere is thicker and colder at asymmetrical sections of the ridge, either because associated hydrothermal circulation efficiently penetrates to greater depths or because the rising mantle is cooler. We suggest that much of the variability in sea-floor morphology, seismicity and basalt chemistry found along slow-spreading ridges can be thus attributed to the frequent involvement of detachment faults

  3. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  4. Adhesion and detachment of a capsule in axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Keh, M. P.; Leal, L. G.

    2016-05-01

    The adhesion and detachment of a capsule on a solid boundary surface is studied via a combination of scaling theory and numerical simulation and the behavior is compared and contrasted with a vesicle. It is shown that the dominant physical property for both capsules and vesicles is the area dilation modulus Ks of the membrane. The nonzero shear modulus Gs for capsules increases the resistance to deformation and thus decreases slightly the equilibrium contact radius for an adhered capsule compared to an adhered vesicle. The detachment process in this study is due to an external axisymmetric flow. Unlike a rigid body that must be pulled away without change of shape, capsules (and vesicles) almost always detach dominantly by peeling in which the contact radius decreases but the minimum separation distance does not change until the final moments of detachment. Compared to a vesicle with the same Ks, a capsule maintains a more compact shape and is harder to elongate under a given external flow. Hence, the detachment process is slower for capsules compared to vesicles with the same Ks.

  5. Analytical calculations for impurity seeded partially detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; ASDEX Upgrade Team

    2016-04-01

    A simple analytical formula for the impurity seeded partially detached divertor operational point has been developed using 1D modelling. The inclusion of charge exchange momentum loss terms improves the 1D modelling for ASDEX Upgrade conditions and its extrapolation to larger devices. The investigations are concentrated around a partially detached divertor working point of low heat flux and an electron temperature around 2.5 eV at the target which are required to maintain low sputtering rates at a tungsten target plate. An experimental formula for the onset of detachment by nitrogen seeding in ASDEX Upgrade is well reproduced, and predictions are given for N, Ne and Ar seeding for variable device size. Moderate deviations from a linear {{P}\\text{sep}}/R size dependence of the detachment threshold are seen in the modelling caused by upstream radiation at longer field line lengths. The presented formula allows the prediction of the neutral gas or seed impurity pressure which is required to achieve partial detachment for a given {{P}\\text{sep}} in devices with a closed divertor similar to the geometry in ASDEX Upgrade.

  6. Miocene detachment faulting predating EPR propagation: Southern Baja California

    NASA Astrophysics Data System (ADS)

    Bot, Anna; Geoffroy, Laurent; Authemayou, Christine; Bellon, Hervé; Graindorge, David; Pik, Raphaël.

    2016-05-01

    At the southern tip of the Baja California peninsula, we characterize the onshore structures and kinematics associated with crustal necking leading up to the Pliocene breakup and early East Pacific Rise seafloor spreading. From a combination of tectonic field investigations, K-Ar and cosmogenic isotope dating and geomorphology, we propose that the Los Cabos block represents the exhumed footwall of a major detachment fault. This north trending detachment fault is marked by a conspicuous low-dipping brittle-ductile shear zone showing a finite displacement with top to the SE ending to the ESE. This major feature is associated with fluid circulations which led to rejuvenation of the deformed Cretaceous magmatic rocks at a maximum of 17.5 Ma. The detachment footwall displays kilometer-scale corrugations controlling the present-day drainage pattern. This major detachment is synchronous with the development of the San José del Cabo Basin where syntectonic sedimentation took place from the middle Miocene to probably the early Pliocene. We propose that this seaward dipping detachment fault accommodates the proximal crustal necking of the Baja California passive margin, which predates the onset of formation of the East Pacific Rise spreading axis in the Cabo-Puerto Vallarta segment. Our data illustrate an apparent anticlockwise rotation of the stretching direction in Baja California Sur from ~17 Ma to the Pliocene.

  7. Dynamic displacement of normal and detached semicircular canal cupula.

    PubMed

    Rabbitt, Richard D; Breneman, Kathryn D; King, Curtis; Yamauchi, Angela M; Boyle, Richard; Highstein, Stephen M

    2009-12-01

    The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40-200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex-mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms-3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5-7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma.

  8. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    PubMed

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. PMID:26574088

  9. Unpinning the Open-Circuit Voltage in Organic Solar Cells through Tuning Ternary Blend Active Layer Morphology

    NASA Astrophysics Data System (ADS)

    Khlyabich, Petr; Thompson, Barry; Loo, Yueh-Lin

    2015-03-01

    The use of ternary, as opposed to binary, blends having complementary absorption in active layers of organic bulk heterojunction solar cells is a simple approach to increase overall light absorption. While the open-circuit voltage (Voc) of such solar cells have generally been shown to be pinned by the smallest energy level difference between the donor and acceptor constituents, there have been materials systems, that when incorporated into active layers of solar cells, exhibit composition dependent and tunable Voc. Herein, we demonstrate that this Voc tunability in ternary blend solar cells is correlated with the morphology of the active layer. Chemical compatibility between the constituents in the blend, as probed by grazing-incidence X-ray diffraction (GIXD) measurements, affords Voc tuning. The constituents need not ``co-crystallize'' limited miscibility between the constituents in the active layers of solar cells affords Voc tunability. Poor physical interactions between the constituent domains within the active layers, on the other hand, result in devices that exhibit an invariant Voc that is pinned by the smallest energy level difference between the donor(s) and the acceptor(s). Our morphological studies thus support the proposed alloying model that was put forth originally.

  10. Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment.

    PubMed

    Dworak, Andrzej; Utrata-Wesołek, Alicja; Oleszko, Natalia; Wałach, Wojciech; Trzebicka, Barbara; Anioł, Jacek; Sieroń, Aleksander L; Klama-Baryła, Agnieszka; Kawecki, Marek

    2014-04-01

    The thermoresponsive surfaces of brush structure (linear polymer chains tethered on the surface) based on poly(2-isopropyl-2-oxazoline)s and copolymers of 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline were obtained using the grafting-to method. The living oxazoline (co)polymers have been synthesized by cationic ring-opening polymerization and subsequently terminated by the reactive amine groups present on the surface. The changes in the surface morphology, philicity and thickness occurring during surface modification were monitored via atomic force microscopy, contact angle and ellipsometry. The thickness of the (co)poly(2-substituted-2-oxazoline) layers ranged from 4 to 11 nm depending on the molar mass of immobilized polymer and reversibly varied with the temperature changes. This confirmed thermoresponsive properties of obtained surfaces. The obtained polymer surfaces were used as a support for dermal fibroblast culture and detachment. The fibroblasts' adhesion and proliferation on the polymer surfaces were observed when the culture temperature was above the cloud point temperature of the immobilized polymer. Lowering the temperature resulted in the detachment of the dermal fibroblast sheets from the polymer layers, which makes these surfaces suitable for the treatment of wounds and in skin tissue engineering. PMID:24390278

  11. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  12. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  13. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  14. Active control of turbulent boundary layer sound transmission into a vehicle interior

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2016-09-01

    In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.

  15. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  16. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  17. [Aluminum coordination and active sites on aluminas, Y-zeolites and pillared layered silicates]. Progress report

    SciTech Connect

    Fripiat, J.J.

    1994-02-01

    This report is organized in four sections. In the first the authors will outline structural features which are common to all fine grained alumina, as well as to non-framework alumina in zeolites. This section will be followed by a study of the surface vs. bulk coordination of aluminum. The third section will deal with measurement of the number of acid sites and the scaling of their strength. The fourth and last section will describe three model reactions: the isomerization of 1-butene and of 2 cis-butene; the isomerization and disproportionation of oxtho-xylene; and the transformation of trichloroethane into vinyl chloride followed by the polymerization of the vinyl chloride. The relationship between chemical activity and selectivity and what is known of the local structure of the active catalytic sites will be underlined. Other kinds of zeolites besides Y zeolite have been studied. Instead of the aluminum pillared silicates they found it more interesting to study the substitution of silicon by aluminum in a layered structure containing a permanent porosity (aluminated sepiolite).

  18. [Effect of the atmospheric ozone layer on the biologically active ultraviolet radiation on the earth's surface].

    PubMed

    Schulze, R; Kasten, F

    1975-08-01

    Based on measurements of the spectral irradiation intensity of UV-B global radiation by Bener (1960) and on the curve of spectral skin erythema effects newly measured by Urbach and Berger (1972), the biologically active UV-radiation at earth's surface has been calculated as a function of sun's altitude and atmospheric ozone content in so-called "Biological Units": BE = mWh cm-2 times erythema efficacy. On the basis of these data, the total daily, monthly, and yearly amounts of biologically active UV-radiation have been determined for the different geographical latitudes and various ozone contents. Approximately two thirds of BU hit the equatorial zone from 35 degrees south to 35 degrees north. Provided that the stratospheric ozone layer would be reduced by ten per cent from the exhaust gases of supersonic planes flying at high-altitude, an increase of BU would result amounting to 18% at the equator, to 19% in middle latitudes, and to 22% at the poles.

  19. Paleostress analyses in the uppermost footwalls of the Whipple detachment and the West Salton detachment faults, southern California

    NASA Astrophysics Data System (ADS)

    Luther, A. L.; Axen, G. J.; Selverstone, J.; Michelsen, K. J.

    2010-12-01

    Low-angle normal faults (LANFs) slip while nearly perpendicular to the regional S1, presenting a mechanical paradox that may be explained by rotation of S1 toward the fault as it is approached, weak materials reducing friction and/or high pore-fluid pressure. Well-exposed LANF footwalls provide opportunities for detailed studies of weak faults. Paleostress inversions of fault-slip data coupled with structural and chemical analyses of footwall rocks are in progress on the Whipple detachment fault (WDF; >40 km Miocene slip; evolved from ductile shear zone to brittle fault) and the West Salton detachment fault (WSDF; ~10 km slip during dextral-wrench tectonism coeval with San Andreas Fault slip). Both were folding during detachment slip. Paleostress analyses indicate that both faults slipped mainly in extensional stress fields (sub-vertical S1) and in axial compression (S2 ≈ S3). Over 40% of extensional stress fields yield S1 plunging >70° relative to the detachment, but ~30% yield plunges of 40° to 60° relative to the detachment. Thus, the stress field may have been locally and/or temporarily rotated away from sub-vertical during detachment slip. About 15% of the inversions yield shortening stress fields (S1 ~horizontal) consistent with folding and/or dextral-wrench deformation. Mutually cross-cutting relationships between fracture sets suggest that the stress fields may have alternated through time. “Mini-detachments” (MDs) are small, detachment-parallel faults that are structurally analogous to the main faults. Inversions yield S1 ~45° from the MDs and a larger magnitude of S2 relative to S3. Damage zones subjacent to MD fault cores commonly yield more moderately plunging S1 than do MD fault cores or deeper rocks. Petrological evidence suggests that the MDs formed early in the detachment history (Selverstone et al., GSA Abstract, 2009). If their damage zones also formed early, then S1 may have been shallower early in detachment history and(or) at greater

  20. Detachment energies of spheroidal particles from fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Davies, Gary B.; Krüger, Timm; Coveney, Peter V.; Harting, Jens

    2014-10-01

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  1. Shape of heteroepitaxial island determined by asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Saito, Yukio; Kawasaki, Ryo

    2008-02-01

    Square lattice gas models for heteroepitaxial growth are studied by means of kinetic Monte Carlo simulations, in order to find a possible origin of anisotropic island shape observed in growth experiments of long organic molecules. When deposited molecules form clusters irreversibly at their encounter during surface diffusion, islands grow in a ramified dendritic shape, similar to DLA. Introduction of molecular detachment from edges makes islands compact with smooth edges. Tilting of adsorbed long molecules or steps in a vicinal substrate may induce orientation dependence in the detachment rate of edge molecules from an island. In simulations with orientation-dependent detachment rates, a clear anisotropy in an island shape is observed. Shape anisotropy on a vicinal substrate is enhanced as steps get dense, in agreement to the experimental observation.

  2. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    PubMed Central

    Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.

  3. Intense field double detachment of atomic versus molecular anions

    NASA Astrophysics Data System (ADS)

    Albeck, Y.; Lerner, G.; Kandhasamy, D. M.; Chandrasekaran, V.; Strasser, D.

    2015-12-01

    The interaction of intense ultrafast laser pulses with atomic F- and with molecular S F6 - anions is directly compared. The double-detachment mechanism is investigated by a systematic variation of peak intensity, polarization ellipticity, and pulse shape. For both systems, the observed weak polarization ellipticity dependence is not consistent with a rescattering-based mechanism. A double-detachment saturation intensity of 22 ±4 ×1013W /c m2 is determined for the atomic anion, which is significantly higher than the 9 ±2 ×1013W /c m2 of the analogous molecular system. The different atomic and molecular responses to spectral chirp and third-order dispersion induced pulse shapes are discussed in the context of the double-detachment time scale.

  4. Streetscape showing north sides of five of eight Medical Detachment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Streetscape showing north sides of five of eight Medical Detachment Barracks on Ramp No. 5. Note that Building No. 9966-B on right has a wooden frame sun porch. This Standard Ward construction is different than most of the other Medical Detachment Barracks, which are all- brick. On the opposite side of this building, the construction is all-brick (Building No. 9966-A, not shown). Buildings No. 9967-B and 9968-B (not shown) also have wooden frame sun porches. Other buildings in photo are, on right, the north B-sides of Buildings Nos. 9965, 9964, 9963 and 9962. On left is Building No. 9971-A on Ramp No. 6. Corridor A is visible in far distance. - Madigan Hospital, Medical Detachment Barracks, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  5. Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures

    PubMed Central

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2014-01-01

    Cathode materials always limit the performance of fuel cells while the commercial platinum-based catalysts hardly meet the requirements of low cost, durable and stable. Here a non-precious metal oxygen reduction reaction (ORR) electocatalyst based on titanium nitride/titanium carbonitride hierarchical structures (TNTCNHS) is demonstrated as high activity as Pt/C. In alkaline condition, tuning interface/mass ratio of TiN/TiCN, we observed the onset potential of ~0.93 V vs. RHE and a limit diffusion current density of ~5.1 mA cm−2 (at a rotating speed of 1600 rpm) on TNTCNHS with a relative low catalyst loading of ~0.1 mg cm−2. The kinetic current, durability and tolerance to crossover effect studies reveal even more efficient than carbon-supported platinum. The architecture fabrication for such electrocatalyst is easy to realize in industrial-scale facilities, for the use of chemical vapor deposition (CVD) technique could support a huge area production (more than 10000 cm2 for one pot) to satisfy the enormous market requirements in the future. PMID:25335930

  6. Enhanced electrocatalytic performance for oxygen reduction via active interfaces of layer-by-layered titanium nitride/titanium carbonitride structures.

    PubMed

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2014-01-01

    Cathode materials always limit the performance of fuel cells while the commercial platinum-based catalysts hardly meet the requirements of low cost, durable and stable. Here a non-precious metal oxygen reduction reaction (ORR) electocatalyst based on titanium nitride/titanium carbonitride hierarchical structures (TNTCNHS) is demonstrated as high activity as Pt/C. In alkaline condition, tuning interface/mass ratio of TiN/TiCN, we observed the onset potential of ~0.93 V vs. RHE and a limit diffusion current density of ~5.1 mA cm(-2) (at a rotating speed of 1600 rpm) on TNTCNHS with a relative low catalyst loading of ~0.1 mg cm(-2). The kinetic current, durability and tolerance to crossover effect studies reveal even more efficient than carbon-supported platinum. The architecture fabrication for such electrocatalyst is easy to realize in industrial-scale facilities, for the use of chemical vapor deposition (CVD) technique could support a huge area production (more than 10000 cm(2) for one pot) to satisfy the enormous market requirements in the future. PMID:25335930

  7. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    SciTech Connect

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-04

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  8. Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dominguez, Miguel A.; Flores, Francisco; Luna, Adan; Martinez, Javier; Luna-Lopez, Jose A.; Alcantara, Salvador; Rosales, Pedro; Reyes, Claudia; Orduña, Abdu

    2015-07-01

    In this work, the preparation of Zinc Oxide (ZnO) films by ultrasonic spray pyrolysis at low-temperature and its application in thin-film transistors (TFTs) are presented, as well, the impact of the active layer thickness and gate dielectric thickness in the electrical performance of the ZnO TFTs. A thinner active layer resulted in better transfer characteristics such as higher on/off-current ratio, while a thicker active layer resulted in better output characteristics. The ZnO films were deposited from 0.2 M precursor solution of Zinc acetate in methanol, using air as carrier gas on a hotplate at 200 °C. The ZnO films obtained at 200 °C were characterized by optical transmittance, Photoluminescence spectroscopy and X-ray diffraction.

  9. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Schaefer, Kevin; Zhang, Tingjun; Wahr, John

    2012-01-01

    The measurement of temporal changes in active layer thickness (ALT) is crucial to monitoring permafrost degradation in the Arctic. We develop a retrieval algorithm to estimate long-term average ALT using thaw-season surface subsidence derived from spaceborne interferometric synthetic aperture radar (InSAR) measurements. Our algorithm uses a model of vertical distribution of water content within the active layer accounting for soil texture, organic matter, and moisture. We determine the 1992-2000 average ALT for an 80 × 100 km study area of continuous permafrost on the North Slope of Alaska near Prudhoe Bay. We obtain an ALT of 30-50 cm over moist tundra areas, and a larger ALT of 50-80 cm over wet tundra areas. Our estimated ALT values match in situ measurements at Circumpolar Active Layer Monitoring (CALM) sites within uncertainties. Our results demonstrate that InSAR can provide ALT estimates over large areas at high spatial resolution.

  10. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  11. Detached Solidification of Germanium-Silicon Crystals on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2016-01-01

    A series of Ge(sub 1-x) Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  12. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: study of direct voltammetry and bioelectrocatalytic activity.

    PubMed

    Saadati, Shagayegh; Salimi, Abdollah; Hallaj, Rahman; Rostami, Amin

    2012-11-13

    A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH(2)-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH(2)-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH(2)-IL and negatively charged catalase a sensitive H(2)O(2) biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k(s)) and Michaelis-Menten constant (K(M)) of immobilized catalase were 3.32×10(-12) mol cm(-2), 5.28s(-1) and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM(-1)cm(-2) and low detection limit of 100 nM at concentration range up to 2.1 mM.

  13. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    NASA Astrophysics Data System (ADS)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian; Wang, Wei

    2016-04-01

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (Von) and severe degradation of the memory window (ΔVon) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of Von at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔVon of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  14. N-Acetylcysteine Suppresses Retinal Detachment in an Experimental Model of Proliferative Vitreoretinopathy

    PubMed Central

    Lei, Hetian; Velez, Gisela; Cui, Jing; Samad, Arif; Maberley, David; Matsubara, Joanne; Kazlauskas, Andrius

    2010-01-01

    Proliferative vitreoretinopathy (PVR) is a complication that develops in 5% to 10% of patients who undergo surgery to correct a detached retina. The only treatment option for PVR is surgical intervention, which has a limited success rate that diminishes in patients with recurring PVR. Our recent studies revealed that antioxidants prevented intracellular signaling events that were essential for experimental PVR. The purpose of this study was to test whether N-acetyl-cysteine (NAC), an antioxidant used in a variety of clinical settings, was capable of protecting rabbits from PVR. Vitreous-driven activation of PDGFRα and cellular responses intrinsic to PVR (contraction of collagen gels and cell proliferation) were blocked by concentrations of NAC that were well below the maximum tolerated dose. Furthermore, intravitreal injection of NAC effectively protected rabbits from developing retinal detachment, which is the sight-robbing phase of PVR. Finally, these observations with an animal model appear relevant to clinical PVR because NAC prevented human PVR vitreous-induced contraction of primary RPE cells derived from a human PVR membrane. Our observations demonstrate that antioxidants significantly inhibited experimental PVR, and suggest that antioxidants have the potential to function as a PVR prophylactic in patients undergoing retinal surgery to repair a detached retina. PMID:20489144

  15. Choroidal ischemia and serous macular detachment associated with severe postoperative pain.

    PubMed

    Jung, Jee Woong; Lee, Dae Young; Nam, Dong Heun

    2008-06-01

    To report the association of a unilateral serous macular detachment with severe postoperative pain. A 71-year-old woman presented with a sudden decrease in vision in the right eye, seven days after a total knee replacement arthroplasty. The patient's history was unremarkable except for a severe pain greater than the visual analog scale of 8 points for about 2 days after surgery. Retinal examination showed a well differentiated serous detachment that was about 3.5 disc diameter in size and located in the macular area. Fluorecein angiography and indocyanine green angiography showed delayed perfusion of the choriocapillaris without leakage points in the early phase and persistent hypofluorescence with pooling of dye in the subretinal space in the late phase. There was a spontaneous resolution of the serous detachment and the choroidal changes with residual pigment epithelial changes. Severe postoperative pain may influence the sympathetic activity and introduce an ischemic injury with a focal, choroidal vascular compromise and secondary dysfunction of overlying RPE cells in select patients.

  16. In-Situ Pressure Measurements During the Detached Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Palosz, W.; Szofran, F. R.

    2003-01-01

    Crystal growth by the vertical Bridgman method in which there is little or no contact between the wall and the crystal has been termed detached solidification. Detachment has been observed frequently in previous microgravity experiments, and has been reported under some terrestrial conditions as well. It is expected that detachment can be conditioned by establishing an appropriate pressure difference below and above the melt. To test this hypothesis, an experimental technique has been developed to measure this pressure difference during the growth of germanium by the vertical Bridgman method. The apparatus allows for both monitoring the pressures and actively controlling them during growth. For a given melt height, there is a maximum pressure difference attainable before gas bubbles up through the melt. This maximum pressure increases with increasing melt height. As the melt height approaches zero, the maximum pressure difference, about 20 mbar in these experiments, is determined by the surface tension and gap width of the meniscus at the bottom of the melt.

  17. Active diagenetic formation of metal-rich layers in N. E. Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Wallace, H. E.; Thomson, J.; Wilson, T. R. S.; Weaver, P. P. E.; Higgs, N. C.; Hydes, D. J.

    1988-06-01

    Sediment cores from the Porcupine Abyssal Plain exhibit an indurated layer 0.5-3 cm thick at depths of approximately 50 cm. This is some 15-20 cm below the glacial/Holocene transition as interpreted by radiocarbon dating and the palaeontological criteria of RUDDIMAN and MCINTYRE (1981). The layer is forming currently at the oxic/post-oxic boundary in the sediments, as revealed by pore water data: O 2 and NO -3 are present in solution above the layer, while Fe 2+, Mn 2+, PO 3-4 and NH +4 are present in solution below, and all these species show concentration gradients indicating fluxes into the layer. These data are consistent with the hypothesis for the initiation and sustained formation of such layers proposed by WILSONet al. (1986a,b). The elements Mn, Ni, Co, Fe, P, V, Cu, Zn and U are all enriched to varying degrees in the vicinity of the layer. Some differential stratification of these elements in the vertical, consistent with a redox control, is observed at one site with a 0.5 cm layer, with Mn, Ni and Co above, Fe, P, V and Cu in the layer, and U below. At another site the metal-rich layer has higher Fe and P concentrations and is more indurated. Here all enrichments except Co are contained within a single layer sample, 3 cm thick.

  18. Cenozoic Evolution of the West Cycladic Detachment System

    NASA Astrophysics Data System (ADS)

    Iglseder, Christoph; Grasemann, Bernhard; Schneider, Dave A.; Senkowski, Carley A.; Stöckli, Dani

    2010-05-01

    Extension in the Aegean led to the formation of metamorphic core complexes and domes, with multistage extensional detachments cutting rocks of the Attic-Cycladic Crystalline at different structural and lithostratigraphic levels. Four kinematic provenances are here distinguished in the Cycladic extensional detachment system: (1) The North (Andros-Ikaria) and (2) Central (Naxos-Paros) Cycladic Detachment Systems, showing top N/NE sense of shear; (3) the South Cycladic Detachment System (Ios-Amorgos), part of the South Cycladic Shear Zone, with evidence for two opposite kinematic domains, an older top S/SE and a younger top N/NW sense of shear. In contrast, the newly documented (4) West Cycladic Detachment System (Sifnos-Lavrion) is dominated by a top SW/SSW sense of shear. Low-angled extensional detachments nucleated in the ductile regime and show progressive overprinting by ductile-brittle and then brittle deformation processes on Kea, Kythnos and Serifos. On Sifnos, an older top NE and brittle-ductile younger event, with top SW kinematics has been documented. In comparison, on the Greek mainland in Attica, top SW/SSW sense of shear allows the regional structure to be expanded. At both Lavrion in Attica and Serifos, the extensional detachments were intruded by syn-tectonic Late Miocene granodiorites. Cenozoic extension in the Western Cyclades is suggested to begin in the Eocene, with early S-type granite intrusion on Serifos at 43-37 Ma (U-Pb zircon). This is supported by Eocene/Early Oligocene Rb/Sr and Ar/Ar (cooling) ages of hanging-wall schists and marbles. Similar cooling ages, (post-) dating high-pressure/low-temperature metamorphism, have been described from Sifnos. During the Oligocene/Miocene, a decrease in greenschist-facies ages has been determined on the Serifos-Kythnos-Kea transect. Similar ages of greenschist-facies metamorphism have also been found on Sifnos. Initial stages of the Serifos granodiorite intrusion, coeval with initiation of the main

  19. Rotational auto-detachment of dipole-bound anions

    NASA Astrophysics Data System (ADS)

    Ard, S. G.; Compton, R. N.; Garrett, W. R.

    2016-04-01

    Rotational auto-detachment of acetonitrile, trimethyl-acetonitrile, acetone, and cyclobutanone dipole-bound anions was studied under varying conditions in a Rydberg electron transfer (RET) time-of-flight apparatus. Varying amounts of auto-detachment was observed for anions with similar electron affinity and dipole moment, but different moments of inertia. These results were found to be consistent with predictions based on the calculated rotational spectra for these anions, highlighting the importance of critical binding properties in understanding the stability and lifetime of dipole bound systems.

  20. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    SciTech Connect

    P. F. Schmit and N. J. Fisch

    2008-11-05

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.

  1. Evaluation of bacterial detachment rates in porous media

    SciTech Connect

    Peyton, B.M.; Hooker, B.S.; Skeen, R.S.; Cunningham, A.B.; Lundman, R.W.

    1994-05-01

    The ability of published biomass detachment rate expressions to describe experimental data obtained from porous media reactors using Pseudomonas aeruginosa grown aerobically on glucose was evaluated. A first-order rate expression on attached biomass concentration best reflected effluent substrate concentration for combined data sets. Detachment rate coefficient k{sub d1} was dependent on initial substrate concentration. Simulation of porous media reactor experiments indicated that responses using higher influent substrate concentrations possessed greater sensitivity to variations in k{sub d1}. Simulations of field bioremediation systems suggest the use of accurate biofilm development kinetics is important in the prediction of well bore biofouling.

  2. Dissociative detachment and memory impairment: reversible amnesia or encoding failure?

    PubMed

    Allen, J G; Console, D A; Lewis, L

    1999-01-01

    The authors propose that clinicians endeavor to differentiate between reversible and irreversible memory failures in patients with dissociative symptoms who report "memory gaps" and "lost time." The classic dissociative disorders, such as dissociative amnesia and dissociative identity disorder, entail reversible memory failures associated with encoding experience in altered states. The authors propose another realm of memory failures associated with severe dissociative detachment that may preclude the level of encoding of ongoing experience needed to support durable autobiographical memories. They describe how dissociative detachment may be intertwined with neurobiological factors that impair memory, and they spell out the significance of distinguishing reversible and irreversible memory impairment for diagnosis, patient education, psychotherapy, and research.

  3. 2. Overview showing Medical Detachment Barracks on both Ramp No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Overview showing Medical Detachment Barracks on both Ramp No. 5 (left buildings) and Ramp No. 6 (right buildings). View is to west from roof of Corridor A. Note that a pedestrian sidewalk separates buildings instead of a street for automobiles. In left foreground is the north end of Building No. 9962-B; followed by the north B-sides of Buildings Nos. 9963, 9964, 9965, 9966, 9967 and 9968 on Ramp No. 5. Large white building in far distance is a barracks on the other side of Wilson Avenue. - Madigan Hospital, Medical Detachment Barracks, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  4. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis

    PubMed Central

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  5. Bilateral Simultaneous Rhegmatogenous Retinal Detachment following Laser in situ Keratomileusis.

    PubMed

    Yumusak, Erhan; Ornek, Kemal; Ozkal, Fatma

    2016-01-01

    A 21-year-old woman developed simultaneous rhegmatogenous retinal detachment after laser in situ keratomileusis (LASIK) in both eyes. She underwent pars plana vitrectomy surgery combined with endolaser photocoagulation and silicone oil tamponade in the right eye. A week later, pneumatic retinopexy was done in the left eye. As the retinal tear did not seal, 360° scleral buckling surgery was performed and retina was attached. Bilateral simultaneous rhegmatogenous retinal detachment after LASIK for correction of myopia can be a serious complication. Patients should be informed about the possibility of this complication. PMID:27462264

  6. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  7. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  8. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  9. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    PubMed

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  10. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    PubMed Central

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  11. Bubble size on detachment from the luminal aspect of ovine large blood vessels after decompression: The effect of mechanical disturbance.

    PubMed

    Arieli, Ran; Arieli, Uri; Marmur, Abraham

    2015-09-15

    Bubbles nucleate and develop after decompression at active spots on the luminal aspect of ovine large blood vessels. Series of bubbles were shown to detach from the active spot with a mean diameter of 0.7-1.0mm in calm conditions. The effect of mechanical disturbance (striking the bowl containing the vessel or tangential flow) was studied on ovine blood vessels stretched on microscope slides and photographed after hyperbaric exposure. Diameter on detachment after a heavy blow to the bowl was 0.87 ± 0.43 mm (mean ± SD), no different from bubbles which detached without striking the bowl (0.86 ± 0.28 mm). Bubble diameter on detachment during pulsatile tangential flow at 234 cm/min, 0.99 ± 0.36 mm, was not smaller than that seen in the same blood vessels in calm conditions (0.81 ± 0.34 mm). The active spots were stained for lipids, proving their hydrophobicity. The most abundant active spots, which produced only a few bubbles, did not stain for lipids thereafter. The possibility that phospholipids were removed along with detached bubbles may correlate with acclimation to diving. The finding of bubble production at the active spots matches observed phenomena in divers: variable sensitivity to decompression, acclimation to diving, the effect of elevated gas load on increased bubble formation, a higher bubble score in the second dive on the same day, and unexplained neurological symptoms after decompression. Large bubbles released from the arterial circulation give serious cause for concern.

  12. Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas

    SciTech Connect

    Oudini, N.; Taccogna, F.; Aanesland, A.

    2014-06-15

    Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.

  13. Effect of Plasma-Polymerized Layer Formed on a Surface of Titanium Dioxide Particle on Its Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Yamada, Kenji; Iwasawa, Naoko; Sonoda, Tatsuhiko; Yamane, Hirokazu; Matsushima, Shigenori; Nakamura, Hiroyuki

    If TiO2 particles are used as components of paint without any surface modification, binding resin of the paint will be easily decomposed by the photocatalytic activity of the particles. In this work, plasma polymerization of octamethylcyclotetrasiloxane as a siloxane monomer is tried to form thin layer stable to the photocatalytic activity on the surface of TiO2 particles. The plasma-polymerized layer containing Si-O and Si-C bonds is formed on the surface of the particles and shows stability to the photocatalytic activity of TiO2. The particles surface-modified with the plasma polymerization exhibit visible-light activity. The visible-light activity is originated from carbon doping which brings about in the particles during the plasma polymerization, and is thermally stable to be maintained after annealing at 673 K.

  14. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  15. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes

    SciTech Connect

    Nakagawa, Hiroyuki; Shudo, Atsushi; Miura, Kouichi

    2000-01-01

    Recently the authors have presented a method to prepare activated carbon fiber with high bulk density (HD-ACF) without using any binders. The possibility of using the HD-ACF as an electrode for electric double-layer capacitors (EDLCs) was examined in this paper. The capacitance of the EDLC with the HD-ACF electrode increased with the increase of bulk density of the HD-ACF, indicating that individual fibers are highly packed without losing their capacitance. The capacitance also increased in proportion to the size of the HD-ACF electrode. The initial discharge current of the EDLC showed little dependency on either the bulk density or the size of the HD-ACF electrode. These results clarified that the HD-ACF electrode is suitable for constructing a high-power EDLC. The initial discharge current was directly proportional to the conductivity of aqueous KCI used as the electrolyte, indicating that the resistance of the electrolyte is much higher than that of the HD-ACF electrode. This result showed that the efficiency of the HD-ACF was well above the efficiency of the electrolyte used in this study and that the improvement of the ionic conductivity of electrolyte is also necessary for developing a high-power EDLC.

  16. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-02-01

    As shown in recent work, thin layer ion-selective multi-ionophore membranes can be interrogated by cyclic voltammetry to detect the ion activity of multiple species simultaneously and selectively. Additional fundamental evidence is put forward on ion discrimination with thin multi-ionophore-based membranes with thicknesses of 200 ± 25 nm and backside contacted with poly-3-octylthiophene (POT). An anodic potential scan partially oxidizes the POT film (to POT(+)), thereby initiating the release of hydrophilic cations from the membrane phase to the sample solution at a characteristic potential. Varying concentration of added cation-exchanger demonstrates that it limits the ion transfer charge and not the deposited POT film. Voltammograms with multiple peaks are observed with each associated with the transfer of one type of ion (lithium, potassium, and sodium). Experimental conditions (thickness and composition of the membrane and concentration of the sample) are chosen that allow one to describe the system by a thermodynamic rather than kinetic model. As a consequence, apparent stability constants for sodium, potassium, and lithium (assuming 1:1 stoichiometry) with their respective ionophores are calculated and agree well with the values obtained by the potentiometric sandwich membrane technique. As an analytical application, a membrane containing three ionophores was used to determine lithium, sodium, and potassium in artificial samples at the same location and within a single voltammetric scan. Lithium and potassium were also determined in undiluted human plasma in the therapeutic concentration range. PMID:26712342

  17. Electrical activity of the Hartmann layers relative to surface viscous shearing in an annular magnetohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Delacroix, Jules; Davoust, Laurent

    2014-03-01

    As a first step towards two-phase magnetohydrodynamics (MHD), this paper addresses an original analytical coupling between surface rheology, e.g., a gradually oxidizing liquid metal surface, ruled by the Boussinesq number Bo, and a supporting annular MHD flow, ruled by the Hartmann number Ha, in the general layout of a classical annular deep-channel viscometer, as developed by Mannheimer and Schechter [J. Colloid Interface Sci. 32, 195-211 (1970)]. Using a matched asymptotic expansion based on the small parameter 1/Ha, we can express the surface velocity as a coupling variable in the jump momentum balance at the liquid surface. By solving the latter through the determination of the Green's function, the whole flow can be analytically calculated. A modified Boussinesq number, tilde{B_o}, is produced as a new non-dimensional parameter that provides the balance between surface viscous shearing and the Lorentz force. It is shown that the tilde{B_o} number drives the electrical activation of the Hartmann layers, heavily modifying the MHD flow topology and leading to the emergence of the Lorentz force, for which interaction with the flow is not classical. Finally, the evolution laws given in this study allow the determination of scaling laws for an original experimental protocol, which would make it possible to accurately determine the surface shear viscosity of a liquid metal with respect to the quality of the ambient atmosphere.

  18. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  19. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  20. Occurrence of Sporadic -E layer during the Low Solar Activity over the Anomaly Crest Region Bhopal, India

    NASA Astrophysics Data System (ADS)

    Bhawre, Purushottam

    2016-07-01

    Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.

  1. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  2. Impact of different detachment topographies on pull-apart basin evolution - analog modelling and computer visualisation

    NASA Astrophysics Data System (ADS)

    Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.

    2009-04-01

    Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin

  3. Investigating the effect of solvent boiling temperature on the active layer morphology of diffusive bilayer solar cells

    NASA Astrophysics Data System (ADS)

    Vohra, Varun; Dörling, Bernhard; Higashimine, Koichi; Murata, Hideyuki

    2016-01-01

    Using chlorobenzene as a base solvent for the deposition of the poly(3-hexylthiophene-2,5-diyl) (P3HT) layer in P3HT:phenyl-C61-butyric acid methyl ester diffusive bilayer solar cells, we investigate the effect of adding of small amounts of high-boiling-point solvents with similar chemical structures on the resulting active layer morphologies. The results demonstrate that the crystallinity of the P3HT films as well as the vertical donor-acceptor gradient in the active layer can be tuned by this approach. The use of high-boiling-point solvents improved all photovoltaic parameters and resulted in a 32% increase in power conversion efficiency.

  4. Liquid Droplet Detachment and Entrainment in Microscale Flows

    NASA Astrophysics Data System (ADS)

    Hidrovo, Carlos

    2005-11-01

    In this talk we will present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. Silicon based microstructures consisting of 23 mm long U-shaped channels of different geometry were used for this purpose. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic. Liquid water is injected through a side slot located 2/3 of the way downstream from the air channel inlet. The water entering the air channel beads up into slugs or droplets that grow in size at this injection location until they fill and flood the channel or are carried away by the air flow. The slugs/droplets dimensions at detachment are correlated against superficial gas velocity and proper dimensionless parameters are postulated and examined to compare hydrodynamic forces against surface tension. It is found that slug/droplet detachment is dominated by two main forces: pressure gradient drag, arising from confinement of a viscous flow in the channel, and inertial drag, arising from the stagnation of the air due to obstruction by the slugs/droplets. A detachment regime map is postulated based on the relative importance of these forces under different flow conditions.

  5. Sampling device with a capped body and detachable handle

    DOEpatents

    Jezek, Gerd-Rainer

    2000-01-01

    The apparatus is a sampling device having a pad for sample collection, a body which supports the pad, a detachable handle connected to the body and a cap which encloses and retains the pad and body to protect the integrity of the sample.

  6. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  7. Photo-Detachment of a Noncollinear Triatomic Anion

    NASA Astrophysics Data System (ADS)

    Afaq, A.; Farooq, K.

    2014-12-01

    Photo-detachment of a noncollinear triatomic anion is investigated by considering each atom of the molecular anion as a coherent source of detached-electron waves, originating in all possible directions. The waves traveling along three different trajectories result in a quantum interference that displays on a screen placed at a very large distance from the system. To explain this quantum interference, an analytical formula of detached-electron flux is derived using a collinear three-center model recently published. The detached-electron flux versus laser photon energy expression displays molecular geometry-dependent oscillatory structures on an observation plane. This oscillatory behavior in the result can be explained using the semiclassical closed-orbit theory. The outgoing electron waves produced from one coherent center are propagated in the vicinity of the sources at other two coherent centers which cause these oscillations. It is also observed that in a particular case, the noncollinear triatomic system reduces to the collinear three-center system.

  8. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy.

    PubMed

    Hidaka, Takako; Chuman, Hideki; Nao-I, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  9. 3. Ramp No. 6 connection between Medical Detachment Barracks: Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Ramp No. 6 connection between Medical Detachment Barracks: Building Nos. 9970-B (left) and 9969-B (right). The many windows makes this section almost unique among the ramps and corridors. - Madigan Hospital, Corridors & Ramps, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  10. DC resistivity tomography applied to monitoring active layer environments below patterned ground in Svalbard

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuya; Juliussen, Hâvard; Matsuoka, Norikazu; Christiansen, Hanne H.

    2010-05-01

    Patterned ground is one of the most characteristic features in arctic periglacial landscapes that originated from various periglacial processes. On flat tundra surfaces composed of fine-grained soils, ice-wedge polygons are dominant, but mud boils and hummocks are also developed. Their distribution is constrained by local ground material, hydrology, snow cover, vegetation and freeze/thaw regimes. Whereas there have been a large number of studies on patterned ground phenomena, environmental factors distinguishing the types of patterned ground are not well understood. We applied DC resistivity tomography to understanding hydrological characteristics and freeze/thaw dynamics at adjoining ice-wedge and mud-boil sites in Adventdalen, Svalbard, where comprehensive periglacial process monitoring has been undertaken. Electrode arrays consisting of 81 nails spaced at 20 cm intervals were fixed at each site early in June 2009 immediately after the snow cover disappeared. The nails were stuck within the top 5 cm to resolve the top layer of the ground. Measurements were carried out repeatedly at approximately two week intervals. Spring results from both sites are characterized by an increase in resistivity near surface due to drying up. This tendency is prominent in the ice-wedge polygon centre where standing water remains until late spring. Time-lapse analyses indicate a distinct decrease in resistivity in seasonal frozen layer at both sites probably due to an increase in unfrozen water content by downward heat transfer. Summer profiles from both sites display a distinct resistivity boundary propagating downward with time, corresponding well with the thaw depth measured by mechanical probing. These data also show near-surface high resistivity spots indicating the location of desiccation cracks. Profiles from the mud-boil site show higher resistivity in the thaw layer than those of ice-wedge site, implying different drainage condition between them. After seasonal freezing

  11. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  12. Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Xicai; Li, Yanping; Yu, Qihao; Shi, Xiaogang; Yang, Daqing; Roth, Kurt

    2016-07-01

    Seasonally variable thermal conductivity in active layers is one important factor that controls the thermal state of permafrost. The common assumption is that this conductivity is considerably lower in the thawed than in the frozen state, λt/λf < 1. Using a 9-year dataset from the Qinghai-Tibet Plateau (QTP) in conjunction with the GEOtop model, we demonstrate that the ratio λt/λf may approach or even exceed 1. This can happen in thick (> 1.5 m) active layers with strong seasonal total water content changes in the regions with summer-monsoon-dominated precipitation pattern. The conductivity ratio can be further increased by typical soil architectures that may lead to a dry interlayer. The unique pattern of soil hydraulic and thermal dynamics in the active layer can be one important contributor for the rapid permafrost warming at the study site. These findings suggest that, given the increase in air temperature and precipitation, soil hydraulic properties, particularly soil architecture in those thick active layers must be properly taken into account in permafrost models.

  13. The South Tibetan Detachment System: Thermal and mechanical transition from deeper to upper structural levels

    NASA Astrophysics Data System (ADS)

    Montomoli, Chiara; Rodolfo, Carosi; Visonà, Dario

    2013-04-01

    The South Tibetan Detachment System (STDS) is a primary tectonic feature of the Himalayan chain, cropping out for more than 2000 km along the belt. It separates the low-grade-metamorphic rocks of the Tibetan Sedimentary Sequence (TSS) in the hanging-wall, from the high-grade-metamorphic rocks of the High Himalayan Crystallines (HHC) in the footwall. The architecture of the STDS is made up by a lower ductile shear zone affecting high -grade metamorphic rocks of the HHC and the lower portion of the TSS, deformed under amphibolite facies conditions (i.e. Checka Formation, Everest series, Haimanta Group). An upper low-angle normal fault divides the high-grade metamorphic rocks from the very-low-grade rocks of the TSS. Several competing tectonic models, regarding the exhumation and extrusion of the high-grade metamorphic rocks of the HHC are nowadays objects of debates. In these models the STDS, joined with the partly coeval lower Main Central Thrust played a crucial role. The knowledge of the thermal and structural activity of the STDS can give a fundamental contribution to discriminate among the different proposed tectonic models. By the way most of the structural and thermal studies focused on the kinematic and thermal profiles of the footwall rocks and only few studies have been concentrated on the hanging-wall rocks. During this work we focused on two sections of the STDS cropping out east of the Ama Drime range (Dingyee area, Southern Tibet) and west of the Annapurna massif (Kaligandaki valley, Central Nepal). Here we concentrated on the hanging-wall rocks of the STDS represented by Ordovician limestone in the first transect and by impure marbles and quartzites in the second one. Meso and microstructural studies have been accompanied by illite crystallinity analyses, calcite-dolomite geothermometer and stable isotope analyses on selected samples. Microfabric analysis of calcite shows shape and lattice preferred orientations as well as grain size reduction within

  14. Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles.

    PubMed

    Marto, J; São Marcos, P; Trindade, T; Labrincha, J A

    2009-04-15

    In this work ZnO layers have been deposited by screen-printing in common ceramic tiles. These layers were characterized and tested for the photocatalytic degradation of the organic dye Orange II in aqueous solutions, using a batch photoreactor either under visible light provided by a Philips ML-160 W lamp or under direct exposure to sunlight. For sake of comparison, ZnO suspensions have also been evaluated for similar reacting conditions. The influence of experimental parameters such as (i) firing temperature of the printed layer; (ii) layer thickness; and (iii) operation time have been investigated. Screen-printed ZnO layers obtained in optimal processing conditions showed photocatalytic activity comparable to aqueous ZnO suspensions. The maximal attenuation degree is over 70% and decolourisation rate, assuming that reaction kinetics follows a pseudo-first order rate law, is over 0.015 min(-1). Thus these ZnO-layered ceramic tiles can be regarded as an alternative to photocatalytic suspensions of the same material with the advantage of avoiding the removal of the photocatalyst.

  15. Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley.

    PubMed

    Daneri-Castro, Sergio N; Chandrasekar, Balakumaran; Grosse-Holz, Friederike M; van der Hoorn, Renier A L; Roberts, Thomas H

    2016-09-01

    During barley germination, the aleurone layer secretes most of the enzymes required to degrade the endosperm, many of which are yet to be characterized. We used activity-based protein profiling (ABPP) to detect a range of active enzymes extracted from aleurone layers isolated from grains of a commercial malting barley variety incubated with or without gibberellic acid (GA). Enzymes found to be induced by GA were putative aleurains, cathepsin-B-like proteases and serine hydrolases. By using an inhibitory sugar panel, a specific active retaining β-glycosidase in the barley aleurone was identified as a putative xylanase. Our results show that ABPP can be used rapidly to identify a variety of active enzyme isoforms in cereal aleurone without the need for enzyme purification.

  16. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  17. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers

    PubMed Central

    2014-01-01

    Background Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes

  18. Double-layered collagen gel hemisphere for cell invasion assay: successful visualization and quantification of cell invasion activity.

    PubMed

    Takata, Masahiko; Maniwa, Yoshimasa; Doi, Takefumi; Tanaka, Yugo; Okada, Kenji; Nishio, Wataru; Ohbayashi, Chiho; Yoshimura, Masahiro; Hayashi, Yoshitake; Okita, Yutaka

    2007-10-01

    Although various methods for collagen gel-based cell invasion assays have been described, there continues to be a need for a simpler and more objective assay. Here, we describe an easy-to-prepare double-layered collagen gel hemisphere (DL-CGH) system that satisfies these requirements, and we demonstrate the advantages of this new system for visualizing cell movements during invasion. DL-CGH consists of a central core collagen layer surrounded by an outer cover collagen layer. A droplet of collagen I solution (containing cells to be examined) naturally forms a small hemisphere on the bottom of the culture dish. After this central core layer gels, a second droplet is placed atop the first gel, encapsulating it completely. The hemisphere is submerged in the medium and cultured. The invasive activity of cells that infiltrate from the inner to the outer layer can be evaluated optically. Using this in vitro system, we measured the inhibitory effect of E-cadherin expression on cancer cell invasion. DL-CGH also allowed visualization of interactions between invading cancer cells and the stroma. Cancer cells, which lack the proteases required for direct entrance into the three-dimensional collagen matrix, were seen to slip like amoebas through matrix gaps generated by the pericellular proteolytic activity of fibroblasts. [Supplementary materials are available for this article. Go to the publisher's online edition of Cell Communication and Adhesion for the following free supplemental resources: Movies 1-3; 4a and b]. PMID:17957531

  19. ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum

    PubMed Central

    Banerjee, P; Harada, H; Tassew, N G; Charish, J; Goldschneider, D; Wallace, V A; Sugita, S; Mehlen, P; Monnier, P P

    2016-01-01

    While a great deal of progress has been made in understanding the molecular mechanisms that regulate retino-tectal mapping, the determinants that target retinal projections to specific layers of the optic tectum remain elusive. Here we show that two independent RGMa-peptides, C- and N-RGMa, activate two distinct intracellular pathways to regulate axonal growth. C-RGMa utilizes a Leukemia-associated RhoGEF (LARG)/Rho/Rock pathway to inhibit axonal growth. N-RGMa on the other hand relies on ϒ-secretase cleavage of the intracellular portion of Neogenin to generate an intracellular domain (NeICD) that uses LIM-only protein 4 (LMO4) to block growth. In the developing tectum (E18), overexpression of C-RGMa and dominant-negative LARG (LARG-PDZ) induced overshoots in the superficial tectal layer but not in deeper tectal layers. In younger embryos (E12), C-RGMa and LARG-PDZ prevented ectopic projections toward deeper tectal layers, indicating that C-RGMa may act as a barrier to descending axons. In contrast both N-RGMa and NeICD overexpression resulted in aberrant axonal-paths, all of which suggests that it is a repulsive guidance molecule. Thus, two RGMa fragments activate distinct pathways resulting in different axonal responses. These data reveal how retinal projections are targeted to the appropriate layer in their target tissue. PMID:26292756

  20. Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome-disrupting polycation, and detachable PEG.

    PubMed

    Suma, Tomoya; Miyata, Kanjiro; Anraku, Yasutaka; Watanabe, Sumiyo; Christie, R James; Takemoto, Hiroyasu; Shioyama, Momoko; Gouda, Noha; Ishii, Takehiko; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2012-08-28

    Multifunctional delivery systems of small interfering RNA (siRNA) are needed to overcome the intrinsic biological barriers toward efficient gene silencing in the cell cytoplasm. In this report, a smart multilayered assembly (SMA) was fabricated by a layer-by-layer method with polyionic materials. The SMA was designed to feature a siRNA-loaded core, a transiently core-stabilizing silica interlayer, an endosome-disrupting polycation interlayer, and a biocompatible poly(ethylene glycol) (PEG) shell with reductive environment-responsive detachability. The SMA was confirmed to be approximately 160 nm in size with narrow distribution and spherical morphology by DLS and TEM analyses. The PEG detachability of the SMA based on disulfide cleavage was also confirmed by the increase in both ζ-potential and size due to the exposure of the polycation interlayer and the compromised colloidal stability. The silica interlayer rendered the SMA highly tolerant to dissociation induced by anionic lipids, while after 24 h dialysis siRNA release from the SMA was clearly observed, presumably due to gradual dissolution of the silica interlayer based on the equilibrium shift to silicate ions. The entrapment ratio of siRNA delivered by the SMA within the endosome was significantly lower than that by nondisulfide control (NDC) without PEG detachability, suggesting the improved endosomal escape of SMA with the exposed, endosome-disrupting interlayer after PEG detachment. SMAs induced significantly higher gene silencing efficiency in various cultured cells, compared to NDC, without associated cytotoxicity. The systemic administration of SMAs for subcutaneous tumor-bearing mice achieved significant endogenous gene silencing in tumor tissue without hematological toxicity.

  1. Parallel Evolution of Quasi-separatrix Layers and Active Region Upflows

    NASA Astrophysics Data System (ADS)

    Mandrini, C. H.; Baker, D.; Démoulin, P.; Cristiani, G. D.; van Driel-Gesztelyi, L.; Vargas Domínguez, S.; Nuevo, F. A.; Vásquez, A. M.; Pick, M.

    2015-08-01

    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  2. PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS

    SciTech Connect

    Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.; Vásquez, A. M.; Baker, D.; Driel-Gesztelyi, L. van; Démoulin, P.; Pick, M.; Vargas Domínguez, S.

    2015-08-10

    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  3. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  4. Cobalt on rhenium(0001) an example of thermally activated layer intermixing and surface alloying

    NASA Astrophysics Data System (ADS)

    Parschau, M.; Christmann, K.

    1999-03-01

    The growth and morphology of cobalt thin films deposited onto a Re(0001) surface at 300, 400 and 550 K were followed in the coverage range 0 ML< Θ<6 ML by combined low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The interaction phenomena are complex and depend strongly on temperature. At 300 K, cobalt nucleates homogeneously on terraces and heterogeneously at steps forming dendritic islands. Larger cobalt coverages lead to incomplete layer growth. Interdiffusion and alloying play a minor role only at 300 K, but become dominant for T>400 K in that different (2×2) phases form within the first Re-Co bilayer, one within the rhenium substrate surface, the others within the cobalt islands. The (2×2) phases can be associated with Re/Co surface alloys of different stoichiometry, depending on cobalt coverage. As the cobalt coverages exceed two monolayers (ML), genuine but incomplete cobalt layers grow. Within the third and fourth cobalt layer, periodic triangular features with a lattice constant of ~28 Å appear in STM, followed by a Moiré pattern for Θ>4 ML. Both structures produce an incomplete (10×10) LEED pattern. After growth of the fifth or sixth layer the lattice misfit is overcome, and cobalt essentially grows layer-by-layer in a pseudo Frank-van der Merwe mechanism, the details being strongly temperature-dependent.

  5. Numerical investigation on active isolation of ground shock by soft porous layers

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Sun, W.; Anand, S.

    2009-04-01

    The mitigation and reduction of blast-induced ground shock in near field is an interesting topic worth considering for the protection of buried structures. Soft porous materials are usually used to form an isolation layer around the buried structures. However, the interaction of soft porous layer and surrounding geomedia as well as buried structures is not well understood. In this paper, the effects of soft porous layer barriers on the reduction of buried blast-induced ground shock are numerically studied. Based on the prototype dimensions of a centrifuge test, a numerical model is set up with two steel boxes symmetrically buried at two sides of the charge. One box is directly located in soil mass without protection (unprotected) and the other is located behind a soft porous layer barrier (protected). The soft porous layer barriers studied here include an open trench, an inundated water trench, three in-filled geofoam walls with different densities, and a concrete wall. The numerical responses of the two boxes are evaluated when subjected to the protection of different soft porous layer barriers. These numerical simulations show that both open trench and geofoam barriers can effectively reduce blast-induced stress waves. However, inundated water trench and concrete wall have almost no effect on the reduction of ground shock. Therefore, a geofoam barrier is more practicable in soil mass.

  6. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  7. Detached macroalgae: Its importance to inshore sandy beach fauna

    NASA Astrophysics Data System (ADS)

    Orr, Kyla K.; Wilding, Thomas A.; Horstmeyer, Lena; Weigl, Simon; Heymans, Johanna J.

    2014-10-01

    Kelp forests shed a large proportion of their biomass through storm-mediated defoliation, senescence of kelp blades, and constant erosion of particulate organic matter from the kelp fronds. Much of this detached macroalgae drifts in the water column and is deposited on intertidal zones of beaches. Detached macroalgae may provide inshore sandy beach fauna with refuge and food subsidies in an exposed and bare environment, with limited in situ primary production. We evaluated the relationship between detached macroalgae and the density of inshore fauna, where 'inshore' was the body of water extending from low water seawards for approximately 50 m. Inshore fauna were sampled using a push-net (1 mm mesh) on 11 beaches, and using a beam-trawl (4 mm mesh) on a subset of 8 beaches. On each beach, the density of detached macroalgae in the water column was quantified, together with a suite of physico-chemical beach characteristics. Push-net samples principally comprised omnivorous and detritivorous crustaceans such as gammarid amphipods, mysids and valviferan isopods, which have limited swimming abilities and reside inshore year-round. Beam-trawl fauna were mainly carnivorous decapods and fish, which undergo seasonal inshore-offshore migrations to utilize sandy beaches as nursery habitats. Linear models predicted increases of 11% (95% CI: 3.5-19%) and 2.4% (95% CI: 0.7-4.2%) in the density of push-net and beam-trawl fauna, respectively, with a 1 ℓ.100 m-3 increase in detached macroalgae. This suggests that detached macroalgae is more important in the provision of food and shelter to small, weak-swimming detritivores/omnivores than to larger and more mobile predators. The densities of large predators were mostly explained by physical beach characteristics, which overshadowed the role of macroalgae. Maximum abundances of decapods and fish were found on wide, flat beaches with low wave heights. Large accumulations of macroalgae may inhibit the foraging efficiencies of

  8. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  9. Soil Active Layer Freeze/Thaw Detection Using Combined L- and P-Band Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Moghaddam, M.

    2014-12-01

    Monitoring of soil active layer freeze-thaw (FT) dynamics is critical for studying high-latitude ecosystem and environmental changes. We evaluated the potential of inferring FT state dynamics within a tundra soil profile using combined L- and P-band radar remote sensing and forward radiative transfer modeling of backscatter characteristics. A first-order two-layer soil scattering model (FTSS) was developed in this study to analyze soil multi-layer scattering effects. The FTSS was evaluated against other sophisticated modeling approaches and showed comparable performance. The FTSS was then applied to analyzing L- and P-band microwave responses to layered soil. We find that soil volume scattering is rather weak for the two frequencies for frozen or dry soil with mean particle size below 10mm diameter. Dielectric contrast between adjacent soil layers can contribute to total backscatter at both L- and P-band with more significant impact on P-band than L-band signals depending on the depth of soil profile. Combined L- and P-band radar data are shown to have greater utility than single channel observations in detecting soil FT dynamics and dielectric profile inhomogeneity. Further analysis using available airborne synthetic aperture radar (SAR) data and in-situ measurements also confirm that soil profile heterogeneity can be effectively detected using combined L- and P-band radar backscatter data. This study demonstrates the potential of lower frequency SARs from airborne missions, including UAV-SAR and AirMOSS, for Arctic and alpine assessment of soil active layer properties.

  10. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  11. Intensity increases of actin layer-lines on activation of the Limulus muscle.

    PubMed Central

    Maéda, Y; Boulin, C; Gabriel, A; Sumner, I; Koch, M H

    1986-01-01

    Small angle x-ray diffraction patterns were recorded from isometrically contracting Limulus (horseshoe crab) telson levator muscle using a multiwire proportional-area detector on the storage ring DORIS. In the pattern a substantial increase in intensity is observed on the thin-filament-associated layer-line at 1/38 nm-1 (the first actin layer-line) with a maximum increase at a radial spacing of R = 0.07 nm-1 but there is a much smaller change in the intensity of the 5.9-nm layer-line, which also arises from the thin filament structure. The results suggest that during contraction the myosin heads, presumably being attached to the thin filaments, are arranged along the long-stranded helical tracks of the thin filaments but that the spatial relationship between the heads and the actin monomers varies. Intensity increases have also been observed (Maéda et al., manuscript in preparation) in the part of the patterns from frog muscle and barnacle muscle, which are attributable to the first actin layer-line. It is thus likely that the intensity increase of the first actin layer-line on the Limulus pattern is associated not with structural features which are special to Limulus muscle, but with the tension generating processes that are shared by muscles in general. Images FIGURE 1 FIGURE 2 PMID:3801566

  12. Modeling Active Layer Depth Over Permafrost for the Arctic Drainage Basin and the Comparison to Measurements at CALM Field Sites

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2002-12-01

    A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25~km~x~25~km resolution NSIDC EASE-Grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. In addition, we parameterize a spatially and vertically variable peat layer and modify soil bulk density and thermal conductivity accordingly. Climatological soil moisture content is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3~layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54~model nodes ranging from a thickness of 10~cm near the surface to 1~m at 15~m depth. Initial temperatures are chosen according to the grid cell's IPA permafrost classification on EASE grid. Active layer depths, simulated for the summers of 1999 and 2000, compare well to maximal thaw depths measured at about 60 Circumarctic Active Layer Monitoring Network (CALM) field sites. A remaining RMS-error between modeled and measured values is attributed mainly to scale discrepancies (100~m~x~100~m vs. 25~km~x~25~km) based on differences in the fields of air temperature, snow height, and soil bulk density. For the whole pan-Arctic land mass and the time period 1980 through 2001, this study shows the regionally highly variable active layer depth, frozen ground depth, lengths of freezing and thawing periods, and the day of year when the maxima are reached.

  13. Biostatistical analysis of pseudophakic and aphakic retinal detachments.

    PubMed

    Ramos, Meisy; Kruger, Erik F; Lashkari, Kameran

    2002-01-01

    Removal of the crystalline lens increases the risk of rhegmatogenous retinal detachment (RD) by creating changes in the ocular environment that predispose to development of retinal breaks. The evolution of cataract surgery from intracapsular cataract extraction (ICCE) to extracapsular cataract extraction (ECCE) and phacoemulsification has reduced the incidence of RD, while advances in vitreoretinal surgery have resulted in improved outcomes when retinal detachment does occur. The incidence of RD varies between 0.4-3.6% for ICCE and between 0.55-1.65% for ECCE. In eyes having undergone phacoemulsification the incidence is similar to those of ECCE and ranges between 0.75-1.65%. In this article the authors review the incidence and risk factors associated with pseudophakic and aphakic RD. The risk factors discussed include pre-operative risk factors such as age, status of the fellow eye and myopia, and surgical risk factors such as vitreous loss, posterior capsular integrity and Nd : YAG capsulotomy.

  14. The highly eccentric detached eclipsing binaries in ACVS and MACC

    NASA Astrophysics Data System (ADS)

    Shivvers, Isaac; Bloom, Joshua S.; Richards, Joseph W.

    2014-06-01

    Next-generation synoptic photometric surveys will yield unprecedented (for the astronomical community) volumes of data and the processes of discovery and rare-object identification are, by necessity, becoming more autonomous. Such autonomous searches can be used to find objects of interest applicable to a wide range of outstanding problems in astronomy, and in this paper we present the methods and results of a largely autonomous search for highly eccentric detached eclipsing binary systems in the Machine-learned All-Sky Automated Survey Classification Catalog. 106 detached eclipsing binaries with eccentricities of e ≳ 0.1 are presented, most of which are identified here for the first time. We also present new radial-velocity curves and absolute parameters for six of those systems with the long-term goal of increasing the number of highly eccentric systems with orbital solutions, thereby facilitating further studies of the tidal circularization process in binary stars.

  15. Heat and detachment in core-complex extension

    NASA Technical Reports Server (NTRS)

    Lucchitta, I.

    1985-01-01

    It is proposed here that the Miocene to Recent structural and volcanic features of the Basin and Range Province can be explained by a single thermotectonic process acting through time. This process consists of a thermal pulse resulting in a high-temperature regime that includes a steep thermal front moving first up toward the topographic surface, then down owing to cooling induced by a combination of convection and conduction. Within the front is a condition defining a critical surface that separates brittle from ductile behavior, and is marked by a nearly horizonal detachment fault. The most prominent and structurally highest position of the detachment results from interaction between the critical surface and a hydrothermal system near the topographic surface. These various features can be superposed on older ones through thermal remobilization or structural reactivation.

  16. Evaluation of metal trace detachment from dosing pumps using PIXE

    NASA Astrophysics Data System (ADS)

    Lozano, Omar; Mejia, Jorge; Laloy, Julie; Alpan, Lütfiye; Toussaint, Olivier; Dogné, Jean-Michel; Lucas, Stéphane

    2014-07-01

    Metal trace detachment evaluation is essential for instruments destined for pharmaceutical applications, such as pumps. Particle-Induced X-ray Emission (PIXE) was used to determine and quantify metal traces originated from stainless steel and ceramic dosing pumps. Metal traces were quantified from either distilled water samples or cellulose filters in two tests: a short-term test of 16 h mimicking a daily cycle of a dosing pump for industrial applications, and a long-term test of 9 days evaluating the pump wearing. The main result is that ceramic dosing pumps present lower metal detachment than stainless steel counterparts. Traces of Si and Al were found originating from pieces around the pumps (pipes and joints).

  17. "Aequanimitas" Redux: William Osler on detached concern versus humanistic empathy.

    PubMed

    Bryan, Charles S

    2006-01-01

    Recent critics make William Osler "the father of cool detachment" in medicine, largely because of his "Aequanimitas" address emphasizing objectivity and imperturbability. Closer analysis suggests that Osler's aequanimitas resembles more nearly the metriopatheia of later Stoic philosophy than the apatheia of the early Stoics. A previously unpublished memoir clarifies at least in part Osler's motive for teaching control of the "medullary centres" to minimize facial expression: he did not want to frighten patients, who typically had serious illnesses for which he lacked effective therapy. Twenty-first century challenges to medicine as a profession differ substantially from those of Osler's era. Physicians and educators must focus more closely on the tension between detached concern ("competence") and humanistic empathy ("caring") if medicine is to thrive as a learned profession as opposed to a technical service, a commodity to be bought and sold like any other.

  18. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  19. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.

  20. First experimental photo-detachment spectrum of H2-

    NASA Astrophysics Data System (ADS)

    Rudnev, Vitaly; Schlösser, Magnus; Telle, Helmut H.; González Ureña, Ángel

    2015-10-01

    This letter reports the first photo-detachment spectrum of the hydrogen anion, H2-. The spectrum was recorded over the range of excitation energies Ehν = 17 600-17 750 cm-1, at known laser fluence and under non-saturation conditions. This permitted us to extract absolute values for the photo-depletion cross-section which varies in the range 1-6 × 10-18 cm2 and exhibits oscillatory behaviour. This interesting behaviour was attributed to an electro-dynamical interaction between of the highly-rotating hydrogen daughter molecule and the detached electron. The presence of such oscillations may open new ways to investigate exotic anions relevant to molecular astrophysics and plasma physics.